Science.gov

Sample records for chemotherapeutic agents effectively

  1. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    PubMed

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer. PMID:26421434

  2. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    PubMed

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  3. Inhibition of human telomerase enhances the effect of chemotherapeutic agents in lung cancer cells.

    PubMed

    Misawa, Masafumi; Tauchi, Tetsuzo; Sashida, Goro; Nakajima, Akihiro; Abe, Kenji; Ohyashiki, Junko H; Ohyashiki, Kazuma

    2002-11-01

    Telomerase is a ribonucleoprotein enzyme that maintains protective structures at the ends of eukaryotic chromosomes. Earlier studies have reported that the presence of telomerase activity in tumors of patients with non-small cell lung cancer patients correlates with a high proliferation rate and advanced pathological stage. Thus, the modification of telomerase activity may be a potential therapeutic modality for the treatment of lung and other cancers. We introduced vectors encoding dominant negative (DN)-hTERT, or wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker, into the A549 lung cancer cell line, and assessed the biological effect of telomerase inhibition on cellular immortality. Ectopic expression of DN-hTERT resulted in complete inhibition of telomerase activity and reduction of telomere length. The entire population of telomerase-inhibited A549 cells exhibited cytoplasmic blebbling and chromatin condensation, which are features of apoptosis. In contrast, A549 cells expressing wild-type hTERT, which differs from the mutants by only two amino acids, exhibited normal morphology. Evidence for apoptosis in the telomerase-inhibited cells was provided by flow cytometric analysis with APO2.7 monoclonal antibody. We also observed enhanced induction of apoptosis by chemotherapeutic reagents, including cisplatin, docetaxel and etoposide, in DN-hTERT-expressing A549 cells, as compared with WT-hTERT-expressing cells. These results demonstrate that disruption of telomere maintenance limits the cellular lifespan of lung cancer cells, and show that the combined use of chemotherapeutic agents and telomere maintenance inhibition may be effective in the treatment of patients with non-small cell lung cancer.

  4. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review.

    PubMed

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-01-01

    Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy. PMID:27669218

  5. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    PubMed Central

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-01-01

    Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy. PMID:27669218

  6. Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis☆

    PubMed Central

    Zhang, Si-Ming; Coultas, Kristen A.

    2012-01-01

    Schistosomiasis, a snail-borne parasitic disease, affects more than 200 million people worldwide. Currently the treatment of schistosomiasis relies on a single therapy of praziquantel, a drug developed over 30 years ago. Thus, there is an urgent need to develop alternative antischistosomal drugs. In the pursuit of novel antischistosomal drugs, we examined the antischistosomal activities of 45 compounds that had been reported to exhibit antimicrobial and/or antiparasitic activities. Two plant-derived compounds, plumbagin and sanguinarine, were found to possess potent antischistosomal activities in vitro. For both the compounds, a concentration of 10 μM (equivalent to 1.88 μg/ml for plumbagin and 3.68 μg/ml for sanguinarine) resulted in 100% mortality at 48 h, which meets the World Health Organization’s (WHO) criterion of “hit” compounds for the control of schistosomiasis. Morphological changes and tegumental alterations of the dead worms treated by the two compounds were quite different. The significant morphological changes of worms after treatment by the two compounds suggest the two compounds target different biological pathways, both of which result in parasite’s death. This study provides evidence to suggest plumbagin and sanguinarine have real potential as effective alternative chemotherapeutic agents for the treatment of schistosomiasis. PMID:23641325

  7. Differential in vitro effects of chemotherapeutic agents on primary cultures of human ovarian carcinoma.

    PubMed

    Kornblith, P; Ochs, R L; Wells, A; Gabrin, M J; Piwowar, J; Chattopadhyay, A; George, L D; Burholt, D

    2004-01-01

    The treatment of ovarian cancer principally relies on the use of platinum and taxane chemotherapeutic agents. Short-term clinical results have been encouraging, but long-term responses remain limited. In this report, an in vitro assay system that utilizes cells grown from human tumor explants has been used to quantitatively evaluate responses to relevant concentrations of alternative chemotherapeutic agents. The results suggest that there are significant differences in the responses of explant-derived cultured cells to the different agents tested. In an evaluation of 276 primary ovarian cancer specimens, five nonstandard drugs were tested in 51 cases. Of these 51 cases, cyclophosphamide had the highest rate of response at 67%, followed by doxorubicin at 61%, gemcitabine at 49%, etoposide at 48%, and topotecan at 14%. Venn diagrams, representing the in vitro responses to the platins and taxanes, as well as the responses to the nonstandard drugs, illustrate that there clearly are distinct differences among patients in a given population. These data underscore the potential importance of evaluating each patient's response to a number of different drugs to optimize the therapeutic decision-making process. PMID:15304154

  8. Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma

    PubMed Central

    Heinen, Tiago Elias; dos Santos, Rafael Pereira; da Rocha, Amanda; dos Santos, Michel Pinheiro; da Costa Lopez, Patrícia Luciana; Filho, Marco Aurélio Silva; Souza, Bárbara Kunzler; da Rosa Rivero, Luís Fernando; Becker, Ricardo Gehrke; Gregianin, Lauro José; Brunetto, Algemir Lunardi; Brunetto, André Tesainer; de Farias, Caroline Brunetto; Roesler, Rafael

    2016-01-01

    Ewing sarcoma (ES) is a highly aggressive pediatric cancer that may arise from neuronal precursors. Neurotrophins stimulate neuronal devlopment and plasticity. Here, we found that neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as their receptors (TrkA and TrkB, respectively) are expressed in ES tumors. Treatment with TrkA (GW-441756) or TrkB (Ana-12) selective inhibitors decreased ES cell proliferation, and the effect was increased when the two inhibitors were combined. ES cells treated with a pan-Trk inhibitor, K252a, showed changes in morphology, reduced levels of β-III tubulin, and decreased mRNA expression of NGF, BDNF, TrkA and TrkB. Furthermore, combining K252a with subeffective doses of cytotoxic chemotherapeutic drugs resulted in a decrease in ES cell proliferation and colony formation, even in chemoresistant cells. These results indicate that Trk inhibition may be an emerging approach for the treatment of ES. PMID:27145455

  9. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents

    PubMed Central

    Walker, Sarah R.; Chaudhury, Mousumi; Frank, David A.

    2011-01-01

    To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies. PMID:21949561

  10. Targeted Delivery of Chemotherapeutic Agents Using Improved Radiosensitive Liquid Core Microcapsules and Assessment of Their Antitumor Effect

    SciTech Connect

    Harada, Satoshi Ehara, Shigeru; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Sato, Takahiro; Oikawa, Shyoichi; Kamiya, Tomihiro; Arakawa, Kazuo; Yokota, Wataru; Sera, Koichiro; Ito, Jyun

    2009-10-01

    Purpose: Radiation-sensitive microcapsules composed of alginate and hyaluronic acid are being developed. We report the development of improved microcapsules that were prepared using calcium- and yttrium-induced polymerization. We previously reported on the combined antitumor effect of carboplatin-containing microcapsules and radiotherapy. Methods and Materials: We mixed a 0.1% (wt/vol) solution of hyaluronic acid with a 0.2% alginate solution. Carboplatin (l mg) and indocyanine green (12.5 {mu}g) were added to this mixture, and the resultant material was used for capsule preparation. The capsules were prepared by spraying the material into a mixture containing a 4.34% CaCl{sub 2} solution supplemented with 0-0.01% yttrium. These capsules were irradiated with single doses of 0.5, 1.0, 1.5, or 2 Gy {sup 60}Co {gamma}-rays. Immediately after irradiation, the frequency of microcapsule decomposition was determined using a microparticle-induced X-ray emission camera. The amount of core content released was estimated by particle-induced X-ray emission and colorimetric analysis with 0.25% indocyanine green. The antitumor effect of the combined therapy was determined by monitoring its effects on the diameter of an inoculated Meth A fibrosarcoma. Results: Microcapsules that had been polymerized using a 4.34% CaCl{sub 2} solution supplemented with 5.0 x 10{sup -3}% (10{sup -3}% meant or 10%{sup -3}) yttrium exhibited the maximal decomposition, and the optimal release of core content occurred after 2-Gy irradiation. The microcapsules exhibited a synergistic antitumor effect combined with 2-Gy irradiation and were associated with reduced adverse effects. Conclusion: The results of our study have shown that our liquid core microcapsules can be used in radiotherapy for targeted delivery of chemotherapeutic agents.

  11. Warming Effect on Miriplatin-Lipiodol Suspension as a Chemotherapeutic Agent for Transarterial Chemoembolization for Hepatocellular Carcinoma: Preliminary Clinical Experience

    SciTech Connect

    Kora, Shinn-ichi; Urakawa, Hiroshi; Mitsufuji, Toshimichi; Osame, Akinobu; Higashihara, Hideyuki; Yoshimitsu, Kengo

    2013-08-01

    PurposeTo retrospectively elucidate the preliminary clinical impact of warmed miriplatin-lipiodol suspension (MPT-LPD) when used as a chemotherapeutic agent for transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC).Materials and MethodsBetween June and December 2010, TACE was performed with MPT-LPD at room temperature (RT group), and after January 2011, TACE with MPT-LPD warmed to 40 Degree-Sign C was performed (W group). The intraarterial appearance of MPT-LPD immediately after injection through microcatheters at the second-order branches was compared between the two groups with a 5-point grading system. Local therapeutic effects of HCCs as assessed by follow-up computed tomography (CT) obtained 1-3 months after TACE were compared between the groups with a 4-point grading system (TE1-TE4). After April 2011, angiography-assisted CT was routinely performed at TACE, and HCCs that revealed apparent corona enhancement (CE) were retrospectively selected. The degree of concordance between CE and MPT-LPD accumulation as assessed by CT immediately after TACE was assessed with a 3-point grading scale.ResultsMPT-LPD therapy resulted in a smooth and continuous appearance in the W group (grades 1, 2, 3, 4, and 5 were, respectively, 1, 2, 11, 18, and 4) compared to the RT group (4, 0, 1, 2, and 0). The W group (TE1, TE2, TE3, and TE4 were 1, 9, 11, and 12) revealed better local therapeutic effects than the RT group (6, 3, 9, and 0) (p < 0.05). CE was found in 26 HCC nodules, and concordance between CE and MPT-LPD accumulation was observed in 66 % (grades 1, 2, and 3 were, respectively, 2, 8, and 19).ConclusionWarmed MPT-LPD flowed more smoothly within vascular lumen, passed through tumor sinusoid of HCC, and had better local therapeutic effects at short-term observation than MPT-LPD at room temperature.

  12. Effects of chemotherapeutic agents 5-fluorouracil and methotrexate alone and combined in a mouse model of learning and memory

    PubMed Central

    Foley, John J.; Raffa, Robert B.

    2011-01-01

    Rationale The concern that adjuvant cancer chemotherapy agents cause cognitive impairment in a significant number of patients has been expressed by patients and healthcare providers, but clinical studies have yielded conflicting results to date. Objective We directly tested two commonly used chemotherapeutic agents in a mouse model of learning and memory. Materials and methods In the present study, mice were conditioned to respond for a liquid reinforcer (Ensure solution) in the presence of an audible tone on day 1 as a measure of acquisition and were then required to perform the same response on day 2 as a measure of retrieval and retention. Methotrexate and 5-fluorouracil were administered prior to the day 1 session. Results Methotrexate (1.0–32 mg/kg) alone failed to alter mean latency acquisition, retrieval, or reinforced response rates. Similar to scopolamine, a known amnesic in this assay, 5-fluorouracil (3–75 mg/kg) failed to alter response rates or acquisition latency on day 1 but significantly altered latency to retrieve a previously learned response on day 2. In combination, 3.2 mg/kg methotrexate plus 75 mg/kg 5-fluorouracil significantly increased day 1 and day 2 acquisition and retrieval latencies without altering responserates or motivation to respond as measured by progressive ratio responding. Conclusion Taken together, these data demonstrate that 5-fluorouracil causes increased latencies for retrieval of previously learned behavioral responses and that combination of chemotherapeutic agents may produce greater delays than either agent alone, including when neither agent alone does so. PMID:18463849

  13. Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer.

    PubMed

    Ma, Liang; Sato, Fuminori; Sato, Ryuta; Matsubara, Takanori; Hirai, Kenichi; Yamasaki, Mutsushi; Shin, Toshitaka; Shimada, Tatsuo; Nomura, Takeo; Mori, Kenichi; Sumino, Yasuhiro; Mimata, Hiromitsu

    2014-06-01

    Heat shock proteins (HSPs), which are molecular chaperones that stabilize numerous vital proteins, may be attractive targets for cancer therapy. The aim of the present study was to investigate the possible anticancer effect of single or dual targeting of HSP90 and HSP70 and the combination treatment with HSP inhibitors and chemotherapeutic agents in bladder cancer cells. The expression of HSP90 and the anticancer effect of the HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) coupled with cisplatin, docetaxel, or gemcitabine were examined using immunohistochemistry, quantitative real-time PCR, cell growth, flow cytometry, immunoblots and caspase-3/7 assays. The expression of HSP70 under HSP90 inhibition and the additive effect of HSP70 inhibitor pifithrin-μ (PFT-μ) were examined by the same assays and transmission electron microscopy. HSP90 was highly expressed in bladder cancer tissues and cell lines. 17-AAG enhanced the antiproliferative and apoptotic effects of each chemotherapeutic agent. 17-AAG also suppressed Akt activity but induced the upregulation of HSP70. PFT-μ enhanced the effect of 17-AAG or chemotherapeutic agents; the triple combination of 17-AAG, PFT-μ and a chemotherapeutic agent showed the most significant anticancer effect on the T24 cell line. The combination of 17-AAG and PFT-μ markedly suppressed Akt and Bad activities. With HSP90 suppression, HSP70 overexpression possibly contributes to the avoidance of cell death and HSP70 may be a key molecule for overcoming resistance to the HSP90 inhibitor. The dual targeting of these two chaperones and the combination with conventional anticancer drugs could be a promising therapeutic option for patients with advanced bladder cancer.

  14. Endoscopic spectral domain optical coherence tomography of murine colonic morphology to determine effectiveness of chemopreventive and chemotherapeutic agents in colorectal cancer

    NASA Astrophysics Data System (ADS)

    LeGendre-McGhee, Susan; Rice, Photini F. S.; Wall, R. Andrew; Klein, Justin; Luttman, Amber; Sprute, Kyle; Gerner, Eugene; Barton, Jennifer K.

    2012-02-01

    Optical coherence tomography (OCT) is a minimally-invasive imaging modality capable of tracking the development of individual colonic adenomas. As such, OCT can be used to evaluate the mechanisms and effectiveness of chemopreventive and chemotherapeutic agents in colorectal cancer models. The data presented here represent part of a larger study evaluating α-difluoromethylornithine (DFMO) and Sulindac as chemopreventive and chemotherapeutic agents using mice treated with the carcinogen azoxymethane (AOM). 27 A/J mice were included in the chemoprevention study, subdivided into four treatment groups (No Drug, DFMO, Sulindac, DFMO/Sulindac). 30 mm lateral images of each colon at eight different rotations were obtained at five different time points using a 2 mm diameter spectral domain OCT endoscopy system centered at 890 nm with 3.5 μm axial resolution in air and 5 μm lateral resolution. Images were visually analyzed to determine number and size of adenomas. Gross photos of the excised colons and histology provided gold standard confirmation of the final imaging time point. Preliminary results show that 100% of mice in the No Drug group developed adenomas over the course of the chemoprevention study. Incidence was reduced to 71.43% in mice given DFMO, 85.71% for Sulindac and 0% for DFMO/Sulindac. Discrete adenoma size did not vary significantly between experimental groups. Additional experiments are currently under way to verify these results and evaluate DFMO and Sulindac for chemotherapeutic applications.

  15. Synergistic Effects of Secretory Phospholipase A2 from the Venom of Agkistrodon piscivorus piscivorus with Cancer Chemotherapeutic Agents

    PubMed Central

    Nelson, Jennifer; Barlow, Kristen; Beck, D. Olin; Berbert, Amanda; Eshenroder, Nathan; Francom, Lyndee; Pruitt, Mark; Thompson, Kina; Thompson, Kyle; Thurber, Brian; Yeung, Celestine H.-Y.; Judd, Allan M.; Bell, John D.

    2013-01-01

    Healthy cells typically resist hydrolysis catalyzed by snake venom secretory phospholipase A2. However, during various forms of programmed cell death, they become vulnerable to attack by the enzyme. This observation raises the question of whether the specificity of the enzyme for dying cells could be used as a strategy to eliminate tumor cells that have been intoxicated but not directly killed by chemotherapeutic agents. This idea was tested with S49 lymphoma cells and a broad range of antineoplastic drugs: methotrexate, daunorubicin, actinomycin D, and paclitaxel. In each case, a substantial population of treated cells was still alive yet vulnerable to attack by the enzyme. Induction of cell death by these agents also perturbed the biophysical properties of the membrane as detected by merocyanine 540 and trimethylammonium-diphenylhexatriene. These results suggest that exposure of lymphoma cells to these drugs universally causes changes to the cell membrane that render it susceptible to enzymatic attack. The data also argue that the snake venom enzyme is not only capable of clearing cell corpses but can aid in the demise of tumor cells that have initiated but not yet completed the death process. PMID:23509743

  16. Synergistic effects of secretory phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus with cancer chemotherapeutic agents.

    PubMed

    Nelson, Jennifer; Barlow, Kristen; Beck, D Olin; Berbert, Amanda; Eshenroder, Nathan; Francom, Lyndee; Pruitt, Mark; Thompson, Kina; Thompson, Kyle; Thurber, Brian; Yeung, Celestine H-Y; Judd, Allan M; Bell, John D

    2013-01-01

    Healthy cells typically resist hydrolysis catalyzed by snake venom secretory phospholipase A2. However, during various forms of programmed cell death, they become vulnerable to attack by the enzyme. This observation raises the question of whether the specificity of the enzyme for dying cells could be used as a strategy to eliminate tumor cells that have been intoxicated but not directly killed by chemotherapeutic agents. This idea was tested with S49 lymphoma cells and a broad range of antineoplastic drugs: methotrexate, daunorubicin, actinomycin D, and paclitaxel. In each case, a substantial population of treated cells was still alive yet vulnerable to attack by the enzyme. Induction of cell death by these agents also perturbed the biophysical properties of the membrane as detected by merocyanine 540 and trimethylammonium-diphenylhexatriene. These results suggest that exposure of lymphoma cells to these drugs universally causes changes to the cell membrane that render it susceptible to enzymatic attack. The data also argue that the snake venom enzyme is not only capable of clearing cell corpses but can aid in the demise of tumor cells that have initiated but not yet completed the death process. PMID:23509743

  17. Recent approaches for reducing hemolytic activity of chemotherapeutic agents.

    PubMed

    Jeswani, Gunjan; Alexander, Amit; Saraf, Shailendra; Saraf, Swarnlata; Qureshi, Azra; Ajazuddin

    2015-08-10

    Drug induced hemolysis is a frequent complication associated with chemotherapy. It results from interaction of drug with erythrocyte membrane and leads to cell lysis. In recent past, various approaches were made to reduce drug-induced hemolysis, which includes drug polymer conjugation, drug delivery via colloidal carriers and hydrogels, co-administration of botanical agents and modification in molecular chemistry of drug molecules. The basic concept behind these strategies is to protect the red blood cells from membrane damaging effects of drugs. There are several examples of drug polymer conjugate that either are approved by Food and Drug Administration or are under clinical trial for delivering drugs with reduced toxicities. Likewise, colloidal carriers are also used successfully nowadays for the delivery of various chemotherapeutic agents like gemcitabine and amphotericin B with remarkable decrease in their hemolytic activity. Similarly, co-administration of botanical agents with drugs works as secondary system proving protection and strength to erythrocyte membranes. In addition to the above statement, interaction hindrance between RBC and drug molecule by molecular modification plays an important role in reducing hemolysis. This review predominantly describes the above recent approaches explored to achieve the reduced hemolytic activity of drugs especially chemotherapeutic agents. PMID:26047758

  18. Adverse mucocutaneous reactions related to chemotherapeutic agents: part II.

    PubMed

    Criado, Paulo Ricardo; Brandt, Hebert Roberto Clivati; Moure, Emanuella Rosyane Duarte; Pereira, Guilherme Luiz Stelko; Sanches Júnior, Jose Antonio

    2010-01-01

    Events and reactions involving chemotherapy are common in clinical oncology. Chemotherapeutic agents are widely used in therapy. Side effects range from the common to the rare and may be confused with other mucocutaneous manifestations resulting from the oncological treatment. The objective of this paper was to present data on skin reactions to chemotherapy, particularly those cases in which the dermatologist is requested to issue a report and asked to comment on the safety and viability of readministration of a specific drug. The authors describe aspects associated with these events, presenting a detailed analysis of each one of them.

  19. Blind Snipers: Relevant Off Target Effects of Non-chemotherapeutic Agents in Oncology: Review of the Literature.

    PubMed

    Prochilo, Tiziana; Di Biasi, Brunella; Aroldi, Francesca; Bertocchi, Paola; Sabatini, Tony; Meriggi, Fausto; Zaniboni, Alberto

    2014-01-01

    In recent years an increasing attention is focused on the potential effects of drugs on cancer incidence and/or cancer survival. Many medications of common use, developed for a variety of medical non-cancer situations, have been found to have potential anti- cancer effects. In this article, we performed an overview of the literature evidence for several commonly used non-cancer medications, such as aspirin, beta-blockers, metformin and other anti- diabetics, cardiac glycosides, anticoagulant heparin, statins, psychotropic drugs, vitamins, calcium and estrogens which have been shown to have anticancer effects, in observational and experimental studies. A huge amount of data supports the idea that a few of these commonly used medicines could decrease cancer death-rate, particularly aspirin, statins and metformin, crosswise different types of cancer. To date, no mature data are available from randomized and prospective trials; perhaps, the results of some studies underway will allow us to answer some questions on the possible use of these drugs in our clinical practice in primary and secondary prevention, or even in adjuvant setting. PMID:24854040

  20. Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo

    PubMed Central

    Hu, Jing; Zhang, Xu; Wang, Fang; Wang, Xiaokun; Yang, Ke; Xu, Meng; To, Kenneth K.W.

    2015-01-01

    Multidrug resistance (MDR) is the leading cause of treatment failure in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1, ABCC1 and ABCG2, play a key role in mediating MDR by pumping anticancer drugs out from cancer cells. Ceritinib (LDK378) is a second-generation tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) currently in phase III clinical trial for the treatment of non-small cell lung cancer. Here, we found that ceritinib remarkably enhanced the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 over-expressing cancer cells in vitro and in vivo. Ceritinib significantly increased the intracellular accumulation of chemotherapeutic agents such as doxorubicin (DOX) by inhibiting ABCB1 or ABCG2-mediated drug efflux in the transporters-overexpressing cells. Mechanistically, ceritinib is likely a competitive inhibitor of ABCB1 and ABCG2 because it competed with [125I]-iodoarylazidoprazosin for photo affinity labeling of the transporters. On the other hand, at the transporters-inhibiting concentrations, ceritinib did not alter the expression level of ABCB1 and ABCG2, and phosphorylation status of AKT and ERK1/2. Thus the findings advocate further clinical investigation of combination chemotherapy of ceritinib and other conventional chemotherapeutic drugs in chemo-refractory cancer patients. PMID:26556876

  1. Augmentation of Chemotherapeutic Infusion Effect by TSU-68, an Oral Targeted Antiangiogenic Agent, in a Rabbit VX2 Liver Tumor Model

    SciTech Connect

    Kim, Hyo-Cheol; Chung, Jin Wook Choi, Seung Hong; Im, Seock-Ah; Yamasaki, Yasundo; Jun, Suryoung; Jae, Hwan Jun; Park, Jae Hyung

    2012-02-15

    Purpose: This study was designed to investigate the in vivo effects of combination therapy with TSU-68 and chemotherapeutic infusion in a rabbit VX2 liver tumor model. Methods: This study was approved by the animal care committee at our institute. Three weeks before chemotherapeutic infusion, VX2 carcinoma was implanted into the livers of 32 rabbits. One week after chemotherapeutic infusion, vehicle was administered orally for 3 weeks in the control group (n = 16), and TSU-68 was administered orally at a daily dose of 200 mg/kg for 3 weeks in the treated group (n = 16). Computed tomography (CT) was performed before and 1, 2, 3, and 4 weeks after chemotherapeutic infusion. Tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST) on CT scan. The maximum thickness of viable tumor was measured on microscopic sections. Results: According to the RECIST, stable disease was observed in 9 (56%) rabbits and progressive disease in 7 (44%) in the control group, whereas partial response was observed in 1 (6%) rabbit and stable disease in 15 (94%) in the treated group. On pathologic examination, a viable lesion was present in 12 (75%) rabbits in the control group and in 6 (38%) rabbits in the treated group (P = 0.073). The mean maximum thickness of viable tumor in the treated group was significantly smaller than that in the control group (0.74 mm vs. 3.39 mm; P = 0.02). Conclusions: Oral administration of TSU-68 augmented the effect of chemotherapeutic infusion in a rabbit VX2 liver tumor model.

  2. Chemotherapeutic agents for GI tumor chemoradiotherapy overview of chemotherapeutic agents to be combined with radiotherapy in the GI tract and their potential as radiosensitizers.

    PubMed

    Klautke, G; Müller, K

    2016-08-01

    In the treatment of gastrointestinal tumors, simultaneous radiochemotherapy plays an important role. It is one of the principles of simultaneous radiochemotherapy, applying only chemotherapeutic agents simultaneously to radiation, which are primarily effective in the treated tumor entity, therefore a lot of different agents, like antimetabolites, mostly 5-fluorouracil, platinum derivates (mostly cisplatinum and oxaliplatin), mitomycin C and taxanes are used in simultaneous radiochemotherapy. Most of these have also radiation-intensifying effects. The mechanisms and interactions with ionizing radiation are presented in the article. PMID:27644902

  3. Oncolytic reovirus synergizes with chemotherapeutic agents to promote cell death in canine mammary gland tumor

    PubMed Central

    Igase, Masaya; Hwang, Chung Chew; Kambayashi, Satoshi; Kubo, Masato; Coffey, Matt; Miyama, Takako Shimokawa; Baba, Kenji; Okuda, Masaru; Noguchi, Shunsuke; Mizuno, Takuya

    2016-01-01

    The oncolytic effects of reovirus in various cancers have been proven in many clinical trials in human medicine. Oncolytic virotherapy using reovirus for canine cancers is being developed in our laboratory. The objective of this study was to examine the synergistic anti-cancer effects of a combination of reovirus and low doses of various chemotherapeutic agents on mammary gland tumors (MGTs) in dogs. The first part of this study demonstrated the efficacy of reovirus in canine MGTs in vitro and in vivo. Reovirus alone exerted significant cell death by means of caspase-dependent apoptosis in canine MGT cell lines. A single injection of reovirus impeded growth of canine MGT tumors in xenografted mice, but was insufficient to induce complete tumor regression. The second part of this study highlighted the anti-tumor effects of reovirus in combination with low doses of paclitaxel, carboplatin, gemcitabine, or toceranib. Enhanced synergistic activity was observed in the MGT cell line treated concomitantly with reovirus and in all the chemotherapeutic agents except toceranib. In addition, combining reovirus with paclitaxel or gemcitabine at half dosage of half maximal inhibitory concentration (IC50) enhanced cytotoxicity by activating caspase 3. Our data suggest that the combination of reovirus and low dose chemotherapeutic agents provides an attractive option in canine cancer therapy. PMID:26733729

  4. Nanoparticles for delivery of chemotherapeutic agents to tumors.

    PubMed

    Vijayaraghavalu, Sivakumar; Raghavan, Derek; Labhasetwar, Vinod

    2007-06-01

    Despite decades of research, progress in cancer chemotherapy is relatively slow, hampered, in part, by the lack of appropriate mechanisms to deliver anticancer drugs selectively to tumor tissues. This is a challenging task, as various cellular, anatomical and physiological barriers impede effective delivery of drugs to tumors. Systemic or oral administration can cause severe toxicity, which limits the therapeutic potential of anticancer drugs. Therefore, the most important goal of drug delivery is to minimize the exposure of normal tissues to these drugs while maintaining their therapeutic concentration in tumors. Furthermore, the risk of subtherapeutic dosing of anticancer drugs is significant as tumors may develop drug resistance as a result of biochemical changes, drug export mechanisms, or limitations in mechanisms of cellular drug importation. As the field of cancer nanomedicine advances, it is anticipated that many drug delivery-related issues concerning cancer chemotherapeutics will be resolved. This review discusses the current status of nanoparticle-mediated cancer drug delivery, challenges to its utilization, and potential implications of its use in cancer therapy.

  5. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents.

    PubMed

    Wang, Wenge; Gallant, Jean-Nicolas; Katz, Sharyn I; Dolloff, Nathan G; Smith, Charles D; Abdulghani, Junaid; Allen, Joshua E; Dicker, David T; Hong, Bo; Navaraj, Arunasalam; El-Deiry, Wafik S

    2011-08-01

    Quinacrine has been widely explored in treatment of malaria, giardiasis, and rheumatic diseases. We find that quinacrine stabilizes p53 and induces p53-dependent and independent cell death. Treatment by quinacrine alone at concentrations of 10-20 mM for 1-2 d cannot kill hepatocellular carcinoma cells, such as HepG2, Hep3B, Huh7, which are also resistant to TRAIL. However, quinacrine renders these cells sensitive to treatment by TRAIL. Co-treatment of these cells with quinacrine and TRAIL induces overwhelming cell death within 3-4 h. Levels of DR5, a pro-apoptotic death receptor of TRAIL, are increased upon treatment with quinacrine, while levels of Mcl-1, an anti-apoptotic member of the Bcl-2 family, are decreased. While the synergistic effect of quinacrine with TRAIL appears to be in part independent of p53, knockdown of p53 in HepG2 cells by siRNA results in more cell death after treatment by quinacrine and TRAIL. The mechanism by which quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapies, and the potential for clinical application currently are being further explored. Lastly, quinacrine synergizes with chemotherapeutics, such as adriamycin, 5-FU, etoposide, CPT11, sorafenib, and gemcitabine, in killing hepatocellular carcinoma cells in vitro and the drug enhances the activity of sorafenib to delay tumor growth in vivo. PMID:21725212

  6. Targeting cancer chemotherapeutic agents by use of lipiodol contrast medium

    SciTech Connect

    Konno, T. )

    1990-11-01

    Arterially administered Lipiodol Ultrafluid contrast medium selectively remained in various malignant solid tumors because of the difference in time required for the removal of Lipiodol contrast medium from normal capillaries and tumor neovasculature. Although blood flow was maintained in the tumor, even immediately after injection Lipiodol contrast medium remained in the neovasculature of the tumor. To target anti-cancer agents to tumors by using Lipiodol contrast medium as a carrier, the characteristics of the agents were examined. Anti-cancer agents had to be soluble in Lipiodol, be stable in it, and separate gradually from it so that the anti-cancer agents would selectively remain in the tumor. These conditions were found to be necessary on the basis of the measurement of radioactivity in VX2 tumors implanted in the liver of 16 rabbits that received arterial injections of 14C-labeled doxorubicin. Antitumor activities and side effects of arterial injections of two types of anti-cancer agents were compared in 76 rabbits with VX2 tumors. Oily anti-cancer agents that had characteristics essential for targeting were compared with simple mixtures of anti-cancer agents with Lipiodol contrast medium that did not have these essential characteristics. Groups of rabbits that received oily anti-cancer agents responded significantly better than groups that received simple mixtures, and side effects were observed more frequently in the groups that received the simple mixtures. These results suggest that targeting of the anti-cancer agent to the tumor is important for treatment of solid malignant tumors.

  7. Suppression of STN1 enhances the cytotoxicity of chemotherapeutic agents in cancer cells by elevating DNA damage

    PubMed Central

    Zhou, Qing; Chai, Weihang

    2016-01-01

    DNA damage-inducing agents are among the most effective treatment regimens in clinical chemotherapy. However, drug resistance and severe side effects caused by these agents greatly limit their efficacy. Sensitizing malignant cells to chemotherapeutic agents has long been a goal of chemotherapy. In the present study, suppression of STN1, a gene important for safeguarding genome stability, potentiated the anticancer effect of chemotherapeutic agents in tumor cells. Using multiple cancer cells from a variety of origins, it was observed that downregulation of STN1 resulted in a significant decrease in the half maximal inhibitory concentration values of several conventional anticancer agents. When cells are treated with anticancer agents, STN1 suppression leads to a decline in colony formation and diminished anchorage-independent growth. Furthermore, it was additionally observed that STN1 knockdown augmented the levels of DNA damage caused by damage-inducing agents. The present study concluded that suppression of STN1 enhances the cytotoxicity of damage-inducing chemotherapeutic agents by increasing DNA damage in cancer cells. PMID:27446354

  8. Dermatologic adverse events to chemotherapeutic agents, Part 2: BRAF inhibitors, MEK inhibitors, and ipilimumab.

    PubMed

    Choi, Jennifer Nam

    2014-03-01

    The advent of novel targeted chemotherapeutic agents and immunotherapies has dramatically changed the arena of cancer treatment in recent years. BRAF inhibitors, MEK inhibitors, and ipilimumab are among the newer chemotherapy drugs that are being used at an increasing rate. Dermatologic adverse events to these medications are common, and it is important for dermatologists and oncologists alike to learn to recognize and treat such side effects in order to maintain both patients' quality of life and their anticancer treatment. This review describes the cutaneous side effects seen with BRAF inhibitors (eg, maculopapular eruption, photosensitivity, squamoproliferative growths, melanocytic proliferations), MEK inhibitors (eg, papulopustular eruption), and ipilimumab (eg, maculopapular eruption, vitiligo), with a mention of vismodegib and anti-PD-1 agents.

  9. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment.

    PubMed

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-05-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  10. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment

    PubMed Central

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-01-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  11. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells.

    PubMed

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-12-22

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs.

  12. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells

    PubMed Central

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-01-01

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs. PMID:26689156

  13. Other Chemotherapeutic Agents in Cutaneous T-Cell Lymphoma.

    PubMed

    Chung, Catherine G; Poligone, Brian

    2015-10-01

    Traditional chemotherapies, interleukins, phosphorylase inhibitors, and proteasome inhibitors are important therapies available to patients with cutaneous T-cell lymphoma (CTCL). Traditional chemotherapies, both in combination and as single agents, are commonly used in relapsed, refractory CTCLs that behave in an aggressive manner. Interleukins, phosphorylase inhibitors, and proteasome inhibitors are less commonly used but data support a role in patients with more refractory disease. PMID:26433850

  14. Identification of anti-invasive but noncytotoxic chemotherapeutic agents using the tetrazolium dye MTT to quantitate viable cells in Matrigel.

    PubMed

    Sasaki, C Y; Passaniti, A

    1998-06-01

    Screening methods for chemotherapeutic agents usually rely on the cytotoxic properties of the drugs. However, agents that inhibit invasion may have more efficacy and cause fewer side effects. Various cellular invasion assays have been used to evaluate these types of compounds, including the modified Boyden chamber, monolayer wound models and Matrigel outgrowth assays. In this report, we have combined the use of the Matrigel outgrowth assay with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) visualization and cell viability dye to visualize invasive cells on Matrigel without magnification. Extraction of the dye's formazan byproduct allows cell viability to be assessed. Using several invasive and noninvasive cell lines, the utility of the method for various target cells was verified. Several established chemotherapeutic agents were also screened for their anti-invasive and/or cytotoxic effects when cultured on Matrigel. Our results suggest that this method may be an easy, inexpensive and nonradioactive alternative for both enumerating cells on Matrigel and screening various tumor cell lines treated with chemotherapeutic agent to look for compounds with noncytotoxic but anti-invasive properties.

  15. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    PubMed

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies. PMID:25469267

  16. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    PubMed

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies.

  17. Treatment of cancer using pulsed electric field in combination with chemotherapeutic agents or genes.

    PubMed

    Nishi, T; Dev, S B; Yoshizato, K; Kuratsu, J; Ushio, Y

    1997-03-01

    Electroporation is a standard laboratory technique originally developed for in vitro transfer of molecules into cells. It involves application of electrical pulses ranging from micro- to milliseconds that create transient pores in the cell membrane allowing intracellular access of exogenous molecules. This technique has been successfully applied to regress tumors in animal models by combining electroporation with chemotherapeutic agents--a process known as electrochemotherapy (ECT) which substantially enhance cytotoxicity of some antineoplastic agents. Recently ECT has moved into clinical arena and patients with cutaneous tumors and head and neck cancers have been treated very effectively with ECT. Parallel to ECT, a technique has also been developed which makes it possible to inject plasmid DNA and combine it with in vivo electroporation--electro--genetherapy (EGT)--to deliver in a highly efficient manner both marker and functional genes into target tissue and achieve gene expression. Thus, in vivo electroporation is contributing to the development of a new strategy for cancer treatment with both drugs and genes. PMID:9234068

  18. Profilin potentiates chemotherapeutic agents mediated cell death via suppression of NF-κB and upregulation of p53.

    PubMed

    Zaidi, Adeel H; Raviprakash, Nune; Mokhamatam, Raveendra B; Gupta, Pankaj; Manna, Sunil K

    2016-04-01

    The molecular mechanism by which Profilin acts as a tumor suppressor is still unclear. Several chemotherapeutic agents, used till date either have unfavorable side effects or acquired resistance in tumor cells. Our findings show that Profilin enhances cell death mediated by several chemotherapeutic-agents. The activation of NF-κB and its dependent genes, mediated by paclitaxel and vinblastine, was completely inhibited in Profilin overexpressing cells. This inhibition was due to the Profilin mediated attenuation of IκBα degradation, thereby preventing p65 nuclear translocation and low NF-κB DNA binding activity.Moreover, Profilin increases level of p53 in the presence of known inducers, such as doxorubicin, vinblastine, and benzofuran. This increased p53 level leads to enhanced cell death as indicated by activation of caspases 3, 8, 9, which results in cleavage of PARP.Furthermore, knocking down of p53 in Profilin overexpressing cells leads to decreased cell death. Ectopic expression of Profilin in HCT116 p53 knock out cells showed lesser cell death as compared to the HCT116 p53 wild type cells. For the first time, we provide evidences, which suggest that Profilin synergizes with chemotherapeutic drugs to induce tumor cell death by regulating NF-κB and p53. Thus, modulation of Profilin may be a useful strategy for effective combination therapy. PMID:26842845

  19. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone.

    PubMed

    Kundu, Juthika; Chun, Kyung-Soo; Aruoma, Okezie I; Kundu, Joydeb Kumar

    2014-10-01

    The bioactive natural products (plant secondary metabolites) are widely known to possess therapeutic value for the prevention and treatment of various chronic diseases including cancer. Thymoquinone (2-methyl-5-isopropyl-1,4-benzoquinone; TQ), a monoterpene present in black cumin seeds, exhibits pleiotropic pharmacological activities including antioxidant, anti-inflammatory, antidiabetic and antitumor effects. TQ inhibits experimental carcinogenesis in a wide range of animal models and has been shown to arrest the growth of various cancer cells in culture as well as xenograft tumors in vivo. The mechanistic basis of anticancer effects of TQ includes the inhibition of carcinogen metabolizing enzyme activity and oxidative damage of cellular macromolecules, attenuation of inflammation, induction of cell cycle arrest and apoptosis in tumor cells, blockade of tumor angiogenesis, and suppression of migration, invasion and metastasis of cancer cells. TQ shows synergistic and/or potentiating anticancer effects when combined with clinically used chemotherapeutic agents. At the molecular level, TQ targets various components of intracellular signaling pathways, particularly a variety of upstream kinases and transcription factors, which are aberrantly activated during the course of tumorigenesis. PMID:25847385

  20. Suppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells.

    PubMed

    Peng, Hui; Wang, Huihui; Xue, Peng; Hou, Yongyong; Dong, Jian; Zhou, Tong; Qu, Weidong; Peng, Shuangqing; Li, Jin; Carmichael, Paul L; Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2016-02-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2-ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As2O3), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2-ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As2O3-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2-ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As2O3-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As2O3-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2-ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents.

  1. Optimizing the radiosensitive liquid-core microcapsules for the targeting of chemotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Harada, S.; Ehara, S.; Ishii, K.; Yamazaki, H.; Matsuyama, S.; Kamiya, T.; Sakai, T.; Arakawa, K.; Sato, T.; Oikawa, S.

    2007-07-01

    Microcapsules consisting of alginate and hyaluronic acid that can be decomposed by radiation are currently under development. In this study, the composition of the microcapsule material was optimized by changing the amounts of alginate and hyaluronic acid. Solutions of 0.025%, 0.05%, 0.1%, 0.2%, or 0.4% (wt./vol.) hyaluronic acid were mixed into a 0.2% alginate solution. To these mixtures, carboplatin (0.2 mmol) was added and the resulting material was used for the capsule preparation. The capsules were prepared by spraying the material into a CaCl 2 solution (0.34 mol/l) using a microatomizer. These capsules were irradiated by a single dose of 2, 5, or 10 Gy 60Co γ-ray radiation. Immediately after irradiation, the releasing of core content of microcapsule was determined, using a micro particle induced X-ray emission (PIXE) camera. The average diameter of the microcapsules was 22.3 ± 3.3 μm, and that of the liquid core was 10.2 ± 4.3 μm. The maximum radiation-induced content release was observed with liquid-core microcapsules containing 0.1% hyaluronic acid and 0.2% alginate. Our liquid-core microcapsules suggest a new potential use for radiation: the targeted delivery of the chemotherapeutic agents or radiosensitizers. This offers the prospect of increased combined effectiveness of radiation with chemotherapy or radiosensitization and decreased adverse side effects.

  2. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    PubMed

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  3. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells

    PubMed Central

    Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; Wah To, Kenneth Kin; Gu, Yong; Fu, Liwu

    2015-01-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients. PMID:26506420

  4. Tunable release of chemotherapeutic and vascular disrupting agents from injectable fiber fragments potentiates combination chemotherapy.

    PubMed

    Luo, Xiaoming; Xu, Guisen; Wei, Jiaojun; Chen, Maohua; Zhang, Hong; Li, Xiaohong

    2016-06-15

    Cancer progression and metastasis relies much on vasculature networks in tumor microenvironment, and the combination treatment with chemotherapeutic drugs and vascular disrupting agents represents apparent clinical benefits. In the current study, fiber fragments with loadings of hydroxycamptothecin (HCPT) or combretastatin A-4 (CA4) were proposed for tumor inhibition and blood vessel disruption after local administration in tumors. To address challenges in balancing the disruption of tumor vessels and intratumoral uptake of chemotherapeutic agents, this study is focus on release tuning of HCPT and CA4 from the fiber fragment mixtures. Hydroxypropyl-β-cyclodextrin (HPCD) was blended at ratios from 0 to 10% into CA4-loaded fiber fragments (Fc) to modulate CA4 release durations from 0.5 to 24days, and HCPT-loaded fiber fragments (Fh) indicated a sustained release for over 35days. In vitro cytotoxicity tests indicated a sequential inhibition on the endothelial and tumor cell growth, and the growth inhibition of tumor cells was more significant after treatment with mixtures of Fh and Fc containing 2% HPCD (Fc2) than that of other mixtures. In an orthotopic breast tumor model, compared with those of free CA4, or Fc with a fast or slow release of CA4, Fh/Fc mixtures with CA4 release durations from 2 to 12days indicated a lower tumor growth rate, a prolonged animal survival, a lower vessel density in tumors, and a less significant tumor metastasis. In addition, the tumor cell proliferation rate, hypoxia-inducible factor-1α expression within tumors, and the number of surface metastatic nodules in lungs were significantly lower after treatment with Fh/Fc2 mixtures with a CA4 release duration of 5days than those of other mixtures. It demonstrates the advantages of fiber fragment mixtures in independently modulating the release of multiple drugs and the essential role of release tuning of chemotherapeutic drugs and vascular disrupting agents in improving the therapeutic

  5. A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent

    PubMed Central

    2014-01-01

    Background Hematopoiesis is a complex process that encompasses both pro-mitotic and anti-mitotic stimuli. Pharmacological agents used in chemotherapy have a prominent anti-mitotic effect. The approach of inhibiting cell proliferation is rational with respect to the rapidly dividing malignant cells. However, it poses a serious problem with respect to cell proliferation of cell types required for the ‘house-keeping’ operations of the human body. One such affected system is hematopoiesis. Chemotherapy induced anemia is an undesired side effect of chemotherapy that can lead to serious complications. Patients exhibiting anemia or leukopenia during chemotherapy are frequently administered a hematopoietic inducing agent that enhances hematopoiesis. Methods In previous work, we derived a mathematical model consisting of a set of delay differential equations that was dependent on the effect of a hematopoietic inducing agent. The aim of the current work was to formulate a mathematical model that captures both the effect of a chemotherapeutic agent in combination with a hematopoietic inducing agent. Steady state solutions and stability analysis of the system of equations is performed and numerical simulations of the stem cell population are provided. Results Numerical simulations confirm that our mathematical model captures the desired result which is that the use of hematopoietic agents in conjunction with chemotherapeutic agents can decrease the negative secondary effects often experienced by patients. Conclusions The proposed model indicates that the introduction of hematopoietic inducing agents have clinical potential to offset the deleterious effects of chemotherapy treatment. Furthermore, the proposed model is relevant in that it enhances the understanding of stem cell dynamics and provides insight on the stem cell kinetics. PMID:24438084

  6. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents.

    PubMed

    Cragg, Gordon M; Pezzuto, John M

    2016-01-01

    Throughout history, natural products have played a dominant role in the treatment of human ailments. For example, the legendary discovery of penicillin transformed global existence. Presently, natural products comprise a large portion of current-day pharmaceutical agents, most notably in the area of cancer therapy. Examples include Taxol, vinblastine, and camptothecin. These structurally unique agents function by novel mechanisms of action; isolation from natural sources is the only plausible method that could have led to their discovery. In addition to terrestrial plants as sources for starting materials, the marine environment (e.g., ecteinascidin 743, halichondrin B, and dolastatins), microbes (e.g., bleomycin, doxorubicin, and staurosporin), and slime molds (e.g., epothilone B) have yielded remarkable cancer chemotherapeutic agents. Irrespective of these advances, cancer remains a leading cause of death worldwide. Undoubtedly, the prevention of human cancer is highly preferable to treatment. Cancer chemoprevention, the use of vaccines or pharmaceutical agents to inhibit, retard, or reverse the process of carcinogenesis, is another important approach for easing this formidable public health burden. Similar to cancer chemotherapeutic agents, natural products play an important role in this field. There are many examples, including dietary phytochemicals such as sulforaphane and phenethyl isothiocyanate (cruciferous vegetables) and resveratrol (grapes and grape products). Overall, natural product research is a powerful approach for discovering biologically active compounds with unique structures and mechanisms of action. Given the unfathomable diversity of nature, it is reasonable to suggest that chemical leads can be generated that are capable of interacting with most or possibly all therapeutic targets. PMID:26679767

  7. Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage.

    PubMed

    Xie, Guojiang; Wang, Hangwei; Yan, Zhipeng; Cai, Linyan; Zhou, Guixuan; He, Wanzhong; Paus, Ralf; Yue, Zhicao

    2015-03-01

    Chemotherapeutic agents induce complex tissue responses in vivo and damage normal organ functions. Here we use the feather follicle to investigate details of this damage response. We show that cyclophosphamide treatment, which causes chemotherapy-induced alopecia in mice and man, induces distinct defects in feather formation: feather branching is transiently and reversibly disrupted, thus leaving a morphological record of the impact of chemotherapeutic agents, whereas the rachis (feather axis) remains unperturbed. Similar defects are observed in feathers treated with 5-fluorouracil or taxol but not with doxorubicin or arabinofuranosyl cytidine (Ara-C). Selective blockade of cell proliferation was seen in the feather branching area, along with a downregulation of sonic hedgehog (Shh) transcription, but not in the equally proliferative rachis. Local delivery of the Shh inhibitor, cyclopamine, or Shh silencing both recapitulated this effect. In mouse hair follicles, those chemotherapeutic agents that disrupted feather formation also downregulated Shh gene expression and induced hair loss, whereas doxorubicin or Ara-C did not. Our results reveal a mechanism through which chemotherapeutic agents damage rapidly proliferating epithelial tissue, namely via the cell population-specific, Shh-dependent inhibition of proliferation. This mechanism may be targeted by future strategies to manage chemotherapy-induced tissue damage.

  8. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    PubMed Central

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  9. Bax overexpression enhances cytochrome c release from mitochondria and sensitizes KATOIII gastric cancer cells to chemotherapeutic agent-induced apoptosis.

    PubMed

    Sawa, H; Kobayashi, T; Mukai, K; Zhang, W; Shiku, H

    2000-04-01

    To evaluate whether overexpression of Bax, an apoptosis-promoting gene, sensitizes KATOIII gastric cancer cells to apoptosis induced by chemotherapeutic agents, three stable cell lines of KATOIII transfected with Bax (KATOIII-Bax), Bcl-2 (KATOIII-Bcl-2), or control pCI-neo expression vector (KATOIII-pCI-neo) were established. The cells were treated with paclitaxel, 5-fluorouracil, or doxorubicin, and the apoptotic response was measured. Our results showed that the sensitivity of the KATOIII-Bax cells to chemotherapeutic agents was enhanced compared with that of the KATOIII-pCI-neo cells, and the KATOIII-Bcl-2 cells were more resistant to these agents. Western blotting revealed that cytochrome c level in the cytosol fraction of the KATOIII-Bax cells was higher than that of the KATOIII-pCI-neo cells. Significant increase of cytochrome c level in the cytosol fraction of the KATOIII-Bax cells was detected 24 h after exposure to chemotherapeutic agents, when apoptotic cells were less than 10%. The cytochrome c level in the cytosol fraction of the KATOIII-Bax cells was higher than that of the KATOIII-pCI-neo cells at all time points examined after exposure to chemotherapeutic agents. Marked activation of caspase-3 in the KATOIII-Bax cells was observed 48 h and 72 h after exposure to chemotherapeutic agents compared with that in the KATOIII-pCI-neo cells. Consistently, zVAD-fmk, a pancaspase inhibitor, repressed the paclitaxel-induced apoptosis. In addition, Bcl-2 overexpression strongly blocked KATOIII cell apoptosis by inhibiting the cytochrome c release from mitochondria and caspase-3 activation. These findings suggest that cytochrome c release is a major mechanism of apoptotic response and Bax overexpression sensitizes KATOIII cells to chemotherapeutic agent-induced apoptosis through enhancing the release of cytochrome c from mitochondria. PMID:10717243

  10. Chemotherapeutic Agents for the Treatment of Hepatocellular Carcinoma: Efficacy and Mode of Action

    PubMed Central

    Shaaban, Saad; Negm, Amr; Ibrahim, Elsayed E.; Elrazak, Ahmed A.

    2014-01-01

    Hepatocellular carcinoma (HCC) is a dreaded malignancy that every year causes half a million deaths worldwide. Being an aggressive cancer, its incidence exceeds 700,000 new cases per year worldwide with a median survival of 6-8 months. Despite advances in prognosis and early detection, effective HCC chemoprevention or treatment strategies are still lacking, therefore its dismal survival rate remains largely unchanged. This review will characterize currently available chemotherapeutic drugs used in the treatment of HCC. The respective mode(s) of action, side effects and recommendations will be also described for each drug. PMID:25992234

  11. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell

    PubMed Central

    Zhao, Zhi-Li; Zhang, Lu; Huang, Cong-Fa; Ma, Si-Rui; Bu, Lin-Lin; Liu, Jian-Feng; Yu, Guang-Tao; Liu, Bing; Gutkind, J. Silvio; Kulkarni, Ashok B.; Zhang, Wen-Feng; Sun, Zhi-Jun

    2016-01-01

    Cancer stem cells (CSCs) are considered responsible for tumor initiation and chemoresistance. This study was aimed to investigate the possibility of targeting head neck squamous cell carcinoma (HNSCC) by NOTCH1 pathway inhibition and explore the synergistic effect of combining NOTCH inhibition with conventional chemotherapy. NOTCH1/HES1 elevation was found in human HNSCC, especially in tissue post chemotherapy and lymph node metastasis, which is correlated with CSCs markers. NOTCH1 inhibitor DAPT (GSI-IX) significantly reduces CSCs population and tumor self-renewal ability in vitro and in vivo. Flow cytometry analysis showed that NOTCH1 inhibition reduces CSCs frequency either alone or in combination with chemotherapeutic agents, namely, cisplatin, docetaxel, and 5-fluorouracil. The combined strategy of NOTCH1 blockade and chemotherapy synergistically attenuated chemotherapy-enriched CSC population, promising a potential therapeutic exploitation in future clinical trial. PMID:27108536

  12. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    SciTech Connect

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J.

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  13. New synthetic aliphatic sulfonamido-quaternary ammonium salts as anticancer chemotherapeutic agents.

    PubMed

    Song, Doona; Yang, Jee Sun; Oh, Changmok; Cui, Shuolin; Kim, Bo-Kyung; Won, Misun; Lee, Jang-ik; Kim, Hwan Mook; Han, Gyoonhee

    2013-11-01

    RhoB is expressed during tumor cell proliferation, survival, invasion, and metastasis. In malignant progression, the expression levels of RhoB are commonly attenuated. RhoB is known to be linked to the regulation of the PI3K/Akt survival pathways. Based on aliphatic amido-quaternary ammonium salts that induce apoptosis via up-regulation of RhoB, we synthesized novel aliphatic sulfonamido-quaternary ammonium salts. These new synthetic compounds were evaluated for their biological activities using an in vitro RhoB promoter assay in HeLa cells, and in a growth inhibition assay using human cancer cell lines including PC-3, NUGC-3, MDA-MB-231, ACHN, HCT-15, and NCI-H23. Compound 5b (ethyl-dimethyl-{3-[methyl-(tetradecane-1-sulfonyl)-amino]-propyl}-ammonium; iodide) was the most promising anticancer agent in the series, based upon the potency of growth inhibition and RhoB promotion. These new aliphatic sulfonamido-quaternary ammonium salts could be a valuable series for development of new anticancer chemotherapeutic agents. PMID:24095759

  14. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor.

    PubMed

    Li, Xiaoyu; Wu, Meiying; Pan, Limin; Shi, Jianlin

    2016-01-01

    To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4) and a chemotherapeutic drug (doxorubicin) and conjugate with targeting molecules (iRGD peptide) for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors.

  15. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents.

    PubMed

    Vilas-Boas, Fabrício de Almeida Souza; da Silva, Aristóbolo Mendes; de Sousa, Lirlândia Pires; Lima, Kátia Maciel; Vago, Juliana Priscila; Bittencourt, Lucas Felipe Fernandes; Dantas, Arthur Estanislau; Gomes, Dawidson Assis; Vilela, Márcia Carvalho; Teixeira, Mauro Martins; Barcelos, Lucíola Silva

    2016-04-01

    Malignant gliomas are a lethal type of brain tumors that poorly respond to chemotherapeutic drugs. Several therapy resistance mechanisms have been characterized. However, the response to stress through mRNA translational control has not been evaluated for this type of tumor. A potential target would involve the alpha subunit of eukaryotic translation initiation factor (eIF2α) that leads to assembly of stress granules (SG) which are cytoplasmic granules mainly composed by RNA binding proteins and untranslated mRNAs. We assessed whether glioma cells are capable of assembling SG after exposure to different classes of chemotherapeutic agents through evaluation of the effects of interfering in this process by impairing the eIF2α signaling. C6 and U87MG cells were exposed to bortezomib, cisplatin, or etoposide. Forced expression of a dominant negative mutant of eIF2α (eIF2α(DN)) was employed to block this pathway. We observed that exposure to drugs stimulated SG assembly. This was reduced in eIF2α(DN)-transfected cells and this strategy enhanced chemotherapeutically-induced cell death for all drugs. Our data suggest that SG assembly occurs in glioma cells in response to chemotherapeutic drugs in an eIF2α-dependent manner and this response is relevant for drug resistance. Interfering with eIF2α signaling pathway may be a potential strategy for new co-adjuvant therapies to treat gliomas. PMID:26732083

  16. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells

    PubMed Central

    Wang, Liang; Chan, Judy Y.; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P.; Shan, Luchen; Lee, Simon M.

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity. PMID:27559313

  17. The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation

    PubMed Central

    Hu, J; Kinn, J; Zirakzadeh, A A; Sherif, A; Norstedt, G; Wikström, A-C; Winqvist, O

    2013-01-01

    Recent studies indicate that chemotherapeutic agents may increase the anti-tumoral immune response. Based on the pivotal role of dendritic cells (DCs) in host tumour-specific immune responses, we investigated the effect of commonly used chemotherapeutic drugs dexamethasone, doxorubicin, cisplatin and irinotecan and glucocorticoids on monocyte-derived DCs (moDCs). Dexamethasone displayed the strongest inhibitory effect on DC differentiation. The effect of cisplatin and irinotecan was moderate, while only weak effects were noticed for doxorubicin. Surprisingly, when the functional consequence of chemotherapy-treated CD14+ monocytes and their capacity to activate CD4+ T responders cells were investigated, cisplatin-treated monocytes gave rise to increased T cell proliferation. However, dexamethasone, doxorubicin and irinotecan-pretreated monocytes did not stimulate any increased T cell proliferation. Further investigation of this observation revealed that cisplatin treatment during DC differentiation up-regulated significantly the interferon (IFN)-β transcript. By contrast, no effect was evident on the expression of interleukin (IL)-1β, tumour necrosis factor (TNF)-α, IL-6 or IFN-α transcripts. Blocking IFN-β attenuated the cisplatin-enhanced T cell proliferation significantly. In conclusion, cisplatin treatment enhanced the immune stimulatory ability of human monocytes, a mechanism mediated mainly by the increased production of IFN-β. PMID:23600838

  18. Modification of in vitro and in vivo BCG cell wall-induced immunosuppression by treatment with chemotherapeutic agents or indomethacin

    SciTech Connect

    DeSilva, M.A.; Wepsic, H.T.; Mizushima, Y.; Nikcevich, D.A.; Larson, C.H.

    1985-04-01

    The in vitro inhibition of spleen cell blastogenesis response and the in vivo enhancement of tumor growth are phenomena associated with BCG cell wall (BCGcw) immunization. What effect treatment with chemotherapeutic agents and the prostaglandin inhibitor indomethacin would have on the in vitro and in vivo responses to BCGcw immunization was evaluated. In vitro blastogenesis studies showed that chemotherapy pretreatment prior to immunization with BCGcw resulted in a restoration of the spleen cell blastogenesis response. In blastogenesis addback studies, where BCGcw-induced irradiated splenic suppressor cells were admixed with normal cells, less inhibition of blastogenesis occurred when spleen cells were obtained from rats that had received the combined treatment of chemotherapy and BCGcw immunization versus only BCGcw immunization. The cocultivation of spleen cells from BCGcw-immunized rats with indomethacin resulted in a 30-40% restoration of the blastogenesis response. In vivo studies showed that BCGcw-mediated enhancement of intramuscular tumor growth of the 3924a ACI rat tumor could be abrogated by either pretreatment with busulfan or mitomycin or by the feeding of indomethacin.

  19. Photophysical studies of tin(IV)-protoporphyrin: Potential phototoxicity of a chemotherapeutic agent proposed for the prevention of neonatal jaundice

    SciTech Connect

    Land, E.J.; McDonagh, A.F.; McGarvey, D.J.; Truscott, T.G. )

    1988-07-01

    The strongly light-absorbing metalloporphyrin tin(IV)-protoporphyrin IX (SnPP) is currently being considered as a chemotherapeutic agent for preventing severe hyperbilirubinemia in newborns, a condition usually treated by phototherapy with visible light. To assess the potential phototoxicity of SnPP the authors studied the photophysics of the drug in aqueous and nonaqueous solutions using laser flash photolysis and pulse radiolysis. Quantum yields for formation of triplet-state excited SnPP were measured, along with triplet lifetimes and extinction coefficients. In addition, they measured quantum yields for the SnPP-photosensitized formation of singlet oxygen in MeO{sup 2}H and in {sup 2}H{sub 2}O containing cetyltrimethylammonium bromide, using a time-resolved luminescence technique. Quantum yields for formation of triplet SnPP from monomeric ground-state SnPP are high, and triplet lifetimes are long. SnPP-photosensitized formation of singlet oxygen in aqueous and nonaqueous solvents was confirmed by the detection of the characteristic luminescence at 1270 nm. These observations suggest that cutaneous photosensitivity arising from singlet-oxygen damage is likely to be an undesirable side-effect of SnPP therapy.

  20. Nanocarrier mediated Delivery of siRNA/miRNA in Combination with Chemotherapeutic Agents for Cancer Therapy: Current Progress and Advances

    PubMed Central

    Gandhi, Nishant S.; Tekade, Rakesh K.; Chougule, Mahavir B.

    2014-01-01

    Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibits drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), Multidrug resistant protein 1(MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer. PMID:25204288

  1. Antitumor Activity of HM781-36B, alone or in Combination with Chemotherapeutic Agents, in Colorectal Cancer Cells

    PubMed Central

    Kang, Mi Hyun; Moon, Sung Ung; Sung, Ji Hea; Kim, Jin Won; Lee, Keun Wook; Lee, Hye Seung; Lee, Jong Seok; Kim, Jee Hyun

    2016-01-01

    Purpose HM781-36B is a novel and irreversible pan-human epidermal growth factor receptor (HER) inhibitor with TEC cytoplasmic kinase inhibition. The aim of this study is to evaluate the antitumor activity and mechanism of action for HM781-36B in CRC cell lines. Materials and Methods The CRC cell lines were exposed to HM781-36B and/or oxaliplatin (L-OHP), 5-fluorouracil (5-FU), SN-38. The cell viability was examined by Cell Titer-Glo luminescent cell viability assay kit. Change in the cell cycle and protein expression was determined by flow cytometry and immunoblot analysis, respectively. Synergism between 2 drugs was evaluated by the combination index. Results The addition of HM781-36B induced potent growth inhibition in both DiFi cells with EGFR overexpression and SNU-175 cells (IC50 = 0.003 and 0.005 μM, respectively). Furthermore, HM781-36B induced G1 arrest of the cell cycle and apoptosis, and reduced the levels of HER family and downstream signaling molecules, pERK and pAKT, as well as nonreceptor/cytoplasmic tyrosine kinase, BMX. The combination of HM781-36B with 5-FU, L-OHP, or SN-38 showed an additive or synergistic effect in most CRC cells. Conclusion These findings suggest the potential roles of HM781-36B as the treatment for EGFR-overexpressing colon cancer, singly or in combination with chemotherapeutic agents. The role of BMX expression as a marker of response to HM781-36B should be further explored. PMID:25761479

  2. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells

    PubMed Central

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies. PMID:25849309

  3. Enriched environment housing enhances the sensitivity of mouse pancreatic cancer to chemotherapeutic agents.

    PubMed

    Wu, Yufeng; Gan, Yu; Yuan, Hui; Wang, Qing; Fan, Yingchao; Li, Guohua; Zhang, Jian; Yao, Ming; Gu, Jianren; Tu, Hong

    2016-04-29

    Living in an enriched housing environment is an established model of eustress and has been consistently shown to reduce the growth of transplanted tumors, including pancreatic cancer. Here, we further investigate the influence of an enriched environment (EE) on the efficacy of chemotherapy in pancreatic cancer. Male C57BL/6 mice were housed in EE or standard environment (SE) conditions and transplanted with syngeneic Panc02 pancreatic cancer cells. Tumor-bearing mice were treated with 5-fluorouracil (5-FU) or gemcitabine (GEM) to examine their sensitivities to chemotherapy. The results showed that both 5-FU and GEM exerted the dose dependent inhibition of tumor growth. The tumor inhibition rates of low-dose 5-FU and GEM were improved from 17.7% and 23.6% to 46.3% and 49.9% by EE housing. Importantly, tumor cells isolated from the pancreatic cancer xenografts of EE mice had significantly enhanced sensitivities to both 5-FU and GEM (IC50 for 5-FU: 2.8 μM versus 27.3 μM; IC50 for GEM: 0.8 μM versus 5.0 μM). Furthermore, using microarray analyses, we identified the "ATP-binding cassette (ABC) transporter" that was overrepresented among EE-induced down-regulated genes in pancreatic cancer. Particularly, the tumoral expression of ABC transporter A8b (ABCA8b) was confirmed to be significantly decreased by EE. Over-expression of ABCA8b in mouse pancreatic cancer cells led to a marked decrease in the sensitivity to chemotherapeutic drugs both in vitro and in vivo. In conclusion, our data indicate that benign stressful stimulation can synergistically boost the efficiency of chemotherapeutics in pancreatic cancer, which suggests a novel strategy for adjuvant cancer therapy.

  4. Enterobacter and Klebsiella species isolated from fresh vegetables marketed in Valencia (Spain) and their clinically relevant resistances to chemotherapeutic agents.

    PubMed

    Falomir, María Pilar; Rico, Hortensia; Gozalbo, Daniel

    2013-12-01

    Occurrence of antibiotic-resistant pathogenic or commensal enterobacteria in marketed agricultural foodstuffs may contribute to their incorporation into the food chain and constitutes an additional food safety concern. In this work, we have determined the clinically relevant resistances to 11 common chemotherapeutic agents in Enterobacter and Klebsiella isolates from fresh vegetables from various sources (supermarkets and greengrocers' shops in Valencia, Spain). A total of 96 isolates were obtained from 160 vegetables analyzed (50% positive samples): 68 Enterobacter isolates (59 E. cloacae, two E. aerogenes, two E. cancerogenus, one E. gergoviae, and four E. sakazakii, currently Cronobacter spp.), and 28 Klebsiella isolates (19 K. oxytoca and 9 K. pneumoniae). Only seven isolates were susceptible to all agents tested, and no resistances to ceftazidime, ciprofloxacin, gentamicin, and chloramphenicol were detected. Most isolates were resistant to amoxicillin/clavulanic acid (74 [58 Enterobacter and 16 Klebsiella]) or to ampicillin (80 [55/25]). Other resistances were less frequent: nitrofurantoin (13 isolates [12/1]), tetracycline (6 [5/1]), co-trimoxazole (3 [3/0]), cefotaxime (1 [1/0]), and streptomycin (2 [1/1]). Multiresistant isolates to two (56 [41/15]), three (10 E. cloacae isolates), four (one E. cloacae and one K. pneumoniae isolate), and five (two E. cloacae isolates) chemotherapeutic agents were also detected. The presence of potential pathogens points to marketed fresh produce, which often is eaten raw, as a risk factor for consumer health. In addition, these results support the usefulness of these bacterial species as indicators of the spreading of antibiotic resistances into the environment, particularly in the food chain, and suggest their role as carriers of resistance determinants from farms to consumers, which may constitute an additional "silent" food safety concern. Therefore, there is a need to improve the hygienic quality of marketed fresh

  5. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance.

    PubMed

    Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant

    2013-12-01

    Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy.

  6. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration.

    PubMed

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000-2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  7. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration

    PubMed Central

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D. Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000–2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  8. The DNA damage/repair cascade in glioblastoma cell lines after chemotherapeutic agent treatment.

    PubMed

    Annovazzi, Laura; Caldera, Valentina; Mellai, Marta; Riganti, Chiara; Battaglia, Luigi; Chirio, Daniela; Melcarne, Antonio; Schiffer, Davide

    2015-01-01

    Therapeutic resistance in glioblastoma multiforme (GBM) has been linked to a subpopulation of cells with stem cell-like properties, the glioma stem cells (GSCs), responsible for cancer progression and recurrence. This study investigated the in vitro cytotoxicity of three chemotherapeutics, temozolomide (TMZ), doxorubicin (Dox) and paclitaxel (PTX) on glioma cell lines, by analyzing the molecular mechanisms leading to DNA repair and cell resistance, or to cell death. The drugs were tested on 16 GBM cell lines, grown as neurospheres (NS) or adherent cells (AC), by studying DNA damage occurrence by Comet assay, the expression by immunofluorescence and western blotting of checkpoint/repair molecules and apoptosis. The three drugs were able to provoke a genotoxic injury and to inhibit dose- and time-dependently cell proliferation, more evidently in AC than in NS. The first cell response to DNA damage was the activation of the damage sensors (p-ATM, p-53BP1, γ-H2AX), followed by repair effectors; the expression of checkpoint/repair molecules appeared higher in NS than in AC. The non-homologous repair pathway (NHEJ) seemed more involved than the homologous one (HR). Apoptosis occurred after long treatment times, but only a small percentage of cells in NS underwent death, even at high drug concentration, whereas most cells survived in a quiescent state and resumed proliferation after drug removal. In tumor specimens, checkpoint/repair proteins were constitutively expressed in GBMs, but not in low-grade gliomas.

  9. Chemotherapeutic effect of Berberis integerrima hydroalcoholic extract on colon cancer development in the 1,2-dimethyl hydrazine rat model.

    PubMed

    Malayeri, Mohammad R Mohammadi; Dadkhah, Abolfazl; Fatemi, Faezeh; Dini, Salome; Torabi, Fatemeh; Tavajjoh, Mohammad M; Rabiei, Javad

    2016-01-01

    The aim of this study was to investigate the efficacy of a Berberis integerrima hydroalcoholic extract as a chemotherapeutic agent in colon carcinogenesis in the rat induced by 1,2-dimethyl hydrazine (DMH). Male Wistar rats were divided into five groups: a negative control group without DMH treatment; a control group injected DMH (20 mg/kg b.w); two groups receiving B. integerrima extract (50 and 100 mg/kg b.w), concomitant with injected DMH, as chemotherapeutic groups; a positive control group receiving 5-fluorouracil (5-FU) along with DMH. The effects of the extracts were determined by assessment of hepatic malondialdehyde (MDA), glutathione (GSH), ferric reducing ability of plasma (FRAP), and the activities of hepatic glutathione S-transferase and cytochrome P450 (GST and CYP450). Additionally, colon tissues were assessed for colonic β-catenin and histopathological analysis. In DMH-treated rats, the extracts partially normalized the levels of FRAP, CYP450, β-catenin, and GST. Likewise, formation of aberrant crypt foci (ACF) in colon tissue of DMH-treated was reduced by the extracts. Thus, the extracts possess chemotherapeutic activity against colon carcinogenesis.

  10. Suppression of PRKAR1A expression enhances anti-proliferative and apoptotic effects of protein kinase inhibitors and chemotherapeutic drugs on cholangiocarcinoma cells.

    PubMed

    Loilome, Watcharin; Juntana, Sirinun; Pinitsoontorn, Chadamas; Namwat, Nisana; Tassaneeyakul, Wichittra; Yongvanit, Puangrat

    2012-01-01

    Suppression of protein kinase A regulatory subunit 1 alpha (PRKAR1A) has been proven to inhibit cholangiocarcinoma (CCA) cell growth and enhance apoptosis. In the present study, we aimed to determine synergistic and/or additive effects of chemotherapeutic agents, including protein kinase inhibitors (i.e. sorafenib, sunitinib, gefitinib, Met inhibitor) and conventional chemotherapeutic drugs (i.e. 5-fluorouracil, doxorubicin, paclitaxel, gemcitabine), in PRKARIA knockdown CCA cell lines. The results revealed that PRKAR1A suppressed CCA cell lines demonstrated enhanced sensitivity to some chemotherapeutic drugs when compared to control cells. Moreover, PRKAR1A knockdown in combination with either sorafenib or 5-fluorouracil increased apoptotic effects on CCA cell lines. Therefore, selective inhibition of PRKAR1A appears to enhance the growth inhibitory effects of chemotherapeutic drugs as well as induce apoptotic cell death. Our findings suggest that additional suppression of PRKAR1A expression may increase the efficacy of conventional CCA chemotherapeutic treatment. Clinical studies in CCA patients now need to be conducted. PMID:23480756

  11. [Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents].

    PubMed

    Kiselev, O I; Vasin, A V; Shevyryova, M P; Deeva, E G; Sivak, K V; Egorov, V V; Tsvetkov, V B; Egorov, A Yu; Romanovskaya-Romanko, E A; Stepanova, L A; Komissarov, A B; Tsybalova, L M; Ignatjev, G M

    2015-01-01

    Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing. While being of a relatively low genetic capacity, the virus can be ranked as a standard for pathogenicity with the ability to evade the host immune response in uttermost perfection. The EHF virus has similarities with retroviruses, but belongs to (-)RNA viruses of a nonretroviral origin. Genetic elements of the virus, NIRV, were detected in animal and human genomes. EHF virus glycoprotein (GP) is a class I fusion protein and shows more similarities than distinctions in tertiary structure with SIV and HIV gp41 proteins and even influenza virus hemagglutinin. EHF is an unusual infectious disease, and studying the molecular basis of its pathogenesis may contribute to new findings in therapy of severe conditions leading to a fatal outcome.

  12. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells.

    PubMed

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C T; Wang, Yuh-Hwa

    2015-09-01

    Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual

  13. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents.

    PubMed

    Cedillo-Rivera, R; Muñoz, O

    1992-09-01

    The susceptibility of a strain of Giardia lamblia to benzimidazole carbamates, 5-nitroimidazoles, nitrofurans and other drugs was studied in vitro. Albendazole was the most active compound, with a 50% inhibitory concentration (IC50) of 0.01 mg/L and a minimal lethal concentration (MLC) of less than 0.04 mg/L; the IC50 of mebendazole was 0.06 mg/L and the MLC less than 0.5 mg/L. Among the 5-nitroimidazoles tested, ornidazole was the most effective (IC50 0.12 mg/L); tinidazole, metronidazole, secnidazole and hemezole were less active. Nifuroxazide, etofamide and nalidixic acid exhibited modest anti-giardial activity; quinfamide did not inhibit the growth of the parasite at a concentration of 200 mg/L. Albendazole and mebendazole are promising candidates for clinical use and should be further evaluated.

  14. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents.

    PubMed

    Cedillo-Rivera, R; Muñoz, O

    1992-09-01

    The susceptibility of a strain of Giardia lamblia to benzimidazole carbamates, 5-nitroimidazoles, nitrofurans and other drugs was studied in vitro. Albendazole was the most active compound, with a 50% inhibitory concentration (IC50) of 0.01 mg/L and a minimal lethal concentration (MLC) of less than 0.04 mg/L; the IC50 of mebendazole was 0.06 mg/L and the MLC less than 0.5 mg/L. Among the 5-nitroimidazoles tested, ornidazole was the most effective (IC50 0.12 mg/L); tinidazole, metronidazole, secnidazole and hemezole were less active. Nifuroxazide, etofamide and nalidixic acid exhibited modest anti-giardial activity; quinfamide did not inhibit the growth of the parasite at a concentration of 200 mg/L. Albendazole and mebendazole are promising candidates for clinical use and should be further evaluated. PMID:1518040

  15. DNA binding activity of Ku during chemotherapeutic agent-induced early apoptosis.

    PubMed

    Iuchi, Katsuya; Yagura, Tatsuo

    2016-03-15

    Ku protein is a heterodimer composed of two subunits, and is capable of both sequence-independent and sequence-specific DNA binding. The former mode of DNA binding plays a crucial role in DNA repair. The biological role of Ku protein during apoptosis remains unclear. Here, we show characterization of Ku protein during apoptosis. In order to study the DNA binding properties of Ku, we used two methods for the electrophoresis mobility shift assay (EMSA). One method, RI-EMSA, which is commonly used, employed radiolabeled DNA probes. The other method, WB-EMSA, employed unlabeled DNA followed by western blot and detection with anti-Ku antiserum. In this study, Ku-DNA probe binding activity was found to dramatically decrease upon etoposide treatment, when examined by the RI-EMSA method. In addition, pre-treatment with apoptotic cell extracts inhibited Ku-DNA probe binding activity in the non-treated cell extract. The inhibitory effect of the apoptotic cell extract was reduced by DNase I treatment. WB-EMSA showed that the Ku in the apoptotic cell extract bound to fragmented endogenous DNA. Interestingly, Ku in the apoptotic cell extract purified by the Resource Q column bound 15-bp DNA in both RI-EMSA and WB-EMSA, whereas Ku in unpurified apoptotic cell extracts did not bind additional DNA. These results suggest that Ku binds cleaved chromosomal DNA and/or nucleosomes in apoptotic cells. In conclusion, Ku is intact and retains DNA binding activity in early apoptotic cells.

  16. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases.

    PubMed

    Isah, Murtala Bindawa; Ibrahim, Mohammed Auwal; Mohammed, Aminu; Aliyu, Abubakar Babando; Masola, Bubuya; Coetzer, Theresa H T

    2016-09-01

    Parasitic infections are among the leading global public health problems with very high economic and mortality burdens. Unfortunately, the available treatment drugs are beset with side effects and continuous parasite drug resistance is being reported. However, new findings reveal more promising compounds especially of plant origin. Among the promising leads are the pentacyclic triterpenes (PTs) made up of the oleanane, ursane, taraxastane, lupane and hopane types. This paper reviews the literature published from 1985 to date on the in vitro and in vivo anti-parasitic potency of this class of phytochemicals. Of the 191 natural and synthetic PT reported, 85 have shown high anti-parasitic activity against various species belonging to the genera of Plasmodium, Leishmania, Trypanosoma, as well as various genera of Nematoda. Moreover, structural modification especially at carbon 3 (C3) and C27 of the parent backbone of PT has led to improved anti-parasitic activity in some cases and loss of activity in others. The potential of this group of compounds as future alternatives in the treatment of parasitic diseases is discussed. It is hoped that the information presented herein will contribute to the full exploration of this promising group of compounds as possible drugs for parasitic diseases.

  17. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms.

    PubMed

    Wangchuk, Phurpa; Giacomin, Paul R; Pearson, Mark S; Smout, Michael J; Loukas, Alex

    2016-01-01

    Schistosomiasis and trichuriasis are two of the most common neglected tropical diseases (NTD) that affect almost a billion people worldwide. There is only a limited number of effective drugs to combat these NTD. Medicinal plants are a viable source of parasiticides. In this study, we have investigated six of the 19 phytochemicals isolated from two Bhutanese medicinal plants, Corydalis crispa and Pleurospermum amabile, for their anthelmintic properties. We used the xWORM technique and Scanning Electron Microscope-based imaging to determine the activity of the compounds. Of the six compounds tested, isomyristicin and bergapten showed significant anthelmintic activity against Schistosoma mansoni and Trichuris muris with bergapten being the most efficacious compound one against both parasites (S. mansoni IC50 = 8.6 μg/mL and T. muris IC50 = 10.6 μg/mL) and also against the schistosomulum stage of S. mansoni. These two compounds induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. The efficacy against multiple phylogenetically distinct parasites and different life stages, especially the schistosomulum where praziquantel is ineffective, makes isomyristicin and bergapten novel scaffolds for broad-spectrum anthelmintic drug development that could be used for the control of helminths infecting humans and animals. PMID:27572696

  18. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms

    PubMed Central

    Wangchuk, Phurpa; Giacomin, Paul R.; Pearson, Mark S.; Smout, Michael J.; Loukas, Alex

    2016-01-01

    Schistosomiasis and trichuriasis are two of the most common neglected tropical diseases (NTD) that affect almost a billion people worldwide. There is only a limited number of effective drugs to combat these NTD. Medicinal plants are a viable source of parasiticides. In this study, we have investigated six of the 19 phytochemicals isolated from two Bhutanese medicinal plants, Corydalis crispa and Pleurospermum amabile, for their anthelmintic properties. We used the xWORM technique and Scanning Electron Microscope-based imaging to determine the activity of the compounds. Of the six compounds tested, isomyristicin and bergapten showed significant anthelmintic activity against Schistosoma mansoni and Trichuris muris with bergapten being the most efficacious compound one against both parasites (S. mansoni IC50 = 8.6 μg/mL and T. muris IC50 = 10.6 μg/mL) and also against the schistosomulum stage of S. mansoni. These two compounds induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. The efficacy against multiple phylogenetically distinct parasites and different life stages, especially the schistosomulum where praziquantel is ineffective, makes isomyristicin and bergapten novel scaffolds for broad-spectrum anthelmintic drug development that could be used for the control of helminths infecting humans and animals. PMID:27572696

  19. Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Rabii, Farida W; Segura, Pedro A; Fayad, Paul B; Sauvé, Sébastien

    2014-07-15

    Due to the increased consumption of chemotherapeutic agents, their high toxicity, carcinogenicity, their occurrence in the aquatic environment must be properly evaluated. An analytical method based on online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry was developed and validated. A 1 mL injection volume was used to quantify six of the most widely used cytotoxic drugs (cyclophosphamide, gemcitabine, ifosfamide, methotrexate, irinotecan and epirubicin) in municipal wastewater. The method was validated using standard additions. The validation results in wastewater influent had coefficients of determination (R(2)) between 0.983 and 0.998 and intra-day precision ranging from 7 to 13% (expressed as relative standard deviation %RSD), and from 9 to 23% for inter-day precision. Limits of detection ranged from 4 to 20 ng L(-1) while recovery values were greater than 70% except for gemcitabine, which is the most hydrophilic compound in the selected group and had a recovery of 47%. Matrix effects were interpreted by signal suppression and ranged from 55 to 118% with cyclophosphamide having the highest value. Two of the target anticancer drugs (cyclophosphamide and methotrexate) were detected and quantified in wastewater (effluent and influent) and ranged from 13 to 60 ng L(-1). The proposed method thus allows proper monitoring of potential environmental releases of chemotherapy agents. PMID:24388503

  20. Comparison of in Vitro Cytotoxicity and Apoptogenic Activity of Magnesium Chloride and Cisplatin as Conventional Chemotherapeutic Agents in the MCF-7 Cell Line.

    PubMed

    Mirmalek, Seyed Abbas; Jangholi, Ehsan; Jafari, Mohammad; Yadollah-Damavandi, Soheila; Javidi, Mohammad Amin; Parsa, Yekta; Parsa, Tina; Salimi-Tabatabaee, Seyed Alireza; Ghasemzadeh Kolagar, Hossein; Khazaei Jalil, Saeed; Alizadeh-Navaei, Reza

    2016-01-01

    Breast cancer is the most common malignancy and also the second leading cause of cancer death among women and also in women that have a high mortality. Previous studies showed that magnesium (Mg) has cytotoxic effects on malignant cell lines. However, the anti-cancer effects of Mg on MCF-7 breast cancer cells are uncertain. This study was aimed at the comparison of the cytotoxic effect of Mg salt (MgCl2) and cisplatin on MCF-7 cells and fibroblasts (as normal cells). After treatment with various concentrations of MgCl2, and cisplatin as a positive control for 24 and 48 hours (h), cytotoxicity activity was measured by MTT assay. In addition, apoptosis was determined by annexin V/propidium iide assay. Both cisplatin and the MgCl2 exhibited dose-dependent cytotoxic effects in the MCF-7 cell line, although the LD50 of the Mg was significantly higher when compared to cispaltin (40 μg/ml vs. 20 μg/ml). Regarding annexin V/propidium results, treatment of MCF-7 cells with LD50 concentrations of cisplatin and Mg showed 59% and 44% apoptosis at 24h, respectively. Finally, the results indicated that Mg has cytotoxic effects on MCF-7 cells, but less than cisplatin as a conventional chemotherapeutic agent. However, regarding the side effects of chemotherapy drugs, it seems that Mg can be considered as a supplement for the treatment of breast cancer.

  1. Therapeutic potential and critical analysis of trastuzumab and bevacizumab in combination with different chemotherapeutic agents against metastatic breast/colorectal cancer affecting various endpoints.

    PubMed

    Wahid, Mohd; Mandal, Raju K; Dar, Sajad A; Jawed, Arshad; Lohani, Mohtashim; Areeshi, Mohammad Y; Akhter, Naseem; Haque, Shafiul

    2016-08-01

    Researchers are working day and night across the globe to eradicate or at least lessen the menace of cancer faced by the mankind. The two very frequently occurring cancers faced by the human beings are metastatic breast cancer and metastatic colorectal cancer. The various chemotherapeutic agents like anthracycline, cyclophosphamide, paclitaxel, irinotecan, fluorouracil and leucovorin etc., have been used impressively for long. But the obstinate character of metastatic breast cancer and metastatic colorectal cancer needs more to tackle the threat. So, the scientists found the use of monoclonal antibodies trastuzumab (Herceptin(®)) and bevacizumab (Avastin(®)) for the same. The current study critically investigates the therapeutic potential of trastuzumab and bevacizumab in combination with various chemotherapeutic agents against metastatic breast cancer and metastatic colorectal cancer. To the best of our knowledge, this is the very first critical analysis showing percent wise increase in various positive endpoints like median time to disease progression, median survival, and progression free survival etc. for the treatment of metastatic breast/colorectal cancer using trastuzumab and bevacizumab in combination with different chemotherapeutic agents and provides the rational for the success and failure of the selected monoclonal antibodies. PMID:27357488

  2. Synergistic activities of a silver(I) glutamic acid complex and reactive oxygen species (ROS): a novel antimicrobial and chemotherapeutic agent.

    PubMed

    Batarseh, K I; Smith, M A

    2012-01-01

    The antimicrobial and chemotherapeutic activities of a silver(I) glutamic acid complex with the synergistic concomitant generation of reactive oxygen species (ROS) were investigated here. The ROS generation system employed was via Fenton chemistry. The antimicrobial and chemotherapeutic activities were investigated on Staphylococcus aureus ATCC 43300 and Escherichia coli bacteria, and Vero and MCF-7 tumor cell lines, respectively. Antimicrobial activities were conducted by determining minimum inhibitory concentration (MIC), while chemotherapeutic efficacies were done by serial dilution using standard techniques to determine the half maximal inhibitory concentration (IC50). The antimicrobial and chemotherapeutic results obtained were compared with positive control drugs gentamicin, oxacillin, penicillin, streptomycin and cisplatin, a ubiquitously used platinum-based antitumor drug, and with the silver(I) glutamic acid complex and hydrogen peroxide separately. Based on MIC and IC50 values, it was determined that this synergistic approach was very effective at extremely low concentrations, especially when compared with the other drugs evaluated here. This finding might be of great significance regarding metronomic dosing when this synergistic approach is clinically implemented. Since silver at low concentrations exhibits no toxic, mutagenic and carcinogenic activities, this might offer an alternative approach for the development of safer silver-based antimicrobial and chemotherapeutic drugs, thereby reducing or even eliminating the toxicity associated with current drugs. Accordingly, the present approach might be integrated into the systemic clinical treatment of infectious diseases and cancer. PMID:22680634

  3. Using Agent-Based Modelling to Predict the Role of Wild Refugia in the Evolution of Resistance of Sea Lice to Chemotherapeutants

    PubMed Central

    McEwan, Gregor F.; Groner, Maya L.; Fast, Mark D.; Revie, Crawford W.

    2015-01-01

    A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments. PMID:26485023

  4. Using Agent-Based Modelling to Predict the Role of Wild Refugia in the Evolution of Resistance of Sea Lice to Chemotherapeutants.

    PubMed

    McEwan, Gregor F; Groner, Maya L; Fast, Mark D; Gettinby, George; Revie, Crawford W

    2015-01-01

    A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments. PMID:26485023

  5. Using Agent-Based Modelling to Predict the Role of Wild Refugia in the Evolution of Resistance of Sea Lice to Chemotherapeutants.

    PubMed

    McEwan, Gregor F; Groner, Maya L; Fast, Mark D; Gettinby, George; Revie, Crawford W

    2015-01-01

    A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments.

  6. The nm23-H1 gene as a predictor of sensitivity to chemotherapeutic agents in oesophageal squamous cell carcinoma

    PubMed Central

    Iizuka, N; Hirose, K; Noma, T; Hazama, S; Tangoku, A; Hayashi, H; Abe, T; Yamamoto, K; Oka, M

    1999-01-01

    Recently, nm23-H1, an anti-metastasis gene, has been reported to correlate with sensitivity to chemotherapeutic agents including cisplatin in human breast and ovarian carcinoma cells. The aim of this study was to evaluate a role for nm23-H1 in responsiveness to cisplatin-based chemotherapy in patients with oesophageal squamous cell carcinoma (OSCC). The expression of nm23-H1 protein was examined immunohistochemically in 32 eligible patients with OSCC who underwent adjuvant chemotherapy with cisplatin, etoposide, and 5-fluorouracil after tumour resection. Fifteen (46.9%) of 32 patients were positive for nm23-H1 staining and 17 (53.1%) were negative. Both disease-free survival and overall survival rates of nm23-H1-negative patients were significantly shorter than in nm23-H1-positive patients (P < 0.01 for both). There was no significant difference in clinicopathologic characteristics between nm23-H1-positive and nm23-H1-negative groups. Multivariate analysis also showed that nm23-H1 expression was the most significant factor for overall survival of OSCC patients included in this study (P = 0.0007). To further study the role of nm23-H1, a human OSCC cell line (YES-2) was transfected with a plasmid containing a fragment of the nm23-H1 cDNA in an antisense orientation. Reduced expression of nm23-H1 protein in the antisense-transfected (AS) clones was found by Western blot analysis as compared to wild-type YES-2 and YES-2/Neo (clone transfected with the neomycin resistance gene alone). MTT (3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide) assay showed that reduced expression of the nm23-H1 protein in AS clones was consistent with the degree of increased resistance to cisplatin but not etoposide or 5-fluorouracil. These data support the conclusion that reduced expression of nm23-H1 may be associated with resistance to cisplatin, suggesting the value of nm23-H1 expression as a prognostic marker for OSCC patients who are to undergo cisplatin

  7. Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect.

    PubMed

    Stern, P H; Hoffman, R M

    1986-04-01

    A metabolic defect that is prevalent in human cancer cell lines was exploited to selectively kill these cells without killing cocultured normal human fibroblasts. Methionine dependence, a metabolic defect seen only in cancer cells or immortalized cell lines in vitro, precludes the cells from growing in media in which methionine is replaced by its immediate precursor, homocysteine, a condition that allows the growth of all normal cell strains tested. The methionine-dependent cells become reversibly blocked in late S-G2 (i.e., late-S and G2 phases) under the above condition, a block that was exploited for selective chemotherapy against these cells. In cultures that were initiated with equal amounts of cancer cells and human diploid fibroblasts, substitution of homocysteine and doxorubicin for methionine in the culture medium followed by methionine repletion with vincristine was totally effective at selectively eliminating a methionine-dependent human sarcoma and 3 methionine-dependent human carcinomas. The above protocol was nearly totally effective against a partially methionine-independent revertant of the sarcoma. The chemotherapeutic procedure used was not lethal to normal cells growing alongside the tumor cells and was ineffective when conducted totally in methionine-containing medium. The optimal procedure was 10(-10) M doxorubicin in methionine-free, homocysteine-containing medium for 10 days followed by 2 x 10(-7) M vincristine in methionine-containing, homocysteine-free medium for 1 day, in turn followed by drug-free methionine-containing, homocysteine-free medium. These results demonstrate the potential for treatment of solid tumors with chemotherapy based on metabolic differences between normal and tumor cells.

  8. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  9. Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells

    PubMed Central

    SARIN, HEMANT

    2016-01-01

    For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol-to-water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC-to-vdWD (nm−1) parameter is determined, and where applicable, hydrophilic interacting moiety/core-to-vdWD (nm−1) and lipophilic incorporating hydrophobic moiety/core-to-vdWD (nm−1) parameters of their part-structures are determined. The cellular and sub-cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle-based effective transvascular delivery. PMID:26998284

  10. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance–fluorescence imaging for tracking of chemotherapeutic agents

    PubMed Central

    Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei

    2016-01-01

    To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM−1 s−1, which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM−1 s−1). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy.

  11. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance-fluorescence imaging for tracking of chemotherapeutic agents.

    PubMed

    Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei

    2016-01-01

    To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM(-1) s(-1), which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM(-1) s(-1)). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy. PMID:27601895

  12. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance–fluorescence imaging for tracking of chemotherapeutic agents

    PubMed Central

    Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei

    2016-01-01

    To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM−1 s−1, which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM−1 s−1). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy. PMID:27601895

  13. Synthesis and characterization of a new retinoic acid ECPIRM as potential chemotherapeutic agent for human cutaneous squamous carcinoma.

    PubMed

    Zhang, Mengli; Tao, Yue; Ma, Pengcheng; Wang, Dechuan; He, Chundi; Cao, Yuping; Wei, Jun; Li, Lingjun; Tao, Lei

    2015-01-01

    Cutaneous squamous cell carcinoma (CSCC) is one of the most common cancers worldwide, requiring effective therapeutic interventions. Retinoids are important chemopreventive and therapeutic agents for a variety of human cancers including CSCC. In this study we synthesized a novel retinoic derivative N-(4-ethoxycarbonylphenyl) isoretinamide (ECPIRM) and evaluated its biological activities and possible mechanisms in human cutaneous squamous cell lines. ECPIRM had better inhibitory effect on the proliferation of squamous carcinoma cells SCL-1 and colo-16, compared with All-trans retinoic acid and 13-cis retinoic acid. ECPIRM had less toxicity to normal keratinocyte cell line HaCaT. Mechanistically, ECPIRM induced G1 cell cycle arrest in SCL-1 cells, via the downregulation of CDK2, CDK4, cycling D1 and cyclin E expression and upregulation of p21. In addition, these effects were at least partially due to the inhibition of JNK/ ERK-AP-1 signaling pathway by ECPIRM. Importantly, these effects of ECPIRM are independent of the classical retinoid receptor pathway, suggesting that the novel compound will have less side-effects in chemotherapy. These findings demonstrate that ECPIRM is a potential inhibitor of MPAK-AP-1 pathway, and is a potential therapeutic agent against CSCC.

  14. Synthesis and characterization of a new retinoic acid ECPIRM as potential chemotherapeutic agent for human cutaneous squamous carcinoma.

    PubMed

    Zhang, Mengli; Tao, Yue; Ma, Pengcheng; Wang, Dechuan; He, Chundi; Cao, Yuping; Wei, Jun; Li, Lingjun; Tao, Lei

    2015-01-01

    Cutaneous squamous cell carcinoma (CSCC) is one of the most common cancers worldwide, requiring effective therapeutic interventions. Retinoids are important chemopreventive and therapeutic agents for a variety of human cancers including CSCC. In this study we synthesized a novel retinoic derivative N-(4-ethoxycarbonylphenyl) isoretinamide (ECPIRM) and evaluated its biological activities and possible mechanisms in human cutaneous squamous cell lines. ECPIRM had better inhibitory effect on the proliferation of squamous carcinoma cells SCL-1 and colo-16, compared with All-trans retinoic acid and 13-cis retinoic acid. ECPIRM had less toxicity to normal keratinocyte cell line HaCaT. Mechanistically, ECPIRM induced G1 cell cycle arrest in SCL-1 cells, via the downregulation of CDK2, CDK4, cycling D1 and cyclin E expression and upregulation of p21. In addition, these effects were at least partially due to the inhibition of JNK/ ERK-AP-1 signaling pathway by ECPIRM. Importantly, these effects of ECPIRM are independent of the classical retinoid receptor pathway, suggesting that the novel compound will have less side-effects in chemotherapy. These findings demonstrate that ECPIRM is a potential inhibitor of MPAK-AP-1 pathway, and is a potential therapeutic agent against CSCC. PMID:25991427

  15. Linifanib (ABT-869) Potentiates the Efficacy of Chemotherapeutic Agents through the Suppression of Receptor Tyrosine Kinase-Mediated AKT/mTOR Signaling Pathways in Gastric Cancer

    PubMed Central

    Chen, Jing; Guo, Jiawei; Chen, Zhi; Wang, Jieqiong; Liu, Mingyao; Pang, Xiufeng

    2016-01-01

    Gastric cancer, highly dependent on tumor angiogenesis, causes uncontrolled lethality, in part due to chemoresistance. Here, we demonstrate that linifanib (ABT-869), a novel multi-targeted receptor tyrosine kinase inhibitor, markedly augments cytotoxicity of chemotherapies in human gastric cancer. ABT-869 and chemotherapeutic agents exhibited a strong synergy to inhibit the viability of several gastric cancer cell lines, with combination index values ranging from 0.017 to 0.589. Additionally, the combination of ABT-869 and chemotherapeutic agents led to remarkable suppression of vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo. Importantly, in a preclinical gastric cancer xenograft mouse model, drug co-treatments led to increased mouse survival as well as a synergistic reduction in tumor size and the inhibition of tumor angiogenesis. Mechanistic studies further revealed that all of the co-treatments containing ABT-869 resulted in decreased activation of the VEGF receptor, the epidermal growth factor receptor and the insulin growth factor receptor. Inhibition of these receptor tyrosine kinases consequently attenuated the activation of the downstream AKT/mTOR signaling pathway both in cultured gastric cancer cells and in gastric cancer xenografts. Collectively, our findings suggest that the addition of ABT-869 to traditional chemotherapies may be a promising strategy for the treatment of human gastric cancer. PMID:27387652

  16. Anti-tubercular and antioxidant activities of C-glycosyl carbonic anhydrase inhibitors: towards the development of novel chemotherapeutic agents against Mycobacterium tuberculosis.

    PubMed

    Zaro, María J; Bortolotti, Ana; Riafrecha, Leonardo E; Concellón, Analía; Morbidoni, Héctor R; Colinas, Pedro A

    2016-12-01

    During the treatment of tuberculosis infection, oxidative stress due to anti-tubercular drugs may result in tissue inflammation. It was suggested that treatment with antioxidant drugs could be beneficial as an adjunct to anti-tuberculosis drug therapy. Recently our group has shown that several C-glycosides are inhibitors of Mycobacterium tuberculosis β-carbonic anhydrases (CAs, EC 4.2.1.1). In an effort to develop novel chemotherapeutic agents against tuberculosis, the anti-tubercular and antioxidant activities of a series of C-glycosides containing the phenol or the methoxyaryl moiety were studied. Many compounds showed inhibition of growth of M. tuberculosis H37Rv strain and good antioxidant ability. A glycomimetic incorporating the 3-hydroxyphenyl moiety showed the best activity profile and therefore this functionality represents lead for the development of novel anti-tubercular agents with dual mechanisms of action.

  17. Effect of population and gender on chemotherapeutic agent–induced cytotoxicity

    PubMed Central

    Huang, Rong Stephanie; Kistner, Emily O.; Bleibel, Wasim K.; Shukla, Sunita J.; Dolan, M. Eileen

    2009-01-01

    Large interindividual variance is observed in both response and toxicity associated with chemotherapy. Our goal is to identify factors that contribute to chemotherapy-induced toxicity. To this end, we used EBV-transformed B-lymphoblastoid HapMap cell lines derived from 30 Yoruban trios (African descent) and 30 Centre d' Etude du Polymorphisme Humain (CEPH) trios (European descent) to evaluate population- and gender-specific differences in cytotoxicity of carboplatin, cisplatin, daunorubicin, and etoposide using a high-throughput, short-term cytotoxicity assay. The IC50 was compared for population- and gender-specific differences for the four drugs. We observed large interindividual variance in IC50 values for carboplatin, cisplatin, daunorubicin, and etoposide for both Yoruban and CEPH populations (range from 8- to 433-fold). Statistically significant differences in carboplatin and daunorubicin IC50 were shown when comparing Yoruban cell lines (n = 89) to CEPH cell lines (n = 87; P = 0.002 and P = 0.029, respectively). This population difference in treatment induced cytotoxicity was not seen for either cisplatin or etoposide. In the Yoruban population, cell lines derived from females were less sensitive to platinating agents than males [median carboplatin IC50, 29.1 versus 24.6 μmol/L (P = 0.012); median cisplatin IC50, 7.0 versus 6.0 μmol/L (P = 0.020) in female and male, respectively]. This difference was not observed in the CEPH population. These results show that population and gender may affect risk for toxicities associated with certain chemotherapeutic agents. PMID:17237264

  18. The prooxidant action of dietary antioxidants leading to cellular DNA breakage and anticancer effects: implications for chemotherapeutic action against cancer.

    PubMed

    Ullah, M F; Ahmad, Aamir; Khan, Husain Y; Zubair, H; Sarkar, Fazlul H; Hadi, S M

    2013-11-01

    Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.

  19. Ethanol Extract of Oldenlandia diffusa – an Effective Chemotherapeutic for the Treatment of Colorectal Cancer in Humans

    PubMed Central

    Lee, Soojin; Shim, Ji Hwan; Gim, Huijin; Park, Hyun Soo

    2016-01-01

    Objectives: Oldenlandia diffusa is traditionally used to relieve the symptoms of and to treat various diseases, but its anti-cancer activity has not been well studied. In the present study, the authors investigated the anti-cancer effects of an ethanol extract of Oldenlandia diffusa (EOD) on HT-29 human adenocarcinoma cells. Methods: Cells were treated with different concentrations of an EOD, and cell death was assessed by using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Analyses of the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial membrane depolarizations were conducted to confirm cell death by apoptosis. Also, intracellular reactive oxygen species (ROS) generation was determined using carboxy-H2DCFDA (5-(and-6)-carboxy-20,70-dichlorodihydrofluorescein diacetate). Results: EOD inhibited the proliferation of HT-29 cells for 24 hours by 78.6% ± 8.1% at 50 μg/mL, 74.4% ± 4.6% at 100 μg/mL, 65.9% ± 5.2% at 200 μg/mL, 51.4% ± 6.2% at 300 μg/mL, and by 41.7% ± 8.9% at 400 μg/mL, and treatment for 72 hours reduced the proliferation at the corresponding concentrations by 43.3% ± 8.8%, 24.3 ± 5.1 mV, 13.5 ± 3.2 mV, 6.5 ± 2.3 mV, and by 2.6 ± 2.3 mV. EOD increased the number of cells in the sub-G1 peak in a dose-dependent manner. The mitochondrial membrane depolarization was elevated by EOD. Also, caspase activities were dose-dependently elevated in the presence of EOD, and these activities were repressed by a pan-caspase inhibitor (zVAD-fmk). The ROS generation was significantly increased by EOD and N-acetyl-L-cysteine (NAC; a ROS scavenger) remarkably abolished EOD-induced cell death. In addition, a combination of sub-optimal doses of EOD and chemotherapeutic agents noticeably suppressed the growth of HT-29 cancer cells. Conclusion: These results indicate that EOD might be an effective chemotherapeutic for the treatment of human colorectal cancer. PMID:27280050

  20. Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects.

    PubMed

    Thangavel, Sindhu; Yoshitomi, Toru; Sakharkar, Meena Kishore; Nagasaki, Yukio

    2016-08-01

    Pioglitazone is a widely used anti-diabetic drug that induces cytotoxicity in cancer cells; however, its clinical use is questioned due to its associated liver toxicity caused by increased oxidative stress. We therefore employed nitroxide-radical containing nanoparticle, termed redox nanoparticle (RNP(N)) which is an effective scavenger of reactive oxygen species (ROS) as a drug carrier. RNP(N) encapsulation increased pioglitazone solubility, thus increasing cellular uptake of encapsulated pioglitazone which reduced the dose required to induce toxicity in prostate cancer cell lines. Investigation of in vitro molecular mechanism of pioglitazone revealed that both apoptosis and cell cycle arrest were involved in tumor cell death. In addition, intravenously administered pioglitazone-loaded RNP(N) produced significant tumor volume reduction in vivo due to enhanced permeation and retention effect. Most importantly, oxidative damage caused by pioglitazone in the liver was significantly suppressed by pioglitazone-loaded RNP(N) due to the presence of nitroxide radicals. It is interesting to note that oral administration of encapsulated pioglitazone, and co-administration of RNP(N) and pioglitazone, i.e., no encapsulation of pioglitazone in RNP(N) also significantly contributed to suppression of the liver injury. Therefore, use of RNP(N) either as an adjuvant or as a carrier for drugs with severe side effects is a promising chemotherapeutic strategy. PMID:27235996

  1. Long-term survival in a case of stage IV carcinoma of the ovary treated with a single chemotherapeutic agent.

    PubMed

    Akbiyik, N; Solisio, E; Alexander, L

    1979-08-01

    A case of stage IV carcinoma of the ovary is presented which was treated approximately six years ago in the Department of Radiation Therapy at Queens Hospital Center. On September 12, 1972, the patient had a total abdominal hysterectomy and bilateral salpingo-oophorectomy for a papillary scirrhous cystadenocarcinoma of the left ovary. At the time of the operation, the patient was found to have stage IV carcinoma of the ovary due to metastases of the liver and rectum. She was scheduled to receive pelvic-abdominal postoperative radiation therapy via the moving strip technique. Unfortunately, after completion of two strips, the patient could not tolerate treatment. She then began chemotherapy with a single agent, chlorambucil.Chlorambucil, 0.2 mg/kg/day×25 days/course was administered. The patient received 18 courses. Treatment dosage on a few occasions was decreased and increased again, due to drops in hemoglobin level and white blood cell and platelet counts. At the time of this presentation, the patient has no signs or symptoms of the disease. The introduction of megavoltage radiotherapy and adjuvant chemotherapy postoperatively has significantly improved the prognosis for patients with ovarian carcinoma. However, despite progress in radiotherapy, some patients cannot sustain this kind of treatment due to the unwanted side effects. Such was the case in this patient. She was switched to chemotherapy with excellent results in response and survival, even cure.

  2. Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics.

    PubMed

    Yu, Ru-Jian; Liu, Hai-Bin; Yu, Yang; Liang, Lu; Xu, Rui; Liang, Chun; Tang, Jin-Shan; Yao, Xin-Sheng

    2016-07-01

    Phytochemical investigation of the stem of Urceola huaitingii resulted in the isolation of nine proanthocyanidins (1-9), including a new compound (9). Their chemical structures were determined by UV, (HR) ESI-MS, 1D-, 2D-NMR, and CD spectra in combination with chemical derivatization. Determination of the absolute configuration of proanthocyanidins were discussed, which suggested that positive Δε values at 245nm can be applied to determine the absolute configuration of them. In addition, anticancer activities of proanthocyanidins (1-9) and their synergistic anticancer effects in combination with chemotherapeutics were evaluated. The results showed that some proanthocyanidins, especially compound 7 possessing two doubly interflavonoid linkages, exhibited significant synergistic anticancer effects with some chemotherapeutics in multiple cancer cell lines. PMID:27242217

  3. Interaction of standardized mistletoe (Viscum album) extracts with chemotherapeutic drugs regarding cytostatic and cytotoxic effects in vitro

    PubMed Central

    2014-01-01

    Background Given the importance of complementary and alternative medicine (CAM) to cancer patients, there is an increasing need to learn more about possible interactions between CAM and anticancer drugs. Mistletoe (Viscum album L.) belongs to the medicinal herbs that are used as supportive care during chemotherapy. In the in vitro study presented here the effect of standardized mistletoe preparations on the cytostatic and cytotoxic activity of several common conventional chemotherapeutic drugs was investigated using different cancer cell lines. Methods Human breast carcinoma cell lines HCC1937 and HCC1143 were treated with doxorubicin hydrochloride, pancreas adenocarcinoma cell line PA-TU-8902 with gemcitabine hydrochloride, prostate carcinoma cell line DU145 with docetaxel and mitoxantrone hydrochloride and lung carcinoma cell line NCI-H460 was treated with docetaxel and cisplatin. Each dose of the respective chemotherapeutic drug was combined with Viscum album extract (VAE) in clinically relevant concentrations and proliferation and apoptosis were measured. Results VAE did not inhibit chemotherapy induced cytostasis and cytotoxicity in any of our experimental settings. At higher concentrations VAE showed an additive inhibitory effect. Conclusions Our in vitro results suggest that no risk of safety by herb drug interactions has to be expected from the exposition of cancer cells to chemotherapeutic drugs and VAE simultaneously. PMID:24397864

  4. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  5. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    PubMed

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.

  6. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    PubMed

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  7. Differential Interactions of Cytochrome P450 3A5 and 3A4 with Chemotherapeutic Agent-Vincristine: A Comparative Molecular Dynamics Study.

    PubMed

    Saba, Nikhat; Bhuyan, Rajabrata; Nandy, Suman Kumar; Seal, Alpana

    2015-01-01

    The chemotherapeutic agent vincristine, used for treatment of acute lymphoblastic leukemia is metabolized preferentially by polymorphic cytochrome P450 3A5 (CYP3A5) with higher clearance rate than cytochrome P450 3A4 (CYP3A4). As a result, CYP3A5 expressers have a reduced amount of vincristine-induced peripheral neuropathy than non-expressers. We modeled the structure of CYP3A5 and its interaction with vincristine, compared with CYP3A4-vincristine complex using molecular docking and simulation studies. This relative study helped us to understand the molecular mechanisms behind the interaction at the atomic level through interaction energy, binding free energy, hydrogen bond and solvent accessible surface area analysis - giving an insight into the binding mode and the main residues involved in this particular interaction. Our results show that the interacting groups get closer in CYP3A5-vincristine complex due to different orientation of vincristine. This leads to higher binding affinity of vincristine towards CYP3A5 compared to CYP3A4 and explains the preferential metabolism of vincristine by CYP3A5. We believe that, the results of the current study will be helpful for future studies on structure-based drug design in this area.

  8. Chemotherapeutic Approaches for Targeting Cell Death Pathways

    PubMed Central

    Ricci, M. Stacey; Zong, Wei-Xing

    2011-01-01

    For several decades, apoptosis has taken center stage as the principal mechanism of programmed cell death in mammalian tissues. It also has been increasingly noted that conventional chemotherapeutic agents not only elicit apoptosis but other forms of nonapoptotic death such as necrosis, autophagy, mitotic catastrophe, and senescence. This review presents background on the signaling pathways involved in the different cell death outcomes. A re-examination of what we know about chemotherapy-induced death is vitally important in light of new understanding of nonapoptotic cell death signaling pathways. If we can precisely activate or inhibit molecules that mediate the diversity of cell death outcomes, perhaps we can succeed in more effective and less toxic chemotherapeutic regimens. PMID:16614230

  9. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in Countering Nephrotoxicity in Rats Induced by the Chemotherapeutic Agent Cisplatin

    PubMed Central

    Malik, Salma; Suchal, Kapil; Bhatia, Jagriti; Khan, Sana I.; Vasisth, Swati; Tomar, Ameesha; Goyal, Sameer; Kumar, Rajeev; Arya, Dharamvir S.; Ojha, Shreesh K.

    2016-01-01

    Emblica officinalis Gaertn. belonging to family Euphorbiaceae is commonly known as Indian gooseberry or “Amla” in India. It is used as a ‘rejuvenating herb’ in traditional system of Indian medicine. It has been shown to possess antioxidant, anti-inflammatory and anti-apoptotic effects. Thus, on the basis of its biological effects, the present study was undertaken to evaluate the protective effect of the dried fruit extract of the E. Officinalis (EO) in cisplatin-induced nephrotoxicity in rats and also to evaluate the mechanism of its nephroprotection. The study was done on male albino Wistar rats. They were divided into six groups (n = 6) viz. control, cisplatin-control, cisplatin and EO (150, 300, and 600 mg/kg; p.o. respectively in different groups) and EO only (600 mg/kg; p.o. only). EO was administered orally to the rats for a period of 10 days and on the 7th day, a single injection of cisplatin (8 mg/kg; i.p.) was administered to the cisplatin-control and EO treatment groups. The rats were sacrificed on the 10th day. Cisplatin-control rats had deranged renal function parameters and the kidney histology confirmed the presence of acute tubular necrosis. Furthermore, there were increased oxidative stress, apoptosis and inflammation along with higher expression of MAPK pathway proteins in the rat kidney from the cisplatin-control group. Contrary to this, EO (600 mg/kg) significantly normalized renal function, bolstered antioxidant status and ameliorated histological alterations. The inflammation and apoptosis were markedly lower in comparison to cisplatin-control rats. Furthermore, EO (600 mg/kg) inhibited MAPK phosphorylation which was instrumental in preserving renal function and morphology. In conclusion, the results of our study demonstrated that EO attenuated cisplatin-induced nephrotoxicity in rats through suppression of MAPK induced inflammation and apoptosis. PMID:27752245

  10. "A startling new chemotherapeutic agent": pediatric infectious disease and the introduction of sulfonamides at Baltimore's Sydenham Hospital.

    PubMed

    Connolly, Cynthia; Golden, Janet; Schneider, Benjamin

    2012-01-01

    Using pediatric patient records from Baltimore's Sydenham Hospital, this article explores the adoption of sulfa drugs in pediatrics. It discusses how clinicians dealt with questions of dosing and side effects and the impact of the sulfonamides on two diagnoses in children: meningococcal meningitis and pneumonia. The care of infants and children with infectious diseases made demands on physicians and nurses that differed from those facing clinicians treating adult patients. The article demonstrates the need to distinguish between pediatric and adult medical history. It suggests that the new therapeutics demanded more intense bedside care and enhanced laboratory facilities, and as a result paved the way for the adoption of penicillin. Finally, it argues that patient records and the published medical literature must be examined together in order to gain a full understanding of how transformations in medical practice and therapeutics occur. PMID:22643984

  11. The Hepatoprotective Effect of Haoqin Qingdan Decoction against Liver Injury Induced by a Chemotherapeutic Drug Cyclophosphamide

    PubMed Central

    Li, Xiaojiang; Li, Baole; Jia, Yingjie

    2015-01-01

    Haoqin Qingdan decoction (HQQD), a modern Chinese formula, has been widely used in Eastern Asia. Our study focuses on the hepatoprotective effect of HQQD against cyclophosphamide-induced hepatotoxicity. S180, a kind of ascites tumor cells, was used to establish S180-bearing mice, followed by the injection of cyclophosphamide (CP, 80 mg/kg) every other day for 5 times. HQQD was used intragastrically at the dose of 80 g/kg, 40 g/kg, and 20 g/kg twice a day for 12 days. HL-7702 hepatic cell line was incubated with HQQD-medicated serum. Then we detected the effects of HQQD on (i) tumor suppression; (ii) morphological examination; (iii) SOD, MDA, GSH, ALT, and AST; (iv) cleaved caspase-3 expression and (v) cellular viability. CP caused dramatic elevations of AST, ALT, and MDA, while HQQD notably attenuated these elevations. SOD and GSH were notably increased, which were efficiently attenuated by HQQD. CP injection significantly increased apoptosis by increasing cleaved caspase-3 expression, which was obviously inhibited by HQQD, accompanied by the improvement of cells viability. Histopathological examinations supported the above findings. Therefore, HQQD may protect liver tissue through attenuating oxidative stress and the caspase-3-dependent intrinsic apoptosis induced by CP, which suggests the potentially therapeutic effect of HQQD in the use of alkylating agent for cancer chemotherapy. PMID:26101538

  12. Modification of polyethylene glycol onto solid lipid nanoparticles encapsulating a novel chemotherapeutic agent (PK-L4) to enhance solubility for injection delivery

    PubMed Central

    Fang, Yi-Ping; Wu, Pao-Chu; Huang, Yaw-Bin; Tzeng, Cherng-Chyi; Chen, Yeh-Long; Hung, Yu-Han; Tsai, Ming-Jun; Tsai, Yi-Hung

    2012-01-01

    Background The synthetic potential chemotherapeutic agent 3-Chloro-4-[(4-methoxyphenyl) amino]furo[2,3-b]quinoline (PK-L4) is an analog of amsacrine. The half-life of PK-L4 is longer than that of amsacrine; however, PK-L4 is difficult to dissolve in aqueous media, which is problematic for administration by intravenous injection. Aims To utilize solid lipid nanoparticles (SLNs) modified with polyethylene glycol (PEG) to improve the delivery of PK-L4 and investigate its biodistribution behavior after intravenous administration. Results The particle size of the PK-L4-loaded SLNs was 47.3 nm and the size of the PEGylated form was smaller, at 28 nm. The entrapment efficiency (EE%) of PK-L4 in SLNs with and without PEG showed a high capacity of approximately 100% encapsulation. Results also showed that the amount of PK-L4 released over a prolonged period from SLNs both with and without PEG was comparable to the non-formulated group, with 16.48% and 30.04%, respectively, of the drug being released, which fit a zero-order equation. The half-maximal inhibitory concentration values of PK-L4-loaded SLNs with and those without PEG were significantly reduced by 45%–64% in the human lung carcinoma cell line (A549), 99% in the human breast adenocarcinoma cell line with estrogen receptor (MCF7), and 95% in the human breast adenocarcinoma cell line (MDA-MB-231). The amount of PK-L4 released by SLNs with PEG was significantly higher than that from the PK-L4 solution (P < 0.05). After intravenous bolus of the PK-L4-loaded SLNs with PEG, there was a marked significant difference in half-life alpha (0.136 ± 0.046 hours) when compared with the PK-L4 solution (0.078 ± 0.023 hours); also the area under the curve from zero to infinity did not change in plasma when compared to the PK-L4 solution. This demonstrated that PK-L4-loaded SLNs were rapidly distributed from central areas to tissues and exhibited higher accumulation in specific organs. The highest deposition of PK-L4-loaded SLNs

  13. Experimental and clinical observations of the effects of cytotoxic chemotherapeutic drugs on wound healing.

    PubMed Central

    Bland, K I; Palin, W E; von Fraunhofer, J A; Morris, R R; Adcock, R A; Tobin, G R

    1984-01-01

    The administration of perioperative doxorubicin HCl (Adriamycin) had profound effects on wound healing for 5 out of 7 breast cancer patients and 5 of 5 melanoma patients following intravenous and intra-arterial infusional chemotherapy, respectively. The clinical observation of significant reduction in wound tear strength (WTS) and wound tear energy ( WTE ) in the group of patients with cutaneous melanoma initiated this experimental analysis. A study of WTS ( kNm -2) in nontumor-bearing (non-TB) and Morris Hepatoma (MH)-7777 (TB) rats treated with therapeutic doses of Adriamycin (ADR) and methotrexate (MTX) was compared with saline-treated controls. Mean tumor volume (cm3) was unaffected by MTX, while significant tumor inhibition (p less than 0.01) was evident for ADR-treated TB animals. A correlation (r = 0.516, p less than 0.01) was observed for tumor volume and WTS. Separate analysis of TB and non-TB animals identified a significant correlation (r = 0.6259, p less than 0.01) between advancing cachexia in TB rats and WTS. A 21-day analysis was done for 160 animals to determine the effect of MTX and ADR on WTS ( kNm -2) and WTE ( Ncm -1). The presence of MH-7777 significantly (p less than 0.01) reduced WTE for TB animals not treated with chemotherapy. TB animals treated with ADR had significant (p less than 0.01) improvement in WTE at day 21 compared with TB controls. This enhancement in WTE was not observed in rats treated with MTX. These clinical and experimental observations suggest significant retardation of the early phases of wound fibroplasia as determined by WTS and WTE following operative trauma and subsequent administration of therapeutic dosages of cytotoxic agents. PMID:6732317

  14. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models

    PubMed Central

    PERERA, YASSER; TORO, NEYLEN DEL; GOROVAYA, LARISA; FERNANDEZ-DE-COSSIO, JORGE; FARINA, HERNAN G.; PEREA, SILVIO E.

    2014-01-01

    CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives. PMID:25279177

  15. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models.

    PubMed

    Perera, Yasser; Toro, Neylen Del; Gorovaya, Larisa; Fernandez-DE-Cossio, Jorge; Farina, Hernan G; Perea, Silvio E

    2014-11-01

    CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives. PMID:25279177

  16. The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines.

    PubMed

    Motevalli, Azadeh; Yasaei, Hemad; Virmouni, Sara Anjomani; Slijepcevic, Predrag; Roberts, Terry

    2014-06-01

    Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively as Shelterin. These telosomal proteins protect the ends of chromosomes against end-to-end fusion and degradation. Short telomeres in breast cancer cells confer telomere dysfunction and this can be related to Shelterin proteins and their level of expression in breast cancer cell lines. This study investigates whether expression of Shelterin and Shelterin-associated proteins are altered, and influence the protection and maintenance of telomeres, in breast cancer cells. 5-aza-2'-deoxycytidine (5-aza-CdR) and trichostatin A (TSA) were used in an attempt to reactivate the expression of silenced genes. Our studies have shown that Shelterin and Shelterin-associated genes were down-regulated in breast cancer cell lines; this may be due to epigenetic modification of DNA as the promoter region of POT1 was found to be partially methylated. Shelterin genes expression was up-regulated upon treatment of 21NT breast cancer cells with 5-aza-CdR and TSA. The telomere length of treated 21NT cells was measured by q-PCR showed an increase in telomere length at different time points. Our studies have shown that down-regulation of Shelterin genes is partially due to methylation in some epithelial breast cancer cell lines. Removal of epigenetic silencing results in up-regulation of Shelterin and Shelterin-associated genes which can then lead to telomere length elongation and stability. PMID:24807106

  17. Light-Induced Toxic Effects of Tamoxifen: A Chemotherapeutic and Chemopreventive Agent

    PubMed Central

    Wang, Lei; Wang, Shuguang; Yin, Jun-Jie; Fu, Peter P.; Yu, Hongtao

    2009-01-01

    Tamoxifen is a powerful drug used to treat breast cancer patients, and more than 500,000 women in the U. S. are being treated with this drug. In our study, tamoxifen is found to be photomutagenic in Salmonella typhimurium TA102 at concentrations as low as 0.08 μM and reaches maximum photomutagenicity at 0.4 μM under a light dose equivalent to 20 min sunlight. These concentrations are comparable to the plasma tamoxifen concentration of 0.4 to 3 μM for patients undergoing tamoxifen therapy. The toxicity seems to be the result of DNA damage and/or lipid peroxidation caused by light irradiation of tamoxifen. The DNA damage caused by irradiation of ΦX174 DNA in the presence of tamoxifen appears to be formation of DNA-tamoxifen covalent adducts, not single strand/double strand cleavages, and there is no oxygen involvement. This is confirmed by EPR experiments that carbon-centerd radicals are formed by light irradiation of tamoxifen and there is no singlet oxygen formation. Although superoxide radical is formed, it is not involved in DNA damage. PMID:20046228

  18. Efficacy of combined photothermal therapy and chemotherapeutic drugs

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Shih, En-Chung; Hirschberg, Henry

    2015-03-01

    Hyperthermia has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of a number of commonly used chemotherapeutic drugs (bleomycin, doxorubicin and cisplatin) with photothermal therapy (PTT)-induced hyperthermia in an in vitro system consisting of human head and neck squamous carcinoma cells and murine lymphocytic monocytes which were used as delivery vehicles for gold-silica nanoshells (AuNS). PTT was accomplished via near infra-red (NIR) irradiation of AuNS. The results showed that PTT combined with cisplatin resulted in only a mild degree of synergism while additive effects were observed for concurrent treatments of PTT and doxorubicin and PTT and bleomycin.

  19. Effects of Early Chemotherapeutic Treatment on Learning in Adolescent Mice: Implications for Cognitive Impairment and Remediation in Childhood Cancer Survivors

    PubMed Central

    Bisen-Hersh, Emily B.; Hineline, Philip N.; Walker, Ellen A.

    2013-01-01

    Purpose Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Experimental Design Pre-weanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days following treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Results Significant impairment in acquisition and retention over both short (1h) and long (24h) intervals, as measured by autoshaping and novel object recognition tasks, were found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Conclusions Findings are consistent with clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy treatment. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. PMID:23596103

  20. Effectiveness and immunomodulation of chemotherapeutants against scuticociliate Philasterides dicentrarchi in olive flounder.

    PubMed

    Harikrishnan, Ramasamy; Jin, Chang-Nam; Kim, Man-Chul; Kim, Ju-Sang; Balasundaram, Chellam; Heo, Moon-Soo

    2010-03-01

    Philasterides dicentrarchi is a histophagous scuticociliate causes fatal scuticociliatosis in farmed olive flounder Paralichthys olivaceus. The average monthly prevalence of scuticociliatosis due to P. dicentrarchi infections was increased from May to July (40+/-3.1% to 79.4+/-1.7%) and it decreased from August to November (63+/-2.3% to 30+/-2.6%) in olive flounder farms at Jeju Island, South Korea during 2000-2006. The prevalence of mixed infection along with Vibrio spp. bacterial infection was 49+/-7.2% than that of other mixed infection. At present no effective control measure for P. dicentrarchi infection has been described and large production losses continue. In the present study, formalin, hydrogen peroxide and Jenoclean chemotheraputants were used for bath treatment. Among Jenoclean at a low concentration of 50ppm proved effective. The results were confirmed with in vitro motility assessments and morphological changes scoring system in P. dicentrarchi. On the other hand, similar trend was noted following hydrogen peroxide treatment at this concentration, but formalin was only moderately effective. Either hydrogen peroxide or Jenoclean are the promising compounds effective at low concentrations with short application time for P. dicentrarchi. Therefore, these substances were evaluated on day 10, 20 and 30 for their ability to enhance innate immune response and disease resistance against P. dicentrarchi in olive flounder after chemotheraputants bath treatment with 100ppm for 30min per day. All the tested immune parameters were enhanced by treatment with Jenoclean, but not formalin and hydrogen peroxide. These findings suggest that Jenoclean bath treatment can be used for ensuring the heath of cultured marine fish against internal parasites such as P. dicentrarchi.

  1. Chemotherapeutic (cyclophosphamide) effects on rat breast tumor hemodynamics monitored by multi-channel NIRS

    NASA Astrophysics Data System (ADS)

    Kim, Jae G.; Zhao, Dawen; Mason, Ralph P.; Liu, Hanli

    2005-04-01

    We previously suggested that the two time constants quantified from the increase of tumor oxyhemoglobin concentration, ▵ [HbO2], during hyperoxic gas intervention are associated with two blood flow/perfusion rates in well perfused and poorly perfused regions of tumors. In this study, our hypothesis is that when cancer therapy is applied to a tumor, changes in blood perfusion will occur and be detected by the NIRS. For experiments, systemic chemotherapy, cyclophosphamide (CTX), was applied to two groups of rats bearing syngeneic 13762NF mammary adenocarcinomas: one group received a single high dose i. p. (200 mg/kg CTX) and the other group continuous low doses (20 mg/kg CTX i. p. for 10 days). Time courses of changes in tumor ▵ [HbO2] were measured at four different locations on the breast tumors non-invasively with an inhaled gas sequence of air-oxygen-air before and after CTX administration. Both rat body weight and tumor volume decreased after administration of high dose CTX, but continuous low doses showed decrease of tumor volume only. Baselines (without any therapy) intra- and inter-tumor heterogeneity of vascular oxygenation during oxygen inhalation were similar to our previous observations. After CTX treatment, significant changes in vascular hemodynamic response to oxygen inhalation were observed from both groups. By fitting the increase of ▵ [HbO2] during oxygen inhalation, we have obtained changes of vascular structure ratio and also of perfusion rate ratio before and after chemotherapy. The preliminary results suggest that cyclophosphamide has greatest effect on the well perfused tumor vasculature. Overall, our study supports our earlier hypothesis, proving that the effects of chemotherapy in tumor may be monitored non-invasively by using NIRS to detect changes of hemodynamics induced with respiratory challenges.

  2. The anti-Fn14 antibody BIIB036 inhibits tumor growth in xenografts and patient derived primary tumor models and enhances efficacy of chemotherapeutic agents in multiple xenograft models.

    PubMed

    Michaelson, Jennifer S; Kelly, Rebecca; Yang, Lu; Zhang, Xiamei; Wortham, Kathleen; Joseph, Ingrid B J K

    2012-07-01

    Agonistic antibodies targeting Fn14, the receptor for TWEAK, have demonstrated anti-tumor activity in xenograft models. Herein, we further explore the therapeutic potential of the humanized anti-Fn14 agonistic antibody, BIIB036, as a single agent and in combination with standard of care cancer therapeutics. Pharmacokinetic studies of BIIB036 in tumor-bearing mice revealed a half-life of approximately three days suggesting twice a week dosing would be necessary to maintain efficacy. However, in multiple xenograft models, BIIB036 treatment resulted in extended tumor growth inhibition up to 40-50 d following cessation of dosing, suggesting that frequent administration of BIIB036 may not be necessary to maintain prolonged anti-tumor activity. Subsequent xenograft studies revealed that maximal efficacy was achieved with BIIB036 dosing once every two weeks, by either intraperitoneal or subcutaneous administration. Xenograft tumors that were initially treated with BIBI036 and then re-grew up to 1000 mm³ following cessation of the first cycle of treatment remained sensitive to a second cycle of treatment. BIIB036 was also evaluated in patient derived primary colon tumor models, where efficacy compared favorably with a standard of care agent. Lastly, BIIB036 enhanced the efficacy of several standard of care chemotherapeutics, including paclitaxel in MDA-MBA-231 breast tumor xenografts, paclitaxel or carboplatin in HOP62 non-small cell lung xenografts, and 5-FU in NCI-N87 gastric xenografts, with no overlapping toxicities. These studies thus establish BIIB036 as a promising therapeutic agent with durable anti-tumor activity in human xenografts as well as patient derived primary tumor models, and enhanced activity and tolerability in combination with standard of care chemotherapeutics. Taken together, the data presented herein suggest that BIIB036 warrants evaluation in the clinic.

  3. Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells.

    PubMed

    Zhang, Zhongyuan; Teruya, Kiichiro; Yoshida, Toshihiro; Eto, Hiroshi; Shirahata, Sanetaka

    2013-01-09

    Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE) from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as cell cycle modifications in MDA-MB-231 and MCF-7 cells. FE enhanced apoptosis in cancer cells that responded to treatment with three chemotherapeutic drugs with downregulation of the anti-apoptotic proteins Bcl-xL and Mcl-1. The combination treatments led to an obvious decrease in the phosphorylation of ERK and Akt in MDA-MB-231 cells, but increased the phosphorylation of ERK in MCF-7 cells. In addition, we observed that combination treatments enhanced intracellular ROS levels and reduced glutathione (GSH) levels in breast cancer cells, suggesting that induction of oxidative stress was an important event in the cell death induced by the combination treatments.

  4. A dual-responsive superparamagnetic Fe 3O 4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM-19

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Sun, Guoying; Li, Qiuyu; Wang, Enbo; Gu, Jianmin

    2010-10-01

    A bicontrollable drug release system was developed by layer-by-layer assembly of poly(allylamine hydrochloride) (PAH)/sodium poly(styrene sulfonate) (PSS) multilayers onto a Fe 3O 4/SiO 2 composite core. The saturated magnetization of this system reaches up to 38.6 emu/g at RT, making targeting easily controlled by an external magnetic field. Meanwhile, the packing of the polyelectrolyte multilayers is sensitive to pH values, generating a pH-switch on-off mode for the release of loaded drugs. In this specific case, the release of a chemotherapeutic polyoxometalate K 7Ti 2W 10PO 40·6H 2O (PM-19) was tested. Transmission electron microscopy (TEM) was used to examine the nanostructure of the composite drug release system. UV-vis absorption was used to monitor the drug release. Fourier transform infrared (FTIR), Powder X-ray diffraction, and Elemental analyses were used to study the composition of tested systems. The structure and composition of the composite system was also studied using magnetism measurement and nitrogen adsorption-desorption.

  5. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells

    PubMed Central

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David Lawson

    2016-01-01

    Intraperitoneal chemotherapy together with cytoreductive surgery is the standard of care for a number of peritoneal surface malignancies. However, this approach fails to maintain the complete response and disease recurs due to microscopic residual disease. Although safer than systemic chemotherapy regimens, locoregional treatment with chemotherapeutics can induce toxicity which is a major concern affecting the patient’s treatment protocol and outcome. For an enhanced treatment efficacy, efforts should be made to maximize cytotoxic effects of chemotherapeutic agents on tumor cells while minimizing their toxic effects on host cells. Bromelain and N-acetylcysteine are two natural agents with good safety profiles shown to have anti-cancer effects. However, their interaction with chemotherapeutics is unknown. In this study, we investigated if these agents have the potential to sensitize in vitro gastrointestinal cancer models to cisplatin, paclitaxel, 5-fluorouracil, and vincristine. The drug-drug interaction was also analyzed. Our findings suggest that combination of bromelain and N-acetylcysteine with chemotherapeutic agents could give rise to an improved chemotherapeutic index in therapeutic approaches to peritoneal surface malignancies of gastrointestinal origin so that maximum benefits could result from less toxic and more patient-friendly doses. This represents a potentially efficacious strategy for the enhancement of microscopic cytoreduction and is a promising area for future research. PMID:27186409

  6. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells.

    PubMed

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David Lawson

    2016-01-01

    Intraperitoneal chemotherapy together with cytoreductive surgery is the standard of care for a number of peritoneal surface malignancies. However, this approach fails to maintain the complete response and disease recurs due to microscopic residual disease. Although safer than systemic chemotherapy regimens, locoregional treatment with chemotherapeutics can induce toxicity which is a major concern affecting the patient's treatment protocol and outcome. For an enhanced treatment efficacy, efforts should be made to maximize cytotoxic effects of chemotherapeutic agents on tumor cells while minimizing their toxic effects on host cells. Bromelain and N-acetylcysteine are two natural agents with good safety profiles shown to have anti-cancer effects. However, their interaction with chemotherapeutics is unknown. In this study, we investigated if these agents have the potential to sensitize in vitro gastrointestinal cancer models to cisplatin, paclitaxel, 5-fluorouracil, and vincristine. The drug-drug interaction was also analyzed. Our findings suggest that combination of bromelain and N-acetylcysteine with chemotherapeutic agents could give rise to an improved chemotherapeutic index in therapeutic approaches to peritoneal surface malignancies of gastrointestinal origin so that maximum benefits could result from less toxic and more patient-friendly doses. This represents a potentially efficacious strategy for the enhancement of microscopic cytoreduction and is a promising area for future research.

  7. Efficacy of Combination Chemotherapy Using a Novel Oral Chemotherapeutic Agent, TAS-102, with Oxaliplatin on Human Colorectal and Gastric Cancer Xenografts.

    PubMed

    Nukatsuka, Mamoru; Nakagawa, Fumio; Takechi, Teiji

    2015-09-01

    TAS-102 is a novel oral nucleoside antitumor agent consisting of trifluridine (FTD) and the thymidine phosphorylase inhibitor tipiracil hydrochloride (at a molar ratio of 1:0.5) that was approved in Japan in 2014 for the treatment of unresectable advanced or recurrent colorectal cancer. In the present study, the enhancement of therapeutic efficacy using a combination of TAS-102 and oxaliplatin was evaluated in a xenograft-bearing nude mouse model of colorectal and gastric cancer. TAS-102 was orally administered twice-a-day from day 1 to 14, and oxaliplatin was administered intravenously on days 1 and 8. The in vivo growth-inhibitory activity was evaluated based on the tumor volume and the growth-delay period, was estimated based on the period required to reach a tumor volume five-times greater than the initial volume (RTV5). The tumor growth-inhibitory activity and RTV5 in mice administered TAS-102 with oxaliplatin were significantly superior to those associated with either monotherapy in mice with colorectal (HCT 116, SW-48; p<0.001) and gastric cancer (SC-2, MKN74; p<0.001). MKN74/5FU, a 5-fluorouracil-resistant MKN74 sub-line, was sensitive to both FTD and oxaliplatin in vitro. In vivo, TAS-102 alone was effective in MKN74/5FU, and its anti-tumor activity was significantly enhanced in combination with oxaliplatin (p<0.001). No significant decrease in body weight or toxicity was observed compared to either monotherapy. The present pre-clinical findings indicate that combination of TAS-102 and oxaliplatin is a promising treatment option for colorectal or gastric cancer, and can be utilized in both chemo-naïve tumors and recurrent tumors after 5-fluorouracil treatment.

  8. Double-Walled Microparticles-Embedded Self-Cross-Linked, Injectable, and Antibacterial Hydrogel for Controlled and Sustained Release of Chemotherapeutic Agents.

    PubMed

    Davoodi, Pooya; Ng, Wei Cheng; Yan, Wei Cheng; Srinivasan, Madapusi P; Wang, Chi-Hwa

    2016-09-01

    First-line cancer chemotherapy has been prescribed for patients suffered from cancers for many years. However, conventional chemotherapy provides a high parenteral dosage of anticancer drugs over a short period, which may cause serious toxicities and detrimental side effects in healthy tissues. This study aims to develop a new drug delivery system (DDS) composed of double-walled microparticles and an injectable hydrogel for localized dual-agent drug delivery to tumors. The uniform double-walled microparticles loaded with cisplatin (Cis-DDP) and paclitaxel (PTX) were fabricated via coaxial electrohydrodynamic atomization (CEHDA) technique and subsequently were embedded into injectable alginate-branched polyethylenimine. The findings show the uniqueness of CEHDA technique for simply swapping the place of drugs to achieve a parallel or a sequential release profile. This study also presents the simulation of CEHDA technique using computational fluid dynamics (CFD) that will help in the optimization of CEHDA's operating conditions prior to large-scale production of microparticles. The new synthetic hydrogel provides an additional diffusion barrier against Cis-DDP and confines premature release of drugs. In addition, the hydrogel can provide a versatile tool for retaining particles in the tumor resected cavity during the injection after debulking surgery and preventing surgical site infection due to its inherent antibacterial properties. Three-dimensional MDA-MB-231 (breast cancer) spheroid studies demonstrate a superior efficacy and a greater reduction in spheroid growth for drugs released from the proposed composite formulation over a prolonged period, as compared with free drug treatment. Overall, the new core-shell microparticles embedded into injectable hydrogel can serve as a flexible controlled release platform for modulating the release profiles of anticancer drugs and subsequently providing a superior anticancer response. PMID:27530316

  9. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    PubMed

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell

  10. Orthomolecular oncology: a mechanistic view of intravenous ascorbate's chemotherapeutic activity.

    PubMed

    González, Michael J; Miranda-Massari, Jorge R; Mora, Edna M; Jiménez, Ivonne Z; Matos, María Isabel; Riordan, Hugh D; Casciari, Joseph J; Riordan, Neil H; Rodríguez, Marielys; Guzmán, Angelik

    2002-03-01

    The effect of vitamin C in cancer has been a subject of great controversy; mainly because of the inconsistent results obtained by oral intakes of ascorbate when used as an anticancer agent. We believe the intravenous application of ascorbate will provide more consistent results in cancer patients since Vitamin C blood levels attained are substantially higher in a range proven cytotoxic to malignant cells. In this article we will present and discuss our proposed mechanism on the chemotherapeutic activity exhibited by ascorbate. PMID:12013679

  11. The chemotherapeutic effect of essential oil of Plectranthus amboinicus (Lour) on lung metastasis developed by B16F-10 cell line in C57BL/6 mice.

    PubMed

    Manjamalai, A; Grace, V M Berlin

    2013-01-01

    Current investigation is to evaluate the anticancer activity of the essential oil of Plectranthus amboinicus (Lour) on B16F-10 melanoma cell line injected C57BL/6 mice, and it was simultaneously treated with the essential oil of P. amboinicus (Lour) (50 μg/dose) via i.p. for 21 days. The present investigation exhibited the potent chemotherapeutic/chemopreventive effect of the essential oil of P. amboinicus (Lour) over lung metastasis that developed. To our knowledge, this is the first report in evaluating the effect of essential oil of P. amboinicus (Lour) using lung cancer model. PMID:23249189

  12. Effects of Chemotherapy on the Brain in Women With Newly Diagnosed Early-Stage Breast Cancer

    ClinicalTrials.gov

    2016-05-12

    Breast Cancer; Chemotherapeutic Agent Toxicity; Cognitive/Functional Effects; Fatigue; Long-term Effects Secondary to Cancer Therapy in Adults; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment

  13. Prevalence and safety of off-label use of chemotherapeutic agents in older breast cancer patients: estimates from SEER-Medicare data

    PubMed Central

    Eaton, Anne A.; Sima, Camelia S.; Panageas, Katherine S.

    2016-01-01

    Background The practice of prescribing oncology drugs outside of the label indication is legal and may reflect standard practice. However, some off-label use is against practice guidelines and may be inappropriate. We aimed to measure the prevalence and safety of off-label use in accordance with NCCN guidelines and off-label use inconsistent with guidelines in older breast cancer patients. Patients and Methods The SEER-Medicare dataset was used to identify women diagnosed with a first primary breast cancer between 2000-2007. Intravenous chemotherapy agents were identified using Medicare claims and classified as on-label, off-label/NCCN supported or off-label/unsupported using contemporary FDA approvals and NCCN guidelines. Off-label/unsupported regimens were matched to off-label/supported and on-label regimens using 1:1:1 matching on patient factors, and hospitalization/ER admission rates were compared across indication categories using conditional logistic regression. Results 13,347 women were treated with 16,127 regimens (12% of women switched to a new regimen during followup). Sixty-four percent (10,391) of regimens were off-label/supported, 25% (3,987) were on-label and 11% (1,749) were off-label/unsupported. Drugs never supported for breast cancer accounted for 19% of off-label/unsupported use and 1% of total use. Hospitalization/ER admission occurred in 32% of off-label/unsupported regimens, compared to 27% of off-label/supported and 25% of on-label regimens (p<.0001). Conclusions Off-label use of chemotherapy without scientific support was not common in this cohort. Off-label/supported use accounted for 64% of use, reflecting the fact that widely-accepted indications are often not tested in registration trials. Off-label/supported use will likely increase as more drugs are expected to have activity across cancer sites, and understanding the safety implications of such use is critical. PMID:26733555

  14. Spectroscopic detection of chemotherapeutics and antioxidants

    NASA Astrophysics Data System (ADS)

    Latka, Ines; Grüner, Roman; Matthäus, Christian; Dietzek, Benjamin; Werncke, W.; Lademann, Jürgen; Popp, Jürgen

    2012-06-01

    The hand-foot-syndrome presents a severe dermal side-effect of chemotherapeutic cancer treatment. The cause of this side-effect is the elimination of systemically administered chemotherapeutics with the sweat. Transported to the skin surface, the drugs subsequently penetrate into the skin in the manner of topically applied substances. Upon accumulation of the chemotherapeutics in the skin the drugs destroy cells and tissue - in the same way as they are supposed to act in cancer cells. Aiming at the development of strategies to illuminate the molecular mechanism underlying the handfoot- syndrome (and, in a second step, strategies to prevent this severe side-effect), it might be important to evaluate the concentration and distribution of chemotherapeutics and antioxidants in the human skin. The latter can be estimated by the carotenoid concentration, as carotenoids serve as marker substances for the dermal antioxidative status.Following the objectives outlined above, this contribution presents a spectroscopic study aiming at the detection and quantification of carotenoids and selected chemotherapeutics in human skin. To this end, spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS) microspectroscopy are combined with two-photon excited fluorescence. While the latter technique is Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to your MySPIE To Do List at http://myspie.org and approve or disapprove this submission. Your manuscript will not be published without this approval.restricted to the detection of fluorescent chemotherapeutics, e.g., doxorubicin, the vibrational spectroscopic techniques can - in principle - be applied to any type of analyte molecules. Furthermore, we will present the

  15. Human toxoplasmosis-Searching for novel chemotherapeutics.

    PubMed

    Antczak, Magdalena; Dzitko, Katarzyna; Długońska, Henryka

    2016-08-01

    The protozoan Toxoplasma gondii, an obligate intracellular parasite, is an etiological agent of human and animal toxoplasmosis. Treatment regimens for T. gondii-infected patients have not essentially changed for years. The most common chemotherapeutics used in the therapy of symptomatic toxoplasmosis are a combination of pyrimethamine and sulfadiazine plus folinic acid or a combination of pyrimethamine with lincosamide or macrolide antibiotics. To protect a fetus from parasite transplacental transmission, therapy of pregnant women is usually based on spiramycin, which is quite safe for the organism, but not efficient in the treatment of infected children. Application of recommended drugs limits replication of T. gondii, however, it may be associated with numerous an severe adverse effects. Moreover, medicines have no impact on the tissue cysts of the parasite located predominantly in a brain and muscles. Thus, there is urgent need to develop new drugs and establish "gold standard" treatment. In this review classical treatment of toxoplasmosis as well as potential compounds active against T. gondii have been discussed. For two last decades studies on the development of new anti-T. gondii medications have been focused on both natural and novel synthetic compounds based on existing chemical scaffolds. They have revealed several promising drug candidates characterized by a high selectivity, the low IC50 (the half maximal inhibitory concentration) and low cytotoxicity towards host cells. These drugs are expected to replace or supplement current anti-T. gondii drug arsenal soon. PMID:27470411

  16. (Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

    SciTech Connect

    Srivastava, P.C.

    1991-01-14

    The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.

  17. Carbon nanofibers and carbon nanotubes sensitize prostate and bladder cancer cells to platinum-based chemotherapeutics.

    PubMed

    Ringel, Jessica; Erdmann, Kati; Hampel, Silke; Kraemer, Kai; Maier, Diana; Arlt, Marcus; Kunze, Doreen; Wirth, Manfred P; Fuessel, Susanne

    2014-03-01

    Recent data suggest that carbon nanomaterials can act as antitumor agents themselves by increasing the efficiency of cytotoxic agents when applied in combination. Here, carbon nanofibers (CNFs) and multi-walled carbon nanotubes (CNTs) were investigated regarding their impact on cellular function, cellular uptake and ability to sensitize cancer cells of urological origin to the conventional chemotherapeutics cisplatin and carboplatin. CNFs and CNTs (1-200 microg/ml) showed a low to moderate impairment of cellular function with CNFs being more deleterious than CNTs. Inhibition of cellular viability by the nanomaterials was about 20% at most. In combinatory treatments, CNFs and CNTs markedly enhanced the effects of cisplatin and carboplatin on cellular viability by 1.2- to 2.8-fold in prostate, bladder and cisplatin-resistant prostate cancer cells in comparison to the individual effects of the chemotherapeutics. Particularly the cell viability-diminishing effect of CNFs alone and in combination with the chemotherapeutics was more pronounced with dispersions prepared with human serum albumin than with phospholipid-polyethylene glycol. Albumin might mediate the cellular uptake of carbon nanomaterials which was underlined by the co-localization of albumin and carbon nanomaterials along the cellular surface as evidenced by fluorescence microscopy. Transmission electron microscopy revealed that both carbon nanomaterials were internalized by cancer cells, thereby possibly leading to an enhanced accumulation of the chemotherapeutic drugs. In fact, CNFs enhanced the cellular accumulation of carboplatin by 28% as compared to the single treatment with carboplatin. In conclusion, carbon nanomaterial-based applications could present a new strategy to overcome chemoresistance by sensitizing cancer cells to conventional chemotherapeutics.

  18. The effect of chemotherapy on programmed cell death 1/programmed cell death 1 ligand axis: some chemotherapeutical drugs may finally work through immune response

    PubMed Central

    Luo, Min; Fu, Liwu

    2016-01-01

    Most tumors are immunogenic which would trigger some immune response. Chemotherapy also has immune potentiating mechanisms of action. But it is unknown whether the immune response is associated with the efficacy of chemotherapy and the development of chemoresistance. Recently, there is a growing interest in immunotherapy, among which the co-inhibitory molecules, programmed cell death 1/programmed cell death 1 ligand (PD-1/PD-L1) leads to immune evasion. Since some reports showed that conventional chemotherapeutics can induce the expression of PD-L1, we try to summarize the effect of chemotherapy on PD-1/PD-L1 axis and some potential molecules relevant to PD-1/PD-L1 in chemoresistance in this review. PMID:26919108

  19. Contrast agents for cardiac angiography: effects of a nonionic agent vs. a standard ionic agent

    SciTech Connect

    Bettmann, M.A.; Bourdillon, P.D.; Barry, W.H.; Brush, K.A.; Levin, D.C.

    1984-12-01

    The effects on cardiac hemodynamics and of a standard contrast agent, sodium methylglucamine diatrizoate (Renografin 76) were compared with the effects of a new nonionic agent (iohexol) in a double-blind study in 51 patietns undergoing coronary angiography and left ventriculography. No significant alteration in measured blood parameters occurred with either contrast agent. Hemodynamic changes occurred with both, but were significantly greater with the standard renografin than with the low-osmolality, nonionic iohexol. After left ventriculography, heart rate increased and peripheral arterial pressure fell with both agents, but less with iohexol. It is concluded that iohexol causes less alteration in cardiac function than does the agent currently most widely used. Nonionic contrast material is likely to improve the safety of coronary angiography, particularly in those patients at greatest risk.

  20. Dual-Blocking of PI3K and mTOR Improves Chemotherapeutic Effects on SW620 Human Colorectal Cancer Stem Cells by Inducing Differentiation

    PubMed Central

    Kim, Buyun

    2016-01-01

    Cancer stem cells (CSCs) have tumor initiation, self-renewal, metastasis and chemo-resistance properties in various tumors including colorectal cancer. Targeting of CSCs may be essential to prevent relapse of tumors after chemotherapy. Phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signals are central regulators of cell growth, proliferation, differentiation, and apoptosis. These pathways are related to colorectal tumorigenesis. This study focused on PI3K and mTOR pathways by inhibition which initiate differentiation of SW620 derived CSCs and investigated its effect on tumor progression. By using rapamycin, LY294002, and NVP-BEZ235, respectively, PI3K and mTOR signals were blocked independently or dually in colorectal CSCs. Colorectal CSCs gained their differentiation property and lost their stemness properties most significantly in dual-blocked CSCs. After treated with anti-cancer drug (paclitaxel) on the differentiated CSCs cell viability, self-renewal ability and differentiation status were analyzed. As a result dual-blocking group has most enhanced sensitivity for anti-cancer drug. Xenograft tumorigenesis assay by using immunodeficiency mice also shows that dual-inhibited group more effectively increased drug sensitivity and suppressed tumor growth compared to single-inhibited groups. Therefore it could have potent anti-cancer effects that dual-blocking of PI3K and mTOR induces differentiation and improves chemotherapeutic effects on SW620 human colorectal CSCs. PMID:26955235

  1. Does an Agent Matter? The Effects of Animated Pedagogical Agents on Multimedia Environments.

    ERIC Educational Resources Information Center

    Craig, Scotty D.; Gholson, Barry

    Data are presented on the effects of Animated Agents on multimedia learning environments with specific concerns of split attention and modality effects. The study was a 3 (agent properties: agent only, agent with gestures, no agent) x 3 (picture features: static picture, sudden onset, animation) factorial design with outcome measures of mental…

  2. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    PubMed

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory. PMID:27385173

  3. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    PubMed

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory.

  4. Based on Nucleotides Analysis of Tumor Cell Lines to Construct and Validate a Prediction Model of Mechanisms of Chemotherapeutics.

    PubMed

    Liu, Cuichai; Wang, Fang; Liu, Xi; Liu, Min; Liu, Zheng; Sun, Lixin

    2016-01-01

    Cancer is one of the diseases that seriously threaten to human life worldwide. Up to now, chemotherapy remains to be a critical means of cancer treatment, thus the development of chemotherapeutical drugs has become a top priority. An ion pair high performance liquid chromatography (ion pair RP-HPLC) was established for analyzing intracellular nucleotides of tumor cell lines. In this article, a partial least-squares discriminant analysis (PLS-DA) prediction model of mechanisms of chemotherapeutics was established based on four types of drugs with different mechanisms, including antimetabolic agents, antineoplastic agents that affect protein synthesis, agents directly acting on DNA, and RNA interference agents. Then four anti-tumor agents commonly used in clinical were used to validate the availability of the prediction model. Three natural compounds, including 16- dehydropregnenolone (16-DHP), apigenin (API) and diosgenin (DIO), were reported to display anti-tumor effect with unclear mechanisms. The three components were applied to this prediction model firstly. In conclusion, the recognition model was proved to be accurate and feasible to some degree and might become a promising auxiliary method in the process of chemotherapeutic drugs development. PMID:26234361

  5. Effect of Chemotherapeutic Drugs on Caspase-3 Activity, as a Key Biomarker for Apoptosis in Ovarian Tumor Cell Cultured as Monolayer. A Pilot Study

    PubMed Central

    Gregoraszczuk, Ewa L; Rak-Mardyła, Agnieszka; Ryś, Janusz; Jakubowicz, Jerzy; Urbański, Krzysztof

    2015-01-01

    We aimed to develop a cost-effective and robust method to predict drug resistance in individual patients. Representative tissue fragments were obtained from tumors removed from female patients, aged 24-74 years old. The tumor tissue was taken by a histopathology’s or a surgeon under sterile conditions. Cells obtained by enzymatic dissociation from tumor after surgery, were cultured as a monolayer for 6 days. Paclitaxel, doxorubicin, carboplatin and endoxan alone or in combination were added at the beginning of culture and after 6 days, Alamar blue test was used for showing action on cell proliferation why caspase- 3 activity assays for verifying action on apoptosis. Inhibitory action on cell proliferation was noted in 2 of 12 patients tumor treated with both single and combined drugs. Using caspase-3 assay we showed that 50% of tumor cells was resistant to single chemotherapeutic drugs and 40% for combined. In 2 of 12 tumors, which did not reacted on single drugs, positive synergistic action on cell proliferation was observed in combination of D + E and C + E. This pilot study suggests: 1) monolayer culture of tumor cells, derived from individual patients, before chemotherapy could provide a suitable model for studying resistance for drugs; 2) caspase-3 activity is cheap and useful methods; 3) Alamar blue test should be taken into consideration for measuring cell proliferation. PMID:26664382

  6. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models

    PubMed Central

    Kim, Seung-Hee; Kim, Cho-Won; Jeon, So-Ye; Go, Ryeo-Eun

    2014-01-01

    Genistein is one of isoflavones mostly derived in a leguminous plant. It is well known as one of phytoestrogens that have structures similar to the principal mammalian estrogen. It has diverse biological functions including chemopreventive properties against cancers. Anticancer efficacies of genistein have been related with the epidemiological observations indicating that the incidence of some cancers is much lower in Asia, where diets are rich in soyfoods, than Western countries. This review deals with in vivo anticancer activities of genistein identified in animal studies being divided into its effects on carcinogenesis and cancer progression. Because animal studies have advantages in designing the experiments to suit the goals, they imply diverse information on the anticancer activity of genistein. The in vivo animal studies have adopted the specific animal models according to a developmental stage of cancer to prove the anticancer efficacies of genistein against diverse types of cancer. The numerous previous studies insist that genistein effectively inhibits carcinogenesis in the DMBA-induced animal cancer models by reducing the incidence of adenocarcinoma and cancer progression in the transgenic and xenograft animal models by suppressing the tumor growth and metastatic transition. Although the protective effect of genistein against cancer has been controversial, genistein may be a candidate for chemoprevention of carcinogenesis and cancer progression and may deserve to be the central compound supporting the epidemiological evidence. PMID:25628724

  7. ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy

    NASA Astrophysics Data System (ADS)

    Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao

    2014-08-01

    Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced

  8. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition.

    PubMed

    French, Michael D; Churcher, Thomas S; Basáñez, María-Gloria; Norton, Alice J; Lwambo, Nicholas J S; Webster, Joanne P

    2013-11-01

    Detecting potential changes in genetic diversity in schistosome populations following chemotherapy with praziquantel (PZQ) is crucial if we are to fully understand the impact of such chemotherapy with respect to the potential emergence of resistance and/or other evolutionary outcomes of interventions. Doing so by implementing effective, and cost-efficient sampling protocols will help to optimise time and financial resources, particularly relevant to a disease such as schistosomiasis currently reliant on a single available drug. Here we explore the effect on measures of parasite genetic diversity of applying various field sampling approaches, both in terms of the number of (human) hosts sampled and the number of transmission stages (miracidia) sampled per host for a Schistosoma mansoni population in Tanzania pre- and post-treatment with PZQ. In addition, we explore population structuring within and between hosts by comparing the estimates of genetic diversity obtained assuming a 'component population' approach with those using an 'infrapopulation' approach. We found that increasing the number of hosts sampled, rather than the number of miracidia per host, gives more robust estimates of genetic diversity. We also found statistically significant population structuring (using Wright's F-statistics) and significant differences in the measures of genetic diversity depending on the parasite population definition. The relative advantages, disadvantages and, hence, subsequent reliability of these metrics for parasites with complex life-cycles are discussed, both for the specific epidemiological and ecological scenario under study here and for their future application to other areas and schistosome species.

  9. The influence of active hexose correlated compound (AHCC) on cisplatin-evoked chemotherapeutic and side effects in tumor-bearing mice

    SciTech Connect

    Hirose, Aya; Sato, Eri; Fujii, Hajime; Sun Buxiang; Nishioka, Hiroshi . E-mail: nishioka@aminoup.co.jp; Aruoma, Okezie I. . E-mail: okezie.aruoma@touro.edu

    2007-07-15

    Cisplatin (cis-diaminedichloroplatinum (II) or CDDP) (a widely used platinum-containing anticancer drug) is nephrotoxic and has a low percentage of tolerance in patients during chemotherapy. The active hexose correlated compound (AHCC) is an extract of Basidiomycotina marketed as a supplement for cancer patients due to its nutrients and fibre content and its ability to strengthen and optimize the capacity of the immune system. The possibility that AHCC could reduce the side effects of cisplatin was assessed in the tumor-bearing BALB/cA mice on the basis of the ability to ameliorate the cisplatin-induced body weight loss, anorexia, nephrotoxicity and hematopoietic toxicity. Although cisplatin (8 mg/kg body weight) reduced the size and weight of the solid tumors, supplementation with AHCC significantly enhanced cisplatin-induced antitumor effect in both the size (p < 0.05) and weight (p < 0.05). Food intake in the cisplatin-treated mice were decreased following commencement of treatment and this remained low compared with the cisplatin-untreated group (control) throughout the experiment period. Supplementation with AHCC increased the food intake in the cisplatin-treated mice. The blood urea nitrogen and serum creatinine concentrations, and the ratio of blood urea nitrogen to serum creatinine were significantly increased in the cisplatin alone treated group compared to the control group. Their increased levels were mitigated by supplementation with AHCC (100 mg/kg body weight) in the cisplatin-treated group. AHCC was also able to modulate the suppression of bone marrow due to cisplatin and the improvement was statistically significant. The histopathological examination of the kidney revealed the presence of cisplatin-induced damage and this was modulated by AHCC treatment. The potential for AHCC to ameliorate the cisplatin-evoked toxicity as well as the chemotherapeutic effect could have beneficial economic implications for patients undergoing chemotherapy with

  10. Xenon fluoride solutions effective as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Hyman, H. H.; Quarterman, L. A.; Sheft, I.

    1967-01-01

    Solutions of xenon fluorides in anhydrous hydrogen fluoride have few disruptive effects and leave a residue consisting of gaseous xenon, which can be recovered and refluorinated. This mild agent can be used with materials which normally must be fluorinated with fluorine alone at high temperatures.

  11. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    PubMed

    Hong, Zai-Fa; Zhao, Wen-Xiu; Yin, Zhen-Yu; Xie, Cheng-Rong; Xu, Ya-Ping; Chi, Xiao-Qin; Zhang, Sheng; Wang, Xiao-Min

    2015-01-01

    Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU) was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI) < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.

  12. Vascular Priming Enhances Chemotherapeutic Efficacy against Head and Neck Cancer

    PubMed Central

    Folaron, Margaret; Kalmuk, James; Lockwood, Jaimee; Frangou, Costakis; Vokes, Jordan; Turowski, Steven G.; Merzianu, Mihai; Rigual, Nestor R.; Sullivan-Nasca, Maureen; Kuriakose, Moni A.; Hicks, Wesley L.; Singh, Anurag K.; Seshadri, Mukund

    2013-01-01

    Purpose The need to improve chemotherapeutic efficacy against head and neck squamous cell carcinomas (HNSCC) is well recognized. In this study, we investigated the potential of targeting the established tumor vasculature in combination with chemotherapy in head and neck cancer. Methods Experimental studies were carried out in multiple human HNSCC xenograft models to examine the activity of the vascular disrupting agent (VDA) 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in combination with chemotherapy. Multimodality imaging (magnetic resonance imaging, bioluminescence) in conjunction with drug delivery assessment (fluorescence microscopy), histopathology and microarray analysis was performed to characterize tumor response to therapy. Long-term treatment outcome was assessed using clinically-relevant end points of efficacy. Results Pretreatment of tumors with VDA prior to administration of chemotherapy increased intratumoral drug delivery and treatment efficacy. Enhancement of therapeutic efficacy was dependent on the dose and duration of VDA treatment but was independent of the chemotherapeutic agent evaluated. Combination treatment resulted in increased tumor cell kill and improvement in progression-free survival and overall survival in both ectopic and orthotopic HNSCC models. Conclusion Our results show that preconditioning of the tumor microenvironment with an antivascular agent primes the tumor vasculature and results in enhancement of chemotherapeutic delivery and efficacy in vivo. Further investigation into the activity of antivascular agents in combination with chemotherapy against HNSCC is warranted. PMID:23890930

  13. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    SciTech Connect

    May, Jennifer E. Morse, H. Ruth Xu, Jinsheng Donaldson, Craig

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  14. The Use of Chemotherapeutics for the Treatment of Keloid Scars

    PubMed Central

    Jones, Christopher David; Guiot, Luke; Samy, Mike; Gorman, Mark; Tehrani, Hamid

    2015-01-01

    Keloid scars are pathological scars, which develop as a result of exaggerated dermal tissue proliferation following cutaneous injury and often cause physical, psychological and cosmetic problems. Various theories regarding keloidogenesis exist, however the precise pathophysiological events remain unclear. Many different treatment modalities have been implicated in their management, but currently there is no entirely satisfactory method for treating all keloid lesions. We review a number of different chemotherapeutic agents which have been proposed for the treatment of keloid and hypertrophic scars while giving insight into some of the novel chemotherapeutic drugs which are currently being investigated. Non-randomized trials evaluating the influence of different chemotherapeutic agents, such as 5-fluorouracil (5-FU); mitomycin C; bleomycin and steroid injection, either alone or in combination with other chemotherapeutic agents or alternative treatment modalities, for the treatment of keloids were identified using a predefined PubMed search strategy. Twenty seven papers were identified. Scar improvement ≥50% was found in the majority of cases treated with 5-FU, with similar results found for mitomycin C, bleomycin and steroid injection. Combined intralesional 5-FU and steroid injection produced statistically significant improvements when compared to monotherapy. Monotherapy recurrence rates ranged from 0-47% for 5-FU, 0-15% for bleomycin and 0-50% for steroid injection. However, combined therapy in the form of surgical excision and adjuvant 5-FU or steroid injections demonstrated lower recurrence rates; 19% and 6% respectively. Currently, most of the literature supports the use of combination therapy (usually surgery and adjuvant chemotherapy) as the mainstay treatment of keloids, however further investigation is necessary to determine success rates over longer time frames. Furthermore, there is the potential for novel therapies, but further investigation is

  15. Comparative sporicidal effects of liquid chemical agents.

    PubMed Central

    Sagripanti, J L; Bonifacino, A

    1996-01-01

    We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents. PMID:8593054

  16. The Chemopreventive and Chemotherapeutic Potentials of Tea Polyphenols

    PubMed Central

    Thakur, Vijay S; Gupta, Karishma; Gupta, Sanjay

    2011-01-01

    Tea is the second most consumed beverage in the world reported to have multiple health benefits. Preventive and therapeutic benefits of tea polyphenols include enhanced general well being and anti-neoplastic effects. The pharmacologic action of tea is often attributed to various catechins present therein. Experiments conducted in cancer cell lines and animal models demonstrate that tea polyphenols protect against cellular damage caused by oxidative stress and altered immunity. Tea polyphenols modify various metabolic and signaling pathways in the regulation of proliferation, apoptosis, angiogenesis, and metastasis and therefore restrict clonal expansion of cancer cells. Tea polyphenols have been shown to reactivate tumor suppressors, block the unlimited replicative potential of cancer cells, and physically bind to nucleic acids involved in epigenetic alterations of gene regulation. Remarkable interest in green tea as a potential chemopreventive agent has been generated since recent epigenetic data showed that tea polyphenols have the potential to reverse epigenetic modifications which might otherwise be carcinogenic. Like green tea, black tea may also possess chemopreventive and chemotherapeutic potential; however, there is still not enough evidence available to make any conclusive statements. Here we present a brief description of tea polyphenols and discuss the findings of various in vitro and in vivo studies of the anticancer effects of tea polyphenols. Detailed discussion of various studies related to epigenetic changes caused by tea polyphenols leading to prevention of oncogenesis or cancer progression is included. Finally, we discuss on the scope and development of tea polyphenols in cancer prevention and therapy. PMID:21466438

  17. Addition agents effects on hydrocarbon fuels burning

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.

    2016-01-01

    Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.

  18. Predicting chemotherapeutic drug combinations through gene network profiling

    PubMed Central

    Nguyen, Thi Thuy Trang; Chua, Jacqueline Kia Kee; Seah, Kwi Shan; Koo, Seok Hwee; Yee, Jie Yin; Yang, Eugene Guorong; Lim, Kim Kiat; Pang, Shermaine Yu Wen; Yuen, Audrey; Zhang, Louxin; Ang, Wee Han; Dymock, Brian; Lee, Edmund Jon Deoon; Chen, Ee Sin

    2016-01-01

    Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells. PMID:26791325

  19. Effect of primers on bonding agent polymerization.

    PubMed

    Hotta, M; Kondoh, K; Kamemizu, H

    1998-10-01

    The aim of the present study was to evaluate the effect of primers on the polymerization of bonding agent. We measured the degree of conversion (radical production) and mechanical properties (surface hardness and direct tensile strength) of various adhesives/primers mixed at different ratios and the effect of varying the visible-light curing time. With and without primer treatment, the tensile bond strength of adhesive resin to micacious glass ceramic and human enamel was measured. After the tensile bond test, using the Image Capture System, the failure patterns of adhesive resin bonded to micacious glass-ceramic were analysed. The results show that the mixtures containing the higher amounts of primer yielded a lower degree of conversion and inferior mechanical properties when compared with the mixtures containing a lower proportion of primer, except in the experimental bonding system. The adhesive/primer mixtures inhibited free radical polymerization. The value for the Knoop hardness number and the direct tensile strength of the adhesive/primer mixtures were significantly decreased compared with those of the adhesive bonding agent alone with no primer added. The tensile bond strength of adhesive resin bonded to micacious glass-ceramic or human enamel without primer treatment was significantly greater than that of adhesive resin with primer treatment in certain cases. Most of the fractures of ceramic surfaces were cohesive (within resins) and/or interface (at the ceramic surface) failure.

  20. Apoptosis of human tumor cells by chemotherapeutic anthracyclines is enhanced by Bax overexpression.

    PubMed

    Lu, Y; Yagi, T

    1999-09-01

    One of the major factors for efficacy of a chemotherapeutic drug is its activity to induce apoptosis of tumor cells. Doxorubicin and daunorubicin, radiomimetic anthracycline-group drugs, have been used for chemotherapy for about 30 years. Here we established the colorectal tumor and osteosarcoma cells in which Bax expression can be induced by the treatment of isopropyl-beta-D-thiogalactopyranoside, and examined the effect of the Bax overexpression on the cell death caused by these drugs. While the Bax overexpression neither affected growth nor morphology of the undamaged cells, it enhanced the cell death caused by these drugs. Increase in cellular nucleus fragmentation and DNA ladder formation indicates that the Bax-enhanced cell death is due to enhanced apoptosis of the drug-treated cells. The enhanced cell death was not observed when the cells were irradiated with X-ray or treated with other chemotherapeutic agents we examined. These results indicate that Bax may have a specific role to enhance the efficacy of chemotherapy with anthracycline-group agents.

  1. Ixabepilone: a new chemotherapeutic option for refractory metastatic breast cancer

    PubMed Central

    Puhalla, Shannon; Brufsky, Adam

    2008-01-01

    Taxane therapy is commonly used in the treatment of metastatic breast cancer. However, most patients will eventually become refractory to these agents. Ixabepilone is a newly approved chemotherapeutic agent for the treatment of metastatic breast cancer. Although it targets microtubules similarly to docetaxel and paclitaxel, ixabepilone has activity in patients that are refractory to taxanes. This review summarizes the pharmacology of ixapebilone and clinical trials with the drug both as a single agent and in combination. Data were obtained using searches of PubMed and abstracts of the annual meetings of the American Society of Clinical Oncology and the San Antonio Breast Cancer Symposium from 1995 to 2008. Ixapebilone is a semi-synthetic analog of epothilone B that acts to induce apoptosis of cancer cells via the stabilization of microtubules. Phase I clinical trials have employed various dosing schedules ranging from daily to weekly to 3-weekly. Dose-limiting toxicites included neuropathy and neutropenia. Responses were seen in a variety of tumor types. Phase II studies verified activity in taxane-refractory metastatic breast cancer. The FDA has approved ixabepilone for use as monotherapy and in combination with capecitabine for the treatment of metastatic breast cancer. Ixabepilone is an efficacious option for patients with refractory metastatic breast cancer. The safety profile is similar to that of taxanes, with neuropathy and neutropenia being dose-limiting. Studies are ongoing with the use of both iv and oral formulations and in combination with other chemotherapeutic and biologic agents. PMID:19707381

  2. Inductions of Caspase-, MAPK- and ROS-dependent Apoptosis and Chemotherapeutic Effects Caused by an Ethanol Extract of Scutellaria barbata D. Don in Human Gastric Adenocarcinom Cells

    PubMed Central

    Shim, Ji Hwan; Gim, Huijin; Lee, Soojin

    2016-01-01

    Objectives: The crude extracts of Scutellaria barbata D. Don (SB) have traditionally demonstrated inhibitory effects on numerous human cancers both in vitro and in vivo. Gastric cancer is one of the most common types of cancer on world. The authors investigated the effects of an ethanol extract of Scutellaria barbata D. Don (ESB) on the growth and survival of MKN-45 cells (a human gastric adenocarcinoma cell line). Methods: The MKN-45 cells were treated with different concentrations of ESB, and cell death was examined using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Analyses of sub-G1 peaks, caspase-3 and -9 activities, and mitochondrial membrane depolarizations were conducted to determine the anti-cancer effects of SB on MKN-45 cells. Also, intracellular reactive oxygen species (ROS) generation was investigated. Results: ESB inhibited the growth of MKN-45 cells, caused cell cycle arrest, and increased the sub-G1 population. In addition, ESB markedly increased mitochondrial membrane depolarization and the activities of caspase-3 and -9. ESB exerted anti-proliferative effects on MKN-45 cells by modulating the mitogen-activated protein kinase (MAPK) signaling pathway and by increasing the generation of ROS. Furthermore, combinations of anti-cancer drugs plus ESB suppressed cell growth more than treatments with an agent or ESB, and this was especially true for cisplatin, etoposide, and doxorubicin. Conclusion: ESB has a dose-dependent cytotoxic effect on MKN-45 cells and this is closely associated with the induction of apoptosis. ESB-induced apoptosis is mediated by mitochondria- , caspase- and MAPK dependent pathways. In addition, ESB enhances ROS generation and increases the chemosensitivity of MKN-45 cells. These results suggest that treatment with ESB can inhibit the proliferation and promote the apoptosis of human gastric adenocarcinoma cells by modulating the caspase-, MAPK- and ROS-dependent pathway. PMID:27386146

  3. Effects of psoralens as anti-tumoral agents in breast cancer cells

    PubMed Central

    Panno, Maria Luisa; Giordano, Francesca

    2014-01-01

    This review examines the biological properties of coumarins, widely distributed at the highest levels in the fruit, followed by the roots, stems and leaves, by considering their beneficial effects in the prevention of some diseases and as anti-cancer agents. These compounds are well known photosensitizing drugs which have been used as pharmaceuticals for a broad number of therapeutic applications requiring cell division inhibitors. Despite this, even in the absence of ultraviolet rays they are active. The current paper mainly focuses on the effects of psoralens on human breast cancer as they are able to influence many aspects of cell behavior, such as cell growth, survival and apoptosis. In addition, analytical and pharmacological data have demonstrated that psoralens antagonize some metabolizing enzymes, affect estrogen receptor stability and counteract cell invasiveness as well as cancer drug resistance. The scientific findings summarized highlight the pleiotropic functions of phytochemical drugs, given that recently their target signals and how these are modified in the cells have been identified. The encouraging results in this field suggest that multiple modulating strategies based on coumarin drugs in combination with canonical chemotherapeutic agents or radiotherapy could be a useful approach to address the treatment of many types of cancer. PMID:25114850

  4. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    PubMed

    Hong, Zai-Fa; Zhao, Wen-Xiu; Yin, Zhen-Yu; Xie, Cheng-Rong; Xu, Ya-Ping; Chi, Xiao-Qin; Zhang, Sheng; Wang, Xiao-Min

    2015-01-01

    Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU) was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI) < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA. PMID:25933112

  5. Multi-agent Reinforcement Learning Model for Effective Action Selection

    NASA Astrophysics Data System (ADS)

    Youk, Sang Jo; Lee, Bong Keun

    Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.

  6. Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis

    PubMed Central

    Li, Xiaojin; Guo, Hua; Duan, Hongyang; Yang, Yanlian; Meng, Jie; Liu, Jian; Wang, Chen; Xu, Haiyan

    2015-01-01

    Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5’s capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis. PMID:26538086

  7. A New Concept of Enhancing Immuno-Chemotherapeutic Effects Against B16F10 Tumor via Systemic Administration by Taking Advantages of the Limitation of EPR Effect

    PubMed Central

    Yang, Yuting; Tai, Xiaowei; Shi, Kairong; Ruan, Shaobo; Qiu, Yue; Zhang, Zhirong; Xiang, Bing; He, Qin

    2016-01-01

    The enhanced permeability and retention (EPR) effect has been comfortably accepted, and extensively assumed as a keystone in the research on tumor-targeted drug delivery system. Due to the unsatisfied tumor-targeting efficiency of EPR effect being one conspicuous drawback, nanocarriers that merely relying on EPR effect are difficult to access the tumor tissue and consequently trigger efficient tumor therapy in clinic. In the present contribution, we break up the shackles of EPR effect on nanocarriers thanks to their universal distribution characteristic. We successfully design a paclitaxel (PTX) and alpha-galactosylceramide (αGC) co-loaded TH peptide (AGYLLGHINLHHLAHL(Aib)HHIL-Cys) -modified liposome (PTX/αGC-TH-Lip) and introduce a new concept of immuno-chemotherapy combination via accumulation of these liposomes at both spleen and tumor sites naturally and simultaneously. The PTX-initiated cytotoxicity attacks tumor cells at tumor sites, meanwhile, the αGC-triggered antitumor immune response emerges at spleen tissue. Different to the case that liposomes are loaded with sole drug, in this concept two therapeutic processes effectively reinforce each other, thereby elevating the tumor therapy efficiency significantly. The data demonstrates that the PTX/αGC-TH-Lip not only possess therapeutic effect against highly malignant B16F10 melanoma tumor, but also adjust the in vivo immune status and induce a more remarkable systemic antitumor immunity that could further suppress the growth of tumor at distant site. This work exhibits the capability of the PTX/αGC-TH-Lip in improving immune-chemotherapy against tumor after systemic administration. PMID:27698946

  8. A New Concept of Enhancing Immuno-Chemotherapeutic Effects Against B16F10 Tumor via Systemic Administration by Taking Advantages of the Limitation of EPR Effect

    PubMed Central

    Yang, Yuting; Tai, Xiaowei; Shi, Kairong; Ruan, Shaobo; Qiu, Yue; Zhang, Zhirong; Xiang, Bing; He, Qin

    2016-01-01

    The enhanced permeability and retention (EPR) effect has been comfortably accepted, and extensively assumed as a keystone in the research on tumor-targeted drug delivery system. Due to the unsatisfied tumor-targeting efficiency of EPR effect being one conspicuous drawback, nanocarriers that merely relying on EPR effect are difficult to access the tumor tissue and consequently trigger efficient tumor therapy in clinic. In the present contribution, we break up the shackles of EPR effect on nanocarriers thanks to their universal distribution characteristic. We successfully design a paclitaxel (PTX) and alpha-galactosylceramide (αGC) co-loaded TH peptide (AGYLLGHINLHHLAHL(Aib)HHIL-Cys) -modified liposome (PTX/αGC-TH-Lip) and introduce a new concept of immuno-chemotherapy combination via accumulation of these liposomes at both spleen and tumor sites naturally and simultaneously. The PTX-initiated cytotoxicity attacks tumor cells at tumor sites, meanwhile, the αGC-triggered antitumor immune response emerges at spleen tissue. Different to the case that liposomes are loaded with sole drug, in this concept two therapeutic processes effectively reinforce each other, thereby elevating the tumor therapy efficiency significantly. The data demonstrates that the PTX/αGC-TH-Lip not only possess therapeutic effect against highly malignant B16F10 melanoma tumor, but also adjust the in vivo immune status and induce a more remarkable systemic antitumor immunity that could further suppress the growth of tumor at distant site. This work exhibits the capability of the PTX/αGC-TH-Lip in improving immune-chemotherapy against tumor after systemic administration.

  9. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications

    PubMed Central

    Weisman, Jeffery A; Nicholson, James C; Tappa, Karthik; Jammalamadaka, UdayaBhanu; Wilson, Chester G; Mills, David K

    2015-01-01

    Three-dimensional (3D) printing and additive manufacturing holds potential for highly personalized medicine, and its introduction into clinical medicine will have many implications for patient care. This paper demonstrates the first application of 3D printing as a method for the potential sustained delivery of antibiotic and chemotherapeutic drugs from constructs for patient treatment. Our design is focused on the on-demand production of anti-infective and chemotherapeutic filaments that can be used to create discs, beads, catheters, or any medical construct using a 3D printing system. The design parameters for this project were to create a system that could be modularly loaded with bioactive agents. All 3D-printed constructs were loaded with either gentamicin or methotrexate and were optimized for efficient and extended antibacterial and cancer growth-inhibiting cytostatic activity. Preliminary results demonstrate that combining gentamicin and methotrexate with polylactic acid forms a composite possessing a superior combination of strength, versatility, and enhanced drug delivery. Antibacterial effects and a reduction in proliferation of osteosarcoma cells were observed with all constructs, attesting to the technical and clinical viability of our composites. In this study, 3D constructs were loaded with gentamicin and methotrexate, but the method can be extended to many other drugs. This method could permit clinicians to provide customized and tailored treatment that allows patient-specific treatment of disease and has significant potential for use as a tunable drug delivery system with sustained-release capacity for an array of biomedical applications. PMID:25624758

  10. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications.

    PubMed

    Weisman, Jeffery A; Nicholson, James C; Tappa, Karthik; Jammalamadaka, UdayaBhanu; Wilson, Chester G; Mills, David K

    2015-01-01

    Three-dimensional (3D) printing and additive manufacturing holds potential for highly personalized medicine, and its introduction into clinical medicine will have many implications for patient care. This paper demonstrates the first application of 3D printing as a method for the potential sustained delivery of antibiotic and chemotherapeutic drugs from constructs for patient treatment. Our design is focused on the on-demand production of anti-infective and chemotherapeutic filaments that can be used to create discs, beads, catheters, or any medical construct using a 3D printing system. The design parameters for this project were to create a system that could be modularly loaded with bioactive agents. All 3D-printed constructs were loaded with either gentamicin or methotrexate and were optimized for efficient and extended antibacterial and cancer growth-inhibiting cytostatic activity. Preliminary results demonstrate that combining gentamicin and methotrexate with polylactic acid forms a composite possessing a superior combination of strength, versatility, and enhanced drug delivery. Antibacterial effects and a reduction in proliferation of osteosarcoma cells were observed with all constructs, attesting to the technical and clinical viability of our composites. In this study, 3D constructs were loaded with gentamicin and methotrexate, but the method can be extended to many other drugs. This method could permit clinicians to provide customized and tailored treatment that allows patient-specific treatment of disease and has significant potential for use as a tunable drug delivery system with sustained-release capacity for an array of biomedical applications.

  11. Chemotherapeutic activity of liposomal SJA-95: a new polyene macrolide antibiotic in experimental aspergillosis and cryptococcosis.

    PubMed

    Desai, Sandhya K; Naik, Suresh R

    2009-05-01

    The incidence of systemic fungal infections that has risen dramatically over the past three decades has propelled a continuous need for more potent antifungal drugs. The purpose of this research was to evaluate the chemotherapeutic activity of a new heptaene polyene macrolide antibiotic (SJA-95) and liposomal incorporated SJA-95 (lip. SJA-95) in a mouse model of aspergillosis and cryptococcosis respectively. Lip. SJA-95 was prepared in our laboratory by the proliposome method involving incorporation of the antifungal into the proliposome mixture and its subsequent conversion into a liposomal dispersion by a simple dilution step. Treatment with free SJA-95 and lip. SJA-95, both in aspergillosis and cryptococcosis, progressively prolonged the survival time and decreased the fungal loads in vital organs respectively. A higher LD(50) value of lip. SJA as compared to that of free SJA-95 was indicative of reduced toxicity of lip. SJA-95. Our findings suggest lip. SJA-95 treatment results in prolonged survival time, effective microbiological clearance and reduced toxicity that might help to establish its usefulness as a chemotherapeutic agent in systemic fungal infections with fewer adverse reactions.

  12. Rational Choice of Antiemetic Agents during Cancer Chemotherapy

    PubMed Central

    Brigden, Malcolm L.; Wilson, Kenneth S.; Barnett, Jeffrey B.

    1983-01-01

    Nausea and vomiting are major limitations in cancer chemotherapy. Individual susceptibility to nausea varies enormously. There is no ideal antiemetic, but some work with some chemotherapeutic agents, and some are more effective in younger patients. This article describes a flexible, stepped approach using the phenothiazines, metoclopramide, cannabinoids, anticholinergics, antihistamines and others. PMID:21283402

  13. Principles and major agents in clinical oncology chemotherapy

    SciTech Connect

    Weller, R.E.

    1991-10-01

    This paper provides a brief classification of drugs available for veterinary chemotherapy, as well as justifications for their use. Some common neoplasia and the drugs of choice for their treatment are described. A listing by class of systemic chemotherapeutic agents, their mode of action, tumors responsive to the drugs, precautions and common adverse effects and mode of administration is provided. 2 tabs. (MHB)

  14. Role of chemotherapeutic antagonism in opportunistic infections.

    PubMed

    Castelli, M; Baggio, G; Ruberto, A I; Malagoli, M; Casolari, C; Rossi, T; Galatulas, I

    1997-01-01

    The most widely-known anti-tumor drugs often induce marked immunosuppression which can give rise to one or more sepses. Anti-infection measures immediately applied can sometimes prove largely ineffective or even useless, the patient dying not as a result of the spread of the tumour but as a direct consequence of opportunistic infection. We postulate that antagonism between anti-tumour and antimicrobial drugs may also play an important part in this. By way of illustration of this hypothesis, we have studied the action of a number of known inhibitors of peptidoglycan synthesis and of DNA-gyrases on certain strains of Gram-positive and Gram-negative microorganisms cultured in medium containing various concentrations of some of the best-known anti-tumour antimetabolites. The experimental data show that antimicrobial and anti-tumour drugs can sometimes induce synergic or indifferent chemotherapeutic interactions with many bacteria, while in others the effect is antagonistic. In practice, the action of the drugs could lead to bacterial selectivity, which, in conjunction with immunosuppression and the presence of resistant strains, could favour the evolution of opportunistic infection.

  15. The cell's nucleolus: an emerging target for chemotherapeutic intervention.

    PubMed

    Pickard, Amanda J; Bierbach, Ulrich

    2013-09-01

    The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach.

  16. An effective processing agent for dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Pirodda, Luciano; Moriconi, Marcella

    1988-01-01

    It has been found that the proteolytic enzyme papain in diluted water solutions possesses remarkable properties as a developing agent of light exposed DCG layers, since it strongly enhances the relief character of the images. Said properties are particularly evident with not-too-high spacial frequencies and high contrast in the exposure. Some experimental applications are presented.

  17. Ginsenoside Rg3 Serves as an Adjuvant Chemotherapeutic Agent and VEGF Inhibitor in the Treatment of Non-Small Cell Lung Cancer: A Meta-Analysis and Systematic Review

    PubMed Central

    He, Shulin; Hou, Wei

    2016-01-01

    Objective. To evaluate ginsenoside Rg3 combined with chemotherapy for non-small-cell lung cancer (NSCLC) treatment, in a meta-analysis. Materials and Methods. We searched PubMed, EMBASE, the Cochrane Library, the China National Knowledge Infrastructure, and the VIP and Wanfang databases for eligible studies. We manually searched for printed journals and relevant textbooks. Statistical analyses were performed with Revman 5.3 and STATA 14.0 software packages. Results. Twenty studies were included. Ginsenoside Rg3 combined with chemotherapy could enhance response, improve disease control, prolong overall survival, improve patient quality of life, reduce leucocyte count decrease due to chemotherapy, reduce vascular endothelial growth factor expression in peripheral blood, and increase CD4/CD8 T cell ratio. Conclusion. Ginsenoside Rg3 combined with chemotherapy may enhance short-term efficacy and overall survival, alleviate treatment-induced side effects, reduce vascular endothelial growth factor expression, increase CD4/CD8 T cell ratio, and serve as a potential therapeutic regimen for NSCLC. However, considering the limitations, the conclusion should be interpreted carefully, and these results need to be confirmed by more high-quality trials. PMID:27800005

  18. Learning Spanish with "Laura": The Effects of a Pedagogical Agent

    ERIC Educational Resources Information Center

    Theodoridou, Katerina

    2011-01-01

    The purpose of this study was to investigate the effects of an animated pedagogical agent on Spanish vocabulary learning. Furthermore, the study examined learners' reactions and attitudes towards the presence of the pedagogical agent in the web-based environments. A total of 47 university students enrolled in two fourth-semester Spanish classes…

  19. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs.

    PubMed

    Gidwani, Bina; Vyas, Amber

    2015-01-01

    Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carriers, and various approaches used for the delivery. The present review article aims to assess the utility of cyclodextrin-based carriers like liposomes, niosomes, nanoparticles, micelles, millirods, and siRNA for delivery of antineoplastic agents. These systems based on cyclodextrin complexation and nanotechnology will camouflage the undesirable properties of drug and lead to synergistic or additive effect. Cyclodextrin-based nanotechnology seems to provide better therapeutic effect and sustain long life of healthy and recovered cells. Still, considerable study on delivery system and administration routes of cyclodextrin-based carriers is necessary with respect to their pharmacokinetics and toxicology to substantiate their safety and efficiency. In future, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents. PMID:26582104

  20. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs

    PubMed Central

    Gidwani, Bina; Vyas, Amber

    2015-01-01

    Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carriers, and various approaches used for the delivery. The present review article aims to assess the utility of cyclodextrin-based carriers like liposomes, niosomes, nanoparticles, micelles, millirods, and siRNA for delivery of antineoplastic agents. These systems based on cyclodextrin complexation and nanotechnology will camouflage the undesirable properties of drug and lead to synergistic or additive effect. Cyclodextrin-based nanotechnology seems to provide better therapeutic effect and sustain long life of healthy and recovered cells. Still, considerable study on delivery system and administration routes of cyclodextrin-based carriers is necessary with respect to their pharmacokinetics and toxicology to substantiate their safety and efficiency. In future, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents. PMID:26582104

  1. Diaryl sulfide analogs of combretastatin A-4: Toxicogenetic, immunomodulatory and apoptotic evaluations and prospects for use as a new chemotherapeutic drug.

    PubMed

    Carvalho, Pamela Castilho; Santos, Edson Anjos; Schneider, Beatriz Ursinos Catelán; Matuo, Renata; Pesarini, João Renato; Cunha-Laura, Andréa Luiza; Monreal, Antônio Carlos Duenhas; Lima, Dênis Pires; Antoniolli, Andréia Conceição Milan Brochado; Oliveira, Rodrigo Juliano

    2015-11-01

    Combretastatin A-4 exhibits efficient anti-cancer potential in human tumors, including multidrug-resistant tumors. We evaluated the mutagenic, apoptotic and immunomodulatory potential of two diaryl sulfide analogs of combretastatin A-4, 1,2,3-trimethoxy-5-([4-methoxy-3-nitrophenyl]thio)benzene (analog 1) and 1,2,3-trimethoxy-5-([3-amino-4-methoxyphenyl]thio)benzene (analog 2), as well as their association with the anti-tumor agent cyclophosphamide, in Swiss mice. Such evaluation was achieved using the comet assay, peripheral blood micronucleus test, splenic phagocytosis assay, and apoptosis assay. Both analogs were found to be genotoxic, mutagenic and to induce apoptosis. They also increased splenic phagocytosis, although this increase was more pronounced for analog 2. When combined with cyclophosphamide, analog 1 enhanced the mutagenic and apoptotic effects of this anti-tumor agent. In contrast, analog 2 did not enhance the effects of cyclophosphamide and prevented apoptosis at lower doses. These data suggest that analog 1 could be an adjuvant chemotherapeutic agent and possibly improve the anti-neoplastic effect of cyclophosphamide. Additionally, this compound could be a candidate chemotherapeutic agent and/or an adjuvant for use in combined anti-cancer therapy. PMID:26410090

  2. Diaryl sulfide analogs of combretastatin A-4: Toxicogenetic, immunomodulatory and apoptotic evaluations and prospects for use as a new chemotherapeutic drug.

    PubMed

    Carvalho, Pamela Castilho; Santos, Edson Anjos; Schneider, Beatriz Ursinos Catelán; Matuo, Renata; Pesarini, João Renato; Cunha-Laura, Andréa Luiza; Monreal, Antônio Carlos Duenhas; Lima, Dênis Pires; Antoniolli, Andréia Conceição Milan Brochado; Oliveira, Rodrigo Juliano

    2015-11-01

    Combretastatin A-4 exhibits efficient anti-cancer potential in human tumors, including multidrug-resistant tumors. We evaluated the mutagenic, apoptotic and immunomodulatory potential of two diaryl sulfide analogs of combretastatin A-4, 1,2,3-trimethoxy-5-([4-methoxy-3-nitrophenyl]thio)benzene (analog 1) and 1,2,3-trimethoxy-5-([3-amino-4-methoxyphenyl]thio)benzene (analog 2), as well as their association with the anti-tumor agent cyclophosphamide, in Swiss mice. Such evaluation was achieved using the comet assay, peripheral blood micronucleus test, splenic phagocytosis assay, and apoptosis assay. Both analogs were found to be genotoxic, mutagenic and to induce apoptosis. They also increased splenic phagocytosis, although this increase was more pronounced for analog 2. When combined with cyclophosphamide, analog 1 enhanced the mutagenic and apoptotic effects of this anti-tumor agent. In contrast, analog 2 did not enhance the effects of cyclophosphamide and prevented apoptosis at lower doses. These data suggest that analog 1 could be an adjuvant chemotherapeutic agent and possibly improve the anti-neoplastic effect of cyclophosphamide. Additionally, this compound could be a candidate chemotherapeutic agent and/or an adjuvant for use in combined anti-cancer therapy.

  3. Research to Identify Effective Antifungal Agents, 1991 Annual Report.

    SciTech Connect

    Schreck, Carl

    1991-09-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990). The objectives of the present study was to evaluate up to 10 candidate fungicides.

  4. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  5. Effects of a Pedagogical Agent's Emotional Expressiveness on Learner Perceptions

    NASA Technical Reports Server (NTRS)

    Romero, Enilda J.; Watson, Ginger S.

    2012-01-01

    The use of animated pedagogical agents or avatars in instruction has lagged behind their use in entertainment. This is due in part to the cost and complexity of development and implementation of agents in educational settings, but also results from a lack of research to understand how emotions from animated agents influence instructional effectiveness. The phenomenological study presented here assesses the perceptions of eight learners interacting with low and high intensity emotionally expressive pedagogical agents in a computer-mediated environment. Research methods include maximum variation and snowball sampling with random assignment to treatment. The resulting themes incorporate perceptions of importance, agent humanness, enjoyment, implementation barriers, and suggested improvements. Design recommendations and implications for future research are presented.

  6. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy--Problems, Solutions, and Prospects.

    PubMed

    Maeda, Hiroshi; Tsukigawa, Kenji; Fang, Jun

    2016-04-01

    Solid tumor has unique vascular architecture, excessive production of vascular mediators, and extravasation of macromolecules from blood vessels into the tumor tissue interstitium. These features comprise the phenomenon named the EPR effect of solid tumors, described in 1986. Our investigations on the EPR revealed that many mediators, such as bradykinin, NO, and prostaglandins, are involved in the EPR effect, which is now believed to be the most important element for cancer-selective drug delivery. However, tumors in vivo manifest great diversity, and some demonstrate a poor EPR effect, for example, because of impaired vascular flow involving thrombosis, with poor drug delivery and therapeutic failure. Another important element of this effect is that it operates in metastatic cancers. Because few drugs are currently effective against metastases, the EPR effect offers a great advantage in nanomedicine therapy. The EPR effect can also be augmented two to three times via nitroglycerin, ACE inhibitors, and angiotensin II-induced hypertension. The delivery of nanomedicines to tumors can thereby be enhanced. In traditional PDT, most PSs had low MW and little tumor-selective accumulation. Our hydroxypropylmetacrylamide-polymer-conjugated-PS, zinc protoporphyrin (apparent MW >50 kDa) showed tumor-selective accumulation, as revealed by fluorescent imaging of autochthonous cancers. After one i.v. injection of polymeric PS followed by two or three xenon light irradiation/treatments, most tumors regressed. Thus, nanoprobes with the EPR effect seem to have remarkable effects. Enhancing the EPR effect by using vascular modulators will aid innovations in PDT for greater tumor-targeted drug delivery.

  7. Multiphysics and Multiscale Analysis for Chemotherapeutic Drug

    PubMed Central

    Zhang, Linan; Kim, Sung Youb; Kim, Dongchoul

    2015-01-01

    This paper presents a three-dimensional dynamic model for the chemotherapy design based on a multiphysics and multiscale approach. The model incorporates cancer cells, matrix degrading enzymes (MDEs) secreted by cancer cells, degrading extracellular matrix (ECM), and chemotherapeutic drug. Multiple mechanisms related to each component possible in chemotherapy are systematically integrated for high reliability of computational analysis of chemotherapy. Moreover, the fidelity of the estimated efficacy of chemotherapy is enhanced by atomic information associated with the diffusion characteristics of chemotherapeutic drug, which is obtained from atomic simulations. With the developed model, the invasion process of cancer cells in chemotherapy treatment is quantitatively investigated. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of chemotherapy treatment. PMID:26491672

  8. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs.

    PubMed

    Jackson, Rebecca A; Chen, Ee Sin

    2016-06-01

    The recent advances in pharmacogenomics have made personalized medicine no longer a pipedream but a precise and powerful way to tailor individualized cancer treatment strategies. Cancer is a devastating disease, and contemporary chemotherapeutic strategies now integrate several agents in the treatment of some types of cancer, with the intent to block more than one target simultaneously. This constitutes the premise of synthetic lethality, an attractive therapeutic strategy already demonstrating clinical success in patients with breast and ovarian cancers. Synthetic lethal combinations offer the potential to also target the hitherto "undruggable" mutations that have challenged the cancer field for decades. However, synthetic lethality in clinical cancer therapy is very much still in its infancy, and selecting the most appropriate combinations-or synthetic lethal pairs-is not always an intuitive process. Here, we review some of the recent progress in identifying synthetic lethal combinations and their potential for therapy and highlight some of the tools through which synthetic lethal pairs are identified.

  9. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed.

  10. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

    PubMed Central

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2015-01-01

    Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression. PMID:27158238

  11. Detection of genetic effects of environmental agents.

    PubMed Central

    Murphy, E A

    1981-01-01

    The fundamental problems in population monitoring for genetic effects are twofold: the binomialized nature of the data and the lower power due to small risk of finding positive results. The binomial character is artificial, even forced, and can with advantage be replaced by more refined analysis, and by a focus on all mutations, not merely harmful ones. Moreover, a binomial treatment ignores accessory information (birth order, clustering, etc.). But this objective requires that an explicit model be used instead of nonparametric methods; a cancer may represent multiple independent hits that should be separately scored; sequencing of a codon or its product may show multiple distinct changes. PMID:7333250

  12. Can generalist predators be effective biocontrol agents?

    PubMed

    Symondson, W O C; Sunderland, K D; Greenstone, M H

    2002-01-01

    Theoretical developments are helping us to comprehend the basic parameters governing the dynamics of the interactions between generalist predators and their many pest and nonpest prey. In practice, however, inter- and intraspecific interactions between generalist predators, and between the predators and their prey, within multispecies systems under the influence of rapidly changing biotic and abiotic variables are difficult to predict. We discuss trade-offs between the relative merits of specialists and generalists that allow both to be effective, and often complementary, under different circumstances. A review of manipulative field studies showed that in approximately 75% of cases, generalist predators, whether single species or species assemblages, reduced pest numbers significantly. Techniques for manipulating predator numbers to enhance pest control at different scales are discussed. We now need to find ways of disentangling the factors influencing positive and negative interactions within natural enemy communities in order to optimize beneficial synergies leading to pest control.

  13. Personalizing e-Learning. The Social Effects of Pedagogical Agents

    ERIC Educational Resources Information Center

    Kramer, Nicole C.; Bente, Gary

    2010-01-01

    Numerous studies have evaluated the effects of pedagogical agents on students' learning outcomes, but so far, beneficial effects have not been consistently demonstrated. The ambiguous results might partly be due to the strong emphasis on cognitive outcomes, which is characteristic for research in teaching and learning. The paper suggests a shift…

  14. Cardiovascular Effects of the New Weight Loss Agents.

    PubMed

    Vorsanger, Matthew H; Subramanyam, Pritha; Weintraub, Howard S; Lamm, Steven H; Underberg, James A; Gianos, Eugenia; Goldberg, Ira J; Schwartzbard, Arthur Z

    2016-08-23

    The global obesity epidemic and its impact on cardiovascular outcomes is a topic of ongoing debate and investigation in the cardiology community. It is well known that obesity is associated with multiple cardiovascular risk factors. Although life-style changes are the first line of therapy, they are often insufficient in achieving weight loss goals. Liraglutide, naltrexone/bupropion, and phentermine/topiramate are new agents that have been recently approved to treat obesity, but their effects on cardiovascular risk factors and outcomes are not well described. This review summarizes data currently available for these novel agents regarding drug safety, effects on major cardiovascular risk factors, impact on cardiovascular outcomes, outcomes research that is currently in progress, and areas of uncertainty. Given the impact of obesity on cardiovascular health, there is a pressing clinical need to understand the effects of these agents beyond weight loss alone. PMID:27539178

  15. Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic and viral therapies in neuro-oncology.

    PubMed

    Chiocca, E Antonio; Broaddus, William C; Gillies, George T; Visted, Therese; Lamfers, Martine L M

    2004-01-01

    Local delivery of biologic agents, such as gene and viruses, has been tested preclinically with encouraging success, and in some instances clinical trials have also been performed. In addition, the positive pressure infusion of various therapeutic agents is undergoing human testing and approval has already been granted for routine clinical use of biodegradable implants that diffuse a chemotherapeutic agent into peritumoral regions. Safety in glioma patients has been shown, but anticancer efficacy needs additional refinements in the technologies employed. In this review, we will describe these modalities and provide a perspective on needed improvements that should render them more successful.

  16. Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy.

    PubMed

    Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M

    2016-06-23

    Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents. PMID:27063935

  17. Role of pregnane X receptor in chemotherapeutic treatment

    PubMed Central

    Zhuo, Wei; Hu, Lei; Lv, Jinfeng; Wang, Hongbing; Zhou, Honghao; Fan, Lan

    2015-01-01

    Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily that differently expresses not only in human normal tissues but also in numerous types of human cancers. PXR can be activated by many endogenous substances and exogenous chemicals, and thus affects chemotherapeutic effects and intervenes drug–drug interactions by regulating its target genes involving drug metabolism and transportation, cell proliferation and apoptosis, and modulating endobiotic homeostasis. Tissue and context-specific regulation of PXR contributes to diverse effects in the treatment for numerous cancers. Genetic variants of PXR lead to intra- and inter-individual differences in the expression and inducibility of PXR, resulting in different responses to chemotherapy in PXR-positive cancers. The purpose of this review is to summarize and discuss the role of PXR in the metabolism and clearance of anticancer drugs. It is also expected that this review will provide insights into PXR-mediated enhancement for chemotherapeutic treatment, prediction of drug–drug interactions and personalized medicine. PMID:24889719

  18. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.

    PubMed

    Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki

    2015-11-01

    Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. PMID:26234785

  19. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  20. Effects of Anesthetic Agent Propofol on Postoperative Sex Hormone Levels

    PubMed Central

    Kim, H.; Ku, S.-Y.; Kim, H. C.; Suh, C. S.; Kim, S. H.; Choi, Y. M.

    2016-01-01

    Introduction: Several studies have found anesthetic agents including propofol in ovarian follicular fluid. However, little is known about the effect of anesthetic agents on ovarian function. We aimed to investigate whether there were differences in the postoperative levels of sex hormones when propofol was used as the anesthetic agent. Methods: A retrospective review was done of 80 patients who underwent ovarian surgery, with 72 infertile women serving as controls. Patients were included in the study if their serum estradiol (E2) and follicle stimulating hormone (FSH) levels were measured during their first postoperative menstrual cycle. Results: Patients were grouped according to the use or non-use of propofol as follows: propofol group (n = 39) and non-propofol group (n = 41). The control group did not undergo surgery. Postoperative E2 levels did not differ between the three groups, but FSH levels were significantly higher in the patients who had undergone surgery compared to controls (p < 0.05). Post-hoc analysis of E2 and FSH levels in the propofol and non-propofol groups did not show any significant differences. Conclusions: The use of propofol did not result in any differences compared to other anesthetic agents in terms of postoperative sex hormone levels after gynecologic surgery. The type of anesthetic agent does not seem to affect the postoperative levels of female sex hormones. PMID:27134297

  1. BMX Negatively Regulates BAK Function, Thereby Increasing Apoptotic Resistance to Chemotherapeutic Drugs.

    PubMed

    Fox, Joanna L; Storey, Alan

    2015-04-01

    The ability of chemotherapeutic agents to induce apoptosis, predominantly via the mitochondrial (intrinsic) apoptotic pathway, is thought to be a major determinant of the sensitivity of a given cancer to treatment. Intrinsic apoptosis, regulated by the BCL2 family, integrates diverse apoptotic signals to determine cell death commitment and then activates the nodal effector protein BAK to initiate the apoptotic cascade. In this study, we identified the tyrosine kinase BMX as a direct negative regulator of BAK function. BMX associates with BAK in viable cells and is the first kinase to phosphorylate the key tyrosine residue needed to maintain BAK in an inactive conformation. Importantly, elevated BMX expression prevents BAK activation in tumor cells treated with chemotherapeutic agents and is associated with increased resistance to apoptosis and decreased patient survival. Accordingly, BMX expression was elevated in prostate, breast, and colon cancers compared with normal tissue, including in aggressive triple-negative breast cancers where BMX overexpression may be a novel biomarker. Furthermore, BMX silencing potentiated BAK activation, rendering tumor cells hypersensitive to otherwise sublethal doses of clinically relevant chemotherapeutic agents. Our finding that BMX directly inhibits a core component of the intrinsic apoptosis machinery opens opportunities to improve the efficacy of existing chemotherapy by potentiating BAK-driven cell death in cancer cells. PMID:25649765

  2. Effect of Acidic Agents on Surface Roughness of Dental Ceramics

    PubMed Central

    Kukiattrakoon, Boonlert; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn

    2011-01-01

    Background: An increase in surface roughness of ceramics may decrease strength and affect the clinical success of ceramic restorations. However, little is known about the effect of acidic agents on ceramic restorations. The aim of this study was to evaluate the surface roughness of dental ceramics after being immersed in acidic agents. Methods: Eighty-three ceramic disk specimens (12.0 mm in diameter and 2.0 mm in thickness) were made from four types of ceramics (VMK 95, Vitadur Alpha, IPS Empress Esthetic, and IPS e.max Ceram). Baseline data of surface roughness were recorded by profilometer. The specimens were then immersed in acidic agents (citrate buffer solution, pineapple juice and green mango juice) and deionized water (control) at 37°C for 168 hours. One group was immersed in 4% acetic acid at 80°C for 168 hours. After immersion, surface roughness was evaluated by a profilometer at intervals of 24, 96, and 168 hours. Surface characteristics of specimens were studied using scanning electron microscopy (SEM). Data were analyzed using two-way repeated ANOVA and Tukey's multiple comparisons (α = 0.05). Results: For all studied ceramics, all surface roughness parameters were significantly increased after 168 hours immersion in all acidic agents (P < 0.05). After 168 hours in 4% acetic acid, there were significant differences for all roughness parameters from other acidic agents of all evaluated ceramics. Among all studied ceramics, Vitadur Alpha showed significantly the greatest values of all surface roughness parameters after immersion in 4% acetic acid (P < 0.001). SEM photomicrographs also presented surface destruction of ceramics in varying degrees. Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions. PMID:22132009

  3. Can CA describe collective effects of polluting agents?

    NASA Astrophysics Data System (ADS)

    Troisi, A.

    2015-03-01

    Pollution represents one of the most relevant issues of our time. Several studies are on stage but, generally, they do not consider competitive effects, paying attention only to specific agents and their impact. In this paper, it is suggested a different scheme. At first, it is proposed a formal model of competitive noxious effects. Second, by generalizing a previous algorithm capable of describing urban growth, it is developed a cellular automata (CA) model that provides the effective impact of a variety of pollutants. The final achievement is a simulation tool that can model pollution combined effects and their dynamical evolution in relation to anthropized environments.

  4. Corneal toxicity induced by vesicating agents and effective treatment options.

    PubMed

    Goswami, Dinesh G; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial cells and rabbit corneal organ culture models with the SM analog nitrogen mustard, which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  5. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    PubMed

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-10-13

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent.

  6. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  7. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4.

    PubMed

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  8. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  9. Effect of bleaching agent on dental ceramics roughness.

    PubMed

    Vanderlei, Aleska D; Passos, Sheila P; Salazar-Marocho, Susana M; Pereira, Sarina Mb; Vásquez, Vanessa Zc; Bottino, Marco A

    2010-01-01

    The aim of this study was to assess the effect of bleaching agents (10% and 16% carbamide peroxide) on the roughness of two dental ceramics in vitro, and to analyze the surface by scanning electronic microscopy (SEM). Two bleaching agents (10% and 16%/Whiteness, FGM Gel) and two microparticle feldspathic ceramics (Vita VM7 and Vita VM13) were used. Forty disks of Vita VM7 and Vita VM13 ceramic were manufactured, measuring 4 mm in diameter and 4 mm high, in accordance with the manufacturers' recommendations, and were divided into 4 groups (n = 10): (1) VM7 + Whiteness 10%; (2) VM7 + Whiteness 16%; (3) VM13 + Whiteness 10%; (4) VM13 + Whiteness 16%. The bleaching agent was applied for 8 hours a day for 15 days and during the intervals the test specimens were stored in distilled water at 37 degrees C. The roughness (Ra) of the test specimens was evaluated before and after exposure to the bleaching agents using a laser roughness meter and the topographic description was analyzed by SEM. The statistical analysis of roughness data showed significant differences in the VM7 groups, using paired t-test, p = 0.05 (VM7 + Whiteness 10%: p = 0.002; VM7 + Whiteness 16%: p = 0.001) and two-sample t-test (VM7 p = 0.047), and no significant difference was found among VM13 groups. The qualitative SEM analysis showed different degrees of surface changes. The results suggest that the roughness of the tested ceramic surfaces increased after exposure to the bleaching agents.

  10. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy

    PubMed Central

    Tamburrino, Anna; Piro, Geny; Carbone, Carmine; Tortora, Giampaolo; Melisi, Davide

    2013-01-01

    Pancreatic cancer remains one of the most lethal and poorly understood human malignancies and will continue to be a major unsolved health problem in the 21st century. Despite efforts over the past three decades to improve diagnosis and treatment, the prognosis for patients with pancreatic cancer is extremely poor with or without treatment, and incidence rates are virtually identical to mortality rates. Although advances have been made through the identification of relevant molecular pathways in pancreatic cancer, there is still a critical, unmet need for the translation of these findings into effective therapeutic strategies that could reduce the intrinsic drug resistance of this disease and for the integration of these molecularly targeted agents into established combination chemotherapy and radiotherapy regimens in order to improve patients’ survival. Tumors are heterogeneous cellular entities whose growth and progression depend on reciprocal interactions between genetically altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the mechanisms of resistance studied have been related to tumor cell-autonomous signaling pathways. However, recent data suggest a putative important role of tumor microenvironment in the development and maintenance of resistance to classic chemotherapeutic and targeted therapies. This present review is meant to describe and discuss some of the most important advances in the comprehension of the tumor cell-autonomous and tumor microenvironment-related molecular mechanisms responsible for the resistance of pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic targets for the modulation of this resistant phenotype. PMID:23641216

  11. The effects of thermally reversible agents on PVC stability properties

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yao, J.; Xiong, X. H.; Jia, C. X.; Ren, R.; Chen, P.; Liu, X. M.

    2016-07-01

    One kind of thermally reversible cross-linking agents for improving PVC thermally stability was synthesized. The chemical structure and thermally reversible characteristics of cross-linking agents were investigated by FTIR and DSC analysis, respectively. FTIR results confirmed that the cyclopentadienyl barium mercaptides ((CPD-C2H4S)2Ba) were successfully synthesized. DSC results showed it has thermally reversible characteristics and the depolymerization temperature was between 170 °C and 205 °C. The effects of cross-linking reaction time on gel content of Poly(vinyl chloride) compounds was evaluated. The gel content value arrived at 42% after being cross-linked for 25 min at 180 C. The static thermally stability measurement proved that the thermally stability of PVC compounds was improved.

  12. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents.

    PubMed

    Galluzzi, Lorenzo; Buqué, Aitziber; Kepp, Oliver; Zitvogel, Laurence; Kroemer, Guido

    2015-12-14

    The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy.

  13. HISTOCHEMICAL EFFECTS OF SOME BIOLOGICAL AGENTS ON CULEX PIPIENS LARVAE.

    PubMed

    El Sobky, Mona M; Ismail, Howaida I H; Assar, Abada A

    2016-04-01

    The histochemical effects of the lethal concentration that kills 50% of larvae (LC50) of three biological agents, abamectin, Bacillus thuringiensis and spinosad on the carbohydrates (polysaccharides), proteins, nucleic acids and lipids content of the midgut and fat bodies of Culex pipiens 2nd instar larvae were studied. The results showed that the three tested compounds reduced the carbohydrates (polysaccharides), proteins, RNA synthesis and lipids content after 72 hours of treatment where abamectin was the most effective followed by Bacillus thuringiensis then spinosad. PMID:27363043

  14. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis.

    PubMed

    Bastos, I M D; Motta, F N; Grellier, P; Santana, J M

    2013-01-01

    The trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp. cause Chagas disease, leishmaniasis and human African trypanosomiasis, respectively. It is estimated that over 10 million people worldwide suffer from these neglected diseases, posing enormous social and economic problems in endemic areas. There are no vaccines to prevent these infections and chemotherapies are not adequate. This picture indicates that new chemotherapeutic agents must be developed to treat these illnesses. For this purpose, understanding the biology of the pathogenic trypanosomatid- host cell interface is fundamental for molecular and functional characterization of virulence factors that may be used as targets for the development of inhibitors to be used for effective chemotherapy. In this context, it is well known that proteases have crucial functions for both metabolism and infectivity of pathogens and are thus potential drug targets. In this regard, prolyl oligopeptidase and oligopeptidase B, both members of the S9 serine protease family, have been shown to play important roles in the interactions of pathogenic protozoa with their mammalian hosts and may thus be considered targets for drug design. This review aims to discuss structural and functional properties of these intriguing enzymes and their potential as targets for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.

  15. Assessment of the chemotherapeutic potential of a new camptothecin derivative, ZBH-1205.

    PubMed

    Wu, Di; Shi, Weiguo; Zhao, Jing; Wei, Zhengren; Chen, Zhijia; Zhao, Dawei; Lan, Shijie; Tai, Jiandong; Zhong, Bohua; Yu, Hong

    2016-08-15

    CPT-11 (irinotecan) is a derivative of camptothecin which is a natural product derived from the Chinese tree Camptotheca acuminta and widely used in antitumor therapy. Here, the in vitro anti-tumor activity and associated mechanisms of a novel derivative of camptothecin, ZBH-1205, were investigated in a panel of 9 human tumor cell lines, as well as in HEK 293 and SK-OV-3/DPP, a multi-drug resistant (MDR) cell line, and compared to CPT-11 and 7-ethyl-10-hydroxy-camptothecin (SN38). Comparisons between the different compounds were made on the basis of IC50 values as determined by the MTT assay, and flow cytometry was used to evaluate cell cycle progression, apoptosis, and the levels of pro- and active caspase-3 among different treatment groups. Interaction between the molecules and topoisomerase-1 (Topo-1)-DNA complexes was detected by a DNA relaxation assay. Our results demonstrated that IC50 values for ZBH-1205 ranged from 0.0009 μmol/L to 2.5671 μmol/L, which were consistently lower than IC50 values of CPT-11 or SN38 in the panel of cell lines, including SK-OV-3/DPP. Furthermore, ZBH-1205 was more effective than CPT-11 or SN38 at stabilizing Topo-1-DNA complexes and inducing tumor cell apoptosis. Therefore, ZBH-1205 is a promising chemotherapeutic agent to be further assessed in large-scale clinical trials. PMID:27302903

  16. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast.

    PubMed

    Tay, Zoey; Eng, Ru Jun; Sajiki, Kenichi; Lim, Kim Kiat; Tang, Ming Yi; Yanagida, Mitsuhiro; Chen, Ee Sin

    2013-01-01

    Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.

  17. Active nanodiamond hydrogels for chemotherapeutic delivery.

    PubMed

    Huang, Houjin; Pierstorff, Erik; Osawa, Eiji; Ho, Dean

    2007-11-01

    Nanodiamond materials can serve as highly versatile platforms for the controlled functionalization and delivery of a wide spectrum of therapeutic elements. In this work, doxorubicin hydrochloride (DOX), an apoptosis-inducing drug widely used in chemotherapy, was successfully applied toward the functionalization of nanodiamond materials (NDs, 2-8 nm) and introduced toward murine macrophages as well as human colorectal carcinoma cells with preserved efficacy. The adsorption of DOX onto the NDs and its reversible release were achieved by regulating Cl- ion concentration, and the NDs were found to be able to efficiently ferry the drug inside living cells. Comprehensive bioassays were performed to assess and confirm the innate biocompatibility of the NDs, via real-time quantitative polymerase chain reaction (RT-PCR), and electrophoretic DNA fragmentation as well as MTT analysis confirmed the functional apoptosis-inducing mechanisms driven by the DOX-functionalized NDs. We extended the applicability of the DOX-ND composites toward a translational context, where MTT assays were performed on the HT-29 colon cancer cell line to assess DOX-ND induced cell death and ND-mediated chemotherapeutic sequestering for potential slow/sustained released capabilities. These and other medically relevant capabilities enabled by the NDs forge its strong potential as a therapeutically significant nanomaterial.

  18. Nilotinib enhances the efficacy of conventional chemotherapeutic drugs in CD34⁺CD38⁻ stem cells and ABC transporter overexpressing leukemia cells.

    PubMed

    Wang, Fang; Wang, Xiao-Kun; Shi, Cheng-Jun; Zhang, Hui; Hu, Ya-Peng; Chen, Yi-Fan; Fu, Li-Wu

    2014-03-19

    Incomplete chemotherapeutic eradication of leukemic CD34⁺CD38⁻ stem cells is likely to result in disease relapse. The purpose of this study was to evaluate the effect of nilotinib on eradicating leukemia stem cells and enhancing the efficacy of chemotherapeutic agents. Our results showed that ABCB1 and ABCG2 were preferentially expressed in leukemic CD34⁺CD38⁻ cells. Nilotinib significantly enhanced the cytotoxicity of doxorubicin and mitoxantrone in CD34⁺CD38⁻ cells and led to increased apoptosis. Moreover, nilotinib strongly reversed multidrug resistance and increased the intracellular accumulation of rhodamine 123 in primary leukemic blasts overexpressing ABCB1 and/or ABCG2. Studies with ABC transporter-overexpressing carcinoma cell models confirmed that nilotinib effectively reversed ABCB1- and ABCG2-mediated drug resistance, while showed no significant reversal effect on ABCC1- and ABCC4-mediated drug resistance. Results from cytotoxicity assays showed that CD34⁺CD38⁻ cells exhibited moderate resistance (2.41-fold) to nilotinib, compared with parental K562 cells. Furthermore, nilotinib was less effective in blocking the phosphorylation of Bcr-Abl and CrkL (a substrate of Bcr-Abl kinase) in CD34⁺CD38⁻ cells. Taken together, these data suggest that nilotinib particularly targets CD34⁺CD38⁻ stem cells and MDR leukemia cells, and effectively enhances the efficacy of chemotherapeutic drugs by blocking the efflux function of ABC transporters.

  19. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  20. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  1. Bacteriocins as Potential Anticancer Agents.

    PubMed

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies.

  2. Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs.

    PubMed

    Corti, Angelo; Ponzoni, Mirco

    2004-12-01

    The poor selectivity of chemotherapeutic drugs for neoplastic cells may lead to dose-limiting side effects that compromise clinical outcomes. Moreover, heterogeneous tumor perfusion and vascular permeability, and increased interstitial pressure, could represent critical barriers that limit the penetration of drugs into neoplastic cells distant from tumor vessels and, consequently, the effectiveness of chemotherapy. We have recently developed two strategies for increasing the local concentration of chemotherapeutic drugs in tumors and their therapeutic index, based on tumor vascular targeting. First, we have found that vascular targeting with minute amounts of tumor necrosis factor alpha (TNF-alpha), an inflammatory cytokine able to increase vascular permeability, alters tumor barriers and increases the penetration of chemotherapeutic drugs in subcutaneous tumors in mouse models. Targeted delivery of TNF-alpha to tumor vessels was achieved by coupling this cytokine with cyclic CNGRC peptide, an aminopeptidase N (CD13) ligand that targets the tumor neovasculature. Second, we have observed that encapsulation of doxorubicin into liposomes able to home to tumor vessels markedly improves drug uptake by neuroblastoma tumors, in an orthotopic xenograft model, and its therapeutic index. Targeted delivery of liposomes was achieved by coupling linear GNGRG peptide to the surface of liposomal doxorubicin. Vascular targeting, either indirectly with NGR-TNF-alpha or directly with NGR-targeted liposomes, could be a novel strategy for increasing the therapeutic index of chemotherapeutic drugs.

  3. UV radiation effects over microorganisms and study of protective agents

    NASA Astrophysics Data System (ADS)

    Gómez Gómez, Felipe; Grau Carles, Agustín; Vazquez, Luis; Amils, Ricardo

    2004-03-01

    An important subject of astrobiological interest is the study of the effect of ultraviolet radiation on microorganisms and their protection mechanisms against this damaging agent. UV radiation is considered highly mutagenic and sterilizing, especially during the period of origin of life on Earth when the absence of the ozone layer meant there was no effective protection against ultraviolet radiation from the sun. Ferric iron, the product of iron metabolism, as a consequence of its spectral properties, has been suggested to provide protection against radiation making the study of its protective effect on acidophilic microorganisms from the Tinto ecosystem of interest in order to gain information about its possible implications in the development of life during the Archaean as well on planets lacking a protective atmosphere such as Mars. The studies described in this paper constitute preliminary experiments.

  4. Effect of certain anesthetic agents on mallard ducks

    USGS Publications Warehouse

    Cline, D.R.; Greenwood, R.J.

    1972-01-01

    Four anesthetic agents used in human or veterinary medicine and 3 experimental anesthetic preparations were evaluated for effectiveness in inducing narcosis when administered orally to game-farm mallard ducks (Anas platyrhynchos).Tribromoethanol was the only compound to satisfy criteria of initial tests. Mean duration of the induction, immobilization, and recovery periods was 2.4 minutes, 8.7 minutes, and 1.3 hours, respectively, at the median effective dosage for immobilization (ED50; 100 mg./kg. of body weight). The median lethal dosage (LD50) was 400 mg./kg. of body weight.Tribromoethanol was also tested on mallards during the reproductive season. Effects on the hatchability of eggs or the survival of young were not detected.

  5. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy

    NASA Astrophysics Data System (ADS)

    Wei, Pengfei; Zhang, Li; Lu, Yang; Man, Na; Wen, Longping

    2010-12-01

    Autophagy, an evolutionally conserved intracellular process degrading cytoplasmic proteins and organelles for recycling, has become one of the most remarkable strategies applied in cancer research. The fullerene C60 nanoparticle (nC60) has been shown to induce autophagy and sensitize chemotherapeutic killing of cancer cells, but the details still remain unknown. Here we show that a water-dispersed nanoparticle solution of derivatized fullerene C60, C60(Nd) nanoparticles (nC60(Nd)), has greater potential in inducing autophagy and sensitizing chemotherapeutic killing of both normal and drug-resistant cancer cells than nC60 does in an autophagy-dependent fashion. Additionally we further demonstrated that autophagy induced by nC60/C60(Nd) and Rapamycin had completely different roles in cancer chemotherapy. Our results, for the first time, revealed a novel and more potent derivative of the C60 nanoparticle in enhancing the cytotoxicity of chemotherapeutic agents and reducing drug resistance through autophagy modulation, which may ultimately lead to novel therapeutic strategies in cancer therapy.

  6. Effectiveness of three bulking agents for food waste composting

    SciTech Connect

    Adhikari, Bijaya K.; Barrington, Suzelle Martinez, Jose; King, Susan

    2009-01-15

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.

  7. Differential effectiveness of berry polyphenols as anti-giardial agents

    PubMed Central

    ANTHONY, J.-P.; FYFE, L.; STEWART, D.; McDOUGALL, G. J.

    2011-01-01

    SUMMARY Following previous work on the anti-giardial effect of blueberry polyphenols, a range of polyphenol-rich extracts from berries and other fruits was screened for their ability to kill Giardia duodenalis, an intestinal parasite of humans. Polyphenol-rich extracts were prepared from berries using solid-phase extraction and applied to trophozoites of Giardia duodenalis grown in vitro. All berry extracts caused inhibition at 166 μg gallic acid equivalents (GAE)/ml phenol content but extracts from strawberry, arctic bramble, blackberry and cloudberry were as effective as the currently used drug, metronidazole, causing complete trophozoite mortality in vitro. Cloudberry extracts were found to be the most effective causing effectively complete trophozoite mortality at 66 μg GAE/ml. The polyphenol composition of the more effective berry extracts suggested that the presence of ellagitannins could be an important factor. However, the potency of cloudberry could be related to high ellagitannin content but also to the presence of substantial amounts of unconjugated p-coumaric acid and benzoic acid. These in vitro effects occur at concentrations easily achievable in the gut after berry ingestion and we discuss the likelihood that berry extracts could be effective anti-giardial agents in vivo. PMID:21813029

  8. Differential effectiveness of berry polyphenols as anti-giardial agents.

    PubMed

    Anthony, J-P; Fyfe, L; Stewart, D; McDougall, G J

    2011-08-01

    Following previous work on the anti-giardial effect of blueberry polyphenols, a range of polyphenol-rich extracts from berries and other fruits was screened for their ability to kill Giardia duodenalis, an intestinal parasite of humans. Polyphenol-rich extracts were prepared from berries using solid-phase extraction and applied to trophozoites of Giardia duodenalis grown in vitro. All berry extracts caused inhibition at 166 μg gallic acid equivalents (GAE)/ml phenol content but extracts from strawberry, arctic bramble, blackberry and cloudberry were as effective as the currently used drug, metronidazole, causing complete trophozoite mortality in vitro. Cloudberry extracts were found to be the most effective causing effectively complete trophozoite mortality at 66 μg GAE/ml. The polyphenol composition of the more effective berry extracts suggested that the presence of ellagitannins could be an important factor. However, the potency of cloudberry could be related to high ellagitannin content but also to the presence of substantial amounts of unconjugated p-coumaric acid and benzoic acid. These in vitro effects occur at concentrations easily achievable in the gut after berry ingestion and we discuss the likelihood that berry extracts could be effective anti-giardial agents in vivo. PMID:21813029

  9. Antibody–drug conjugates as novel anti-cancer chemotherapeutics

    PubMed Central

    Peters, Christina; Brown, Stuart

    2015-01-01

    Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics. PMID:26182432

  10. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1

    PubMed Central

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-01-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention. PMID:27666896

  11. Effectiveness of Septisol Antiseptic Foam as a Surgical Scrub Agent

    PubMed Central

    Dewar, Norman E.; Gravens, Daniel L.

    1973-01-01

    Septisol antiseptic foam (0.23% hexachlorophene in a 46% ethyl alcohol base) is a new surgical scrub agent for both primary and re-entry use that is designed to minimize the harsh effects to the skin of the conventional scrub while retaining effective antibacterial properties. A preliminary surgical scrub study of 1-week duration yielded an immediate reduction in resident flora of 92% from an average single scrub coupled with a residual bacteriostatic effect from repeated use that gave a plateau at 57% of the pretest resident population level. A separate study demonstrated complete elimination of both gram-positive and gram-negative transients from the skin with a single application of the product. In an 8-week surgical scrub study, equal effectiveness was shown between Septisol antiseptic foam and a standard 3% hexachlorophene detergent. However, Septisol antiseptic foam offers considerable advantage in minimizing the harsh effects to the skin of the conventional surgical scrub and results in a substantially lower hemic level of hexachlorophene in the user than that obtained with 3% hexachlorophene detergent. Sampling was conducted by the fingerprint impression plate technique of Gale. PMID:4584593

  12. The effect of anti-plaque agents on gingivitis.

    PubMed

    Spivakovsky, Silvia; Keenan, Analia

    2016-06-01

    Data sourcesAn electronic search was conducted on PubMed Central. References of retrieved papers and previously published systematic reviews were hand searched.Study selectionRandomised controlled trials (RCTs) with at least six months follow-up evaluating the use of test products used in mouthrinses, toothpastes or gels as adjuncts to mechanical oral hygiene (including toothbrushing) were considered.Data extraction and synthesisTwo trained and calibrated reviewers independently assessed the studies for eligibility, with any disagreement being resolved by discussion. Two reviewers under the supervision of a third reviewer extracted data. Risk of bias was evaluated using the Cochrane risk of bias tool and the CONSORT statement. Outcomes were summarised as means and standard deviation (SD) or standard error (SE), the results were pooled and analysed using weighted mean differences (WMD), and heterogeneity among the studies was calculated.ResultsEighty-seven articles with 133 comparisons were included in the review. A majority of the studies (75) were considered to be at high risk of bias, eight at unclear risk and four at low risk. Fifteen different categories of active agent were used in toothpastes and ten in mouthwashes. The additional effects of the tested products were statistically significant for the Loe & Silness gingival index (46 studies), WMD -0.217, the modified gingival index (23 studies) - 0.415, gingivitis severity index (26 studies) - 14.939% or bleeding index (23 studies) - 7.626% with significant heterogeneity. For plaque, additional effects were found for Turesky (66 studies) WMD - 0.0475, Silness & Loe (26 studies) - 0.109 and for plaque severity (12 studies) - 23.4% indices, with significant heterogeneity.ConclusionsWithin the limitations of the present study, formulations with specific agents for chemical plaque control provide statistically significant improvements in terms of gingival, bleeding and plaque indices. PMID:27339238

  13. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  14. Nanostructured Lipid Carriers: A Novel Platform for Chemotherapeutics.

    PubMed

    Rizwanullah, Md; Ahmad, Javed; Amin, Saima

    2016-01-01

    Cancer is a disease manifested as abnormal cells division without control. If it is not detected and cured very timely, it can invade other healthy tissues resulting in metastasis. Chemotherapy is the first line treatment for cancer, but due to lack of specificity of most of the anticancer drugs, is associated with side effects that affect the quality of life. Nanostructured lipid carriers (NLC) are one of the promising nano-carriers for the development of effective targeted therapies for cancer chemotherapeutics. These bio-compatible and/or bio-degradable lipids based nanoparticles are composed of solid and liquid lipids as a core matrix dispersed in surfactant solution. NLC improve the aqueous solubility of most of the hydrophobic cancer therapeutics. Their surface modification can be used for overcoming drug resistance in cancer chemotherapy, to achieve site specific targeting for better efficacy and reduced dose related toxicity. The present review is an attempt to contemplate their pharmaceutical, biopharmaceutical aspects and application in cell targeting, gene delivery and in theranostics. PMID:26279117

  15. Immunomodulatory effects of antimicrobial agents. Part I: antibacterial and antiviral agents.

    PubMed

    Labro, Marie-Thérèse

    2012-03-01

    Despite impressive therapeutic progresses in the battle against infections, microorganisms are still a threat to mankind. With hundreds of antibacterial molecules, major concerns remain about the emergence of resistant and multidrug-resistant pathogens. On the other hand, the antiviral drug armamentarium is comprised of only a few dozens of compounds which are highly pathogen specific, and resistance is also a concern. According to Arturo Casadevall (Albert Einstein College of Medicine, NY, USA), we have now entered the third era of anti-infective strategy, which intends to favor the interplay between active molecules and the immune system. The first part of this review focuses on the potential immunomodulating properties of anti-infective agents, beginning with antibacterial and antiviral agents.

  16. The effect of drag reducing agent in multiphase flow pipelines

    SciTech Connect

    Kang, C.; Vancho, R.M. Jr.; Jepson, W.P.; Green, A.S.; Kerr, H.

    1998-12-31

    The effect of drag reducing agents (DRA) on pressure gradient and flow regime has been studied in horizontal and 2 degree inclination. Experiments were conducted for full pipe, stratified, slug, and annular flow in a 10 cm inside diameter, 18 m long plexiglass section and inclinable flow loops from horizontal to vertical. Superficial liquid velocity between 0.06 and 1.5 m/s and superficial gas velocity between 1 and 14 m/s were studied. The DRA effectiveness was examined for DRA concentrations between 0 and 75 ppm. The results indicate that DRA was effective in reducing the pressure gradients in single and multiphase flow. The DRA was more effective for lower superficial liquid velocities and gas velocities for both single phase and multiphase flow. The DRA was effective to reduce pressure gradients up to 42% for full pipe flow, 91% for stratified flow and up to 35% for annular flow in horizontal pipes. Kang, Wilkens and Jepson (1996) showed that the stratified flow disappears entirely and slug flow dominates the flow regime map in inclined upward flow. In 2 degree inclination, the pressure gradient reduction for slug flow with a concentration of 50 ppm DRA is 28% and 38% at superficial gas velocities of 2 and 6 m/s respectively. Flow regimes maps with DRA were determined in horizontal pipes. The transition to the slug flow with DRA was observed to occur at a higher superficial liquid due to higher liquid flow rates. There is a conspicuous absence of drag reduction work for multiphase (oil-water-gas) flow in horizontal and inclined pipes.

  17. The Effects of Animated Agents on Students' Achievement and Attitudes

    ERIC Educational Resources Information Center

    Unal-Colak, Figen; Ozan, Ozlem

    2012-01-01

    Animated agents are electronic agents that interact with learners through voice, visuals or text and that carry human-like characteristics such as gestures and facial expressions with the purpose of creating a social learning environment, and provide information and guidance and when required feedback and motivation to students during their…

  18. Using Animated Agents in Learner-Controlled Training: The Effects of Design Control

    ERIC Educational Resources Information Center

    Behrend, Tara S.; Thompson, Lori Foster

    2012-01-01

    Animated agents have the potential to increase engagement and learning during online training by acting as personalized tutors. However, little is known about the conditions that make these agents most effective. In this study, 183 e-learners completed a Microsoft Excel training course. Approximately half were assigned an agent with predetermined…

  19. How Effective Are Pedagogical Agents for Learning? A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Schroeder, Noah L.; Adesope, Olusola O.; Gilbert, Rachel Barouch

    2013-01-01

    Research on the use of software programs and tools such as pedagogical agents has peaked over the last decade. Pedagogical agents are on-screen characters that facilitate instruction. This meta-analysis examined the effect of using pedagogical agents on learning by reviewing 43 studies involving 3,088 participants. Analysis of the results…

  20. Effect of radioprotective agents on X-ray cataracts

    SciTech Connect

    Reddy, V.N.; Ikebe, H.; Giblin, F.J.; Clark, J.I.; Livesey, J.C. )

    1989-01-01

    The effect of some protective agents on cataract development is briefly reviewed and new evidence is presented on the efficacy of a phosphorothioate compound (Amifostine) in inhibiting the development of X-ray-induced cataract. Morphological studies showed that at the end of 4 months, lenses from X-irradiated rats which had not received any drugs showed liquefaction in the equatorial region and at the posterior pole, as well as a marked swelling of the fibers in the anterior cortex. Animals which received 1.16g/kg of WR77913 showed considerable protection against the development of radiation induced cataracts with morphological changes in the lens being less severe than in animals receiving no drugs. When animals were treated with 0.5g/kg of Amifostine (WR2721) the lenses showed much greater protection against cataract development than with WR77913. Amifostine appears to be more effective than WR77913 in inhibiting X-ray-induced cataract development. 20 refs.

  1. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    PubMed Central

    Tuomela, Annika; Hirvonen, Jouni; Peltonen, Leena

    2016-01-01

    Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed. PMID:27213435

  2. Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study

    PubMed Central

    Pandharinath, Dange Shankar; Arun, Khalikar; Smita, Vaidya

    2012-01-01

    PURPOSE Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. MATERIALS AND METHODS Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and GLUMA® desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. RESULTS Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA (49.02 ± 3.32) > Control (48.61 ± 3.54) > Tooth mousse (48.34 ± 2.94). Retentive strength for glass ionomer cement were GLUMA (41.14 ± 2.42) > Tooth mousse (40.32 ± 3.89) > Control (39.09 ± 2.80). For zinc phosphate cement the retentive strength were lowest GLUMA (27.92 ± 3.20) > Control (27.69 ± 3.39) > Tooth mousse (25.27 ± 4.60). CONCLUSION The use of GLUMA® desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement. PMID:22977719

  3. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics

    PubMed Central

    Udeabor, Samuel Ebele; Adisa, Akinyele Olumuyiwa; Lawal, Ahmed Oluwatoyin; Barbeck, Mike; Booms, Patrick; Sader, Robert Alexander; Ghanaati, Shahram

    2015-01-01

    Introduction Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Methods Twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Results Moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. Conclusion The importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents. PMID:27386018

  4. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. PMID:25497573

  5. A molecular targeting against nuclear factor-κB, as a chemotherapeutic approach for human malignant mesothelioma.

    PubMed

    Nishikawa, Sho; Tanaka, Akane; Matsuda, Akira; Oida, Kumiko; Jang, Hyosun; Jung, Kyungsook; Amagai, Yosuke; Ahn, Ginae; Okamoto, Noriko; Ishizaka, Saori; Matsuda, Hiroshi

    2014-04-01

    Chronic inflammation due to the absorption of asbestos is an important cause of mesothelioma. Although the increased prevalence of mesothelioma is a serious problem, the development of effective chemotherapeutic agents remains incomplete. As the nuclear factor-κB (NF-κB) pathway contributes to malignant transformation of various types of cells, we explored NF-κB activity in three different pathological types of malignant mesothelioma cells, and evaluated the therapeutic potential of a recently reported NF-κB inhibitor, IMD-0354. NF-κB was constantly activated in MSTO-211H, NCI-H28, and NCI-H2052 cells, and the proliferation of these cell lines was inhibited by IMD-0354. D-type cyclins were effectively suppressed in mixed tissue type MSTO-211H, leading to cell cycle arrest at sub G1 /G1 phase. IMD-0354 reduced cyclin D3 in both epithelial tissue type NCI-H28 and sarcomatoid tissue type NCI-H2052. In a sphere formation assay, IMD-0354 effectively decreased the number and diameter of MSTO-211H spheres. Preincubation of MSTO-211H cells with IMD-0354 delayed tumor formation in transplanted immunodeficient mice. Furthermore, administration of IMD-0354 markedly rescued the survival rate of mice that received intrathoracic injections of MSTO-211H cells. These results indicate that a targeted drug against NF-κB might have therapeutic efficacy in the treatment of human malignant mesothelioma.

  6. Non-cancer effects of chemical agents on children's health.

    PubMed

    Röösli, Martin

    2011-12-01

    This paper provides an overview about the non-cancer health effects for children from relevant chemical agents in our environment. In addition, a meta-analysis was conducted on the association between sudden infant death syndrome (SIDS) and maternal smoking during pregnancy as well as postnatal exposure to environmental tobacco smoke (ETS). In children, birth deformities, neurodevelopment, reproductive outcomes and respiratory system are mainly affected by chemical exposures. According to recent systematic reviews, evidence is sufficient for cognitive impairments caused by low lead exposure levels. Evidence for neurotoxicity from prenatal methylmercury exposure is sufficient for high exposure levels and limited for low levels. Prenatal exposure to polychlorinated biphenyls (PCB) and related toxicants results in cognitive and motor deficits. Maternal smoking during pregnancy is a risk factor for preterm birth, foetal growth deficit and SIDS. The meta-analytic pooled risk estimate for SIDS based on 15 studies is 2.94 (95% confidence interval: 2.43-3.57). Postnatal exposure to ETS was found to increase the SIDS risk by a factor of 1.72 (95% CI: 1.28-2.30) based on six studies which took into account maternal smoking during pregnancy. Additionally, postnatal ETS exposure causes acute respiratory infections, ear problems, respiratory symptoms, more severe asthma, and it slows lung growth. These health effects are also of concern for postnatal exposure to ambient and indoor air pollution. Children differ from adults with respect to several aspects which are relevant for assessing their health risk. Thus, independent evaluation of toxicity in childhood populations is essential. PMID:21906619

  7. [Effectiveness of urine-preserving agents used in water reclamation systems].

    PubMed

    Lebedeva, T E; Nazarov, N M; Chizhov, S V

    1989-01-01

    The antimicrobial activity of 11 chemicals of different classes was investigated having in view their potential use as urine conserving agents onboard space flying vehicles. The investigations were performed on 8 bacterial cultures, including spore-forming, urease-active bacteria and microorganisms that typically occur in the spacecraft environment. Out of the chemical tested, five haloid-containing agents, primarily oxidative agents, showed the largest spectrum of antimicrobial action and highest bactericidal effect. These agents are recommended to be used as urine conserving agents in water reclamation systems during space flights.

  8. Effects of lipid-lowering agents on inflammation, haemostasis and blood pressure.

    PubMed

    Tziomalos, Konstantinos; Karagiannis, Asterios; Athyros, Vasilios G

    2014-01-01

    In addition to the modification of the lipid profile, most lipid-lowering agents appear to modulate other atherogenic pathways. We summarize the effects of lipid-lowering agents on inflammation, hemostasis and blood pressure. We also discuss the potential contribution of these actions on cardiovascular disease prevention. Most lipid-lowering agents appear to exert anti-inflammatory, antithrombotic and antihypertensive effects. These pleiotropic actions appear to contribute to the reduction in cardiovascular events and deep venous thrombosis during statin treatment. Regarding other lipid-lowering agents, it is unclear whether their effects on inflammation, thrombosis or blood pressure play a role in their antiatherogenic potential.

  9. Chemotherapeutic response of tumor derived from human adenovirus 12--induced retinal tumor cell line in syngeneic CDF (F 344) rats.

    PubMed

    Kobayashi, M; Mukai, N; Solish, S P; Sawada, T; Pomeroy, M E

    1983-01-01

    The effect of two anticancer agents, vincristine (VCR) and cyclophosphamide (CTX), on an established cell line (EXP-5) derived from human adenovirus serotype 12 (Ad 12)--induced retinal tumor was studied in vitro and in vivo. VCR at a concentration of 5 and 10 micrograms/ml of culture medium and CTX at 50 and 100 micrograms/ml suppressed growth in vitro. EXP-5 cells were transplanted into the vitreous of 56 inbred CDF (F 344 strain) rats. The implants grew almost exclusively as intravitreous tumors within one month. When the tumor was full grown in the vitreous, VCR and CTX were administered intravenously, singly or in combination, on a schedule based on the protocol CCG-961 for localized unilateral retinoblastoma, Reese-Ellsworth group 5. At a dosage of 0.05 mg/kg, VCR was effective in reducing tumor size; at a dosage of 5 mg/kg, CTX did not reduce tumor size. Combined VCR/CTX therapy induced reduction of about two thirds in tumor size in 2 of 10 treated animals; in all 10 animals, the tumor became morphologically less distinct during the course of treatment although some characteristic features remained. Cytotoxic tumor changes (necrosis, fibrous proliferation, cell transformation, and bizarre giant cells) were observed in all treated animals. This model used the EXP-5 cell line grown in the vitreous, thereby providing a potential tool for evaluating growth and chemotherapeutic responsiveness of retinoblastoma.

  10. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  11. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields)

    PubMed Central

    Kirson, Eilon D; Schneiderman, Rosa S; Dbalý, Vladimír; Tovaryš, František; Vymazal, Josef; Itzhaki, Aviran; Mordechovich, Daniel; Gurvich, Zoya; Shmueli, Esther; Goldsher, Dorit; Wasserman, Yoram; Palti, Yoram

    2009-01-01

    Background The present study explores the efficacy and toxicity of combining a new, non-toxic, cancer treatment modality, termed Tumor Treating Fields (TTFields), with chemotherapeutic treatment in-vitro, in-vivo and in a pilot clinical trial. Methods Cell proliferation in culture was studied in human breast carcinoma (MDA-MB-231) and human glioma (U-118) cell lines, exposed to TTFields, paclitaxel, doxorubicin, cyclophosphamide and dacarbazine (DTIC) separately and in combinations. In addition, we studied the effects of combining chemotherapy with TTFields in an animal tumor model and in a pilot clinical trial in recurrent and newly diagnosed GBM patients. Results The efficacy of TTFields-chemotherapy combination in-vitro was found to be additive with a tendency towards synergism for all drugs and cell lines tested (combination index ≤ 1). The sensitivity to chemotherapeutic treatment was increased by 1–3 orders of magnitude by adjuvant TTFields therapy (dose reduction indexes 23 – 1316). Similar findings were seen in an animal tumor model. Finally, 20 GBM patients were treated with TTFields for a median duration of 1 year. No TTFields related systemic toxicity was observed in any of these patients, nor was an increase in Temozolomide toxicity seen in patients receiving combined treatment. In newly diagnosed GBM patients, combining TTFields with Temozolomide treatment led to a progression free survival of 155 weeks and overall survival of 39+ months. Conclusion These results indicate that combining chemotherapeutic cancer treatment with TTFields may increase chemotherapeutic efficacy and sensitivity without increasing treatment related toxicity. PMID:19133110

  12. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  13. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    NASA Astrophysics Data System (ADS)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  14. The effects of restorative composite resins on the cytotoxicity of dentine bonding agents.

    PubMed

    Kim, Kyunghwan; Son, Kyung Mi; Kwon, Ji Hyun; Lim, Bum-Soon; Yang, Hyeong-Cheol

    2013-01-01

    During restoration of damaged teeth in dental clinics, dentin bonding agents are usually overlaid with restorative resin composites. The purpose of this study was to investigate the effects of restorative resin composites on cytotoxicity of dentin bonding agents. Dentin bonding agents were placed on glass discs, pre-cured and uncured resin composite discs. Bonding agents on the glass discs and composite resins discs were light cured and used for agar overlay cytotoxicity testing. Dentin bonding agents on composite resin discs exhibited far less cytotoxicity than that on glass discs. The polymerization of resin composite increased the surface hardness and decreased the cytotoxicity of bonding agents. In conclusion, composite resins in dental restorations are expected to enhance the polymerization of dentin bonding agents and reduce the elution of resin monomers, resulting in the decrease of cytotoxicity.

  15. An embodiment effect in computer-based learning with animated pedagogical agents.

    PubMed

    Mayer, Richard E; DaPra, C Scott

    2012-09-01

    How do social cues such as gesturing, facial expression, eye gaze, and human-like movement affect multimedia learning with onscreen agents? To help address this question, students were asked to twice view a 4-min narrated presentation on how solar cells work in which the screen showed an animated pedagogical agent standing to the left of 11 successive slides. Across three experiments, learners performed better on a transfer test when a human-voiced agent displayed human-like gestures, facial expression, eye gaze, and body movement than when the agent did not, yielding an embodiment effect. In Experiment 2 the embodiment effect was found when the agent spoke in a human voice but not in a machine voice. In Experiment 3, the embodiment effect was found both when students were told the onscreen agent was consistent with their choice of agent characteristics and when inconsistent. Students who viewed a highly embodied agent also rated the social attributes of the agent more positively than did students who viewed a nongesturing agent. The results are explained by social agency theory, in which social cues in a multimedia message prime a feeling of social partnership in the learner, which leads to deeper cognitive processing during learning, and results in a more meaningful learning outcome as reflected in transfer test performance.

  16. An embodiment effect in computer-based learning with animated pedagogical agents.

    PubMed

    Mayer, Richard E; DaPra, C Scott

    2012-09-01

    How do social cues such as gesturing, facial expression, eye gaze, and human-like movement affect multimedia learning with onscreen agents? To help address this question, students were asked to twice view a 4-min narrated presentation on how solar cells work in which the screen showed an animated pedagogical agent standing to the left of 11 successive slides. Across three experiments, learners performed better on a transfer test when a human-voiced agent displayed human-like gestures, facial expression, eye gaze, and body movement than when the agent did not, yielding an embodiment effect. In Experiment 2 the embodiment effect was found when the agent spoke in a human voice but not in a machine voice. In Experiment 3, the embodiment effect was found both when students were told the onscreen agent was consistent with their choice of agent characteristics and when inconsistent. Students who viewed a highly embodied agent also rated the social attributes of the agent more positively than did students who viewed a nongesturing agent. The results are explained by social agency theory, in which social cues in a multimedia message prime a feeling of social partnership in the learner, which leads to deeper cognitive processing during learning, and results in a more meaningful learning outcome as reflected in transfer test performance. PMID:22642688

  17. Agent Orange exposure and attributed health effects in Vietnam veterans.

    PubMed

    Young, Alvin L; Cecil, Paul F

    2011-07-01

    Serum dioxin studies of Vietnam (VN) veterans, military historical records of tactical herbicide use in Vietnam, and the compelling evidence of the photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aspects of environmental fate and low bioavailability of TCDD are consistent with few, if any, ground troop veterans being exposed to Agent Orange. That conclusion, however, is contrary to the presumption by the Department of Veterans Affairs (DVA) that military service in Vietnam anytime from January 9, 1962 to May 7, 1975 is a proxy for exposure to Agent Orange. The DVA assumption is inconsistent with the scientific principles governing determinations of disease causation. The DVA has nonetheless awarded Agent Orange-related benefits and compensation to an increasing number of VN veterans based on the presumption of exposure and the published findings of the Institute of Medicine that there is sufficient evidence of a "statistical association" (a less stringent standard than "causal relationship") between exposure to tactical herbicides or TCDD and 15 different human diseases. A fairer and more valid approach for VN veterans would have been to enact a program of "Vietnam experience" benefits for those seriously ill, rather than benefits based on the dubious premise of injuries caused by Agent Orange. PMID:21916327

  18. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  19. α-Tocopheryloxyacetic acid: a novel chemotherapeutic that stimulates the antitumor immune response

    PubMed Central

    2011-01-01

    Introduction α-Tocopheryloxyacetic acid (α-TEA) is a novel ether derivative of α-tocopherol that has generated interest as a chemotherapeutic agent because of its selective toxicity toward tumor cells and its ability to suppress tumor growth in various rodent and human xenograft models. We previously reported that oral α-TEA inhibited the growth of both a transplanted (4T1) and a spontaneous MMTV-PyMT mouse model of breast cancer. Methods Because little is known about the possible immunological mechanisms underlying the in vivo α-TEA effects, we evaluated the impact of α-TEA therapy on the immune response by characterizing immune cell populations infiltrating the tumor site. Results α-TEA treatment resulted in higher frequencies of activated T cells in the tumor microenvironment and twofold and sixfold higher ratios of CD4+ and CD8+ T cells to regulatory T cells, respectively. This finding was correlated with an increased ability of tumor-draining lymph node cells and splenocytes from α-TEA-treated mice to secrete interferon (IFN)-γ in response to CD3 or to mediate a cytolytic response in a tumor-specific fashion, respectively. That the α-TEA-mediated antitumor effect had a T cell-dependent component was demonstrated by the partial abrogation of tumor suppression when CD4+ and CD8+ T cells were depleted. We also determined the intratumoral cytokine and chemokine profile and found that α-TEA treatment increased intratumoral IFN-γ levels but decreased interleukin (IL)-4 levels, suggesting a shift toward a TH1 response. In addition, α-TEA induced higher levels of the inflammatory cytokine IL-6 and the chemokine CCL5. Conclusions Taken together, these data suggest that α-TEA treatment, in addition to its direct cytotoxic effects, enhanced the anti-tumor immune response. This study provides a better understanding of the mechanisms of action of α-TEA and its effect on the immune system and may prove useful in designing immune-stimulating strategies to

  20. 1'S-1'-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells.

    PubMed

    Hasima, Noor; Aun, Lionel In Lian; Azmi, Mohamad Nurul; Aziz, Ahmad Nazif; Thirthagiri, Eswary; Ibrahim, Halijah; Awang, Khalijah

    2010-10-01

    Medicinal plants containing active natural compounds have been used as an alternative treatment for cancer patients in many parts of the world especially in Asia (Itharat et al. 2004). In this report, we describe the cytotoxic and apoptotic properties of 1'S-1'-acetoxyeugenol acetate (AEA), an analogue of 1'S-1'-acetoxychavicol acetate (ACA), isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) on human breast cancer cells. Data from MTT cell viability assays indicated that AEA induced both time- and dose-dependent cytotoxicity with an IC(50) value of 14.0 μM within 36 h of treatment on MCF-7 cells, but not in HMEC normal control cells. Both annexin V-FITC/PI flow cytometric analysis and DNA fragmentation assays confirmed that AEA induced cell death via apoptosis. AEA was also found to induce cell cycle arrest in MCF-7 cells at the G(0)/G(1) phase with no adverse cell cycle arrest effects on HMEC normal control cells. It was concluded that AEA isolated from the Malaysian tropical ginger represents a potential chemotherapeutic agent against human breast cancer cells with higher cytotoxicity potency than its analogue, ACA. PMID:20729047

  1. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi

    PubMed Central

    Herrera, Linda J.; Brand, Stephen; Santos, Andres; Nohara, Lilian L.; Harrison, Justin; Norcross, Neil R.; Thompson, Stephen; Smith, Victoria; Lema, Carolina; Varela-Ramirez, Armando; Gilbert, Ian H.; Almeida, Igor C.; Maldonado, Rosa A.

    2016-01-01

    Background Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. Methodology/Principal Findings Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. Conclusions/Significance Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy. PMID:27128971

  2. Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation

    PubMed Central

    Wang, Xiaoying; Tryndyak, Volodymyr; Apostolov, Eugene O.; Yin, Xiaoyan; Shah, Sudhir V.; Pogribny, Igor P.; Basnakian, Alexei G.

    2016-01-01

    Analysis of promoter sequences of all known human cytotoxic endonucleases showed that endonuclease G (EndoG) is the only endonuclease that contains a CpG island, a segment of DNA with high G+C content and a site for methylation, in the promoter region. A comparison of three human prostate cancer cell lines showed that EndoG is highly expressed in 22Rv1 and LNCaP cells. In PC3 cells, EndoG was not expressed and the EndoG CpG island was hypermethylated. The expression of EndoG correlated positively with sensitivity to cisplatin and etoposide, and the silencing of EndoG by siRNA decreased the sensitivity of the cells to the chemotherapeutic agents in the two EndoG-expressing cell lines. 5-aza-2′-deoxycytidine caused hypomethylation of the EndoG promoter in PC3 cells, induced EndoG mRNA and protein expression, and made the cells sensitive to both cisplatin and etoposide. The acetylation of histones by trichostatin A, the histone deacetylase inhibitor, induced EndoG expression in 22Rv1 cells, while it had no such effect in PC3 cells. These data are the first indication that EndoG may be regulated by methylation of its gene promoter, and partially by histone acetylation, and that EndoG is essential for prostate cancer cell death in the used models. PMID:18565644

  3. The over-expression of survivin enhances the chemotherapeutic efficacy of YM155 in human hepatocellular carcinoma.

    PubMed

    Xia, Hongping; Chen, Jianxiang; Shi, Ming; Deivasigamani, Amudha; Ooi, London Lucien P J; Hui, Kam M

    2015-03-20

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. The inability of chemotherapeutic drugs to selectively target HCC tumor cells because of their predominant resistant phenotype to most conventional anticancer agents bestows a major obstacle for the clinical management of HCC. In this report, we have examined and demonstrated the remarkable heterogeneity of expression of survivin and its phosphorylated active form (p-survivin) in HCC patients' tissues and cell lines. Furthermore, the expression of survivin and p-survivin in HCC cell lines was found to be associated with response to the small-molecule survivin suppressant YM155. Therefore, in the HCC cell lines that express elevated level of survivin and p-survivin, YM155 efficiently inhibited their proliferation, induced cell cycle arrest and apoptosis resulting in DNA damage through the dysregulation of cell-cycle checkpoint-related regulatory genes. Importantly, YM155 yielded significantly better therapeutic effect than sorafenib when tested in an orthotopic mouse model using patient-derived HCC xenografts with elevated survivin and p-survivin expression. Our results clearly demonstrated that the level of survivin and p-survivin expression could serve as molecular predictive biomarkers to select potential YM155-responsive patients, in a move towards delivering precision medicine for HCC patients.

  4. 1'S-1'-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells.

    PubMed

    Hasima, Noor; Aun, Lionel In Lian; Azmi, Mohamad Nurul; Aziz, Ahmad Nazif; Thirthagiri, Eswary; Ibrahim, Halijah; Awang, Khalijah

    2010-10-01

    Medicinal plants containing active natural compounds have been used as an alternative treatment for cancer patients in many parts of the world especially in Asia (Itharat et al. 2004). In this report, we describe the cytotoxic and apoptotic properties of 1'S-1'-acetoxyeugenol acetate (AEA), an analogue of 1'S-1'-acetoxychavicol acetate (ACA), isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) on human breast cancer cells. Data from MTT cell viability assays indicated that AEA induced both time- and dose-dependent cytotoxicity with an IC(50) value of 14.0 μM within 36 h of treatment on MCF-7 cells, but not in HMEC normal control cells. Both annexin V-FITC/PI flow cytometric analysis and DNA fragmentation assays confirmed that AEA induced cell death via apoptosis. AEA was also found to induce cell cycle arrest in MCF-7 cells at the G(0)/G(1) phase with no adverse cell cycle arrest effects on HMEC normal control cells. It was concluded that AEA isolated from the Malaysian tropical ginger represents a potential chemotherapeutic agent against human breast cancer cells with higher cytotoxicity potency than its analogue, ACA.

  5. An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate, and D-mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that,...

  6. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents.

    PubMed

    Meiyanto, Edy; Hermawan, Adam; Anindyajati

    2012-01-01

    Targeted therapy has been a very promising strategy of drug development research. Many molecular mechanims of diseases have been known to be regulated by abundance of proteins, such as receptors and hormones. Chemoprevention for treatment and prevention of diseases are continuously developed. Pre-clinical and clinical studies in chemoprevention field yielded many valuable data in preventing the onset of disease and suppressing the progress of their growth, making chemoprevention a challenging and a very rational strategy in future researches. Natural products being rich of flavonoids are those fruits belong to the genus citrus. Ethanolic extract of Citrus reticulata and Citrus aurantiifolia peels showed anticarcinogenic, antiproliferative, co-chemotherapeutic and estrogenic effects. Several examples of citrus flavonoids that are potential as chemotherapeutic agents are tangeretin, nobiletin, hesperetin, hesperidin, naringenin, and naringin. Those flavonoids have been shown to possess inhibition activity on certain cancer cells' growth through various mechanisms. Moreover, citrus flavonoids also perform promising effect in combination with several chemotherapeutic agents against the growth of cancer cells. Some mechanisms involved in those activities are through cell cycle modulation, antiangiogenic effect, and apoptosis induction. Previous studies showed that tangeretin suppressed the growth of T47D breast cancer cells by inhibiting ERK phosphorylation. While in combination with tamoxifen, doxorubicin, and 5-FU, respectively, it was proven to be synergist on several cancer cells. Hesperidin and naringenin increased cytotoxicitity of doxorubicin on MCF-7 cells and HeLa cells. Besides, citrus flavonoids also performed estrogenic effect in vivo. One example is hesperidin having the ability to decrease the concentration of serum and hepatic lipid and reduce osteoporosis of ovariectomized rats. Those studies showed the great potential of citrus fruits as natural product

  7. Vascular effects induced by anti-VEGF agents in the CAM model: effect of the DMSO

    NASA Astrophysics Data System (ADS)

    Nowak-Sliwinska, Patrycja; Ballini, Jean-Pierre; van den Bergh, Hubert; Wagnières, Georges

    2009-06-01

    The chicken embryo's chorioallantoic membrane (CAM) is widely used as an in vivo model to study the vascular effects induced by agents administrated topically or intravenously. Hence, in the vascular plexus of this respiratory membrane, angiogenic and anti-angiogenic agents, as well as phototoxic effects have been studied. The main goal of this study was to characterize the capillary network of the CAM after topical administration of dimethyl sulfoxid (DMSO), a frequently used solvent of lipophylic drugs, including potent anti-VEGF agents. The CAM capillaries were observed between days 8 and 9 of the embryo development, with an epi-fluorescence microscope equipped with a sensitive camera by intravenous injection of a fluorescent agent and a non-fluorescing absorber (in the extra-embryonic cavity) to screen the tissue background fluorescence. The fluorescence images of the CAM vasculature were then processed in order to obtain a skeleton of the vessels and capillaries. This was done to quantify descriptors such as the number of branching points/mm2, the mean area value of the vessels network meshes, and the mean of the 3rd quartile of the histogram of these meshes, were then extracted. Our results demonstrate that the topical administration of an aqueous solution of 20 μl of DMSO at concentrations equal or larger than 0.1% turned out to modify the capillary network morphology in a dose-dependent manner as compared to the control (20 μl of 0.9% NaCl).

  8. Chemotherapeutic potential of cow urine: A review

    PubMed Central

    Randhawa, Gurpreet Kaur; Sharma, Rajiv

    2015-01-01

    In the grim scenario where presently about 70% of pathogenic bacteria are resistant to at least one of the drugs for the treatment, cue is to be taken from traditional/indigenous medicine to tackle it urgently. The Indian traditional knowledge emanates from ayurveda, where Bos indicus is placed at a high pedestal for numerous uses of its various products. Urine is one of the products of a cow with many benefits and without toxicity. Various studies have found good antimicrobial activity of cow’s urine (CU) comparable with standard drugs such as ofloxacin, cefpodoxime, and gentamycin, against a vast number of pathogenic bacteria, more so against Gram-positive than negative bacteria. Interestingly antimicrobial activity has also been found against some resistant strains such as multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae. Antimicrobial action is enhanced still further by it being an immune-enhancer and bioenhancer of some antibiotic drugs. Antifungal activity was comparable to amphotericin B. CU also has anthelmintic and antineoplastic action. CU has, in addition, antioxidant properties, and it can prevent the damage to DNA caused by the environmental stress. In the management of infectious diseases, CU can be used alone or as an adjunctive to prevent the development of resistance and enhance the effect of standard antibiotics. PMID:26401404

  9. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    NASA Astrophysics Data System (ADS)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  10. [Effects of Intensity of Acting Agents on the Manifestation of Synergistic Interaction].

    PubMed

    Petin, V G; Zhurakovskaya, G P

    2015-01-01

    The universal dependence of the synergistic interaction on the intensity of the acting agents was demonstrated. This dependence is not associated with the biological object, as well as the nature of the physical or chemical agents used in the combined exposures. In all cases, with a decrease in the intensity of one of the agents the intensity of the other factor should be also decreased to ensure the greatest synergistic effect. Such relationship of synergy and the intensity of the acting agents is of interest for radiation safety. This regularity indicates the principal possibility of synergistic interaction of harmful environmental factors actually occurring in the biosphere at their low intensities. PMID:26964345

  11. Effects of Cueing by a Pedagogical Agent in an Instructional Animation: A Cognitive Load Approach

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    This study investigated the effects of a pedagogical agent that cued relevant information in a story-based instructional animation on the cardiovascular system. Based on cognitive load theory, it was expected that the experimental condition with the pedagogical agent would facilitate students to distinguish between relevant and irrelevant…

  12. The Effect of an Embedded Pedagogical Agent on the Students' Science Achievement

    ERIC Educational Resources Information Center

    Kizilkaya, Gonca; Askar, Petek

    2008-01-01

    Purpose: The purpose of this paper is to investigate the effect of an embedded pedagogical agent into a tutorial on achievement. Design/methodology/approach: Research methodology is designed according to the post test control group model in which the experimental group (69 students) was exposed to a tutorial with an embedded pedagogical agent;…

  13. 46 CFR Sec. 5 - General Agent's authority to effect payment of duties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false General Agent's authority to effect payment of duties. Sec. 5 Section 5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 5...

  14. 46 CFR Sec. 5 - General Agent's authority to effect payment of duties.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false General Agent's authority to effect payment of duties. Sec. 5 Section 5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 5...

  15. 46 CFR Sec. 5 - General Agent's authority to effect payment of duties.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false General Agent's authority to effect payment of duties. Sec. 5 Section 5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 5...

  16. 46 CFR Sec. 5 - General Agent's authority to effect payment of duties.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false General Agent's authority to effect payment of duties. Sec. 5 Section 5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 5...

  17. 46 CFR Sec. 5 - General Agent's authority to effect payment of duties.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false General Agent's authority to effect payment of duties. Sec. 5 Section 5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 5...

  18. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.

    PubMed

    Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K

    2014-08-25

    The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents.

  19. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.

    PubMed

    Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K

    2014-08-25

    The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents. PMID:24836665

  20. The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer.

    PubMed

    Bai, Fang; Morcos, Faruck; Sohn, Yang-Sung; Darash-Yahana, Merav; Rezende, Celso O; Lipper, Colin H; Paddock, Mark L; Song, Luhua; Luo, Yuting; Holt, Sarah H; Tamir, Sagi; Theodorakis, Emmanuel A; Jennings, Patricia A; Onuchic, José N; Mittler, Ron; Nechushtai, Rachel

    2015-03-24

    Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster's Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson-metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.

  1. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Paterson, Brett M; Donnelly, Paul S

    2011-05-01

    The molecules known as bis(thiosemicarbazones) derived from 1,2-diones can act as tetradentate ligands for Cu(II), forming stable, neutral complexes. As a family, these complexes possess fascinating biological activity. This critical review presents an historical perspective of their progression from potential chemotherapeutics through to more recent applications in nuclear medicine. Methods of synthesis are presented followed by studies focusing on their potential application as anti-cancer agents and more recent investigations into their potential as therapeutics for Alzheimer's disease. The Cu(II) complexes are of sufficient stability to be used to coordinate copper radioisotopes for application in diagnostic and therapeutic radiopharmaceuticals. Detailed understanding of the coordination chemistry has allowed careful manipulation of the metal based properties to engineer specific biological activities. Perhaps the most promising complex radiolabelled with copper radioisotopes to date is Cu(II)(atsm), which has progressed to clinical trials in humans (162 references).

  2. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Paterson, Brett M; Donnelly, Paul S

    2011-05-01

    The molecules known as bis(thiosemicarbazones) derived from 1,2-diones can act as tetradentate ligands for Cu(II), forming stable, neutral complexes. As a family, these complexes possess fascinating biological activity. This critical review presents an historical perspective of their progression from potential chemotherapeutics through to more recent applications in nuclear medicine. Methods of synthesis are presented followed by studies focusing on their potential application as anti-cancer agents and more recent investigations into their potential as therapeutics for Alzheimer's disease. The Cu(II) complexes are of sufficient stability to be used to coordinate copper radioisotopes for application in diagnostic and therapeutic radiopharmaceuticals. Detailed understanding of the coordination chemistry has allowed careful manipulation of the metal based properties to engineer specific biological activities. Perhaps the most promising complex radiolabelled with copper radioisotopes to date is Cu(II)(atsm), which has progressed to clinical trials in humans (162 references). PMID:21409228

  3. Central nervous system effects of local anaesthetic agents.

    PubMed

    Englesson, S; Matousek, M

    1975-02-01

    A review is given of an experimental study on cats where the influence of acid-base changes on central nervous system toxicity of local anaesthetic agents was studied. The conclusion of this study was that a respiratory acidosis increased the central nervous system toxicity of local anaesthetics and that the underlying metabolic conditions modified this increase. Thus a respiratory acidosis increased this toxicity more if it was based on a metabolic acidosis than on a metabolic alkalosis (Englesson, 1974; Englesson and Grevsten, 1974). An extended analysis is presented where automatic frequency analysis was performed on the e.e.g. recordings performed during the i.v. infusion of lignocaine, bupivacaine, L 134, HS 37 and its optical isomers. The preliminary results show that the electrical changes appearing in the e.e.g. from the start of the i.v. infusion until seizure activity were the same if this time interval was as short as 1 min or as long as 8 min. It also revealed remarkable individual differences between agents, for instance lignocaine displaying marked electrical changes already in the first third of this time period where bupivacaine showed no changes until shortly before seizures. PMID:238556

  4. In vitro contractile effects of agents used in the clinical management of postpartum haemorrhage.

    PubMed

    Morrison, John J; Crosby, David A; Crankshaw, Denis J

    2016-10-15

    Uterine atony is a major cause of postpartum haemorrhage and maternal mortality. However, the comparative pharmacology of agents used to treat this condition is poorly understood. This study evaluates, using human pregnant myometrium in vitro, a range of contractile parameters for agents used in the clinical treatment of atonic postpartum haemorrhage. The effects of oxytocin, carbetocin, ergometrine, carboprost, syntometrine and misoprostol were investigated in 146 myometrial strips from 19 donors. The potency and maximal response values were obtained, and compared, using both maximal amplitude and mean contractile force as indices of contraction. Single, EC50 concentrations of the agents were administered and both force and contraction peak parameters were compared during a 15-min exposure. Differences were considered significant when P<0.05. There were no significant differences in the peak amplitude of response between agents, except for misoprostol, which was inactive. There was a wide difference in potencies using both measures of contractility, with oxytocin and carbetocin being the most potent. The most important difference between the agents was in their ability to increase the mean contractile force, with oxytocin superior to all agents except syntometrine. In single dose experiments, mean contractile force was the parameter that separated the agents. In this respect, oxytocin was not statistically different from carboprost or syntometrine, but was superior to all other agents. These findings support a clear role for oxytocin as the first line agent for treatment of postpartum haemorrhage and raise doubts about the potential clinical usefulness of misoprostol. PMID:27423315

  5. The effect of coupling agents on composite durability

    SciTech Connect

    Macturk, K.S.; Schultheisz, C.R.; Hunston, D.L.; Schutte, C.L.

    1996-12-31

    The relationship between fiber surface treatments and glass fiber/epoxy composite durability was investigated. The type of silane coupling agent deposited on the fiber surface was varied, and the single fiber fragmentation test was used to measure strengths of the fiber and the fiber-matrix interface. The samples were tested dry and after conditioned in 75{degrees}C distilled water for up to 10 weeks. With dry samples the interface strengths varied with the reactivity of the silane deposited on the surface. Moisture exposure produced little change in fiber strengths and, for samples containing silane treated fibers, little change in interface strength, even when the silane was unreactive with the epoxy. In contrast, samples containing unsized fibers exhibited significant losses in interface strengths.

  6. The effects of anesthetic agents on oxidative stress

    NASA Astrophysics Data System (ADS)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  7. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents

    PubMed Central

    Gurova, Katerina

    2010-01-01

    Most of the anticancer chemotherapeutic drugs that are broadly and successfully used today are DNA-damaging agents. Targeting of DNA has been proven to cause relatively potent and selective destruction of tumor cells. However, the clinical potential of DNA-damaging agents is limited by the adverse side effects and increased risk of secondary cancers that are consequences of the agents' genotoxicity. In this review, we present evidence that those agents capable of targeting DNA without inducing DNA damage would not be limited in these ways, and may be as potent as DNA-damaging agents in the killing of tumor cells. We use as an example literature data and our own research of the well-known antimalarial drug quinacrine, which binds to DNA without inducing DNA damage, yet modulates a number of cellular pathways that impact tumor cell survival. PMID:20001804

  8. Comparative study of the effects of two bleaching agents on oral microbiota.

    PubMed

    Alkmin, Yara Tardelli; Sartorelli, Renata; Flório, Flávia Martão; Basting, Roberta Tarkany

    2005-01-01

    This study evaluated the in vivo effects of bleaching agents containing 10% carbamide peroxide (Platinum/Colgate) or 7.5% hydrogen peroxide (Day White 2Z/Discus Dental) on mutans Streptococcus during dental bleaching. The products were applied on 30 volunteers who needed dental bleaching. In each volunteer, one of the two bleaching agents was used on both dental arches one hour a day for three weeks. Analysis of the bacterial counts was made by collecting saliva before (baseline values), during (7 and 21 days) bleaching treatments and 14 days posttreatment. The Friedman non-parametric analysis (alpha=0.05) found no differences in microorganism counts at different times for each group for both agents (p>0.05). The Mann Whitney nonparametric test (alpha=0.05) showed no differences in micro-organism counts for both agents (p>0.05). Different bleaching agents did not change the oral cavity mutans Streptococcus counts. PMID:16130860

  9. Comparative study of the effects of two bleaching agents on oral microbiota.

    PubMed

    Alkmin, Yara Tardelli; Sartorelli, Renata; Flório, Flávia Martão; Basting, Roberta Tarkany

    2005-01-01

    This study evaluated the in vivo effects of bleaching agents containing 10% carbamide peroxide (Platinum/Colgate) or 7.5% hydrogen peroxide (Day White 2Z/Discus Dental) on mutans Streptococcus during dental bleaching. The products were applied on 30 volunteers who needed dental bleaching. In each volunteer, one of the two bleaching agents was used on both dental arches one hour a day for three weeks. Analysis of the bacterial counts was made by collecting saliva before (baseline values), during (7 and 21 days) bleaching treatments and 14 days posttreatment. The Friedman non-parametric analysis (alpha=0.05) found no differences in microorganism counts at different times for each group for both agents (p>0.05). The Mann Whitney nonparametric test (alpha=0.05) showed no differences in micro-organism counts for both agents (p>0.05). Different bleaching agents did not change the oral cavity mutans Streptococcus counts.

  10. Structure pre-requisites for isoflavones as effective antibacterial agents

    PubMed Central

    Mukne, Alka P.; Viswanathan, Vivek; Phadatare, Avinash G.

    2011-01-01

    Recent reports reveal that there is increasing incidence of infections of multidrug-resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Flavonoids and related compounds have been shown to possess potent antimicrobial activities. Most of the flavonoids are considered as constitutive antimicrobial substances recently termed as “Phytoanticipins,” especially those belonging to prenylated flavonoids and isoflavones. The current review highlights the structure prerequisites for isoflavones as antibacterial agents. Structure–activity relationship (SAR) conclusions have been drawn by comparing the reported minimum inhibitory concentration values for the various isoflavones against S. aureus and MRSA. There exists a significant co-relationship between the presence of certain functional groups (prenyl group, phenolic hydroxyl) at particular positions and antibacterial activity of the compounds. These trends have been postulated with a view of assisting better drug designing of future next-generation antiinfectives, particularly against the bothersome multidrug-resistant microbes. The SAR of these isoflavones has also proved to be a basis to explore the mechanism of antibacterial action. Thus, the study would prove extremely useful to synthesize antibacterial isoflavones in future, which would eventually be beneficial for optimizing the lead molecule for the antibacterial action PMID:22096314

  11. The Effect of a Change Agent on Use of Evidence-Based Mental Health Practices.

    PubMed

    Leathers, Sonya J; Spielfogel, Jill E; Blakey, Joan; Christian, Errick; Atkins, Marc S

    2016-09-01

    Children's service systems are faced with a critical need to disseminate evidence-based mental health interventions. Despite the proliferation of comprehensive implementation models, little is known about the key active processes in effective implementation strategies. This proof of concept study focused on the effect of change agent interactions as conceptualized by Rogers' diffusion of innovation theory on providers' (N = 57) use of a behavioral intervention in a child welfare agency. An experimental design compared use for providers randomized to training as usual or training as usual supplemented by change agent interactions after the training. Results indicate that the enhanced condition increased use of the intervention, supporting the positive effect of change agent interactions on use of new practices. Change agent types of interaction may be a key active process in implementation strategies following training.

  12. Emergent Societal Effects of Crimino-Social Forces in an Animat Agent Model

    NASA Astrophysics Data System (ADS)

    Scogings, Chris J.; Hawick, Ken A.

    Societal behaviour can be studied at a causal level by perturbing a stable multi-agent model with new microscopic behaviours and observing the statistical response over an ensemble of simulated model systems. We report on the effects of introducing criminal and law-enforcing behaviours into a large scale animat agent model and describe the complex spatial agent patterns and population changes that result. Our well-established predator-prey substrate model provides a background framework against which these new microscopic behaviours can be trialled and investigated. We describe some quantitative results and some surprising conclusions concerning the overall societal health when individually anti-social behaviour is introduced.

  13. The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents

    PubMed Central

    Petschauer, Jennifer S.; Madden, Andrew J.; Kirschbrown, Whitney P.; Song, Gina; Zamboni, William C.

    2015-01-01

    Major advances in carrier-mediated agents, which include nanoparticles, nanosomes and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure and delivery to the site of action over their small-molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery and pharmacologic effects (efficacy and toxicity) of these agents. This review provides an overview of factors that affect the pharmacokinetics and pharmacodynamics of carrier-mediated agents in preclinical models and patients. PMID:25707978

  14. Effects of coloring agents applied during sintering on bending strength and hardness of zirconia ceramics.

    PubMed

    Kuroda, Soichi; Shinya, Akikazu; Yokoyama, Daiichiro; Gomi, Harunori; Shinya, Akiyoshi

    2013-01-01

    The effects of coloring agents (Vita in-ceram 2000 YZ coloring liquid (VL) and IPS e.max ZirCAD (IS)) and shades (1, 3, and 5) applied during sintering on the bending strength and fracture toughness of zirconia ceramics was examined. No differences in the bending strength or fracture toughness were observed for the type of coloring agent used. Moreover, the bending strength and Vickers hardness of the zirconia ceramics decreased, while the crack length and fracture toughness did not change with the different coloring agents. The marginal borders of the indentations formed were clear and linear, and no damage, including chipping, was observed. Therefore, clinical application of zirconia ceramics can be recommended because the coloring agents and shades applied during sintering have the same effect as an opaque layer and cause no significant deterioration of the mechanical properties of the zirconia ceramics.

  15. [Adverse effects of antidepressive agents in hospitalized geriatric patients].

    PubMed

    Korínková, V; Kolibás, E; Králová, M; Novotný, V; Konceoj, V A; Pjatnickij, A N; Andrusenkova, M P

    1992-11-01

    The frequency, intensity and profile of adverse effects of antidepressants was studied in elderly patients. The series consisted of 102 patients with depression admitted to hospitals in Bratislava and Moscow. The adverse effects of amitriptyline (Amitriptylin Spofa) and maprotiline (Ludiomil Ciba-Geigy) were compared. The assessment done on days 0, 7, and 28 of treatment showed that xerostomia had the highest occurrence rate with both preparations studied. In patients treated with amitriptyline adverse effects were more severe and were recorded more frequently, requiring treatment withdrawal in 3 patients. The overall intensity of adverse effects was significantly higher with amitriptyline (p < 0.05). In the group of patients treated with amitriptyline the adverse effects were more marked in those with severe somatic pathology. The risk of amitriptyline treatment in elderly patients is being emphasized along with the need for monitoring and correcting adverse effects of the treatment. Although maprotiline exhibited a lower occurrence rate of adverse effects, cardiac functions should be regularly checked in patients with preexisting cardiac pathology. (Tab. 2, Fig. 3, Ref. 6.).

  16. Organometallic Titanocene–Gold Compounds as Potential Chemotherapeutics in Renal Cancer. Study of their Protein Kinase Inhibitory Properties

    PubMed Central

    2015-01-01

    Early–late transition metal TiAu2 compounds [(η-C5H5)2Ti{OC(O)CH2PPh2AuCl}2] (3) and new [(η-C5H5)2Ti{OC(O)-4-C6H4PPh2AuCl}2] (5) were evaluated as potential anticancer agents in vitro against renal and prostate cancer cell lines. The compounds were significantly more effective than monometallic titanocene dichloride and gold(I) [{HOC(O)RPPh2}AuCl] (R = −CH2– 6, −4-C6H4– 7) derivatives in renal cancer cell lines, indicating a synergistic effect of the resulting heterometallic species. The activity on renal cancer cell lines (for 5 in the nanomolar range) was considerably higher than that of cisplatin and highly active titanocene Y. Initial mechanistic studies in Caki-1 cells in vitro coupled with studies of their inhibitory properties on a panel of 35 kinases of oncological interest indicate that these compounds inhibit protein kinases of the AKT and MAPKAPK families with a higher selectivity toward MAPKAPK3 (IC503 = 91 nM, IC505 = 117 nM). The selectivity of the compounds in vitro against renal cancer cell lines when compared to a nontumorigenic human embryonic kidney cell line (HEK-293T) and the favorable preliminary toxicity profile on C57black6 mice indicate that these compounds (especially 5) are excellent candidates for further development as potential renal cancer chemotherapeutics. PMID:25435644

  17. Effectiveness of prokinetic agents against diseases external to the gastrointestinal tract.

    PubMed

    Hiyama, Toru; Yoshihara, Masaharu; Tanaka, Shinji; Haruma, Ken; Chayama, Kazuaki

    2009-04-01

    Prokinetic agents are effective not only for disease of the gastrointestinal (GI) tract but also for those external to the GI tract such as the central nervous system, and the respiratory, urologic, and metabolic organs. This article reviews the effectiveness of prokinetic agents against diseases external to the GI tract. Studies were identified by computerized and manual searches of the available literature. A Medline search was performed (1975-July, 2008) using the following medical subject headings: prokinetic agent, metoclopramide, domperidone, trimebutine, cisapride, itopride, mosapride, tegaserod, and human. The identified diseases for which prokinetic agents may be effective are various: bronchial asthma, chronic cough, hiccup, spontaneous bacterial peritonitis, cholelithiasis, diabetes mellitus, acute migraine, Parkinson's disease, anorexia nervosa, Tourette's disorder, urologic sequelae of spinal cord injury and of radical hysterectomy for cervical cancer, laryngeal dysfunction and so on. These agents are also useful for prevention of aspiration pneumonia during anesthesia, and in tube-fed patients. Prokinetic agents should be a valuable addition to our currently limited pharmacological armamentarium not only for functional bowel disease, but also for diseases external to the GI tract. PMID:19220673

  18. A review on promising natural agents effective on hyperlipidemia.

    PubMed

    Bahmani, Mahmoud; Mirhoseini, Mahmoud; Shirzad, Hedayatollah; Sedighi, Mehrnoosh; Shahinfard, Nejmeh; Rafieian-Kopaei, Mahmoud

    2015-07-01

    Hyperlipidemia is a prevalent disease and a major component of the metabolic syndrome resulting from various factors. This disease increases morbidity and mortality when combined with other prevalent diseases such as diabetes mellitus, hypertension, and cardiovascular diseases. The side effects of the current lipid-lowering drugs have increased the tendency to move toward traditional and alternative treatments. Epidemiological observations indicate that using alternative treatments, consumption of medicinal plants, diet, and consumption of fruits have had satisfactory results on the effects of hyperlipidemia in many societies. It should be noted that in majority of societies, even developed countries, the tendency toward eating lipid-lowering medicinal plants has increased extensively. Using these plants especially when common remedies cannot control the disease is significant. Although consumption of medicinal plants by hyperlipidemic patients may show improvement in disease state, drug interaction and side effects may cause complications in disease control. Therefore, in this review, apart from introducing some of the reliable plants effective in inhibition and decrease of hyperlipidemia, the possibility of their intoxication and drug interaction is also presented. PMID:25633423

  19. A review on promising natural agents effective on hyperlipidemia.

    PubMed

    Bahmani, Mahmoud; Mirhoseini, Mahmoud; Shirzad, Hedayatollah; Sedighi, Mehrnoosh; Shahinfard, Nejmeh; Rafieian-Kopaei, Mahmoud

    2015-07-01

    Hyperlipidemia is a prevalent disease and a major component of the metabolic syndrome resulting from various factors. This disease increases morbidity and mortality when combined with other prevalent diseases such as diabetes mellitus, hypertension, and cardiovascular diseases. The side effects of the current lipid-lowering drugs have increased the tendency to move toward traditional and alternative treatments. Epidemiological observations indicate that using alternative treatments, consumption of medicinal plants, diet, and consumption of fruits have had satisfactory results on the effects of hyperlipidemia in many societies. It should be noted that in majority of societies, even developed countries, the tendency toward eating lipid-lowering medicinal plants has increased extensively. Using these plants especially when common remedies cannot control the disease is significant. Although consumption of medicinal plants by hyperlipidemic patients may show improvement in disease state, drug interaction and side effects may cause complications in disease control. Therefore, in this review, apart from introducing some of the reliable plants effective in inhibition and decrease of hyperlipidemia, the possibility of their intoxication and drug interaction is also presented.

  20. Early effects of the antineoplastic agent salinomycin on mitochondrial function.

    PubMed

    Managò, A; Leanza, L; Carraretto, L; Sassi, N; Grancara, S; Quintana-Cabrera, R; Trimarco, V; Toninello, A; Scorrano, L; Trentin, L; Semenzato, G; Gulbins, E; Zoratti, M; Szabò, I

    2015-01-01

    Salinomycin, isolated from Streptomyces albus, displays antimicrobial activity. Recently, a large-scale screening approach identified salinomycin and nigericin as selective apoptosis inducers of cancer stem cells. Growing evidence suggests that salinomycin is able to kill different types of non-stem tumor cells that usually display resistance to common therapeutic approaches, but the mechanism of action of this molecule is still poorly understood. Since salinomycin has been suggested to act as a K(+) ionophore, we explored its impact on mitochondrial bioenergetic performance at an early time point following drug application. In contrast to the K(+) ionophore valinomycin, salinomycin induced a rapid hyperpolarization. In addition, mitochondrial matrix acidification and a significant decrease of respiration were observed in intact mouse embryonic fibroblasts (MEFs) and in cancer stem cell-like HMLE cells within tens of minutes, while increased production of reactive oxygen species was not detected. By comparing the chemical structures and cellular effects of this drug with those of valinomycin (K(+) ionophore) and nigericin (K(+)/H(+) exchanger), we conclude that salinomycin mediates K(+)/H(+) exchange across the inner mitochondrial membrane. Compatible with its direct modulation of mitochondrial function, salinomycin was able to induce cell death also in Bax/Bak-less double-knockout MEF cells. Since at the concentration range used in most studies (around 10 μM) salinomycin exerts its effect at the level of mitochondria and alters bioenergetic performance, the specificity of its action on pathologic B cells isolated from patients with chronic lymphocytic leukemia (CLL) versus B cells from healthy subjects was investigated. Mesenchymal stromal cells (MSCs), proposed to mimic the tumor environment, attenuated the apoptotic effect of salinomycin on B-CLL cells. Apoptosis occurred to a significant extent in healthy B cells as well as in MSCs and human primary

  1. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  2. A colorimetric assay for viral agents that produce cytopathic effects.

    PubMed

    Heldt, Caryn L; Hernandez, Raquel; Mudiganti, Usharani; Gurgel, Patrick V; Brown, Dennis T; Carbonell, Ruben G

    2006-07-01

    Many animal viruses produce cytopathic effects in their host cells during a productive infection. While some virus infections can be assayed by the production of plaques, many viruses, while producing cytotoxicity, do not easily form plaques, or do not form plaques at all. Additionally, viruses within families such as the parvoviruses may have different preferred forms of titration making comparative virology difficult even among related groups. Porcine parvovirus (PPV), canine parvovirus (CPV), and minute virus of mice (MVM) are usually titrated using different infectivity assays. A direct comparison of infectious virus titer between these parvoviruses was sought, and a tetrazolium salt assay, MTT has been applied to measure cytopathic effect produced by viral infection for different members of the parvovirus family. Infectious PPV measured using the MTT and the TCID50 assays exhibited excellent correlation and titers for CPV and MVM were consistently duplicated using the MTT assay. The MTT assay was also applied to an unrelated virus, Sindbis, which is routinely titrated by plaque assay. MTT titration of Sindbis virus mutants was found to be valuable for preliminary screening. This assay can be adapted, by correlation to an accepted titration method, to any viral system which produces measurable cytopathic effect.

  3. Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis

    PubMed Central

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F−, Cl−, and Br− in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu2Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  4. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    PubMed

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  5. [Toxicological effects of weapons of mass destruction and noxious agents in modern warfare and terrorism].

    PubMed

    Vucemilović, Ante

    2010-06-01

    Weapons of mass destruction (WMD) best portray the twisted use of technological achievements against the human species. Despite arm control efforts, WMD threat continues to exist and even proliferate. This in turn calls for improvement in defensive measures against this threat. The modern soldier is exposed to a number of chemical, biological, and radiological agents in military and peace operations, while civilians are mainly exposed to terrorist attacks. Regardless of origin or mode of action, WMDs and other noxious agents aim for the same - to make an organism dysfunctional. Because their effects are often delayed, these agents are hard to spot on time and treat. This review presents a biomedical aspect of agents used in warfare and terrorism, including polonium-210, depleted uranium, salmonella, anthrax, genetically modified bacteria, cobweb-like polymer fibre, sarin, and mustard gas.

  6. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability.

  7. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. PMID:27450259

  8. Comparison of Cantharidin Toxicity in Breast Cancer Cells to Two Common Chemotherapeutics

    PubMed Central

    Kern, Katie M.; Schroeder, Jennifer R.

    2014-01-01

    As part of a larger study synthesizing a more directed form of chemotherapy, we have begun to assess the efficacy of different potential toxins that could be delivered locally rather than systemically. In doing so, we hope to reduce the systemic side effects commonly observed, while maintaining a high level of toxicity and eliminating the need for metabolic alterations. In a search for this more efficient method for killing cancerous cells, we have begun studying cantharidin, a toxin used in traditional Chinese medicine, as a potential chemotherapeutic. Using an MTT cell viability assay, the toxicity of cantharidin was compared to both cyclophosphamide and paclitaxel in three different breast cancer cell lines: MCF-7, MDA-MB-231, and SK-BR-3. Increasing the concentration of chemotherapy drugs did decrease cell viability in all cell lines when cantharidin and cyclophosphamide were applied; however differences for paclitaxel were cell-specific. Additionally, cantharidin exhibited the highest decrease in cell viability regardless of cell type, indicating it may be a much more potent and less specific chemotherapeutic. These results will help us move forward in developing a potentially more potent treatment for breast cancer that might eliminate the need for subtype-specific treatments. PMID:25302124

  9. Effects of nonlinear propagation in ultrasound contrast agent imaging.

    PubMed

    Tang, Meng-Xing; Kamiyama, Naohisa; Eckersley, Robert J

    2010-03-01

    This paper investigates two types of nonlinear propagation and their effects on image intensity and contrast-to-tissue ratio (CTR) in contrast ultrasound images. Previous studies have shown that nonlinear propagation can occur when ultrasound travels through tissue and microbubble clouds, making tissue farther down the acoustic path appear brighter in pulse inversion (PI) images, thus reducing CTR. In this study, the effect of nonlinear propagation through tissue or microbubbles on PI image intensity and CTR are compared at low mechanical index. A combination of simulation and experiment with SonoVue microbubbles were performed using a microbubble dynamics model, a laboratory ultrasound system and a clinical prototype scanner. The results show that, close to the bubble resonance frequency, nonlinear propagation through a bubble cloud of a few centimeter thickness with a modest concentration (1:10000 dilution of SonoVue microbubbles) is much more significant than through tissue-mimicking material. Consequently, CTR in regions distal to the imaging probe is greatly reduced for nonlinear propagation through the bubble cloud, with as much as a 12-dB reduction compared with nonlinear propagation through tissue-mimicking material. Both types of nonlinear propagation cause only a small change in bubble PI signals at the bubble resonance frequency. When the driving frequency increases beyond bubble resonance, nonlinear propagation through bubbles is greatly reduced in absolute values. However because of a greater reduction in nonlinear scattering from bubbles at higher frequencies, the corresponding CTR is much lower than that at bubble resonance frequency.

  10. Effect of ultrasound on adherent microbubble contrast agents.

    PubMed

    Loughran, Jonathan; Sennoga, Charles; J Eckersley, Robert; Tang, Meng-Xing

    2012-11-01

    An investigation into the effect of clinical ultrasound exposure on adherent microbubbles is described. A flow phantom was constructed in which targeted microbubbles were attached using biotin-streptavidin linkages. Microbubbles were insonated by broadband imaging pulses (centred at 2.25 MHz) over a range of pressures (peak negative pressure (PNP) = 60-375 kPa). Individual adherent bubbles were observed optically and classified as either being isolated or with a single neighbouring bubble. It is found that bubble detachment and deflation are two significant effects, even during low amplitude ultrasound exposure. Specifically, while at very low acoustic pressure (PNP < 75 kPa) 95% of the bubbles were not affected, at medium pressure (151 kPa < P < 225 kPa) 53% of the bubbles detached and at higher pressures (301 kPa < P < 375 kPa) 96% of the bubbles detached. In addition, more than 50% of the bubbles underwent deflation at pressures between 301 and 375 kPa. At pressures between 226 and 300 kPa, more adherent bubbles detached when there was a neighbouring bubble, suggesting the role of multiple scattering and secondary Bjerknes force on bubble detachment. The flow shear, primary and secondary Bjerknes forces exerted on each bubble were calculated and compared to the estimated forces acting on the bubble due to oscillations. The oscillation force is shown to be much higher than other forces. The mechanisms of bubble detachment are discussed.

  11. Thymol nanospheres as an effective anti-bacterial agent.

    PubMed

    Wattanasatcha, Anna; Rengpipat, Sirirat; Wanichwecharungruang, Supason

    2012-09-15

    Among thymol, carvacrol, citronellal, eugenol and terpinen-4-ol, thymol showed the highest antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Thymol was then encapsulated into water dispersible submicron sized ethylcellulose/methylcellulose spheres, attaining the relatively high thymol loading level of 43.53% (weight of encapsulated thymol to weight of the thymol-loaded spheres). When tested against the same three bacterial strains, the encapsulated thymol gave comparable minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values to the unencapsulated compound while mostly showing lower MIC and MBC values than the conventionally used preservative, methyl-p-hydroxybenzoate (methylparaben). The use of encapsulated thymol at 0.078, 0.156 and 0.625 mg ml(-1) (0.52, 1.04 and 4.16 mmol(-1), respectively) in cosmetic lotion formulations provided total suppression of viable E. coli, S. aureus and P. aeruginosa growth (all initially seeded at 10(5) cfu ml(-1)), respectively, over the three month test period, whereas unencapsulated thymol showed effective suppression for only 2-4 weeks. Effective bacterial suppression by encapsulated thymol was also observed when used in cream and aqueous gel cosmetic formulations.

  12. A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2

    PubMed Central

    Ma, Taotao; Huang, Cheng; Meng, Xiaoming; Li, Xiaofeng; Zhang, Yilong; Ji, Shuai; Li, Jun; Ye, Min; Liang, Hong

    2016-01-01

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an effective adjuvant via epigenetic modification through targeting HDAC2. Molecular docking and SPR assay firstly reported that 18βGA, major metabolite of GA, could directly bind to HDAC2 and inhibit the activity of HDAC2. The effects and mechanisms of GA and 18βGA were assessed in CP-induced AKI in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. TUNEL and FCM results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by 18βGA in AKI models while siRNA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing the level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved understanding of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemotherapy. PMID:27145860

  13. Effects of orally administered chemotherapeutics (quinine, salinomycin) against Henneguya sp. Thelohán, 1892 (Myxozoa: Myxobolidae), a gill parasite in the tapir fish Gnathonemus petersii Günther, 1862 (Teleostei).

    PubMed

    Dohle, Angelika; Schmahl, Günter; Raether, Wolfgang; Schmidt, Hartmut; Ritter, Günter

    2002-09-01

    When given orally, quinine or salinomycin cause irreversible damage to the plasmodial developmental stages of Henneguya sp., a gill parasite in the tapir fish Gnathonemus petersii. Naturally infected tapir fish measured 75-169 mm in total length and their total weight ranged over 4.3-11.7 g. The fish bore 7-77 plasmodia in their gill arches. Medicinal food containing either quinine (5 g/1000 g food) or salinomycin (0.075 g/1000 g food) was given once a day to naturally infected fish in a food chain via water fleas ( Daphnia spp) for a period of 3, 6, or 9 days. From the monitored feeding of the tapir fish and weight determinations of the water fleas, it was calculated that gross uptake was 18.5 micro g/kg body weight fish daily for pure salinomycin and was 1.25 mg/kg body weight daily for quinine. After the end of the experiments, the fish were sacrificed and the plasmodia were carefully prepared from the gill arches and processed for transmission electron microscopy. As seen by ultrastructure investigations, for both substances the grade of damage in the parasites correlated positively with the period of application. When quinine was given for a 3-day period, the trophozoite ecto- and endoplasm exerted numerous vacuoles, caused by the drug, and the presporogonous and the pansporoblastic stages were malformed. Following a 6-day period, numerous abortive polar capsules were found in the trophozoite cytoplasm. To a large extent, the limiting membranes of the polaroblasts and valvogenic cells were destroyed. In addition, deep clefts between the polaroblasts, the valvogenic cells and between the two sporoblasts were observed. Following a 9-day treatment, all damage increased and, in addition, generative cells and two-cell stages were no longer detectable. As a first sign for the effects of salinomycin, following a 3-day treatment, a shrinking of the whole plasmodia occurred and the sutures in the pansporoblasts were enlarged. The polar capsules were malformed and the

  14. Xenograft models for undifferentiated pleomorphic sarcoma not otherwise specified are essential for preclinical testing of therapeutic agents

    PubMed Central

    Becker, Marc; Graf, Claudine; Tonak, Marcus; Radsak, Markus P.; Bopp, Tobias; Bals, Robert; Bohle, Rainer M.; Theobald, Matthias; Rommens, Pol-Maria; Proschek, Dirk; Wehler, Thomas C.

    2016-01-01

    Undifferentiated pleomorphic sarcoma not otherwise specified belongs to the heterogeneous group of soft tissue tumors. It is preferentially located in the upper and lower extremities of the body, and surgical resection remains the only curative treatment. Preclinical animal models are crucial to improve the development of novel chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma. However, this approach has been hampered by the lack of reproducible animal models. The present study established two xenograft animal models generated from stable non-clonal cell cultures, and investigated the difference in chemotherapeutic effects on tumor growth between undifferentiated pleomorphic sarcoma in vivo and in vitro. The cell cultures were generated from freshly isolated tumor tissues of two patients with undifferentiated pleomorphic sarcoma. For the in vivo analysis, these cells were injected subcutaneously into immunodeficient mice. The mice were monitored for tumor appearance and treated with the most common or innovative chemotherapeutic agents available to date. Furthermore, the same drugs were administered to in vitro cell cultures. The most effective tumor growth inhibition in vitro was observed with doxorubicin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as vorinostat. In the in vivo xenograft mouse model, the combination of doxorubicin and the tyrosine kinase inhibitor pazopanib induced a significant tumor reduction. By contrast, treatment with vorinostat did not reduce the tumor growth. Taken together, the results obtained from drug testing in vitro differed significantly from the in vivo results. Therefore, the novel and reproducible xenograft animal model established in the present study demonstrated that in vivo models are required to test potential chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma prior to clinical use, since animal models are more similar

  15. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid).

    PubMed

    Shi, Xuetao; Zhang, Guangcheng; Phuong, Thanh Vu; Lazzeri, Andrea

    2015-01-01

    The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates) were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid) (PDLA) acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA) indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young's modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization. PMID:25608041

  16. Effects of antibacterial agents on in vitro ovine ruminal biotransformation of the hepatotoxic pyrrolizidine alkaloid jacobine.

    PubMed

    Wachenheim, D E; Blythe, L L; Craig, A M

    1992-08-01

    Ingestion of pyrrolizidine alkaloids, naturally occurring plant toxins, causes illness and death in a number of animal species. Senecio jacobaea pyrrolizidine alkaloids cause significant economic losses due to livestock poisoning, particularly in the Pacific Northwest. Some sheep are resistant to pyrrolizidine alkaloid poisoning, because ovine ruminal biotransformation detoxifies free pyrrolizidine alkaloids in digesta. Antibacterial agents modify ruminal fermentation. Pretreatment with antibacterial agents may account for some animal variability in resistance to pyrrolizidine alkaloid toxicosis, and antibacterial agents can also be used for characterizing ruminal pyrrolizidine alkaloid-biotransforming microflora. The objective of this study was to evaluate the effects of antibacterial agents on biotransformation of a predominant S. jacobaea pyrrolizidine alkaloid, jacobine, in ovine ruminal contents. Ovine ruminal jacobine biotransformation was tested in vitro with 20 independent antibacterial agents. Low amounts of rifampin and erythromycin prevented jacobine biotransformation. Chlortetracycline, lasalocid, monensin, penicillin G, and tetracycline were slightly less effective at inhibiting jacobine biotransformation. Bacitracin, crystal violet, kanamycin, and neomycin were moderately inhibitory against jacobine biotransformation. Brilliant green, chloramphenicol, gramicidin, nalidixic acid, polymyxin B SO4, sodium azide, streptomycin, sulfisoxazole, and vancomycin had little to no effect on jacobine biotransformation. The antibiotics that were most effective at inhibiting biotransformation were those that are active against gram-positive bacteria. Therefore, gram-positive bacteria are most likely critical members of the jacobine-biotransforming consortia.

  17. Potential of iron chelators as effective antiproliferative agents.

    PubMed

    Richardson, D R

    1997-01-01

    Initially the impetus to develop iron (Fe) chelators for clinical use was based upon the need for a drug to treat Fe-overload diseases such as beta-thalassemia. However, it has become clear that Fe chelators may be useful for the treatment of a wide variety of disease states, including cancer, malaria, and free radical mediated injury. In particular, over the last 10 years a number of studies have shown that Fe chelators may be of use in the treatment of a number of aggressive human cancers, including neuroblastoma and leukemia, and several clinical trials have substantiated their potential. In the current review the role of Fe in cellular proliferation will be discussed, followed by the possible sites and mechanism of action of some of the most effective ligands. Attention will then be turned to examine the Fe chelators shown to possess antiproliferative activity and the clinical trials performed to assess their efficacy.

  18. Structural effects of nogalamycin, an antibiotic antitumour agent, on DNA

    SciTech Connect

    Banerjee, T.; Mukhopadhyay, R.

    2008-09-19

    The structural changes of DNA, induced by the antitumour antibiotic nogalamycin, have been studied by atomic force microscopy (AFM). The transformation in the tertiary structure of 4361 bp long plasmid pBR322 DNA, after incubation with nogalamycin at 37 deg. C, has been monitored at the single molecule level. The AFM topographs of free DNA and the DNA-nogalamycin complex, incubated for 6, 12, 24, 36 and 48 h, reveal a gradual change from the circular supercoiled form having strand crossovers to the more compact plectonemic superhelix. With increasing incubation time, the extent of plectonemic coiling increases, indicating increasing level of drug binding via intercalative mode. Supportive evidences are obtained from the CD and UV-vis spectroscopic studies. To our knowledge, this is the first report on an AFM imaging study of the effects of nogalamycin, an anthracyclin intercalator, on DNA.

  19. Biogenic silver nanoparticles: efficient and effective antifungal agents

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  20. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity.

    PubMed

    Sonubi, A; Arcagni, A; Stefani, S; Ausloos, M

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.

  1. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity.

    PubMed

    Sonubi, A; Arcagni, A; Stefani, S; Ausloos, M

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent. PMID:27627313

  2. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity

    NASA Astrophysics Data System (ADS)

    Sonubi, A.; Arcagni, A.; Stefani, S.; Ausloos, M.

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.

  3. Cardiometabolic risk in psoriasis: differential effects of biologic agents.

    PubMed

    Kaplan, Mariana J

    2008-01-01

    Psoriasis is associated to an increased risk of cardiovascular (CV) complications. Overall, the pathogenic mechanisms involved in premature CV complications in psoriasis appear to be complex and multifactorial, with traditional and nontraditional risk factors possibly contributing to the increased risk. Based on what is known about the pathogenesis of psoriasis and extrapolating the current knowledge on CV complications in other inflammatory diseases, studies are needed to investigate if appropriate control of the inflammatory, immunologic and metabolic disturbances present in psoriasis can prevent the development of this potentially lethal complication. It is clear that there is a great need for heightened awareness of the increased risk for vascular damage in patients with psoriasis. It is also crucial to closely monitor patients with psoriasis for CV risk factors including obesity, hypertension, diabetes, and hyperlipidemia. Whether treatment regimens that effectively manage systemic inflammation will lead to prevention of CV complications in psoriasis needs to be investigated. Clearly, studies should focus on establishing the exact mechanisms that determine CV risk in psoriasis so that appropriate preventive strategies and treatment guidelines can be established.

  4. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property.

    PubMed

    Azmi, Asfar S; Sarkar, Fazlul H; Hadi, S M

    2013-01-01

    " Let food be thy medicine and medicine be thy food" was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating) behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents. PMID:24358870

  5. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?

    PubMed

    Apetoh, L; Ladoire, S; Coukos, G; Ghiringhelli, F

    2015-09-01

    Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.

  6. The mass media alone are not effective change agents.

    PubMed

    Ruijter, J M

    1991-01-01

    Social mobilization programs for immunization have been used by African leaders, however, coverage from 20% to 70% in capitals like Mogadishu, Maputo, and Dakar were the result of short campaigns rather than the consequence of knowledge, attitudes, and practices (KAP) improvement. One-party states relied on their network of cadres issuing decrees from the top down to enforce completion of these immunization campaigns. Sometimes resistance developed against these programs, as the military mobilized people (e.g., Somalia). These efforts became rather superficial once the temporary pressure evaporated. In Mogadishu coverage increased from 22% to 70% in 1985, and within a year it dropped back to 8% above the original level. Nigeria, Senegal, and Togo where they used regular mini campaigns had better results. Research data from Botswana, Kenya, Lesotho, Malawi, Mozambique, and Zambia were analyzed. In 1983 in Kenya 73% of health workers never advised their clients, and 82% were incompetent to do so. Data also showed that clinics provided the bulk of information to women aged 15-45 in lower income groups, but they rarely consulted village health workers. Radio and TV programs were not reaching people because radio ownership was not universal (47% in Zambia and 30% in Zimbabwe), and batteries were often not available. In addition, most people turned to the radio for entertainment. In 1989, vaccination coverage was 19% in Luanda, Angola, but only 5% of 232 respondents to an evaluation could name the immunizable diseases. An identical percentage was familiar with these diseases in a Zambian study in 1986. Media experts proposed dramas to raise interest, but innovative mass media programs of dissemination of the message advocated in the 1960s did not prove effective to bring about KAP changes. Training of health and paramedical personnel by mass organizations as initiated in Ethiopia may prove to be worthwhile.

  7. An Agent-Based Modeling Approach for Determining Corn Stover Removal Rate and Transboundary Effects

    NASA Astrophysics Data System (ADS)

    Gan, Jianbang; Langeveld, J. W. A.; Smith, C. T.

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers.

  8. Effect of curing agent and temperature on the rheological behavior of epoxy resin systems.

    PubMed

    Zhao, Chenhui; Zhang, Guangcheng; Zhao, Lei

    2012-01-01

    The effect of curing agent (6610) content and temperature on the rheological behavior of the epoxy resin CYD-128 was studied by DSC analysis and viscosity experiments. The results show that the resin system meets the requirements of processing technology. A complete reaction occurs when the curing agent content (40 parts per hundred resin, phr) is a little higher than the theoretical value (33.33 phr), while the degree of reaction of the resin system is reduced when the curing agent content is lower (25.00 phr) than theoretical value. However, excessive curing agent (50.00 phr) results in a lower reaction rate. Curing agent content has little influence on gel time when curing agent content exceeded 33.33 phr and the temperature was less than 70 °C. The isothermal viscosity-time curves shift towards the -x axis when the temperature rises from 50 °C to 80 °C. Meanwhile, higher temperature results in higher reaction rates.

  9. Mechanisms of self-organization and finite size effects in a minimal agent based model

    NASA Astrophysics Data System (ADS)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-03-01

    We present a detailed analysis of the self-organization phenomenon in which the stylized facts originate from finite size effects with respect to the number of agents considered and disappear in the limit of an infinite population. By introducing the possibility that agents can enter or leave the market depending on the behavior of the price, it is possible to show that the system self-organizes in a regime with a finite number of agents which corresponds to the stylized facts. The mechanism for entering or leaving the market is based on the idea that a too stable market is unappealing for traders, while the presence of price movements attracts agents to enter and speculate on the market. We show that this mechanism is also compatible with the idea that agents are scared by a noisy and risky market at shorter timescales. We also show that the mechanism for self-organization is robust with respect to variations of the exit/entry rules and that the attempt to trigger the system to self-organize in a region without stylized facts leads to an unrealistic dynamics. We study the self-organization in a specific agent based model but we believe that the basic ideas should be of general validity.

  10. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting.

    PubMed

    Yang, Fan; Li, Guo Xue; Yang, Qing Yuan; Luo, Wen Hai

    2013-10-01

    This study investigated the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. Three different bulking agents (cornstalks, sawdust, and spent mushroom substrate) were used to compost kitchen waste under aerobic conditions in 60-L reactors for a 28-d period. A control treatment was also studied using kitchen waste without a bulking agent. During the experiment, maturity indexes such as temperature, pH value, C/N ratio, and germination index were determined, and continuous measurements of leachate and gaseous emissions (CH₄, N₂O, and NH₃) were taken. The results showed that all of the composts with bulking agents reached the required maturity standard, and the addition of spent mushroom substrate gave the highest maturity (C/N ratio decreased from 23 to 16 and germination index increased from 53% to 111%). The bulking agents also reduced leachate production and CH₄ and N₂O emissions, but had little impact on NH3 emissions. Composting with sawdust as a bulking agent was found to emit less total greenhouse gas (33 kg CO₂-eqt(-1) dry matter) than the other treatments. PMID:24001663

  11. An agent-based modeling approach for determining corn stover removal rate and transboundary effects.

    PubMed

    Gan, Jianbang; Langeveld, J W A; Smith, C T

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers.

  12. Long-term health effects of exposure to sarin and other anticholinesterase chemical warfare agents.

    PubMed

    Page, William F

    2003-03-01

    In a telephone survey of 4,022 military volunteers for a 1955-1975 program of experimental exposures to chemical agents at Edgewood, Maryland, the current health of those exposed to anticholinesterase agents was compared with that of men exposed to no active chemicals (no chemical test) and to two or more other types of chemical agents (other chemical tests). The survey posed questions about general health and about neurological and psychological deficits. There were only two statistically significant differences: volunteers in anticholinesterase agent tests reported fewer attention problems than those in other chemical tests and greater sleep disturbance than those in no chemical tests. In contrast, volunteers who reported exposure to civilian or military chemical agents outside of their participation in the Edgewood program reported many statistically significant adverse neurological and psychological effects, regardless of their experimental exposure. In this study, the health effects of self-reported, nonexperimental exposure, which are subject to recall bias, were greater than the health effects of experimental exposure. PMID:12685692

  13. Comparative behavioral effects of anticholinergic agents in cats: psychomotor stimulation and aggression.

    PubMed

    Beleslin, D B; Stefanović-Denić, K; Samardzić, R

    1986-03-01

    The effect on behavior of eight anticholinergic agents: atropine, scopolamine, trihexyphenidyl, biperiden, homatropine, eucatropine, hexocyclium and propantheline, injected into the cerebral ventricle (ICV) of the cat was investigated and compared. The anticholinergic agents evoked: (1) psychomotor stimulation such as miaowing, loud calling, restlessness, impelling locomotion, jumping, vacant staring, apprehension and loss of interest of the surroundings; (2) aggression, hissing, threat, attack, defense, fighting with paws and flight; (3) autonomic responses including mydriasis, tachypnea, dyspnea, licking, vomiting, salivation, micturition and defection; and (4) motor phenomena comprising scratching, ataxia, rigidity, tremor, weakness with adynamia or myoclonic jerks. Convulsions appeared only after ICV injections of atropine and homatropine. The most characteristic behavioral effect of anticholinergic agents was psychomotor stimulation accompanied by mild aggressive responses. The only exception was propantheline which caused a muscular weakness and adynamia. Atropine and scopolamine alone induced a dose-dependent impelling locomotion as well as fighting behavior. Carbachol and eserine injected intracerebroventricularly reversed the locomotion autonomic and motor phenomena produced by anticholinergic agents administered similarly. It is suggested that anticholinergic agents acting as partial agonists, can produce their behavioral effects through central cholinoceptive sites. PMID:3703893

  14. Synergistic Effects of Nonthermal Plasma and Disinfecting Agents against Dental Biofilms In Vitro

    PubMed Central

    Koban, Ina; Geisel, Marie Henrike; Holtfreter, Birte; Jablonowski, Lukasz; Hübner, Nils-Olaf; Matthes, Rutger; Masur, Kai; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2013-01-01

    Aim. Dental biofilms play a major role in the pathogenesis of many dental diseases. In this study, we evaluated the synergistic effect of atmospheric pressure plasma and different agents in dentistry on the reduction of biofilms. Methods and Results. We used monospecies (S. mutans) and multispecies dental biofilm models grown on titanium discs in vitro. After treatment with one of the agents, the biofilms were treated with plasma. Efficacy of treatment was determined by the number of colony forming units (CFU) and by live-dead staining. For S. mutans biofilms no colonies could be detected after treatment with NaOCl or H2O2. For multispecies biofilms the combination with plasma achieved a higher CFU reduction than each agent alone. We found an additive antimicrobial effect between argon plasma and agents irrespective of the treatment order with cultivation technique. For EDTA and octenidine, antimicrobial efficacy assessed by live-dead staining differed significantly between the two treatment orders (P < 0.05). Conclusions. The effective treatment of dental biofilms on titanium discs with atmospheric pressure plasma could be increased by adding agents in vitro. PMID:24159388

  15. Metabolic effects of lathyrogenic agents on cartilage in vivo and in vitro.

    PubMed

    KARNOVSKY, M J; KARNOVSKY, M

    1961-02-01

    The effects of lathyrogenic agents in vivo and in vitro are described, in respect to some biochemical indices of cartilage metabolism. Lathyrogenic agents in vivo inhibited the incorporation of radiosulfate into rat epiphyseal cartilage and the isolated chondroitin sulfate. No significant changes in hydroxyproline or hexosamine content of epiphyseal cartilage were found, but there was a marked increase in water content. The content of chondroitin sulfate, measured as uronic acid, was decreased. The importance of taking growth rate differences between control and experimental rats into account in assessing the effects of lathyrogenic agents in vivo is emphasized. In an in vitro system, utilizing fresh calf costal cartilage slices, the presence of low concentrations of lathyrogenic agents markedly affected various metabolic events. The incorporation into cartilage slices of sulfate-S(35), glucose-U-C(14), and glycine-1-C(14) was significantly depressed, as was the production of organic acids, including lactic acid. In general, these effects were more severe under anaerobic conditions. Glutamine restored the activities of the slices treated with lathyrogenic agents to control values obtained in the absence of either lathyrogen or glutamine.

  16. Level Up, My-Pet: The Effects of Level-up Mechanism of Educational Agents on Student Learning

    ERIC Educational Resources Information Center

    Chen, Zhi-Hong; Chao, Po-Yao; Hsu, Ming-Chieh; Teng, Chin-Hung

    2013-01-01

    A number of studies have been devoted to investigating the influence of educational agents on different aspects of student learning. However, little attention has been paid to the effects of the level-up mechanism of educational agents on students although this is a significant issue. Thus, this study develops an educational agent with the…

  17. Cisplatin@US-tube Carbon Nanocapsules For Enhanced Chemotherapeutic Delivery

    PubMed Central

    Guven, Adem; Rusakova, Irene A.; Lewis, Michael T.; Wilson, Lon J.

    2012-01-01

    The use of chemotherapeutic drugs in cancer therapy is often limited by problems with administration such as insolubility, inefficient biodistribution, lack of selectivity, and inability of the drug to cross cellular barriers. To overcome these limitations, various types of drug delivery systems have been explored, and recently, carbon nanotube (CNT) materials have also garnered attention in the area of drug delivery. In this study, we describe the preparation, characterization, and in vitro testing of a new ultra-short single-walled carbon nanotube (US-tube)-based drug delivery system for the treatment of cancer. In particular, the encapsulation of cisplatin (CDDP), a widely-used anticancer drug, within US-tubes has been achieved, and the resulting CDDP@US-tube material characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively-coupled optical emission spectrometry (ICP-OES). Dialysis studies performed in phosphate-buffered saline (PBS) at 37 °C have demonstrated that CDDP release from CDDP@US-tubes can be controlled (retarded) by wrapping the CDDP@US-tubes with Pluronic-F108 surfactant. Finally, the anticancer activity of pluronic-wrapped CDDP@US-tubes has been evaluated against two different breast cancer cell lines, MCF-7 and MDA-MB-231, and found to exhibit enhanced cytotoxicity over free CDDP after 24 hours. These studies have laid the foundation for developing US-tube-based delivery of chemotherapeutics, with drug release mainly limited to within cancer cells only. PMID:22078812

  18. Oxidation of aqueous sulfur dioxide. 3. The effects of chelating agents and phenolic antioxidants

    SciTech Connect

    Lim, P.K.; Huss, A. Jr.; Eckert, C.A.

    1982-10-14

    The inhibiting effects of chelating agents (1,10-phenanthroline and EDTA) and phenolic antioxidants (phenol, hydroquinone, resorcinol, pyrocatechol, phloroglucinol, and pyrogallol) on the catalyzed oxidations of low- and high-pH aqueous S(IV) solutions were investigated. Both the low-pH Mn(II)- and Fe(II)-catalyzed reactions were inhibited by phenolic antioxidants, with the effect on the Mn(II)-catalyzed reaction being much more pronounced. The chelating agents, on the other hand, had a far greater inhibiting influence on the Fe(II)-catalyzed reaction. The high-pH Cu(II)-catalyzed reaction was markedly inhibited by both chelating agents and antioxidants. The results support our previous conclusion that the previously accepted uncatalyzed oxidations of S(IV) were in fact primarily trace-metal catalyzed. 7 figures.

  19. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction

    SciTech Connect

    Okamoto, Koji . E-mail: kojokamo@gan2.res.ncc.go.jp; Kitabayashi, Issay; Taya, Yoichi . E-mail: ytaya@gan2.res.ncc.go.jp

    2006-12-08

    KAP1 recruits many proteins involved in gene silencing and functions as an integral part of co-repressor complex. KAP1 was identified as Mdm2-binding protein and shown to form a complex with Mdm2 and p53 in vivo. We examined the role of KAP1 in p53 activation after the treatment of cells with different types of external stresses. KAP1 reduction markedly enhanced the induction of p21, a product of the p53 target gene, after treatment with actinomycin D or {gamma}-irradiation, but not with camptothecin. Treatment with actinomycin D, but not with camptothecin, augmented the interaction of p53 with Mdm2 and KAP1. Further, KAP1 reduction in actinomycin D-treated cells facilitated cell cycle arrest and negatively affected clonal cell growth. Thus, the reduction of KAP1 levels promotes p53-dependent p21 induction and inhibits cell proliferation in actinomycin D-treated cells. KAP1 may serve as a therapeutic target against cancer in combination with actinomycin D.

  20. [Effects of ground cover and water-retaining agent on winter wheat growth and precipitation utilization].

    PubMed

    Wu, Ji-Cheng; Guan, Xiu-Juan; Yang, Yong-Hui

    2011-01-01

    An investigation was made at a hilly upland in western Henan Province to understand the effects of water-retaining agent (0, 45, and 60 kg x hm(-2)), straw mulching (3000 and 6000 kg x hm(-2)), and plastic mulching (thickness < 0.005 mm) on winter wheat growth, soil moisture and nutrition conditions, and precipitation use. All the three measures promoted winter wheat growth, enhanced grain yield and precipitation use efficiency, and improved soil moisture and nutritional regimes. These positive effects were more obvious when the straw- or plastic mulching was combined with the use of water-retaining agent. Comparing with the control, all the measures increased the soil moisture content at different growth stages by 0.1%-6.5%. Plastic film mulching had the best water-retention effect before jointing stage, whereas water-retaining agent showed its best effect after jointing stage. Soil moisture content was the lowest at flowering and grain-filling stages. Land cover increased the grain yield by 2.6%-20.1%. The yield increment was the greatest (14.2%-20.1%) by the combined use of straw mulching and water-retaining agent, followed by plastic mulching combined with water-retaining agent (11.9% on average). Land cover also improved the precipitation use efficiency (0.4-3.2 kg x mm(-1) x hm(-2)) in a similar trend as the grain yield. This study showed that land cover and water-retaining agent improved soil moisture and nutrition conditions and precipitation utilization, which in turn, promoted the tillering of winter wheat, and increased the grain number per ear and the 1000-grain mass.

  1. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  2. Effects of hypolipidemic agents on lipid synthesis in subcellular fractions from Tetrahymena pyriformis.

    PubMed

    Pan, H Y; Chou, S C; Conklin, K A

    1976-01-01

    Lipid synthesizing systems have been prepared from subcellular fractions of Tetrahymena pyriformis, GL. These fractions, the mitochondrial fraction, the microsomal fraction and the soluble cell fraction, have been characterized as to cofactors and cations required for optimal lipid synthesis. The effects of hypolipidemic agents on lipid synthesis by all fractions are presented.

  3. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  4. Synergistic Effects of Dietary Natural Products as Anti-Prostate Cancer Agents.

    PubMed

    Vue, Bao; Zhang, Sheng; Chen, Qiao-Hong

    2015-12-01

    This review is to describe synergistic effects of various combinations of dietary natural products including curcumin, quercetin, soybean isoflavones, silibinin, and EGCG that have potential for the treatment of prostate cancer. These data can provide valuable insights into the future rational design and development of synergistic and/or hybrid agents for potential treatment of prostate cancer. PMID:26882694

  5. Paradoxical effects of anti-TNF-α agents in inflammatory diseases.

    PubMed

    Wendling, Daniel; Prati, Clément

    2014-01-01

    Anti-TNF agents represent a major breakthrough in the management of inflammatory diseases. Among the side effects of these agents are the so-called paradoxical effects described in this review. They represent new onset or exacerbation of a condition (symptom/disease), usually improved with TNF blockers. These paradoxical effects are mainly psoriasiform skin reactions, uveitis and granulomatous diseases (such as sarcoidosis and Crohn's disease). Infrequent and probably underreported, they should be discussed from the viewpoint of spontaneous features of the underlying disease (e.g., uveitis or psoriasis in a case of spondyloarthritis). The causal mechanism of occurrence is still a matter of debate, but may implicate an imbalance of cytokines toward interferons, chemokines and probably IL-17. These reactions may raise differential diagnosis problems. Symptoms resolve, most of the time, due to the discontinuation of the anti-TNF agent or sometimes a switch to another TNF blocker; but in some cases, it is a class effect that could lead to the withdrawal of all anti-TNF agents. PMID:24325385

  6. Diffuse reflectance study of the effects of bleaching agents in damaged dental pieces

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, J.; Trejo-Tzab, R.; Macias, J. D.; Quintana, P.; Alvarado-Gil, J. J.

    2011-03-01

    One of the most important subjects of interest in dentistry and teeth preservation is related to the effects of bleaching agents on the integrity of the dental pieces. This is especially crucial when teeth surface has received some damage, generated by chemical, biological and mechanical agents or weathering in the case of dental pieces recovered from burial sites. In this work the time evolution of the effects of bleaching agents on the surface of dental pieces is monitored using diffuse reflectance in the visible spectrum is reported. The effects were monitored in teeth previously subject to chemical agents. Bleaching was induced using commercial whitening products. It is shown that the time evolution of the reflectance depends strongly on the condition of the surface as well as on the thickness of enamel. Additionally the colorimetric analysis of the samples during the bleaching is presented. This is especially useful in for comparing with previous studies. In order to complement our studies, the effects of the bleaching on the surface of the teeth were monitored by scanning electron microscopy.

  7. A Study of Some Effects of Early Change Agent Behavior on a Group Client System.

    ERIC Educational Resources Information Center

    Darden, Douglas Wylie

    A study was conducted to explore some of the relationships existing between the early behavior of a change agent with a group client system and its subsequent effects on the helping relationship established between them. A review of related literature was made. The model of helping relationship which formed the basis for the design of the study…

  8. Effect of medroxyprogesterone acetate and of some antiinflammatory agents on mouse erythroleukemia cell differentiation.

    PubMed

    Supino, R; Mazzoni, A; Formelli, F

    1984-02-29

    The effects of medroxyprogesterone acetate (MPA) on differentiation were examined using mouse erythroleukemia (MEL) cells and compared with those of antiinflammatory agents. MPA at low doses (10(-6) - 10(-7)M) induced 10-15% cells to differentiate, whereas high doses (10(-4) - 10(-5)M) caused a 30% inhibition of dimethylsulfoxide (DMSO)-induced differentiation. Dexamethasone (10(-4) - 10(-8)M), a steroid antiinflammatory agent, significantly inhibited (77-70%) DMSO-induced differentiation, whereas indomethacin, aspirin, flurbiprofen and BW755c (non steroid antiinflammatory agents) at the same concentrations had no effect. If added 24 h before DMSO, the inhibitory effects of MPA and dexamethasone increased to 65% and 95%, respectively, whereas indomethacin (10(-5)M) caused only a 30% inhibition and the other drugs were inactive. None of these antiinflammatory agents affected differentiation when used without DMSO. MPA and dexamethasone inhibitory effects on DMSO-induced differentiation did not seem to be mediated through the inhibition of the synthesis of prostaglandins, since non-steroid prostaglandin inhibitors were slightly active only when added 24 h before DMSO.

  9. Supporting Multimedia Learning with Visual Signalling and Animated Pedagogical Agent: Moderating Effects of Prior Knowledge

    ERIC Educational Resources Information Center

    Johnson, A. M.; Ozogul, G.; Reisslein, M.

    2015-01-01

    An experiment examined the effects of visual signalling to relevant information in multiple external representations and the visual presence of an animated pedagogical agent (APA). Students learned electric circuit analysis using a computer-based learning environment that included Cartesian graphs, equations and electric circuit diagrams. The…

  10. Indirect ecological effects in invaded landscapes: Spillover and spillback from biological control agents to native analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control remains an effective option for managing large-scale weed problems in natural areas. The predation or parasitism of biological control agents by other species present in the introduced range (biotic resistance) is well studied and is often cited as the cause for a lack of establis...

  11. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting.

    PubMed

    Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A; Clubb, Robert T; Cohen, Stanley N; Gupta, Vivek; Martchenko, Mikhail

    2015-08-27

    A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.

  12. Effect of dispersing agent in heating process for high dispersion of coal liquefaction catalyst

    SciTech Connect

    Okada, Y.; Haneda, M.; Inokuchi, K.; Aihara, Y.; Imada, K.; Kai, T.; Sakaki, T.; Shibata, M.

    1999-07-01

    This work deals with one proposal concerning the improvement of catalytic activity on coal liquefaction. It is known that pyrite (FeS{sub 2}) transform into pyrrhotite (Fe{sub 1{minus}x}S) and aggregate at the heating process on coal liquefaction. The aggregation of liquefaction catalyst decreases the specific surface area, and causes the decline in catalytic activity. The authors investigated the effects of dispersing agent on the morphological change and the dispersing state of liquefaction catalyst at the rapid heating process. For the liquefaction tests with added dispersing agent, the product yields were compared with the results of other tests.

  13. Effects of different encapsulation agents and drying process on stability of betalains extract.

    PubMed

    Ravichandran, Kavitha; Palaniraj, Ravichandran; Saw, Nay Min Min Thaw; Gabr, Ahmed M M; Ahmed, Abdelrahman R; Knorr, Dietrich; Smetanska, Iryna

    2014-09-01

    Red beet plants are rich in betalains that can be used as food natural colorants. Betalains were extracted from red beet and encapsulated with different carrier agents and freeze or spray dried. Effect of different encapsulating agents as maltodextrin, guar gum, gum Arabic, pectin and xanthan gum with different concentration (as encapsulating agents) were studied on the betalain stability. Encapsulated betalains with xanthan gum with maltodextrin showed about 65 % more recovery than the control. Encapsulation showed a higher recovery of betalains during freeze drying by 1.3 times than during spray drying. Spray dried samples has L* (lightness) higher than the freeze dried samples. The variations of maltodextrin with xanthan and guar gum freeze dried have highest chroma value of 21. The stabilization of pure betalain pigments may boost the use of these colouring molecules in the food industry and promote their application. PMID:25190886

  14. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate.

    PubMed

    Perugini, P; Simeoni, S; Scalia, S; Genta, I; Modena, T; Conti, B; Pavanetto, F

    2002-10-10

    The aim of this study was to investigate the influence of nanoparticle-based systems on the light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC). Ethylcellulose (EC) and poly-D,L-lactide-co-glycolide (PLGA) were used as biocompatible polymers for the preparation of the particulate systems. The "salting out" method was used for nanoparticle preparation and several variables were evaluated in order to optimize product characteristics. The photodegradation of the sunscreen agent in emulsion vehicles was reduced by encapsulation into the PLGA nanoparticles (the extent of degradation was 35.3% for the sunscreen-loaded nanoparticles compared to 52.3% for free trans-EHMC) whereas the EC nanoparticle system had no significant effect. Therefore, PLGA nanoparticles loaded with trans-EHMC improve the photostability of the sunscreen agent. PMID:12270607

  15. Effect of using miscible and immiscible healing agent on solid state self-healing system

    NASA Astrophysics Data System (ADS)

    Makenan, Siti Mastura; Jamil, Mohd Suzeren Md.

    2014-09-01

    The aim of this study is to identify the effect of using various healing agent which are miscible; poly(bisphenol-A-co-epichlorohydrin), and immiscible; poly(ethylene-co-acetate) and poly(ethylene-co-acrylic acid), on self-healing resin system. The specimens were analysed by Fourier-transform Infrared Spectrometer (FTIR), Dynamic Mechanical Thermal Analysis (DMTA), and izod test. Optical image of the sample morphology was observed using optical microscope. Healing efficiencies (HE) were evaluated using izod test. The concept of healing recovery was proved based on the use of miscible and immiscible healing agent. From the results, it can be concluded that the healable resin with miscible healing agent has the highest HE within the third healing cycle.

  16. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo

    PubMed Central

    O’Donovan, Tracey R.; Rajendran, Simon; O’Reilly, Seamus; McKenna, Sharon L.

    2015-01-01

    Many epithelial cancers, particularly gastrointestinal tract cancers, remain poor prognosis diseases, due to resistance to cytotoxic therapy and local or metastatic recurrence. We have previously shown that apoptosis incompetent esophageal cancer cells induce autophagy in response to chemotherapeutic agents and this can facilitate their recovery. However, known pharmacological inhibitors of autophagy could not enhance cytotoxicity. In this study, we have examined two well known, clinically approved autophagy inducers, rapamycin and lithium, for their effects on chemosensitivity in apoptosis incompetent cancer cells. Both lithium and rapamycin were shown to induce autophagosomes in esophageal and colorectal cancer cells by western blot analysis of LC3 isoforms, morphology and FACS quantitation of Cyto-ID or mCherry-GFP-LC3. Analysis of autophagic flux indicates inefficient autophagosome processing in lithium treated cells, whereas rapamycin treated cells showed efficient flux. Viability and recovery was assessed by clonogenic assays. When combined with the chemotherapeutic agent 5-fluorouracil, rapamycin was protective. In contrast, lithium showed strong enhancement of non-apoptotic cell death. The combination of lithium with 5-fluorouracil or oxaliplatin was then tested in the syngenic mouse (balb/c) colorectal cancer model—CT26. When either chemotherapeutic agent was combined with lithium a significant reduction in tumor volume was achieved. In addition, survival was dramatically increased in the combination group (p < 0.0001), with > 50% of animals achieving long term cure without re-occurrence (> 1 year tumor free). Thus, combination treatment with lithium can substantially improve the efficacy of chemotherapeutic agents in apoptosis deficient cancer cells. Induction of compromised autophagy may contribute to this cytotoxicity. PMID:26248051

  17. Effects of Several Flame Retardants and Curing Agents on the Fire and Mechanical Properties of Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Li, Pei; Min, Yang; Ban, Da-Ming

    2016-05-01

    Effect of different flame retardant (FR) and curing agent on the epoxy resin was investigated by limiting oxygen index (LOI), mechanical properties and FTIR. The results show that flame retardant effect of PODOPP is better than PSDPP. The curing agent order is: m-phenylenediamine>ethanediamine> polyethylene polyamine. The effect of flame retardant behaviors better when synergist OMMT was added.

  18. The effects of beta-adrenergic blocking agents on blood lipid levels.

    PubMed

    Wolinsky, H

    1987-10-01

    This review examines the effects of beta-adrenergic blocking agents on blood lipids. These agents have been effective in the treatment of angina and hypertension and in the reduction of recurrence of ischemic cardiac disease, such as myocardial infarction. Many beta blockers, however, have an adverse effect on blood lipids, especially by reducing high-density lipoprotein (HDL) cholesterol and increasing triglycerides. One result is an unfavorable influence on the cholesterol ratio (expressed either as low-density lipoprotein [LDL]/HDL or total cholesterol/HDL). These cholesterol parameters have been shown to have a strong influence on coronary heart disease (CHD) risk. Studies have shown that antihypertensive therapy has reduced the incidence of cerebrovascular disease but, in many instances, has not reduced the incidence of CHD. A hypothesis for this lesser effect on coronary disease is that antihypertensive agents may be adversely affecting blood lipids. Thus, while one major risk factor for CHD is reduced, another may be somewhat enhanced. Pharmacologic properties of some beta blockers such as peripheral alpha blockade (e.g., with labetalol) or intrinsic sympathomimetic activity (ISA) (e.g., with pindolol) may counteract some of these negative lipid effects. An investigational beta blocker, bevantolol, which will be marketed shortly in the United States, has been effective in antihypertensive therapy. Bevantolol has been shown to lower LDL cholesterol and not adversely affect HDL cholesterol; in this way, bevantolol favorably influences the serum lipoprotein profile. Whether this effect will have clinical significance remains to be seen.

  19. Mixture toxicity effects of sea louse control agents in Daphnia magna.

    PubMed

    Rose, Stephanie; Altenburger, Rolf; Sturm, Armin

    2016-02-01

    Caligid sea lice are ectoparasites causing major disease problems in industrial salmon farming. Sea louse control currently relies widely on parasiticides. Among non-target species, crustaceans are particularly susceptible to salmon delousing agents. Drug combinations have recently been suggested for sea louse control; however, no information is available on the non-target effects of such mixtures. To obtain first insights into combination effects of salmon parasiticides, acute toxicity tests with the crustacean model species Daphnia magna were conducted. Four compounds, including two organophosphates and two pyrethroids, were tested individually and in all pair-wise combinations at one fixed concentration ratio. For most combinations, observed toxicities were close to predictions assuming concentration additivity. However, deltamethrin and cypermethrin showed greater than predicted combination effects, while the inverse was observed for deltamethrin and malathion. The results demonstrate combination effects of anti-sea louse agents and suggest that predictions based on concentration additivity are in most cases protective.

  20. Mixture toxicity effects of sea louse control agents in Daphnia magna.

    PubMed

    Rose, Stephanie; Altenburger, Rolf; Sturm, Armin

    2016-02-01

    Caligid sea lice are ectoparasites causing major disease problems in industrial salmon farming. Sea louse control currently relies widely on parasiticides. Among non-target species, crustaceans are particularly susceptible to salmon delousing agents. Drug combinations have recently been suggested for sea louse control; however, no information is available on the non-target effects of such mixtures. To obtain first insights into combination effects of salmon parasiticides, acute toxicity tests with the crustacean model species Daphnia magna were conducted. Four compounds, including two organophosphates and two pyrethroids, were tested individually and in all pair-wise combinations at one fixed concentration ratio. For most combinations, observed toxicities were close to predictions assuming concentration additivity. However, deltamethrin and cypermethrin showed greater than predicted combination effects, while the inverse was observed for deltamethrin and malathion. The results demonstrate combination effects of anti-sea louse agents and suggest that predictions based on concentration additivity are in most cases protective. PMID:26401637

  1. Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs.

    PubMed

    Cordero, Mario David; Sánchez-Alcázar, José Antonio; Bautista-Ferrufino, María Rosa; Carmona-López, María Inés; Illanes, Matilde; Ríos, María José; Garrido-Maraver, Juan; Alcudia, Ana; Navas, Plácido; de Miguel, Manuel

    2010-11-01

    Oxidative therapy is a relatively new anticancer strategy based on the induction of high levels of oxidative stress, achieved by increasing intracellular reactive oxygen species (ROS) and/or by depleting the protective antioxidant machinery of tumor cells. We focused our investigations on the antitumoral potential of amitriptyline in three human tumor cell lines: H460 (lung cancer), HeLa (cervical cancer), and HepG2 (hepatoma); comparing the cytotoxic effect of amitriptyline with three commonly used chemotherapeutic drugs: camptothecin, doxorubicin, and methotrexate. We evaluated apoptosis, ROS production, mitochondrial mass and activity, and antioxidant defenses of tumor cells. Our results show that amitriptyline produces the highest cellular damage, inducing high levels of ROS followed by irreversible serious mitochondrial damage. Interestingly, an unexpected decrease in antioxidant machinery was observed only for amitriptyline. In conclusion, based on the capacity of generating ROS and inhibiting antioxidants in tumor cells, amitriptyline emerges as a promising new drug to be tested for anticancer therapy.

  2. Is matching ruthenium with dithiocarbamato ligands a potent chemotherapeutic weapon in oncology?

    PubMed

    Nardon, Chiara; Brustolin, Leonardo; Fregona, Dolores

    2016-02-01

    In the last years, several metal-based compounds have been designed and biologically investigated worldwide in order to obtain chemotherapeutics with a better toxicological profile and comparable or higher antiblastic activity than the clinically-established platinum-based drugs. In this context, researchers have addressed their attention to alternative nonplatinum derivatives able to maximize the anticancer activity of the new drugs and to minimize the side effects. Among them, a number of ruthenium complexes have been developed, including the compounds NAMI-A and KP1019, now in clinical trials. Here, we report the results collected so far for a particular class of ruthenium complexes - the ruthenium(II/III)-dithiocarbamates - which proved more potent than cisplatin in vitro, even at nanomolar concentrations, against a wide panel of human tumor cell lines. PMID:26807601

  3. Neonatal behavioral assessment scale as a biomarker of the effects of environmental agents on the newborn

    SciTech Connect

    Tronick, E.Z.

    1987-10-01

    The organization of the newborn's brain and the nature of the effects of toxins and pollutants conspire to produce complex and difficult problems for the assessment of the behavioral effects of environmental agents. The newborn's brain can be characterized as relatively undifferentiated, and more vulnerable to, but potentially more capable of recovery from, the effects of environmental agents specific to this time period than it will be later in development. Environmental agents tend to have nonspecific, possibly subtle, effects that invade many areas of newborn functioning. These characteristics of the newborn and the behavioral effects of teratogens make assessment at this point in development difficult. Further exacerbating this difficulty is the nature of development. Development is critically dependent on the care the newborn receives. Distortions of a newborn's behavior can produce disturbances in the caretaking environment, and these caretaking disturbances can amplify the original behavioral distortion and produce other distortions. Attention to these types of effects must be built into an assessment. These considerations lead to the conclusion that an apical assessment of newborn behavior is required. The most standardized, valid, and reliable instrument currently available is the Neonatal Behavioral Assessment Scale developed by Brazelton. It assesses the integrated actions of the infant that function to regulate simultaneously the infant's internal state and exchanges with the animate (caretaking) and inanimate environment. The scale uses a set of reflex and behavioral items to assess the critical domains of infant functioning (e.g., the infant's ability to control his states of consciousness). 52 references.

  4. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent.

    PubMed

    Tian, Tengfei; Shi, Xiaoze; Cheng, Liang; Luo, Yinchan; Dong, Ziliang; Gong, Hua; Xu, Ligeng; Zhong, Zengtao; Peng, Rui; Liu, Zhuang

    2014-06-11

    The development of new antibacterial agents that are highly effective are of great interest. Herein, we present a recyclable and synergistic nanocomposite by growing both iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs) on the surface of graphene oxide (GO), obtaining GO-IONP-Ag nanocomposite as a novel multifunctional antibacterial material. Compared with AgNPs, which have been widely used as antibacterial agents, our GO-IONP-Ag shows much higher antibacterial efficiency toward both Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus). Taking the advantage of its strong near-infrared (NIR) absorbance, photothermal treatment is also conducted with GO-IONP-Ag, achieving a remarkable synergistic antibacterial effect to inhibit S. aureus at a rather low concentration of this agent. Moreover, with magnetic IONPs existing in the composite, we can easily recycle GO-IONP-Ag by magnetic separation, allowing its repeated use. Given the above advantages as well as its easy preparation and cheap cost, GO-IONP-Ag developed in this work may find potential applications as a useful antibacterial agent in the areas of healthcare and environmental engineering.

  5. Antioxidant effects of pH-regulating agents on the thermal deterioration of vegetable oils.

    PubMed

    Endo, Yasushi; Yamadera, Yuki; Tsukui, Takayuki

    2014-01-01

    pH-Regulating agents, such as sodium tartrate, disodium succinate, and trisodium citrate, were investigated for their antioxidant activities during the thermal deterioration of vegetable oils. Refined rapeseed and rice bran oils, supplemented with pH-regulating agents and α-tocopherol (0.1%) were heated at 180℃. After heating, acid values (AVs), carbonyl values (CVs), polar material contents, and color (absorbance at 420 nm) of each sample were measured. All pH-regulating agents gave rise to reduced AVs, CVs, and polar material contents of vegetable oils during heating relative to samples not containing a pHregulating agent. Rapeseed and rice bran oils supplemented with sodium tartrate showed the lowest AVs, CVs, polar material contents and absorbances at 420 nm after heating. Sodium tartrate not only retarded the hydrolysis, thermal oxidation, polymerization, and coloration of both oils while heating at high temperatures, but it also showed antioxidant activity at the supplementation level of 0.01%. The antioxidant activity of sodium tartrate was higher than that of α-tocopherol during the deterioration of vegetable oils. Sodium tartrate was particularly effective retarding hydrolysis while heating at high temperatures, resulting in increase of AVs of vegetable oils. Sodium tartrate is therefore expected to be an effective antioxidant for the thermal deterioration of fats and oils during deep-fat frying.

  6. Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices

    PubMed Central

    Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo

    2011-01-01

    The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019

  7. Effect of capping agent concentration on thermoluminescence and photoluminescence of copper-doped zinc sulfide nanoparticles.

    PubMed

    Wanjari, Lata; Bisen, D P; Brahme, Namita; Sahu, Ishwar Prasad; Sharma, Ravi

    2015-08-01

    Copper-doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X-ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)-passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn(2+) as well as Cu(2+) ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced.

  8. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells.

    PubMed

    Li, Shi-Yong; Sun, Rong; Wang, Hong-Xia; Shen, Song; Liu, Yang; Du, Xiao-Jiao; Zhu, Yan-Hua; Jun, Wang

    2015-05-10

    Aberrant DNA hypermethylation is critical in the regulation of renewal and maintenance of cancer stem cells (CSCs), which represent targets for carcinogenic initiation by chemical and environmental agents. The administration of decitabine (DAC), which is a DNA hypermethylation inhibitor, is an attractive approach to enhancing the chemotherapeutic response and overcoming drug resistance by CSCs. In this study, we investigated whether low-dose DAC encapsulated in nanoparticles could be used to sensitize bulk breast cancer cells and CSCs to chemotherapy. In vitro studies revealed that treatment with nanoparticles loaded with low-dose DAC (NPDAC) combined with nanoparticles loaded with doxorubicin (NPDOX) better reduced the proportion of CSCs with high aldehyde dehydrogenase activity (ALDH(hi)) in the mammospheres of MDA-MB-231 cells, and better overcame the drug resistance by ALDH(hi) cells. Subsequently, systemic delivery of NPDAC significantly down-regulated the expression of DNMT1 and DNMT3b in a MB-MDA-231 xenograft murine model and induced increased caspase-9 expression, which contributed to the increased sensitivity of the bulk cancer cells and CSCs to NPDOX treatment. Importantly, the combined treatment of NPDAC and NPDOX resulted in the lowest proportion of ALDH(hi) CSCs and the highest proportion of apoptotic tumor cells, and the best tumor suppressive effects in inhibiting breast cancer growth.

  9. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer. PMID:24988892

  10. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation

    PubMed Central

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-01-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer. PMID:24988892

  11. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer.

  12. Effect of preservative agents on the respiration rate of minimally processed potato (Solanum tuberosum cv. Monalisa).

    PubMed

    Petri, E; Arroqui, C; Angós, I; Vírseda, P

    2008-04-01

    The shelf life of minimally processed potatoes (MPP) is limited by enzyme-catalyzed browning reactions, with the increase in respiration being another factor that affects quality retention of this product. Sulfites are commonly used as effective preservative agents in minimally processing potatoes, but ascorbic acid and citric acid are considered natural sulfite substitutes and more accepted by consumers. The aim of this study was to study the effect of combinations of the preservative agents cited above (sodium metabisulfite 0.1% and 0.5%; citric acid 0.1% and 0.5%; ascorbic acid 0.5%) on the respiration rate of MPP (cv. Monalisa) processed at both ambient and refrigerated temperatures. The results have revealed that there is a significant effect of dipping treatment and temperature on respiration rate of MPP. Sodium metabisulfite (SM) reduces respiratory activity up to 0.8 mL/kg/h. The addition of either citric or ascorbic acid enhanced the effect of SM on the reduction of the respiration rate of MPP. The strongest effect (up to 3.3 mL/kg/h) was observed when a combination of all 3 agents at the higher concentrations was employed at a temperature of 18 degrees C.

  13. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties.

    PubMed

    Joseph, Manu M; Aravind, S R; Varghese, Sheeja; Mini, S; Sreelekha, T T

    2013-04-01

    Polysaccharide PST001, which is isolated from the seed kernels of Tamarindus indica (Ti), is an antitumor and immunomodulatory compound. Gold nanoparticles have been used for various applications in cancer. In the present report, a novel strategy for the synthesis and stabilization of gold nanoparticles using anticancer polysaccharide PST001 was employed and the nanoparticles' antitumor activity was evaluated. PST-Gold nanoparticles were prepared such that PST001 acted both as a reducing agent and as a capping agent. PST-Gold nanoparticles showed high stability, no obvious aggregation for months and a wide range of pH tolerance. PST-Gold nanoparticles not only retained the antitumor effect of PST001 but also showed an enhanced effect even at a low concentration. It was also found that the nanoparticles exerted their antitumor effects through the induction of apoptosis. In vivo assays on BALB/c mice revealed that PST-Gold nanoparticles exhibited immunomodulatory effects. Evaluation of biochemical, hematological and histopathological features of mice revealed that PST-Gold nanoparticles could be administered safely without toxicity. Using the polysaccharide PST001 for the reduction and stabilization of gold nanoparticles does not introduce any environmental toxicity or biological hazards, and these particles are more effective than the parent polysaccharide. Further studies should be employed to exploit these particles as anticancer agents with imaging properties.

  14. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties.

    PubMed

    Joseph, Manu M; Aravind, S R; Varghese, Sheeja; Mini, S; Sreelekha, T T

    2013-04-01

    Polysaccharide PST001, which is isolated from the seed kernels of Tamarindus indica (Ti), is an antitumor and immunomodulatory compound. Gold nanoparticles have been used for various applications in cancer. In the present report, a novel strategy for the synthesis and stabilization of gold nanoparticles using anticancer polysaccharide PST001 was employed and the nanoparticles' antitumor activity was evaluated. PST-Gold nanoparticles were prepared such that PST001 acted both as a reducing agent and as a capping agent. PST-Gold nanoparticles showed high stability, no obvious aggregation for months and a wide range of pH tolerance. PST-Gold nanoparticles not only retained the antitumor effect of PST001 but also showed an enhanced effect even at a low concentration. It was also found that the nanoparticles exerted their antitumor effects through the induction of apoptosis. In vivo assays on BALB/c mice revealed that PST-Gold nanoparticles exhibited immunomodulatory effects. Evaluation of biochemical, hematological and histopathological features of mice revealed that PST-Gold nanoparticles could be administered safely without toxicity. Using the polysaccharide PST001 for the reduction and stabilization of gold nanoparticles does not introduce any environmental toxicity or biological hazards, and these particles are more effective than the parent polysaccharide. Further studies should be employed to exploit these particles as anticancer agents with imaging properties. PMID:23298585

  15. Multi-agent systems: effective approach for cancer care information management.

    PubMed

    Mohammadzadeh, Niloofar; Safdari, Reza; Rahimi, Azin

    2013-01-01

    Physicians, in order to study the causes of cancer, detect cancer earlier, prevent or determine the effectiveness of treatment, and specify the reasons for the treatment ineffectiveness, need to access accurate, comprehensive, and timely cancer data. The cancer care environment has become more complex because of the need for coordination and communication among health care professionals with different skills in a variety of roles and the existence of large amounts of data with various formats. The goals of health care systems in such a complex environment are correct health data management, providing appropriate information needs of users to enhance the integrity and quality of health care, timely access to accurate information and reducing medical errors. These roles in new systems with use of agents efficiently perform well. Because of the potential capability of agent systems to solve complex and dynamic health problems, health care system, in order to gain full advantage of E- health, steps must be taken to make use of this technology. Multi-agent systems have effective roles in health service quality improvement especially in telemedicine, emergency situations and management of chronic diseases such as cancer. In the design and implementation of agent based systems, planning items such as information confidentiality and privacy, architecture, communication standards, ethical and legal aspects, identification opportunities and barriers should be considered. It should be noted that usage of agent systems only with a technical view is associated with many problems such as lack of user acceptance. The aim of this commentary is to survey applications, opportunities and barriers of this new artificial intelligence tool for cancer care information as an approach to improve cancer care management. PMID:24460364

  16. Effect of solubilizing agents on mupirocin loading into and release from PEGylated nanoliposomes.

    PubMed

    Cern, Ahuva; Nativ-Roth, Einat; Goldblum, Amiram; Barenholz, Yechezkel

    2014-07-01

    Mupirocin was identified by quantitative structure property relationship models as a good candidate for remote liposomal loading. Mupirocin is an antibiotic that is currently restricted to topical administration because of rapid hydrolysis in vivo to its inactive metabolite. Formulating mupirocin in PEGylated nanoliposomes may potentially expand its use to parenteral administration by protecting it from degradation in the circulation and target it (by the enhanced permeability effect) to the infected tissue. Mupirocin is slightly soluble in aqueous medium and its solubility can be increased using solubilizing agents. The effect of the solubilizing agents on mupirocin remote loading was studied when the solubilizing agents were added to the drug loading solution. Propylene glycol was found to increase mupirocin loading, whereas polyethylene glycol 400 showed no effect. Hydroxypropyl-β-cyclodextrin (HPCD) showed a concentration-dependent effect on mupirocin loading; using the optimal HPCD concentration increased loading, but higher concentrations inhibited it. The inclusion of HPCD in the liposome aqueous phase while forming the liposomes resulted in increased drug loading and substantially inhibited drug release in serum.

  17. Effects of light energy and reducing agents on C60-mediated photosensitizing reactions.

    PubMed

    Quinones, Michael; Zhang, Yazhou; Riascos, Penelope; Hwang, Huey-Min; Aker, Winfred G; He, Xiaojia; Gao, Ruomei

    2014-01-01

    Many biomolecules contain photoactive reducing agents, such as reduced nicotinamide adenine dinucleotide (NADH) and 6-thioguanine (6-TG) incorporated into DNA through drug metabolism. These reducing agents may produce reactive oxygen species under UVA irradiation or act as electron donors in various media. The interactions of C60 fullerenes with biological reductants and light energy, especially via the Type-I electron-transfer mechanism, are not fully understood although these factors are often involved in toxicity assessments. The two reductants employed in this work were NADH for aqueous solutions and 6-TG for organic solvents. Using steady-state photolysis and electrochemical techniques, we showed that under visible light irradiation, the presence of reducing agents enhanced C60 -mediated Type-I reactions that generate superoxide anion (O2(.-)) at the expense of singlet oxygen ((1)O2) production. The quantum yield of O2(.-) production upon visible light irradiation of C60 is estimated below 0.2 in dipolar aprotic media, indicating that the majority of triplet C60 deactivate via Type-II pathway. Upon UVA irradiation, however, both C60 and NADH undergo photochemical reactions to produce O2(.-), which could lead to a possible synergistic toxicity effects. C60 photosensitization via Type-I pathway is not observed in the absence of reducing agents.

  18. Getting along or ahead: Effects of gender identity threat on communal and agentic self-presentations.

    PubMed

    Sinclair, Samantha; Carlsson, Rickard; Björklund, Fredrik

    2016-10-01

    When faced with a threat to gender identity, people may try to restore their gender status by acting in a more gender-typical manner. The present research investigated effects of gender identity threat on self-presentations of agentic and communal traits in a Swedish and an Argentine sample (N = 242). Under threat (vs. affirmation), Swedish women deemphasized agentic traits (d [95% CI] = -0.41 [-0.93, 0.11]), Argentine women increased their emphasis on communal traits (d = 0.44 [-0.08, 0.97]), and Argentine men increased their emphasis on agentic traits (d = 0.49 [-0.03, 1.01]). However, Swedish men did not appear to be affected by the threat regarding agentic (d = 0.04 [-0.47, 0.55]) or communal traits (d = 0.23 [-0.29, 0.74]). The findings are to be considered tentative. Implications for identity threat research are discussed.

  19. An in vitro evaluation of the effects of desensitizing agents on microleakage of Class V cavities

    PubMed Central

    Yikilgan, İhsan; Özcan, Suat; Bala, Oya; Ömürlü, Hüma

    2016-01-01

    Background The aim of this study was to evaluate the effect of a desensitizing agent on microleakage of Class V cavities. Material and Methods 72 premolar teeth were used. There were 6 groups. Class V restorations were prepared with two different restorative materials (Equia fil, GC, America and Grandio, VOCO, Germany) and two adhesive systems (Clearfil SE Bond, Kuraray, Japan and S3 Bond Plus, Kuraray, Japan) with and without desensitizing agent (Gluma Desensitizer, Heraeus Kulzer, Germany). Restorations were polished with aluminum oxide abrasive discs. Then a range of 5 - 55C thermocycling was performed 10.000 times. The microleakage of restorations was examined with dye penetration method (Basic fuchsine). Bonferroni corrections and Kruskal-Wallis test were used to determine the significance of differences in occlusal and gingival dye penetration scores between groups. Results There was no stastistical significance between the occlusal and gingival microleakage scores within the groups were shown. Conclusions It can be concluded that use of desensitizing agent under both high viscosity glass ionomer restorative materials and resin composites doesn’t affect the microleakage. Key words:High viscosity glass ionomer cement, composite resin, desensitizing agent, microleakage. PMID:26855707

  20. Effects of biradical deuteration on the performance of DNP: Towards better performing polarizing agents

    DOE PAGES

    Perras, Frédéric A.; Reinig, Regina R.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-11-20

    We study the effects of the deuteration of biradical polarizing agents on the efficiency of dynamic nuclear polarization (DNP) via the cross-effect. To this end, we synthesized a series of bTbK and TOTAPol biradicals with systematically increased deuterium substitution. The deuteration increases the radicals' relaxation time, thus contributing to a higher saturation factor and larger DNP enhancement, and reduces the pool of protons within the so-called spin diffusion barrier. Notably, we report that full or partial deuteration leads to improved DNP enhancement factors in standard samples, but also slows down the build-up of hyperpolarization. Improvements in DNP enhancements factors ofmore » up to 70% and time savings of up to 38% are obtained upon full deuteration. As a result, it is foreseen that this approach may be applied to other DNP polarizing agents thus enabling further sensitivity improvements.« less

  1. Effects of biradical deuteration on the performance of DNP: Towards better performing polarizing agents

    SciTech Connect

    Perras, Frédéric A.; Reinig, Regina R.; Slowing, Igor I.; Sadow, Aaron D.; Pruski, Marek

    2015-11-20

    We study the effects of the deuteration of biradical polarizing agents on the efficiency of dynamic nuclear polarization (DNP) via the cross-effect. To this end, we synthesized a series of bTbK and TOTAPol biradicals with systematically increased deuterium substitution. The deuteration increases the radicals' relaxation time, thus contributing to a higher saturation factor and larger DNP enhancement, and reduces the pool of protons within the so-called spin diffusion barrier. Notably, we report that full or partial deuteration leads to improved DNP enhancement factors in standard samples, but also slows down the build-up of hyperpolarization. Improvements in DNP enhancements factors of up to 70% and time savings of up to 38% are obtained upon full deuteration. As a result, it is foreseen that this approach may be applied to other DNP polarizing agents thus enabling further sensitivity improvements.

  2. Additive Effects of Combination Treatment with Anti-inflammatory and Neuroprotective Agents in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Du, Sienmi; Sandoval, Francisco; Trinh, Pauline; Voskuhl, Rhonda R.

    2011-01-01

    We studied the effects of combination treatment with an anti-inflammatory agent, interferon(IFN)-β, and a putative neuroprotective agent, an estrogen receptor(ER)-β ligand, during EAE. Combination treatment significantly attenuated EAE disease severity, preserved axonal densities in spinal cord, and reduced CNS inflammation. Combining ERβ treatment with IFNβ reduced IL-17, while it abrogated IFNβ-mediated increases in Th1 and Th2 cytokines from splenocytes. Additionally, combination treatment reduced VLA-4 expression on CD4+ T cells, while it abrogated IFNβ-mediated decreases in MMP-9. Our data demonstrate that combination treatments can result in complex effects that could not have been predicted based on monotherapy data alone. PMID:20006910

  3. Effectiveness and Toxicity of Several DTPA Broadening Agents for Biological ESR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaplatin, A. N.; Baker, Kent A.; Kleinhans, F. W.

    1996-03-01

    The effectiveness of a standard ESR broadening agent, potassium trioxalatochromiate (CrOx), for use with the spin-label tempone, was compared to that of diethylenetriaminepentaacetic acid (DTPA) containing an ion (Gd, Cr, Mn, Fe) with a large magnetic moment. Signal attenuation, line broadening, toxicity, and cell membrane permeability were compared. As a broadening agent, CrOx was most effective, followed by Fe-DTPA. CrOx proved mildly toxic while Gd-DTPA and Fe-DTPA were virtually nontoxic. The human red blood cell membrane was tested for permeability to Fe- and Gd-DTPA and found to be impermeable to both. In situations where toxicity to cells is critical, the DTPA chelates, particularly Fe-DTPA, may prove an acceptable substitute for CrOx.

  4. Carbamate nerve agent prophylatics exhibit distinct toxicological effects in the zebrafish embryo model.

    PubMed

    Fischer, Audrey; Wolman, Marc; Granato, Michael; Parsons, Michael; McCallion, Andrew S; Proescher, Jody; English, Emily

    2015-01-01

    Pyridostigmine bromide (PB) is an FDA-approved drug for the treatment of myasthenia gravis and a prophylactic pre-treatment for organophosphate nerve agent poisoning. Current methods for evaluating nerve agent treatments include enzymatic studies and mammalian models. Rapid whole animal screening tools for assessing the effects of nerve agent pre-treatment and post-exposure drugs represent an underdeveloped area of research. We used zebrafish as a model for acute and chronic developmental exposure to PB and two related carbamate acetylcholinesterase (AChE) inhibitors, neostigmine bromide (NB) and physostigmine (PS). Lethal doses and gross morphological phenotypes resulting from exposure to sub-lethal doses of these compounds were determined. Quantitative analyses of motility impairment and AChE enzyme inhibition were used to determine optimal dosing conditions for evaluation of the effects of carbamate exposures on neuronal development; ~50% impairment of response to startle stimuli and >50% inhibition of AChE activity were observed at 80 mMPB, 20 mM NB and 0.1 mM PS. PB induced stunted somite length, but no other phenotypic effects were observed. In contrast, NB and PS induced more severe phenotypic morphological defects than PB as well as neurite outgrowth mislocalization. Additionally, NB induced mislocalization of nicotinic acetylcholine receptors, resulting in impaired synapse formation. Taken together, these data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of carbamates and demonstrate the utility of the zebrafish model for distinguishing subtle structure-based differential effects of AChE inhibitors, which include nerve agents, pesticides and drugs.

  5. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    NASA Astrophysics Data System (ADS)

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  6. Bayesian nonparametric estimation of targeted agent effects on biomarker change to predict clinical outcome.

    PubMed

    Graziani, Rebecca; Guindani, Michele; Thall, Peter F

    2015-03-01

    The effect of a targeted agent on a cancer patient's clinical outcome putatively is mediated through the agent's effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change, and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker's distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes. We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post-treatment biomarker distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time. PMID:25319212

  7. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Jung, Suk-Yul; Lee, Yang-Jin; Song, Kyoung-Ju; Kwon, Daeho; Kim, Kyongmin; Park, Sun; Im, Kyung-Il; Shin, Ho-Joon

    2008-11-01

    Naegleria fowleri is a ubiquitous, pathogenic free-living amoeba; it is the most virulent Naegleria species and causes primary amoebic meningoencephalitis (PAME) in laboratory animals and humans. Although amphotericin B is currently the only agent available for the treatment of PAME, it is a very toxic antibiotic and may cause many adverse effects on other organs. In order to find other potentially therapeutic agents for N. fowleri infection, the present study was undertaken to evaluate the in vitro and in vivo efficacies of miltefosine and chlorpromazine against pathogenic N. fowleri. The result showed that the growth of the amoeba was effectively inhibited by treatment with amphotericin B, miltefosine, and chlorpromazine. When N. fowleri trophozoites were treated with amphotericin B, miltefosine, and chlorpromazine, the MICs of the drug were 0.78, 25, and 12.5 microg/ml, respectively, on day 2. In experimental meningoencephalitis of mice that is caused by N. fowleri, the survival rates of mice treated with amphotericin B, miltefosine, and chlorpromazine were 40, 55, and 75%, respectively, during 1 month. The average mean time to death for the amphotericin B, miltefosine, and chlorpromazine treatments was 17.9 days. In this study, the effect of drugs was found to be optimal when 20 mg/kg was administered three times on days 3, 7, and 11. Finally, chlorpromazine had the best therapeutic activity against N. fowleri in vitro and in vivo. Therefore, it may be a more useful therapeutic agent for the treatment of PAME than amphotericin B. PMID:18765686

  8. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Jung, Suk-Yul; Lee, Yang-Jin; Song, Kyoung-Ju; Kwon, Daeho; Kim, Kyongmin; Park, Sun; Im, Kyung-Il; Shin, Ho-Joon

    2008-11-01

    Naegleria fowleri is a ubiquitous, pathogenic free-living amoeba; it is the most virulent Naegleria species and causes primary amoebic meningoencephalitis (PAME) in laboratory animals and humans. Although amphotericin B is currently the only agent available for the treatment of PAME, it is a very toxic antibiotic and may cause many adverse effects on other organs. In order to find other potentially therapeutic agents for N. fowleri infection, the present study was undertaken to evaluate the in vitro and in vivo efficacies of miltefosine and chlorpromazine against pathogenic N. fowleri. The result showed that the growth of the amoeba was effectively inhibited by treatment with amphotericin B, miltefosine, and chlorpromazine. When N. fowleri trophozoites were treated with amphotericin B, miltefosine, and chlorpromazine, the MICs of the drug were 0.78, 25, and 12.5 microg/ml, respectively, on day 2. In experimental meningoencephalitis of mice that is caused by N. fowleri, the survival rates of mice treated with amphotericin B, miltefosine, and chlorpromazine were 40, 55, and 75%, respectively, during 1 month. The average mean time to death for the amphotericin B, miltefosine, and chlorpromazine treatments was 17.9 days. In this study, the effect of drugs was found to be optimal when 20 mg/kg was administered three times on days 3, 7, and 11. Finally, chlorpromazine had the best therapeutic activity against N. fowleri in vitro and in vivo. Therefore, it may be a more useful therapeutic agent for the treatment of PAME than amphotericin B.

  9. Effect of antibrowning agents on browning and intermediate formation in the glucose-glutamic acid model.

    PubMed

    Lim, Seong-Il; Kwak, Eun-Jung; Lee, Ok-Hwan; Lee, Boo-Yong

    2010-10-01

    In this study, the inhibitory effects of antibrowning agents on browning and the formation of intermediates such as 3-deoxyglucosone (3-DG) and hydroxymethylfurfural (HMF) were evaluated with a glucose-glutamic acid model for soybean paste. The initial antibrowning capacity was measured in the following order: pentasodium tripolyphosphate < citric acid and oxalic acid < cysteine and glutathione < sodium sulfite. Our data showed that antibrowning agents, such as pentasodium tripolyphosphate, citric acid, and oxalic acid, were maintained antibrowning capacities during storage at both 4 and 30 °C, respectively. However, both cysteine and glutathione was reduced with storage time, especially in the air. A marked effect of nitrogen treatment was noted for 3 of the antibrowning agents after storage in air at 30 °C in the following order: sodium sulfite < cysteine < glutathione. The formation ratio of 3-DG and HMF was higher after storage at 30 °C than at 4 °C. These compounds were produced most abundantly in the presence of sodium sulfite, and the yields were not related significantly to the degree of browning. Citric acid and oxalic acid were identified as the most effective in inhibitors of browning and intermediates, even during storage in air at 30 °C.

  10. Bayesian Nonparametric Estimation of Targeted Agent Effects on Biomarker Change to Predict Clinical Outcome

    PubMed Central

    Graziani, Rebecca; Guindani, Michele; Thall, Peter F.

    2015-01-01

    Summary The effect of a targeted agent on a cancer patient's clinical outcome putatively is mediated through the agent's effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change, and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker's distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes. We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post treatment biomarker distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time. PMID:25319212

  11. Evaluation of antibacterial effects of pulp capping agents with direct contact test method

    PubMed Central

    Yalcin, Muhammet; Arslan, Ugur; Dundar, Ayse

    2014-01-01

    Objectives: Calcium hydroxide has been used in dentistry as a major capping material having the capacity to introduce the formation of a mineralized dentin bridge, but it has no direct inducing effect to the pulp cells. The purpose of this study was to evaluate the antibacterial properties of three different pulp capping agents using a direct contact test (DCT). Materials and Methods: The antibacterial properties of three pulp capping agents were evaluated a DCT. For the DCT, wells (n = 12) of 96-microtiter plates were coated with the tested cements (Dycal, Dentsply, USA; DiaRoot BioAggregate, Diadent, Holland; Calcimol LC, Voco, Germany) and Kalzinol (zinc oxide/eugenol cement, Dentsply, USA) was used as control material. A Lactobacillus casei suspension was placed on the surface of each specimen for 1 h at 37°C. Bacterial growth was monitored for 16 h with a temperature-controlled microplate spectrophotometer. The kinetics of the outgrowth in each well were recorded continuously at 650 nm every 30 min. The data were analyzed by one-way ANOVA, and Tamhane's T2 multiple comparison test. The level of significance was determined as P < 0.05. Results: All pulp capping agents showed an increase in the logarithmic growth rate of L. casei when compared with the control group (P < 0.05). Therefore, all pulp capping agents did not show antibacterial activity. Conclusions: The tested pulp capping agents haven't got antibacterial properties. Therefore, they should be used carefully when pulp is exposed or only very thin dentin remained over the pulp to avoid bacterial contamination. PMID:24966754

  12. The Effectiveness of Physical Agents for Lower-Limb Soft Tissue Injuries: A Systematic Review.

    PubMed

    Yu, Hainan; Randhawa, Kristi; Côté, Pierre; Optima Collaboration

    2016-07-01

    Study Design Systematic review. Background Soft tissue injuries to the lower limb bring a substantial health and economic burden to society. Physical agents are commonly used to treat these injuries. However, the effectiveness of many such physical agents is not clearly established in the literature. Objective To evaluate the effectiveness and safety of physical agents for soft tissue injuries of the lower limb. Methods We searched 5 databases from 1990 to 2015 for randomized controlled trials (RCTs), cohort studies, and case-control studies. Paired reviewers independently screened the retrieved literature and appraised relevant studies using the Scottish Intercollegiate Guidelines Network criteria. Studies with a high risk of bias were excluded. We synthesized low-risk-of-bias studies according to principles of best-evidence synthesis. Results We screened 10261 articles. Of 43 RCTs identified, 20 had a high risk of bias and were excluded from the analysis, and 23 RCTs had a low risk of bias and were included in the analysis. The available higher-quality evidence suggests that patients with persistent plantar fasciitis may benefit from ultrasound or foot orthoses, while those with persistent midportion Achilles tendinopathy may benefit from shockwave therapy. However, the current evidence does not support the use of shockwave therapy for recent plantar fasciitis, low-Dye taping for persistent plantar fasciitis, low-level laser therapy for recent ankle sprains, or splints for persistent midportion Achilles tendinopathy. Finally, evidence on the effectiveness of the following interventions is not established in the current literature: (1) shockwave therapy for persistent plantar fasciitis, (2) cryotherapy or assistive devices for recent ankle sprains, (3) braces for persistent midportion Achilles tendinopathy, and (4) taping or electric muscle stimulation for patellofemoral pain syndrome. Conclusion Almost half the identified RCTs that evaluated the effectiveness of

  13. The Effectiveness of Physical Agents for Lower-Limb Soft Tissue Injuries: A Systematic Review.

    PubMed

    Yu, Hainan; Randhawa, Kristi; Côté, Pierre; Optima Collaboration

    2016-07-01

    Study Design Systematic review. Background Soft tissue injuries to the lower limb bring a substantial health and economic burden to society. Physical agents are commonly used to treat these injuries. However, the effectiveness of many such physical agents is not clearly established in the literature. Objective To evaluate the effectiveness and safety of physical agents for soft tissue injuries of the lower limb. Methods We searched 5 databases from 1990 to 2015 for randomized controlled trials (RCTs), cohort studies, and case-control studies. Paired reviewers independently screened the retrieved literature and appraised relevant studies using the Scottish Intercollegiate Guidelines Network criteria. Studies with a high risk of bias were excluded. We synthesized low-risk-of-bias studies according to principles of best-evidence synthesis. Results We screened 10261 articles. Of 43 RCTs identified, 20 had a high risk of bias and were excluded from the analysis, and 23 RCTs had a low risk of bias and were included in the analysis. The available higher-quality evidence suggests that patients with persistent plantar fasciitis may benefit from ultrasound or foot orthoses, while those with persistent midportion Achilles tendinopathy may benefit from shockwave therapy. However, the current evidence does not support the use of shockwave therapy for recent plantar fasciitis, low-Dye taping for persistent plantar fasciitis, low-level laser therapy for recent ankle sprains, or splints for persistent midportion Achilles tendinopathy. Finally, evidence on the effectiveness of the following interventions is not established in the current literature: (1) shockwave therapy for persistent plantar fasciitis, (2) cryotherapy or assistive devices for recent ankle sprains, (3) braces for persistent midportion Achilles tendinopathy, and (4) taping or electric muscle stimulation for patellofemoral pain syndrome. Conclusion Almost half the identified RCTs that evaluated the effectiveness of

  14. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells

    PubMed Central

    HE, ZHIPING; LI, BO; RANKIN, GARY O.; ROJANASAKUL, YON; CHEN, YI CHARLIE

    2015-01-01

    Ovarian cancer is a disease that continues to cause mortality in female individuals worldwide. Ovarian cancer is challenging to treat due to emerging resistance to chemotherapy, therefore, the identification of effective novel chemotherapeutic agents is important. Polyphenols have demonstrated potential in reducing the risk of developing numerous types of cancer, as well reducing the risk of cancer progression, due to their ability to reduce cell viability and vascular endothelial growth factor (VEGF) expression. In the present study, eight phenolic compounds were screened in two human ovarian cancer cell lines (OVCAR-3 and A2780/CP70) to determine their effect on proliferation suppression and VEGF protein secretion inhibition, in comparison to cisplatin, a conventional chemotherapeutic agent. The current study identified that 40 μM gallic acid (GA) exhibited the greatest inhibitory effect on OVCAR-3 cell viability, compared with all of the phenolic compounds investigated. Similarly to cisplatin, baicalein, GA, nobiletin, tangeretin and baicalin were all identified to exhibit significant VEGF inhibitory effects from ELISA results. Furthermore, western blot analysis indicated that GA effectively decreased the level of the VEGF-binding protein hypoxia-inducible factor-1α in the ovarian cancer cell line. Considering the results of the present study, GA appears to inhibit cell proliferation and, thus, is a potential agent for the treatment of ovarian cancer. PMID:25663929

  15. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis.

    PubMed

    Tönük, Şükrü Burak; Serin, Erdinc; Ayhan, Fikriye Figen; Yorgancioglu, Zeynep Rezan

    2016-08-01

    To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA).Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period.After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P < 0.05, respectively). Throughout the 10-session therapy period, the INS levels increased, whereas the ACTH and COR levels decreased (P < 0.05 for all). The VAS-spine, RMDQ, VAS-knee, and WOMAC scores decreased (P = 0.001 for VAS-spine and P < 0.001 for all others). A positive correlation was detected between the changes in serum COR and WOMAC-pain score (P < 0.05).Although the combination therapy caused changes in INS level accompanied with steady glucose levels, the application of physical agents did not adversely affect the hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action. PMID:27583888

  16. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis

    PubMed Central

    Tönük, Şükrü Burak; Serin, Erdinc; Ayhan, Fikriye Figen; Yorgancioglu, Zeynep Rezan

    2016-01-01

    Abstract To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA). Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period. After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P < 0.05, respectively). Throughout the 10-session therapy period, the INS levels increased, whereas the ACTH and COR levels decreased (P < 0.05 for all). The VAS-spine, RMDQ, VAS-knee, and WOMAC scores decreased (P = 0.001 for VAS-spine and P < 0.001 for all others). A positive correlation was detected between the changes in serum COR and WOMAC-pain score (P < 0.05). Although the combination therapy caused changes in INS level accompanied with steady glucose levels, the application of physical agents did not adversely affect the hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action. PMID:27583888

  17. Antiparasitic agents.

    PubMed

    Rosenblatt, J E

    1992-03-01

    In recent years, introduction of new and more effective agents has improved the overall therapy for parasitic infections. This field, however, is still plagued by numerous problems, including the development of resistance to antimicrobial agents (especially with malaria), unavailability of agents in the United States or lack of approval by the Food and Drug Administration, and major toxicities or lack of experience in pregnant women and children, which limits use in these groups of patients. Widespread resistance of Plasmodium falciparum to chloroquine and other agents has complicated the treatment and prophylaxis of this type of malaria. A combination of quinine and Fansidar is usually effective oral therapy for falciparum malaria; quinidine may be administered if intravenous therapy is needed. Mefloquine, which is currently recommended for prophylaxis against chloroquine-resistant P. falciparum, is also effective for single-dose oral treatment, although this regimen has not yet been approved by the Food and Drug Administration. Metronidazole has been widely used for treatment of gastroenteritis due to Entamoeba histolytica and Giardia lamblia (not approved by the Food and Drug Administration for the latter) and is considered safe and effective. A new macrolide, azithromycin, has been reported to be effective for cryptosporidiosis in experimental animals; currently, no effective therapy is available for human infections. Combinations of sulfonamides with other antifolates, trimethoprim or pyrimethamine, are recommended therapy for Pneumocystis carinii pneumonia or toxoplasmosis, respectively. Therapies for the various types of leishmaniasis and trypanosomiasis are complex, often toxic, and often of limited efficacy. The benzimidazoles are effective for roundworm infections, although thiabendazole has severe toxic effects. The recent introduction of ivermectin has revolutionized the treatment and control of onchocerciasis. Another relatively new agent, praziquantel

  18. Comparative sporicidal effects of disinfectants after release of a biological agent.

    PubMed

    Kenar, Levent; Ortatatli, Mesut; Yaren, Hakan; Karayilanoglu, Turan; Aydogan, Hakan

    2007-06-01

    Because of spore formation, Bacillus anthracis is considered the most resistant biological warfare agent known. The present study aimed to assess and compare well-known decontamination routes to inactivate the spores on daily-use environmental tools contaminated previously. To simulate the agent, Bacillus atrophaeus was used. Various environmental samples (such as tile, fabric clothing, wood, protective suit, glass, paper, soil, water, plastic, and metal) that may be contaminated after a biological incident were used as test carriers and inoculated with B. atrophaeus. Sodium hypochlorite, free chlorine, autoclaving, ethylene oxide, hydrogen peroxide, ultraviolet irradiation, and boiling decontaminated the samples. Glutaraldehyde (2%) and free chlorine solution (10,000 mg/L) were also found to be effective in decontaminating the samples and are recommended as alternatives to the use of sodium hypochlorite solution. Soil, tile, paper, and metal were determined to be the most difficult materials to decontaminate. It was concluded that 5% hypochlorite adjusted with acetic acid might also be used for decontamination. Decontamination strategies to reduce contamination of the environment by biological warfare agents need to be applied to mitigate the number of victims, in terms of prominent characteristics like cost-effectiveness and user-friendliness.

  19. Cooperative biological effects between ionizing radiation and other physical and chemical agents.

    PubMed

    Manti, Lorenzo; D'Arco, Annalisa

    2010-01-01

    Exposure to ionizing radiation (IR), at environmentally and therapeutically relevant doses or as a result of diagnostics or accidents, causes cyto- and genotoxic damage. However, exposure to IR alone is a rare event as it occurs in spatial and temporal combination with several physico-chemical agents. Some of these are of known noxiousness, as is the case with chemical compounds at high dose, hence additive/synergistic effects can be expected or have been demonstrated. Conversely, the cellular toxicity of other agents, such as non-ionizing electromagnetic fields (EMFs), is only presumed and their short- and long-term cooperation on IR-induced damage remains undetermined. In this review, we shall examine evidence in support of the interplay between spatially and/or temporally related environmentally relevant stressors. In vitro or animal-based studies as well as epidemiological surveys have generally examined the combined action of no more than a couple of known or potentially DNA-damaging agents. Moreover, most existing research mainly focused on short-term effects of combined exposures. Hence, it is important that quantitative research addresses the issue of the possible cooperation between chronic exposure to environmental trace contaminants and exposure to EMFs, examining not only the modulation of damage acutely induced by IR but also long-term genome stability.

  20. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae.

    PubMed

    Gorin, Kirill V; Sergeeva, Yana E; Butylin, Victor V; Komova, Anastasiya V; Pojidaev, Victor M; Badranova, Gulfiya U; Shapovalova, Anna A; Konova, Irina A; Gotovtsev, Pavel M

    2015-10-01

    The effects of coagulant (FeCl3·6H2O), various flocculants based on polyacrylamide (PAA), polyethylenoxide (PEO) and flocculated biomass as ballast agent, dosage and sedimental time on flocculation efficiency of harvesting Chlorella vulgaris GKV1 cultivated in a laboratory were investigated. The results of this work indicated that the flocculation efficiency achieved about 90% after 5 min of sedimentation when adding of coagulant and flocculant mixture (FeCl3 50 mg/l+PEO based Sibfloc-718 7.5 mg/l) or flocculant with ballast agent (Sibfloc-718 7.5 mg/l+10% flocculated biomass). PAA and PEO showed good flocculation efficiency at dosage of 0.025 and 0.015 g/l, respectively without pH adjustment. Finally, the most suitable flocculation method was discussed in this paper.

  1. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seok; Seo, Yu Seon; Kim, Kyeounghak; Han, Jeong Woo; Park, Youmie; Cho, Seonho

    2016-04-01

    Under various concentration conditions of reducing agents during the green synthesis of gold nanoparticles (AuNPs), we obtain the various geometry (morphology and size) of AuNPs that play a crucial role in their catalytic properties. Through both theoretical and experimental approaches, we studied the relationship between the concentration of reducing agent (caffeic acid) and the geometry of AuNPs. As the concentration of caffeic acid increases, the sizes of AuNPs were decreased due to the adsorption and stabilizing effect of oxidized caffeic acids (OXCAs). Thus, it turns out that optimal concentration exists for the desired geometry of AuNPs. Furthermore, we investigated the growth mechanism for the green synthesis of AuNPs. As the caffeic acid is added and adsorbed on the surface of AuNPs, the aggregation mechanism and surface free energy are changed and consequently resulted in the AuNPs of various geometry.

  2. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting

    PubMed Central

    Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C.; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A.; Clubb, Robert T.; Cohen, Stanley N.; Gupta, Vivek; Martchenko, Mikhail

    2015-01-01

    A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens. PMID:26310922

  3. In vitro evaluation of antitumoral efficacy of catalase in combination with traditional chemotherapeutic drugs against human lung adenocarcinoma cells.

    PubMed

    de Oliveira, Valeska Aguiar; da Motta, Leonardo Lisbôa; De Bastiani, Marco Antônio; Lopes, Fernanda Martins; Müller, Carolina Beatriz; Gabiatti, Bernardo Papini; França, Fernanda Stapenhorst; Castro, Mauro Antônio Alves; Klamt, Fabio

    2016-08-01

    Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn(®) software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.

  4. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (review).

    PubMed

    Möhler, Hanns; Pfirrmann, Rolf W; Frei, Karl

    2014-10-01

    Targeting the oxygen stress response pathway is considered a promising strategy to exert antineoplastic activity in a broad spectrum of tumor types. Supporting this view, we summarize the mechanism of action of Taurolidine and Piperlongumine, two antineoplastic agents with strikingly broad tumor selectivity. Taurolidine enhances the oxidative stress (ROS) selectively in tumor cells. Its cytotoxicity for various tumor cells in vitro and in vivo, which includes tumor stem cells, is based on the induction of programmed cell death, largely via apoptosis but also necroptosis and autophagy. The redox-directed mechanism of action of Taurolidine is apparent from the finding that reducing agents e.g., N-acetylcysteine or glutathione impair its cytotoxicity, while its effectiveness is enhanced by agents which inhibit the cellular anti‑oxidant capacity. A similar redox-directed antineoplastic action is shown by Piperlongumine, a recently described experimental drug of plant origin. Taurolidine is particularly advantageous in surgical oncology as this taurine-derivative can be applied perioperatively or systemically with good tolerability as shown in initial clinical applications.

  5. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    PubMed

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. PMID:26453854

  6. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    PubMed

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA.

  7. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-07-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  8. Antibacterial Effect and Physical-Mechanical Properties of Temporary Restorative Material Containing Antibacterial Agents.

    PubMed

    Mushashe, Amanda Mahammad; Gonzaga, Carla Castiglia; Tomazinho, Paulo Henrique; da Cunha, Leonardo Fernandes; Leonardi, Denise Piotto; Pissaia, Janes Francio; Correr, Gisele Maria

    2015-01-01

    Introduction. For the maintenance of the aseptic chain created during the treatment the coronal sealing becomes paramount. Aim. Evaluating the antibacterial effect and the physical-mechanical properties of a temporary restorative material containing different antibacterial agents. Material and Methods. Two antibacterial agents (triclosan and chloramine T) were manually added to a temporary restorative material used as base (Coltosol). The antibacterial action of the material was analyzed using the agar diffusion method, in pure cultures of Escherichia coli (ATCC BAA-2336) and Staphylococcus aureus (ATCC 11632) and mixed culture of saliva collection. The microleakage rate was analyzed using bovine teeth, previously restored with the materials, and submitted to thermocycling, in a solution of 0.5% methylene blue, for a period of 24 hours. The physical and mechanical properties of the materials analyzed were setting time, water sorption, solubility, and compression strength. Results. No marginal leakage was observed for all groups. There was no statistical significant difference in antimicrobial activity, setting time, water sorption, solubility, and compression strength among the materials. Conclusion. The addition of antibacterial agents on a temporary restorative material did not optimize the antibacterial ability of the material and also did not change its physical-mechanical properties.

  9. [Effect of antineoplastic agents and ionizing radiation on a human testicular cancer heterograft].

    PubMed

    Osieka, R; Bamberg, M; Pfeiffer, R; Glatte, P; Scherer, E; Schmidt, C G

    1985-01-01

    Chemotherapy has afforded a high percentage of definitive cures in advanced testicular cancer. Nevertheless some patients with large tumor burden still succumb to chemorefractory disease. Therefore preclinical and clinical evaluation of new drugs and agents not primarily used against this type of disease are still mandatory. For preclinical drug screening purposes heterotransplantation of specific human tumors yields a model with high validity for tumor markers and drug response. Heterotransplantation of a human embryonal testicular cancer was used for simultaneous testing of established agents such as cisplatin, melphalan, bleomycin, vinblastine, etoposide and adriamycin and some newer derivatives such as PHM or mafosfamide. Furthermore agents such as procarbazine, dacarbazine and methyl-CCNU that cross the blood-brain-barrier displayed some interesting activity. The results hint at a unique chemosensitivity pattern of the xenograft line, with some accordance between clinical response to vinblastine and bleomycin and good response of the xenografts to bleomycin but not to vinblastine. Radiotherapy was also effective against this tumor line, but there was not much difference in response when the schedule of fractionation was changed. It is concluded that a combined modality approach might salvage patients with residual, chemorefractory disease.

  10. Effects of complexing agents on electrochemical deposition of FeS x O y thin films

    NASA Astrophysics Data System (ADS)

    Supee, Aizuddin; Ichimura, Masaya

    2016-08-01

    FeS x O y thin films were deposited on indium-tin-oxide (ITO)-coated glass substrates at 15 °C via galvanostatic electrochemical deposition from an aqueous solution containing 100 mM Na2S2O3 and 30 mM FeSO4. The effects of l(+)-tartaric acid (C4H4O6) and lactic acid [CH3CH(OH)COOH] at different concentrations were investigated. All the deposited films were amorphous. With the complexing agents, the thickness was increased, and the oxygen content was reduced significantly compared with the sample deposited without the complexing agents. In the photoelectrochemical measurement, p-type conductivity was confirmed. The photoresponsivity was not influenced significantly by the complexing agent, suggesting that the oxygen content does not drastically affect the properties of the deposited films probably because the local bonding configuration around Fe atoms in FeS x O y is similar to that in FeS2.

  11. Immunotoxicological effects of Agent Orange exposure to the Vietnam War Korean veterans.

    PubMed

    Kim, Hyoung-Ah; Kim, Eun-Mi; Park, Yeong-Chul; Yu, Ji-Yeon; Hong, Seung-Kwon; Jeon, Seong-Hoon; Park, Kui-Lea; Hur, Sook-Jin; Heo, Yong

    2003-07-01

    Immunomodulatory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) demonstrated using animals are thymic atrophy, downregulation of cytotoxic T or B lymphocyte differentiation or activation, whereas human immunotoxicities have not been investigated well. This study was undertaken to evaluate overall immunologic spectrum of the Vietnam War Korean veterans exposed to Agent Orange contaminated with TCDD. Quantity of red blood cells, hemoglobin and hematocrit in the veterans suffered from chronic diseases associated with Agent Orange exposure (Veterans-patient group) were decreased in comparison with those of the veterans without the diseases and the age-matched healthy controls, but no differences in leukocyte populations. Plasma IgG levels were lowered in the veterans than the controls, owing to significant decrease in the IgG1 levels. Increase in the IgE levels was observed in the plasma from the veterans. Alteration of T cell-mediated immunity was also resulted from activation of peripheral blood mononuclear cells with polyclonal T cell activators. Production of IFNgamma, a major cytokine mediating host resistance against infection or tumoregenesis, was lowered in the veterans-patient group. However, production of IL-4 and IL-10, representative cytokines involved with hypersensitivity induction, was enhanced in the patient group. Overall, this study suggests that military service in Vietnam and/or Agent Orange exposure disturbs immune-homeostasis resulting in dysregulation of B and T cell activities. PMID:12916745

  12. Effects of complexing agents on electrochemical deposition of FeS x O y thin films

    NASA Astrophysics Data System (ADS)

    Supee, Aizuddin; Ichimura, Masaya

    2016-08-01

    FeS x O y thin films were deposited on indium–tin-oxide (ITO)-coated glass substrates at 15 °C via galvanostatic electrochemical deposition from an aqueous solution containing 100 mM Na2S2O3 and 30 mM FeSO4. The effects of l(+)-tartaric acid (C4H4O6) and lactic acid [CH3CH(OH)COOH] at different concentrations were investigated. All the deposited films were amorphous. With the complexing agents, the thickness was increased, and the oxygen content was reduced significantly compared with the sample deposited without the complexing agents. In the photoelectrochemical measurement, p-type conductivity was confirmed. The photoresponsivity was not influenced significantly by the complexing agent, suggesting that the oxygen content does not drastically affect the properties of the deposited films probably because the local bonding configuration around Fe atoms in FeS x O y is similar to that in FeS2.

  13. Gaseous emissions in municipal wastes composting: effect of the bulking agent.

    PubMed

    Maulini-Duran, Caterina; Artola, Adriana; Font, Xavier; Sánchez, Antoni

    2014-11-01

    In this study, the emissions of volatile organic compounds (VOC), CH4, N2O and NH3 during composting non-source selected MSW, source selected organic fraction of municipal solid wastes (OFMSW) with wood chips as bulking agent (OF_wood) and source selected OFMSW with polyethylene (PE) tube as bulking agent (OF_tube) and the effect of bulking agent on these emissions have been systematically studied. Emission factors are provided (in kg compound Mg(-1) dry matter): OF_tube (CH4: 0.0185±0.004; N2O: 0.0211±0.005; NH3: 0.612±0.269; VOC: 0.688±0.082) and MSW (CH4: 0.0549±0.0171; N2O: 0.032±0.015; NH3: 1.00±0.20; VOC: 1.05±0.18) present lower values than OF_wood (CH4: 1.27±0.09; N2O: 0.021±0.006; NH3: 4.34±2.79; VOC: 0.989±0.249). A detailed composition of VOC is also presented. Terpenes were the main emitted VOC family in all the wastes studied. Higher emissions of alpha and beta pinene were found during OF_wood composting processes.

  14. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  15. Immunotoxicological effects of Agent Orange exposure to the Vietnam War Korean veterans.

    PubMed

    Kim, Hyoung-Ah; Kim, Eun-Mi; Park, Yeong-Chul; Yu, Ji-Yeon; Hong, Seung-Kwon; Jeon, Seong-Hoon; Park, Kui-Lea; Hur, Sook-Jin; Heo, Yong

    2003-07-01

    Immunomodulatory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) demonstrated using animals are thymic atrophy, downregulation of cytotoxic T or B lymphocyte differentiation or activation, whereas human immunotoxicities have not been investigated well. This study was undertaken to evaluate overall immunologic spectrum of the Vietnam War Korean veterans exposed to Agent Orange contaminated with TCDD. Quantity of red blood cells, hemoglobin and hematocrit in the veterans suffered from chronic diseases associated with Agent Orange exposure (Veterans-patient group) were decreased in comparison with those of the veterans without the diseases and the age-matched healthy controls, but no differences in leukocyte populations. Plasma IgG levels were lowered in the veterans than the controls, owing to significant decrease in the IgG1 levels. Increase in the IgE levels was observed in the plasma from the veterans. Alteration of T cell-mediated immunity was also resulted from activation of peripheral blood mononuclear cells with polyclonal T cell activators. Production of IFNgamma, a major cytokine mediating host resistance against infection or tumoregenesis, was lowered in the veterans-patient group. However, production of IL-4 and IL-10, representative cytokines involved with hypersensitivity induction, was enhanced in the patient group. Overall, this study suggests that military service in Vietnam and/or Agent Orange exposure disturbs immune-homeostasis resulting in dysregulation of B and T cell activities.

  16. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  17. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells.

    PubMed

    Hussain, Arif; Brahmbhatt, Kruti; Priyani, Anita; Ahmed, Musthaq; Rizvi, Tahir A; Sharma, Chhavi

    2011-10-01

    Administration of natural or synthetic agents to inhibit, delay, block, or reverse the initiation and promotional events associated with carcinogenesis opens a new avenue for cancer prevention and treatment to reduce cancer morbidity and mortality. Eugenol, a potential chemopreventive agent, is a component of clove and several other spices such as basil, cinnamon, and bay leaves. A number of reports have shown that eugenol possesses antiseptic, analgesic, antibacterial, and anticancer properties. The present study was undertaken to evaluate the chemopreventive potential of eugenol alone and in combination with a chemotherapeutic agent such as gemcitabine. Eugenol showed dose-dependent selective cytotoxicity toward HeLa cells in comparison to normal cells, pointing to its safe cytotoxicity profile. A combination of eugenol and gemcitabine induced growth inhibition and apoptosis at lower concentrations, compared with the individual drugs. The analysis of the data using a combination index showed combination index values of <1 indicating strong synergistic interaction. The combination thus may enhance the efficacy of gemcitabine at lower doses and minimize the toxicity on normal cells. In addition, the expression analysis of genes involved in apoptosis and inflammation revealed significant downregulation of Bcl-2, COX-2, and IL-1β on treatment with eugenol. Thus, the results suggest that eugenol exerts its anticancer activities via apoptosis induction and anti-inflammatory properties and also provide the first evidence demonstrating synergism between eugenol and gemcitabine, which may enhance the therapeutic index of prevention and/or treatment of cervical cancer.

  18. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic.

    PubMed

    Moradabadi, Ashkan; Roudsari, Sareh Esmaeily Sabet; Yekta, Bijan Eftekhari; Rahbar, Nima

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30× magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. PMID:24268263

  19. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic.

    PubMed

    Moradabadi, Ashkan; Roudsari, Sareh Esmaeily Sabet; Yekta, Bijan Eftekhari; Rahbar, Nima

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30× magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments.

  20. Using Physiological Measures to Assess the Effects of Animated Pedagogical Agents in Multimedia Instruction

    ERIC Educational Resources Information Center

    Romero-Hall, Enilda; Watson, Ginger; Papelis, Yiannnis

    2014-01-01

    To examine the visual attention, emotional responses, learning, perceptions and attitudes of learners interacting with an animated pedagogical agent, this study compared a multimedia learning environment with an emotionally-expressive animated pedagogical agent, with a non-expressive animated pedagogical agent, and without an agent. Visual…

  1. Effect of Ceramic Thickness and Luting Agent Shade on the Color Masking Ability of Laminate Veneers.

    PubMed

    Begum, Zubeda; Chheda, Pratik; Shruthi, C S; Sonika, Radhika

    2014-12-01

    The main objective of the study was to recognize the effect of ceramic thickness and luting agent on the extent to which the restoration masks color variations that may be present in the underlying dental structure. Two pressable ceramics were used: Lithium disilicate reinforced (IPS e.max- Ivoclar Vivadent) and Leucite reinforced (Cergo- Dentsply). Fifteen ceramic discs were manufactured from each ceramic and divided into three groups, according to the thickness (0.5, 1, 1.5 mm). To simulate the color of a dark underlying dental structure, background discs, color C3, with 20 mm diameter, were made using resin composite. The ceramic discs with varying thicknesses were seated on the dark background of the resin composite with either resinous opaque cement or resinous cement. The color parameters were determined by the CIE Lab system of colors using a spectrophotometer and color differences (ΔE) were calculated. The results were then statistically analyzed, using ANOVA test and Tukey HSD test. The ΔE values of both ceramic systems were affected by both the luting agent and the ceramic thickness (P < 0.05). The use of an opaque luting agent resulted in an increase of the ΔE* values for all ceramics tested, regardless of the thickness. For the 1.5-mm thick veneers, higher values in the color parameters were obtained for both ceramic materials. The color masking ability of ceramics used for laminate veneers is significantly affected by the thickness of the ceramic and the shade of the luting agent used.

  2. Effect of Ceramic Thickness and Luting Agent Shade on the Color Masking Ability of Laminate Veneers.

    PubMed

    Begum, Zubeda; Chheda, Pratik; Shruthi, C S; Sonika, Radhika

    2014-12-01

    The main objective of the study was to recognize the effect of ceramic thickness and luting agent on the extent to which the restoration masks color variations that may be present in the underlying dental structure. Two pressable ceramics were used: Lithium disilicate reinforced (IPS e.max- Ivoclar Vivadent) and Leucite reinforced (Cergo- Dentsply). Fifteen ceramic discs were manufactured from each ceramic and divided into three groups, according to the thickness (0.5, 1, 1.5 mm). To simulate the color of a dark underlying dental structure, background discs, color C3, with 20 mm diameter, were made using resin composite. The ceramic discs with varying thicknesses were seated on the dark background of the resin composite with either resinous opaque cement or resinous cement. The color parameters were determined by the CIE Lab system of colors using a spectrophotometer and color differences (ΔE) were calculated. The results were then statistically analyzed, using ANOVA test and Tukey HSD test. The ΔE values of both ceramic systems were affected by both the luting agent and the ceramic thickness (P < 0.05). The use of an opaque luting agent resulted in an increase of the ΔE* values for all ceramics tested, regardless of the thickness. For the 1.5-mm thick veneers, higher values in the color parameters were obtained for both ceramic materials. The color masking ability of ceramics used for laminate veneers is significantly affected by the thickness of the ceramic and the shade of the luting agent used. PMID:26199491

  3. Chemotherapeutic Potential of 17-AAG against Cutaneous Leishmaniasis Caused by Leishmania (Viannia) braziliensis

    PubMed Central

    Santos, Diego M.; Petersen, Antonio L. O. A.; Celes, Fabiana S.; Borges, Valeria M.; Veras, Patricia S. T.; de Oliveira, Camila I.

    2014-01-01

    Background Leishmaniasis remains a worldwide public health problem. The limited therapeutic options, drug toxicity and reports of resistance, reinforce the need for the development of new treatment options. Previously, we showed that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a Heat Shock Protein 90 (HSP90)-specific inhibitor, reduces L. (L.) amazonensis infection in vitro. Herein, we expand the current knowledge on the leishmanicidal activity of 17-AAG against cutaneous leishmaniasis, employing an experimental model of infection with L. (V.) braziliensis. Methodology/Principal findings Exposure of axenic L. (V.) braziliensis promastigotes to 17-AAG resulted in direct dose-dependent parasite killing. These results were extended to L. (V.) braziliensis-infected macrophages, an effect that was dissociated from the production of nitric oxide (NO), superoxide (O−2) or inflammatory mediators such as TNF-α, IL-6 and MCP-1. The leishmanicidal effect was then demonstrated in vivo, employing BALB/c mice infected with L. braziliensis. In this model, 17-AAG treatment resulted in smaller skin lesions and parasite counts were also significantly reduced. Lastly, 17-AAG showed a similar effect to amphotericin B regarding the ability to reduce parasite viability. Conclusion/Significance 17-AAG effectively inhibited the growth of L. braziliensis, both in vitro and in vivo. Given the chronicity of L. (V.) braziliensis infection and its association with mucocutaneous leishmaniasis, 17-AAG can be envisaged as a new chemotherapeutic alternative for cutaneous Leishmaniasis. PMID:25340794

  4. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro.

    PubMed

    Boichuk, Sergei; Galembikova, Aigul; Zykova, Svetlana; Ramazanov, Bulat; Khusnutdinov, Ramil; Dunaev, Pavel; Khaibullina, Svetlana; Lombardi, Vincent

    2016-08-01

    Microtubules are known to be one of the most attractive and validated targets in cancer therapy. However, the clinical use of drugs that affect the dynamic state of microtubules has been hindered by chemoresistance and toxicity issues. Accordingly, the development of novel agents that target microtubules is needed. Here, we report the identification of novel compounds with pirrole and carboxylate structures: ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) that provide potent cytotoxic activities against multiple soft tissue cancer cell lines in vitro. Using the MTS cell proliferation assay, we assessed the activity of EAPCs on various cancer cell lines including leiomyosarcoma SK-LMS-1, rhabdomyosarcoma RD, gastrointestinal stromal tumor GIST-T1, A-673 Ewing's sarcoma, and U-2 OS osteosarcoma. We found that in the majority of cases, two EAPC compounds (EAPC-20 and EAPC-24) considerably inhibited cancer cell proliferation in vitro. The growth-inhibitory effects of EAPC-20 and EAPC-24 were time and dose dependent. The molecular mechanisms of action of these compounds were because of the inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to considerable accumulation of tumor cells in the M-phase. Finally, EAPCs induced tumor cell death by apoptotic pathways. The above-mentioned effects were also observed in most soft tissue tumor cell lines and the gastrointestinal stromal tumor cell line investigated. Taken together, our data identify potent antitumor activity of EAPCs in vitro, thus providing a novel scaffold with which to develop potent chemotherapeutic agents for cancer therapy.

  5. [Hypoxia and memory. Specific features of nootropic agents effects and their use].

    PubMed

    Voronina, T A

    2000-01-01

    Hypoxia and hypoxic adaptation are powerful factors of controlling memory and behavior processes. Acute hypoxia exerts a differential impact on different deficits of mnestic and cognitive functions. Instrumental reflexes of active and passive avoidance, negative learning, behavior with a change in the stereotype of learning are more greatly damaged. Memory with spatial and visual differentiation and their rearrangement change to a lesser extent and conditional reflexes are not deranged. In this contract, altitude hypoxic adaptation enhances information fixation and increases the degree and duration of retention of temporary relations. Nootropic agents with an antihypoxic action exert a marked effect on hypoxia-induced cognitive and memory disorders and the magnitude of this effect depends on the ration of proper nootropic to antihypoxic components in the spectrum of the drugs' pharmacological activity. The agents that combine a prevailing antiamnestic effect and a marked and moderate antihypoxic action (mexidole, nooglutil, pyracetam, beglymin, etc.) are most effective in eliminating different hypoxia-induced cognitive and memory disorders, nootropic drugs that have a pronounced antiamnestic activity (centrophenoxine, etc.) and no antihypoxic component also restore the main types of mnestic disorders after hypoxia, but to a lesser extent.

  6. Evaluation of protective ointments used against dermal effects of nitrogen mustard, a vesicant warfare agent.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Yuksel, Altan; Gunhan, Omer; Kose, Songul; Kurt, Bulent

    2005-01-01

    Mustard, a vesicant warfare agent, has cytotoxic, mutagenic, and cytostatic effects via alkylation of DNA and inhibition of DNA replication. Since symptoms appear following a latent period, it can cause some subacute and chronic effects to occur and delay in the treatment. Therefore, the main approach should be the use of protective preparation to reduce the skin toxicity. Thus, this study was conducted in guinea pigs (350-400 g) shaved in areas of 10 x 10 cm. Mechlorethamine HCl (100 mg), a nitrogen mustard derivative, in ethanol was applied by spraying on hairless regions where previously prepared pharmaceutical topical formulations were medicated before. The experimental regions of the animals were kept preserved from environmental factors. Forty-eight hours after the application of the protective ointments and mechlorethamine consecutively, skin-damaging effects were macroscopically evaluated in terms of erythema formation, ulceration, necrosis, and inflammation occurrences. Then, punch biopsy was performed from these damaged sites for histopathological evaluation. Although numerous topical formulations were prepared and tested for protection, according to microscopic examination of the pathologic sections, tissue specimen treated with the ointment containing the mixture of zinc oxide, zinc chloride, dimethylpolysiloxane in a base of petroleum jelly was determined as being the most effective protective against skin injury caused by the vesicant agent.

  7. The effects of acoustic radiation force on contrast agents: Experimental and theoretial analysis

    NASA Astrophysics Data System (ADS)

    Dayton, Paul Alexander

    The goal of this research is to understand the response of ultrasound contrast agents to acoustic radiation force. Ultrasound contrast agents are encapsulated microbubbles similar in size and rheologic behavior to human erythrocytes. A core of either air or a high- molecular weight gas makes these microbubbles extremely compressible and highly echogenic. Clinically, the detection of blood is difficult without contrast agents because the echoes from blood cells are typically 30-40 dB less than tissue echoes. Ultrasound contrast agents have been shown to be extremely useful in assisting delineation of perfused tissue in echocardiography, and are being increasingly used for tumor detection in radiology. The high compressibility of gas-filled contrast agents makes these microbubbles susceptible to translation due to radiation force. Thus, it is important to understand the effects of this force in order to avoid erroneous measurements based on the location and flow velocity of microbubbles. In addition, the ability to displace and concentrate microbubbles may be an advantage in targeted imaging, targeted therapy, or industrial applications where it is desired to localize microbubbles in a region. In this study, experimental and theoretical tools are combined to investigate the interaction between microbubbles and an acoustic pulse. Several unique experimental systems allow visualization and analysis of the radius-time curves of individual microbubbles, the displacement of individual microbubbles in-vitro, and the displacement of microbubbles in-vivo. Theoretical analysis illustrates that the effect of radiation force on microbubbles is directly proportional to the product of the bubble volume and the acoustic pressure gradient. A model designed to simulate the radius-time behavior of individual microbubbles is verified from experimental data, and used to estimate the magnitude of radiation force. The resulting bubble translation is determined using a second model

  8. Molecular Cloning and Characterization of Taurocyamine Kinase from Clonorchis sinensis: A Candidate Chemotherapeutic Target

    PubMed Central

    Tokuhiro, Shinji; Nagataki, Mitsuru; Jarilla, Blanca R.; Nomura, Haruka; Kim, Tae Im; Hong, Sung-Jong; Agatsuma, Takeshi

    2013-01-01

    Background Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK) constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. Methology/Principal findings A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK) of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK) gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. Conclusion CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart, creatine. PMID:24278491

  9. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics

    PubMed Central

    Lion, Mattia; Bisio, Alessandra; Tebaldi, Toma; De Sanctis, Veronica; Menendez, Daniel; Resnick, Michael A.; Ciribilli, Yari; Inga, Alberto

    2013-01-01

    Estrogen receptors (ERs) and p53 can interact via cis-elements to regulate the angiogenesis-related VEGFR-1 (FLT1) gene, as we reported previously. Here, we address cooperation between these transcription factors on a global scale. Human breast adenocarcinoma MCF7 cells were exposed to single or combinatorial treatments with the chemotherapeutic agent doxorubicin and the ER ligand 17β-estradiol (E2). Whole-genome transcriptome changes were measured by expression microarrays. Nearly 200 differentially expressed genes were identified that showed limited responsiveness to either doxorubicin treatment or ER ligand alone but were upregulated in a greater than additive manner following combined treatment. Based on exposure to 5-fuorouracil and nutlin-3a, the combined responses were treatment-specific. Among 16 genes chosen for validation using quantitative real-time PCR, seven (INPP5D, TLR5, KRT15, EPHA2, GDNF, NOTCH1, SOX9) were confirmed to be novel direct targets of p53, based on responses in MCF7 cells silenced for p53 or cooperative targets of p53 and ER. Promoter pattern searches and chromatin IP experiments for the INPP5D, TLR5, KRT15 genes supported direct, cis-mediated p53 and/or ER regulation through canonical and noncanonical p53 and ER response elements. Collectively, we establish that combinatorial activation of p53 and ER can induce novel gene expression programs that have implications for cell-cell communications, adhesion, cell differentiation, development and inflammatory responses as well as cancer treatments. PMID:23518503

  10. New arylalkanones from Horsfieldia macrobotrys, effective antidiabetic agents concomitantly inhibiting α-glucosidase and free radicals.

    PubMed

    Ramadhan, Rico; Phuwapraisirisan, Preecha

    2015-10-15

    In search of effective antidiabetic agents having therapeutic effect by inhibiting α-glucosidase and preventive effect by scavenging free radicals, Horsfieldia macrobotrys showed promising bioactivity required for the proposed criteria. Bioassay-guided isolation of the stem bark extract resulted in two new arylalkanones named horsfieldone A (1) and maingayone D (2), together with a new flavanone C-glucoside named 8-C-β-d-glucopyranosylpinocembrin (3). Their structures and stereochemistry were determined by spectroscopic techniques as well as Mosher's method. Of isolated compounds, maingayone D (2) was the most potent inhibitors against both α-glucosidases and free radicals. The presence of additional phenolic moieties in 2 clearly indicated their critical roles in inhibitory effects. Further investigation on mechanism underlying α-glucosidase inhibition indicated that maingayone D (2) could retard the enzyme function by both competitive and noncompetitive manners.

  11. EFFECT OF CHELATING AGENTS ON THE GROWTH OF ESCHERICHIA COLI IN SEAWATER.

    PubMed

    JONES, G E

    1964-03-01

    Jones, Galen E. (Scripps Institution of Oceanography, University of California, La Jolla). Effect of chelating agents on the growth of Escherichia coli in seawater. J. Bacteriol. 87:483-499. 1964.-Escherichia coli did not grow at 37 C, or grew only after a prolonged lag phase in filter-sterilized basal seawater medium (synthetic or natural seawater supplemented with glucose, NH(4)Cl, and K(2)HPO(4)). When this basal medium was enriched with 0.01% or less organic matter, such as casein hydrolysate, peptone, or yeast extract, growth always occurred after a short lag phase. Adding 10(-5)m cysteine or autoclaving the seawater gave a similar effect. A variety of organic chelating agents (histidine, glycine, methionine, glycylglycine, 8-hydroxyquinoline, thioglycolic acid, o-phenanthroline, disodium ethylenediaminetetraacetic acid, etc.) reversed the toxicity of filter-sterilized basal seawater medium in concentrations predictable from stability constants. Even metal-complexing agents such as Na(2)S(2)O(3), Na(2)S, and NaCN in appropriate concentrations reversed toxicity. The quality of the distilled water and the treatment of glassware had a significant effect on the growth of E. coli in basal seawater medium. It was concluded that iodate is probably not the toxic substance for E. coli in seawater, since relatively high concentrations were stimulatory. The inhibition resulting from the individual salts of synthetic seawater was proportional to their concentration; NaCl was most inhibitory. This toxicity is believed to be derived from trace impurities in the reagent-grade chemicals used to prepare synthetic seawater. Evidence was also found for the toxicity of heavy metals in natural seawater. Heavy metals in seawater appear to inhibit growth but not respiration. PMID:14127563

  12. Effect of Therapeutic Chemical Agents In Vitro and on Experimental Meningoencephalitis Due to Naegleria fowleri▿

    PubMed Central

    Kim, Jong-Hyun; Jung, Suk-Yul; Lee, Yang-Jin; Song, Kyoung-Ju; Kwon, Daeho; Kim, Kyongmin; Park, Sun; Im, Kyung-Il; Shin, Ho-Joon

    2008-01-01

    Naegleria fowleri is a ubiquitous, pathogenic free-living amoeba; it is the most virulent Naegleria species and causes primary amoebic meningoencephalitis (PAME) in laboratory animals and humans. Although amphotericin B is currently the only agent available for the treatment of PAME, it is a very toxic antibiotic and may cause many adverse effects on other organs. In order to find other potentially therapeutic agents for N. fowleri infection, the present study was undertaken to evaluate the in vitro and in vivo efficacies of miltefosine and chlorpromazine against pathogenic N. fowleri. The result showed that the growth of the amoeba was effectively inhibited by treatment with amphotericin B, miltefosine, and chlorpromazine. When N. fowleri trophozoites were treated with amphotericin B, miltefosine, and chlorpromazine, the MICs of the drug were 0.78, 25, and 12.5 μg/ml, respectively, on day 2. In experimental meningoencephalitis of mice that is caused by N. fowleri, the survival rates of mice treated with amphotericin B, miltefosine, and chlorpromazine were 40, 55, and 75%, respectively, during 1 month. The average mean time to death for the amphotericin B, miltefosine, and chlorpromazine treatments was 17.9 days. In this study, the effect of drugs was found to be optimal when 20 mg/kg was administered three times on days 3, 7, and 11. Finally, chlorpromazine had the best therapeutic activity against N. fowleri in vitro and in vivo. Therefore, it may be a more useful therapeutic agent for the treatment of PAME than amphotericin B. PMID:18765686

  13. Long-term effects of the antibacterial agent triclosan on marine periphyton communities.

    PubMed

    Eriksson, K Martin; Johansson, C Henrik; Fihlman, Viktor; Grehn, Alexander; Sanli, Kemal; Andersson, Mats X; Blanck, Hans; Arrhenius, Åsa; Sircar, Triranta; Backhaus, Thomas

    2015-09-01

    Triclosan is a widely used antibacterial agent that has become a ubiquitous contaminant in freshwater, estuary, and marine environments. Concerns about potential adverse effects of triclosan have been described in several recent risk assessments. Its effects on freshwater microbial communities have been well studied, but studies addressing effects on marine microbial communities are scarce. In the present study, the authors describe short- and long-term effects of triclosan on marine periphyton (microbial biofilm) communities. Short-term effects on photosynthesis were estimated after 60 min to 210 min of exposure. Long-term effects on photosynthesis, chlorophyll a fluorescence, pigment content, community tolerance, and bacterial carbon utilization were studied after exposing periphyton for 17 d in flow-through microcosms to 0.316 nM to 10,000 nM triclosan. Results from the short-term studies show that triclosan is toxic to periphyton photosynthesis. Half maximal effective concentration (EC50) values of 1080 nM and 3000 nM were estimated using (14)CO2-incorporation and pulse amplitude modulation (PAM) fluorescence measurements, respectively. After long-term triclosan exposure in flow-through microcosms, photosynthesis estimated using PAM fluorometry was not inhibited by triclosan concentrations up to 1000 nM but instead increased with increasing triclosan concentration. Similarly, at exposure concentrations of 31.6 nM and higher, triclosan caused an increase in photosynthetic pigments. At 316 nM triclosan, the pigment amounts were increased by a factor of 1.4 to 1.9 compared with the control level. Pollution-induced community tolerance was observed for algae and cyanobacteria at 100 nM triclosan and higher. Despite the widespread use of triclosan as an antibacterial agent, the compound did not have any effects on bacterial carbon utilization after long-term exposure.

  14. Long-term effects of the antibacterial agent triclosan on marine periphyton communities.

    PubMed

    Eriksson, K Martin; Johansson, C Henrik; Fihlman, Viktor; Grehn, Alexander; Sanli, Kemal; Andersson, Mats X; Blanck, Hans; Arrhenius, Åsa; Sircar, Triranta; Backhaus, Thomas

    2015-09-01

    Triclosan is a widely used antibacterial agent that has become a ubiquitous contaminant in freshwater, estuary, and marine environments. Concerns about potential adverse effects of triclosan have been described in several recent risk assessments. Its effects on freshwater microbial communities have been well studied, but studies addressing effects on marine microbial communities are scarce. In the present study, the authors describe short- and long-term effects of triclosan on marine periphyton (microbial biofilm) communities. Short-term effects on photosynthesis were estimated after 60 min to 210 min of exposure. Long-term effects on photosynthesis, chlorophyll a fluorescence, pigment content, community tolerance, and bacterial carbon utilization were studied after exposing periphyton for 17 d in flow-through microcosms to 0.316 nM to 10,000 nM triclosan. Results from the short-term studies show that triclosan is toxic to periphyton photosynthesis. Half maximal effective concentration (EC50) values of 1080 nM and 3000 nM were estimated using (14)CO2-incorporation and pulse amplitude modulation (PAM) fluorescence measurements, respectively. After long-term triclosan exposure in flow-through microcosms, photosynthesis estimated using PAM fluorometry was not inhibited by triclosan concentrations up to 1000 nM but instead increased with increasing triclosan concentration. Similarly, at exposure concentrations of 31.6 nM and higher, triclosan caused an increase in photosynthetic pigments. At 316 nM triclosan, the pigment amounts were increased by a factor of 1.4 to 1.9 compared with the control level. Pollution-induced community tolerance was observed for algae and cyanobacteria at 100 nM triclosan and higher. Despite the widespread use of triclosan as an antibacterial agent, the compound did not have any effects on bacterial carbon utilization after long-term exposure. PMID:25904164

  15. Effect of hypnotic and anxiolytic agents on regional concentration of acetylcholine in rat brain.

    PubMed

    Sethy, V H

    1978-01-01

    Pentobarbital (30 and 60 mg/kg) and chloral hydrate (300 and 600 mg/kg) administered in anesthetic/hypnotic doses produced significant increases in acetylcholine concentration in the cerebral cortex, striatum, hippocampus and brainstem. Hypnotic/anxiolytic agents like diazepam, flurazepam (100 mg/kg each) and triazolam (30 mg/kg) significantly increased the acetylcholine concentration only in the cerebral cortex and striatum. Alprazolam and ketazolam had no significant effect on regional distribution of acetylcholine in the brain. The results have been discussed with respect to the role of central cholinergic system in anesthetic and hypnotic actions of these drugs.

  16. Effect of selective sorptive agents on leachability of {sup 137}Cs and {sup 90}Sr

    SciTech Connect

    Spence, R.D.

    1998-06-01

    Decades ago it was established that illite effectively improves {sup 137}Cs leach resistance. Subsequently, illite has become a standard ingredient used at Oak Ridge National Laboratory in grouts developed to stabilize {sup 137}Cs. Adding illite improves {sup 137}Cs leach resistance by three orders of magnitude, and increasing the illite concentration can add another order of magnitude improvement. Adding crystalline silicotitanate, a selective sorptive agent developed more recently for {sup 137}Cs, not only improves {sup 137}Cs leach resistance by an order-of-magnitude over that obtained using illite but also improves {sup 85}Sr leach resistance by two orders of magnitude.

  17. Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite.

    PubMed

    Ifuku, Shinsuke; Yano, Hiroyuki

    2015-03-01

    Composite materials reinforced with microfibrillated cellulose (MFC) fibers were prepared and characterized in terms of their mechanical properties. The surface of the MFC fibers was treated with a silane coupling reagent having an NH2 functional group to improve fiber-matrix adhesion. Due to the unique structure of the MFC, which consists of nano-order-scale interconnected fibrils and microfibrils with greatly expanded surface area and submicron pore size compared to conventional cellulose, it was possible to enhance the effect of silane coupling agent and thereby improve the compatibility between the fibers and matrix and also the dispersibility of fibers. The Young's modulus was significantly increased to more than 70%.

  18. Gastrointestinal safety, chemotherapeutic potential, and classic pharmacological profile of NOSH-naproxen (AVT-219) a dual NO- and H2S-releasing hybrid.

    PubMed

    Chattopadhyay, Mitali; Kodela, Ravinder; Duvalsaint, Pascale L; Kashfi, Khosrow

    2016-04-01

    Naproxen (NAP) is a potent nonsteroidal anti-inflammatory drug (NSAID) with a favorable cardiovascular profile. However, its long-term use may lead to serious gastrointestinal and renal side effects. NOSH- (nitric oxide and hydrogen sulfide) releasing naproxen (NOSH-NAP, AVT-219) belongs to a new class of anti-inflammatory agents designed to overcome these limitations. We compared the gastrointestinal safety, anti-inflammatory, analgesic, antipyretic, and antiplatelet properties of AVT-219 to that of NAP in preclinical animal models. We also evaluated its anticancer effects in 11 human cancer cell (HCC) lines of six different tissue origins and in a chemotherapeutic xenograft mouse model of colon cancer. AVT-219: (1) was orders of magnitude more potent than NAP in inhibiting the growth of cultured HCC; (2) was safe to the stomach, whereas NAP caused significant ulceration; (3) showed strong anti-inflammatory, analgesic, antipyretic, and antiplatelet properties comparable to NAP; and (4) NAP caused a significant rise in plasma tumor necrosis factor-alpha (TNFα), whereas in the AVT-219-treated rats this rise was significantly less. Mechanistically, AVT-219 was a strong antioxidant, inhibited cyclooxygenase (COX)-1 and -2, thus reducing prostaglandin (PG) E2. In xenografts, AVT-219 significantly reduced tumor growth and tumor mass with no sign of GI toxicity, whereas NAP-treated mice died due to GI bleeding. AVT-219 displayed considerable safety and potency in inhibiting HCC growth; was an effective analgesic, antipyretic, antiplatelet, and anti-inflammatory; and was significantly more efficacious than NAP in reducing the growth of established tumors in a xenograft mouse model.

  19. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  20. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer.

    PubMed

    Basudhar, Debashree; Cheng, Robert C; Bharadwaj, Gaurav; Ridnour, Lisa A; Wink, David A; Miranda, Katrina M

    2015-06-01

    Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in treatment of breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related nontumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer.

  1. Chemotherapeutic Potential of Diazeniumdiolate-based Aspirin Prodrugs in Breast Cancer

    PubMed Central

    Basudhar, Debashree; Cheng, Robert C.; Bharadwaj, Gaurav; Ridnour, Lisa A.; Wink, David A.; Miranda, Katrina M.

    2015-01-01

    Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related non-tumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer. PMID:25659932

  2. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    PubMed

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  3. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.

    PubMed

    Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J; McDougall, Steven R; Cristini, Vittorio; Lowengrub, John S

    2014-08-21

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response

  4. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems

    PubMed Central

    Wu, Min; Frieboes, Hermann B.; Chaplain, Mark A.J.; McDougall, Steven R.; Cristini, Vittorio; Lowengrub, John

    2014-01-01

    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but leads to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the

  5. Effects of spill-treating agents on growth kinetics of marine microalgae.

    PubMed

    Rial, Diego; Murado, Miguel A; Menduiña, Araceli; Fuciños, Pablo; González, Pilar; Mirón, Jesús; Vázquez, José A

    2013-12-15

    The effects of four spill-treating agents (STAs) (CytoSol, Finasol(®) OSR 51, Agma OSD 569 and OD4000) on the growth kinetics of three marine microalgae (Isochrysis galbana, Chaetoceros gracilis, Phaeodactylum tricornutum) were studied. Chlorophyll a concentration and optical density at 700 nm were assessed to describe the logistic growth of algae in batch cultures. The optical density data were initially analyzed as described for standard algal growth inhibition tests and subsequently modelled by a bivariate model, as a function of time and dose, to assess the toxic effects on growth parameters. Increasing trends in EC50 and EC10 values with time were found with the standard approach. In 8 of the 11 tests, the lag phase (λ) or the time required to achieve half the maximum biomass (τ) was significantly dependent on the STA concentration. A global parameter (EC50,τ) was calculated to summarize the effects of STAs on growth parameters in the bivariate model. The ranking of sensitivity as EC50,τ values was I. galbana>C. gracilis>P. tricornutum. For all species tested, the least toxic agent was Agma OSD 569, followed by CytoSol. The mathematical model allowed successful ecotoxicological evaluation of chemicals on microalgal growth. PMID:23911058

  6. The effect of carbamide peroxide bleaching agents on the microhardness of dental ceramics.

    PubMed

    Passos, Sheila P; Vanderlei, Aleska D; Salazar-Marocho, Susana M; Azevedo, Sarina M B; Vasquez, Vanessa Z C; Kimpara, Estevão T

    2010-01-01

    This study examined the effect of 10% and 16% carbamide peroxide bleaching agents on the surface microhardness of micro-particulate feldspathic ceramics (VM7 and VM13, Vita Zahnfabrik). Forty specimens (8-mm diameter, 2-mm thickness) were divided into four groups (n=10): GI-VM7 + 10% Whiteness, G2-VM7 + 16% Whiteness, G3-VM13 + 10% and G4-VM13 + 16% Whiteness. The home-use bleaching agents were applied for 8 hours on 15 days, and the specimens were stored in distilled water at 37 degrees C. The Vickers hardness number (HV) was determined for each specimen. Data were analyzed by the Wilcoxon and Mann-Whitney tests (p < 0.05). The microhardness values before exposure were: g1-433 (57); g2-486 (22); g3-509 (28); g4-518 (24), and after exposure: G1-349 (32); G2-496 (95); G3-519 (38); G4-502 (81). G2 exhibited a higher and significant difference than GI in VM7 groups, and the effect of bleaching concentration was shown to be significant by the Mann-Whitney test. And for VM13, both the Wilcoxon and Mann-Whitney tests showed no significant differences. When using 10% carbamide peroxide, the microhardness of VM7 ceramic was affected, and there were no effect on the microhardness between VM7 and VM13 ceramics when 16% carbamide peroxide was used.

  7. Effect of a novel chelating agent on defect removal during post-CMP cleaning

    NASA Astrophysics Data System (ADS)

    Hong, Jiao; Niu, Xinhuan; Liu, Yuling; He, Yangang; Zhang, Baoguo; Wang, Juan; Han, Liying; Yan, Chenqi; Zhang, Jin

    2016-08-01

    Chemical mechanical polishing (CMP) has become widely accepted for the planarization of device interconnect structures in deep submicron semiconductor manufacturing. However, during CMP process the foreign particles, metal contaminants, and other chemical components are introduced onto the wafer surface, so CMP process is considered as one of the dirtiest process to wafer surface defects which may damage the GLSI patterns and the metallic impurities can induce many crystal defects in wafers during the following furnace processing. Therefore, the post-CMP cleaning of wafers has become a key step in successful CMP process and the polyvinyl alcohol (PVA) brush cleaning is the most effective method for post-CMP in situ cleaning. In this study, the effect of the chelating agent with different concentrations on defect removal by using PVA brush cleaning was discussed emphatically. It can be seen from the surface images obtained by scanning electron microscopy and KLA digital comparison system analysis confirmed that the chelating agent can effectively act on the defect removal.

  8. Effect of anti-glycolytic agents on tumour cells in vitro

    NASA Astrophysics Data System (ADS)

    Korshunov, D. A.; Kondakova, I. V.

    2016-08-01

    A metabolic change is one of the tumour hallmarks, which has recently attracted a great amount of attention. One of the main metabolic characteristics of tumour cells is a high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in a glycolysis pathway than that in a tricarboxylic acid cycle. The Warburg effect constitutes a fundamental adaptation of tumour cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumour glycolysis may become an attractive target for cancer therapy. Here, we research the effect of potential anticancer agents on tumour cells in vitro. In our study, we found a high sensitivity of tumour cells to anti-glycolityc drugs. In addition, tumour cells are more resistant to the agents studied in comparison with normal cells. We also observed an atypical cooperative interaction of tumour cells in the median lethal dose of drugs. They formed the specific morphological structure of the surviving cells. This behavior is not natural for the culture of tumour cells. Perhaps this is one of the mechanisms of cells' adaptation to the aggressive environment.

  9. Antiparkinson drugs used as prophylactics for nerve agents: studies of cognitive side effects in rats.

    PubMed

    Myhrer, Trond; Enger, Siri; Aas, Pål

    2008-06-01

    Antiparkinson agents possess excellent anticonvulsant properties against nerve agent-induced seizures by exerting both cholinergic and glutamatergic antagonisms. It is important, however, that drugs used as prophylactics not by themselves cause impairment of cognitive capability. The purpose of the present study was to make a comparative assessment of potential cognitive effects of benactyzine (0.3 mg/kg), biperiden (0.11 mg/kg), caramiphen (10 mg/kg), procyclidine (3 mg/kg), and trihexyphenidyl (0.12 mg/kg) separately and each in combination with physostigmine (0.1 mg/kg). The results showed that benactyzine, caramiphen, and trihexyphenidyl reduced rats' innate preference for novelty, whereas biperiden and procyclidine did not. When benactyzine, caramiphen, and trihexyphenidyl were combined with physostigmine the cognitive impairment disappeared. This counteracting effect, however, caused changes in locomotor and rearing activities not seen by each drug alone. Acetylcholinesterase inhibitors and anticholinergics used as prophylactics can offset each other, but exceptions are observed in a previous study when a very potent anticholinergic (scopolamine) or a high dose of procyclidine still results in cognitive deficits in spite of coadministration with physostigmine. Among the present drugs tested, procyclidine appears to be a robust anticonvulsant with few cognitive side effects.

  10. Effects of spill-treating agents on growth kinetics of marine microalgae.

    PubMed

    Rial, Diego; Murado, Miguel A; Menduiña, Araceli; Fuciños, Pablo; González, Pilar; Mirón, Jesús; Vázquez, José A

    2013-12-15

    The effects of four spill-treating agents (STAs) (CytoSol, Finasol(®) OSR 51, Agma OSD 569 and OD4000) on the growth kinetics of three marine microalgae (Isochrysis galbana, Chaetoceros gracilis, Phaeodactylum tricornutum) were studied. Chlorophyll a concentration and optical density at 700 nm were assessed to describe the logistic growth of algae in batch cultures. The optical density data were initially analyzed as described for standard algal growth inhibition tests and subsequently modelled by a bivariate model, as a function of time and dose, to assess the toxic effects on growth parameters. Increasing trends in EC50 and EC10 values with time were found with the standard approach. In 8 of the 11 tests, the lag phase (λ) or the time required to achieve half the maximum biomass (τ) was significantly dependent on the STA concentration. A global parameter (EC50,τ) was calculated to summarize the effects of STAs on growth parameters in the bivariate model. The ranking of sensitivity as EC50,τ values was I. galbana>C. gracilis>P. tricornutum. For all species tested, the least toxic agent was Agma OSD 569, followed by CytoSol. The mathematical model allowed successful ecotoxicological evaluation of chemicals on microalgal growth.

  11. Potential water-quality effects from iron cyanide anticaking agents in road salt

    SciTech Connect

    Paschka, M.G.; Ghosh, R.S.; Dzombak, D.A.

    1999-10-01

    Water-soluble iron cyanide compounds are widely used as anticaking agents in road salt, which creates potential contamination of surface and groundwater with these compounds when the salt dissolves and is washed off roads in runoff. This paper presents a summary of available information on iron cyanide use in road salt and its potential effects on water quality. Also, estimates of total cyanide concentrations in snow-melt runoff from roadways are presented as simple mass-balance calculations. Although available information does not indicate a widespread problem, it also is clear that the water-quality effects of cyanide in road salt have not been examined much. Considering the large, and increasing, volume of road salt used for deicing, studies are needed to determine levels of total and free cyanide in surface and groundwater adjacent to salt storage facilities and along roads with open drainage ditches. Results could be combined with current knowledge of the fate and transport of cyanide to assess water-quality effects of iron cyanide anticaking agents used in road salt.

  12. Behavioral effects of radioprotective agents in mice: Combination of WR-2721 and 16,16 dimethyl prostaglandin E2

    SciTech Connect

    Landauer, M.R.; Walden, T.L.; Davis, H.D.

    1990-01-01

    Although the radioprotective properties of a number of compounds have been investigated in the last 40 years the consideration and testing of the behavioral effects of these agents has only recently begun to be systematically investigated. Behavioral toxicity of an agent ha enhances radiotherapeutic efficacy is not necessarily a limiting factor in clinical use where small numbers of patients can be monitored and treated. However, an effective drug-screening program for radio protective agents must evaluate the behavioral toxicity of those compounds that have potential use for humans in radiation accidents and in civil defense situations.

  13. Effectiveness of dental bleaching in depth after using different bleaching agents

    PubMed Central

    Lima, Débora A N L.; Aguiar, Flávio H B.; Bertoldo, Carlos E S.; Ambrosano, Gláucia M B.; Lovadino, José R.

    2013-01-01

    Objectives: This study evaluated the effectiveness of low- and high-concentration bleaching agents on enamel and deep dentin. Study design: Stained bovine incisors fragments were randomized placed into 10 groups (n=5), according to the sample thicknesses (2.0 mm or 3.5 mm) and bleaching agent: 10% carbamide peroxide (CP) (4 h a day/21 days); 6% hydrogen peroxide (HP) with calcium (1:30 h a day/21 days); HP 20% with calcium (50 min a day/3 sessions with a 7-day interval); HP 35% (3 x 15 min a day/3 sessions with a 7-day interval); HP 35% with calcium (40 min a day/3 sessions with a 7-day interval). The samples were stored in artificial saliva during the experiment. The color change was evaluated using a spectrophotometer at the initial analysis, after artificially staining with black tea and after each of the bleaching weeks, and data was expressed in CIE Lab System values. The L* coordinate data was submitted to analysis of variance and Tukey-Kramer test and the ?E values data was submitted for analysis of variance in a split-plot ANOVA and Tukey’s test (?=0.05). Results: None of the bleaching agents tested differed from the reflectance values on the enamel surface. For deep dentin HP 20% and HP 35%, both with calcium, showed the lowest reflectance values, which differed from CP 10%. Conclusion: It is concluded that high concentration hydrogen peroxide with calcium was less effective in deep dentin than 10% carbamide peroxide. Key words:Dental bleaching; hydrogen peroxide; carbamide peroxide; dental staining. PMID:24455056

  14. Thickening agents used for dysphagia management: effect on bioavailability of water, medication and feelings of satiety

    PubMed Central

    2013-01-01

    Dysphagia is the medical term for difficulty swallowing. Thickened liquids are often used in the management of dysphagia to improve bolus control and to help prevent aspiration. A range of starches and gums has historically been used to thicken liquids. Although thickened liquids improve swallow safety, they appear to have a great potential for unintended physiological consequences. Initial concerns were raised about the impact of thickeners on water binding due to the high prevalence of dehydration amongst individuals with dysphagia. Thankfully, regardless of thickening agent, thickeners do not affect water bioavailability. This effect holds true even for extremely thick fluids. However, bioavailability of medication is impaired with viscous substances. Liquids thickened to as little as 150 mPa.s retards drug release. In addition, feelings of satiety and thirst increase with increasingly viscous fluids. Flavour deteriorates with increasing thickness regardless of thickening agent. Therapeutically clinicians often prescribe small volumes of thickened liquids, consumed often. Yet small volumes of thick substances consumed with a long oral processing time, which is common for individuals with dysphagia, reduces the amount consumed. A combination of poor flavour, and increasing feelings of fullness result in little motivation and poor physiologic drive to consume thickened liquids. This review provides evidence from the dysphagia, pharmaceutical and food technology literature to show unintended side effects of thickened liquids that contribute to dehydration and potential sub-theraputic medication levels for individuals with dysphagia. The physical property of viscosity rather than a particular thickening agent appears to be key. Provision of “spoon-thick” or “extremely thick liquids” is particularly likely to contribute to dehydration and poor bioavailability of solid dose medication. Clinicians are encouraged to prescribe the minimal level of thickness

  15. Effect of spermine synthase on the sensitivity of cells to anti-tumour agents.

    PubMed Central

    Ikeguchi, Yoshihiko; Mackintosh, Caroline A; McCloskey, Diane E; Pegg, Anthony E

    2003-01-01

    The role of spermine in the sensitivity of cells to various established and experimental anti-tumour agents was examined, using paired cell lines that possess or lack spermine synthase. All spermine-synthase-deficient cells had no detectable spermine, and elevated spermidine, content. Spermine content did not alter the cell growth rate. There was little or no difference in sensitivity of immortalized mouse embryonic fibroblasts to doxorubicin, etoposide, cisplatin, methylglyoxal bis(guanylhydrazone) or H(2)O(2) and only a slight increase in sensitivity to vinblastine and nocodazole. However, the absence of spermine clearly increased the sensitivity to 1,3-bis(2-chloroethyl)- N -nitrosourea, suggesting that depletion of spermine may be a useful way to increase the anti-neoplastic effects of anti-tumour agents that form chloroethyl-mediated interstrand DNA cross-links. The effects of spermine on the response to polyamine analogues (which have been proposed to be useful anti-neoplastic agents) were complex, and depended on the compound examined and on the cells tested. Sensitivity to CHENSpm ( N (1)-ethyl- N (11)-[(cycloheptyl)methyl]-4,8-diazaundecane) was substantially greater in immortalized fibroblasts that lack spermine. In contrast, BE-3-4-3 [ N (1), N (12)-bis(ethyl)spermine] and BE-3-3-3 [ N (1), N (11)-bis(ethyl)norspermine] were more active against cells that contained spermine. The presence of spermine correlated with a greater induction of spermidine/spermine- N (1)-acetyltransferase by BE-3-3-3, which is consistent with suggestions that this induction is important for the response to this drug. These findings support the concepts that different polyamine analogues have different sites of action and that CHENSpm has a different site of action from BE-3-3-3. PMID:12737625

  16. Showering effectiveness for human hair decontamination of the nerve agent VX.

    PubMed

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-01

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols.

  17. Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers

    PubMed Central

    Samadi, Akbar; Zhang, Chensong; Chen, Joseph; Reihani, S. N. S.; Chen, Zhigang

    2014-01-01

    We implement an optical tweezers technique to assess the effects of chemical agents on single bacterial cells. As a proof of principle, the viability of a trapped Escherichia coli bacterium is determined by monitoring its flagellar motility in the presence of varying concentrations of ethyl alcohol. We show that the “killing time” of the bacterium can be effectively identified from the correlation statistics of the positional time series recorded from the trap, while direct quantification from the time series or associated power spectra is intractable. Our results, which minimize the lethal effects of bacterial photodamage, are consistent with previous reports of ethanol toxicity that used conventional culture-based methods. This approach can be adapted to study other pairwise combinations of drugs and motile bacteria, especially to measure the response times of single cells with better precision. PMID:25657879

  18. Showering effectiveness for human hair decontamination of the nerve agent VX.

    PubMed

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-01

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols. PMID:25791764

  19. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages.

    PubMed

    Wright, Linnzi K M; Lee, Robyn B; Vincelli, Nicole M; Whalley, Christopher E; Lumley, Lucille A

    2016-01-22

    Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX.

  20. Antiangiogenic agents and the skin: cutaneous adverse effects of sorafenib, sunitinib, and bevacizumab.

    PubMed

    Ara, M; Pastushenko, E

    2014-12-01

    As new antiangiogenic therapies have been introduced and added to the therapeutic arsenal against various types of cancer, previously unknown adverse effects have been detected. These effects negatively impact patients' quality of life and can even make it necessary to suspend treatment. Adverse skin reactions occur in 90% of patients treated with angiogenesis inhibitors. In some cases, a correlation has been observed between the severity of reactions and treatment efficacy and tumor response. It is therefore extremely important that dermatologists be able to recognize and manage these reactions. Moreover, in order to avoid the unjustified withdrawal of potentially life-extending treatments, dermatologists must be able to differentiate between non-life-threatening reactions and life-threatening reactions that necessitate the suspension of treatment. In this review article, we analyze the main cutaneous adverse effects of the most common antiangiogenic agents. PMID:24766821

  1. The effect of mucolytic agents on the rheologic and transport properties of canine tracheal mucus.

    PubMed

    Martin, R; Litt, M; Marriott, C

    1980-03-01

    The effect of several sulfhydryl and other agents on the rheologic and mucociliary transport properties of a model secretion, reconstituted canine tracheal mucus, was investigated. The mucus was obtained via the canine tracheal pouch. Rheologic properties were determined by mirorheometry, and the ciliary transport rate was determined using the frog palate technique. It was found that N-acetyl cysteine decreased the elastic modulus, leading to improved mucociliary transport at concentrations such that the mucin did not precipitate. S-carboxymethyl cysteine had no effect on either mucus properties or mucociliary transport rate, and its reported effectiveness in vivo must be due to some mechanism other than solubilization of mucin. Similar results were found with other blocked sulfhydryl compounds. Urea and potassium iodide to decrease mucus elasticity, but are harmful to cilia at the concentrations needed.

  2. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages.

    PubMed

    Wright, Linnzi K M; Lee, Robyn B; Vincelli, Nicole M; Whalley, Christopher E; Lumley, Lucille A

    2016-01-22

    Children may be inherently more vulnerable than adults to the lethal effects associated with chemical warfare nerve agent (CWNA) exposure because of their closer proximity to the ground, smaller body mass, higher respiratory rate, increased skin permeability and immature metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWNA in pediatric animal models, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we estimated the 24h median lethal dose for subcutaneous exposure to seven CWNA in both male and female Sprague-Dawley rats at six different developmental times. Perinatal (postnatal day [PND] 7, 14 and 21) and adult (PND 70) rats were more susceptible than pubertal (PND 28 and 42) rats to the lethal effects associated with exposure to tabun, sarin, soman and cyclosarin. Age-related differences in susceptibility were not observed in rats exposed to VM, Russian VX or VX. PMID:26621540

  3. Effect of cleaning dentine with soap and pumice on shear bond strength of dentine-bonding agents.

    PubMed

    Bachmann, M; Paul, S J; Lüthy, H; Schärer, P

    1997-06-01

    This in vitro study reports on the cleaning effect of different soaps on the shear bond strength of various dentine-bonding agents. Human teeth were coated with provisional cements for 24 h or for 14 days. After removing the provisional cements with a scaler, the dentinal surface was cleaned with a cotton pellet and non-fluoridated flour of pumice and soap for 10 sec. Different dentine-bonding agents and a luting resin were bonded to the dentinal surface according to manufacturers' instructions with the bonding agent and the composite material being light-cured at the same time. The bonding agents were tested under intrapulpal pressure and with thermal cycling to imitate physiological conditions. Compared with cleaning the dentine with water and pumice, all soaps investigated in this study decreased the shear bond strength values of the tested dentine-bonding agents considerably.

  4. The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics.

    PubMed

    Kozin, S V; Shkarin, P; Gerweck, L E

    2001-06-15

    The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.

  5. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    PubMed

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components. PMID:25841347

  6. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    PubMed

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components.

  7. The effects of node exclusion on the centrality measures in graph models of interacting economic agents

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-07-01

    This work concerns the study of the effects felt by a network as a whole when a specific node is perturbed. Many real world systems can be described by network models in which the interactions of the various agents can be represented as an edge of a graph. With a graph model in hand, it is possible to evaluate the effect of deleting some of its edges on the architecture and values of nodes of the network. Eventually a node may end up isolated from the rest of the network and an interesting problem is to have a quantitative measure of the impact of such an event. For instance, in the field of finance, the network models are very popular and the proposed methodology allows to carry out "what if" tests in terms of weakening the links between the economic agents, represented as nodes. The two main concepts employed in the proposed methodology are (i) the vibrational IC-Information Centrality, which can provide a measure of the relative importance of a particular node in a network and (ii) autocatalytic networks that can indicate the evolutionary trends of the network. Although these concepts were originally proposed in the context of other fields of knowledge, they were also found to be useful in analyzing financial networks. In order to illustrate the applicability of the proposed methodology, a case of study using the actual data comprising stock market indices of 12 countries is presented.

  8. [Effects of Medium Viscosity Increasing Agents on ATP Synthesis in Chloroplast Thylakoids].

    PubMed

    Kartashov, I M; Opanasenko, V K; Malyan, A N

    2015-01-01

    The effect of an increase in the medium viscosity on cyclic photophosphorylation in chloroplast thylakoids and on Ca2+ -dependent ATP hydrolysis by the chloroplast coupling factor CF, was studied. With 0.1-0.2 mM ADP used it was found that the rate of ATP synthesis decreases after addition of various agents that increase the medium viscosity (sucrose, dextran 40 or polyethylene glycol 6000 provided that these agents cause neither uncoupling nor electron transport inhibition in the absence of ADP. Dextran and polyethylene glycol inhibited ATP synthesis by 50% when their concentrations were much lower (6-10%) than that of sucrose (30-40%), while 50% inhibition of Ca2+ -dependent ATP hydrolysis by CFI-ATPase was observed at higher concentrations of dextran and polyethylene glycol (9-13%) and lower concentrations of sucrose (about 20%). For ADP, the effective Michaelis constant (KM) was shown to increase 2-3-fold with the increasing viscosity; meanwhile the maximal rate of cyclic photophosphorylation remained virtually unchanged. The dependence of K(M) on the medium viscosity can serve as a criterion for the process of diffusion-controlled photophosphorylation. Possible mechanisms of ADP and ATP diffusion are discussed.

  9. The effects of depilatory agents as penetration enhancers on human stratum corneum structures.

    PubMed

    Lee, Jin-Ning; Jee, Shiou-Hwa; Chan, Chih-Chieh; Lo, Wen; Dong, Chen-Yuan; Lin, Sung-Jan

    2008-09-01

    The depilatory cream thioglycolate has been shown to be an effective enhancer for transdermal drug delivery. However the mechanism remains unknown. In addition, it may also increase the risk of permeation of exogenous toxic agents across skin in depilatory cream users. The aim of this study was to characterize its effect on the transepidermal route and the associated structural alterations. Fresh human skin was treated with a depilatory cream for 10 minutes and then permeated with fluorescent model drugs. The penetration of model drugs was then imaged and quantified. The structural alternations of stratum corneum were assessed by multi-photon imaging, histology, Nile red staining, and electron microscopy. Our results show that penetration of both hydrophilic and hydrophobic model drugs across stratum corneum was enhanced. Disruption of cellular integrity and focal detachment of superficial corneocytes was observed in multi-photon imaging. In addition, nile red staining showed disorganized lipid distribution. Finally, ultrastructural analysis revealed disruption of intracellular keratin matrix, protein cell envelope, and regular lamellar intercellular lipid packing. Because intracellular and intercellular structures were altered, our results suggest that depilatory agents enhance transepidermal drug delivery by reducing resistance in both transcellular and intercellular routes of stratum corneum.

  10. HIV Latency-Reversing Agents Have Diverse Effects on Natural Killer Cell Function

    PubMed Central

    Garrido, Carolina; Spivak, Adam M.; Soriano-Sarabia, Natalia; Checkley, Mary Ann; Barker, Edward; Karn, Jonathan; Planelles, Vicente; Margolis, David M.

    2016-01-01

    In an effort to clear persistent HIV infection and achieve a durable therapy-free remission of HIV disease, extensive pre-clinical studies and early pilot clinical trials are underway to develop and test agents that can reverse latent HIV infection and present viral antigen to the immune system for clearance. It is, therefore, critical to understand the impact of latency-reversing agents (LRAs) on the function of immune effectors needed to clear infected cells. We assessed the impact of LRAs on the function of natural killer (NK) cells, the main effector cells of the innate immune system. We studied the effects of three histone deacetylase inhibitors [SAHA or vorinostat (VOR), romidepsin, and panobinostat (PNB)] and two protein kinase C agonists [prostratin (PROST) and ingenol] on the antiviral activity, cytotoxicity, cytokine secretion, phenotype, and viability of primary NK cells. We found that ex vivo exposure to VOR had minimal impact on all parameters assessed, while PNB caused a decrease in NK cell viability, antiviral activity, and cytotoxicity. PROST caused non-specific NK cell activation and, interestingly, improved antiviral activity. Overall, we found that LRAs can alter the function and fate of NK cells, and these effects must be carefully considered as strategies are developed to clear persistent HIV infection. PMID:27708642

  11. Highly effective bacterial agents against Cimbex quadrimaculatus (Hymenoptera: Cimbicidae): isolation of bacteria and their insecticidal activities.

    PubMed

    Cakici, Filiz Ozkan; Ozgen, İnanc; Bolu, Halil; Erbas, Zeynep; Demirbağ, Zihni; Demir, İsmail

    2015-01-01

    Cimbex quadrimaculatus (Hymenoptera: Cimbicidae) is one of the serious pests of almonds in Turkey and worldwide. Since there is no effective control application against this pest, it has been a serious problem up to now. Therefore, we aimed to find an effective bacterium that can be utilized as a biocontrol agent against C. quadrimaculatus in pest management. We isolated seven bacteria from dead and live C. quadrimaculatus larvae, and evaluated the larvicidal potency of all isolates on the respective pest. Based on the morphological, physiological, biochemical and molecular properties (partial sequence of 16S rRNA gene), the isolates were identified to be Bacillus safensis (CQ1), Bacillus subtilis (CQ2), Bacillus tequilensis (CQ3), Enterobacter sp. (CQ4), Kurthia gibsonii (CQ5), Staphylococcus sp. (CQ6) and Staphylococcus sciuri (CQ7). The results of the larvicidal activities of these isolates indicated that the mortality value obtained from all treatments changed from 58 to 100 %, and reached 100 % with B. safensis (CQ1) and B. subtilis (CQ2) on the 3rd instar larvae within 10 days of application of 1.89 × 10(9) cfu/mL bacterial concentration at 25 °C under laboratory conditions. Findings from this study indicate that these isolates appear to be a promising biocontrol agent for C. quadrimaculatus.

  12. Polymer/TiO₂ hybrid vesicles for excellent UV screening and effective encapsulation of antioxidant agents.

    PubMed

    Du, Jianzhong; Sun, Hui

    2014-08-27

    Presented in this paper is a hybrid polymer/titanium dioxide (TiO2) vesicle that has excellent UV-screening efficacy and strong capacity to encapsulate antioxidant agents. Poly(ethylene oxide)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-polystyrene (PEO-b-PDMAEMA-b-PS) triblock terpolymer was synthesized by atom transfer radical polymerization (ATRP) and then self-assembled into vesicles. Those vesicles showed excellent UV-screening property due to the scattering by vesicles and the absorption by PS vesicle membrane. The selective deposition of solvophobic tetrabutyl titanate in the PDMAEMA shell and the PS membrane of the vesicles led to the formation of polymer/TiO2 hybrid vesicles, resulting in an enhanced UV-screening property by further reflecting and scattering UV radiation. The vesicles can effectively encapsulate antioxidant agents such as ferulic acid (up to 57%), showing a rapid antioxidant capability (within 1 min) and a long-lasting antioxidant effect. PMID:25059274

  13. The Effects of Peer-Like and Expert-Like Pedagogical Agents on Learners' Agent Perceptions, Task-Related Attitudes, and Learning Achievement

    ERIC Educational Resources Information Center

    Liew, Tze Wei; Tan, Su-Mae; Jayothisa, Chandrika

    2013-01-01

    The present study examined the impact of peer-like and expert-like agent stereotypes, as operationalized by agent's image and voice, on learners' agent perceptions, task-related attitudes, and learning achievement. 56 university freshmen (23 males and 33 females) interacted with either the peer-like agent (female college student) or the…

  14. A comprehensive biological insight of trinuclear copper(II)-tin(IV) chemotherapeutic anticancer drug entity: in vitro cytotoxicity and in vivo systemic toxicity studies.

    PubMed

    Zaidi, Yusra; Arjmand, Farukh; Zaidi, Nida; Usmani, Jawed Ahmad; Zubair, Haseeb; Akhtar, Kafil; Hossain, Mobarak; Shadab, G G H A

    2014-08-01

    Cisplatin (cis-diamminedichloroplatinum(II), CDDP) causes severe systemic toxicity, which limits its application in cancer treatment. Nevertheless, incorporation of endogenously present essential metal ions (copper) in anticancer drug regimes in a heterometallic ligand scaffold can substantially modulate the toxic effects of non-essential metals (platinum), thereby reducing unwanted toxic side effects. A chiral l-tryptophan derived [bis(1,2-diaminobenzene) copper(II)] chloride complex [CuSn2(Trp)] was previously synthesized by us as an active chemotherapeutic agent. Furthermore, we have explored CuSn2(Trp) induced in vitro cytotoxicity in a panel of human cancer cell lines and in vivo acute and systemic toxicities in healthy female Rattus norvegicus (Wistar) rats. MTT assay showed that CuSn2(Trp) exhibits strong anticancer potency against ovarian (PA-1) and prostate carcinomas (PC-3) but lower potency towards liver (HepG2) and breast carcinomas (MCF-7). Further, flow cytometric analysis demonstrated that CuSn2(Trp) kills PA-1 cells dose-dependently after 48 h treatment. Fluorescence microscopy and western blotting revealed that the plausible mechanism behind CuSn2(Trp) cytotoxicity was apoptosis, which was substantiated by cleavage of caspase-3 and poly-(ADP-ribose) polymerase (PARP). Furthermore, it has lower toxicity than CDDP in rats as evident from its eight fold (98.11 mg kg(-1)) more medial lethal dose (LD50) than CDDP (12 mg kg(-1)). Besides, the safety profile of CuSn2(Trp) was also established and no measurable DNA damage, nephrotoxicity, hepatotoxicity and neurotoxicity were observed when assessed as a function of oxidative stress markers in contrast to CDDP at equivalent lower doses. Our findings are of high importance in the context of further in vivo cancer studies on the CuSn2(Trp) drug entity.

  15. Short- and long-term effects of T-cell modulating agents in experimental autoimmunity.

    PubMed

    Mellergård, Johan; Havarinasab, Said; Hultman, Per

    2004-03-15

    Due to the easy and reliable induction of a disease condition with many of the features present in human autoimmunity, mercury-induced autoimmunity (mHgAI) in rodents is a favourable autoimmune model. Genetically susceptible (H-2(s)) mice develop in response to mercury (Hg) a systemic autoimmune condition with antinucleolar antibodies (ANoA) targeting the protein fibrillarin, transient polyclonal B-cell activation, hyperimmunoglobulinemia, and systemic immune-complex (IC) deposits. In order to study the short- and long-term effects of treatment with immunomodulating agents on the disease parameters in HgAI, groups of B10.S (H-2(s)) mice were given 6 mg HgCl(2)/l drinking water for 22 weeks. Three weeks initial treatment with cyclosporin A (CyA), a high dose of tacrolimus (HD tacrolimus), or anti-CD4 monoclonal antibody (a-CD4) inhibited induction of ANoA and IC deposit by Hg. This effect persisted for the subsequent 19 weeks when the mice were only treated with Hg. Initial treatment with anti-IL-4 monoclonal antibody (a-IL-4) for 3 weeks inhibited induction of IgE and IC deposits by Hg, but not ANoA. However, subsequent treatment with Hg without a-IL-4 for 19 weeks induced IC deposits. The T-cell modulating agents aggravated some of the HgAI disease parameters: a-CD4 stimulated the polyclonal B-cell activation, a-IL-4 increased the IgG antichromatin antibody response, and a low dose of tacrolimus (LD tacrolimus) enhanced the ANoA, the polyclonal B-cell activation, and the IC deposits. We conclude that a short initial treatment with a-CD4 or CyA efficiently protects against induction of systemic autoimmunity for an extended period of time. However, some of the T-cell modulating agents, especially a low dose of tacrolimus, aggravate autoimmune manifestations not only during ongoing treatment, but also after treatment with these agents has ceased.

  16. Effects of the methyltrimethoxysilane coupling agent on phenolic and miscanthus composites containing calcium sulfite scrubber material

    NASA Astrophysics Data System (ADS)

    Jones, Sean

    The purpose of this research is to test the effects of methyltrimethoxysilane coupling agent on composite material containing calcium sulfite obtained from the Southern Illinois Power Co-operative. This scrubber material and the miscanthus plant are of interest due to their use in coal burning power plants to reduce toxic emission. When calcium sulfate is passed through coal fire gas emissions it absorbs mercury and sulfur. In these composites it is used as filler to reduce cost. Miscanthus is a source of both cellulose reinforcement and some natural resin. This plant has low care requirements, little mineral content, useful energy return, and positive environmental effects. Under investigation is whether a post-cure procedure or a silane coupling agent will positively impact the composite. Hot pressing alone may not be enough to fully cure the phenolic. It is hoped that the silane will increase the strength characteristics of the composite by enhancing adhesion between the calcium sulfite and phenolic resin. Possible effects on the miscanthus by the silane will also be tested. Phenolic is being utilized because of its recycling and biodegradable properties along with cost effectiveness in mass production. Composite mechanical performance was measured through 3-point bending to measure flexural strength and strain at breakage. A dynamic mechanical analyzer (DMA) was used to find thermomechanical properties. The post-cure was found to be effective, particularly on the final composite containing silane. When methyltrimethoxysilane was added to the miscanthus prior to fabrication, it was found to reduce flexural strength and density. However the addition of methyltrimethoxysilane to the calcium sulfite altered thermo-mechanical properties to a state more like pure phenolic, with added flexibility and thermal stability.

  17. Effects of sealant, viscosity, and bonding agents on microleakage of fissure sealants: An in vitro study

    PubMed Central

    Mehrabkhani, Maryam; Mazhari, Fatemeh; Sadeghi, Samaneh; Ebrahimi, Masoumeh

    2015-01-01

    Objective: The aim of this study was to evaluate the effects of enamel or dentin bonding agent (DBA) and sealant viscosity on sealant microleakage. Materials and Methods: Sixty extracted human premolars were randomly divided into two equal groups (based on sealant viscosity) and each group was divided into three subgroups of 10 teeth. Group 1 (low viscosity sealant, Seal-Rite, Pulpdent, USA with 7.7% filler): Prophylaxis, enameloplasty, etching of occlusal surfaces with 38% of phosphoric acid gel, rinsing and drying, followed by (1) enamel bonding agent (EBA) (Margin Bond, Coltène/Whaledent AG) or (2) DBA (Excite, Ivoclar Vivadent AG, Liechtenstein) or (3) no bonding (NB) prior to sealant application. In Group 2, similar procedures were performed except for applying a high viscosity sealant (Seal-Rite, Pulpdent, The USA with 34.4% filler). Specimens were thermocycled and then immersed in a 0.5% basic fuchsine solution for 24 h next, buccolingual slices of samples were scored under a stereomicroscope. The Kruskal–Wallis and Mann–Whitney U-tests were used for data analysis. Results: There was no significant difference between DBA, EBA, and NB subgroups in the microleakage scores in both groups. Low viscosity sealant had a lower microleakage than the high viscosity sealant in both DBA (P = 0.002) and NB (P = 0.041) subgroups. Conclusion: The results indicated that the use of low viscosity sealant reduced the microleakage of pit and fissure sealants. However, the use of a bonding agent before sealant placement didn’t affect the microleakage. PMID:26929696

  18. Effects of Potential Therapeutic Agents on Copper Accumulations in Gill of Crassostrea virginica

    PubMed Central

    Luxama, Juan D.; Carroll, Margaret A.; Catapane, Edward J.

    2010-01-01

    Copper is an essential trace element for organisms, but when in excess, copper’s redox potential enhances oxyradical formation and increases cellular oxidative stress. Copper is a major pollutant in Jamaica Bay and other aquatic areas. Bivalves are filter feeders that accumulate heavy metals and other pollutants from their environment. Previously it was determined that seed from the bivalve Crassostrea virginica, transplanted from an oyster farm to Jamaica Bay readily accumulated copper and other pollutants into their tissues. In the present study we utilized Atomic Absorption Spectrometry to measure the uptake of copper into C. virginica gill in the presence and absence of three potential copper -blocking agents: diltiazem, lanthanum, and p-aminosalicyclic acid. Diltiazem and lanthanum are known calcium-channel blockers and p-aminosalicylic acid is an anti-infammarory agent with possible metal chelating properties. We also used the DMAB-Rhodanine histochemistry staining technique to confirm that copper was entering gill cells. Our result showed that diltiazem and p-aminosalicyclic acid reduced copper accumulations in the gill, while lanthanum did not. DMAB-Rhodanine histochemistry showed enhanced cellular copper staining in copper-treated samples and further demonstrated that diltiazem was able to reduce copper uptake. The accumulation of copper into oyster gill and its potential toxic effects could be of physiological significance to the growth and long term health of oysters and other marine animals living in a copper polluted environment. Identifying agents that block cellular copper uptake will further the understanding of metal transport mechanisms and may be beneficial in the therapeutic treatment of copper toxicity in humans. PMID:21841975

  19. Effects of Potential Therapeutic Agents on Copper Accumulations in Gill of Crassostrea virginica.

    PubMed

    Luxama, Juan D; Carroll, Margaret A; Catapane, Edward J

    2010-01-01

    Copper is an essential trace element for organisms, but when in excess, copper's redox potential enhances oxyradical formation and increases cellular oxidative stress. Copper is a major pollutant in Jamaica Bay and other aquatic areas. Bivalves are filter feeders that accumulate heavy metals and other pollutants from their environment. Previously it was determined that seed from the bivalve Crassostrea virginica, transplanted from an oyster farm to Jamaica Bay readily accumulated copper and other pollutants into their tissues. In the present study we utilized Atomic Absorption Spectrometry to measure the uptake of copper into C. virginica gill in the presence and absence of three potential copper -blocking agents: diltiazem, lanthanum, and p-aminosalicyclic acid. Diltiazem and lanthanum are known calcium-channel blockers and p-aminosalicylic acid is an anti-infammarory agent with possible metal chelating properties. We also used the DMAB-Rhodanine histochemistry staining technique to confirm that copper was entering gill cells. Our result showed that diltiazem and p-aminosalicyclic acid reduced copper accumulations in the gill, while lanthanum did not. DMAB-Rhodanine histochemistry showed enhanced cellular copper staining in copper-treated samples and further demonstrated that diltiazem was able to reduce copper uptake. The accumulation of copper into oyster gill and its potential toxic effects could be of physiological significance to the growth and long term health of oysters and other marine animals living in a copper polluted environment. Identifying agents that block cellular copper uptake will further the understanding of metal transport mechanisms and may be beneficial in the therapeutic treatment of copper toxicity in humans. PMID:21841975

  20. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics.

    PubMed

    Sociali, Giovanna; Galeno, Lauretta; Parenti, Marco Daniele; Grozio, Alessia; Bauer, Inga; Passalacqua, Mario; Boero, Silvia; Donadini, Alessandra; Millo, Enrico; Bellotti, Marta; Sturla, Laura; Damonte, Patrizia; Puddu, Alessandra; Ferroni, Claudia; Varchi, Greta; Franceschi, Claudio; Ballestrero, Alberto; Poggi, Alessandro; Bruzzone, Santina; Nencioni, Alessio; Del Rio, Alberto

    2015-09-18

    The NAD(+)-dependent sirtuin SIRT6 is highly expressed in human breast, prostate, and skin cancer where it mediates resistance to cytotoxic agents and prevents differentiation. Thus, SIRT6 is an attractive target for the development of new anticancer agents to be used alone or in combination with chemo- or radiotherapy. Here we report on the identification of novel quinazolinedione compounds with inhibitory activity on SIRT6. As predicted based on SIRT6's biological functions, the identified new SIRT6 inhibitors increase histone H3 lysine 9 acetylation, reduce TNF-α production and increase glucose uptake in cultured cells. In addition, these compounds exacerbate DNA damage and cell death in response to the PARP inhibitor olaparib in BRCA2-deficient Capan-1 cells and cooperate with gemcitabine to the killing of pancreatic cancer cells. In conclusion, new SIRT6 inhibitors with a quinazolinedione-based structure have been identified which are active in cells and could potentially find applications in cancer treatment.