Science.gov

Sample records for chemotherapeutic agents effectively

  1. [Chemotherapeutic agents under study].

    PubMed

    Kawahara, S

    1998-12-01

    The development of new drugs with strong antituberculous activity and fewer side effects which are not cross-resistant to conventional antituberculosis drugs is urgently desired now. The chemotherapeutic agents under study which are considered a candidate for a new antituberculosis drug are listed below. 1) Rifamycin derivatives: rifabutin, rifapentin, KRM-1648, FCE-22250, 22807, CGP-7040, 27557, 29035, 29861, P-DEA, SPA-S-565, R-76-1. 2) New quinolones: ofloxacin, ciprofloxacin, levofloxacin, sparfloxacin, gatifloxacin, CS-940, Du-6859a. 3) Phenazines: clofazimine, B746, B4101, B4154, B4157. 4) Pyrazinamide derivatives: N-hydroxy pyrazinamide, N-hydroxy pyrazinamide-4-oxide. 5) Nitroimidazole derivatives: metronidazole et al.

  2. Developmental therapeutics in acute myelogenous leukemia: are there any new effective cytotoxic chemotherapeutic agents out there?

    PubMed

    Mims, Alice; Stuart, Robert K

    2013-06-01

    Therapies for AML have remained mostly unchanged since the introduction of anthracyline- and cytarabine-based regimens in the 1970s. Though some changes have been made in the dosing of anthracylines, in the choice of consolidation regimens versus allogeneic stem cell transplant, and in supportive care, clinical outcomes remain poor for most patients. As we continue to strive for better treatment options to improve upon outcomes, different agents, both chemotherapeutic and targeted therapies, are being studied. Here we discuss new chemotherapeutic agents that show promise in recent clinical trials and attempt to answer the question if there are any new effective cytotoxic chemotherapy agents out there.

  3. Antitumor and anticytopenic effects of aqueous extracts of propolis in combination with chemotherapeutic agents.

    PubMed

    Suzuki, Ikukatsu; Hayashi, Ikuo; Takaki, Takayuki; Groveman, Debra S; Fujimiya, Yoshiaki

    2002-10-01

    Using an ICR mouse model bearing a syngeneic Ehrlich ascitis carcinoma, the present study was undertaken to examine the effects of crude, water-soluble propolis (CWSP) on tumor progression, chemotherapeutic efficacy, and hematopoiesis in the peripheral blood. It was demonstrated that CWSP, administered subcutaneously, resulted in marked regression of tumor growth in mice, at the early phase after tumor inoculation (CWSP, p < 0.05 vs. saline control). Molecular analysis indicated that the CWSP is composed of 8.4% protein, 4.2% quercetin plus a variety of saccharides with a molecular weight of 29 kDa. Orally administered CWSP did not produce any regression for the observation period (oral CWSP, p > 0.05 vs. saline control). Peritoneal injection of CWSP into neonatal mice resulted in an increased lymphocyte/polymorphonuclear leukocyte ratio activity, indicating the potential activation of lymphoid cell lineages. These observations suggest that subcutaneously injected CWSP could regulate the development of tumors by possibly stimulating multicellular immunity. In addition, oral administration of CWSP concurrently with 5-fluorouracil (5-FU) or mitomycin C (MMC), significantly increased tumor regression as compared with the respective chemotherapy alone, illustrating the adjuvant effect of orally administered CWSP for tumor regression when combined with chemotherapeutic agents. To examine further the potential usefulness of CWSP for chemotherapeutic regimens, which induce profound multilineage hematopoietic suppression, mice that received CWSP orally in addition to a 5-FU or MMC were followed for absolute numbers of platelets and white and red blood cells. The oral administration of CWSP significantly ameliorated the cytopenia induced by 5-FU, resulting in recovery of white as well as red blood cell counts (5-FU plus CWSP, p < 0.05 vs. 5-FU alone or water control; white blood cells on day 15, red blood cells on day 25), but no marked effects on platelet counts was

  4. Amelioration of the cytotoxic effects of chemotherapeutic agents by grape seed proanthocyanidin extract.

    PubMed

    Joshi, S S; Kuszynski, C A; Benner, E J; Bagchi, M; Bagchi, D

    1999-01-01

    Anticancer chemotherapeutic agents are effective in inhibiting growth of cancer cells in vitro and in vivo, however, toxicity to normal cells is a major problem. In this study, we assessed the effect of a novel IH636 grape seed proanthocyanidin extract (GSPE) to ameliorate chemotherapy-induced toxic effects in cultured Chang epithelial cells, established from nonmalignant human tissue. These cells were treated in vitro with idarubicin (Ida) (30 nM) or 4-hydroxyperoxycyclophosphamide (4HC) (1 microg/ml) with or without GSPE (25 microg/ml). The cells were grown in vitro and the growth rate of the cells was determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; thiazolyl blue] assay. Our results showed that GSPE decreased the growth inhibitory and cytotoxic effects of Ida as well as 4HC on Chang epithelial cells in vitro. Because these chemotherapeutic agents are known to induce apoptosis in the target cells, we analyzed the Chang epithelial cells for apoptotic cell population by flow cytometry. There was a significant decrease in the number of cells undergoing apoptosis following treatment with GSPE. We also found increased expression of the anti-apoptotic protein Bcl-2 in GSPE-treated cells using western blot techniques. Thus, these results indicate that GSPE can be a potential candidate to ameliorate the toxic effects associated with chemotherapeutic agents and one of the mechanisms of action of GSPE includes upregulation of Bcl-2 expression.

  5. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    PubMed

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  6. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents

    PubMed Central

    Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer. PMID:26421434

  7. Effects of St. John’s Wort and Vitamin E on Breast Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2002-05-01

    Johns wort may decrease peak levels of doxorubicin. Further studies will help to determine whether important interactions occur between these nutrients and cancer chemotherapeutic agents....doxorubicin. Our studies suggest that even relatively high doses of vitamin E do not adversely affect the toxicity of doxorubicin. On the other hand, St

  8. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    PubMed Central

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-01-01

    Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy. PMID:27669218

  9. Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis☆

    PubMed Central

    Zhang, Si-Ming; Coultas, Kristen A.

    2012-01-01

    Schistosomiasis, a snail-borne parasitic disease, affects more than 200 million people worldwide. Currently the treatment of schistosomiasis relies on a single therapy of praziquantel, a drug developed over 30 years ago. Thus, there is an urgent need to develop alternative antischistosomal drugs. In the pursuit of novel antischistosomal drugs, we examined the antischistosomal activities of 45 compounds that had been reported to exhibit antimicrobial and/or antiparasitic activities. Two plant-derived compounds, plumbagin and sanguinarine, were found to possess potent antischistosomal activities in vitro. For both the compounds, a concentration of 10 μM (equivalent to 1.88 μg/ml for plumbagin and 3.68 μg/ml for sanguinarine) resulted in 100% mortality at 48 h, which meets the World Health Organization’s (WHO) criterion of “hit” compounds for the control of schistosomiasis. Morphological changes and tegumental alterations of the dead worms treated by the two compounds were quite different. The significant morphological changes of worms after treatment by the two compounds suggest the two compounds target different biological pathways, both of which result in parasite’s death. This study provides evidence to suggest plumbagin and sanguinarine have real potential as effective alternative chemotherapeutic agents for the treatment of schistosomiasis. PMID:23641325

  10. Nanospheric Chemotherapeutic and Chemoprotective Agents

    DTIC Science & Technology

    2008-09-01

    including anti-tumor agents, anti-depressants and statins , are lipophilic and therefore require a solubilization process to enable their parenteral...and can lead to clinically important adverse effects, including acute hypersensitivity reactions and peripheral neuropathy.(28) It is postulated

  11. Late effects of chemotherapeutic agents on renal function in childhood cancer survivors: a review of the literature.

    PubMed

    O'Sullivan, D

    2017-02-01

    Survival outcomes for childhood cancers have significantly improved. As more children are now surviving into adulthood, knowledge of the long-term effects of childhood cancer treatments has become the focus of research. To determine what is known about the incidence of renal function impairment in childhood cancer survivors and to determine what is known about risk factors for developing renal function impairment following childhood cancer treatment. A comprehensive literature search was preformed to identify studies that investigated renal dysfunction in patients who were diagnosed with childhood cancer and treated with potentially nephrotoxic chemotherapeutic agents. Potentially nephrotoxic chemotherapeutic agents identified in the selection criteria include ifosfamide, cisplatin, carboplatin and methotrexate. 15 papers met the inclusion criteria. Renal function impairment was reported in 15 of 15 studies included in this literature review. The incidence of ifosfamide induced nephrotoxicity varied from 1 to 50 %. This variation may be due to the heterogeneity of reported outcome measurements. Treatment with cisplatin and carboplatin was associated with hypomagnesemia. The prevalence of hypomagnesemia varied from 7 to 29 %. This variation may be due to diversity of treatment protocols. The incidence of renal dysfunction following treatment with methotrexate was reported as 1.8 % and completely reversible. As more childhood cancer survivors are reaching adulthood, a new niche of cancer research has emerged. Researchers are now investigating the late effects due to cytotoxic treatments. Renal function impairment is a potential late effect of treatment with nephrotoxic chemotherapeutic agents including ifosfamide, cisplatin, carboplatin and methotrexate.

  12. PHB-Based Gels as Delivery Agents of Chemotherapeutics for the Effective Shrinkage of Tumors.

    PubMed

    Wu, Yun-Long; Wang, Han; Qiu, Ying-Kun; Liow, Sing Shy; Li, Zibiao; Loh, Xian Jun

    2016-10-01

    Injectable thermogel to deliver chemotherapeutics in a minimally invasive manner and to achieve their long term sustained release at tumor sites to minimize side effects is attractive for chemotherapy and precision medicine, but its rational design remains a challenge. In this work, a copolymer with natural biodegradable poly[(R)-3-hydroxybutyrate] (PHB), hydrophilic poly(ethylene glycol), and temperature sensitive poly(propylene glycol) blocks linked by urethane linkages is designed to show thermogelling characteristics which are beneficial for minimally invasive injection and safe degradation. This thermogelling polymer possesses in vitro biocompatibility with very low cyto-toxicity in HEK293 cells. Furthermore, it is able to form the gel to achieve the controllable release of paclitaxel (PTX) and doxorubicin (DOX) by adjusting polymer concentrations. A rodent model of hepatocarcinoma has been performed to demonstrate the in vivo applications of this PHB-based thermogel. The drug-loaded thermogel has been intratumorally injected and both PTX-loaded and DOX-loaded thermogel have significantly slowed down tumor growth. This work represents the first time that injectable PHB thermogels have possessed good controllable release effect of chemotherapeutics against the in vivo model of tumors and will benefit various applications, including on-demand drug delivery and personalized medicine.

  13. Effects of chemotherapeutic agents on alpha-fetoprotein secretion and growth of human hepatoma cell lines in vitro.

    PubMed Central

    Muraoka, A.; Tokiwa, T.; Sato, J.

    1989-01-01

    The effects of various chemotherapeutic agents on alpha-fetoprotein (AFP) secretion and growth of human hepatocellular carcinoma and hepatoblastoma cell lines were investigated in vitro. It was found that there was a high correlation between hepatoma cell number and AFP secretion after treatment and that the amount of AFP secreted per cell per 72 h was not affected with therapeutically achievable concentrations. These results suggest that serum AFP level in patients with hepatomas does not correlate with the size of whole tumour but with that of viable tumour mass, and that AFP-secreting capacity of tumour cells in the mass is kept unchanged after chemotherapy. PMID:2469455

  14. Effect of single chemotherapeutic agents on the growing skeleton of the rat.

    PubMed

    van Leeuwen, B L; Kamps, W A; Hartel, R M; Veth, R P; Sluiter, W J; Hoekstra, H J

    2000-09-01

    To establish the effect of chemotherapeutics on the growing skeleton, male Wistar rats were studied. Between the ages of 4 and 13 weeks the rats were given i.v. doxorubicin 15 mg/m2 body surface area (BSA), methotrexate 60 mg/m2 BSA or cisplatin 7.5 mg/m2 BSA. For each group of drug-treated rats there was a diet-matched control group that was injected with a placebo only. Rats fed ad libitum served as the basic control group for length and weight growth. Body weight and tibial length were measured weekly. Kidney and liver weight were determined at the end of the study. Weight gain and length growth were significantly decreased in the diet controlled groups (P < 0.05). Doxorubicin reduced length growth with 4.12 mm or 18% (P < 0.05). Methotrexate reduced length growth with 1.11 mm or 5% (P < 0.05). Length growth in the cisplatin treated rats did not differ from the diet controls. Doxorubicin and methotrexate decrease length growth in the rat tibia by, respectively, 18% and 5%. Cisplatin does not affect length growth. The decrease in growth might be a direct effect of doxorubicin and methotrexate on the tibial growth plate and metaphysis, but may be more pronounced due to the malnutrition.

  15. Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma

    PubMed Central

    Heinen, Tiago Elias; dos Santos, Rafael Pereira; da Rocha, Amanda; dos Santos, Michel Pinheiro; da Costa Lopez, Patrícia Luciana; Filho, Marco Aurélio Silva; Souza, Bárbara Kunzler; da Rosa Rivero, Luís Fernando; Becker, Ricardo Gehrke; Gregianin, Lauro José; Brunetto, Algemir Lunardi; Brunetto, André Tesainer; de Farias, Caroline Brunetto; Roesler, Rafael

    2016-01-01

    Ewing sarcoma (ES) is a highly aggressive pediatric cancer that may arise from neuronal precursors. Neurotrophins stimulate neuronal devlopment and plasticity. Here, we found that neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as their receptors (TrkA and TrkB, respectively) are expressed in ES tumors. Treatment with TrkA (GW-441756) or TrkB (Ana-12) selective inhibitors decreased ES cell proliferation, and the effect was increased when the two inhibitors were combined. ES cells treated with a pan-Trk inhibitor, K252a, showed changes in morphology, reduced levels of β-III tubulin, and decreased mRNA expression of NGF, BDNF, TrkA and TrkB. Furthermore, combining K252a with subeffective doses of cytotoxic chemotherapeutic drugs resulted in a decrease in ES cell proliferation and colony formation, even in chemoresistant cells. These results indicate that Trk inhibition may be an emerging approach for the treatment of ES. PMID:27145455

  16. Nanospheric Chemotherapeutic and Chemoprotective Agents

    DTIC Science & Technology

    2007-09-01

    Purpose: Investigate the delivery of camptothecin in the presence of vitamin D3 with triblock copolymer-derived nanospheres that will increase the...synergistic effect of vitamin D3 on increasing the binding efficiency of CPT, different CPT to VD3 feed ratio were investigated. Results: The...U b . ABSTRACT U c. THIS PAGE U UU 11 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI

  17. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents

    PubMed Central

    Walker, Sarah R.; Chaudhury, Mousumi; Frank, David A.

    2011-01-01

    To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies. PMID:21949561

  18. Immediate type hypersensitivity to chemotherapeutic agents in pediatric patients.

    PubMed

    Visitsunthorn, Nualanong; Utsawapreechawong, Wipa; Pacharn, Punchama; Jirapongsananuruk, Orathai; Vichyanond, Pakit

    2009-12-01

    Nine patients (3 boys and 6 girls) with a median age of 9.5 years, with immediate type hypersensitivity reactions to chemotherapeutic agents were reviewed. The presenting symptoms were urticaria (4/9) and anaphylaxis (5/9). The causative agents were vincristine (2/9), L-asparaginase (2/9), mesna (1/9), cyclosporine (1/9), carboplatin (2/9) and cyclophosphamide (1/9). Three of the five patients with anaphylaxis were changed to alternative chemotherapeutic agents. In two cases alternative drugs were not available and the patients underwent safe and successful desensitization. Three of the 4 patients with urticaria were successfully exposed to graded challenges with cyclosporine, carboplatin and cyclophosphamide, respectively. In the other case with generalized urticaria, mesna was withdrawn due to a positive intradermal test. In patients with immediate type hypersensitivity reactions to chemotherapeutic drugs, if effective alternative chemotherapeutic agents are not available and/or the skin test is negative, a careful drug challenge and/or desensitization should be performed.

  19. Effects of Saint John’s Wort and Vitamin E on Breast Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2005-05-01

    points, 2) we were having precipitation of the reconstituted drug or 3) our detection system was not sensitive enough. Therefore a second set of samples...run a set of samples, since we are using UV detection and he is using mass spectroscopy. His more sensitive detection system could measure docetaxel in...primates. Antimicrobial Agents and Chemotherapy 44:1100-1101, 2000. 5. Parise, R.A., Ramanathan, R.K., Zamboni, W.C., Egorin, M.J. Sensitive liquid

  20. A radiometric method for predicting effectiveness of chemotherapeutic agents in murine leprosy.

    PubMed

    Camargo, E E; Larson, S M; Tepper, B S; Wagner, H N

    1975-01-01

    A simple radiometric method has been developed for evaluating the effect of drugs on the metabolism of M. lepraemurium. The method is based on the measurement of the 14CO2 produced through bacterial metabolism of acetate-U-14C. Seventeen drugs were tested: bacitracin, cephaloridine, chloramphenicol, cycloserine, dactinomycin, DDS, ethionamide, INH, kanamycin, methenamine mandelate, nitrofurantoin, oxacillin, polymyxin B, rifampicin, streptomycin, sulfadimethoxine and vancomycin. The drugs which caused most marked inhibition were chloramphenicol, INH, ethionamide and nitrofurantoin in order of increasing effectiveness. The radiometric study which is completed in 15 days permits direct study of the drug effect on the metabolism of M. lepraemurium and a more rapid screening of antileprosy drugs than has previously been possible. Currently, these observations are being extended to studies of the structure-activity relationships of antileprosy drugs and the metabolism and drug susceptibility of M. leprae in vitro.

  1. Targeted Delivery of Chemotherapeutic Agents Using Improved Radiosensitive Liquid Core Microcapsules and Assessment of Their Antitumor Effect

    SciTech Connect

    Harada, Satoshi Ehara, Shigeru; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Sato, Takahiro; Oikawa, Shyoichi; Kamiya, Tomihiro; Arakawa, Kazuo; Yokota, Wataru; Sera, Koichiro; Ito, Jyun

    2009-10-01

    Purpose: Radiation-sensitive microcapsules composed of alginate and hyaluronic acid are being developed. We report the development of improved microcapsules that were prepared using calcium- and yttrium-induced polymerization. We previously reported on the combined antitumor effect of carboplatin-containing microcapsules and radiotherapy. Methods and Materials: We mixed a 0.1% (wt/vol) solution of hyaluronic acid with a 0.2% alginate solution. Carboplatin (l mg) and indocyanine green (12.5 {mu}g) were added to this mixture, and the resultant material was used for capsule preparation. The capsules were prepared by spraying the material into a mixture containing a 4.34% CaCl{sub 2} solution supplemented with 0-0.01% yttrium. These capsules were irradiated with single doses of 0.5, 1.0, 1.5, or 2 Gy {sup 60}Co {gamma}-rays. Immediately after irradiation, the frequency of microcapsule decomposition was determined using a microparticle-induced X-ray emission camera. The amount of core content released was estimated by particle-induced X-ray emission and colorimetric analysis with 0.25% indocyanine green. The antitumor effect of the combined therapy was determined by monitoring its effects on the diameter of an inoculated Meth A fibrosarcoma. Results: Microcapsules that had been polymerized using a 4.34% CaCl{sub 2} solution supplemented with 5.0 x 10{sup -3}% (10{sup -3}% meant or 10%{sup -3}) yttrium exhibited the maximal decomposition, and the optimal release of core content occurred after 2-Gy irradiation. The microcapsules exhibited a synergistic antitumor effect combined with 2-Gy irradiation and were associated with reduced adverse effects. Conclusion: The results of our study have shown that our liquid core microcapsules can be used in radiotherapy for targeted delivery of chemotherapeutic agents.

  2. [Protective effect of ademetionine 1, 4-butanedisulfonate on liver injury caused by chemotherapeutic agents].

    PubMed

    Tian, Ya-Min; Dou, Li-Ping; Yao, Sheng; Yao, Zi-Long; Zhang, Qian-Fei; Yu, Li; Jing, Yu

    2013-10-01

    The aim of this study was to observe the protective effect of ademetionine 1, 4-butanedisulfonate on liver injury caused by chemotherapy in patients with leukemia. The clinical data of protective effect were analyzed retrospectively from January 2010 to April 2012. A total of 62 acute leukemia patients were divided into A group (27 cases) and B group (35 cases), the polyene phosphatidyl choline combined with ademetionine or combined with compound glycyrrhizin were given in A and B group, respectively. The changes of liver function were observed after 2 weeks, 5 patients in B group suffered from acute liver injury were treated by ademetionine as rescue therapy. Liver function was compared before and after treatment. The results showed that ALT and AST levels were significantly reduced in A group (P < 0.05), none of the patients (0/27) suffered from acute liver injury, but 14.29% (5/35) patients in B group suffered from acute liver injury, and liver function could be recovered by substitution treatment of ademetionine (the median time is 8 days, 5-14 days). It is concluded that the protective and therapeutic effect of ademetionine against liver injury caused by chemotherapy in patients with leukemia is better than that of compound glycyrrhizin.

  3. Warming Effect on Miriplatin-Lipiodol Suspension as a Chemotherapeutic Agent for Transarterial Chemoembolization for Hepatocellular Carcinoma: Preliminary Clinical Experience

    SciTech Connect

    Kora, Shinn-ichi; Urakawa, Hiroshi; Mitsufuji, Toshimichi; Osame, Akinobu; Higashihara, Hideyuki; Yoshimitsu, Kengo

    2013-08-01

    PurposeTo retrospectively elucidate the preliminary clinical impact of warmed miriplatin-lipiodol suspension (MPT-LPD) when used as a chemotherapeutic agent for transarterial chemoembolization (TACE) for hepatocellular carcinoma (HCC).Materials and MethodsBetween June and December 2010, TACE was performed with MPT-LPD at room temperature (RT group), and after January 2011, TACE with MPT-LPD warmed to 40 Degree-Sign C was performed (W group). The intraarterial appearance of MPT-LPD immediately after injection through microcatheters at the second-order branches was compared between the two groups with a 5-point grading system. Local therapeutic effects of HCCs as assessed by follow-up computed tomography (CT) obtained 1-3 months after TACE were compared between the groups with a 4-point grading system (TE1-TE4). After April 2011, angiography-assisted CT was routinely performed at TACE, and HCCs that revealed apparent corona enhancement (CE) were retrospectively selected. The degree of concordance between CE and MPT-LPD accumulation as assessed by CT immediately after TACE was assessed with a 3-point grading scale.ResultsMPT-LPD therapy resulted in a smooth and continuous appearance in the W group (grades 1, 2, 3, 4, and 5 were, respectively, 1, 2, 11, 18, and 4) compared to the RT group (4, 0, 1, 2, and 0). The W group (TE1, TE2, TE3, and TE4 were 1, 9, 11, and 12) revealed better local therapeutic effects than the RT group (6, 3, 9, and 0) (p < 0.05). CE was found in 26 HCC nodules, and concordance between CE and MPT-LPD accumulation was observed in 66 % (grades 1, 2, and 3 were, respectively, 2, 8, and 19).ConclusionWarmed MPT-LPD flowed more smoothly within vascular lumen, passed through tumor sinusoid of HCC, and had better local therapeutic effects at short-term observation than MPT-LPD at room temperature.

  4. Study of anti-cancer effects of chemotherapeutic agents and radiotherapy in breast cancer patients using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chithra, K.; Vijayaraghavan, S.; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    The analysis of the variations in the spectroscopic patterns of the key bio molecules using Native fluorescence spectroscopy, without exogenous labels, has emerged as a new trend in the characterization of the Physiological State and the Discrimination of Pathological from normal conditions of cells and tissues as the relative concentration of these bio-molecules serve as markers in evaluating the presence of cancer in the body. The aim of this unique study is to use these features of Optical spectroscopy in monitoring the behavior of cells to treatment and thus to evaluate the response to Chemotherapeutic agents and Radiation in Breast Cancer Patients. The results of the study conducted using NFS of Human blood plasma of biopsy proved Breast Cancer patients undergoing treatment are promising, enhancing the scope of Native fluorescence Spectroscopy emerging as a promising technology in the evaluation of Therapeutic Response in Breast Cancer Patients.

  5. Endoscopic spectral domain optical coherence tomography of murine colonic morphology to determine effectiveness of chemopreventive and chemotherapeutic agents in colorectal cancer

    NASA Astrophysics Data System (ADS)

    LeGendre-McGhee, Susan; Rice, Photini F. S.; Wall, R. Andrew; Klein, Justin; Luttman, Amber; Sprute, Kyle; Gerner, Eugene; Barton, Jennifer K.

    2012-02-01

    Optical coherence tomography (OCT) is a minimally-invasive imaging modality capable of tracking the development of individual colonic adenomas. As such, OCT can be used to evaluate the mechanisms and effectiveness of chemopreventive and chemotherapeutic agents in colorectal cancer models. The data presented here represent part of a larger study evaluating α-difluoromethylornithine (DFMO) and Sulindac as chemopreventive and chemotherapeutic agents using mice treated with the carcinogen azoxymethane (AOM). 27 A/J mice were included in the chemoprevention study, subdivided into four treatment groups (No Drug, DFMO, Sulindac, DFMO/Sulindac). 30 mm lateral images of each colon at eight different rotations were obtained at five different time points using a 2 mm diameter spectral domain OCT endoscopy system centered at 890 nm with 3.5 μm axial resolution in air and 5 μm lateral resolution. Images were visually analyzed to determine number and size of adenomas. Gross photos of the excised colons and histology provided gold standard confirmation of the final imaging time point. Preliminary results show that 100% of mice in the No Drug group developed adenomas over the course of the chemoprevention study. Incidence was reduced to 71.43% in mice given DFMO, 85.71% for Sulindac and 0% for DFMO/Sulindac. Discrete adenoma size did not vary significantly between experimental groups. Additional experiments are currently under way to verify these results and evaluate DFMO and Sulindac for chemotherapeutic applications.

  6. Effect of HPV E6/E7 siRNA with Chemotherapeutic Agents on the Regulation of TP53/E2F Dynamic Behavior for Cell Fate Decisions.

    PubMed

    Rajasekaran, Nirmal; Jung, Hun Soon; Bae, Soo Hyeon; Chelakkot, Chaithanya; Hong, Sungyoul; Choi, Jong-Sun; Yim, Dong-Seok; Oh, Yu-Kyoung; Choi, Yoon-La; Shin, Young Kee

    2017-10-01

    Toxicity and resistance remain major challenges for advanced or recurrent cervical cancer therapies, as treatment requires high doses of chemotherapeutic agents. Restoration of TP53 and hypophosphorylated-retinoblastoma (pRB) proteins by human papillomavirus (HPV) E6/E7 siRNA sensitizes HPV-positive cervical cancer cells toward chemotherapeutic agents. Here, we investigated the therapeutic effects of E6/E7 siRNA on the dynamic behavior of TP53 and RB/E2F signaling networks in deciding the cell fate. The synergistic effect of HPV E6/E7 siRNA pool (SP) with chemotherapeutic agents on TP53 and RB/E2F signaling, proliferation, and apoptosis was analyzed in vitro and in vivo. Compared to the E6/E7 SP alone, E6/E7 SP with cisplatin treatment effectively restored TP53 and RB/E2F signaling and contributes to differences in cell fate, such as apoptosis or cell cycle arrest. We also developed a cellular dynamics model that includes TP53-RB/E2F dynamics and cell proliferation profiles, and confirmed its utility for investigating E6/E7 siRNA-based combination regimens. Using a dual reporter system, we further confirmed the cross talk between TP53 and RB/E2F signaling mechanisms. Treatment of E6/E7 SP cationic liposome (i.v.) with cisplatin and paclitaxel (i.p.) potentially inhibited tumor growth in BALB/c-nude mice. Altogether, our findings suggest that stabilization of TP53 and the RB/E2F repressor complex by E6/E7 SP combined with low-dose chemotherapy can effectively suppress tumor growth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers

    DTIC Science & Technology

    2005-05-01

    AD_ Award Number: DAMD17-03-1-0353 TITLE: Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers...30 Apr 2005 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable...year of the project, we have investigated the cyclophosphamide dose effects on rat breast tumor hemodynamics and also monitored how tumor hemodynamics

  8. Long-term genetic and reproductive effects of ionizing radiation and chemotherapeutic agents on cancer patients and their offspring.

    PubMed

    Byrne, J

    1999-04-01

    The continuing search for a cure for cancer has lead to more aggressive therapies as new agents are developed with largely unknown late complications. Standard therapy for the majority of cancers today, following surgery, often consists of combinations of high doses of radiation and multi-drug therapy. Compared with exposures experienced by atomic bomb survivors, cancer survivors have been exposed to higher doses of partial body irradiation and combination chemotherapy over longer periods. Thus, cancer survivors provide a model system with which to evaluate the long-term effects on the human organism of high doses of agents known to damage DNA. Five-year survival after cancer diagnosis is now greater than 56%; more than 5 million Americans are considered cured of cancer. However, the late complications of cancer in long-term survivors has been poorly evaluated, especially in adults, and little is known of the most troubling possibility, that is, that the effects of cancer treatments could be passed on to the next generation. What little we know comes from studies of at most 5,000 survivors of childhood cancer, treated decades ago. So far, results are reassuring that with the means now available, we cannot detect clinical evidence of heritable damage. However, reproductive effects, including infertility, are common consequences of cancer therapy and may represent germ cell damage. We are just in the infancy of studies of germ cell mutagenesis in cancer survivors. The relatively small numbers of survivors, and the few types of exposures studied so far, provide only limited grounds for reassurance. More comprehensive, properly designed, studies of modern new agents are urgently need.

  9. Assessment of the inhibitory effects of different radiation qualities or chemotherapeutic agents on a human melanoma cell line.

    PubMed

    Ristić-Fira, Aleksandra M; Petrović, Ivan M; Korićanac, Lela B; Valastro, Lucia M; Privitera, Giuseppe; Cuttone, Giacomo

    2008-12-01

    The correlation between time dependent viabilities, after applying two radiation qualities and two alkylating agents on HTB140 melanoma cells, has been studied. Irradiations were performed with gamma-rays and 62 MeV protons, close to the Bragg peak maximum, delivering doses of 8-24 Gy. Treatments with fotemustine (FM) and dacarbazine (DTIC) were carried out with concentrations of 0.05-2mM. High radio-resistance of HTB140 cells revealed by a clonogenic assay was confirmed by microtetrasolium and sulforhodamine B, through the surviving fraction at 2 Gy (SF2), being 0.961-0.956 for gamma-rays and 0.931-0.887 for protons. A better efficiency of protons was illustrated by relative biological effectiveness at 2 Gy (RBE), ranging from 1.69 to 1.89. A kinetic study of concentration dependent cytotoxicity indicated that the best effect of the drugs, estimated as the concentration that produces 50% of growth inhibition (IC(50)), was obtained at 48 h, having values of 76 microM for DTIC and 145 microM for FM. The cytostatic ability of the drugs pointed out that the presence of DTIC at 24h, compared to FM, was insufficient to produce an effect. Protons and FM demonstrated their pro apoptotic capacity. Cross-resistance between treatments applied to the HTB140 cells was observed, protons being the most efficient, while DTIC, FM and gamma-rays demonstrated a lower level of cell inactivation.

  10. Current Research and Development of Chemotherapeutic Agents for Melanoma

    PubMed Central

    Hsan, Kyaw Minn; Chen, Chun-Chieh; Shyur, Lie-Fen

    2010-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer and an increasingly common disease worldwide. It remains one of the most treatment-refractory malignancies. The current treatment options for patients with metastatic melanoma are limited and in most cases non-curative. This review focuses on conventional chemotherapeutic drugs for melanoma treatment, by a single or combinational agent approach, but also summarizes some potential novel phytoagents discovered from dietary vegetables or traditional herbal medicines as alternative options or future medicine for melanoma prevention. We explore the mode of actions of these natural phytoagents against metastatic melanoma. PMID:24281076

  11. Augmentation of Chemotherapeutic Infusion Effect by TSU-68, an Oral Targeted Antiangiogenic Agent, in a Rabbit VX2 Liver Tumor Model

    SciTech Connect

    Kim, Hyo-Cheol; Chung, Jin Wook Choi, Seung Hong; Im, Seock-Ah; Yamasaki, Yasundo; Jun, Suryoung; Jae, Hwan Jun; Park, Jae Hyung

    2012-02-15

    Purpose: This study was designed to investigate the in vivo effects of combination therapy with TSU-68 and chemotherapeutic infusion in a rabbit VX2 liver tumor model. Methods: This study was approved by the animal care committee at our institute. Three weeks before chemotherapeutic infusion, VX2 carcinoma was implanted into the livers of 32 rabbits. One week after chemotherapeutic infusion, vehicle was administered orally for 3 weeks in the control group (n = 16), and TSU-68 was administered orally at a daily dose of 200 mg/kg for 3 weeks in the treated group (n = 16). Computed tomography (CT) was performed before and 1, 2, 3, and 4 weeks after chemotherapeutic infusion. Tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST) on CT scan. The maximum thickness of viable tumor was measured on microscopic sections. Results: According to the RECIST, stable disease was observed in 9 (56%) rabbits and progressive disease in 7 (44%) in the control group, whereas partial response was observed in 1 (6%) rabbit and stable disease in 15 (94%) in the treated group. On pathologic examination, a viable lesion was present in 12 (75%) rabbits in the control group and in 6 (38%) rabbits in the treated group (P = 0.073). The mean maximum thickness of viable tumor in the treated group was significantly smaller than that in the control group (0.74 mm vs. 3.39 mm; P = 0.02). Conclusions: Oral administration of TSU-68 augmented the effect of chemotherapeutic infusion in a rabbit VX2 liver tumor model.

  12. Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent, 5-Fluorouracil (5-FU).

    PubMed

    Whitford, Eleanor J; Cummins, Adrian G; Butler, Ross N; Prisciandaro, Luca D; Fauser, Jane K; Yazbeck, Roger; Lawrence, Andrew; Cheah, Ker Y; Wright, Tessa H; Lymn, Kerry A; Howarth, Gordon S

    2009-03-15

    Beneficial bacteria (probiotics) and probiotic-derived factors have the potential to ameliorate disorders of the intestine. The aim of this study was to compare live Streptococcus thermophilus TH-4 (TH-4), dead TH-4 and TH-4 supernatant in rats treated with 5-Fluorouracil. Rats were randomly allocated to five treatment groups (n=8-10): Saline+Water; 5-FU+Skim Milk; 5-FU+Live TH-4; 5-FU+Supernatant TH-4; and 5-FU+Dead TH-4. 5-FU (150mg.kg(-1)) was administered by a single intraperitoneal injection on day 0; animals were killed on day 4. Treatments were administered daily from days -2 to 3 via oro-gastric gavage. Metabolic parameters were measured daily. Blood was obtained by cardiac puncture, and intestinal tissues removed for quantitative and qualitative histological assessment, including: villous height and area; crypt depth and area, mitotic count and crypt fission; biochemical determination of sucrase and myeloperoxidase (MPO) activity; and disease severity scoring. One-way ANOVA statistical analyses were conducted for the majority of outcome measures. Live TH-4 significantly reduced disease severity score by 13% (p< 0.05), and partially normalised mitotic counts compared with 5-FU+Skim milk controls. Live and supernatant TH-4 reduced crypt fission by 69% and 48% (p< 0.05), respectively, compared to 5-FU+Skim Milk controls. No significant differences (p> 0.05) in the occurrence of bacteraemia were evident across all groups. Live TH-4 partially normalised mitotic count and histological severity score in 5-FU treated rats. The inhibitory effect of live TH-4 and TH-4 supernatant on crypt fission suggests therapeutic utility in the prevention of disorders characterised by increased crypt fission, such as colorectal carcinoma.

  13. Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent 5-Fluorouracil (5-FU).

    PubMed

    Whitford, Eleanor J; Cummins, Adrian G; Butler, Ross N; Prisciandaro, Luca D; Fauser, Jane K; Yazbeck, Roger; Lawrence, Andrew; Cheah, Ker Y; Wright, Tessa H; Lymn, Kerry A; Howarth, Gordon S

    2009-03-15

    Beneficial bacteria (probiotics) and probiotic-derived factors have the potential to ameliorate disorders of the intestine. The aim of this study was to compare live Streptococcus thermophilus TH-4 (TH-4), dead TH-4 and TH-4 supernatant in rats treated with 5-Fluorouracil. Rats were randomly allocated to five treatment groups (n = 8–10): Saline + Water; 5-FU + Skim Milk; 5-FU+ Live TH-4; 5-FU + Supernatant TH-4; and 5-FU + Dead TH-4.5-FU (150 mg.kg-1) was administered by a single intraperitoneal injection on day zero; animals were killed on day four. Treatments were administered daily from days -2 to +3 via oro-gastric gavage. Metabolic parameters were measured daily. Blood was obtained by cardiac puncture, and intestinal tissues removed for quantitative and qualitative histological assessment, including: villus height and area; crypt depth and area, mitotic count and crypt fission;biochemical determination of sucrase and myeloperoxidase (MPO)activity; and disease severity scoring. One-way ANOVA statistical analyses were conducted for the majority of outcome measures. Live TH-4 significantly reduced disease severity score by 13% (p< 0.05), and partially normalized mitotic counts compared with 5-FU + Skim Milk controls. Live and Supernatant TH-4 reduced crypt fission by 69% and 48% (p < 0.05), respectively, compared to 5-FU + Skim Milk controls. No significant differences (p > 0.05) in the occurrence of bacteraemia were evident across all groups. Live TH-4 partially normalized mitotic count and histological severity score in 5-FU treated rats. The inhibitory effect of live TH-4 and TH-4 Supernatant on crypt fission suggests therapeutic utility in the prevention of disorders characterized by increased crypt fission,such as colorectal carcinoma.

  14. In vitro sensitivity of human ovarian tumours to chemotherapeutic agents.

    PubMed Central

    Wilson, A. P.; Neal, F. E.

    1981-01-01

    The in vitro chemosensitivity of primary monolayer cultures of human ovarian tumours to a wide range of chemotherapeutic agents has been determined using 3H-leucine incorporation as an index of cytotoxicity. Of 67 specimens received, 35 have been successfully cultured and tested for chemosensitivity. Drugs tested included alkylating agents, antibiotics, antimitotics, antimetabolites and progestogens. The overall incidence of efficacy of the drugs corresponded with the incidence which might be expected from data on the clinical response rates produced by the various drugs. Cultures from the tumour cells of treated patients generally showed greater resistance than tumours of untreated patients. Correlation between in vitro results and in vivo response was positive in all 8 patients receiving first-line chemotherapy and in 57% (4/7) patients receiving second-line chemotherapy. PMID:6791675

  15. Cinnamaldehyde/chemotherapeutic agents interaction and drug-metabolizing genes in colorectal cancer.

    PubMed

    Yu, Chen; Liu, Shen-Lin; Qi, Ming-Hao; Zou, Xi

    2014-02-01

    Cinnamaldehyde is an active monomer isolated from the stem bark of Cinnamomum cassia, a traditional oriental medicinal herb, which is known to possess marked antitumor effects in vitro and in vivo. The aim of the present study was to examine the potential advantages of using cinnamaldehyde in combination with chemotherapeutic agents commonly used in colorectal carcinoma (CRC) therapy, as well as to investigate the effect of cinnamaldehyde on chemotherapeutic-associated gene expression. The synergistic interaction of cinnamaldehyde and chemotherapeutic agents on human CRC HT-29 and LoVo cells was evaluated using the combination index (CI) method. The double staining with Annexin V conjugated to fluorescein-isothiocyanate and phosphatidylserine was employed for apoptosis detection. The expression of drug-metabolizing genes, including excision repair cross‑complementing 1 (ERCC1), orotate phosphoribosyltransferase (OPRT), thymidylate synthase (TS), breast cancer susceptibility gene 1 (BRCA1) and topoisomerase 1 (TOPO1), all in HT-29 and LoVo cells, with or without the addition of cinnamaldehyde, was examined by quantitative polymerase chain reaction (PCR). Cinnamaldehyde had a synergistic effect on the chemotherapeutic agents cytotoxicity in HT-29 and LoVo cells. In addition, cinnamaldehyde suppressed BRCA1, TOPO1, ERCC1 and TS mRNA expression, except for OPRT expression, which was markedly upregulated. Our findings indicate that cinnamaldehyde appears to be a promising candidate as an adjuvant in combination therapy with 5-fluorouracil (5-FU) and oxaliplatin (OXA), two chemotherapeutic agents used in CRC treatment. The possible mechanisms of its action may involve the regulation of drug‑metabolizing genes.

  16. Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents.

    PubMed

    Wong, Daniel Yuan Qiang; Yeo, Charmian Hui Fang; Ang, Wee Han

    2014-06-23

    There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off-target immune-modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt-based chemotherapeutic agents to exploit their immune-activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal Pt(IV) prodrug containing a FPR1/2-targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents.

    PubMed

    Zhu, Jianqiang; Xu, Ming; Gao, Ming; Zhang, Zhihong; Xu, Yong; Xia, Tian; Liu, Sijin

    2017-03-28

    The outstanding physicochemical properties endow graphene materials (e.g., graphene oxide, GO) with beneficial potentials in diverse biomedical fields such as bioimaging, drug delivery, and biomolecular detection. GO recently emerged as a chemosensitizer; however, the detailed molecular basis underlying GO-conducted sensitization and corresponding biological effects are still elusive. Based on our recent findings that GO treatment at sublethal concentrations could impair the general cellular priming state, including disorders of plasma membrane and cytoskeleton construction, we aimed here to explore the mechanism of GO as a sensitizer to make cancer cells more susceptible to chemotherapeutic agents. We discovered that GO could not only compromise plasma membrane and cytoskeleton in J774A.1 macrophages and A549 lung cancer cells at sublethal concentrations without incurring significant cell death but also dampen a number of biological processes. Using the toxicogenomics approaches, we laid out the gene expression signature affected by GO and further defined those genes involved in membrane and cytoskeletal impairments responding to GO. The mechanistic investigation uncovered that the interactions of GO-integrin occurred on the plasma membrane and consequently activated the integrin-FAK-Rho-ROCK pathway and suppressed the expression of integrin, resulting in compromised cell membrane and cytoskeleton and a subsequent cellular priming state. By making use of this mechanism, the efficacy of chemotherapeutic agents (e.g., doxorubicin and cisplatin) could be enhanced by GO pretreatment in killing cancer cells. This study unveiled a feature of GO in cancer therapeutics: sensitizing cancer cells to chemotherapeutic agents by undermining the resistance capability of tumor cells against chemotherapeutic agents, at least partially, by compromising plasma membrane and cytoskeleton meshwork.

  18. Noscapine and its Analogs as Chemotherapeutic Agent: Current updates.

    PubMed

    Tomar, Vartika; Kukreti, Shrikant; Prakash, Satya; Madan, Jitender; Chandra, Ramesh

    2017-01-01

    Recently, noscapine was reported as anticancer drug. Unlike, colchicine and podophyllotoxin, noscapine did not depolymerize microtubules even at stoichiometric concentrations but rather only mitigated their dynamics. Other microtubule-interacting chemotherapeutics, although quite effective, have therapy-limiting toxicities including immunosuppression and peripheral neuropathies. Recurrent cancers often become resistant. Noscapine however remains effective in some such instances, e.g., taxane-resistant ovarian cancer. Noscapine and analogs also do not show signs of neurotoxicity or immunosuppression. In addition, 9-bromo noscapine, Red-9-Br-Nos and other analogs were characterized for their structure and further studied in detail. On the other hand, noscapine was shown to be neuroprotective in mouse model of neurodegenerative disease and in stroke patients. Like low doses of colchicine, noscapine and its analog 9-Br-Noscapine also show anti-inflammatory activities. There are indications of a preventive use of noscapine in ischemiareperfusion injury and fibrosis. The entire biosynthetic pathway of noscapine is encoded as gene cluster within 401 kilo bases of genomic DNA, opening up opportunities for the large-scale biotechnological production of noscapine for medicinal needs. Thus, noscapine and its derivatives (noscapinoids) might be cost-effective and safe components for cancer chemotherapy. Owing to its low toxicity, it also might be useful for preventive use in high-risk situations. This brief review is an update of current research activity and patents on noscapine and its analogs.

  19. Intrinsic resistance to chemotherapeutic agents in murine osteosarcoma cells.

    PubMed

    Takeshita, H; Kusuzaki, K; Ashihara, T; Gebhardt, M C; Mankin, H J; Hirasawa, Y

    2000-07-01

    cells were found to exhibit cross-resistance only to substrates for P-glycoprotein (such as doxorubicin, vincristine, and etoposide), whereas the MOS/IR1 cells were resistant to all of the drugs studied (including cisplatin and methotrexate). The degree of drug resistance in the MOS/IR1 cells was found to be associated with the molecular weight of the drugs (p < 0.05). Permeabilization of the plasma membrane by saponin increased both the accumulation of doxorubicin (p < 0.05) and the cytotoxic activity of this drug in all lines, but the effects were most pronounced in the MOS/IR1 cells. Taken together, this data suggests that reduced drug accumulation in the MOS/IR1 cells may be due to the effect of decreased permeability of the plasma membrane on the transport of drugs from the extracellular environment into the cytosol of the cell and that this may be the mechanism responsible for intrinsic resistance to multiple drugs in the MOS/IR1 cell line. Current drug treatment for human osteosarcoma may include multiple chemotherapeutic agents, such as doxorubicin, cisplatin, and methotrexate. These drugs exhibit different cytotoxic actions and, thus, the mechanisms of resistance to individual drugs vary. Clinical resistance to multidrug chemotherapy may be observed in tumors that recur after repetitive chemotherapy and in previously untreated tumors. In the former group, a tumor cell may express multidrug resistance by combining several different mechanisms due to its exposure to various drugs. In the latter group, however, this is not likely. Decreased intracellular drug accumulation due to reduced permeability of the plasma membrane, found in the MOS/IR1 cells, is one possible mechanism and may explain the intrinsic resistance to multidrug chemotherapy for the treatment of osteosarcoma. Further study regarding the resistance mechanism in the MOS/IR1 cells may help to overcome the intrinsic drug resistance in oste

  20. Suppression of leukocyte chemotaxis in vitro by chemotherapeutic agents used in the management of thermal injuries.

    PubMed

    Warden, G D; Mason, A D; Pruitt, B A

    1975-03-01

    Polymorphonuclear leukocytes from burned patients exhibit suppressed chemotaxis possibly related to the susceptibility of such patients to opportunistic infection. This study assesses the effect of normal serum upon burn-suppressed leukocytes and the effects of three commonly used topical chemotherapeutic agents upon the chemotaxis exhibited by granulocytes from normal controls. In vitro incubation with normal serum restored chemotaxis to normal in the suppressed granulocytes from burned patients. The serum factor responsible for this restoration was heat labile. Serum albumin alone did not exhibit this effect. Both mafenide and silver sulfadiazine suppressed the chemotactic function of granulocytes obtained from normal controls, while silver nitrate exhibited no such activity. Studies of the chemotactic function of control granulocytes after incubation with sera from burned patients yielded similar results; only the sera from patients treated with silver nitrate failed to suppress normal leukotaxis. The chemotactic impairment found in leukocytes from burned patients, however, while related to burn size and predictive of prognosis, did not vary with the agent used for the topical therapy. These data suggest the presence of a reversible intrinsic defect in leukotaxis consequent to burn injury, related to some factor deficient in burn serum. In addition, extrinsic impairment of normal granulocyte leukotaxis by two commonly used chemotherapeutic agents is demonstrated.

  1. Knockdown of the Inhibitor of Apoptosis BRUCE Sensitizes Resistant Breast Cancer Cells to Chemotherapeutic Agents.

    PubMed

    Garrison, Jason B; Ge, Chunmin; Che, Lixiao; Pullum, Derek A; Peng, Guang; Khan, Sohaib; Ben-Jonathan, Nira; Wang, Jiang; Du, Chunying

    2015-04-01

    Management of patients with breast cancer often fails because of inherent or acquired resistance to chemotherapy. BRUCE (BIR repeat containing ubiquitin-conjugating enzyme) is a member of the inhibitor of apoptosis protein (IAP) family. It has various cellular functions including suppression of apoptosis and promotion of cytokinesis. Furthermore, it pays a critical role in promotion of DNA damage repair and preservation of genome stability, a new function recently reported by our group. Although BRUCE is expressed in breast cancer cell lines, its expression in human primary breast tumors and its contribution to chemoresistance in breast cancers has not been explored. Chemotherapeutic drugs are used in the treatment of breast cancer patients. However, they are not effective to all patients and patients often develop resistance. Consequently we explored if BRUCE protein level, as judged by immunohistochemistry (IHC), is higher in primary breast tumors than normal breast tissue. We also examined if depletion of BRUCE, using a lentiviral shRNA approach, enhances cell sensitivity to multiple chemotherapeutic agents, including cisplatin, an agent that induces DNA damage by generating DNA cross-links, and taxol, a microtubule stabilizer and mitotic inhibitor. The reason for including these two chemotherapeutic agents in this study is that they hit two essential cellular processes of DNA repair and cytokinesis in which BRUCE plays critical roles. IHC analysis of BRUCE revealed significantly higher levels of BRUCE in primary breast tumors than normal breast tissue. Knockdown of BRUCE protein expression by lentiviral shRNA resulted in increased sensitivity to cisplatin in the resistant breast cancer MDB-MD-231 cell line. Moreover, depletion of BRUCE in this cell line achieved a more profound level of cell killing when coupled to low doses of cisplatin and taxol combined, rather than either drug used alone. Our data suggest that elevated protein levels of BRUCE in breast

  2. 2,3-DIPHENYL-1,4-NAPHTHOQUINONE: A POTENTIAL CHEMOTHERAPEUTIC AGENT AGAINST TRYPANOSOMA CRUZI

    PubMed Central

    Ramos, Enrique I.; Garza, Kristine M.; Krauth-Siegel, R. L.; Bader, Julia; Martinez, Luiz E.; Maldonado, Rosa A.

    2010-01-01

    Chagas disease, caused by Trypanosoma cruzi, is a wide spread infection in Latin America. Currently, only 2 partially effective and highly toxic drugs, i.e., benznidazole and nifurtimox, are available for the treatment of this disease and several efforts are underway in the search for better chemotherapeutic agents. Here, we have determined the trypanocidal activity of 2,3-diphenyl-1,4-naphthoquinone (DPNQ), a novel quinone derivative. In vitro, DPNQ was highly cytotoxic at a low, micromolar concentration (LD50 = 2.5 μM) against epimastigote, cell-derived trypomastigote, and intracellular amastigote forms of T. cruzi, but not against mammalian cells (LD50 = 130 μM). In vivo studies on the murine model of Chagas disease revealed that DPNQ-treated animals (3 doses of 10 mg/kg/day) showed a significant delay in parasitemia peak and higher (up to 60%) survival rate 70 days post-infection, when compared to control group (infected, untreated). We also observed a 2-fold decrease in the parasitemia between the control group (infected, untreated) and the treated group (infected, treated). No apparent drug toxicity effects were noticed in the control group (uninfected, treated). In addition, we determined that DPNQ is the first competitive inhibitor of T. cruzi lipoamide dehydrogenase (TcLipDH) thus far described. Our results indicate that DPNQ is a promising chemotherapeutic agent against T. cruzi. PMID:18788881

  3. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    PubMed

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel.

  4. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells.

  5. Air Sampling for Chemotherapeutic Agents: a Literature Review

    DTIC Science & Technology

    1991-05-01

    and Health ( NIOSH ) do not provide guidelines on air sampling procedures on antineoplastic agents. Purpose The purpose of this document is to review...Facilities." To provide the most current information on air sampling for antineoplastic agents, the following organizations were contacted: NIOSH , The... prevention of exposure. All persons dealing with antineoplastic agents should be trained in the correct procedures of handling, disposal and storage of

  6. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment.

    PubMed

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-05-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems.

  7. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment

    PubMed Central

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-01-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  8. Cholangiocarcinoma cell line TK may be useful for the pharmacokinetic study of the chemotherapeutic agent gemcitabine.

    PubMed

    Kamada, Minori; Akiyoshi, Kohei; Akiyama, Nobutake; Funamizu, Naotake; Watanabe, Michiko; Fujioka, Kouki; Ikeda, Kei-Ichi; Manome, Yoshinobu

    2014-08-01

    Cholangiocarcinoma is a disease with a poor prognosis. A human cholangiocarcinoma cell line, TK, was previously established to enable further understanding of the disease. We conducted this investigation to determine whether or not the TK line is useful for pharmacokinetic study of the chemotherapeutic agent gemcitabine (GEM). Along with the BXPC3 human pancreatic adenocarcinoma cell line, the sensitivity to and effects on the TK cell line of GEM were compared. The influence of deoxycytidine kinase (dCK) transduction was also comparatively investigated. The effects of GEM in terms of drug sensitivity of the TK cell line, cell cycle and levels of transcripts of key enzymes were comparable to the BXPC3 cell line. Responses to the drug were similar in both cell lines. In contrast to pancreatic carcinoma, cell lines for research on cholangiocarcinoma have been limited. This study suggests the application of the TK cell line to the pharmacokinetic study of the chemosensitization of therapeutic drugs, such as GEM.

  9. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells.

    PubMed

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-12-22

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs.

  10. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells

    PubMed Central

    Ma, Wenzhe; Feng, Senling; Yao, Xiaojun; Yuan, Zhongwen; Liu, Liang; Xie, Ying

    2015-01-01

    Multidrug resistance (MDR) is the major obstacle to the successful chemotherapy treatment of many cancers. Here we found that nobiletin, a citrus methoxyflavone, significantly sensitized ABCB1 overexpressing cells A2780/T and A549/T to chemotherapeutic agents such as paclitaxel (a 433-fold reversal of MDR to PTX at 9 μM), doxorubicin (DOX), docetaxel and dounorubicin. Nobiletin profoundly inhibited ABCB1 transporter activity since it significantly increased the intracellular accumulation of DOX and Flutax-2 in A2780/T cells and decreased the efflux of ABCB1 substrates in Caco2 cells without altering the mRNA and protein expression of ABCB1. Moreover, nobiletin stimulated ATPase activity and inhibited verapamil-stimulated ATPase activity in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, molecular docking analysis also identified favorable binding of nobiletin with the transmemberane region site 1 of homology modeled human ABCB1 transporter. Moreover, the Nrf2 protein expression and phosphorylation levels of AKT/ERK were suppressed by co-treated with nobiletin and PTX at the reversal concentrations, suggesting that inhibition of the AKT/ERK/Nrf2 pathway was associated with the sensitizing effect of nobiletin. These findings encourage further animal and clinical MDR studies with the combination therapy of nobiletin and chemotherapeutic drugs. PMID:26689156

  11. Occupational health and safety of personnel handling chemotherapeutic agents in Greek hospitals.

    PubMed

    Constantinidis, T C; Vagka, E; Dallidou, P; Basta, P; Drakopoulos, V; Kakolyris, S; Chatzaki, E

    2011-01-01

    The expansion of chemotherapy raised concerns about the health and safety of hospital personnel. Very little is known about the conditions of handling of chemotherapeutic agents by healthcare workers in Greece and possible adverse effects related to their safety practices, as well as the safety policies adopted by the Greek hospitals. A self-evaluation questionnaire was completed by 353 healthcare workers involved with the use of chemotherapeutic drugs in 24 Greek hospitals and the answers were statistically analysed. The majority of the healthcare workers are aware of the dangers of their work, although they had received limited training and medical surveillance. A significant percentage of them does not use personal protective equipment or use it inadequately. The safety design of their workplace is rather poor. Different health problems have been experienced, deriving from the respiratory, central nervous system, reproductive, gastrointestinal and musculoskeletal system. The improvement of safety training and procedures as well as medical surveillance seems to be a vital priority of hospital administration in Greece, in order to comply with the European guidelines and for the prevention of occupational diseases and environmental pollution. © 2010 Blackwell Publishing Ltd.

  12. Inhibition of HIV replication in vitro by clinical immunosuppressants and chemotherapeutic agents

    PubMed Central

    2013-01-01

    Background Recent studies have suggested that a functional cure for HIV-1 infection, purportedly resultant from allogeneic bone marrow transplantation, may be possible. Additionally, the first such patient was treated with whole-body irradiation, immunosuppressants, and the chemotherapeutic, cytarabine. However, the precise role of the coinciding medical interventions in diminishing detectable HIV reservoirs remains unstudied. Findings In this article, we demonstrate that the immunosuppressants, mycophenolic acid and cyclosporine, and the chemotherapeutic, cytarabine, are potent antiretroviral agents at clinically relevant dosages. These drugs strongly inhibit HIV-1 replication in a GFP indicator T cell line and peripheral blood mononuclear cells (PBMC). Conclusions Our study suggests that certain clinical immunosuppressants and chemotherapeutic agents may act combinatorially to inhibit HIV infection. Additionally, chemotherapy-mediated cytotoxicity may also affect the stability of viral reservoirs. Thus, further study is needed to examine potential therapeutic value of these interventions in patients. PMID:23672887

  13. Oxaliplatin-induced hepatocellular injury and ototoxicity: a review of the literature and report of unusual side effects of a commonly used chemotherapeutic agent.

    PubMed

    Vietor, Nicole O; George, Benjamin J

    2012-09-01

    After extensive literature review utilizing PubMed and Medline searches, we present a rare case of oxaliplatin-induced grade 3/4 hepatocellular injury and ototoxicity. The patient is a 46-year-old female diagnosed with stage IIIC (pT3N2bM0) adenocarcinoma of the sigmoid colon. PET/CT prior to surgery and chemotherapy was negative for distant metastatic disease and baseline liver-associated enzymes were within normal limits. Following sigmoidectomy, patient began adjuvant chemotherapy with 5-florouracil, leucovorin, and oxaliplatin (mFOLFOX-6). Cycle 1 was complicated only by refractory nausea. However, cycle 2 was complicated by vertigo with refractory nausea, tinnitus, and marked elevation in liver enzymes in a hepatocellular pattern. Extensive workup was negative and the etiology of her symptoms and grade 3/4 hepatocellular injury was hypothesized to be the result of oxaliplatin. Aspartate aminotransferase and alanine aminotransferase decreased after two additional weeks off therapy and during cycle 3 in which oxaliplatin was held. She had no evidence of 5-florouracil toxicity. On cycle 4, oxaliplatin was restarted at 50% dose; symptoms and liver-associated enzymes remained stable. However, oxaliplatin was increased up to 75% full dose for cycle 5 with reported vertigo, tinnitus, nausea, and return of elevation in liver-associated enzymes. Oxaliplatin is a chemotherapy agent widely used in the treatment of many malignancies including colon cancer. Side effects include peripheral neuropathy, gastrointestinal toxicity, neutropenia, grade 1/2 hepatocellular injury, and hepatic vascular lesions. However, grade 3/4 hepatocellular injury and ototoxicity are extremely rare with the administration of oxaliplatin. Therefore, we present the unusual chemotherapy side effects.

  14. Adherence, compliance and persistence to oral antineoplastic therapy: a review focused on chemotherapeutic and biologic agents.

    PubMed

    Gebbia, Vittorio; Bellavia, Giuseppe; Ferraù, Francesco; Valerio, Maria Rosaria

    2012-05-01

    To date, orally administered chemotherapy and biologic agents represent a significant percentage of all antineoplastic treatments in several types of cancer, which are most likely to increase in the near future. In this scenario, the issue of adherence and persistence to oral therapy is a key issue since poor compliance to oral antineoplastic treatments may negatively influence patients' clinical outcomes and, in turn, cause an increase in costs, number of hospitalizations and time spent in the hospital. The issue of adherence to new oral chemotherapeutic and/or biologic agents has not been deeply evaluated and data published in medical literature are quite scarce. Adherence is a multidimensional phenomenon, which may be influenced by patient- and health-care provider-related factors, anticancer therapy itself, education and socioeconomic aspects. Patients' selection plays, therefore, a key role in maximizing adherence and persistence to oral therapies. Treating health-care practitioners should first evaluate patient reliability to avoid prescribing oral treatments to patients with socioeconomic and medical conditions, which may predict poor adherence. Adherence and persistence to new oral biologic agents, which are linked to several side effects and whose use is constantly widening, should represent a main endpoint of clinical research in the nearest future.

  15. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    PubMed

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies.

  16. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs

    PubMed Central

    HERTZ, EVERALDO; CADONÁ, FRANCINE CARLA; MACHADO, ALENCAR KOLINSKI; AZZOLIN, VERÔNICA; HOLMRICH, SABRINA; ASSMANN, CHARLES; LEDUR, PAULINE; RIBEIRO, EULER ESTEVES; DE SOUZA FILHO, OLMIRO CEZIMBRA; MÂNICA-CATTANI, MARIA FERNANDA; DA CRUZ, IVANA BEATRICE MÂNICA

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies. PMID:25469267

  17. Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents.

    PubMed

    Samatiwat, Papavee; Prawan, Auemduan; Senggunprai, Laddawan; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol

    2016-08-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor regulating antioxidant, cytoprotective, and metabolic enzymes, plays important roles in drug resistance and proliferation in cancer cells. The present study was aimed to examine the expression of Nrf2 in connection with chemotherapeutic drug sensitivity on cholangiocarcinoma (CCA) cells. The basal levels of Nrf2 protein in cytosol and nuclear fractions of CCA cells were determined using Western blot analysis. Nrf2 mRNA expression of KKU-M156 and KKU-100 cells, representatives of low and high-Nrf2-expressing CCA cells, were silenced using siRNA. After knockdown of Nrf2, the sensitivity of those cells to the cytotoxicity of cisplatin (Cis) was enhanced in association with the increased release of AIF and downregulation of Bcl-xl in both cells. Also, knockdown of Nrf2 suppressed the replicative capability of those cells in colony-forming assay and enhanced their sensitivity to antiproliferative activity of Cis and 5-fluorouracil. The chemosensitizing effect was associated with the suppressed expression of Nrf2-regulated and Cis-induced antioxidant and metabolic genes including NQO1, HO-1, GCLC, TXN, MRP2, TKT, and G6PD. In cell cycle analysis, Nrf2 knockdown cells were arrested at G0/G1 phase and combination with Cis increased the accumulation of cells at S phase. The suppression of KKU-M156 cell proliferation was associated with the downregulation of cyclin D1 and increased level of p21. Inhibition of Nrf2 could be a novel strategy in enhancing antitumor activity of chemotherapeutic agent in control of resistant cancer.

  18. Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents.

    PubMed

    Cassady, J M; Baird, W M; Chang, C J

    1990-01-01

    Recent advances in the chemistry of novel bioactive natural products are reported. This research is directed to the exploration of plants with confirmed activity in bioassays designed to detect potential cancer chemotherapeutic and chemopreventive agents. Structural work and chemical studies are reported for several cytotoxic agents from the plants Annona densicoma, Annona reticulata, Claopodium crispifolium, Polytrichum obioense, and Psorospermum febrifugum. Studies are also reported based on development of a mammalian cell culture benzo[a]pyrene metabolism assay for the detection of potential anticarcinogenic agents from natural products. In this study a number of isoflavonoids and flavonoids with antimutagenic activity have been discovered.

  19. High-frequency induction of chromosomal rearrangements in mouse germ cells by the chemotherapeutic agent chlorambucil.

    PubMed

    Rinchik, E M; Flaherty, L; Russell, L B

    1993-12-01

    Recent mutagenesis studies have demonstrated that the chemotherapeutic agent, chlorambucil (CHL), is highly mutagenic in male germ cells of the mouse. Post-meiotic germ cells, and especially early spermatids, are the most sensitive to the cytotoxic and mutagenic effects of this agent. Genetic, cytogenetic and molecular analyses of many induced mutations have shown that, in these germ-cell stages, CHL induces predominantly chromosomal rearrangements (deletions and translocations), and mutation-rate studies show that, in terms of tolerated doses, CHL is perhaps five to ten times more efficient in inducing rearrangements than is radiation exposure. Appropriate breeding protocols, along with knowledge of the advantages and limitations associated with the use of CHL, can be used to expand the current resource of chromosomal rearrangements in the mouse and to provide new phenotype-associated mutations amenable to positional-cloning techniques. The analysis of CHL-induced mutations has also contributed to understanding the factors that affect the yield and nature of chemically induced germline mutations in mammals.

  20. Treatment of cancer using pulsed electric field in combination with chemotherapeutic agents or genes.

    PubMed

    Nishi, T; Dev, S B; Yoshizato, K; Kuratsu, J; Ushio, Y

    1997-03-01

    Electroporation is a standard laboratory technique originally developed for in vitro transfer of molecules into cells. It involves application of electrical pulses ranging from micro- to milliseconds that create transient pores in the cell membrane allowing intracellular access of exogenous molecules. This technique has been successfully applied to regress tumors in animal models by combining electroporation with chemotherapeutic agents--a process known as electrochemotherapy (ECT) which substantially enhance cytotoxicity of some antineoplastic agents. Recently ECT has moved into clinical arena and patients with cutaneous tumors and head and neck cancers have been treated very effectively with ECT. Parallel to ECT, a technique has also been developed which makes it possible to inject plasmid DNA and combine it with in vivo electroporation--electro--genetherapy (EGT)--to deliver in a highly efficient manner both marker and functional genes into target tissue and achieve gene expression. Thus, in vivo electroporation is contributing to the development of a new strategy for cancer treatment with both drugs and genes.

  1. Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1

    PubMed Central

    2011-01-01

    Background Parvovirus H-1 (H-1PV) infects and lyses human tumor cells including melanoma, hepatoma, gastric, colorectal, cervix and pancreatic cancers. We assessed whether the beneficial effects of chemotherapeutic agents or targeted agents could be combined with the oncolytic and immunostimmulatory properties of H-1PV. Methods Using human ex vivo models we evaluated the biological and immunological effects of H-1PV-induced tumor cell lysis alone or in combination with chemotherapeutic or targeted agents in human melanoma cells +/- characterized human cytotoxic T-cells (CTL) and HLA-A2-restricted dendritic cells (DC). Results H-1PV-infected MZ7-Mel cells showed a clear reduction in cell viability of >50%, which appeared to occur primarily through apoptosis. This correlated with viral NS1 expression levels and was enhanced by combination with chemotherapeutic agents or sunitinib. Tumor cell preparations were phagocytosed by DC whose maturation was measured according to the treatment administered. Immature DC incubated with H-1PV-induced MZ7-Mel lysates significantly increased DC maturation compared with non-infected or necrotic MZ7-Mel cells. Tumor necrosis factor-α and interleukin-6 release was clearly increased by DC incubated with H-1PV-induced SK29-Mel tumor cell lysates (TCL) and was also high with DC-CTL co-cultures incubated with H-1PV-induced TCL. Similarly, DC co-cultures with TCL incubated with H-1PV combined with cytotoxic agents or sunitinib enhanced DC maturation to a greater extent than cytotoxic agents or sunitinib alone. Again, these combinations increased pro-inflammatory responses in DC-CTL co-cultures compared with chemotherapy or sunitinib alone. Conclusions In our human models, chemotherapeutic or targeted agents did not only interfere with the pronounced immunomodulatory properties of H-1PV, but also reinforced drug-induced tumor cell killing. H-1PV combined with cisplatin, vincristine or sunitinib induced effective immunostimulation via a

  2. Effect of a novel oral chemotherapeutic agent containing a combination of trifluridine, tipiracil and the novel triple angiokinase inhibitor nintedanib, on human colorectal cancer xenografts

    PubMed Central

    Suzuki, Norihiko; Nakagawa, Fumio; Matsuoka, Kazuaki; Takechi, Teiji

    2016-01-01

    Trifluridine/tipiracil (TFTD) is a combination drug that is used for the treatment of metastatic colorectal cancer and was formerly known as TAS-102. It is a combination of two active pharmaceutical compounds, trifluridine, an antineoplastic thymidine-based nucleoside analog, and tipiracil, which enhances the bioavailability of trifluridine in vivo. TFTD is used for the treatment of patients with unresectable advanced or recurrent colorectal cancer that is resistant to standard therapies. In the present study, the anticancer effects of trifluridine in combination with nintedanib, an oral triple angiokinase inhibitor, on human colorectal cancer cell lines were investigated. The cytotoxicity against DLD-1, HT-29, and HCT116 cell lines was determined by the crystal violet staining method. The combination of trifluridine and nintedanib exerted an additive effect on the growth inhibition of DLD-1 and HT-29 cells and a sub-additive effect on HCT116 cells, as determined by isobologram analyses. Subsequently, the human colorectal cancer cell lines were implanted subcutaneously into nude mice to allow the evaluation of the in vivo tumor growth inhibitory effects of TFTD and nintedanib combination therapy. TFTD (150 mg/kg/day) and/or nintedanib (40 mg/kg/day) were orally administered to the mice twice daily from day 1 to day 14. The tumor growth inhibition with combination therapy was 61.5, 72.8, 67.6 and 67.5% for the DLD-1, DLD-1/5-FU, HT-29, and HCT116 xenografts, respectively. This was significantly (P<0.05) higher than the effects of monotherapy with either TFTD or nintedanib. These results demonstrated the effectiveness of the combination of TFTD and nintedanib in the treatment of colorectal cancer xenografts. The concentration of trifluridine incorporated into DNA in the HT-29 and HCT116 tumors was determined by liquid chromatography-tandem mass spectrometry. The incorporation levels following treatment with TFTD and nintedanib for 14 consecutive days were higher than

  3. Effect of a novel oral chemotherapeutic agent containing a combination of trifluridine, tipiracil and the novel triple angiokinase inhibitor nintedanib, on human colorectal cancer xenografts.

    PubMed

    Suzuki, Norihiko; Nakagawa, Fumio; Matsuoka, Kazuaki; Takechi, Teiji

    2016-12-01

    Trifluridine/tipiracil (TFTD) is a combination drug that is used for the treatment of metastatic colorectal cancer and was formerly known as TAS-102. It is a combination of two active pharmaceutical compounds, trifluridine, an antineoplastic thymidine-based nucleoside analog, and tipiracil, which enhances the bioavailability of trifluridine in vivo. TFTD is used for the treatment of patients with unresectable advanced or recurrent colorectal cancer that is resistant to standard therapies. In the present study, the anticancer effects of trifluridine in combination with nintedanib, an oral triple angiokinase inhibitor, on human colorectal cancer cell lines were investigated. The cytotoxicity against DLD-1, HT-29, and HCT116 cell lines was determined by the crystal violet staining method. The combination of trifluridine and nintedanib exerted an additive effect on the growth inhibition of DLD-1 and HT-29 cells and a sub-additive effect on HCT116 cells, as determined by isobologram analyses. Subsequently, the human colorectal cancer cell lines were implanted subcutaneously into nude mice to allow the evaluation of the in vivo tumor growth inhibitory effects of TFTD and nintedanib combination therapy. TFTD (150 mg/kg/day) and/or nintedanib (40 mg/kg/day) were orally administered to the mice twice daily from day 1 to day 14. The tumor growth inhibition with combination therapy was 61.5, 72.8, 67.6 and 67.5% for the DLD-1, DLD-1/5-FU, HT-29, and HCT116 xenografts, respectively. This was significantly (P<0.05) higher than the effects of monotherapy with either TFTD or nintedanib. These results demonstrated the effectiveness of the combination of TFTD and nintedanib in the treatment of colorectal cancer xenografts. The concentration of trifluridine incorporated into DNA in the HT-29 and HCT116 tumors was determined by liquid chromatography-tandem mass spectrometry. The incorporation levels following treatment with TFTD and nintedanib for 14 consecutive days were

  4. Chemosensitization of Breast Cancer Cells to Chemotherapeutic Agents by 3,3’diindolylmethane (DIM)

    DTIC Science & Technology

    2006-08-01

    carbinol protects against covalent binding of benzo [ a ] pyrene and N -nitrosodimethylamine metabolites to mouse liver macromolecules. Chem Biol Interact...TκB has been reported to play a role in de novo resistance of cancer cells to chemotherapeutic agents, which is a major cause for treatment failure in... cancer chemotherapy. Previous studies have shown that 3,3’-diindolylmethane (DIM), a major in vivo acid- catalyzed condensation product of Indole-3

  5. Safe Handling of Oral Chemotherapeutic Agents in Clinical Practice: Recommendations From an International Pharmacy Panel

    PubMed Central

    Goodin, Susan; Griffith, Niesha; Chen, Beth; Chuk, Karen; Daouphars, Mikael; Doreau, Christian; Patel, Rinku A.; Schwartz, Rowena; Tamés, Maria José; Terkola, Robert; Vadnais, Barbara; Wright, Debbie; Meier, Klaus

    2011-01-01

    Although there has been a significant increase in the availability and use of oral chemotherapeutic agents, the guidelines around their safe handling are still evolving. Although oral chemotherapy is associated with ease of administration, it has the same exposure risks to health care practitioners, patients, and their caregivers as intravenous formulations, and because it is administered in the home, to the families of patients. However, the general misconception appears to be that exposure risk is low and therefore oral chemotherapeutic agents present little risk and are safer to handle. In a series of three roundtable meetings, a team of international pharmacists from North America and Europe reviewed existing guidelines and identified gaps in recommendations that we believe are important for safe handling. The present article is a compilation of these gaps, especially applicable to manufacturers and distributors, storage and handling, and patient education regarding safe handling. These recommendations, on the basis of our experience and of best practices, provide an international perspective and can be adapted by institutions and practices for development of standardized procedures specific to their needs for the safe handling of oral chemotherapeutic agents. PMID:21532802

  6. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone.

    PubMed

    Kundu, Juthika; Chun, Kyung-Soo; Aruoma, Okezie I; Kundu, Joydeb Kumar

    2014-10-01

    The bioactive natural products (plant secondary metabolites) are widely known to possess therapeutic value for the prevention and treatment of various chronic diseases including cancer. Thymoquinone (2-methyl-5-isopropyl-1,4-benzoquinone; TQ), a monoterpene present in black cumin seeds, exhibits pleiotropic pharmacological activities including antioxidant, anti-inflammatory, antidiabetic and antitumor effects. TQ inhibits experimental carcinogenesis in a wide range of animal models and has been shown to arrest the growth of various cancer cells in culture as well as xenograft tumors in vivo. The mechanistic basis of anticancer effects of TQ includes the inhibition of carcinogen metabolizing enzyme activity and oxidative damage of cellular macromolecules, attenuation of inflammation, induction of cell cycle arrest and apoptosis in tumor cells, blockade of tumor angiogenesis, and suppression of migration, invasion and metastasis of cancer cells. TQ shows synergistic and/or potentiating anticancer effects when combined with clinically used chemotherapeutic agents. At the molecular level, TQ targets various components of intracellular signaling pathways, particularly a variety of upstream kinases and transcription factors, which are aberrantly activated during the course of tumorigenesis.

  7. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model.

    PubMed

    League-Pascual, James C; Lester-McCully, Cynthia M; Shandilya, Shaefali; Ronner, Lukas; Rodgers, Louis; Cruz, Rafael; Peer, Cody J; Figg, William D; Warren, Katherine E

    2017-03-13

    The blood-brain barrier (BBB) limits entry of most chemotherapeutic agents into the CNS, resulting in inadequate exposure within CNS tumor tissue. Intranasal administration is a proposed means of delivery that can bypass the BBB, potentially resulting in more effective chemotherapeutic exposure at the tumor site. The objective of this study was to evaluate the feasibility and pharmacokinetics (plasma and CSF) of intranasal delivery using select chemotherapeutic agents in a non-human primate (NHP) model. Three chemotherapeutic agents with known differences in CNS penetration were selected for intranasal administration in a NHP model to determine proof of principle of CNS delivery, assess tolerability and feasibility, and to evaluate whether certain drug characteristics were associated with increased CNS exposure. Intravenous (IV) temozolomide (TMZ), oral (PO) valproic acid, and PO perifosine were administered to adult male rhesus macaques. The animals received a single dose of each agent systemically and intranasally in separate experiments, with each animal acting as his own control. The dose of the agents administered systemically was the human equivalent of a clinically appropriate dose, while the intranasal dose was the maximum achievable dose based on the volume limitation of 1 mL. Multiple serial paired plasma and CSF samples were collected and quantified using a validated uHPLC/tandem mass spectrometry assay after each drug administration. Pharmacokinetic parameters were estimated using non-compartmental analysis. CSF penetration was calculated from the ratio of areas under the concentration-time curves for CSF and plasma (AUCCSF:plasma). Intranasal administration was feasible and tolerable for all agents with no significant toxicities observed. For TMZ, the degrees of CSF drug penetration after intranasal and IV administration were 36 (32-57) and 22 (20-41)%, respectively. Although maximum TMZ drug concentration in the CSF (Cmax) was lower after intranasal

  8. Dacarbazine in melanoma: from a chemotherapeutic drug to an immunomodulating agent.

    PubMed

    Ugurel, Selma; Paschen, Annette; Becker, Jürgen C

    2013-02-01

    Chemotherapeutic drugs are clinically used to treat cancer because of their cytotoxic activities against tumor cells. Recently, however, evidence is accumulating-including the report of Hervieu et al. (2012) in the current issue of The Journal of Investigative Dermatology-indicating that at least some of these drugs have broader activities and that they should also be considered immunomodulatory agents. Indeed, Hervieu demonstrates that dacarbazine (DTIC) exerts immunostimulatory effects by inducing local activation of natural killer (NK) and T cells, suggesting that upon treatment with DTIC, the tumor participates in the initiation of an immune response: (i) DTIC treatment elicits the expression of ligands of the immunoreceptor NKG2D on melanoma cells; (ii) engagement of the ligands by NKG2D on NK cells leads to their activation, allowing enhanced tumor-cell killing and the release of IFN-γ; and (iii) IFN-γ in turn upregulates major histocompatibility complex class I expression on tumor cells, which favors their recognition by cytotoxic CD8+ T lymphocytes (CTLs).

  9. Long-term consequences of chemotherapeutic agents on hematopoiesis: development of altered radiation tolerance.

    PubMed

    Kovacs, C J; Evans, M J; Hooker, J L; Johnke, R M

    1988-01-01

    The long-term effects of chemotherapeutic agents on subsequent radiation tolerance of the hematopoietic marrow were studied after a single injection of doxorubicin, 5-fluorouracil, or cyclophosphamide at a maximum tolerated dose. At designated intervals following drug treatment, drug-treated and age-matched control male B6D2F1 mice were exposed to 4.5 Gy of total-body irradiation, and the recovery kinetics of the stem cell (assayed at days 8 and 13 colony-forming spleen units) and progenitor (burst-forming erythroid units, and colony-forming erythroid and granulocyte/macrophage units) compartments were established. Response deficits were calculated for each compartment by comparison of treated and control recovery curves at 5 intervals over 32 weeks. Based on these response deficits, a number of conclusions were drawn: 1) There is selective drug specificity for the more primitive (13d) and mature (8d) CFUs subpopulations; 2) these sensitivities determine the temporal consequences of drug treatment on subsequent radiation tolerance in the marrow (e.g., acute, delayed, or long term); and 3) drugs that influence long-term radiation tolerance of the marrow are dose dependent and initially affect the more primitive stem cells. The data suggest that the initial lesion in the stem cell compartment, resulting in long-term enhancement of radiosensitivity, involves a major restriction (either in cell number or in genetic functionality) of the proliferative potential necessary for recovery from subsequent radiation insult.

  10. Synergistic interaction of telomerase-specific oncolytic virotherapy and chemotherapeutic agents for human cancer.

    PubMed

    Fujiwara, Toshiyoshi; Kagawa, Shunsuke; Tazawa, Hiroshi

    2012-07-01

    Replication-selective tumor-specific viruses present a novel approach for treatment of neoplastic disease. These vectors are designed to induce virus-mediated lysis of tumor cells after selective viral propagation within the tumor. Telomerase activation is considered to be a critical step in carcinogenesis through the maintenance of telomeres, and its activity correlates closely with human telomerase reverse transcriptase (hTERT) expression. We constructed an attenuated adenovirus 5 vector, in which the hTERT promoter element drives expression of E1 genes, OBP-301 (Telomelysin). Since only tumor cells that express telomerase activity would activate this promoter, the hTERT proximal promoter allows for preferential expression of viral genes in tumor cells, leading to selective viral replication and oncolytic cell death. OBP-301 alone exhibited substantial antitumor effects both in animal models and in clinical trials; data regarding combination therapy with OBP-301 and chemotherapeutic agents are preliminary but encouraging. This article reviews synergistic interaction of virotherapy and chemotherapy, and illustrates the potential application for the treatment of human cancer.

  11. Phyto-, endo- and synthetic cannabinoids: promising chemotherapeutic agents in the treatment of breast and prostate carcinomas.

    PubMed

    Fraguas-Sánchez, A I; Fernández-Carballido, A; Torres-Suárez, A I

    2016-11-01

    The term 'cannabinoids' designates a family of compounds with activity upon cannabinoid receptors. Cannabinoids are classified in three groups: phytocannabinoids, endocannabinoids, and the synthetic analogues of both groups. They have become a promising tool in the treatment of cancer disease, not only as palliative agents, but also as antitumor drugs, due to their ability to inhibit the proliferation, adhesion, migration, invasion, and angiogenesis of tumour cells. Two of the cancers where they have shown high anticancer activity are breast and prostate tumours. Despite this potential clinical interest, several studies have also reported that cannabinoids can stimulate the proliferation of cancer cells at very low concentrations. Areas covered: The aim of this review is to evaluate the promising chemotherapeutic utility of phytocannabinoids, endocannabinoids, and synthetic cannabinoids in breast and prostate cancer. Expert opinion: Cannabinoids, in particular the non-psychoactive CBD, may be promising tools in combination therapy for breast and prostate cancer, due to their direct antitumor effects, their ability to improve the efficacy of conventional antitumor drugs and their usefulness as palliative treatment. Nevertheless, deeper studies to fully establish the mechanisms responsible for their antitumour and pro-tumour properties and their formulation in efficient delivery systems remain to be established.

  12. Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans.

    PubMed

    Tam, Annie S; Chu, Jeffrey S C; Rose, Ann M

    2015-11-12

    Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.

  13. Assessment of the significance of mitochondrial DNA damage by chemotherapeutic agents.

    PubMed

    Lo, Soo; Tolner, Berend; Taanman, Jan-Willem; Cooper, J Mark; Gu, Mei; Hartley, John A; Schapira, Anthony H V; Hochhauser, Daniel

    2005-08-01

    The pathways which are activated following damage to nuclear DNA in cancer cells are well understood. There is evidence that treatment with several chemotherapeutic agents may result in damage to mitochondrial DNA. This study investigated the contribution of mitochondrial DNA to cytotoxicity of DNA-interactive agents. To understand the significance of drug interactions with mitochondrial DNA, we investigated A549 non-small cell lung cancer cell lines and their rho0 derivatives in which mitochondrial DNA has been eradicated. The parental cell line showed increased sensitivity to the anthracycline daunorubicin when compared with the A549 rho0 line. In addition, the A549 rho0 line was resistant to the rhodacyanine derivative, MKT-077, which has been shown to interact with mitochondrial DNA. Southern blotting demonstrated that MKT-077 mediated damage to mitochondrial but not nuclear DNA. Restoration of mitochondrial DNA by formation of cybrids restored sensitivity to these agents. The mitochondrial DNA damage, following treatment of A549 rho0 cells with MKT-077, resulted in G2 arrest which was not mediated by expression of p53. Mitochondrial DNA is a critical target for MKT-077 and daunorubicin, and is a potential target for novel chemotherapeutic agents.

  14. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy.

    PubMed

    Siemann, Dietmar W; Mercer, Emma; Lepler, Sharon; Rojiani, Amyn M

    2002-05-01

    The utility of combining the vascular targeting agents 5,6-dimethyl-xanthenone-4 acetic acid (DMXAA) and combretastatin A-4 disodium phosphate (CA4DP) with the anticancer drugs cisplatin and cyclophosphamide (CP) was evaluated in experimental rodent (KHT sarcoma), human breast (SKBR3) and ovarian (OW-1) tumor models. Doses of the vascular targeting agents that led to rapid vascular shutdown and subsequent extensive central tumor necrosis were identified. Histologic evaluation showed morphologic damage of tumor cells within a few hours after treatment, followed by extensive hemorrhagic necrosis and dose-dependent neoplastic cell death as a result of prolonged ischemia. Whereas these effects were induced by a range of CA4DP doses (10-150 mg/kg), the dose response to DMXAA was extremely steep; doses < or = 15 mg/kg were ineffective and doses > or = 20 mg/kg were toxic. DMXAA also enhanced the tumor cell killing of cisplatin, but doses > 15 mg/kg were required. In contrast, CA4DP increased cisplatin-induced tumor cell killing at all doses studied. This enhancement of cisplatin efficacy was dependent on the sequence and interval between the agents. The greatest effects were achieved when the vascular targeting agents were administered 1-3 hr after cisplatin. When CA4DP (100 mg/kg) or DMXAA (17.5 mg/kg) were administered 1 hr after a range of doses of cisplatin or CP, the tumor cell kill was 10-500-fold greater than that seen with chemotherapy alone. In addition, the inclusion of the antivascular agents did not increase bone marrow stem cell toxicity associated with these anticancer drugs, thus giving rise to a therapeutic gain.

  15. Endogenous Noxa Determines the Strong Proapoptotic Synergism of the BH3-Mimetic ABT-737 with Chemotherapeutic Agents in Human Melanoma Cells12

    PubMed Central

    Weber, Arnim; Kirejczyk, Zofia; Potthoff, Stephanie; Ploner, Christian; Häcker, Georg

    2009-01-01

    Human melanoma cells are very resistant to treatment with chemotherapeutic agents, and melanoma shows poor response to chemotherapeutic therapy. We describe a strong synergistic proapoptotic effect of the Bcl-2 family inhibitor ABT-737 and the standard antimelanoma drugs, namely, dacarbazine and fotemustine, and the experimental agent, imiquimod. Experiments with human melanoma cells, keratinocytes, and embryonic fibroblasts showed that all three agents activated the mitochondrial apoptosis pathway. ABT-737 on its own was ineffective in melanoma cells unless Mcl-1 was experimentally downregulated. However, ABT-737 strongly enhanced the proapoptotic activity of the chemotherapeutic drugs. Whereas cell death induction by all three agents involved the activity of both BH3-only proteins, Bim and Noxa, the combination with ABT-737 overcame the requirement for Bim. However, the synergism between ABT-737 and imiquimod or dacarbazine required endogenous Noxa, as demonstrated by experiments with Noxa-specific RNAi. Surprisingly, although Bim was activated, it was unable to replace Noxa. Studies of mitochondrial cytochrome c release using BH3 peptides confirmed that a main effect of dacarbazine, fotemustine, and imiquimod was to neutralize Mcl-1, thereby sensitizing mitochondria to the inhibition of other Bcl-2 family members through ABT-737. ABT-737 is thus a promising agent for combination therapy for human melanoma. Importantly, the efficacy of this therapy depends on endogenous Noxa, and the ability of chemotherapeutic drugs to activate Noxa may be a valuable predictor of their synergism with Bcl-2-targeting drugs. PMID:19412422

  16. Chemotherapeutic agent CPT-11 eliminates peritoneal resident macrophages by inducing apoptosis.

    PubMed

    Huang, Mei-Yun; Pan, Hao; Liang, Yi-Dan; Wei, Hong-Xia; Xu, Li-Hui; Zha, Qing-Bing; He, Xian-Hui; Ouyang, Dong-Yun

    2016-02-01

    CPT-11 (Irinotecan) is a first-line chemotherapeutic agent in clinic, but it may induce side effects including diarrhea and enteritis in patients. The underlying mechanism of CPT-11's intestinal toxicity is unclear. Peritoneal resident macrophages have been reported to be important for the maintenance of intestinal homeostasis. In this study, we evaluated the cytotoxic effects of CPT-11 on mouse peritoneal resident macrophages. CPT-11 was administered intraperitoneally to mice and their peritoneal exudate cells were isolated for evaluation. CPT-11 treatment strikingly decreased the ratio of F4/80(hi)MHCII(low) large peritoneal macrophages (LPMs), which are regarded as prenatally-originated peritoneal resident macrophages. Consistent with this, the transcription factor GATA6 specifically expressed in LPMs was barely detectable in the macrophages from CPT-11-treated mice, indicative of elimination of LPMs. Such elimination of LPMs was at least partly due to CPT-induced apoptosis in macrophages, because inhibition of apoptosis by caspase-3 inhibitor z-DEVD-fmk significantly diminished the loss of GATA6(+) LPMs. As GATA6 is a transcription factor that controls expression of multiple genes regulating peritoneal B-1 cell development and translocation, elimination of GATA6(+) LPMs led to a great reduction in B-1 cells in the peritoneal cavity after CPT-11 treatment. These results indicated that CPT-11-induced apoptosis contributed to the elimination of peritoneal resident macrophages, which might in turn impair the function of peritoneal B-1 cells in maintaining intestinal homeostasis. Our findings may at least partly explain why CPT-11 treatment in cancer patients induces diarrhea and enteritis, which may provide a novel avenue to prevent such side effects.

  17. Tissue levels of chemotherapeutic agents for hepatic metastasis during hepatic arterial and portal injection.

    PubMed

    Kaneko, A; Naomoto, Y; Aoyama, M; Tanaka, N

    1999-01-01

    Hepatic metastasis is one of the most important prognostic factors in digestive organ cancer, and hepatic arterial infusion is aggressively performed for therapy of nonresectable metastatic liver cancer. Although comparatively high response rates have been attained in some cases, this treatment has been ineffective in not a few cases because these metastatic tumors are frequently hypovascular in nature. To develop better methods of administering chemotherapeutic agents, we performed basic experiments concerning intraportal administration which has been regarded as having a generally negative effect, focusing on a report indicating that portal supply is dominant along the borders of metastatic liver cancer tumors. VX2 carcinoma cells were inoculated into the hepatic parenchyma beneath the capsule of juvenile Japanese white rabbits. Drugs were infused 2 weeks after the inoculation, then tissue and blood were sequentially sampled. Mitomycin C (1.7 mg/kg) was infused either by bolus injection to the hepatic artery (arterial infusion group) or by bolus injection to the portal vein (portal infusion group). Five-fluorouracil (9.5 mg/kg) and Cisplatin (1.6 mg/kg) were likewise infused continuously over 60 min, and tissue levels of the drugs were compared between the two groups. Mitomycin C and 5-fluorouracil levels were measured by HPLC and Cisplatin levels were measured by atomic absorption spectrophotometry. As a result, the levels of every drug in VX2 tumor tissue did not significantly differ between the arterial infusion group and the portal infusion group, while the levels were significantly higher than those in the intravenous infusion group. Using portal infusion, we observed a drug transition which was not inferior to that of arterial infusion, suggesting that an imported antitumoral effect may be obtained with this method compared with intravenous infusion.

  18. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents.

    PubMed

    Cragg, Gordon M; Pezzuto, John M

    2016-01-01

    Throughout history, natural products have played a dominant role in the treatment of human ailments. For example, the legendary discovery of penicillin transformed global existence. Presently, natural products comprise a large portion of current-day pharmaceutical agents, most notably in the area of cancer therapy. Examples include Taxol, vinblastine, and camptothecin. These structurally unique agents function by novel mechanisms of action; isolation from natural sources is the only plausible method that could have led to their discovery. In addition to terrestrial plants as sources for starting materials, the marine environment (e.g., ecteinascidin 743, halichondrin B, and dolastatins), microbes (e.g., bleomycin, doxorubicin, and staurosporin), and slime molds (e.g., epothilone B) have yielded remarkable cancer chemotherapeutic agents. Irrespective of these advances, cancer remains a leading cause of death worldwide. Undoubtedly, the prevention of human cancer is highly preferable to treatment. Cancer chemoprevention, the use of vaccines or pharmaceutical agents to inhibit, retard, or reverse the process of carcinogenesis, is another important approach for easing this formidable public health burden. Similar to cancer chemotherapeutic agents, natural products play an important role in this field. There are many examples, including dietary phytochemicals such as sulforaphane and phenethyl isothiocyanate (cruciferous vegetables) and resveratrol (grapes and grape products). Overall, natural product research is a powerful approach for discovering biologically active compounds with unique structures and mechanisms of action. Given the unfathomable diversity of nature, it is reasonable to suggest that chemical leads can be generated that are capable of interacting with most or possibly all therapeutic targets. © 2015 S. Karger AG, Basel.

  19. [Relationship between sensitivity of tumor cells to chemotherapeutic agent in vivo and in vitro: experiment with mouse lymphoma cells].

    PubMed

    Li, Chuan-gang; Li, Mo-lin; Shu, Xiao-hong; Jia, Yu-jie; Liu, Yong-ji; Li, Ming

    2007-06-12

    To study the relationship of the sensitivity of tumor cells to chemotherapeutic agent between in vivo and in vitro. Mouse lymphoma cells of the line E14 were cultured and melphalan resistant EL4 cell line (EL4/melphalan) was established by culturing EL4 cells with continuous low-concentration and intermittent gradually-increasing-concentration of melphalan in vitro. MTT assay was used to evaluate the drug sensitivity and the resistance index of the EL4/melphalan cells to melphalan was calculated. EL4/melphalan and EL4 cells of the concentration of 5 x 10(8)/L were inoculated separately into 20 C57BL/6 mice subcutaneously. 12 days later, the EL4 and EL4/melphalan tumor-bearing mice were randomly divided into 2 groups respectively, 5 mice in each group. Treatment groups were given 7.5 mg/kg melphalan intraperitoneally, and control groups were given the same volume of normal saline. The tumor size was observed every other day. Compared with the EL4 cells, the EL4/melphalan cells had no obvious changes morphologically. They could grow in RPMI 1640 medium containing 5 mg/ml melphalan. The resistance index was 2.87 against melphalan. After the treatment of melphalan of the dose 7.5 mg/kg, the tumor sizes of the treatment groups and control groups inoculated with both EL4 cells and the EL4/melphalan cells gradually decreased at the similar speed, and about one week later all tumors disappeared. However, the tumors of the control groups grew progressively and all the mice died at last. The chemotherapeutic effects of tumors in vivo have nothing to do with the effects of the chemotherapeutic agents on tumor cells in vitro. The tumor cells resistant to melphalan in vitro remain sensitive to the drug in vivo.

  20. Susceptibility of lactic acid bacteria, bifidobacteria and other bacteria of intestinal origin to chemotherapeutic agents.

    PubMed

    Flórez, Ana B; Sierra, Marta; Ruas-Madiedo, Patricia; Mayo, Baltasar

    2016-11-01

    Chemotherapy is a cornerstone of cancer treatment but it can have serious side effects, such as intestinal mucositis. This work reports the susceptibility/resistance profiles of 34 species of lactic acid bacteria (LAB), bifidobacteria and other intestinal bacteria from different collections to various chemotherapeutic agents (CAs) currently used in cancer treatments in an attempt to identify microorganisms that could prevent or treat mucositis symptoms. The highest concentrations of the CAs tested were equal to or higher than those reached in plasma during anticancer treatments. All 34 species proved to be resistant at the highest concentrations assayed [minimum inhibitory concentrations (MICs) > 128 µg/mL] to capecitabine, cyclophosphamide, docetaxel, erlotinib, gefitinib, irinotecan and paclitaxel. For doxorubicin, 5-fluorouracil, gemcitabine and, especially, afatinib and pemetrexed, interspecies variation in the MIC was observed. In further work to assess the interspecies and intraspecies variability, MICs of the CAs pemetrexed and afatinib were determined for 32 strains belonging to four Bifidobacterium spp. of intestinal origin. For pemetrexed, a bimodal MIC curve was obtained (modes <2-8 µg/mL and >256 µg/mL), whilst a normal unimodal curve was obtained for afatinib (mode 128 µg/mL). Altogether, these results suggest that the majority of CAs should not, by themselves, perturb the microbial populations of the gut microbiota (but considering that they could be transformed in vivo into more toxic compounds). However, LAB and bifidobacteria, which are key players in the intestinal microbial balance of the healthy state, might be particularly inhibited by CAs such as gemcitabine or doxorubicin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. Targeted concurrent and sequential delivery of chemotherapeutic and antiangiogenic agents to the brain by using drug-loaded nanofibrous membranes

    PubMed Central

    Tseng, Yuan-Yun; Yang, Tao-Chieh; Wang, Yi-Chuan; Lee, Wei-Hwa; Chang, Tzu-Min; Kau, Yi-Chuan; Liu, Shih-Jung

    2017-01-01

    Glioblastoma is the most frequent and devastating primary brain tumor. Surgery followed by radiotherapy with concomitant and adjuvant chemotherapy is the standard of care for patients with glioblastoma. Chemotherapy is ineffective, because of the low therapeutic levels of pharmaceuticals in tumor tissues and the well-known tumor-cell resistance to chemotherapy. Therefore, we developed bilayered poly(d,l)-lactide-co-glycolide nanofibrous membranes that enabled the sequential and sustained release of chemotherapeutic and antiangiogenic agents by employing an electrospinning technique. The release characteristics of embedded drugs were determined by employing an in vitro elution technique and high-performance liquid chromatography. The experimental results showed that the fabricated nanofibers showed a sequential drug-eluting behavior, with the release of high drug levels of chemotherapeutic carmustine, irinotecan, and cisplatin from day 3, followed by the release of high concentrations of the antiangiogenic combretastatin from day 21. Biodegradable multidrug-eluting nanofibrous membranes were then dispersed into the cerebral cavity of rats by craniectomy, and the in vivo release characteristics of the pharmaceuticals from the membranes were investigated. The results suggested that the nanofibrous membranes released high concentrations of pharmaceuticals for more than 8 weeks in the cerebral parenchyma of rats. The result of histological analysis demonstrated developmental atrophy of brains with no inflammation. Biodegradable nanofibrous membranes can be manufactured for long-term sequential transport of different chemotherapeutic and anti-angiogenic agents in the brain, which can potentially improve the treatment of glioblastoma multiforme and prevent toxic effects due to systemic administration. PMID:28243088

  2. Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia.

    PubMed

    Piya, Sujan; Kornblau, Steven M; Ruvolo, Vivian R; Mu, Hong; Ruvolo, Peter P; McQueen, Teresa; Davis, R Eric; Hail, Numsen; Kantarjian, Hagop; Andreeff, Michael; Borthakur, Gautam

    2016-09-01

    Autophagy is a cellular adaptive mechanism to stress, including that induced by chemotherapeutic agents. Reverse phase protein array suggested that high expression of the essential autophagy-related protein, Atg7, was associated with shorter remission in newly diagnosed acute myeloid leukemia (AML) patient samples, indicating a role in chemoresistance. Knockdown of Atg7 in AML cells using short hairpin RNA markedly increased apoptosis and DNA damage following treatment with cytarabine and idarubicin. Interestingly, coculture of AML cells with stromal cells increased autophagy and chemoresistance in the AML cells exposed to chemotherapeutic agents, and this was reversed following Atg7 knockdown. This effect was further enhanced by concomitant knockdown of Atg7 in both AML and stromal cells. These findings strongly suggest that Atg7, and likely microenvironment autophagy in general, plays an important role in AML chemoresistance. Mechanistic studies revealed that Atg7 knockdown induced a proapoptotic phenotype in AML cells, which was manifested by an increased NOXA expression at the transcriptional level. Finally, in a mouse model of human leukemia, Atg7 knockdown extended overall survival after chemotherapy. Thus, the inhibition of Atg7 appears to be a valid strategy to enhance chemosensitivity, and it could indeed improve outcomes in AML therapy. © 2016 by The American Society of Hematology.

  3. Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia

    PubMed Central

    Piya, Sujan; Kornblau, Steven M.; Ruvolo, Vivian R.; Mu, Hong; Ruvolo, Peter P.; McQueen, Teresa; Davis, R. Eric; Hail, Numsen; Kantarjian, Hagop; Andreeff, Michael

    2016-01-01

    Autophagy is a cellular adaptive mechanism to stress, including that induced by chemotherapeutic agents. Reverse phase protein array suggested that high expression of the essential autophagy-related protein, Atg7, was associated with shorter remission in newly diagnosed acute myeloid leukemia (AML) patient samples, indicating a role in chemoresistance. Knockdown of Atg7 in AML cells using short hairpin RNA markedly increased apoptosis and DNA damage following treatment with cytarabine and idarubicin. Interestingly, coculture of AML cells with stromal cells increased autophagy and chemoresistance in the AML cells exposed to chemotherapeutic agents, and this was reversed following Atg7 knockdown. This effect was further enhanced by concomitant knockdown of Atg7 in both AML and stromal cells. These findings strongly suggest that Atg7, and likely microenvironment autophagy in general, plays an important role in AML chemoresistance. Mechanistic studies revealed that Atg7 knockdown induced a proapoptotic phenotype in AML cells, which was manifested by an increased NOXA expression at the transcriptional level. Finally, in a mouse model of human leukemia, Atg7 knockdown extended overall survival after chemotherapy. Thus, the inhibition of Atg7 appears to be a valid strategy to enhance chemosensitivity, and it could indeed improve outcomes in AML therapy. PMID:27268264

  4. Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage.

    PubMed

    Xie, Guojiang; Wang, Hangwei; Yan, Zhipeng; Cai, Linyan; Zhou, Guixuan; He, Wanzhong; Paus, Ralf; Yue, Zhicao

    2015-03-01

    Chemotherapeutic agents induce complex tissue responses in vivo and damage normal organ functions. Here we use the feather follicle to investigate details of this damage response. We show that cyclophosphamide treatment, which causes chemotherapy-induced alopecia in mice and man, induces distinct defects in feather formation: feather branching is transiently and reversibly disrupted, thus leaving a morphological record of the impact of chemotherapeutic agents, whereas the rachis (feather axis) remains unperturbed. Similar defects are observed in feathers treated with 5-fluorouracil or taxol but not with doxorubicin or arabinofuranosyl cytidine (Ara-C). Selective blockade of cell proliferation was seen in the feather branching area, along with a downregulation of sonic hedgehog (Shh) transcription, but not in the equally proliferative rachis. Local delivery of the Shh inhibitor, cyclopamine, or Shh silencing both recapitulated this effect. In mouse hair follicles, those chemotherapeutic agents that disrupted feather formation also downregulated Shh gene expression and induced hair loss, whereas doxorubicin or Ara-C did not. Our results reveal a mechanism through which chemotherapeutic agents damage rapidly proliferating epithelial tissue, namely via the cell population-specific, Shh-dependent inhibition of proliferation. This mechanism may be targeted by future strategies to manage chemotherapy-induced tissue damage.

  5. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    PubMed Central

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  6. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic.

    PubMed

    Pace, Jennifer R; DeBerardinis, Albert M; Sail, Vibhavari; Tacheva-Grigorova, Silvia K; Chan, Kelly A; Tran, Raymond; Raccuia, Daniel S; Wechsler-Reya, Robert J; Hadden, M Kyle

    2016-04-28

    Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.

  7. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach.

    PubMed

    Lee, Kuo-Hsiung

    2010-03-26

    Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long-term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogues, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analogue synthesis, and structure-activity relationship and mechanism of action studies. Current clinical trial agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called "maturation inhibitors". In addition, an etoposide analogue, GL-331, progressed to anticancer phase II clinical trials, and the curcumin analogue JC-9 is in phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trial candidates will also be discussed.

  8. Computed determination of the in vitro optimal chemocombinations of sphaeropsidin A with chemotherapeutic agents to combat melanomas.

    PubMed

    Ingels, Aude; Dinhof, Carina; Garg, Abhishek D; Maddau, Lucia; Masi, Marco; Evidente, Antonio; Berger, Walter; Dejaegher, Bieke; Mathieu, Véronique

    2017-05-01

    Evasion to new treatments of advanced melanoma is still associated with a poor prognosis. Choosing the best combination of agents that can bypass resistance mechanisms remains a challenge. Sphaeropsidin A (Sph A) is a fungal bioactive secondary metabolite previously shown to force melanoma cells to undergo apoptosis via cell volume dysregulation. This work studied its in vitro combination with cytotoxic chemotherapeutics in a rational manner. Four melanoma cell lines harboring different sensitivity levels to pro-apoptotic stimuli were used to build a predictive response surface model allowing the determination of the optimal in vitro combinations of Sph A with two drugs, i.e., cisplatin or temozolomide, owing to a limited set of experimentations. Testing 12 experimental combinations allowed us to build an accurate predictive model that considers the complexity of the drug interaction and determines the optimal combinations according to the endpoint chosen, i.e., the maximal cytotoxic effects. Therefore, combining 4 µM Sph A with 75 µM cisplatin concomitantly for 72 h improved its cytotoxic effects on melanoma cells in a synergistic manner. An optimal in vitro treatment schedule was also obtained for temozolomide. The use of a response surface model offers the possibility of reducing the experiments while determining accurately the optimal combinations. We herein highlighted that combining the Na(+)/K(+)/2Cl(-) cotransporter and/or anion exchanger inhibitor Sph A with chemotherapeutic agents could improve the therapeutic benefits of conventional chemotherapies against advanced melanomas, particularly because Sph A exerts cytotoxic effects regardless of the genetic BRAF and NRAS status.

  9. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    SciTech Connect

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J.

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  10. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J.

    2011-03-01

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  11. Interactions of human leukocyte interferon with vinca alkaloids and other chemotherapeutic agents against human tumors in clonogenic assay.

    PubMed

    Aapro, M S; Alberts, D S; Salmon, S E

    1983-01-01

    Purified human leukocyte interferon produced by recombinant techniques (IFN-alpha A) was tested in vitro with chemotherapeutic drugs, vinblastine (VLB), vincristine (VCR), vindesine (VDS), vinzolidine (VZL), cis-platinum (PLAT), doxorubicin (DOXO), etoposide (VP-16), and melphalan (MEL). The activity of these agents alone or in combination was tested against various human tumor cell lines, using a modified soft agar clonogenic assay. Three human tumor cell lines (myeloma, RPMI 8226; breast, MCF-7; and colon, WiDR) showed sensitivity to these agents at clinically achievable drug concentrations. Statistically significant synergistic activity against in vitro colony formation was observed with the combination of VLB and IFN-alpha A. An additive or sub-additive effect was usually observed with the other agents tested. Continuous exposure of the 8226 myeloma cell line to both IFN-alpha A and PLAT showed evidence of a more significant potentiation. It is hypothesized that the synergistic effect observed between VLB and IFN-alpha A is due to some of their common mechanisms of action.

  12. Rhamnetin induces sensitization of hepatocellular carcinoma cells to a small molecular kinase inhibitor or chemotherapeutic agents.

    PubMed

    Jia, Hui; Yang, Qian; Wang, Tao; Cao, Yu; Jiang, Qi-Yu; Ma, Hong-da; Sun, Hui-Wei; Hou, Ming-Xiao; Yang, Yong-Ping; Feng, Fan

    2016-07-01

    The rapid development of multi-drug resistance (MDR) process has hindered the effectiveness of advanced hepatocellular carcinoma (HCC) treatments. Notch-1 pathway, which mediates the stress-response, promotes cell survival, EMT (epithelial-mesenchymal transition) process and induces anti-apoptosis in cancer cells, would be a potential target for overcoming MDR process. This study investigated the potential application of rhamnetin, a specific inhibitor of Notch-1 pathway, in anti-tumor drug sensitization of HCC treatment. The expression of miR-34a, proteins belonging to Notch-1 signaling pathway or MDR-related proteins was detected by quantitative polymerase chain reaction (qPCR) and western blot assay. To identify whether rhamnetin induces the chemotherapeutic sensitization in HCC cells, the MTT-assays, flow cytometry, soft agar, trans-well and nude mice assays were performed. The endogenous expression of miR-34a was significantly increased and the expression of Notch-1 and Survivin was downregulated after rhamnetin treatment. Treatment of rhamnetin also reduced the expression of MDR related proteins P-GP (P-glycoprotein) and BCRP (breast cancer resistance protein). Rhamnetin increased the susceptibility of HCC cells and especially HepG2/ADR, a MDR HCC cell line, to a small molecular kinase inhibitor sorafenib or chemotherapeutic drugs etoposide and paclitaxel. The IC(50) value of those drugs correspondingly decreased. Together, our findings suggest that rhamnetin treatment may attenuate the MDR process in HCC cells. These findings may contribute to more effective strategies for HCC therapy. Rhamnetin acts as a promising sensitizer to chemotherapy and may be a novel approach to overcome the MDR process of HCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    PubMed Central

    Li, Xiaoyu; Wu, Meiying; Pan, Limin; Shi, Jianlin

    2016-01-01

    To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4) and a chemotherapeutic drug (doxorubicin) and conjugate with targeting molecules (iRGD peptide) for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. PMID:26766908

  14. Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents.

    PubMed

    Torchilin, Vladimir P

    2010-08-01

    Circulating antinuclear autoantibodies (ANAs) are well known to accompany various pathological conditions and can be artificially induced by immunization. Research and clinical data permit us to hypothesize a definite connection between cancer and ANAs. Based on the available data, my group's research suggested that exogenous ANAs may be used as anticancer therapeutics. Among these ANAs, nucleosome-specific ANAs may be particularly useful. Advances in cancer immunotherapy with monoclonal antibodies re-emphasized the role of humoral immunity in neoplasia control. The development of a universal antibody targeting diverse cancers is of clear importance. We showed that certain natural ANAs recognize the surface of numerous tumor cells but not normal cells via cell surface-bound nucleosomes originating from the apoptotically dying neighboring tumor cells, mediate antibody-dependent cellular cytotoxicity of tumor cells in vitro and inhibit the development of murine tumor in syngeneic mice. A single monoclonal antinuclear nucleosome-specific autoantibody, mAb 2C5, specifically recognizes multiple unrelated human tumor cell lines and accumulates at a high tumor-to-normal cell ratio in various human tumors in nude mice. Immunotherapy with mAb 2C5 resulted in significant suppression of the growth of several human tumors. In addition, mAb 2C5, when used in subtherapeutic quantities, can serve as a highly efficient specific ligand to target various drug- or diagnostic agent-loaded pharmaceutical nanocarriers, such as liposomes and polymeric micelles, to various tumors. Here, the data (accumulated predominantly in our laboratory over several years) on mAb 2C5-mediated tumor targeting of chemotherapeutic agents is reviewed.

  15. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents.

    PubMed

    Vilas-Boas, Fabrício de Almeida Souza; da Silva, Aristóbolo Mendes; de Sousa, Lirlândia Pires; Lima, Kátia Maciel; Vago, Juliana Priscila; Bittencourt, Lucas Felipe Fernandes; Dantas, Arthur Estanislau; Gomes, Dawidson Assis; Vilela, Márcia Carvalho; Teixeira, Mauro Martins; Barcelos, Lucíola Silva

    2016-04-01

    Malignant gliomas are a lethal type of brain tumors that poorly respond to chemotherapeutic drugs. Several therapy resistance mechanisms have been characterized. However, the response to stress through mRNA translational control has not been evaluated for this type of tumor. A potential target would involve the alpha subunit of eukaryotic translation initiation factor (eIF2α) that leads to assembly of stress granules (SG) which are cytoplasmic granules mainly composed by RNA binding proteins and untranslated mRNAs. We assessed whether glioma cells are capable of assembling SG after exposure to different classes of chemotherapeutic agents through evaluation of the effects of interfering in this process by impairing the eIF2α signaling. C6 and U87MG cells were exposed to bortezomib, cisplatin, or etoposide. Forced expression of a dominant negative mutant of eIF2α (eIF2α(DN)) was employed to block this pathway. We observed that exposure to drugs stimulated SG assembly. This was reduced in eIF2α(DN)-transfected cells and this strategy enhanced chemotherapeutically-induced cell death for all drugs. Our data suggest that SG assembly occurs in glioma cells in response to chemotherapeutic drugs in an eIF2α-dependent manner and this response is relevant for drug resistance. Interfering with eIF2α signaling pathway may be a potential strategy for new co-adjuvant therapies to treat gliomas.

  16. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells

    PubMed Central

    Wang, Liang; Chan, Judy Y.; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P.; Shan, Luchen; Lee, Simon M.

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity. PMID:27559313

  17. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells.

    PubMed

    Wang, Liang; Chan, Judy Y; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P; Shan, Luchen; Lee, Simon M

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity.

  18. Liposomal chemotherapeutics.

    PubMed

    Gentile, Emanuela; Cilurzo, Felisa; Di Marzio, Luisa; Carafa, Maria; Ventura, Cinzia Anna; Wolfram, Joy; Paolino, Donatella; Celia, Christian

    2013-12-01

    Currently, six liposomal chemotherapeutics have received clinical approval and many more are in clinical trials or undergoing preclinical evaluation. Liposomes exhibit low toxicity and improve the biopharmaceutical features and therapeutic index of drugs, thereby increasing efficacy and reducing side effects. In this review we discuss the advantages of using liposomes for the delivery of chemotherapeutics. Gemcitabine and paclitaxel have been chosen as examples to illustrate how the performance of a metabolically unstable or poorly water-soluble drug can be greatly improved by liposomal incorporation. We look at the beneficial effects of liposomes in a variety of solid and blood-borne tumors, including thyroid cancer, pancreatic cancer, breast cancer and multiple myeloma.

  19. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    SciTech Connect

    Lin, Tao; Meng, Lingjun; Tsai, Robert Y.L.

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  20. CHEMICAL AGENTS IN NEOPLASTIC DISEASES—An Evaluation of Chemotherapeutic Substances for Clinical Management

    PubMed Central

    Bierman, Howard R.

    1953-01-01

    The rapid appearance of many new chemical substances which possess some antineoplastic effects has created a complex problem for the practicing physician. These agents which have shown promise in man and lower animals are grouped according to their modes of action. Each substance is discussed thoroughly with regard to its structure, activity, and influence upon the neoplasms of man. Key references are cited, and the practical value of each chemical agent is defined. The proper methods of administration of the compounds recommended for use are carefully described. In addition a section on agents whose therapeutic value has been disproven is also included. ImagesFigure 1. PMID:13009518

  1. Repurposing the FDA-Approved Pinworm Drug Pyrvinium as a Novel Chemotherapeutic Agent for Intestinal Polyposis

    PubMed Central

    Giambelli, Camilla; Fei, Dennis Liang; Han, Lu; Hang, Brian I.; Bai, Feng; Pei, Xin-Hai; Nose, Vania; Burlingame, Oname; Capobianco, Anthony J.; Orton, Darren; Lee, Ethan; Robbins, David J.

    2014-01-01

    Mutations in the WNT-pathway regulator ADENOMATOUS POLYPOSIS COLI (APC) promote aberrant activation of the WNT pathway that is responsible for APC-associated diseases such as Familial Adenomatous Polyposis (FAP) and 85% of spontaneous colorectal cancers (CRC). FAP is characterized by multiple intestinal adenomas, which inexorably result in CRC. Surprisingly, given their common occurrence, there are few effective chemotherapeutic drugs for FAP. Here we show that the FDA-approved, anti-helminthic drug Pyrvinium attenuates the growth of WNT-dependent CRC cells and does so via activation of CK1α. Furthermore, we show that Pyrvinium can function as an in vivo inhibitor of WNT-signaling and polyposis in a mouse model of FAP: APCmin mice. Oral administration of Pyrvinium, a CK1α agonist, attenuated the levels of WNT-driven biomarkers and inhibited adenoma formation in APCmin mice. Considering its well-documented safe use for treating enterobiasis in humans, our findings suggest that Pyrvinium could be repurposed for the clinical treatment of APC-associated polyposes. PMID:25003333

  2. Repurposing the FDA-approved pinworm drug pyrvinium as a novel chemotherapeutic agent for intestinal polyposis.

    PubMed

    Li, Bin; Flaveny, Colin A; Giambelli, Camilla; Fei, Dennis Liang; Han, Lu; Hang, Brian I; Bai, Feng; Pei, Xin-Hai; Nose, Vania; Burlingame, Oname; Capobianco, Anthony J; Orton, Darren; Lee, Ethan; Robbins, David J

    2014-01-01

    Mutations in the WNT-pathway regulator ADENOMATOUS POLYPOSIS COLI (APC) promote aberrant activation of the WNT pathway that is responsible for APC-associated diseases such as Familial Adenomatous Polyposis (FAP) and 85% of spontaneous colorectal cancers (CRC). FAP is characterized by multiple intestinal adenomas, which inexorably result in CRC. Surprisingly, given their common occurrence, there are few effective chemotherapeutic drugs for FAP. Here we show that the FDA-approved, anti-helminthic drug Pyrvinium attenuates the growth of WNT-dependent CRC cells and does so via activation of CK1α. Furthermore, we show that Pyrvinium can function as an in vivo inhibitor of WNT-signaling and polyposis in a mouse model of FAP: APCmin mice. Oral administration of Pyrvinium, a CK1α agonist, attenuated the levels of WNT-driven biomarkers and inhibited adenoma formation in APCmin mice. Considering its well-documented safe use for treating enterobiasis in humans, our findings suggest that Pyrvinium could be repurposed for the clinical treatment of APC-associated polyposes.

  3. Chemotherapeutical effects of the herbal medicine Uncaria tomentosa (Willd.) DC.

    PubMed

    Almeida, I V; Soares, L C; Lucio, F T; Cantagalli, L B; Reusing, A F; Vicentini, V E P

    2017-09-27

    The use of medicinal plants dates back to the beginning of humanity, and today their application as complementary therapy has been widely disseminated as an alternative to conventional therapy. The medicinal plant named Uncaria tomentosa (Willd.) DC. (known as cat's claw) is a common woody vine of the Amazon forest that has traditionally been used in the treatment of arthritis because of its anti-inflammatory properties. This study aimed to evaluate the cytotoxic, mutagenic, and antimutagenic potentials of this medicinal plant. The biological activities of U. tomentosa were determined on bone marrow cells of Wistar rats that were treated in vivo. For the cytotoxic and mutagenic analyses, aqueous plant extract solutions were administered by gavage (1, 2, or 3 mg/mL) for 24 h (an acute treatment) or 7 days (a subchronic treatment). For the antimutagenic analyses, aqueous plant extract solutions (1 mg/mL) were administered by gavage before (pretreatment), simultaneous to (simultaneous treatment), or after (post-treatment), the administration of cyclophosphamide (1.5 mg/mL). U. tomentosa did not show any cytotoxic or mutagenic effects in any of the cytological or chromosomal analyses. Besides, the antimutagenic tests showed that the plant extracts displayed antimutagenic activities, which significantly reduced the percentages of the chromosomal aberrations that were induced by cyclophosphamide at 53.91, 58.60, and 57.03%, respectively, for the simultaneous treatment, pretreatment, and post-treatment. The results suggested a safe use of this herbal medicine that is available free of charge from the Brazilian Public Health System for the treatment of arthritis. This medicinal plant can also effectively contribute to improving the quality of life and the recovery of people undergoing chemotherapeutical treatments.

  4. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory.

    PubMed

    Panoz-Brown, Danielle; Carey, Lawrence M; Smith, Alexandra E; Gentry, Meredith; Sluka, Christina M; Corbin, Hannah E; Wu, Jie-En; Hohmann, Andrea G; Crystal, Jonathon D

    2017-10-01

    Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Photophysical studies of tin(IV)-protoporphyrin: Potential phototoxicity of a chemotherapeutic agent proposed for the prevention of neonatal jaundice

    SciTech Connect

    Land, E.J.; McDonagh, A.F.; McGarvey, D.J.; Truscott, T.G. )

    1988-07-01

    The strongly light-absorbing metalloporphyrin tin(IV)-protoporphyrin IX (SnPP) is currently being considered as a chemotherapeutic agent for preventing severe hyperbilirubinemia in newborns, a condition usually treated by phototherapy with visible light. To assess the potential phototoxicity of SnPP the authors studied the photophysics of the drug in aqueous and nonaqueous solutions using laser flash photolysis and pulse radiolysis. Quantum yields for formation of triplet-state excited SnPP were measured, along with triplet lifetimes and extinction coefficients. In addition, they measured quantum yields for the SnPP-photosensitized formation of singlet oxygen in MeO{sup 2}H and in {sup 2}H{sub 2}O containing cetyltrimethylammonium bromide, using a time-resolved luminescence technique. Quantum yields for formation of triplet SnPP from monomeric ground-state SnPP are high, and triplet lifetimes are long. SnPP-photosensitized formation of singlet oxygen in aqueous and nonaqueous solvents was confirmed by the detection of the characteristic luminescence at 1270 nm. These observations suggest that cutaneous photosensitivity arising from singlet-oxygen damage is likely to be an undesirable side-effect of SnPP therapy.

  6. Modification of in vitro and in vivo BCG cell wall-induced immunosuppression by treatment with chemotherapeutic agents or indomethacin

    SciTech Connect

    DeSilva, M.A.; Wepsic, H.T.; Mizushima, Y.; Nikcevich, D.A.; Larson, C.H.

    1985-04-01

    The in vitro inhibition of spleen cell blastogenesis response and the in vivo enhancement of tumor growth are phenomena associated with BCG cell wall (BCGcw) immunization. What effect treatment with chemotherapeutic agents and the prostaglandin inhibitor indomethacin would have on the in vitro and in vivo responses to BCGcw immunization was evaluated. In vitro blastogenesis studies showed that chemotherapy pretreatment prior to immunization with BCGcw resulted in a restoration of the spleen cell blastogenesis response. In blastogenesis addback studies, where BCGcw-induced irradiated splenic suppressor cells were admixed with normal cells, less inhibition of blastogenesis occurred when spleen cells were obtained from rats that had received the combined treatment of chemotherapy and BCGcw immunization versus only BCGcw immunization. The cocultivation of spleen cells from BCGcw-immunized rats with indomethacin resulted in a 30-40% restoration of the blastogenesis response. In vivo studies showed that BCGcw-mediated enhancement of intramuscular tumor growth of the 3924a ACI rat tumor could be abrogated by either pretreatment with busulfan or mitomycin or by the feeding of indomethacin.

  7. Combination of adenoviruses expressing melanoma differentiation-associated gene-7 and chemotherapeutic agents produces enhanced cytotoxicity on esophageal carcinoma.

    PubMed

    Ma, G; Kawamura, K; Shan, Y; Okamoto, S; Li, Q; Namba, M; Shingyoji, M; Tada, Y; Tatsumi, K; Hiroshima, K; Shimada, H; Tagawa, M

    2014-01-01

    We examined the combinatory antitumor effects of adenoviruses expressing human mda-7/IL-24 gene (Ad-mda-7) and chemotherapeutic agents on nine kinds of human esophageal carcinoma cells. All the carcinoma cells expressed the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) receptor complexes, IL-20R2 and either IL-20R1 or IL-22R1, and were susceptible to Ad-mda-7, whereas fibroblasts were positive only for IL-20R2 gene and resistant to Ad-mda-7-mediated cytotoxicity. Sensitivity of these esophageal carcinoma cells to Ad-mda-7 was however lower than that to Ad expressing the wild-type p53 gene. We thereby investigated a possible combination of Ad-mda-7 and anticancer agents and found that Ad-mda-7 with 5-fluorouracil (5-FU), cisplatin, mitomycin C or etoposide produced greater cytotoxic effects than those by Ad-mda-7 or the agent alone. Half-maximal inhibitory concentration values of the agents in respective cells were decreased by the combination with Ad-mda-7. Cell cycle analyses showed that Ad-mda-7 and 5-FU increased G2/M-phase and S-phase populations, respectively, and the combination augmented sub-G1 populations. Ad-mda-7-treated cells showed cleavages of caspase-8, -9 and -3 and poly (ADP-ribose) polymerase, but the cleavage levels were not different from those of the combination-treated cells. Ad-mda-7 treatments upregulated Akt phosphorylation but suppressed IκB-α levels, whereas 5-FU treatments induced phosphorylation of p53 and extracellular signal-regulated protein kinases 1 and 2. Molecular changes caused by the combination were similar to those by Ad-mda-7 treatments, but the Ad-mda-7-mediated upregulation of Akt phosphorylation decreased with the combination. These data collectively suggest that Ad-mda-7 induced apoptosis despite Akt activation and that the combinatory antitumor effects with 5-FU were produced partly by downregulating the Ad-mda-7-induced Akt activation.

  8. Chemotherapeutics challenges in developing effective treatments for the endemic malarias

    PubMed Central

    Kevin Baird, J.

    2012-01-01

    The endemic malarias threaten the several billion people residing where transmission occurs. Chemotherapeutic strategy pitted against these threats hinges upon species- and stage-specific treatments guided by diagnosis and screening against sometime dangerous contraindications. This approach suits malaria as it occurs among travelers in the developed, non-endemic world. However, limiting treatment to that which diagnosis affirms may not be rational in endemic zones. Most of the endemic malarias remain out of diagnostic reach, either by inaccessibility of the parasite stage, insensitivity of the technology, or unavailability of diagnostic services. The partial and fragmented chemotherapeutic attack of malaria guided by confirmed diagnostics leaves most of the endemic malarias unchallenged. Development of elimination therapy, a single course of treatment aimed at all species and stages, would significantly advance progress against the major killers known collectively as malaria. PMID:24533286

  9. Antiretroviral Agents: Looking for the Best Possible Chemotherapeutic Options to Conquer HIV.

    PubMed

    Farooq, Tahir; Hameed, Arruje; Rehman, Kanwal; Ibrahim, Muhammad; Qadir, Muhammad Imran; Akash, Muhammad Sajid Hamid

    2016-01-01

    For the last thirty years, ongoing efforts have revolutionized the antiretroviral therapy, which changed human immunodeficiency virus (HIV) infections from terrifying lethal diseases to chronic conditions. However, many challenges, like emergence of drug resistance, limited the scope of activity of currently existing anti-HIV agents. Quite often severe side effects and lifelong dependency are the major concerns of present era. All these issues have compelled the scientists to reconsider and refine the current therapies and also contemplate the pivotal priorities for the developments of novel therapeutic paradigms. In response to this global concern, medicinal chemists and pharmaceutical scientists have put in solid efforts to search for or develop novel, more effective, safer, and affordable antiretroviral agents for the treatment of HIV infections. The exploration and utilization of natural sources has always been an attractive research area in this regard. In the search of the most suitable and potent anti-HIV agents, researchers have explored the anti-HIV activity of different classes of compounds originating from plants, marine organisms, and microorganisms. This review will highlight the recent notable developments for the discovery of antiretroviral agents. Furthermore, this review also highlights the better in-depth insights of existing HIV cures and preventive strategies.

  10. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances.

    PubMed

    Gandhi, Nishant S; Tekade, Rakesh K; Chougule, Mahavir B

    2014-11-28

    Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibit drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms, etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), multidrug resistant protein 1 (MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nanocarrier mediated Delivery of siRNA/miRNA in Combination with Chemotherapeutic Agents for Cancer Therapy: Current Progress and Advances

    PubMed Central

    Gandhi, Nishant S.; Tekade, Rakesh K.; Chougule, Mahavir B.

    2014-01-01

    Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibits drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), Multidrug resistant protein 1(MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer. PMID:25204288

  12. Synthesis of no-carrier-added carbon-11 SarCNU: the sarcosinamide analog of the chemotherapeutic agent BCNU

    SciTech Connect

    Conway, T.; Diksic, M.

    1988-12-01

    Carbon-11-labeled SarCNU (N-(2-chloroethyl)-N-nitroso-N'-(carboxamidomethylene)-N'-(methyl) - ( C)-urea), a potential chemotherapeutic agent, has been prepared by the nitrosation of the corresponding urea, N-(2-chloroethyl)-N'-(carboxamidomethylene)-N'-(methyl) ( C)urea (SarCU). SarCU was prepared by reacting sarcosinamide with ( C)-2-chloroethylisocyanate, which was itself prepared by reacting ( C)-phosgene with 2-chloroethylamine hydrochloride suspended in dioxane. The synthesis yielded ( C)SarCNU with an average radiochemical purity of 95% in an average overall radiochemical yield of 18% relative to the activity measured at the end of ( C)phosgene introduction.

  13. Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor

    PubMed Central

    Sahu, Ravi P.; Ocana, Jesus A.; Harrison, Kathleen A.; Ferracini, Matheus; Touloukian, Christopher E.; Al-Hassani, Mohammed; Sun, Louis; Loesch, Mathew; Murphy, Robert C.; Althouse, Sandra K.; Perkins, Susan M.; Speicher, Paul J.; Tyler, Douglas S.; Konger, Raymond L.; Travers, Jeffrey B.

    2014-01-01

    Oxidative stress suppresses host immunity by generating oxidized lipid agonists of the platelet-activating factor receptor (PAF-R). Because many classical chemotherapeutic drugs induce reactive oxygen species (ROS), we investigated whether these drugs might subvert host immunity by activating PAF-R. Here we show that PAF-R agonists are produced in melanoma cells by chemotherapy that is administered in vitro, in vivo or in human subjects. Structural characterization of the PAF-R agonists induced revealed multiple oxidized glycerophosphocholines that are generated non-enzymatically. In a murine model of melanoma, chemotherapeutic administration could augment tumor growth by a PAF-R-dependent process that could be blocked by treatment with antioxidants or cyclooxygenase-2 inhibitors or by depletion of regulatory T cells. Our findings reveal how PAF-R agonists induced by chemotherapy treatment can promote treatment failure. Further, they offer new insights into how to improve the efficacy of chemotherapy by blocking its heretofore unknown impact on PAF-R activation. PMID:25304264

  14. Sec61β Controls Sensitivity to Platinum-Containing Chemotherapeutic Agents through Modulation of the Copper-Transporting ATPase ATP7A

    PubMed Central

    Larson, Christopher A.; Manorek, Gerald; Adams, Preston; Howell, Stephen B.

    2012-01-01

    The Sec61 protein translocon is a multimeric complex that transports proteins across lipid bilayers. We discovered that the Sec61β subunit modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. To investigate the mechanism, expression of Sec61β was constitutively knocked down in 2008 ovarian cancer cells. Sec61β knockdown (KD) resulted in 8-, 16.8-, and 9-fold resistance to cisplatin (cDDP), carboplatin, and oxaliplatin, respectively. Sec61β KD reduced the cellular accumulation of cDDP to 67% of that in parental cells. Baseline copper levels, copper uptake, and copper cytotoxicity were also reduced. Because copper transporters and chaperones regulate platinum drug accumulation and efflux, their expression in 2008 Sec61β-KD cells was analyzed; ATP7A was found to be 2- to 3-fold overexpressed, whereas there was no change in ATP7B, ATOX1, CTR1, or CTR2 levels. Cells lacking ATP7A did not exhibit increased cDDP resistance upon knockdown of Sec61β. Sec61β-KD cells also exhibited altered ATP7A cellular distribution. We conclude that Sec61β modulates the cytotoxicity of many chemotherapeutic agents, with the largest effect being on the platinum drugs. This modulation occurs through effects of Sec61β on the expression and distribution of ATP7A, which was shown previously to control platinum drug sequestration and cytotoxicity. PMID:22710939

  15. Sec61β controls sensitivity to platinum-containing chemotherapeutic agents through modulation of the copper-transporting ATPase ATP7A.

    PubMed

    Abada, Paolo B; Larson, Christopher A; Manorek, Gerald; Adams, Preston; Howell, Stephen B

    2012-09-01

    The Sec61 protein translocon is a multimeric complex that transports proteins across lipid bilayers. We discovered that the Sec61β subunit modulates cellular sensitivity to chemotherapeutic agents, particularly the platinum drugs. To investigate the mechanism, expression of Sec61β was constitutively knocked down in 2008 ovarian cancer cells. Sec61β knockdown (KD) resulted in 8-, 16.8-, and 9-fold resistance to cisplatin (cDDP), carboplatin, and oxaliplatin, respectively. Sec61β KD reduced the cellular accumulation of cDDP to 67% of that in parental cells. Baseline copper levels, copper uptake, and copper cytotoxicity were also reduced. Because copper transporters and chaperones regulate platinum drug accumulation and efflux, their expression in 2008 Sec61β-KD cells was analyzed; ATP7A was found to be 2- to 3-fold overexpressed, whereas there was no change in ATP7B, ATOX1, CTR1, or CTR2 levels. Cells lacking ATP7A did not exhibit increased cDDP resistance upon knockdown of Sec61β. Sec61β-KD cells also exhibited altered ATP7A cellular distribution. We conclude that Sec61β modulates the cytotoxicity of many chemotherapeutic agents, with the largest effect being on the platinum drugs. This modulation occurs through effects of Sec61β on the expression and distribution of ATP7A, which was shown previously to control platinum drug sequestration and cytotoxicity.

  16. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NF-kappaB signaling pathway.

    PubMed

    Sung, Bokyung; Ahn, Kwang Seok; Aggarwal, Bharat B

    2010-04-15

    Noscapine, a benzylisoquinoline alkaloid derived from opium, was recently reported to exhibit activity against a variety of cancers through a poorly understood mechanism. Because the transcription factor NF-kappaB has been linked with inflammation, survival, proliferation, invasion, and angiogenesis in tumors, we hypothesized that noscapine mediates its effects by modulating the NF-kappaB activation pathway. We found that noscapine potentiates apoptosis induced by cytokines and chemotherapeutic agents in tumor cells. Noscapine alone suppressed proliferation of human leukemia and myeloma cells and downregulated the constitutive expression of cell survival proteins. Noscapine also abrogated the inducible expression of proteins involved in survival, proliferation, invasion, and angiogenesis, all of which are regulated by NF-kappaB. Noscapine suppressed both inducible and constitutive NF-kappaB activation in tumor cells through inhibition of IkappaB kinase, leading to inhibition of phosphorylation and degradation of IkappaBalpha. Noscapine also suppressed phosphorylation and nuclear translocation of p65, leading to inhibition of NF-kappaB reporter activity induced by various components of the NF-kappaB activation pathway. Activity of the NF-kappaB-containing cyclooxygenase-2 promoter was also inhibited by noscapine. Thus, noscapine inhibits the proliferation of leukemia cells and sensitizes them to tumor necrosis factor and chemotherapeutic agents by suppressing the NF-kappaB signaling pathway.

  17. Enriched environment housing enhances the sensitivity of mouse pancreatic cancer to chemotherapeutic agents.

    PubMed

    Wu, Yufeng; Gan, Yu; Yuan, Hui; Wang, Qing; Fan, Yingchao; Li, Guohua; Zhang, Jian; Yao, Ming; Gu, Jianren; Tu, Hong

    2016-04-29

    Living in an enriched housing environment is an established model of eustress and has been consistently shown to reduce the growth of transplanted tumors, including pancreatic cancer. Here, we further investigate the influence of an enriched environment (EE) on the efficacy of chemotherapy in pancreatic cancer. Male C57BL/6 mice were housed in EE or standard environment (SE) conditions and transplanted with syngeneic Panc02 pancreatic cancer cells. Tumor-bearing mice were treated with 5-fluorouracil (5-FU) or gemcitabine (GEM) to examine their sensitivities to chemotherapy. The results showed that both 5-FU and GEM exerted the dose dependent inhibition of tumor growth. The tumor inhibition rates of low-dose 5-FU and GEM were improved from 17.7% and 23.6% to 46.3% and 49.9% by EE housing. Importantly, tumor cells isolated from the pancreatic cancer xenografts of EE mice had significantly enhanced sensitivities to both 5-FU and GEM (IC50 for 5-FU: 2.8 μM versus 27.3 μM; IC50 for GEM: 0.8 μM versus 5.0 μM). Furthermore, using microarray analyses, we identified the "ATP-binding cassette (ABC) transporter" that was overrepresented among EE-induced down-regulated genes in pancreatic cancer. Particularly, the tumoral expression of ABC transporter A8b (ABCA8b) was confirmed to be significantly decreased by EE. Over-expression of ABCA8b in mouse pancreatic cancer cells led to a marked decrease in the sensitivity to chemotherapeutic drugs both in vitro and in vivo. In conclusion, our data indicate that benign stressful stimulation can synergistically boost the efficiency of chemotherapeutics in pancreatic cancer, which suggests a novel strategy for adjuvant cancer therapy.

  18. Enterobacter and Klebsiella species isolated from fresh vegetables marketed in Valencia (Spain) and their clinically relevant resistances to chemotherapeutic agents.

    PubMed

    Falomir, María Pilar; Rico, Hortensia; Gozalbo, Daniel

    2013-12-01

    Occurrence of antibiotic-resistant pathogenic or commensal enterobacteria in marketed agricultural foodstuffs may contribute to their incorporation into the food chain and constitutes an additional food safety concern. In this work, we have determined the clinically relevant resistances to 11 common chemotherapeutic agents in Enterobacter and Klebsiella isolates from fresh vegetables from various sources (supermarkets and greengrocers' shops in Valencia, Spain). A total of 96 isolates were obtained from 160 vegetables analyzed (50% positive samples): 68 Enterobacter isolates (59 E. cloacae, two E. aerogenes, two E. cancerogenus, one E. gergoviae, and four E. sakazakii, currently Cronobacter spp.), and 28 Klebsiella isolates (19 K. oxytoca and 9 K. pneumoniae). Only seven isolates were susceptible to all agents tested, and no resistances to ceftazidime, ciprofloxacin, gentamicin, and chloramphenicol were detected. Most isolates were resistant to amoxicillin/clavulanic acid (74 [58 Enterobacter and 16 Klebsiella]) or to ampicillin (80 [55/25]). Other resistances were less frequent: nitrofurantoin (13 isolates [12/1]), tetracycline (6 [5/1]), co-trimoxazole (3 [3/0]), cefotaxime (1 [1/0]), and streptomycin (2 [1/1]). Multiresistant isolates to two (56 [41/15]), three (10 E. cloacae isolates), four (one E. cloacae and one K. pneumoniae isolate), and five (two E. cloacae isolates) chemotherapeutic agents were also detected. The presence of potential pathogens points to marketed fresh produce, which often is eaten raw, as a risk factor for consumer health. In addition, these results support the usefulness of these bacterial species as indicators of the spreading of antibiotic resistances into the environment, particularly in the food chain, and suggest their role as carriers of resistance determinants from farms to consumers, which may constitute an additional "silent" food safety concern. Therefore, there is a need to improve the hygienic quality of marketed fresh

  19. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance

    PubMed Central

    Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant

    2014-01-01

    Recently we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells towards DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of Multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2 and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy. PMID:24129966

  20. Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats

    PubMed Central

    Rahn, E J; Makriyannis, A; Hohmann, A G

    2007-01-01

    Background and purpose: The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified. Experimental approach: Mechanical hypersensitivity developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same times. Effects of the CB1/CB2 receptor agonist WIN55,212-2, the receptor-inactive enantiomer WIN55,212-3, the CB2-selective agonist (R,S)-AM1241, the opiate agonist morphine and vehicle on chemotherapy-induced neuropathy were evaluated. WIN55,212-2 was administered intrathecally (i.t.) or locally in the hindpaw to identify sites of action. Pharmacological specificity was established using competitive antagonists for CB1 (SR141716) or CB2 receptors (SR144528). Key results: Systemic administration of WIN55,212-2, but not WIN55,212-3, suppressed vincristine-evoked mechanical allodynia. A leftward shift in the dose-response curve was observed following WIN55,212-2 relative to morphine treatment. The CB1 (SR141716) and CB2 (SR144528) antagonists blocked the anti-allodynic effects of WIN55,212-2. (R,S)-AM1241 suppressed vincristine-induced mechanical hypersensitivity through a CB2 mechanism. Both cannabinoid agonists suppressed vincristine-induced mechanical hypersensitivity without inducing catalepsy. Spinal sites of action are implicated in cannabinoid modulation of chemotherapy-induced neuropathy. WIN55,212-2, but not WIN55,212-3, administered i.t. suppressed vincristine-evoked mechanical hypersensitivity at doses that were inactive following local hindpaw administration. Spinal coadministration of both the CB1 and CB2 antagonists blocked the anti-allodynic effects of WIN55,212-2. Conclusions and implications: Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects

  1. The DNA damage/repair cascade in glioblastoma cell lines after chemotherapeutic agent treatment

    PubMed Central

    ANNOVAZZI, LAURA; CALDERA, VALENTINA; MELLAI, MARTA; RIGANTI, CHIARA; BATTAGLIA, LUIGI; CHIRIO, DANIELA; MELCARNE, ANTONIO; SCHIFFER, DAVIDE

    2015-01-01

    Therapeutic resistance in glioblastoma multiforme (GBM) has been linked to a subpopulation of cells with stem cell-like properties, the glioma stem cells (GSCs), responsible for cancer progression and recurrence. This study investigated the in vitro cytotoxicity of three chemotherapeutics, temozolomide (TMZ), doxorubicin (Dox) and paclitaxel (PTX) on glioma cell lines, by analyzing the molecular mechanisms leading to DNA repair and cell resistance, or to cell death. The drugs were tested on 16 GBM cell lines, grown as neurospheres (NS) or adherent cells (AC), by studying DNA damage occurrence by Comet assay, the expression by immunofluorescence and western blotting of checkpoint/repair molecules and apoptosis. The three drugs were able to provoke a genotoxic injury and to inhibit dose- and time-dependently cell proliferation, more evidently in AC than in NS. The first cell response to DNA damage was the activation of the damage sensors (p-ATM, p-53BP1, γ-H2AX), followed by repair effectors; the expression of checkpoint/repair molecules appeared higher in NS than in AC. The non-homologous repair pathway (NHEJ) seemed more involved than the homologous one (HR). Apoptosis occurred after long treatment times, but only a small percentage of cells in NS underwent death, even at high drug concentration, whereas most cells survived in a quiescent state and resumed proliferation after drug removal. In tumor specimens, checkpoint/repair proteins were constitutively expressed in GBMs, but not in low-grade gliomas. PMID:25892134

  2. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death

    PubMed Central

    Moriwaki, K; Bertin, J; Gough, P J; Orlowski, G M; Chan, F KM

    2015-01-01

    Apoptosis is a key mechanism for metazoans to eliminate unwanted cells. Resistance to apoptosis is a hallmark of many cancer cells and a major roadblock to traditional chemotherapy. Recent evidence indicates that inhibition of caspase-dependent apoptosis sensitizes many cancer cells to a form of non-apoptotic cell death termed necroptosis. This has led to widespread interest in exploring necroptosis as an alternative strategy for anti-cancer therapy. Here we show that in human colon cancer tissues, the expression of the essential necroptosis adaptors receptor interacting protein kinase (RIPK)1 and RIPK3 is significantly decreased compared with adjacent normal colon tissues. The expression of RIPK1 and RIPK3 was suppressed by hypoxia, but not by epigenetic DNA modification. To explore the role of necroptosis in chemotherapy-induced cell death, we used inhibitors of RIPK1 or RIPK3 kinase activity, and modulated their expression in colon cancer cell lines using short hairpin RNAs. We found that RIPK1 and RIPK3 were largely dispensable for classical chemotherapy-induced cell death. Caspase inhibitor and/or second mitochondria-derived activator of caspase mimetic, which sensitize cells to RIPK1- and RIPK3-dependent necroptosis downstream of tumor necrosis factor receptor-like death receptors, also did not alter the response of cancer cells to chemotherapeutic agents. In contrast to the RIPKs, we found that cathepsins are partially responsible for doxorubicin or etoposide-induced cell death. Taken together, these results indicate that traditional chemotherapeutic agents are not efficient inducers of necroptosis and that more potent pathway-specific drugs are required to fully harness the power of necroptosis in anti-cancer therapy. PMID:25675296

  3. Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent.

    PubMed

    Ghasemi, Ali; Asad, Sedigheh; Kabiri, Mahboubeh; Dabirmanesh, Bahareh

    2017-08-11

    L-asparaginase has been used in the treatment of patients with acute lymphoblastic leukemia (ALL) for more than 30 years. Rapid clearance of the enzyme from blood stream and its L-glutaminase-dependent neurotoxicity has led to searching for new L-asparaginases with more desirable properties. In the present study, L-asparaginase coding gene of Halomonas elongata was isolated, expressed in Escherichia coli, purified, and characterized. The purified protein was found to have a molecular mass of 39.5 kDa and 1000-folds more activity towards L-asparagine than L-glutamine. Enzyme-specific activity towards L-asparagine was determined to be 1510 U/mg, which is among the highest reported values for microbial L-asparaginases. K m , Vmax, and k cat values were 5.6 mM, 2.2 μmol/min, and 1.96 × 10(3) 1/S, respectively. Optimum temperature was found to be 37 °C while the enzyme showed maximum activity at a wide pH range (from 6 to 9). Enzyme half-life in the presence of human serum at 37 °C was 90 min which is three times higher when compared with reported values for E. coli L-asparaginase. Enzyme showed cytotoxic effects against Jurkat and U937 cell lines with an IC50 of 2 and 1 U/ml, respectively. Also, no toxic effects on human erythrocytes and Chinese hamster ovary cell lines were detected, and just minor inhibitory effects on human umbilical vein endothelial cells were observed. This is the first report describing the therapeutic potentials of a recombinant L-asparaginase isolated from a halophilic bacterium as an anticancer agent.

  4. Boron-containing compounds as preventive and chemotherapeutic agents for cancer.

    PubMed

    Scorei, Romulus I; Popa, Radu

    2010-05-01

    In the last few years boron (B) compounds became increasingly frequent in the chemotherapy of some forms of cancer with high malignancy and of inoperable cancers. As more B-based therapy chemicals are developed it is necessary to review the correlation between B and the incidence of different forms of cancer, the biochemical and molecular mechanisms influenced by B and to explore the relevance of B in the chemoprevention of cancer. This minireview analyzes dietary and therapeutic principles based on the chemistry of B compounds. We summarize studies correlating B-rich diets or B-rich environments with regional risks of specific forms of cancers, and studies about the utilization of natural and synthetic B-containing compounds as anticancer agents. We review mechanisms where B-containing compounds interfere with the physiology and reproduction of cancer cells. Types of cancers most frequently impacted by B-containing compounds include prostate, breast, cervical and lung cancer. Mechanisms involving B activity on cancer cells are based on the inhibition of a variety of enzymatic activities, including serine proteases, NAD-dehydrogenases, mRNA splicing and cell division, but also receptor binding mimicry, and the induction of apoptosis. Boron-enriched diets resulted in significant decrease in the risk for prostate and cervical cancer, and decrease in lung cancer in smoking women. Boron-based compounds show promising effects for the chemotherapy of specific forms of cancer, but due to specific benefits should also be included in cancer chemopreventive strategies.

  5. Evaluation of the radiosensitizing potency of chemotherapeutic agents in prostate cancer cells.

    PubMed

    Rae, Colin; Mairs, Robert J

    2017-02-01

    Despite recent advances in the treatment of metastatic prostate cancer, survival rates are low and treatment options are limited to chemotherapy and hormonal therapy. Although ionizing radiation is used to treat localized and metastatic prostate cancer, the most efficient use of radiotherapy is yet to be defined. Our purpose was to determine in vitro the potential benefit to be gained by combining radiation treatment with cytotoxic drugs. Inhibitors of DNA repair and heat shock protein 90 and an inducer of oxidative stress were evaluated in combination with X-radiation for their capacity to reduce clonogenic survival and delay the growth of multicellular tumor spheroids. Inhibitors of the PARP DNA repair pathway, olaparib and rucaparib, and the HSP90 inhibitor 17-DMAG, enhanced the clonogenic cell kill and spheroid growth delay induced by X-radiation. However, the oxidative stress-inducing drug elesclomol failed to potentiate the effects of X-radiation. PARP inhibitors arrested cells in the G2/M phase when administered as single agents or in combination with radiation, whereas elesclomol and 17-DMAG did not affect radiation-induced cell cycle modulation. These results indicate that radiotherapy of prostate cancer may be optimized by combination with inhibitors of PARP or HSP90, but not elesclomol.

  6. Discovery and Development of Natural Product-derived Chemotherapeutic Agents Based on a Medicinal Chemistry Approach⊥†

    PubMed Central

    Lee, Kuo-Hsiung

    2010-01-01

    Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogs, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analog synthesis, as well as structure-activity relationship and mechanism of action studies. Current clinical trials agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in Phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called “maturation inhibitors”. In addition, an etoposide analog, GL-331, progressed to anticancer Phase II clinical trials, and the curcumin analog JC-9 is in Phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trials candidates will also be discussed. PMID:20187635

  7. Chemotherapeutic effect of Berberis integerrima hydroalcoholic extract on colon cancer development in the 1,2-dimethyl hydrazine rat model.

    PubMed

    Malayeri, Mohammad R Mohammadi; Dadkhah, Abolfazl; Fatemi, Faezeh; Dini, Salome; Torabi, Fatemeh; Tavajjoh, Mohammad M; Rabiei, Javad

    The aim of this study was to investigate the efficacy of a Berberis integerrima hydroalcoholic extract as a chemotherapeutic agent in colon carcinogenesis in the rat induced by 1,2-dimethyl hydrazine (DMH). Male Wistar rats were divided into five groups: a negative control group without DMH treatment; a control group injected DMH (20 mg/kg b.w); two groups receiving B. integerrima extract (50 and 100 mg/kg b.w), concomitant with injected DMH, as chemotherapeutic groups; a positive control group receiving 5-fluorouracil (5-FU) along with DMH. The effects of the extracts were determined by assessment of hepatic malondialdehyde (MDA), glutathione (GSH), ferric reducing ability of plasma (FRAP), and the activities of hepatic glutathione S-transferase and cytochrome P450 (GST and CYP450). Additionally, colon tissues were assessed for colonic β-catenin and histopathological analysis. In DMH-treated rats, the extracts partially normalized the levels of FRAP, CYP450, β-catenin, and GST. Likewise, formation of aberrant crypt foci (ACF) in colon tissue of DMH-treated was reduced by the extracts. Thus, the extracts possess chemotherapeutic activity against colon carcinogenesis.

  8. Effects of Antiparasite Chemotherapeutic Agents on Immune Functions.

    DTIC Science & Technology

    1984-05-01

    for Mel. and saline for Cy. Neta, Winkelstein, Salvin & Mendelow , 1977; Bona- vida, 1977) while according to others it would elimi- PFC assays nate...activity of lymphoid cells from cyclophospharnide-created mice. Cell. Immun.. 24, 308-317. NETA. R.. WINKELSTEiN. A., SALVIN, S. B. At MENDELOW , H. (1977

  9. The Effect of Chemotherapeutic Agents on Immune Reactions.

    DTIC Science & Technology

    1982-08-01

    Tween - 80 in saline. The drugs were first . ... p. p-𔃾 dissolved in methylcellulose- Tween - 80 mixture and then diluted to the exact concentration with...Control mice received 0.4 ml solvent (methyl- cellulose- Tween - 80 in saline). Drugs were injected one day before or one day after the antigei for the

  10. [Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents].

    PubMed

    Kiselev, O I; Vasin, A V; Shevyryova, M P; Deeva, E G; Sivak, K V; Egorov, V V; Tsvetkov, V B; Egorov, A Yu; Romanovskaya-Romanko, E A; Stepanova, L A; Komissarov, A B; Tsybalova, L M; Ignatjev, G M

    2015-01-01

    Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing. While being of a relatively low genetic capacity, the virus can be ranked as a standard for pathogenicity with the ability to evade the host immune response in uttermost perfection. The EHF virus has similarities with retroviruses, but belongs to (-)RNA viruses of a nonretroviral origin. Genetic elements of the virus, NIRV, were detected in animal and human genomes. EHF virus glycoprotein (GP) is a class I fusion protein and shows more similarities than distinctions in tertiary structure with SIV and HIV gp41 proteins and even influenza virus hemagglutinin. EHF is an unusual infectious disease, and studying the molecular basis of its pathogenesis may contribute to new findings in therapy of severe conditions leading to a fatal outcome.

  11. A New Chemotherapeutic Investigation: Piracetam Effects on Dyslexia.

    ERIC Educational Resources Information Center

    Chase, Christopher H.; Schmitt, R. Larry

    1984-01-01

    Compared to placebo controls, 28 individuals treated with Piracetam (a new drug thought to enhance learning and memory consolidation) showed statistically significant improvements above baseline scores on measures of effective reading accuracy and comprehension, reading speed, and writing accuracy. The medication was well tolerated and showed no…

  12. A New Chemotherapeutic Investigation: Piracetam Effects on Dyslexia.

    ERIC Educational Resources Information Center

    Chase, Christopher H.; Schmitt, R. Larry

    1984-01-01

    Compared to placebo controls, 28 individuals treated with Piracetam (a new drug thought to enhance learning and memory consolidation) showed statistically significant improvements above baseline scores on measures of effective reading accuracy and comprehension, reading speed, and writing accuracy. The medication was well tolerated and showed no…

  13. Enhanced X ray sensitivity of human colon tumor cells by combination of N-methylformamide with chemotherapeutic agents

    SciTech Connect

    Leith, J.T.; Lee, E.S.; Leite, D.V.; Glicksman, A.S.

    1986-08-01

    The responses of human colon tumor cells (clone A) to graded doses of x-irradiation were studied in combination with conventional chemotherapeutic drugs (bleomycin and 5-fluorouracil) after induction of commitment to differentiation by chronic exposure to N-methylformamide (NMF). NMF treated cells show increased radiation sensitivity, particularly in the low dose region of the survival curve. When doses of bleomycin (Bleo) and 5-fluorouracil (5-FU) were used that were subtoxic, both agents enhanced the cytotoxicity of x-irradiation by factors of about 1.25 and 1.10, respectively (at the 10% level of survival), and little sequence dependence was seen. However, in NMF treated cells, the combination of these drugs produced enhancement of X ray killing by factors of about 1.6 (x + bleo), 2.5 (bleo + x), 1.4 (x + 5-FU), and 1.6 (5-FU + x). Drug exposures were for 1 hr duration at 37/sup 0/C; 0.05 microgram/ml for Bleo, and 20 micrograms/ml for 5-FU. Since the X ray dose enhancement factor for NMF alone was about 1.3, the increased toxicity seen is probably additive in nature for the NMF + 5-FU + x experiments, but more than additive for the NMF + Bleo + x experiments. Also, complete removal of the shoulder was seen in the NMF + Bleo + X ray experiments. These data indicate that the use of differentiation-inducing agents in combination with other cytotoxic therapies might be important in yielding major decreases in the neoplastic cell burden, while avoiding the major morbidity seen in aggressive cancer therapy.

  14. Chemotherapeutic effects of bioassay-guided extracts of the American cockroach, Periplaneta americana.

    PubMed

    Wang, Xiao-Yu; He, Zheng Chun; Song, Li-Yan; Spencer, Shawn; Yang, Lei Xiang; Peng, Fang; Liu, Guang-Ming; Hu, Ming-Hui; Li, Hai Bo; Wu, Xiu-Mei; Zeng, Su; Hilgenfeld, Rolf; Stöckigt, Joachim; Zhao, Yu; Qian, Jin Fu

    2011-09-01

    The organic extract of Periplaneta americana L. (Dictyoptera; Blattidae) has been traditionally used in southwestern China as an alternative medicine against disorders such as hepatitis, trauma, gastric ulcers, burns, and heart disease. The present study describes bioassay-guided purification and chemotherapeutic evaluation of the 60% ethanolic fraction of P americana organic extracts (PAE60). The most effective cytotoxic fraction was determined by way of repeated in vitro screenings against 12 distinct cultured human carcinoma cell lines: Eca 109, BGC823, HO8910, LS174T, CNE, HeLa, K562, PC-3, A549, BEL 7404, HL-60, and KB, followed by in vivo antitumor assays of the lead fraction (PAE60). The complexity of enriched active fraction was qualitatively evaluated using thin layer chromatography. Reconstituted PAE60 was effective at inhibiting HL-60, KB, CNE, and BGC823 cell growth with IC(50) values <20 µg mL-(1). PAE60 reduced tumor growth in S180-bearing immunocompetent mice by 72.62% after 10 days following oral doses of 500 mg kg d-(1) compared with 78.75% inhibition following 40 mg kg d-(1) of cyclophosphamide (CTX). Thymus and spleen indices of S180-bearing mice treated with PAE60 were significantly greater (P < .05) than CTX treatment groups, suggesting potential immunomodulation of antitumor host defenses by PAE60. Antiviral activity was also investigated and PAE60 inhibited herpes simplex type-2 replication (IC(50) = 4.11 ± 0.64 µg mL-(1)) with a selectivity index (CC(50) to IC(50) ratio) of 64.84 in Vero cells but was less effective on type-1 virus (IC(50) of 25.6 ± 3.16 µg mL-(1)). These results support future clinical trials on P. americana as an alternative or complementary medicinal agent.

  15. Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers

    DTIC Science & Technology

    2006-05-01

    ABSTRACT For the third year of the project, we have investigated the radiotherapy effects on rat breast tumor hemodynamics and also analyzed our... radiotherapy , photodynamic therapy, and conventional chemotherapy. 5. Acknowledgements: This work was supported in part by the Department of Defense Breast ...AD_________________ Award Number: DAMD17-03-1-0353 TITLE: Monitoring of Breast Tumor Response to

  16. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    PubMed Central

    Thys, Ryan G.; Lehman, Christine E.; Pierce, Levi C.T.

    2016-01-01

    Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual

  17. Aurora B kinase inhibitor AZD1152: determinants of action and ability to enhance chemotherapeutics effectiveness in pancreatic and colon cancer

    PubMed Central

    Azzariti, A; Bocci, G; Porcelli, L; Fioravanti, A; Sini, P; Simone, G M; Quatrale, A E; Chiarappa, P; Mangia, A; Sebastian, S; Del Bufalo, D; Del Tacca, M; Paradiso, A

    2011-01-01

    Background: AZD1152, the prodrug for AZD1152-hydroxyquinazoline pyrazol anilide (HQPA), is a selective inhibitor of Aurora B kinase activity. Preclinical evaluation of AZD1152 has been reported in several human cancer models. The potentiality of this compound in combination therapy warrants further investigation in solid tumours. Experimental design: This study explored the effects of AZD1152-HQPA in colon and pancreatic tumour cells. The antitumour properties of AZD1152, either as single agent or in combination with chemotherapeutics, were evaluated in each study model. The efficacy and the toxicity of AZD1152 alone and in combination with gemcitabine were validated in pancreatic tumour xenograft model. Results: AZD1152-HQPA treatment resulted in a dramatic increase of chromosome number, modification of cell cycle and induction of apoptosis. The most effective combination was that with chemotherapeutics given soon after AZD1152 in both tumour cell types. The effectiveness of the sequential schedule of AZD1152 with gemcitabine was confirmed in nude mice bearing MiaPaCa-2 tumours, showing inhibition of tumour volumes and delaying of tumour growth after the interruption of the treatments. Conclusion: Here we show that AZD1152-HQPA enhances oxaliplatin and gemcitabine effectiveness in colon and pancreatic cancer, respectively. First, we provide advances into administration schedules and dosing regimens for the combination treatment in in vivo pancreatic tumour. PMID:21304529

  18. How to Use a Chemotherapeutic Agent When Resistance to It Threatens the Patient.

    PubMed

    Hansen, Elsa; Woods, Robert J; Read, Andrew F

    2017-02-01

    When resistance to anticancer or antimicrobial drugs evolves in a patient, highly effective chemotherapy can fail, threatening patient health and lifespan. Standard practice is to treat aggressively, effectively eliminating drug-sensitive target cells as quickly as possible. This prevents sensitive cells from acquiring resistance de novo but also eliminates populations that can competitively suppress resistant populations. Here we analyse that evolutionary trade-off and consider recent suggestions that treatment regimens aimed at containing rather than eliminating tumours or infections might more effectively delay the emergence of resistance. Our general mathematical analysis shows that there are situations in which regimens aimed at containment will outperform standard practice even if there is no fitness cost of resistance, and, in those cases, the time to treatment failure can be more than doubled. But, there are also situations in which containment will make a bad prognosis worse. Our analysis identifies thresholds that define these situations and thus can guide treatment decisions. The analysis also suggests a variety of interventions that could be used in conjunction with cytotoxic drugs to inhibit the emergence of resistance. Fundamental principles determine, across a wide range of disease settings, the circumstances under which standard practice best delays resistance emergence-and when it can be bettered.

  19. How to Use a Chemotherapeutic Agent When Resistance to It Threatens the Patient

    PubMed Central

    Hansen, Elsa; Woods, Robert J.

    2017-01-01

    When resistance to anticancer or antimicrobial drugs evolves in a patient, highly effective chemotherapy can fail, threatening patient health and lifespan. Standard practice is to treat aggressively, effectively eliminating drug-sensitive target cells as quickly as possible. This prevents sensitive cells from acquiring resistance de novo but also eliminates populations that can competitively suppress resistant populations. Here we analyse that evolutionary trade-off and consider recent suggestions that treatment regimens aimed at containing rather than eliminating tumours or infections might more effectively delay the emergence of resistance. Our general mathematical analysis shows that there are situations in which regimens aimed at containment will outperform standard practice even if there is no fitness cost of resistance, and, in those cases, the time to treatment failure can be more than doubled. But, there are also situations in which containment will make a bad prognosis worse. Our analysis identifies thresholds that define these situations and thus can guide treatment decisions. The analysis also suggests a variety of interventions that could be used in conjunction with cytotoxic drugs to inhibit the emergence of resistance. Fundamental principles determine, across a wide range of disease settings, the circumstances under which standard practice best delays resistance emergence—and when it can be bettered. PMID:28182734

  20. Selenium is a Chemotherapeutic Agent for the Treatment of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    of selenium, selenite, undergoes thiol-dependent reduction to selenide which supplies selenium for the synthesis of selenoproteins . Excessive selenite...selenide which supplies selenium for the synthesis of selenoproteins (1). At lower concentrations, the major effects of selenite are related to its role...eO2 Selenite (SeO 2-) --/ GS-Se-SG-- No GS-SeH - 0 H2Se Selenoproteins 4GSH 4GSSG GSH GSSG GSH GSSG CH3SeH ,GSH: GSSG Fig. 1. Schematic illustration

  1. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents.

    PubMed

    Cedillo-Rivera, R; Muñoz, O

    1992-09-01

    The susceptibility of a strain of Giardia lamblia to benzimidazole carbamates, 5-nitroimidazoles, nitrofurans and other drugs was studied in vitro. Albendazole was the most active compound, with a 50% inhibitory concentration (IC50) of 0.01 mg/L and a minimal lethal concentration (MLC) of less than 0.04 mg/L; the IC50 of mebendazole was 0.06 mg/L and the MLC less than 0.5 mg/L. Among the 5-nitroimidazoles tested, ornidazole was the most effective (IC50 0.12 mg/L); tinidazole, metronidazole, secnidazole and hemezole were less active. Nifuroxazide, etofamide and nalidixic acid exhibited modest anti-giardial activity; quinfamide did not inhibit the growth of the parasite at a concentration of 200 mg/L. Albendazole and mebendazole are promising candidates for clinical use and should be further evaluated.

  2. Synergistic Combinations of Multiple Chemotherapeutic Agents in High Capacity Poly(2-oxazoline) Micelles

    PubMed Central

    Han, Yingchao; He, Zhijian; Schulz, Anita; Bronich, Tatiana K.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.

    2012-01-01

    Many effective drugs for cancer treatment are poorly water-soluble. In combination chemotherapy, needed excipients in additive formulations are often toxic and restrict their applications in clinical intervention. Here, we report on amphiphilic poly(2-oxazoline)s (POx) micelles as a promising high capacity delivery platform for multi-drug cancer chemotherapy. A variety of binary and ternary drugs combinations of paclitaxel (PTX), docetaxel (DTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), etoposide (ETO) and bortezomib (BTZ) were solubilized in defined polymeric micelles achieving unprecedented high total loading capacities of up to 50 wt.% drug per final formulation. Multi-drug loaded POx micelles showed enhanced stability in comparison to single-drug loaded micelles. Drug ratio dependent synergistic cytotoxicity of micellar ETO/17-AAG was observed in MCF-7 cancer cells and of micellar BTZ/17-AAG in MCF-7, PC3, MDA-MB-231 and HepG2 cells. PMID:22681126

  3. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms

    PubMed Central

    Wangchuk, Phurpa; Giacomin, Paul R.; Pearson, Mark S.; Smout, Michael J.; Loukas, Alex

    2016-01-01

    Schistosomiasis and trichuriasis are two of the most common neglected tropical diseases (NTD) that affect almost a billion people worldwide. There is only a limited number of effective drugs to combat these NTD. Medicinal plants are a viable source of parasiticides. In this study, we have investigated six of the 19 phytochemicals isolated from two Bhutanese medicinal plants, Corydalis crispa and Pleurospermum amabile, for their anthelmintic properties. We used the xWORM technique and Scanning Electron Microscope-based imaging to determine the activity of the compounds. Of the six compounds tested, isomyristicin and bergapten showed significant anthelmintic activity against Schistosoma mansoni and Trichuris muris with bergapten being the most efficacious compound one against both parasites (S. mansoni IC50 = 8.6 μg/mL and T. muris IC50 = 10.6 μg/mL) and also against the schistosomulum stage of S. mansoni. These two compounds induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. The efficacy against multiple phylogenetically distinct parasites and different life stages, especially the schistosomulum where praziquantel is ineffective, makes isomyristicin and bergapten novel scaffolds for broad-spectrum anthelmintic drug development that could be used for the control of helminths infecting humans and animals. PMID:27572696

  4. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms.

    PubMed

    Wangchuk, Phurpa; Giacomin, Paul R; Pearson, Mark S; Smout, Michael J; Loukas, Alex

    2016-08-30

    Schistosomiasis and trichuriasis are two of the most common neglected tropical diseases (NTD) that affect almost a billion people worldwide. There is only a limited number of effective drugs to combat these NTD. Medicinal plants are a viable source of parasiticides. In this study, we have investigated six of the 19 phytochemicals isolated from two Bhutanese medicinal plants, Corydalis crispa and Pleurospermum amabile, for their anthelmintic properties. We used the xWORM technique and Scanning Electron Microscope-based imaging to determine the activity of the compounds. Of the six compounds tested, isomyristicin and bergapten showed significant anthelmintic activity against Schistosoma mansoni and Trichuris muris with bergapten being the most efficacious compound one against both parasites (S. mansoni IC50 = 8.6 μg/mL and T. muris IC50 = 10.6 μg/mL) and also against the schistosomulum stage of S. mansoni. These two compounds induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. The efficacy against multiple phylogenetically distinct parasites and different life stages, especially the schistosomulum where praziquantel is ineffective, makes isomyristicin and bergapten novel scaffolds for broad-spectrum anthelmintic drug development that could be used for the control of helminths infecting humans and animals.

  5. Combining chemotherapeutic agents and netrin-1 interference potentiates cancer cell death

    PubMed Central

    Paradisi, Andrea; Creveaux, Marion; Gibert, Benjamin; Devailly, Guillaume; Redoulez, Emeline; Neves, David; Cleyssac, Elsa; Treilleux, Isabelle; Klein, Christian; Niederfellner, Gerhard; Cassier, Philippe A; Bernet, Agnès; Mehlen, Patrick

    2013-01-01

    The secreted factor netrin-1 is upregulated in a fraction of human cancers as a mechanism to block apoptosis induced by netrin-1 dependence receptors DCC and UNC5H. Targeted therapies aiming to trigger tumour cell death via netrin-1/receptors interaction interference are under preclinical evaluation. We show here that Doxorubicin, 5-Fluorouracil, Paclitaxel and Cisplatin treatments trigger, in various human cancer cell lines, an increase of netrin-1 expression which is accompanied by netrin-1 receptors increase. This netrin-1 upregulation which appears to be p53-dependent is a survival mechanism as netrin-1 silencing by siRNA is associated with a potentiation of cancer cell death upon Doxorubicin treatment. We show that candidate drugs interfering with netrin-1/netrin-1 receptors interactions potentiate Doxorubicin, Cisplatin or 5-Fluorouracil-induced cancer cell death in vitro. Moreover, in a model of xenografted nude mice, we show that systemic Doxorubicin treatment triggers netrin-1 upregulation in the tumour but not in normal organs, enhancing and prolonging tumour growth inhibiting effect of a netrin-1 interfering drug. Together these data suggest that combining conventional chemotherapies with netrin-1 interference could be a promising therapeutic approach. PMID:24293316

  6. Management of endocrine manifestations and the use of mitotane as a chemotherapeutic agent for adrenocortical carcinoma.

    PubMed

    Veytsman, Irina; Nieman, Lynnette; Fojo, Tito

    2009-09-20

    Adrenal cortical carcinoma (ACC) is a rare malignancy in which patients have poor overall 5-year survival. Patients with ACC can present with symptoms of hormone excess, including Cushing's syndrome, virilization, feminization, or--less frequently--hypertension with hypokalemia. In many patients with ACC, advanced disease at presentation precludes surgery or is followed by local relapse or distant metastatic disease that cannot be managed surgically. In these instances, chemotherapy is often tried, but its limited efficacy all too often leaves the problem of persistent hormonal excess. Physicians who treat patients with ACC and severe hypercortisolism should recognize that uncontrolled hormone production is a malignant disease, which has severe consequences that require aggressive management. Because chemotherapy benefits only a small percentage of patients, steroidogenesis inhibitors, including mitotane, ketoconazole, metyrapone, and etomidate, should be used singly or in combination even as chemotherapy is administered. Diligent management with frequent adjustments is required, especially in patients with chemotherapy-refractory tumors that continue to grow. In the absence of randomized, controlled trials, adjuvant use of mitotane remains controversial, although the authors of a recent case-control study argue for its use. Despite difficulty administering effective doses, most clinicians agree that mitotane should be used if the tumor cannot be removed surgically or should be used as adjuvant therapy if there is a high likelihood of recurrence. The option of long-term monotherapy is restricted to patients who tolerate mitotane and either experience a clinical response or are at high risk for recurrence. Recommendations are provided to help manage patients with this difficult disease and to improve the quality of their lives.

  7. Management of Endocrine Manifestations and the Use of Mitotane As a Chemotherapeutic Agent for Adrenocortical Carcinoma

    PubMed Central

    Veytsman, Irina; Nieman, Lynnette; Fojo, Tito

    2009-01-01

    Adrenal cortical carcinoma (ACC) is a rare malignancy in which patients have poor overall 5-year survival. Patients with ACC can present with symptoms of hormone excess, including Cushing's syndrome, virilization, feminization, or—less frequently—hypertension with hypokalemia. In many patients with ACC, advanced disease at presentation precludes surgery or is followed by local relapse or distant metastatic disease that cannot be managed surgically. In these instances, chemotherapy is often tried, but its limited efficacy all too often leaves the problem of persistent hormonal excess. Physicians who treat patients with ACC and severe hypercortisolism should recognize that uncontrolled hormone production is a malignant disease, which has severe consequences that require aggressive management. Because chemotherapy benefits only a small percentage of patients, steroidogenesis inhibitors, including mitotane, ketoconazole, metyrapone, and etomidate, should be used singly or in combination even as chemotherapy is administered. Diligent management with frequent adjustments is required, especially in patients with chemotherapy-refractory tumors that continue to grow. In the absence of randomized, controlled trials, adjuvant use of mitotane remains controversial, although the authors of a recent case-control study argue for its use. Despite difficulty administering effective doses, most clinicians agree that mitotane should be used if the tumor cannot be removed surgically or should be used as adjuvant therapy if there is a high likelihood of recurrence. The option of long-term monotherapy is restricted to patients who tolerate mitotane and either experience a clinical response or are at high risk for recurrence. Recommendations are provided to help manage patients with this difficult disease and to improve the quality of their lives. PMID:19667279

  8. Targeting pyrimidine pathway of Plasmodium knowlesi: new strategies towards identification of novel antimalarial chemotherapeutic agents.

    PubMed

    Rashmi, Mayank; Yadav, Manoj Kumar; Swati, D

    2017-03-15

    Plasmodium knowlesi has been recently recognized as a human malarial parasite, particularly in the region of south-east Asia. The effective prevention and treatment of this disease is increasingly bound to fail due to the emergence of drug resistance. Hence, design of new drugs against known targets is gaining importance. Pyrimidine pathway is a crucial metabolic pathway in P. knowlesi, and the enzymes involved are also unique in terms of their structure and function as compared to its human counterpart. Thus targeting Dihydroorotase, an enzyme involved in the pyrimidine pathway, provides a promising route for novel drug development. The 3D structure of P. knowlesi Dihydroorotase is not available. The structural homologues of the enzyme are not available in the database, so a threading approach is used to predict the structure. The steric clashes of the predicted model are removed by running a MD simulation of 20 ns. Then the resulting structure is validated by using Ramachandran plot and G-factor analysis. The active sites are predicted and they show interactions with His13, His15, Asp256, Lys97, His134 and His169 for two Zn atoms, and Arg17, Asn42, Thr43, Pro100, His260 and Lys271 for the Dihydroorotate. Interactions between the ligand and binding pocket residues are extracted to create a structure-based pharmacophore model of the docked complex. A four point based pharmacophore model, with four H-bond acceptors and one negative carboxyl ion, was used as a 3D query for screening against 2,664,779 standard lead compounds, obtained from freely available ZINC database. Top 15 compounds with higher pharmacophore-fit score were considered for further study. Among these, only four compounds show desired drug-like properties, and follow the Lipinski's rule of five. Two compounds (ZINC22066495, ZINC20136046) that are negatively charged are found to be more suitable for interaction with positively charged active site of enzyme. Molecular dynamics simulation is used to

  9. Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Rabii, Farida W; Segura, Pedro A; Fayad, Paul B; Sauvé, Sébastien

    2014-07-15

    Due to the increased consumption of chemotherapeutic agents, their high toxicity, carcinogenicity, their occurrence in the aquatic environment must be properly evaluated. An analytical method based on online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry was developed and validated. A 1 mL injection volume was used to quantify six of the most widely used cytotoxic drugs (cyclophosphamide, gemcitabine, ifosfamide, methotrexate, irinotecan and epirubicin) in municipal wastewater. The method was validated using standard additions. The validation results in wastewater influent had coefficients of determination (R(2)) between 0.983 and 0.998 and intra-day precision ranging from 7 to 13% (expressed as relative standard deviation %RSD), and from 9 to 23% for inter-day precision. Limits of detection ranged from 4 to 20 ng L(-1) while recovery values were greater than 70% except for gemcitabine, which is the most hydrophilic compound in the selected group and had a recovery of 47%. Matrix effects were interpreted by signal suppression and ranged from 55 to 118% with cyclophosphamide having the highest value. Two of the target anticancer drugs (cyclophosphamide and methotrexate) were detected and quantified in wastewater (effluent and influent) and ranged from 13 to 60 ng L(-1). The proposed method thus allows proper monitoring of potential environmental releases of chemotherapy agents.

  10. Therapeutic potential and critical analysis of trastuzumab and bevacizumab in combination with different chemotherapeutic agents against metastatic breast/colorectal cancer affecting various endpoints.

    PubMed

    Wahid, Mohd; Mandal, Raju K; Dar, Sajad A; Jawed, Arshad; Lohani, Mohtashim; Areeshi, Mohammad Y; Akhter, Naseem; Haque, Shafiul

    2016-08-01

    Researchers are working day and night across the globe to eradicate or at least lessen the menace of cancer faced by the mankind. The two very frequently occurring cancers faced by the human beings are metastatic breast cancer and metastatic colorectal cancer. The various chemotherapeutic agents like anthracycline, cyclophosphamide, paclitaxel, irinotecan, fluorouracil and leucovorin etc., have been used impressively for long. But the obstinate character of metastatic breast cancer and metastatic colorectal cancer needs more to tackle the threat. So, the scientists found the use of monoclonal antibodies trastuzumab (Herceptin(®)) and bevacizumab (Avastin(®)) for the same. The current study critically investigates the therapeutic potential of trastuzumab and bevacizumab in combination with various chemotherapeutic agents against metastatic breast cancer and metastatic colorectal cancer. To the best of our knowledge, this is the very first critical analysis showing percent wise increase in various positive endpoints like median time to disease progression, median survival, and progression free survival etc. for the treatment of metastatic breast/colorectal cancer using trastuzumab and bevacizumab in combination with different chemotherapeutic agents and provides the rational for the success and failure of the selected monoclonal antibodies.

  11. Induction of immunogenic cell death by chemotherapeutic platinum complexes.

    PubMed

    Wong, Daniel Yuan Qiang; Ong, Wendy Wei Fang; Ang, Wee Han

    2015-05-26

    There is compelling evidence suggesting that the immune-modulating effects of many conventional chemotherapeutics, including platinum-based agents, play a crucial role in achieving clinical response. One way in which chemotherapeutics can engage a tumor-specific immune response is by triggering an immunogenic mode of tumor cell death (ICD), which then acts as an "anticancer vaccine". In spite of being a mainstay of chemotherapy, there has not been a systematic attempt to screen both existing and upcoming Pt agents for their ICD ability. A library of chemotherapeutically active Pt agents was evaluated in an in vitro phagocytosis assay, and no correlation between cytotoxicity and phagocytosis was observed. A Pt(II) N-heterocyclic carbene complex was found to display the characteristic hallmarks of a type II ICD inducer, namely focused oxidative endoplasmic reticulum (ER) stress, calreticulin exposure, and both HMGB1 and ATP release, and thus identified as the first small-molecule immuno-chemotherapeutic agent.

  12. Using Agent-Based Modelling to Predict the Role of Wild Refugia in the Evolution of Resistance of Sea Lice to Chemotherapeutants

    PubMed Central

    McEwan, Gregor F.; Groner, Maya L.; Fast, Mark D.; Revie, Crawford W.

    2015-01-01

    A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments. PMID:26485023

  13. Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia.

    PubMed

    Boulos, Nidal; Mulder, Heather L; Calabrese, Christopher R; Morrison, Jeffrey B; Rehg, Jerold E; Relling, Mary V; Sherr, Charles J; Williams, Richard T

    2011-03-31

    The introduction of cultured p185(BCR-ABL)-expressing (p185+) Arf (-/-) pre-B cells into healthy syngeneic mice induces aggressive acute lymphoblastic leukemia (ALL) that genetically and phenotypically mimics the human disease. We adapted this high-throughput Philadelphia chromosome-positive (Ph(+)) ALL animal model for in vivo luminescent imaging to investigate disease progression, targeted therapeutic response, and ALL relapse in living mice. Mice bearing high leukemic burdens (simulating human Ph(+) ALL at diagnosis) entered remission on maximally intensive, twice-daily dasatinib therapy, but invariably relapsed with disseminated and/or central nervous system disease. Although relapse was frequently accompanied by the eventual appearance of leukemic clones harboring BCR-ABL kinase domain (KD) mutations that confer drug resistance, their clonal emergence required prolonged dasatinib exposure. KD P-loop mutations predominated in mice receiving less intensive therapy, whereas high-dose treatment selected for T315I "gatekeeper" mutations resistant to all 3 Food and Drug Administration-approved BCR-ABL kinase inhibitors. The addition of dexamethasone and/or L-asparaginase to reduced-intensity dasatinib therapy improved long-term survival of the majority of mice that received all 3 drugs. Although non-tumor-cell-autonomous mechanisms can prevent full eradication of dasatinib-refractory ALL in this clinically relevant model, the emergence of resistance to BCR-ABL kinase inhibitors can be effectively circumvented by the addition of "conventional" chemotherapeutic agents with alternate antileukemic mechanisms of action.

  14. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells.

    PubMed

    Thys, Ryan G; Lehman, Christine E; Pierce, Levi C T; Wang, Yuh-Hwa

    2015-09-01

    Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual

  15. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  16. Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells

    PubMed Central

    SARIN, HEMANT

    2016-01-01

    For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol-to-water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC-to-vdWD (nm−1) parameter is determined, and where applicable, hydrophilic interacting moiety/core-to-vdWD (nm−1) and lipophilic incorporating hydrophobic moiety/core-to-vdWD (nm−1) parameters of their part-structures are determined. The cellular and sub-cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle-based effective transvascular delivery. PMID:26998284

  17. Comparison of efficacy of three chemotherapeutic agents on Streptococcus mutans count in plaque and saliva: A randomized controlled triple blind study.

    PubMed

    Narayan, Ajay; Satyaprasad, Savitha; Anandraj, S; Ananda, S R; Kamath, P Ananth; Nandan, S

    2017-01-01

    There is a need for exploration of the role of chemotherapeutic agents and its role in the prevention of early childhood caries (ECC) and its recurrence. The aim of this study was two-fold: (1) To compare the antimicrobial efficacy of three commonly used chemotherapeutic agents in the prevention of ECC in comparison with a control and (2) To ascertain the role of chemotherapeutic agents in the prevention of ECC. Sixty children with ECC in the age group 3-6 years were randomly allocated into four groups. To each group of children after full oral rehabilitation either 10% povidone-iodine (PI), or chlorhexidine (CHX) varnish (Cervitec Plus), or fluoride varnish (Fluor Protector) were applied twice at an interval of 1 week, Group 4 served as control. Streptococcus mutans count in saliva and plaque were collected at baseline, 30, 60, and 90 days and the presence of S. mutans was evaluated using the Dentocult SM strip mutans kit. The efficacy of 10% PI, CHX varnish (Cervitec Plus), and fluoride varnish (Fluor Protector) was compared with the control group at 30, 60, and 90 days. An intergroup comparison was also done during the same time intervals. The reduction of S. mutans count in the plaque and saliva was greatest in the fluoride varnish treated groups at all time intervals (30, 60, and 90 days). Fluoride varnish, CHX varnish, and 10% PI showed significant improved efficacy when compared to the control group (P < 0.001). Fluoride varnish showed significantly lower counts of S. mutans compared to CHX varnish at all time intervals (30, 60, and 90 days) and also significantly lower counts compared to 10% PI at 60 and 90 days interval (P < 0.001).

  18. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance–fluorescence imaging for tracking of chemotherapeutic agents

    PubMed Central

    Wei, Kuo-Chen; Lin, Feng-Wei; Huang, Chiung-Yin; Ma, Chen-Chi M; Chen, Ju-Yu; Feng, Li-Ying; Yang, Hung-Wei

    2016-01-01

    To date, knowing how to identify the location of chemotherapeutic agents in the human body after injection is still a challenge. Therefore, it is urgent to develop a drug delivery system with molecular imaging tracking ability to accurately understand the distribution, location, and concentration of a drug in living organisms. In this study, we developed bovine serum albumin (BSA)-based nanoparticles (NPs) with dual magnetic resonance (MR) and fluorescence imaging modalities (fluorescein isothiocyanate [FITC]-BSA-Gd/1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU] NPs) to deliver BCNU for inhibition of brain tumor cells (MBR 261-2). These BSA-based NPs are water dispersible, stable, and biocompatible as confirmed by XTT cell viability assay. In vitro phantoms and in vivo MR and fluorescence imaging experiments show that the developed FITC-BSA-Gd/BCNU NPs enable dual MR and fluorescence imaging for monitoring cellular uptake and distribution in tumors. The T1 relaxivity (R1) of FITC-BSA-Gd/BCNU NPs was 3.25 mM−1 s−1, which was similar to that of the commercial T1 contrast agent (R1 =3.36 mM−1 s−1). The results indicate that this multifunctional drug delivery system has potential bioimaging tracking of chemotherapeutic agents ability in vitro and in vivo for cancer therapy. PMID:27601895

  19. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species

    PubMed Central

    Ruefli, Astrid A.; Ausserlechner, Michael J.; Bernhard, David; Sutton, Vivien R.; Tainton, Kellie M.; Kofler, Reinhard; Smyth, Mark J.; Johnstone, Ricky W.

    2001-01-01

    Many chemotherapeutic agents induce mitochondrial-membrane disruption to initiate apoptosis. However, the upstream events leading to drug-induced mitochondrial perturbation have remained poorly defined. We have used a variety of physiological and pharmacological inhibitors of distinct apoptotic pathways to analyze the manner by which suberoylanilide hydroxamic acid (SAHA), a chemotherapeutic agent and histone deacetylase inhibitor, induces cell death. We demonstrate that SAHA initiates cell death by inducing mitochondria-mediated death pathways characterized by cytochrome c release and the production of reactive oxygen species, and does not require the activation of key caspases such as caspase-8 or -3. We provide evidence that mitochondrial disruption is achieved by means of the cleavage of the BH3-only proapoptotic Bcl-2 family member Bid. SAHA-induced Bid cleavage was not blocked by caspase inhibitors or the overexpression of Bcl-2 but did require the transcriptional regulatory activity of SAHA. These data provide evidence of a mechanism of cell death mediated by transcriptional events that result in the cleavage of Bid, disruption of the mitochondrial membrane, and production of reactive oxygen species to induce cell death. PMID:11535817

  20. Linifanib (ABT-869) Potentiates the Efficacy of Chemotherapeutic Agents through the Suppression of Receptor Tyrosine Kinase-Mediated AKT/mTOR Signaling Pathways in Gastric Cancer

    PubMed Central

    Chen, Jing; Guo, Jiawei; Chen, Zhi; Wang, Jieqiong; Liu, Mingyao; Pang, Xiufeng

    2016-01-01

    Gastric cancer, highly dependent on tumor angiogenesis, causes uncontrolled lethality, in part due to chemoresistance. Here, we demonstrate that linifanib (ABT-869), a novel multi-targeted receptor tyrosine kinase inhibitor, markedly augments cytotoxicity of chemotherapies in human gastric cancer. ABT-869 and chemotherapeutic agents exhibited a strong synergy to inhibit the viability of several gastric cancer cell lines, with combination index values ranging from 0.017 to 0.589. Additionally, the combination of ABT-869 and chemotherapeutic agents led to remarkable suppression of vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo. Importantly, in a preclinical gastric cancer xenograft mouse model, drug co-treatments led to increased mouse survival as well as a synergistic reduction in tumor size and the inhibition of tumor angiogenesis. Mechanistic studies further revealed that all of the co-treatments containing ABT-869 resulted in decreased activation of the VEGF receptor, the epidermal growth factor receptor and the insulin growth factor receptor. Inhibition of these receptor tyrosine kinases consequently attenuated the activation of the downstream AKT/mTOR signaling pathway both in cultured gastric cancer cells and in gastric cancer xenografts. Collectively, our findings suggest that the addition of ABT-869 to traditional chemotherapies may be a promising strategy for the treatment of human gastric cancer. PMID:27387652

  1. Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect

    PubMed Central

    Gao, Huile; Hu, Guanlian; Zhang, Qianyu; Zhang, Shuang; Jiang, Xinguo; He, Qin

    2014-01-01

    Ligands were anchored onto nanoparticles (NPs) to improve the cell internalization and tumor localization of chemotherapeutics. However, the clinical application was shadowed by the complex preparation procedure and the immunogenicity and poor selectivity and stability of ligands. In this study, a novel strategy was developed to elevate the tumor cellular uptake and tumor localization of NPs utilizing the G2/M phase retention effect of docetaxel, one of the most common chemotherapeutics. Results showed pretreatment with docetaxel could effectively arrest cells in G2/M phase, leading to an enhanced cell uptake of NPs, which may be caused by the facilitated endocytosis of NPs. In vivo imaging and slice distribution also demonstrated the pretreatment with docetaxel improved the localization of NPs in tumor. This strategy can be easily transferred to clinical for cancer management. Combination chemotherapeutics injections with commercial nano-drugs may result in better antitumor effect than the administration of a single drug. PMID:24670376

  2. Anti-tubercular and antioxidant activities of C-glycosyl carbonic anhydrase inhibitors: towards the development of novel chemotherapeutic agents against Mycobacterium tuberculosis.

    PubMed

    Zaro, María J; Bortolotti, Ana; Riafrecha, Leonardo E; Concellón, Analía; Morbidoni, Héctor R; Colinas, Pedro A

    2016-12-01

    During the treatment of tuberculosis infection, oxidative stress due to anti-tubercular drugs may result in tissue inflammation. It was suggested that treatment with antioxidant drugs could be beneficial as an adjunct to anti-tuberculosis drug therapy. Recently our group has shown that several C-glycosides are inhibitors of Mycobacterium tuberculosis β-carbonic anhydrases (CAs, EC 4.2.1.1). In an effort to develop novel chemotherapeutic agents against tuberculosis, the anti-tubercular and antioxidant activities of a series of C-glycosides containing the phenol or the methoxyaryl moiety were studied. Many compounds showed inhibition of growth of M. tuberculosis H37Rv strain and good antioxidant ability. A glycomimetic incorporating the 3-hydroxyphenyl moiety showed the best activity profile and therefore this functionality represents lead for the development of novel anti-tubercular agents with dual mechanisms of action.

  3. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin

    PubMed Central

    Pang, Baoxu; Qiao, Xiaohang; Janssen, Lennert; Velds, Arno; Groothuis, Tom; Kerkhoven, Ron; Nieuwland, Marja; Ovaa, Huib; Rottenberg, Sven; van Tellingen, Olaf; Janssen, Jeroen; Huijgens, Peter; Zwart, Wilbert; Neefjes, Jacques

    2013-01-01

    DNA topoisomerase II inhibitors are a major class of cancer chemotherapeutics, which are thought to eliminate cancer cells by inducing DNA double-strand breaks. Here we identify a novel activity for the anthracycline class of DNA topoisomerase II inhibitors: histone eviction from open chromosomal areas. We show that anthracyclines promote histone eviction irrespective of their ability to induce DNA double-strand breaks. The histone variant H2AX, which is a key component of the DNA damage response, is also evicted by anthracyclines, and H2AX eviction is associated with attenuated DNA repair. Histone eviction deregulates the transcriptome in cancer cells and organs such as the heart, and can drive apoptosis of topoisomerase-negative acute myeloid leukaemia blasts in patients. We define a novel mechanism of action of anthracycline anticancer drugs doxorubicin and daunorubicin on chromatin biology, with important consequences for DNA damage responses, epigenetics, transcription, side effects and cancer therapy. PMID:23715267

  4. Urinary schistosomiasis among schoolchildren in Yemen: prevalence, risk factors, and the effect of a chemotherapeutic intervention.

    PubMed

    Al-Waleedi, Ali A; El-Nimr, Nessrin A; Hasab, Ali A; Bassiouny, Hassan K; Al-Shibani, Latifa A

    2013-12-01

    Schistosomiasis is one of the most important public health problems in Yemen. The prevalence of urinary schistosomiasis varies considerably across different parts of Yemen and was estimated to be 10% among schoolchildren in Sana'a. Praziquantel (PZQ) is highly effective against all five major human species of schistosomes. The aim of the present work was to estimate the prevalence of urinary schistosomiasis, describe the risk factors associated with its endemicity, and implement and assess a chemotherapeutic intervention using PZQ in a village in Yemen. The sample included 696 schoolchildren from a village in Abyan Governorate. During the baseline school survey, personal, sociodemographic, and environmental data, and data on practices in relation to water contact were collected from each study participant using a predesigned structured questionnaire. Urine samples from each participant were examined for macrohematuria and the presence of Schistosoma haematobium eggs. The chemotherapeutic intervention was assessed 3 and 6 months after the treatment and certain indicators were calculated. The prevalence of S. haematobium was 18.1%. The main significant risk factors were male sex; proximity of houses to water ponds; and using pond water for swimming, agricultural activities, and for bathing in houses. PZQ treatment reduced the prevalence of infection and decreased the prevalence of high-intensity infection. Survival analysis showed that the probability of residual infection also dropped after the treatment intervention. Male sex and using pond water for various activities were the main significant risk factors associated with urinary schistosomiasis. PZQ is still a cornerstone drug in reducing or eliminating morbidity associated with schistosomiasis infection. Health education programs tailored for the community are required for the control and prevention of urinary schistosomiasis. To address schoolchildren, school curricula should include lessons about urinary

  5. Effective encapsulation and biological activity of phosphorylated chemotherapeutics in calcium phosphosilicate nanoparticles for the treatment of pancreatic cancer.

    PubMed

    Loc, Welley S; Linton, Samuel S; Wilczynski, Zachary R; Matters, Gail L; McGovern, Christopher O; Abraham, Thomas; Fox, Todd; Gigliotti, Christopher M; Tang, Xiaomeng; Tabakovic, Amra; Martin, Jo Ann; Clawson, Gary A; Smith, Jill P; Butler, Peter J; Kester, Mark; Adair, James H

    2017-10-01

    Drug resistant cancers like pancreatic ductal adenocarcinoma (PDAC) are difficult to treat, and nanoparticle drug delivery systems can overcome some of the limitations of conventional systemic chemotherapy. In this study, we demonstrate that FdUMP and dFdCMP, the bioactive, phosphorylated metabolites of the chemotherapy drugs 5-FU and gemcitabine, can be encapsulated into calcium phosphosilicate nanoparticles (CPSNPs). The non-phosphorylated drug analogs were not well encapsulated by CPSNPs, suggesting the phosphate modification is essential for effective encapsulation. In vitro proliferation assays, cell cycle analyses and/or thymidylate synthase inhibition assays verified that CPSNP-encapsulated phospho-drugs retained biological activity. Analysis of orthotopic tumors from mice treated systemically with tumor-targeted FdUMP-CPSNPs confirmed the in vivo up take of these particles by PDAC tumor cells and release of active drug cargos intracellularly. These findings demonstrate a novel methodology to efficiently encapsulate chemotherapeutic agents into the CPSNPs and to effectively deliver them to pancreatic tumor cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Inhibition of DNA helicase, ATPase and DNA-binding activities of E. coli RecQ helicase by chemotherapeutic agents.

    PubMed

    Zhang, Bo; Zhang, Ai-hua; Chen, Lei; Xi, Xu Guang

    2008-06-01

    RecQ helicases play an essential role in maintaining genetic integrity in all organisms from Escherichia coli to humans. Defects to these enzymes are responsible for three distinct human diseases: Werner syndrome, Bloom syndrome and Rothmund-Thomson syndrome. All three diseases are characterized by a predisposition to cancer due to increased genomic instability. Previous studies on the effects of non-covalent DNA modifications on the catalytic activity of purified Werner and Bloom DNA helicases have shown that both enzymes have similar sensitivity profiles to these DNA-binding agents and are most strongly inhibited by the minor groove binder distamycin A. In this study, we show that the sensitivity profiles of E. coli RecQ to a number of DNA-binding ligands are different to those observed for WRN and Bloom helicases. These observations may give insights into the differences in molecular mechanisms underlying efficient motor function of RecQ helicases.

  7. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma

    PubMed Central

    Nath, Lekshmi R.; Gorantla, Jaggaiah N.; Thulasidasan, Arun Kumar T.; Vijayakurup, Vinod; Shah, Shabna; Anwer, Shabna; Joseph, Sophia M.; Antony, Jayesh; Veena, Kollery Suresh; Sundaram, Sankar; Marelli, Udaya K.; Lankalapalli, Ravi S.; Anto, Ruby John

    2016-01-01

    We report, for the first time, the remarkable efficacy of uttroside B, a potent saponin from Solanum nigrum Linn, against liver cancer. The compound has been isolated and characterized from the leaves of Solanum nigrum Linn, a plant widely used in traditional medicine and is a rich resource of several anticancer molecules. Uttroside B, that comprises of β-D-glucopyranosyl unit at C-26 of the furostanol and β-lycotetraosyl unit at C-3, is ten times more cytotoxic to the liver cancer cell line, HepG2 (IC50: 0.5 μM) than sorafenib (IC50: 5.8 μM), the only FDA-approved drug for liver cancer. Moreover, it induces cytotoxicity in all liver cancer cell lines, irrespective of their HBV status, while being non-toxic to normal immortalized hepatocytes. It induces apoptosis in HepG2 cells by down-regulating mainly the activation of MAPK and mTOR pathways. The drastic reduction in HepG2-xenograft tumor size achieved by uttroside B in NOD-SCID mice and substantiation of its biological safety through both acute and chronic toxicity studies in Swiss albino mice warrants clinical validation of the molecule against hepatic cancer, for which, the chemotherapeutic armamentarium currently has limited weapons. PMID:27808117

  8. Ethanol Extract of Oldenlandia diffusa – an Effective Chemotherapeutic for the Treatment of Colorectal Cancer in Humans

    PubMed Central

    Lee, Soojin; Shim, Ji Hwan; Gim, Huijin; Park, Hyun Soo

    2016-01-01

    Objectives: Oldenlandia diffusa is traditionally used to relieve the symptoms of and to treat various diseases, but its anti-cancer activity has not been well studied. In the present study, the authors investigated the anti-cancer effects of an ethanol extract of Oldenlandia diffusa (EOD) on HT-29 human adenocarcinoma cells. Methods: Cells were treated with different concentrations of an EOD, and cell death was assessed by using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Analyses of the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial membrane depolarizations were conducted to confirm cell death by apoptosis. Also, intracellular reactive oxygen species (ROS) generation was determined using carboxy-H2DCFDA (5-(and-6)-carboxy-20,70-dichlorodihydrofluorescein diacetate). Results: EOD inhibited the proliferation of HT-29 cells for 24 hours by 78.6% ± 8.1% at 50 μg/mL, 74.4% ± 4.6% at 100 μg/mL, 65.9% ± 5.2% at 200 μg/mL, 51.4% ± 6.2% at 300 μg/mL, and by 41.7% ± 8.9% at 400 μg/mL, and treatment for 72 hours reduced the proliferation at the corresponding concentrations by 43.3% ± 8.8%, 24.3 ± 5.1 mV, 13.5 ± 3.2 mV, 6.5 ± 2.3 mV, and by 2.6 ± 2.3 mV. EOD increased the number of cells in the sub-G1 peak in a dose-dependent manner. The mitochondrial membrane depolarization was elevated by EOD. Also, caspase activities were dose-dependently elevated in the presence of EOD, and these activities were repressed by a pan-caspase inhibitor (zVAD-fmk). The ROS generation was significantly increased by EOD and N-acetyl-L-cysteine (NAC; a ROS scavenger) remarkably abolished EOD-induced cell death. In addition, a combination of sub-optimal doses of EOD and chemotherapeutic agents noticeably suppressed the growth of HT-29 cancer cells. Conclusion: These results indicate that EOD might be an effective chemotherapeutic for the treatment of human colorectal cancer. PMID:27280050

  9. Osimertinib (AZD9291) Enhanced the Efficacy of Chemotherapeutic Agents in ABCB1- and ABCG2-Overexpressing Cells In Vitro, In Vivo, and Ex Vivo.

    PubMed

    Chen, Zhen; Chen, Yifan; Xu, Meng; Chen, Likun; Zhang, Xu; To, Kenneth Kin Wah; Zhao, Hongyun; Wang, Fang; Xia, Zhongjun; Chen, Xiaoqin; Fu, Liwu

    2016-08-01

    The overexpression of ATP-binding cassette (ABC) transporters has been proved to be a major trigger for multidrug resistance (MDR) in certain types of cancer. In our study, we investigated whether osimertinib (AZD9291), a third-generation irreversible tyrosine kinase inhibitor of both activating EGFR mutations and resistance-associated T790M point mutation, could reverse MDR induced by ABCB1 and ABCG2 in vitro, in vivo, and ex vivo Our results showed that osimertinib significantly increased the sensitivity of ABCB1- and ABCG2-overexpressing cells to their substrate chemotherapeutic agents in vitro and in the model of ABCB1-overexpressing KBv200 cell xenograft in nude mice. Mechanistically, osimertinib increased the intracellular accumulations of doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, osimertinib stimulated the ATPase activity of both ABCB1 and ABCG2 and competed with the [(125)I] iodoarylazidoprazosin photolabeling bound to ABCB1 or ABCG2, but did not alter the localization and expression of ABCB1 or ABCG2 in mRNA and protein levels nor the phosphorylations of EGFR, AKT, and ERK. Importantly, osimertinib also enhanced the cytotoxicity of DOX and intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. Overall, these findings suggest osimertinib reverses ABCB1- and ABCG2-mediated MDR via inhibiting ABCB1 and ABCG2 from pumping out chemotherapeutic agents and provide possibility for cancer combinational therapy with osimertinib in the clinic. Mol Cancer Ther; 15(8); 1845-58. ©2016 AACR.

  10. A tumor vessel-targeting fusion protein elicits a chemotherapeutic bystander effect in pancreatic ductal adenocarcinoma

    PubMed Central

    Chen, Chun-Te; Chen, Yi-Chun; Du, Yi; Han, Zhenbo; Ying, Haoqiang; Bouchard, Richard R; Hsu, Jennifer L; Hsu, Jung-Mao; Mitcham, Trevor M; Chen, Mei-Kuang; Sun, Hui-Lung; Chang, Shih-Shin; Li, Donghui; Chang, Ping; DePinho, Ronald A; Hung, Mien-Chie

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease characterized by a prominent desmoplastic stroma that may constrain tumor progression but also limit the access of therapeutic drugs. In this study, we explored a tumor-targeting strategy that enlists an engineered anti-angiogenic protein consisting of endostatin and cytosine deaminase linked to uracil phosphoribosyltransferase (EndoCD). This protein selectively binds to tumor vessels to compromise tumor angiogenesis and converts the non-toxic 5-fluorocytosine (5-FC) to the cytotoxic 5-fluorouracil to produce a chemotherapeutic bystander effect at the pancreatic tumor site. We found that resveratrol increased the protein stability of EndoCD through suppression of chymotrypsin-like proteinase activity and synergistically enhances EndoCD-mediated 5-FC-induced cell killing. In various PDAC mouse models, the EndoCD/5-FC/resveratrol regimen decreased intratumoral vascular density and stroma formation and enhances apoptosis in tumors cells as well as in surrounding endothelial, pancreatic stellate, and immune cells, leading to reduced tumor growth and extended survival. Thus, the EndoCD/5-FC/resveratrol combination may be an effective treatment option for PDAC. PMID:28401019

  11. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways.

    PubMed

    Gao, Yue; Xiao, Xiangsheng; Zhang, Changlin; Yu, Wendan; Guo, Wei; Zhang, Zhifeng; Li, Zhenglin; Feng, Xu; Hao, Jiaojiao; Zhang, Kefang; Xiao, Bingyi; Chen, Miao; Huang, Wenlin; Xiong, Shunbin; Wu, Xiaojun; Deng, Wuguo

    2017-03-01

    5-Fluorouracil (5-FU) is one of the most commonly used chemotherapeutic agents in colon cancer treatment, but has a narrow therapeutic index limited by its toxicity. Melatonin exerts antitumor activity in various cancers, but it has never been combined with 5-FU as an anticolon cancer treatment to improve the chemotherapeutic effect of 5-FU. In this study, we assessed such combinational use in colon cancer and investigated whether melatonin could synergize the antitumor effect of 5-FU. We found that melatonin significantly enhanced the 5-FU-mediated inhibition of cell proliferation, colony formation, cell migration and invasion in colon cancer cells. We also found that melatonin synergized with 5-FU to promote the activation of the caspase/PARP-dependent apoptosis pathway and induce cell cycle arrest. Further mechanism study demonstrated that melatonin synergized the antitumor effect of 5-FU by targeting the PI3K/AKT and NF-κB/inducible nitric oxide synthase (iNOS) signaling. Melatonin in combination with 5-FU markedly suppressed the phosphorylation of PI3K, AKT, IKKα, IκBα, and p65 proteins, promoted the translocation of NF-κB p50/p65 from the nuclei to cytoplasm, abrogated their binding to the iNOS promoter, and thereby enhanced the inhibition of iNOS signaling. In addition, pretreatment with a PI3K- or iNOS-specific inhibitor synergized the antitumor effects of 5-FU and melatonin. Finally, we verified in a xenograft mouse model that melatonin and 5-FU exerted synergistic antitumor effect by inhibiting the AKT and iNOS signaling pathways. Collectively, our study demonstrated that melatonin synergized the chemotherapeutic effect of 5-FU in colon cancer through simultaneous suppression of multiple signaling pathways. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. [The effect of Bcl-2 gene silencing on the sensitivity of cell line A549 to chemotherapeutic drugs].

    PubMed

    Wang, Jiao-qi; Du, Zhen-wu; Gao, Xian-fei; Wu, Mei; Zhang, Yu-cheng; Pan, Ying; Wang, Qian; Zhang, Gui-zhen

    2013-03-01

    To investigate the effects of miRNA-mediated down-regulation of the Bcl-2 gene on the chemotherapeutic sensitivities and mRNA transcriptions of sensitivity associated genes in human lung adenocarcinoma cell line A549 cells, and therefore to provide experimental data for improving the chemotherapeutic effects on non-small cell lung cancer (NSCLC). The miRNA recombinant plasmid targeting to human Bcl-2 gene was designed, synthesized and stably transferred into A549 cells by lipofectin technique as the experiment group. The transcription of Bcl-2 mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR) by agarose gel electrophoresis, real-time PCR, and the protein level of Bcl-2 was measured by Western blot to confirm the function of miRNA plasmid. The cell proliferation was examined by methyl thiazolyl tetrazolium (MTT) assay. Cell cycle was measured by flow cytometry. Drug sensitivities of A549 cells to etoposide, 5-fluorouracil, cisplatin, adriamycin, vincristine, paclitaxel and navelbine were analyzed by MTT assay. The mRNA expressions of excision repair cross-complementing gene 1 (ERCC1), thymidylate synthase (TYMS), Class III β-tubulin, topoisomerase 2 alpha (TOP2α) genes were detected by RT-PCR and real-time PCR. The recombinant miRNA plasmid was successfully synthesized and stably transferred into A549 cells. The transcription of Bcl-2 mRNA dramatically decreased by 98.1% in the experiment group (RQ = 0.002 ± 0.001) compared to that in the negative control group (RQ = 0.104 ± 0.003) by real-time PCR (t = 98.70, P < 0.05); and the protein level of Bcl-2 in the experiment group decreased by 57.6% by Western blot (t = 7.66, P < 0.05). The cell cycle profile showed that the low expression of Bcl-2 gene led to A549 cell cycle arrest at G1-phase. The results of MTT showed that the growth of A549 cells in the experiment group was markedly inhibited. The sensitivities of A549 cells to etoposide, cisplatin, paclitaxel, and navelbine were

  13. Effects of TiO2 nanoparticles on cytotoxic action of chemotherapeutic drugs against a human oral squamous cell carcinoma cell line.

    PubMed

    Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Ando, Yoshiaki; Kanda, Yumiko; Hibino, Yasushi; Nakajima, Hiroshi; Sakagami, Hiroshi

    2014-01-01

    Despite the rapid development of nanotechnology, the biological significance of TiO2 nanoparticles (NPs), possibly released from dental materials, is not well-understood. We investigated the effect of TiO2 NPs on the sensitivity of human oral squamous cell carcinoma (OSCC) cell line (HSC-2) to five popular chemotherapeutic agents. Viable cell number was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The aggregation and cellular uptake of TiO2 NPs were assessed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Adsorption of TiO2 NPs to anticancer drugs was assessed by the antitumor activity recovered from the TiO2 NP-free supernatant. When mixed with culture medium, TiO2 NPs instantly aggregated, and some particles were incorporated into the cells, exclusively in the vacuoles. TiO2 NPs showed no cytotoxicity nor hormetic growth stimulation at lower concentrations. Doxorubicin, melphalan, 5-fluorouracil and gefitinib were cytotoxic, whereas docetaxel was cytostatic with or without TiO2 NPs. TiO2 NPs, at wide concentration ranges (0.2-3.2 mM), did not significantly affect the adsorption of NPs to any of these anticancer drugs, nor affected their cytotoxic or cytostatic activity. This experimental study demonstrated for the first time that TiO2 NP do not affect the antitumor potential of chemotherapeutic agents against the HSC-2 OSCC cell line.

  14. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.

    PubMed

    Patil, Abhijit A; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D; Roylance, Anthony; Kriplani, Deepti H; Myers, Katie N; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A; Collis, Spencer J

    2014-08-15

    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge, where survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome.

  15. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents

    PubMed Central

    Patil, Abhijit A.; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D.; Roylance, Anthony; Kriplani, Deepti H.; Myers, Katie N.; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A.; Collis, Spencer J.

    2014-01-01

    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome. PMID:25071006

  16. Interaction of standardized mistletoe (Viscum album) extracts with chemotherapeutic drugs regarding cytostatic and cytotoxic effects in vitro

    PubMed Central

    2014-01-01

    Background Given the importance of complementary and alternative medicine (CAM) to cancer patients, there is an increasing need to learn more about possible interactions between CAM and anticancer drugs. Mistletoe (Viscum album L.) belongs to the medicinal herbs that are used as supportive care during chemotherapy. In the in vitro study presented here the effect of standardized mistletoe preparations on the cytostatic and cytotoxic activity of several common conventional chemotherapeutic drugs was investigated using different cancer cell lines. Methods Human breast carcinoma cell lines HCC1937 and HCC1143 were treated with doxorubicin hydrochloride, pancreas adenocarcinoma cell line PA-TU-8902 with gemcitabine hydrochloride, prostate carcinoma cell line DU145 with docetaxel and mitoxantrone hydrochloride and lung carcinoma cell line NCI-H460 was treated with docetaxel and cisplatin. Each dose of the respective chemotherapeutic drug was combined with Viscum album extract (VAE) in clinically relevant concentrations and proliferation and apoptosis were measured. Results VAE did not inhibit chemotherapy induced cytostasis and cytotoxicity in any of our experimental settings. At higher concentrations VAE showed an additive inhibitory effect. Conclusions Our in vitro results suggest that no risk of safety by herb drug interactions has to be expected from the exposition of cancer cells to chemotherapeutic drugs and VAE simultaneously. PMID:24397864

  17. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  18. Inhibition of Molecular Signaling in Huh-7 Cells by AM3: A Novel Chemotherapeutic Agent for Hepatocellular Carcinoma.

    PubMed

    Yuan, Chun-Lung; Lin, Shih-Wei; Cheng, Meng-Hsuan

    2016-01-01

    According to a review of recent literature, no previous studies have reported the dose-dependent selective inhibition of the antiproliferative activity using colony and sphere formation assays and immunoblotting in human hepatoma cells in response to doxorubicin and mitoxantrone structural analogs such as AM3. We evaluated the anticancer activity of mitoxantrone (MIT) structural analogs 1,5-bis({2- [(2-hydroxyethyl) amino]ethyl}-amino)-anthracene-9,10-dione (AM3) in human hepatoma cells (Huh-7). In this paper, we synthesized AM3 through the nucleophilic amino substitution of 1,5- dichloroanthraquinone with the corresponding dichloride groups under microwave-accelerated heating. The structural characteristics of AM3 were analyzed through ultraviolet-visible spectroscopy and nuclear magnetic resonance. In vitro activity of AM3 was measured using the dose-dependent selective inhibition of the antiproliferative activity using colony and sphere formation assays and immunoblotting in Huh-7. The antiproliferative activity of AM3 was determined using IC50 values as 2.03 and 1.70 µM for hepatocellular carcinoma cell lines Huh-7 and SK-Hep-1 cells, respectively. In addition, colony formation assay of Huh-7 cells revealed that AM3 significantly suppressed the mean colony formation rate from 99.9 % to 2.5 %, and growth inhibition rate of sphere cells was significant, in which 5.0 µM of AM3 inhibited up to 28.5 % cell growth in the Huh-7 sphere cells. Immunoblotting confirmed the overexpression of CD44, COX-2, p-Akt, and Akt. Thus, AM3 is a novel therapeutic agent for suppressing cancer stemness and inflammation signaling in Huh-7 cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Differential Interactions of Cytochrome P450 3A5 and 3A4 with Chemotherapeutic Agent-Vincristine: A Comparative Molecular Dynamics Study.

    PubMed

    Saba, Nikhat; Bhuyan, Rajabrata; Nandy, Suman Kumar; Seal, Alpana

    2015-01-01

    The chemotherapeutic agent vincristine, used for treatment of acute lymphoblastic leukemia is metabolized preferentially by polymorphic cytochrome P450 3A5 (CYP3A5) with higher clearance rate than cytochrome P450 3A4 (CYP3A4). As a result, CYP3A5 expressers have a reduced amount of vincristine-induced peripheral neuropathy than non-expressers. We modeled the structure of CYP3A5 and its interaction with vincristine, compared with CYP3A4-vincristine complex using molecular docking and simulation studies. This relative study helped us to understand the molecular mechanisms behind the interaction at the atomic level through interaction energy, binding free energy, hydrogen bond and solvent accessible surface area analysis - giving an insight into the binding mode and the main residues involved in this particular interaction. Our results show that the interacting groups get closer in CYP3A5-vincristine complex due to different orientation of vincristine. This leads to higher binding affinity of vincristine towards CYP3A5 compared to CYP3A4 and explains the preferential metabolism of vincristine by CYP3A5. We believe that, the results of the current study will be helpful for future studies on structure-based drug design in this area.

  20. A novel copper(I) complex induces ER-stress-mediated apoptosis and sensitizes B-acute lymphoblastic leukemia cells to chemotherapeutic agents

    PubMed Central

    Porcù, Elena; Consolaro, Francesca; Marzano, Cristina; Pellei, Maura; Gandin, Valentina; Basso, Giuseppe

    2014-01-01

    A phosphine copper(I) complex [Cu(thp)4][PF6] (CP) was recently identified as an efficient in vitro antitumor agent. In this study, we evaluated the antiproliferative activity of CP in leukemia cell lines finding a significant efficacy, especially against SEM and RS4;11 cells. Immunoblot analysis showed the activation of caspase-12 and caspase-9 and of the two effector caspase-3 and -7, suggesting that cell death occurred in a caspase-dependent manner. Interestingly we did not observe mitochondrial involvement in the process of cell death. Measures on semipurified proteasome from RS4;11 and SEM cell extracts demonstrated that chymotrypsin-, trypsin- and caspase-like activity decreased in the presence of CP. Moreover, we found an accumulation of ubiquitinated proteins and a remarkable increase of ER stress markers: GRP78, CHOP, and the spliced form of XBP1. Accordingly, the protein synthesis inhibitor cycloheximide significantly protected cancer cells from CP-induced cell death, suggesting that protein synthesis machinery was involved. In well agreement with results obtained on stabilized cell lines, CP induced ER-stress and apoptosis also in primary cells from B-acute lymphoblastic leukemia patients. Importantly, we showed that the combination of CP with some chemotherapeutic drugs displayed a good synergy that strongly affected the survival of both RS4;11 and SEM cells. PMID:24980813

  1. Efficacy of antioxidants as a Complementary and Alternative Medicine (CAM) in combination with the chemotherapeutic agent doxorubicin.

    PubMed

    Sheu, Ming-Thau; Jhan, Hua-Jing; Hsieh, Chien-Ming; Wang, Chien-Ju; Ho, Hsiu-O

    2015-03-01

    Although doxorubicin (Dox)-induced cardiac toxicity and pegylated liposomal doxorubicin (PLD)-induced hand-foot syndrome (HFS) were reported to be correlated with reactive oxygen species (ROS) generation, there is no effective preventive treatment at present. Therefore, the aim of this study was to investigate whether antioxidants-resveratrol (RSVL), tetrahydroxystilbene glucoside (THSG), curcumin, and the ethanolic extract of Antrodia cinnamomea (EEAC)-have the ability to reduce Dox-induced ROS and have a synergistic anticancer effect with Dox that could prevent those side effects and enhance the efficacy of cancer treatment. 3T3 normal cells were used as a model to evaluate the effects of these antioxidants in reducing ROS accumulation. Furthermore, the synergistic anticancer effect of antioxidants with Dox on the MCF-7 breast cancer model was also evaluated. Pretreatment of cells with RSVL, curcumin, and EEAC increased the cell antioxidant ability by improving the activity of superoxide dismutase (SOD), prevented or limited intracellular damage, and ameliorated the harmful effects of ROS. Additionally, RSVL, curcumin, and EEAC had synergistic effects with Dox against MCF-7 breast cancer cells. RSVL, curcumin, and EEAC have the potential to be clinically applied to prevent cardiac toxicity and HFS and enhance the anticancer efficiency of Dox. © The Author(s) 2014.

  2. A Quinoxaline Derivative as a Potent Chemotherapeutic Agent, Alone or in Combination with Benznidazole, against Trypanosoma cruzi

    PubMed Central

    Rodrigues, Jean Henrique da Silva; Ueda-Nakamura, Tânia; Corrêa, Arlene Gonçalves; Sangi, Diego Pereira; Nakamura, Celso Vataru

    2014-01-01

    Background Chagas’ disease is a condition caused by the protozoan Trypanosoma cruzi that affects millions of people, mainly in Latin America where it is considered endemic. The chemotherapy for Chagas disease remains a problem; the standard treatment currently relies on a single drug, benznidazole, which unfortunately induces several side effects and it is not successful in the cure of most of the chronic patients. In order to improve the drug armamentarium against Chagas’ disease, in the present study we describe the synthesis of the compound 3-chloro-7-methoxy-2-(methylsulfonyl) quinoxaline (quinoxaline 4) and its activity, alone or in combination with benznidazole, against Trypanosoma cruzi in vitro. Methodology/Principal Findings Quinoxaline 4 was found to be strongly active against Trypanosoma cruzi Y strain and more effective against the proliferative forms. The cytotoxicity against LLCMK2 cells provided selective indices above one for all of the parasite forms. The drug induced very low hemolysis, but its anti-protozoan activity was partially inhibited when mouse blood was added in the experiment against trypomastigotes, an effect that was specifically related to blood cells. A synergistic effect between quinoxaline 4 and benznidazole was observed against epimastigotes and trypomastigotes, accompanied by an antagonistic interaction against LLCMK2 cells. Quinoxaline 4 induced several ultrastructural alterations, including formations of vesicular bodies, profiles of reticulum endoplasmic surrounding organelles and disorganization of Golgi complex. These alterations were also companied by cell volume reduction and maintenance of cell membrane integrity of treated-parasites. Conclusion/Significance Our results demonstrated that quinoxaline 4, alone or in combination with benznidazole, has promising effects against all the main forms of T. cruzi. The compound at low concentrations induced several ultrastructural alterations and led the parasite to an

  3. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi.

    PubMed

    Rodrigues, Jean Henrique da Silva; Ueda-Nakamura, Tânia; Corrêa, Arlene Gonçalves; Sangi, Diego Pereira; Nakamura, Celso Vataru

    2014-01-01

    Chagas' disease is a condition caused by the protozoan Trypanosoma cruzi that affects millions of people, mainly in Latin America where it is considered endemic. The chemotherapy for Chagas disease remains a problem; the standard treatment currently relies on a single drug, benznidazole, which unfortunately induces several side effects and it is not successful in the cure of most of the chronic patients. In order to improve the drug armamentarium against Chagas' disease, in the present study we describe the synthesis of the compound 3-chloro-7-methoxy-2-(methylsulfonyl) quinoxaline (quinoxaline 4) and its activity, alone or in combination with benznidazole, against Trypanosoma cruzi in vitro. Quinoxaline 4 was found to be strongly active against Trypanosoma cruzi Y strain and more effective against the proliferative forms. The cytotoxicity against LLCMK2 cells provided selective indices above one for all of the parasite forms. The drug induced very low hemolysis, but its anti-protozoan activity was partially inhibited when mouse blood was added in the experiment against trypomastigotes, an effect that was specifically related to blood cells. A synergistic effect between quinoxaline 4 and benznidazole was observed against epimastigotes and trypomastigotes, accompanied by an antagonistic interaction against LLCMK2 cells. Quinoxaline 4 induced several ultrastructural alterations, including formations of vesicular bodies, profiles of reticulum endoplasmic surrounding organelles and disorganization of Golgi complex. These alterations were also companied by cell volume reduction and maintenance of cell membrane integrity of treated-parasites. Our results demonstrated that quinoxaline 4, alone or in combination with benznidazole, has promising effects against all the main forms of T. cruzi. The compound at low concentrations induced several ultrastructural alterations and led the parasite to an autophagic-like cell death. Taken together these results may support the

  4. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in Countering Nephrotoxicity in Rats Induced by the Chemotherapeutic Agent Cisplatin

    PubMed Central

    Malik, Salma; Suchal, Kapil; Bhatia, Jagriti; Khan, Sana I.; Vasisth, Swati; Tomar, Ameesha; Goyal, Sameer; Kumar, Rajeev; Arya, Dharamvir S.; Ojha, Shreesh K.

    2016-01-01

    Emblica officinalis Gaertn. belonging to family Euphorbiaceae is commonly known as Indian gooseberry or “Amla” in India. It is used as a ‘rejuvenating herb’ in traditional system of Indian medicine. It has been shown to possess antioxidant, anti-inflammatory and anti-apoptotic effects. Thus, on the basis of its biological effects, the present study was undertaken to evaluate the protective effect of the dried fruit extract of the E. Officinalis (EO) in cisplatin-induced nephrotoxicity in rats and also to evaluate the mechanism of its nephroprotection. The study was done on male albino Wistar rats. They were divided into six groups (n = 6) viz. control, cisplatin-control, cisplatin and EO (150, 300, and 600 mg/kg; p.o. respectively in different groups) and EO only (600 mg/kg; p.o. only). EO was administered orally to the rats for a period of 10 days and on the 7th day, a single injection of cisplatin (8 mg/kg; i.p.) was administered to the cisplatin-control and EO treatment groups. The rats were sacrificed on the 10th day. Cisplatin-control rats had deranged renal function parameters and the kidney histology confirmed the presence of acute tubular necrosis. Furthermore, there were increased oxidative stress, apoptosis and inflammation along with higher expression of MAPK pathway proteins in the rat kidney from the cisplatin-control group. Contrary to this, EO (600 mg/kg) significantly normalized renal function, bolstered antioxidant status and ameliorated histological alterations. The inflammation and apoptosis were markedly lower in comparison to cisplatin-control rats. Furthermore, EO (600 mg/kg) inhibited MAPK phosphorylation which was instrumental in preserving renal function and morphology. In conclusion, the results of our study demonstrated that EO attenuated cisplatin-induced nephrotoxicity in rats through suppression of MAPK induced inflammation and apoptosis. PMID:27752245

  5. Efficacy of dietary antioxidants combined with a chemotherapeutic agent on human colon cancer progression in a fluorescent orthotopic mouse model.

    PubMed

    Ma, Huaiyu; Das, Tapas; Pereira, Suzette; Yang, Zhijian; Zhao, Ming; Mukerji, Pradip; Hoffman, Robert M

    2009-07-01

    We report here the efficacy of dietary antioxidants in combination with chemotherapy on tumor growth in the orthotopic COLO-205-green fluorescent protein (GFP) human colon cancer mouse model. The orthotopically-transplanted nude mice used for the study were randomly divided into 5 groups (A-E) after surgical orthotopic implantation (SOI) of tumor tissue. The following diets were given: Diet A, modified AIN-93M mature rodent diet with 4% fish oil; Diet B, modified AIN-93M which contains added antioxidants vitamin A, vitamin E, and selenium at levels present in the standard AIN-93M diet; Diet C, Diet A without added antioxidants vitamin A, vitamin E, or selenium; Diet D, Diet A with 5 times the amount of added antioxidants vitamin A, vitamin E, and selenium present in Diet B. Cisplatin, 7 mg/kg, was administered intraperitoneally on day 16 after SOI. Throughout the course of treatment, noninvasive whole-body imaging, based on the GFP expression of the tumor, permitted visualization of tumor progression. At sacrifice, the mean tumor weights showed significant statistical differences in all of the treated groups compared to the negative control (no cisplatin treatment) (p effective against tumor growth in combination with cisplatin in the fluorescent mouse model of colon cancer COLO-205 GFP. The results of the present study therefore indicate enhancement of cisplatin efficacy by high-dose antioxidants in combination with fish oil for colon cancer progression and suggests the design of clinical trials for this regimen.

  6. Apoptosis-like cell death pathways in the unicellular parasite Toxoplasma gondii following treatment with apoptosis inducers and chemotherapeutic agents: a proof-of-concept study.

    PubMed

    Ni Nyoman, Ayu Dewi; Lüder, Carsten G K

    2013-06-01

    Ancient pathways of an apoptosis-like cell death have been identified in unicellular eukaryotes including protozoan parasites. Here, we examined programmed cell death in the apicomplexan Toxoplasma gondii which is a common intracellular pathogen of humans and warm-blooded animals. Treatment of extracellular T. gondii with various pro-apoptotic stimuli significantly induced DNA strand breaks as revealed by TUNEL and flow cytometry. Using staurosporine or miltefosine as pro-apoptotic stimuli, parasites also presented a reduced cell size, i.e. pyknosis and externalized phosphatidylserine while the plasma membrane remained intact. Importantly, staurosporine also induced DNA strand breaks in intracellular T. gondii. Data mining of the Toxoplasma genome resource identified 17 putative cell death-associated genes encoding proteases, a nuclease and several apoptosis regulators. Staurosporine-treated parasites but not controls strongly up-regulated several of these genes in a time-dependent fashion with a putative PDCD2 protein being more than 100-fold up-regulated. However, the mitochondrial membrane potential (ΔΨ(m)) remained intact and caspase-like activity increased only slightly during staurosporine-triggered cell death. As compared to staurosporine, the transcriptional response of parasites to miltefosine was more restricted but PDCD2 was again strongly induced. Furthermore, T. gondii lost their ΔΨ(m) and rapidly presented strong caspase-like activity during miltefosine treatment. Consequently, protease inhibitors abrogated miltefosine-induced but not staurosporine-induced Toxoplasma cell death. Finally, toxoplasmacidal drugs triggered DNA strand breaks in extracellular T. gondii. Interestingly, clindamycin also induced markers of an apoptosis-like cell death in intracellular parasites. Together, the data indicate that T. gondii possesses ancient apoptosis-like cell death machinery which can be triggered by chemotherapeutic agents.

  7. Pharmacogenomics as a risk mitigation strategy for chemotherapeutic cardiotoxicity.

    PubMed

    Jensen, Brian C; McLeod, Howard L

    2013-01-01

    Damage to the heart can result from both traditional chemotherapeutic agents, such as doxorubicin, and newer 'targeted' therapies, such as trastuzumab. This chemotherapeutic cardiotoxicity is potentially life-threatening and necessitates limiting or discontinuing an otherwise-effective cancer treatment. Clinical strategies focus on surveillance rather than prevention, although there are no specific therapies for this highly morbid adverse effect. Current models for prospectively predicting risk of chemotherapeutic cardiotoxicity are limited. Cardiotoxicity can occur idiosyncratically in patients without obvious demographic risk factors, suggesting a genetically determined susceptibility, and candidate-gene studies have identified a limited number of variants that increase risk. In this commentary we indicate a need for more powerful means to identify risk prospectively, and suggest that broad pharmacogenomic approaches may be fruitful.

  8. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    PubMed

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  9. Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 9. Novel heterobimetallic macrocycles and related hydrosoluble hexacations as potentially active photo/chemotherapeutic anticancer agents.

    PubMed

    Donzello, Maria Pia; Vittori, Daniela; Viola, Elisa; Manet, Ilse; Mannina, Luisa; Cellai, Luciano; Monti, Sandra; Ercolani, Claudio

    2011-08-15

    New homo- and heterobimetallic porphyrazine complexes of general formula [(M'Cl(2))LM] (L = tetrakis-2,3-[5,6-di-(2-pyridyl)pyrazino]porphyrazinato dianion), with M = Zn(II), Mg(II)(H(2)O), or Pd(II) in the central cavity and one M'Cl(2) unit (M' = Pd(II), Pt(II)) peripherally coordinated at the pyridine N atoms of one of the dipyridinopyrazine fragments, were prepared and characterized by elemental analyses and IR/UV-visible spectroscopy. Related water-soluble salt-like species, carrying the hexacations [(PtCl(2))(CH(3))(6)LM](6+) (neutralized by I(-) ions), were also prepared and similarly characterized. Retention of clathrated water molecules is a common feature of all the compounds. A detailed (1)H and (13)C NMR investigation in dimethylformamide (DMF-d(7)) and dimethyl sulfoxide (DMSO-d(6)) provided useful information on the type of arrangement in the neutral and hexacationic species of the metalated dipyridinopyrazine fragments, in which the metal centers (Pd(II)/Pt(II)) are bound to the pyridine N atoms ("py-py" coordination) with formation of N(2(pyr))PdCl(2) or N(2(pyr))PtCl(2) coordination sites, the latter one featuring a cis-platin-like functionality. Data obtained in DMF solution of the quantum yield (Φ(Δ)) for the generation of singlet oxygen, (1)O(2), the cytotoxic agent in photodynamic therapy (PDT), indicate that all the neutral and charged complexes, among them particularly those carrying centrally Zn(II) or Pd(II), exhibit excellent photosensitizing properties, this qualifying the externally platinated complexes as potential bimodal PDT/chemotherapeutic anticancer agents. Fluorescence data (Φ(F)) provided additional information on the photoactivity of all the species studied. The following companion paper describes the observed interaction of the Zn(II) hexacation [(PtCl(2))(CH(3))(6)LZn](6+) with a G-quadruplex (G4) structure of the telomeric DNA sequence 5'-d[AGGG(TTAGGG)(3)]-3' in water. © 2011 American Chemical Society

  10. Ethanol Extract of Oldenlandia diffusa - an Effective Chemotherapeutic for the Treatment of Colorectal Cancer in Humans: -Anti-Cancer Effects of Oldenlandia diffusa.

    PubMed

    Lee, Soojin; Shim, Ji Hwan; Gim, Huijin; Park, Hyun Soo; Kim, Byung Joo

    2016-03-01

    Oldenlandia diffusa is traditionally used to relieve the symptoms of and to treat various diseases, but its anti-cancer activity has not been well studied. In the present study, the authors investigated the anti-cancer effects of an ethanol extract of Oldenlandia diffusa (EOD) on HT-29 human adenocarcinoma cells. Cells were treated with different concentrations of an EOD, and cell death was assessed by using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Analyses of the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial membrane depolarizations were conducted to confirm cell death by apoptosis. Also, intracellular reactive oxygen species (ROS) generation was determined using carboxy-H2DCFDA (5-(and-6)-carboxy-20,70-dichlorodihydrofluorescein diacetate). EOD inhibited the proliferation of HT-29 cells for 24 hours by 78.6% ± 8.1% at 50 μg/mL, 74.4% ± 4.6% at 100 μg/mL, 65.9% ± 5.2% at 200 μg/mL, 51.4% ± 6.2% at 300 μg/mL, and by 41.7% ± 8.9% at 400 μg/mL, and treatment for 72 hours reduced the proliferation at the corresponding concentrations by 43.3% ± 8.8%, 24.3 ± 5.1 mV, 13.5 ± 3.2 mV, 6.5 ± 2.3 mV, and by 2.6 ± 2.3 mV. EOD increased the number of cells in the sub-G1 peak in a dose-dependent manner. The mitochondrial membrane depolarization was elevated by EOD. Also, caspase activities were dose-dependently elevated in the presence of EOD, and these activities were repressed by a pan-caspase inhibitor (zVAD-fmk). The ROS generation was significantly increased by EOD and N-acetyl-L-cysteine (NAC; a ROS scavenger) remarkably abolished EOD-induced cell death. In addition, a combination of sub-optimal doses of EOD and chemotherapeutic agents noticeably suppressed the growth of HT-29 cancer cells. These results indicate that EOD might be an effective chemotherapeutic for the treatment of human colorectal cancer.

  11. Modification of polyethylene glycol onto solid lipid nanoparticles encapsulating a novel chemotherapeutic agent (PK-L4) to enhance solubility for injection delivery

    PubMed Central

    Fang, Yi-Ping; Wu, Pao-Chu; Huang, Yaw-Bin; Tzeng, Cherng-Chyi; Chen, Yeh-Long; Hung, Yu-Han; Tsai, Ming-Jun; Tsai, Yi-Hung

    2012-01-01

    Background The synthetic potential chemotherapeutic agent 3-Chloro-4-[(4-methoxyphenyl) amino]furo[2,3-b]quinoline (PK-L4) is an analog of amsacrine. The half-life of PK-L4 is longer than that of amsacrine; however, PK-L4 is difficult to dissolve in aqueous media, which is problematic for administration by intravenous injection. Aims To utilize solid lipid nanoparticles (SLNs) modified with polyethylene glycol (PEG) to improve the delivery of PK-L4 and investigate its biodistribution behavior after intravenous administration. Results The particle size of the PK-L4-loaded SLNs was 47.3 nm and the size of the PEGylated form was smaller, at 28 nm. The entrapment efficiency (EE%) of PK-L4 in SLNs with and without PEG showed a high capacity of approximately 100% encapsulation. Results also showed that the amount of PK-L4 released over a prolonged period from SLNs both with and without PEG was comparable to the non-formulated group, with 16.48% and 30.04%, respectively, of the drug being released, which fit a zero-order equation. The half-maximal inhibitory concentration values of PK-L4-loaded SLNs with and those without PEG were significantly reduced by 45%–64% in the human lung carcinoma cell line (A549), 99% in the human breast adenocarcinoma cell line with estrogen receptor (MCF7), and 95% in the human breast adenocarcinoma cell line (MDA-MB-231). The amount of PK-L4 released by SLNs with PEG was significantly higher than that from the PK-L4 solution (P < 0.05). After intravenous bolus of the PK-L4-loaded SLNs with PEG, there was a marked significant difference in half-life alpha (0.136 ± 0.046 hours) when compared with the PK-L4 solution (0.078 ± 0.023 hours); also the area under the curve from zero to infinity did not change in plasma when compared to the PK-L4 solution. This demonstrated that PK-L4-loaded SLNs were rapidly distributed from central areas to tissues and exhibited higher accumulation in specific organs. The highest deposition of PK-L4-loaded SLNs

  12. Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells.

    PubMed

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Siddiqui, Imtiaz Ahmad; Verma, Ajit Kumar; Mukhtar, Hasan

    2016-12-01

    Although treatment of prostate cancer has improved over the past several years, taxanes, such as cabazitaxel, remain the only form of effective chemotherapy that improves survival in patients with metastatic castration-resistant prostate cancer. However, the effectiveness of this class of drugs has been associated with various side effects and drug resistance. We previously reported that fisetin, a hydroxyflavone, is a microtubule-stabilizing agent and inhibits prostate cancer cell proliferation, migration, and invasion and suggested its use as an adjuvant for treatment of prostate and other cancer types. In this study, we investigated the effect of fisetin in combination with cabazitaxel with the objective to achieve maximum therapeutic benefit, reduce dose and toxicity, and minimize or delay the induction of drug resistance and metastasis. Our data show for the first time that a combination of fisetin (20 μmol/L) enhances cabazitaxel (5 nmol/L) and synergistically reduces 22Rν1, PC-3M-luc-6, and C4-2 cell viability and metastatic properties with minimal adverse effects on normal prostate epithelial cells. In addition, the combination of fisetin with cabazitaxel was associated with inhibition of proliferation and enhancement of apoptosis. Furthermore, combination treatment resulted in the inhibition of tumor growth, invasion, and metastasis when assessed in two in vivo xenograft mouse models. These results provide evidence that fisetin may have therapeutic benefit for patients with advanced prostate cancer through enhancing the efficacy of cabazitaxel under both androgen-dependent and androgen-independent conditions. This study underscores the benefit of the combination of fisetin with cabazitaxel for the treatment of advanced and resistant prostate cancer and possibly other cancer types. Mol Cancer Ther; 15(12); 2863-74. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models

    PubMed Central

    PERERA, YASSER; TORO, NEYLEN DEL; GOROVAYA, LARISA; FERNANDEZ-DE-COSSIO, JORGE; FARINA, HERNAN G.; PEREA, SILVIO E.

    2014-01-01

    CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives. PMID:25279177

  14. Synergistic interactions of the anti-casein kinase 2 CIGB-300 peptide and chemotherapeutic agents in lung and cervical preclinical cancer models.

    PubMed

    Perera, Yasser; Toro, Neylen Del; Gorovaya, Larisa; Fernandez-DE-Cossio, Jorge; Farina, Hernan G; Perea, Silvio E

    2014-11-01

    CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives.

  15. Effects of St. John’s Wort and Vitamin E on Breast Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2003-05-01

    pharmacokinetics of doxorubicin related to dietary intake of vitamin E or St . John’s wort . Rats ingesting St . John’s wort had similar survival at each...doxorubicin. Our studies indicate that vitamin E and St . John’s wort neither increase nor protect against the toxicity of doxorubicin or docetaxel in rats.

  16. Stable transfection of extrinsic Smac gene enhances apoptosis-inducing effects of chemotherapeutic drugs on gastric cancer cells

    PubMed Central

    Zheng, Li-Duan; Tong, Qiang-Song; Wang, Liang; Liu, Jun; Qian, Wei

    2005-01-01

    AIM: To explore the feasibility of enhancing apoptosis-inducing effects of chemotherapeutic drugs on human gastric cancer cells by stable transfection of extrinsic Smac gene. METHODS: After Smac gene was transferred into gastric cancer cell line MKN-45, subclone cells were obtained by persistent G418 selection. Cellular Smac gene expression was determined by RT-PCR and Western blotting. After treatment with mitomycin (MMC) as an apoptotic inducer, in vitro cell growth activities were investigated by trypan blue-staining method and MTT colorimetry. Cell apoptosis and its rates were determined by electronic microscopy, annexin V-FITC and propidium iodide staining flow cytometry. Cellular caspase-3 protein expression and its activities were assayed by Western blotting and colorimetry. RESULTS: When compared with MKN-45 cells, the selected subclone cell line MKN-45/Smac had significantly higher Smac mRNA (3.12±0.21 vs 0.82±0.14, t = 7.52, P<0.01) and protein levels (4.02±0.24 vs 0.98±0.11, t = 8.32, P<0.01). After treatment with 10 μg/mL MMC for 6-24 h, growth inhibition rate of MKN-45/Smac (15.8±1.2-54.8±2.9%) was significantly higher than that of MKN-45 (5.8±0.4- 24.0±1.5%, t = 6.42, P<0.01). Partial MKN-45/Smac cancer cells presented characteristic morphological changes of apoptosis under the electronic microscope with an apoptosis rate of 36.4±2.1%, which was significantly higher than that of MKN-45 (15.2±0.8%, t = 9.25, P<0.01). Compared with MKN-45, caspase-3 expression levels in MKN-45/Smac were improved significantly (3.39±0.42 vs 0.96±0.14, t = 8.63, P<0.01), while its activities were 3.25 times as many as those of MKN-45 (0.364±0.010 vs 0.112±0.007, t = 6.34, P<0.01). CONCLUSION: Stable transfection of extrinsic Smac gene and its over-expression in gastric cancer cell line can significantly enhance cellular caspase-3 expression and activities, ameliorate apoptosis-inducing effects of mitomycin C on cancer cells, which is a novel strategy to

  17. Enantiomeric fluoro-substituted benzothiazole Schiff base-valine Cu(II)/Zn(II) complexes as chemotherapeutic agents: DNA binding profile, cleavage activity, MTT assay and cell imaging studies.

    PubMed

    Alizadeh, Rahman; Yousuf, Imtiyaz; Afzal, Mohd; Srivastav, Saurabh; Srikrishna, Saripella; Arjmand, Farukh

    2015-02-01

    To evaluate the biological preference of chiral drugs toward DNA target, new metal-based chemotherapeutic agents of Cu(II) and Zn(II), l-/d-fluorobenzothiazole Schiff base-valine complexes 1 &2 (a and b), respectively were synthesized and thoroughly characterized. Preliminary in vitro DNA binding studies of ligand L and complexes 1 &2 (a and b) were carried out in Tris-HCl buffer at pH 7.2 to demonstrate the chiral preference of l-enantiomeric complexes over the d-analogues. The extent of DNA binding propensity was ascertained quantitatively by Kb, K and Ksv values which revealed greater binding propensity by l-enantiomeric Cu(II) complex 1a and its potency to act as a chemotherapeutic agent. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1a as compared to 2avia hydrolytic cleavage mechanism. The complexes 1 &2 (a and b) were also screened for antimicrobial activity which demonstrated significantly good activity for l-enantiomeric complexes. Furthermore, cytotoxicity of the complexes 1a and 1b was evaluated by the MTT assay on human HeLa cancer cell line which implicated that more than 50% cells were viable at 15μM. These results were further validated by cell imaging studies which demonstrated the nuclear blebbing. Copyright © 2015. Published by Elsevier B.V.

  18. Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model.

    PubMed

    Dickey, Jennifer S; Gonzalez, Yanira; Aryal, Baikuntha; Mog, Steven; Nakamura, Asako J; Redon, Christophe E; Baxa, Ulrich; Rosen, Elliot; Cheng, Gang; Zielonka, Jacek; Parekh, Palak; Mason, Karen P; Joseph, Joy; Kalyanaraman, Balaraman; Bonner, William; Herman, Eugene; Shacter, Emily; Rao, V Ashutosh

    2013-01-01

    Several front-line chemotherapeutics cause mitochondria-derived, oxidative stress-mediated cardiotoxicity. Iron chelators and other antioxidants have not completely succeeded in mitigating this effect. One hindrance to the development of cardioprotectants is the lack of physiologically-relevant animal models to simultaneously study antitumor activity and cardioprotection. Therefore, we optimized a syngeneic rat model and examined the mechanisms by which oxidative stress affects outcome. Immune-competent spontaneously hypertensive rats (SHRs) were implanted with passaged, SHR-derived, breast tumor cell line, SST-2. Tumor growth and cytokine responses (IL-1A, MCP-1, TNF-α) were observed for two weeks post-implantation. To demonstrate the utility of the SHR/SST-2 model for monitoring both anticancer efficacy and cardiotoxicity, we tested cardiotoxic doxorubicin alone and in combination with an established cardioprotectant, dexrazoxane, or a nitroxide conjugated to a triphenylphosphonium cation, Mito-Tempol (4) [Mito-T (4)]. As predicted, tumor reduction and cardiomyopathy were demonstrated by doxorubicin. We confirmed mitochondrial accumulation of Mito-T (4) in tumor and cardiac tissue. Dexrazoxane and Mito-T (4) ameliorated doxorubicin-induced cardiomyopathy without altering the antitumor activity. Both agents increased the pro-survival autophagy marker LC3-II and decreased the apoptosis marker caspase-3 in the heart, independently and in combination with doxorubicin. Histopathology and transmission electron microscopy demonstrated apoptosis, autophagy, and necrosis corresponding to cytotoxicity in the tumor and cardioprotection in the heart. Changes in serum levels of 8-oxo-dG-modified DNA and total protein carbonylation corresponded to cardioprotective activity. Finally, 2D-electrophoresis/mass spectrometry identified specific serum proteins oxidized under cardiotoxic conditions. Our results demonstrate the utility of the SHR/SST-2 model and the potential of

  19. Efficacy of combined photothermal therapy and chemotherapeutic drugs

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Shih, En-Chung; Hirschberg, Henry

    2015-03-01

    Hyperthermia has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of a number of commonly used chemotherapeutic drugs (bleomycin, doxorubicin and cisplatin) with photothermal therapy (PTT)-induced hyperthermia in an in vitro system consisting of human head and neck squamous carcinoma cells and murine lymphocytic monocytes which were used as delivery vehicles for gold-silica nanoshells (AuNS). PTT was accomplished via near infra-red (NIR) irradiation of AuNS. The results showed that PTT combined with cisplatin resulted in only a mild degree of synergism while additive effects were observed for concurrent treatments of PTT and doxorubicin and PTT and bleomycin.

  20. A critical ethnography of communication processes involving the management of oral chemotherapeutic agents by patients with a primary diagnosis of colorectal cancer: study protocol.

    PubMed

    Mitchell, Gary; Porter, Sam; Manias, Elizabeth

    2015-04-01

    To describe the protocol used to examine the processes of communication between health professionals, patients and informal carers during the management of oral chemotherapeutic medicines to identify factors that promote or inhibit medicine concordance. Ideally communication practices about oral medicines should incorporate shared decision-making, two-way dialogue and an equality of role between practitioner and patient. While there is evidence that healthcare professionals are adopting these concordant elements in general practice there are still some patients who have a passive role during consultations. Considering oral chemotherapeutic medications, there is a paucity of research about communication practices which is surprising given the high risk of toxicity associated with chemotherapy. A critical ethnographic design will be used, incorporating non-participant observations, individual semi-structured and focus-group interviews as several collecting methods. Observations will be carried out on the interactions between healthcare professionals (physicians, nurses and pharmacists) and patients in the outpatient departments where prescriptions are explained and supplied and on follow-up consultations where treatment regimens are monitored. Interviews will be conducted with patients and their informal carers. Focus-groups will be carried out with healthcare professionals at the conclusion of the study. These several will be analysed using thematic analysis. This research is funded by the Department for Employment and Learning in Northern Ireland (Awarded February 2012). Dissemination of these findings will contribute to the understanding of issues involved when communicating with people about oral chemotherapy. It is anticipated that findings will inform education, practice and policy. © 2014 John Wiley & Sons Ltd.

  1. [Effects of cucurmosin combined with common chemotherapeutics on proliferation and apoptosis of NB4 cells].

    PubMed

    Xle, Jie-Ming; Liu, Mei; Liu, Ting-Bo; Chen, Ming-Huang; Yang, Ai-Qin; Yang, Pei

    2012-12-01

    This study was aimed to investigate the proliferation inhibition and apoptosis induction of cucurmosin (CUS) combined with all trans-retinoic acid (ATRA) or arsenic trioxide (ATO) on human acute promyelocytic leukemia cell line NB4. MTT method was used to determine the proliferative inhibition of CUS combined with ATRA or ATO on NB4 cells, and flow cytometry was used to determine the apoptosis induction effect of CUS combined with ATRA or ATO on NB4 cells. Jin's formula was used to assess the synergistic effect of this combinations. The results showed that, compared with single drug, the proliferation inhibitory ratio and apoptotic ratio of CUS combined with ATRA or ATO on NB4 cells was higher than CUS, ATRA and ATO alone. The synergistic index (q) were all larger than 0.85, and the combined effects were significant at low concentrations. It is concluded that the CUS combined with ATRA or ATO synergistically increases the effects of proliferative inhibition and apoptosis induction on NB4 cells.

  2. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  3. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  4. Chemotherapeutic approach to control of onchocerciasis.

    PubMed

    Aziz, M A

    1986-01-01

    Onchocerciasis is one of the leading causes of blindness in the developing world. An estimated 40 million people are afflicted with this parasitic disease. World Health Organization vector control programs have had considerable success in interrupting the parasite transmission cycle in selected savanna regions of West Africa, but chemotherapeutic agents suitable for massive treatment campaigns have not been available. Controlled clinical studies have indicated that a single oral dose of ivermectin is safer and more effective therapy for onchocerciasis than the the standard seven- to 10-day course of diethylcarbamazine, the current drug of choice, and that ivermectin causes a more prolonged reduction in dermal microfilarial density. Patients treated with ivermectin are unable to infect the blackfly vector as long as the dermal microfilarial density remains low; therefore, once- or twice-yearly administration of ivermectin in community-wide therapy programs, either alone or in combination with vector control measures, may successfully interrupt transmission of the parasite and eventually eliminate the disease.

  5. Proteomic analysis of blood cells in fish exposed to chemotherapeutics: evidence for long term effects.

    PubMed

    Pierrard, Marie-Aline; Kestemont, Patrick; Phuong, Nguyen Thanh; Tran, Minh Phu; Delaive, Edouard; Thezenas, Marie-Laëtitia; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-04-18

    Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption.

  6. Inhibitory effects of chemotherapeutics on human organic anion transporter hOAT4

    PubMed Central

    Toh, May Fern; Suh, Wonmo; Wang, Haoxun; Zhou, Peter; Hu, Longqin; You, Guofeng

    2016-01-01

    Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters which play critical roles in the body disposition of clinically important drugs. hOAT4 is expressed in the kidney and placenta. In the current study, we examined the inhibitory effects of 101 anticancer drugs from a clinical drug library on hOAT4 transport activity. The studies were carried out in hOAT4-expressing human kidney HEK-293 cells and human placenta BeWo cells. Among these drugs, only chlorambucil and cabazitaxel demonstrated more than 50% cis-inhibitory effect on hOAT4-mediated uptake of 3H-labeled estrone sulfate, a prototypical substrate for the transporter. The IC50 values for chlorambucil and cabazitaxel were 44.28 and 3.5 µM respectively. Dixon plot analysis revealed that inhibition by chlorambucil was competitive with a Ki = 55.73 µM whereas inhibition by cabazitaxel was non-competitive with a Ki = 1.78 µM. Our results demonstrated that chlorambucil and cabazitaxel were inhibitors of hOAT4. Furthermore, by comparing our data with clinically relevant exposures of these drugs, we conclude that the propensity for chlorambucil and cabazitaxel to cause drug-drug interaction through inhibition of hOAT4 is low. PMID:27335682

  7. Chemotherapeutic (cyclophosphamide) effects on rat breast tumor hemodynamics monitored by multi-channel NIRS

    NASA Astrophysics Data System (ADS)

    Kim, Jae G.; Zhao, Dawen; Mason, Ralph P.; Liu, Hanli

    2005-04-01

    We previously suggested that the two time constants quantified from the increase of tumor oxyhemoglobin concentration, ▵ [HbO2], during hyperoxic gas intervention are associated with two blood flow/perfusion rates in well perfused and poorly perfused regions of tumors. In this study, our hypothesis is that when cancer therapy is applied to a tumor, changes in blood perfusion will occur and be detected by the NIRS. For experiments, systemic chemotherapy, cyclophosphamide (CTX), was applied to two groups of rats bearing syngeneic 13762NF mammary adenocarcinomas: one group received a single high dose i. p. (200 mg/kg CTX) and the other group continuous low doses (20 mg/kg CTX i. p. for 10 days). Time courses of changes in tumor ▵ [HbO2] were measured at four different locations on the breast tumors non-invasively with an inhaled gas sequence of air-oxygen-air before and after CTX administration. Both rat body weight and tumor volume decreased after administration of high dose CTX, but continuous low doses showed decrease of tumor volume only. Baselines (without any therapy) intra- and inter-tumor heterogeneity of vascular oxygenation during oxygen inhalation were similar to our previous observations. After CTX treatment, significant changes in vascular hemodynamic response to oxygen inhalation were observed from both groups. By fitting the increase of ▵ [HbO2] during oxygen inhalation, we have obtained changes of vascular structure ratio and also of perfusion rate ratio before and after chemotherapy. The preliminary results suggest that cyclophosphamide has greatest effect on the well perfused tumor vasculature. Overall, our study supports our earlier hypothesis, proving that the effects of chemotherapy in tumor may be monitored non-invasively by using NIRS to detect changes of hemodynamics induced with respiratory challenges.

  8. Molecular effects of chemotherapeutic drugs and their modulation by antioxidants in the testis.

    PubMed

    Narayana, Kilarkaje; Al-Bader, Maie; Mousa, Alyaa; Khan, Khalid M

    2012-01-15

    Cisplatin-based chemotherapy regimens are preferred in the treatment of a variety of cancers. The present study investigated early cumulative molecular effects of therapeutic dose-levels of bleomycin, etoposide and cisplatin (BEP) in the testis and their modulation by an antioxidant cocktail (AO). Adult male Sprague-Dawley rats (N=7/group [G]) were treated with BEP as follows: G1 - control; G2 - AO (α-tocopherol [100 mg/kg], l-ascorbic acid [50 mg/kg], Zn [40 mg/l] and Se [100 μg/l]); G3 - B, 1.5 mg/kg on day 2; E, 15 mg/kg and P, 3 mg/kg for 4 days, and G4 - similar to G3 but also treated with AO for 4 days. In G3, the testis weight, sperm count and motility, and activities of enzymatic antioxidants decreased and lipid peroxidation increased compared to that in G1 (P<0.05). Seminiferous epithelial sloughing and degeneration were observed. In G3, mRNA levels of p53, Bcl-2 and Bax were unaltered but protein expression of p53 and Bax was up-regulated and that of Bcl-2 was down-regulated (P<0.05). These changes led to an increase in terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) positive germ cells indicating cell death (P<0.05). The AO recovered the BEP-induced molecular alterations to control levels. The mechanism of BEP-induced early testicular damage involves the initiation of oxidative stress, up-regulation of pro-apoptotic proteins and induction of cell death. Further, the induced testicular structural changes are negligible and less than those observed in single drug exposure studies reported in literature. The AO significantly ameliorates the BEP-induced pathogenesis of testicular damage suggesting its potential therapeutic uses.

  9. A dual-responsive superparamagnetic Fe 3O 4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM-19

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Sun, Guoying; Li, Qiuyu; Wang, Enbo; Gu, Jianmin

    2010-10-01

    A bicontrollable drug release system was developed by layer-by-layer assembly of poly(allylamine hydrochloride) (PAH)/sodium poly(styrene sulfonate) (PSS) multilayers onto a Fe 3O 4/SiO 2 composite core. The saturated magnetization of this system reaches up to 38.6 emu/g at RT, making targeting easily controlled by an external magnetic field. Meanwhile, the packing of the polyelectrolyte multilayers is sensitive to pH values, generating a pH-switch on-off mode for the release of loaded drugs. In this specific case, the release of a chemotherapeutic polyoxometalate K 7Ti 2W 10PO 40·6H 2O (PM-19) was tested. Transmission electron microscopy (TEM) was used to examine the nanostructure of the composite drug release system. UV-vis absorption was used to monitor the drug release. Fourier transform infrared (FTIR), Powder X-ray diffraction, and Elemental analyses were used to study the composition of tested systems. The structure and composition of the composite system was also studied using magnetism measurement and nitrogen adsorption-desorption.

  10. [A meta-analysis of the curative effects of carboplatin-based and cisplatin-based chemotherapeutic regimens on advance non-small cell lung cancer].

    PubMed

    Jiang, Jing-wei; Liang, Xiao-hua; Zhou, Xin-li; Huang, Ruo-fan

    2006-10-10

    To evaluate whether there is a difference in the curative effect of carboplatin-based and cisplatin-based chemotherapeutic regimens on advance non-small cell lung cancer (NSCLC). The databases PudMed, CENTRAL, and Chinese biomedical database were retrieved by using the key words "non-small cell lung cancer" or "carcinoma, non-small cell lung" so as to search the materials about the randomized controlled clinical trials that had compared the curative effects of carboplatin-based and cisplatin-based chemotherapeutic regimens on advance NSCLC. A meta-analysis was conducted. Eighteen documents about randomized controlled clinical trials, including 6478 patients, from the retrieved 3531 documents accorded to the demand of enrollment. The overall response rates of the carboplatin-based and cisplatin-based chemotherapeutic groups were both 27% (RR = 0.93, 95% CI = 0.86 approximately 1.01, P = 0.10). Neither funnel plot nor rank correlation test regarding response rate indicated the existence of publication bias (chi(2) = 18.63, P = 0.63). The 0ne-year survival rate of the carboplatin-based regimen group was 36%, not significantly different from that of the cisplatin-based regimen group (35%, RR = 1.04, 95% CI = 0.93 - 1.17, P = 0.5). Sensitive analysis confirmed the non-existence of differences in the overall response rate and one-year survival rate between these 2 groups. The curative effects of the carboplatin-based and cisplatin-based chemotherapeutic regimens are similar. The choice of carboplatin or cisplatin depends on the toxicity of the drugs and the patients' tolerance.

  11. In vitro DNA binding profile of enantiomeric dinuclear Cu(II)/Ni(II) complexes derived from l-/d-histidine-terepthaldehyde reduced Schiff base as potential chemotherapeutic agents.

    PubMed

    Yousuf, Imtiyaz; Arjmand, Farukh

    2016-11-01

    New chiral reduced Schiff base ligands, L1 and L2 derived from l-/d-histidine and terepthaldehyde, and their Cu(II) and Ni(II) dinuclear complexes 1 &2 (a and b) were synthesized and thoroughly characterized by various spectroscopic techniques. Comparative binding profile of both l-/d-enantiomeric Cu(II) and Ni(II) complexes with ct-DNA was studied by employing optical and spectroscopic techniques to evaluate their enantiopreferential selectivity towards molecular target DNA and thereby explore their relative chemotherapeutic potential. Quantitative assessment of DNA binding propensity was ascertained by calculating Kb, K and Ksv values of 1 &2 (a and b) which demonstrated higher binding affinity of l-enantiomeric Cu(II) complex, 1a and followed the order as 1a>1b>2a>2b. Scanning electron microscopy (SEM) was used to analyze the morphological changes of the DNA condensate in presence of complexes 1 (a and b). The SEM micrographs condensates revealed morphological transitions and formation of different structural features implicating the condensation process between the complexes and biomolecule occurred to form compact massive structures. The gel electrophoretic assay of complex 1a was carried out with pBR322 plasmid DNA which revealed an efficient cleaving ability of the complex via oxidative pathway with the involvement of singlet oxygen ((1)O2) and the superoxide anion (O2(•-)) radicals as the ROS responsible the cleavage reactions. Molecular docking studies of 1 (a and b) with DNA revealed selective recognition of G-C residues of the narrow minor groove of the DNA duplex and complex 1a demonstrated binding affinity towards DNA ascertained from its higher binding energy values. Furthermore, the cytotoxic assessment of 1a was examined on a panel of cancer cell lines of different histological origin employing SRB assay which revealed remarkably good cytotoxic activity towards HL60, HeLa and MCF7 cancer cell lines.

  12. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells

    PubMed Central

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David Lawson

    2016-01-01

    Intraperitoneal chemotherapy together with cytoreductive surgery is the standard of care for a number of peritoneal surface malignancies. However, this approach fails to maintain the complete response and disease recurs due to microscopic residual disease. Although safer than systemic chemotherapy regimens, locoregional treatment with chemotherapeutics can induce toxicity which is a major concern affecting the patient’s treatment protocol and outcome. For an enhanced treatment efficacy, efforts should be made to maximize cytotoxic effects of chemotherapeutic agents on tumor cells while minimizing their toxic effects on host cells. Bromelain and N-acetylcysteine are two natural agents with good safety profiles shown to have anti-cancer effects. However, their interaction with chemotherapeutics is unknown. In this study, we investigated if these agents have the potential to sensitize in vitro gastrointestinal cancer models to cisplatin, paclitaxel, 5-fluorouracil, and vincristine. The drug-drug interaction was also analyzed. Our findings suggest that combination of bromelain and N-acetylcysteine with chemotherapeutic agents could give rise to an improved chemotherapeutic index in therapeutic approaches to peritoneal surface malignancies of gastrointestinal origin so that maximum benefits could result from less toxic and more patient-friendly doses. This represents a potentially efficacious strategy for the enhancement of microscopic cytoreduction and is a promising area for future research. PMID:27186409

  13. Double-Walled Microparticles-Embedded Self-Cross-Linked, Injectable, and Antibacterial Hydrogel for Controlled and Sustained Release of Chemotherapeutic Agents.

    PubMed

    Davoodi, Pooya; Ng, Wei Cheng; Yan, Wei Cheng; Srinivasan, Madapusi P; Wang, Chi-Hwa

    2016-09-07

    First-line cancer chemotherapy has been prescribed for patients suffered from cancers for many years. However, conventional chemotherapy provides a high parenteral dosage of anticancer drugs over a short period, which may cause serious toxicities and detrimental side effects in healthy tissues. This study aims to develop a new drug delivery system (DDS) composed of double-walled microparticles and an injectable hydrogel for localized dual-agent drug delivery to tumors. The uniform double-walled microparticles loaded with cisplatin (Cis-DDP) and paclitaxel (PTX) were fabricated via coaxial electrohydrodynamic atomization (CEHDA) technique and subsequently were embedded into injectable alginate-branched polyethylenimine. The findings show the uniqueness of CEHDA technique for simply swapping the place of drugs to achieve a parallel or a sequential release profile. This study also presents the simulation of CEHDA technique using computational fluid dynamics (CFD) that will help in the optimization of CEHDA's operating conditions prior to large-scale production of microparticles. The new synthetic hydrogel provides an additional diffusion barrier against Cis-DDP and confines premature release of drugs. In addition, the hydrogel can provide a versatile tool for retaining particles in the tumor resected cavity during the injection after debulking surgery and preventing surgical site infection due to its inherent antibacterial properties. Three-dimensional MDA-MB-231 (breast cancer) spheroid studies demonstrate a superior efficacy and a greater reduction in spheroid growth for drugs released from the proposed composite formulation over a prolonged period, as compared with free drug treatment. Overall, the new core-shell microparticles embedded into injectable hydrogel can serve as a flexible controlled release platform for modulating the release profiles of anticancer drugs and subsequently providing a superior anticancer response.

  14. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts

    PubMed Central

    TSUKIHARA, HIROSHI; NAKAGAWA, FUMIO; SAKAMOTO, KAZUKI; ISHIDA, KEIJI; TANAKA, NOZOMU; OKABE, HIROYUKI; UCHIDA, JUNJI; MATSUO, KENICHI; TAKECHI, TEIJI

    2015-01-01

    TAS-102 is a novel oral nucleoside antitumor agent that consists of trifluridine (FTD) and tipiracil hydrochloride (TPI) at a molecular ratio of 1:0.5, and was approved in Japan in March 2014 for the treatment of patients with unresectable advanced or recurrent colorectal cancer that is refractory to standard therapies. In the present study, we used colorectal cancer xenografts to assess whether the efficacy of TAS-102 could be improved by combining it with bevacizumab, cetuximab or panitumumab. TAS-102 was orally administered twice a day from day 1 to 14, and bevacizumab, cetuximab and panitumumab were administered intraperitoneally twice a week for 2 weeks. Growth inhibitory activity was evaluated based on the relative tumor volume (RTV) after 2 weeks of drug administration and time taken for the relative tumor volume to increase five-fold (RTV5). Tumor growth inhibition and RTV5 with TAS-102 and bevacizumab combination treatment were significantly better than those with TAS-102 or bevacizumab alone in the SW48 and HCT116 tumor models, and the concentration of phosphorylated FTD in tumors determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was higher in the TAS-102 and bevacizumab combination group than in the TAS-102 monotherapy group. The combination of TAS-102 and cetuximab or panitumumab was also significantly more effective than either monotherapy in the SW48 tumor model. There was no significant difference in the body weight between the mice treated with TAS-102 monotherapy and any of the combination therapies on day 29. Our preclinical findings indicate that the combination therapy of TAS-102, bevacizumab and cetuximab or panitumumab is a promising treatment option for colorectal cancer. PMID:25812794

  15. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts.

    PubMed

    Tsukihara, Hiroshi; Nakagawa, Fumio; Sakamoto, Kazuki; Ishida, Keiji; Tanaka, Nozomu; Okabe, Hiroyuki; Uchida, Junji; Matsuo, Kenichi; Takechi, Teiji

    2015-05-01

    TAS-102 is a novel oral nucleoside antitumor agent that consists of trifluridine (FTD) and tipiracil hydrochloride (TPI) at a molecular ratio of 1:0.5, and was approved in Japan in March 2014 for the treatment of patients with unresectable advanced or recurrent colorectal cancer that is refractory to standard therapies. In the present study, we used colorectal cancer xenografts to assess whether the efficacy of TAS-102 could be improved by combining it with bevacizumab, cetuximab or panitumumab. TAS-102 was orally administered twice a day from day 1 to 14, and bevacizumab, cetuximab and panitumumab were administered intraperitoneally twice a week for 2 weeks. Growth inhibitory activity was evaluated based on the relative tumor volume (RTV) after 2 weeks of drug administration and time taken for the relative tumor volume to increase five-fold (RTV5). Tumor growth inhibition and RTV5 with TAS-102 and bevacizumab combination treatment were significantly better than those with TAS-102 or bevacizumab alone in the SW48 and HCT116 tumor models, and the concentration of phosphorylated FTD in tumors determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was higher in the TAS-102 and bevacizumab combination group than in the TAS-102 monotherapy group. The combination of TAS-102 and cetuximab or panitumumab was also significantly more effective than either monotherapy in the SW48 tumor model. There was no significant difference in the body weight between the mice treated with TAS-102 monotherapy and any of the combination therapies on day 29. Our preclinical findings indicate that the combination therapy of TAS-102, bevacizumab and cetuximab or panitumumab is a promising treatment option for colorectal cancer.

  16. Efficacy of Combination Chemotherapy Using a Novel Oral Chemotherapeutic Agent, TAS-102, with Oxaliplatin on Human Colorectal and Gastric Cancer Xenografts.

    PubMed

    Nukatsuka, Mamoru; Nakagawa, Fumio; Takechi, Teiji

    2015-09-01

    TAS-102 is a novel oral nucleoside antitumor agent consisting of trifluridine (FTD) and the thymidine phosphorylase inhibitor tipiracil hydrochloride (at a molar ratio of 1:0.5) that was approved in Japan in 2014 for the treatment of unresectable advanced or recurrent colorectal cancer. In the present study, the enhancement of therapeutic efficacy using a combination of TAS-102 and oxaliplatin was evaluated in a xenograft-bearing nude mouse model of colorectal and gastric cancer. TAS-102 was orally administered twice-a-day from day 1 to 14, and oxaliplatin was administered intravenously on days 1 and 8. The in vivo growth-inhibitory activity was evaluated based on the tumor volume and the growth-delay period, was estimated based on the period required to reach a tumor volume five-times greater than the initial volume (RTV5). The tumor growth-inhibitory activity and RTV5 in mice administered TAS-102 with oxaliplatin were significantly superior to those associated with either monotherapy in mice with colorectal (HCT 116, SW-48; p<0.001) and gastric cancer (SC-2, MKN74; p<0.001). MKN74/5FU, a 5-fluorouracil-resistant MKN74 sub-line, was sensitive to both FTD and oxaliplatin in vitro. In vivo, TAS-102 alone was effective in MKN74/5FU, and its anti-tumor activity was significantly enhanced in combination with oxaliplatin (p<0.001). No significant decrease in body weight or toxicity was observed compared to either monotherapy. The present pre-clinical findings indicate that combination of TAS-102 and oxaliplatin is a promising treatment option for colorectal or gastric cancer, and can be utilized in both chemo-naïve tumors and recurrent tumors after 5-fluorouracil treatment. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Enhancing the Efficacy of Chemotherapeutic Breast Cancer Treatment with Nonanticoagulant Heparins

    DTIC Science & Technology

    2008-05-01

    intervals throughout the course of treatment. LMWH compounds (Enoxaparin or non- anticoagulant heparin NACH) given together with chemotherapeutic agent ... Anticoagulants , Antiplatelets , and Thrombolytics. 2004. SA Mousa (Ed). Humana Press Inc., 133-155, 2004. 11. Mousa SA, Mohamed S. Anti-angiogenic mechanisms...doxorubicin decreased tumor growth rate and prolong survival in animals bearing MCF7 wild-type tumors. These agents appeared to be less effective in

  18. Structural and spectral investigations of the recently synthesized chalcone (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one, a potential chemotherapeutic agent.

    PubMed

    Barakat, Assem; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Mabkhot, Yahia Nasser; Ali, M; Ghabbour, Hazem A; Fun, Hoong-Kun; Wadood, Abdul

    2015-01-01

    Chalcones (1,3-diaryl-2-propen-1-ones, represent an important subgroup of the polyphenolic family, which have shown a wide spectrum of medical and industrial application. Due to their redundancy in plants and ease of preparation, this category of molecules has inspired considerable attention for potential therapeutic uses. They are also effective in vivo as anti-tumor promoting, cell proliferating inhibitors and chemo preventing agents. Synthesis and molecular structure investigation of (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one (3) is reported. The structure of the title compound 3 is confirmed by X-ray crystallography. The optimized molecular structure of the studied compound is calculated using DFT B3LYP/6-311G (d,p) method. The calculated geometric parameters are in good agreement with the experimental data obtained from our reported X-ay structure. The calculated IR fundamental bands were assigned and compared with the experimental data. The electronic spectra of the studied compound have been calculated using the time dependant density functional theory (TD-DFT). The longest wavelength band is due to H → L (79 %) electronic transition which belongs to π-π* excitation. The (1)H- and (13)C-NMR chemical shifts were calculated using gauge independent atomic orbitals (GIAO) method, which showed good correlations with the experimental data (R(2) = 0.9911-0.9965). The natural bond orbital (NBO) calculations were performed to predict the natural atomic charges at different atomic sites. The molecular electrostatic potential (MEP) was used to visualize the charge distribution on the molecule. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb and may act as potential anti-diabetic compound. (E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one single crystal is grown and characterized by single crystal X-ray diffraction, FT-IR, UV-vis, DFT and optimized geometrical parameters are close to the experimental

  19. The chemotherapeutic effect of essential oil of Plectranthus amboinicus (Lour) on lung metastasis developed by B16F-10 cell line in C57BL/6 mice.

    PubMed

    Manjamalai, A; Grace, V M Berlin

    2013-01-01

    Current investigation is to evaluate the anticancer activity of the essential oil of Plectranthus amboinicus (Lour) on B16F-10 melanoma cell line injected C57BL/6 mice, and it was simultaneously treated with the essential oil of P. amboinicus (Lour) (50 μg/dose) via i.p. for 21 days. The present investigation exhibited the potent chemotherapeutic/chemopreventive effect of the essential oil of P. amboinicus (Lour) over lung metastasis that developed. To our knowledge, this is the first report in evaluating the effect of essential oil of P. amboinicus (Lour) using lung cancer model.

  20. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, with irinotecan hydrochloride on human colorectal and gastric cancer xenografts.

    PubMed

    Nukatsuka, Mamoru; Nakagawa, Fumio; Saito, Hitoshi; Sakata, Minoru; Uchida, Junji; Takechi, Teiji

    2015-03-01

    TAS-102 is a novel oral nucleoside antitumor agent consisting of trifluridine and tipiracil hydrochloride at a molar ratio of 1:0.5. TAS-102 was approved in Japan in March 2014 for the treatment of patients with unresectable, advanced or recurrent colorectal cancer that is refractory to standard therapies. In the present study, enhancement of the therapeutic efficacy using a combination therapy of TAS-102 and irinotecan hydrochloride (CPT-11) was evaluated in a colorectal and gastric cancer xenograft-bearing nude mouse model. TAS-102 was orally administered twice a day from day 1 to 14, and CPT-11 was administered intravenously on days 1 and 8. The growth-inhibitory activity was evaluated based on the tumor volume and the growth-delay period, which was estimated based on the period required to reach a tumor volume that was five-times greater than the initial volume (RTV5). The tumor growth-inhibitory activity and the RTV5 of the group receiving TAS-102 with CPT-11 were significantly superior to those of both agents as monotherapy for mice with KM12C, KM12C/5-FU, DLD-1/5-FU, and SC-2 xenografts (p<0.01). No significant decrease in body weight was observed. The present pre-clinical findings indicated that the combination of TAS-102 and CPT-11 is a promising treatment option for colorectal or gastric cancer, not only for chemo-naïve tumors, but also for recurrent tumors after 5-fluorouracil (5-FU)-based chemotherapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Prediction of chemotherapeutic effect on postoperative recurrence by in vitro anticancer drug sensitivity testing in non-small cell lung cancer patients.

    PubMed

    Higashiyama, Masahiko; Oda, Kazuyuki; Okami, Jiro; Maeda, Jun; Kodama, Ken; Imamura, Fumio; Minamikawa, Kazuhiko; Takano, Toshikazu; Kobayashi, Hisayuki

    2010-06-01

    The collagen gel droplet embedded culture drug test (CD-DST), is an in vitro anticancer drug sensitivity test. The test has been used with various types of malignant tumors, but the significance of clinical application remains unknown. The aim of the present study is to evaluate the ability of this test to predict the response to chemotherapy in non-small cell lung cancer (NSCLC) patients. From January 2000 through March 2007, CD-DST data using the primary tumor specimens to anticancer drugs such as cisplatin (CDDP), carboplatin (CBDCA), paclitaxel (PAC), docetaxel (TXT), gemcitabine (GEM), and vinorelbine (VNR), was successfully obtained from 382 patients that underwent a radical resection for NSCLC. Eighty-one of those patients received 1st line chemotherapy using a "new generation" of anticancer drugs for postoperative recurrence. The chemotherapy regimen consisted of a CDDP (or CBDCA)-based combination (N=41), non-CDDP-based combination (N=1) and single agent (N=39). The predictability of the chemotherapeutic effect by the CD-DST data was analyzed retrospectively. Partial response (PR) was obtained in 24 patients (response rate=30%), stable disease (SD) in 33 (41%) and progressive disease (PD) in 24 (30%). Forty-two patients underwent chemotherapy with one or more CD-DST-sensitive drugs, 21 of whom showed PR (RR=50%), whereas only 3 (8%) patients showed PR with chemotherapy with regimen including no CD-DST-sensitive drugs. Good predictability was obtained, with a 50% positive predictive value (PPV) for PR and a 92% negative predictive value (NPV) by CD-DST. The predictive accuracy for the response based on the CD-DST data was 70%. Interestingly, a subset analysis according to recurrence site showed that the predictive accuracy was highest (86%) for CD-DST-based chemotherapy for recurrence in the lymph nodes. The application of the CD-DST for "new generation" anticancer drugs using surgically resected specimens of primary lesion in NSCLC patients may be

  2. Treatment outcome and cost-effectiveness analysis of two chemotherapeutic regimens (BEP vs. VIP) for poor-prognosis metastatic germ cell tumors.

    PubMed

    Attili, Venkata Satya Suresh; Chandra, Rama C; Anupama, G; Loknath, D; Bapsy, P P; Dadhich, Hemant K; Babu, Govind K

    2007-01-01

    In patients with small-volume disseminated disease of germ cell tumors, cure can be achieved with four cycles of bleomycin, etoposide, and cisplatin (BEP). However, around 20% of these cases are not curable. Strategies to improve cure rates have shown that none of the currently available modalities were superior to the others. Among the most used ones, BEP and VIP (etoposide, cisplatin, and ifosfamide) have been the most studied. However, there are no reports comparing the two, except for a few in abstract forms from southern India. Therefore, we did a treatment outcome and cost-effectiveness analysis of two chemotherapeutic regimens (BEP vs VIP) that are used in poor-prognosis metastatic germ cell tumors. All male patients with germ cell tumors, diagnosed as having poor risk by IGCCCG, between January 2002 and December 2004 were included in the study. Clinical, laboratory, and other data were recorded. The patients were stratified into two categories on the basis of the type of chemotherapeutic regimen they received. In all, 46 patients were analyzed, with a median follow up of 26.6 months. The baseline characteristics (age, stage, PS, histology, and serum markers) were not different in the two treatment arms. There is no significant difference in the outcome with either of the chemotherapeutic modalities. VIP is less cost effective and more toxic compared to BEP. In view of the greater toxicity and cost of therapy, as well as lack of either overall or disease free survival advantage, VIP is not a preferred option for patients with high-risk germ cell tumors in the Indian setting and it is still advisable to treat patients with BEP.

  3. Synthesis and biological activity of NOSH-naproxen (AVT-219) and NOSH-sulindac (AVT-18A) as potent anti-inflammatory agents with chemotherapeutic potential

    PubMed Central

    Kodela, Ravinder; Chattopadhyay, Mitali; Kashfi, Khosrow

    2013-01-01

    Nitric oxide- (NO) and hydrogen sulfide- (H2S) releasing naproxen (NOSH-naproxen) and NO and H2S-releasing sulindac (NOSH-sulindac) were synthesized and their cell growth inhibitory properties were evaluated in four different human cancer cell lines. These cell lines are of adenomatous (colon, pancreas), epithelial (breast), and lymphocytic (leukemia) origin. Using HT-29 human colon cancer cells, NOSH-naproxen and NOSH-sulindac increased apoptosis, and inhibited proliferation. NOSH-naproxen caused a G0/G1 whereas NOSH-sulindac caused a G2/M block in the cell cycle. Both compounds exhibited significant anti-inflammatory properties, using the carrageenan rat paw edema model. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-naproxen was approximately 8000-fold more potent than the sum of its parts in inhibiting cell growth. Our data suggest that these compounds merit further investigation as potential anti-cancer agents. PMID:24273639

  4. Effects of Chemotherapy on the Brain in Women With Newly Diagnosed Early-Stage Breast Cancer

    ClinicalTrials.gov

    2016-05-12

    Breast Cancer; Chemotherapeutic Agent Toxicity; Cognitive/Functional Effects; Fatigue; Long-term Effects Secondary to Cancer Therapy in Adults; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment

  5. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    PubMed

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted.

  6. Combination treatment with fulvestrant and various cytotoxic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5-fluorouracil) has a synergistic effect in estrogen receptor-positive breast cancer.

    PubMed

    Ikeda, Hirokuni; Taira, Naruto; Nogami, Tomohiro; Shien, Kazuhiko; Okada, Masanori; Shien, Tadahiko; Doihara, Hiroyoshi; Miyoshi, Shinichiro

    2011-11-01

    Patients with estrogen receptor (ER)-positive breast cancers have a better prognosis than those with ER-negative breast cancers, but often have low sensitivity to chemotherapy and a limited survival benefit. We have previously shown a combination effect of taxanes and fulvestrant and suggested that this treatment may be useful for ER-positive breast cancer. In this study, we evaluated the effects of combinations of hormone drugs and chemotherapeutic agents. In vitro, the effects of combinations of five chemotherapeutic agents (doxorubicin, paclitaxel, docetaxel, vinorelbine, and 5-fluorouracil) and three hormone drugs (fulvestrant, tamoxifen, and 4-hydroxytamoxifen) were examined in ER-positive breast cancer cell lines using CalcuSyn software. Changes in chemoresistant factors such as Bcl2, multidrug resistance-associated protein 1, and microtubule-associated protein tau were also examined after exposure of the cells to hormone drugs. In vivo, tumor sizes in mice were evaluated after treatment with docetaxel or doxorubicin alone, fulvestrant alone, and combinations of these agents. Combination treatment with fulvestrant and all five chemotherapeutic agents in vitro showed synergistic effects. In contrast, tamoxifen showed an antagonistic effect with all the chemotherapeutic agents. 4-Hydroxytamoxifen showed an antagonistic effect with doxorubicin and 5-fluorouracil, but a synergistic effect with taxanes and vinorelbine. Regarding chemoresistant factors, Bcl2 and microtubule-associated protein tau were downregulated by fulvestrant. In vivo, a combination of fulvestrant and docetaxel had a synergistic effect on tumor growth, but fulvestrant and doxorubicin did not show this effect. In conclusion, fulvestrant showed good compatibility with all the evaluated chemotherapeutic agents, and especially with docetaxel, in vitro and in vivo.

  7. Spectroscopic detection of chemotherapeutics and antioxidants

    NASA Astrophysics Data System (ADS)

    Latka, Ines; Grüner, Roman; Matthäus, Christian; Dietzek, Benjamin; Werncke, W.; Lademann, Jürgen; Popp, Jürgen

    2012-06-01

    The hand-foot-syndrome presents a severe dermal side-effect of chemotherapeutic cancer treatment. The cause of this side-effect is the elimination of systemically administered chemotherapeutics with the sweat. Transported to the skin surface, the drugs subsequently penetrate into the skin in the manner of topically applied substances. Upon accumulation of the chemotherapeutics in the skin the drugs destroy cells and tissue - in the same way as they are supposed to act in cancer cells. Aiming at the development of strategies to illuminate the molecular mechanism underlying the handfoot- syndrome (and, in a second step, strategies to prevent this severe side-effect), it might be important to evaluate the concentration and distribution of chemotherapeutics and antioxidants in the human skin. The latter can be estimated by the carotenoid concentration, as carotenoids serve as marker substances for the dermal antioxidative status.Following the objectives outlined above, this contribution presents a spectroscopic study aiming at the detection and quantification of carotenoids and selected chemotherapeutics in human skin. To this end, spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS) microspectroscopy are combined with two-photon excited fluorescence. While the latter technique is Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts Return to your MySPIE To Do List at http://myspie.org and approve or disapprove this submission. Your manuscript will not be published without this approval.restricted to the detection of fluorescent chemotherapeutics, e.g., doxorubicin, the vibrational spectroscopic techniques can - in principle - be applied to any type of analyte molecules. Furthermore, we will present the

  8. Well-Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra- and Intracellular Drug Release on Chemotherapeutic Efficacy.

    PubMed

    Yan, Guoqing; Wang, Jun; Qin, Jiejie; Hu, Liefeng; Zhang, Panpan; Wang, Xin; Tang, Rupei

    2017-03-29

    To compare the chemotherapeutic efficacy determined by extra- and intracellular drug release strategies, poly(ortho ester amide)-based drug carriers (POEAd-C) with well-defined main-chain lengths, are successfully constructed by a facile method. POEAd-C3-doxorubicin (DOX) can be rapidly dissolved to release drug at tumoral extracellular pH (6.5-7.2), while POEAd-C6-DOX can rapidly release drug following gradual swelling at intracellular pH (5.0-6.0). In vitro cytotoxicity shows that POEAd-C3-DOX exhibits more toxic effect on tumor cells than POEAd-C6-DOX at extracellular pH, but POEAd-C6-DOX has stronger tumor penetration and inhibition in vitro and in vivo tumor models. So, POEAd-C6-DOX with the intracellular drug release strategy has stronger overall chemotherapeutic efficacy than POEAd-C3-DOX with extracellular drug release strategy. It is envisioned that these poly(ortho ester amides) can have great potential as drug carriers for efficient chemotherapy with further optimization.

  9. Mitochondria and redox homoeostasis as chemotherapeutic targets.

    PubMed

    Briehl, Margaret M; Tome, Margaret E; Wilkinson, Sarah T; Jaramillo, Melba C; Lee, Kristy

    2014-08-01

    Characteristics of cancer cells include a more oxidized redox environment, metabolic reprogramming and apoptosis resistance. Our studies with a lymphoma model have explored connections between the cellular redox environment and cancer cell phenotypes. Alterations seen in lymphoma cells made resistant to oxidative stress include: a more oxidized redox environment despite increased expression of antioxidant enzymes, enhanced net tumour growth, metabolic changes involving the mitochondria and resistance to the mitochondrial pathway to apoptosis. Of particular importance, the cells show cross-resistance to multiple chemotherapeutic agents used to treat aggressive lymphomas. Analyses of clinical and tumour data reveal the worst prognosis when patients' lymphomas have gene expression patterns consistent with the most oxidized redox environment. Lymphomas from patients with the worst survival outcomes express increased levels of proteins involved in oxidative phosphorylation, including cytochrome c. This is consistent with these cells functioning as metabolic opportunists. Using lymphoma cell models and primary lymphoma cultures, we observed enhanced killing using genetic and drug approaches which further oxidize the cellular redox environment. These approaches include increased expression of SOD2 (superoxide dismutase 2), treatment with a manganoporphyrin that oxidizes the glutathione redox couple, or treatment with a copper chelator that inhibits SOD1 and leads to peroxynitrite-dependent cell death. The latter approach effectively kills lymphoma cells that overexpress the anti-apoptotic protein Bcl-2. Given the central role of mitochondria in redox homoeostasis, metabolism and the intrinsic pathway to apoptosis, our studies support the development of new anti-cancer drugs to target this organelle.

  10. Human toxoplasmosis-Searching for novel chemotherapeutics.

    PubMed

    Antczak, Magdalena; Dzitko, Katarzyna; Długońska, Henryka

    2016-08-01

    The protozoan Toxoplasma gondii, an obligate intracellular parasite, is an etiological agent of human and animal toxoplasmosis. Treatment regimens for T. gondii-infected patients have not essentially changed for years. The most common chemotherapeutics used in the therapy of symptomatic toxoplasmosis are a combination of pyrimethamine and sulfadiazine plus folinic acid or a combination of pyrimethamine with lincosamide or macrolide antibiotics. To protect a fetus from parasite transplacental transmission, therapy of pregnant women is usually based on spiramycin, which is quite safe for the organism, but not efficient in the treatment of infected children. Application of recommended drugs limits replication of T. gondii, however, it may be associated with numerous an severe adverse effects. Moreover, medicines have no impact on the tissue cysts of the parasite located predominantly in a brain and muscles. Thus, there is urgent need to develop new drugs and establish "gold standard" treatment. In this review classical treatment of toxoplasmosis as well as potential compounds active against T. gondii have been discussed. For two last decades studies on the development of new anti-T. gondii medications have been focused on both natural and novel synthetic compounds based on existing chemical scaffolds. They have revealed several promising drug candidates characterized by a high selectivity, the low IC50 (the half maximal inhibitory concentration) and low cytotoxicity towards host cells. These drugs are expected to replace or supplement current anti-T. gondii drug arsenal soon.

  11. (Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

    SciTech Connect

    Srivastava, P.C.

    1991-01-14

    The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.

  12. Disposal of Chemotherapeutic Agent -- Contaminated Waste

    DTIC Science & Technology

    1989-03-01

    Human interface is limited to manual loading and unloading to protect the operator and to prevent malfunction as a result of operator error. The system...wastes are not vet controlled but should be prevented from entering thp drinking water recycling chain. These wastes contain halogenated hydrocarbons that...This design promises to safely dispose of these types of wastes. No technical problems were encountered which would prevent this disposal process

  13. Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a)anthracene induced mammary carcinoma in experimental rats.

    PubMed

    Lakshmi, A; Subramanian, S

    2014-04-01

    Globally, breast cancer is the second most prevalent cancer among women and its incidence is amplifying alarmingly. Since genetics is believed to account for only 10% of the reported cases, the environmental factors including diet are thought to play a significant role in predisposing breast cancer. Many bioactive compounds of plant origin have been reported for their anticancer potential. Tangeretin, a pentamethoxy flavone, is a naturally occurring phytoconstituent found to be present in significant amounts in the peel of citrus fruits. Tangeretin possess a wide array of pharmacological activities such as cytostatic, anti-proliferative and antioxidant properties. In the absence of systemic studies in the literature, the present study was aimed to evaluate the chemotherapeutic potential of tangeretin in 7, 12-dimethyl benz(a)anthracene (DMBA) induced mammary carcinoma in rats. Oral treatment of tangeretin (50 mg/kg BW) to breast tumor bearing rats daily for four weeks was found to be effective against DMBA induced mammary gland carcinogenesis in female Wistar rats. The increased activities of AST, ALT, ALP, ACP, 5'-ND, γ-GT and LDH in serum of control and experimental breast cancer rats were significantly (p < 0.05) decreased to near normal levels. Further, the levels of lipid peroxide (TBARS), enzymatic antioxidants such as SOD, CAT, GPx and non-enzymatic antioxidants such as GSH, Vitamin C, Vitamin E and Phase I (cytochrome P450, cytochrome b5, EROD, MROD and PROD) and Phase II detoxification (glutathione S-transferase (GST), quinone reductase (QR)) were decreased significantly by administration of tangeretin. Immunohistochemical and western blotting studies for estrogen receptor, progesterone receptor and HER2/neu status exemplified the chemotherapeutic effect of tangeretin. Further, the histological and ultrastructural analysis of breast tissues evidenced the anti-tumorigenic nature of tangeretin. Thus, the results of the present study clearly indicate that

  14. Contrast agents for cardiac angiography: effects of a nonionic agent vs. a standard ionic agent

    SciTech Connect

    Bettmann, M.A.; Bourdillon, P.D.; Barry, W.H.; Brush, K.A.; Levin, D.C.

    1984-12-01

    The effects on cardiac hemodynamics and of a standard contrast agent, sodium methylglucamine diatrizoate (Renografin 76) were compared with the effects of a new nonionic agent (iohexol) in a double-blind study in 51 patietns undergoing coronary angiography and left ventriculography. No significant alteration in measured blood parameters occurred with either contrast agent. Hemodynamic changes occurred with both, but were significantly greater with the standard renografin than with the low-osmolality, nonionic iohexol. After left ventriculography, heart rate increased and peripheral arterial pressure fell with both agents, but less with iohexol. It is concluded that iohexol causes less alteration in cardiac function than does the agent currently most widely used. Nonionic contrast material is likely to improve the safety of coronary angiography, particularly in those patients at greatest risk.

  15. Antivasoconstrictor effect of the neuroprotective agent dexrazoxane in rat aorta.

    PubMed

    Vidrio, Horacio; Carrasco, Omar F; Rodríguez, Rodolfo

    2006-12-14

    Dexrazoxane is used clinically to reduce the cardiotoxicity of anthracycline cancer chemotherapeutic agents, acting by an iron-chelating antioxidant mechanism. In a study designed to explore the possible mechanism of the recently described neuroprotective effect of the drug in cerebral ischemia, its influence on vascular reactivity was determined in rat aortic rings. Dexrazoxane was found to be devoid of direct contractile or relaxant activity and to have no influence on responses to acetylcholine or histamine (relaxation), or to angiotensin or serotonin (contraction). In contrast, it decreased contractions to norepinephrine, as evidenced by rightward displacement of the concentration-response curves. The effect was prevented by the removal of the endothelium and by the alpha(2)-adrenoceptor antagonist yohimbine; it was partially antagonized by the endothelium-derived depolarizing factor inhibitor clotrimazole, but was not affected by L-NAME or indomethacin, inhibitors of endothelial nitric oxide and prostacyclin production. The anti-contractile effect did not occur in rings stimulated with the alpha(1)-adrenoceptor agonist phenylephrine. It was concluded that dexrazoxane opposes norepinephrine vascular contraction by enhancing endothelial alpha(2)-adrenoceptor-mediated release of relaxing factor(s). The drug could thus offset the deleterious vasoconstriction elicited by the increased circulating catecholamines present during cerebral ischemia, and by this mechanism produce neuroprotection.

  16. Dual-Blocking of PI3K and mTOR Improves Chemotherapeutic Effects on SW620 Human Colorectal Cancer Stem Cells by Inducing Differentiation

    PubMed Central

    Kim, Buyun

    2016-01-01

    Cancer stem cells (CSCs) have tumor initiation, self-renewal, metastasis and chemo-resistance properties in various tumors including colorectal cancer. Targeting of CSCs may be essential to prevent relapse of tumors after chemotherapy. Phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) signals are central regulators of cell growth, proliferation, differentiation, and apoptosis. These pathways are related to colorectal tumorigenesis. This study focused on PI3K and mTOR pathways by inhibition which initiate differentiation of SW620 derived CSCs and investigated its effect on tumor progression. By using rapamycin, LY294002, and NVP-BEZ235, respectively, PI3K and mTOR signals were blocked independently or dually in colorectal CSCs. Colorectal CSCs gained their differentiation property and lost their stemness properties most significantly in dual-blocked CSCs. After treated with anti-cancer drug (paclitaxel) on the differentiated CSCs cell viability, self-renewal ability and differentiation status were analyzed. As a result dual-blocking group has most enhanced sensitivity for anti-cancer drug. Xenograft tumorigenesis assay by using immunodeficiency mice also shows that dual-inhibited group more effectively increased drug sensitivity and suppressed tumor growth compared to single-inhibited groups. Therefore it could have potent anti-cancer effects that dual-blocking of PI3K and mTOR induces differentiation and improves chemotherapeutic effects on SW620 human colorectal CSCs. PMID:26955235

  17. Local bacteria affect the efficacy of chemotherapeutic drugs

    PubMed Central

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T.; McCarthy, Florence O.; Reid, Gregor; Urbaniak, Camilla; Byrne, William L.; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  18. Does an Agent Matter? The Effects of Animated Pedagogical Agents on Multimedia Environments.

    ERIC Educational Resources Information Center

    Craig, Scotty D.; Gholson, Barry

    Data are presented on the effects of Animated Agents on multimedia learning environments with specific concerns of split attention and modality effects. The study was a 3 (agent properties: agent only, agent with gestures, no agent) x 3 (picture features: static picture, sudden onset, animation) factorial design with outcome measures of mental…

  19. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds.

    PubMed

    Archer, Trevor

    2011-10-01

    The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible. © 2010 Blackwell Publishing Ltd.

  20. Melanoma targeting with the loco-regional chemotherapeutic, Melphalan: From cell death to immunotherapeutic efficacy.

    PubMed

    Dudek-Perić, Aleksandra Maria; Gołąb, Jakub; Garg, Abhishek D; Agostinis, Patrizia

    2015-12-01

    All immunoregulatory chemotherapeutics are chiefly applied in a systemic setting for anticancer therapy. However, immune responses following loco-regional application of chemotherapy may differ from those after systemic application. We recently found that Melphalan, a prototypical loco-regionally applied chemotherapeutic agent, exhibits the ability to increase the immunogenicity of dying melanoma cells.

  1. The significance of the C-reactive protein to albumin ratio as a marker for predicting survival and monitoring chemotherapeutic effectiveness in patients with unresectable metastatic colorectal cancer.

    PubMed

    Shibutani, Masatsune; Maeda, Kiyoshi; Nagahara, Hisashi; Iseki, Yasuhito; Hirakawa, Kosei; Ohira, Masaichi

    2016-01-01

    Inflammation has been reported to play an important role in cancer progression and various inflammatory markers have been reported to be useful prognostic markers. The aim of this retrospective study was to evaluate the significance of the C-reactive protein to albumin (CRP/ALB) ratio in colorectal cancer patients who received palliative chemotherapy. We performed a retrospective review of 99 patients who underwent palliative chemotherapy for unresectable colorectal cancer between 2005 and 2010. The cutoff value of the CRP/ALB ratio was determined based on a receiver operating characteristics curve analysis. The relationship between the CRP/ALB ratio and survival was assessed. The cutoff value for the CRP/ALB ratio was 0.183. The high pretreatment CRP/ALB ratio group showed significantly worse overall survival. Patients with a high pretreatment CRP/ALB ratio and in whom the CRP/ALB ratio normalized after chemotherapy tended to have better overall survival than those in whom both the pretreatment and posttreatment CRP/ALB ratios were high. The CRP/ALB ratio is a useful marker for predicting survival and monitoring chemotherapeutic effectiveness in patients with unresectable metastatic colorectal cancer.

  2. Grape seed extract dose-responsively decreases disease severity in a rat model of mucositis; concomitantly enhancing chemotherapeutic effectiveness in colon cancer cells.

    PubMed

    Cheah, Ker Yeaw; Howarth, Gordon Stanley; Bastian, Susan Elaine Putnam

    2014-01-01

    Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the effects of increasing grape seed extract doses on the severity of chemotherapy in a rat model and its coincident impact on chemotherapeutic effectiveness in colon cancer cells. Female Dark Agouti rats were gavaged with grape seed extract (400-1000 mg/kg) or water (day 3-11) and were injected intraperitoneally with 5-Fluorouracil (150 mg/kg) or saline (control) on day 9 to induce mucositis. Daily metabolic data were collected and rats were sacrificed on day 12. Intestinal tissues were collected for histological and myeloperoxidase analyses. Caco-2 cell viability was examined in response to grape seed extract in combination with 5-Fluorouracil by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) assay. Compared with 5-Fluorouracil controls, grape seed extract (400-1000 mg/kg) significantly decreased the histological damage score (P<0.05) in the jejunum. Grape seed extract (1000 mg/kg) increased jejunal crypt depth by 25% (P<0.05) in 5-Fluorouracil treated rats compared to 5-Fluorouracil controls, and attenuated the 5-Fluorouracil -induced reduction of mucosal thickness (25%, P<0.05). Grape seed extract (600 mg/kg) decreased myeloperoxidase activity by 55% (P<0.01) compared to 5-Fluorouracil controls. Grape seed extract was more effective at ameliorating 5-Fluorouracil induced intestinal injury, with effects most pronounced in the proximal jejunum. Grape seed extract (10-25 ug/mL) significantly enhanced the growth-inhibitory effects of 5-Fluorouracil by 26% (P<0.05) in Caco-2 cells and was more potent than 5-Fluorouracil at 50-100 µg/mL. Grape seed extract may represent a new therapeutic option to decrease the symptoms of intestinal mucositis while concurrently impacting on the viability of colon cancer cells.

  3. Grape Seed Extract Dose-Responsively Decreases Disease Severity in a Rat Model of Mucositis; Concomitantly Enhancing Chemotherapeutic Effectiveness in Colon Cancer Cells

    PubMed Central

    Cheah, Ker Yeaw; Howarth, Gordon Stanley; Bastian, Susan Elaine Putnam

    2014-01-01

    Objective Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the effects of increasing grape seed extract doses on the severity of chemotherapy in a rat model and its coincident impact on chemotherapeutic effectiveness in colon cancer cells. Design Female Dark Agouti rats were gavaged with grape seed extract (400–1000 mg/kg) or water (day 3–11) and were injected intraperitoneally with 5-Fluorouracil (150 mg/kg) or saline (control) on day 9 to induce mucositis. Daily metabolic data were collected and rats were sacrificed on day 12. Intestinal tissues were collected for histological and myeloperoxidase analyses. Caco-2 cell viability was examined in response to grape seed extract in combination with 5-Fluorouracil by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) assay. Results Compared with 5-Fluorouracil controls, grape seed extract (400–1000 mg/kg) significantly decreased the histological damage score (P<0.05) in the jejunum. Grape seed extract (1000 mg/kg) increased jejunal crypt depth by 25% (P<0.05) in 5-Fluorouracil treated rats compared to 5-Fluorouracil controls, and attenuated the 5-Fluorouracil -induced reduction of mucosal thickness (25%, P<0.05). Grape seed extract (600 mg/kg) decreased myeloperoxidase activity by 55% (P<0.01) compared to 5-Fluorouracil controls. Grape seed extract was more effective at ameliorating 5-Fluorouracil induced intestinal injury, with effects most pronounced in the proximal jejunum. Grape seed extract (10–25 ug/mL) significantly enhanced the growth-inhibitory effects of 5-Fluorouracil by 26% (P<0.05) in Caco-2 cells and was more potent than 5-Fluorouracil at 50–100 µg/mL. Conclusion Grape seed extract may represent a new therapeutic option to decrease the symptoms of intestinal mucositis while concurrently impacting on the viability of colon cancer cells. PMID:24465501

  4. Pharmacodynamic modeling of combined chemotherapeutic effects predicts synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells

    PubMed Central

    Miao, Xin; Koch, Gilbert; Straubinger, Robert M.

    2015-01-01

    Purpose This study investigates the combined effects of gemcitabine and trabectedin (ecteinascidin 743) in two pancreatic cancer cell lines and proposes a pharmacodynamic (PD) model to quantify their pharmacological interactions. Methods Effects of gemcitabine and trabectedin upon the pancreatic cancer cell lines MiaPaCa-2 and BxPC-3 were investigated using cell proliferation assays. Cells were exposed to a range of concentrations of the two drugs, alone and in combination. Viable cell numbers were obtained daily over 5 days. A model incorporating nonlinear cytotoxicity, transit compartments, and an interaction parameter ψ was used to quantify the effects of the individual drugs and combinations. Results Simultaneous fitting of temporal cell growth profiles for all drug concentrations provided reasonable cytotoxicity parameter estimates (the cell killing rate constant Kmax and the sensitivity constant KC50) for each drug. The interaction parameter ψ was estimated as 0.806 for MiaPaCa-2 and 0.843 for BxPC-3 cells, suggesting that the two drugs exert modestly synergistic effects. Conclusions The proposed PD model enables quantification of the temporal profiles of drug combinations over a range of concentrations with drug-specific parameters. Based upon these in vitro studies, trabectedin may have augmented benefit in combination with gemcitabine. The PD model may have general relevance for the study of other cytotoxic drug combinations. PMID:26604207

  5. Diffusely discordant In-111 WBC/Tc-99m SC bone marrow uptake: A possible chemotherapeutic effect

    SciTech Connect

    Achong, D.M.; Oates, E.

    1995-07-01

    In-111 WBC scintigraphy in a women with relapsed acute lymphoid leukemia demonstrated normal uptake of white blood cells by the liver and spleen, but virtually absent bone marrow activity. Tc-99m Sc imaging confirmed normal marrow function and distribution. A bone marrow biopsy revealed mildly hypocellular, regenerating marrow without leukemic infiltration. The effects of systemic cytotoxic chemotherapy on marrow reticuloendothelial function may have been responsible for this discordant uptake. 5 refs., 2 figs.

  6. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models

    PubMed Central

    Kim, Seung-Hee; Kim, Cho-Won; Jeon, So-Ye; Go, Ryeo-Eun

    2014-01-01

    Genistein is one of isoflavones mostly derived in a leguminous plant. It is well known as one of phytoestrogens that have structures similar to the principal mammalian estrogen. It has diverse biological functions including chemopreventive properties against cancers. Anticancer efficacies of genistein have been related with the epidemiological observations indicating that the incidence of some cancers is much lower in Asia, where diets are rich in soyfoods, than Western countries. This review deals with in vivo anticancer activities of genistein identified in animal studies being divided into its effects on carcinogenesis and cancer progression. Because animal studies have advantages in designing the experiments to suit the goals, they imply diverse information on the anticancer activity of genistein. The in vivo animal studies have adopted the specific animal models according to a developmental stage of cancer to prove the anticancer efficacies of genistein against diverse types of cancer. The numerous previous studies insist that genistein effectively inhibits carcinogenesis in the DMBA-induced animal cancer models by reducing the incidence of adenocarcinoma and cancer progression in the transgenic and xenograft animal models by suppressing the tumor growth and metastatic transition. Although the protective effect of genistein against cancer has been controversial, genistein may be a candidate for chemoprevention of carcinogenesis and cancer progression and may deserve to be the central compound supporting the epidemiological evidence. PMID:25628724

  7. Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: Inhibition of NF-κB pathway via molecular interactions in rel homology domain of its precursor protein p105

    PubMed Central

    Khan, Mohammad K. A.; Ansari, Irfan A.; Khan, M. Salman; Arif, Jamal M.

    2013-01-01

    Background: Dietary phytochemicals consist of a wide variety of biologically active compounds that are ubiquitous in plants, many of which have been reported to have anti-tumor as well as anti-inflammatory properties. Objective: In the present study, we aimed to validate these findings by using docking protocols and explicate the possible mechanism of action for a dataset of nine phytochemicals namely boswellic acid, 1-caffeoylquinic acid, ellagic acid, emodin, genistein, guggulsterone, quercetin, resveratrol, and sylibinin from different plants against the nuclear factor- kappaB (NF-κB) precursor protein p105, an important transcription factor reported to be overexpressed in breast cancer. Materials and Methods: 2-D structures of all phytochemicals were retrieved from PubChem Compound database and their subsequent conversion into 3-D structures was performed by using online software system CORINA. The X-ray crystallographic structure of the NF-κB precursor p105 was extracted from Brookhaven Protein Data Bank. Molecular docking simulation study was carried out by using AutoDock Tools 4.0. Results: Our results showed significant binding affinity of different phytochemicals with the Rel homology domain of the NF-κB precursor protein p105. Quercetin and 1-caffeoylquinic acid were found to be very effective inhibitors against target molecule as they showed binding energy of −12.11 and −11.50 Kcal/mol, respectively. The order of affinity of other ligands with p105 was found as follows: guggulsterone > sylibinin > emodin > resveratrol > genistein > boswellic acid > ellagic acid. Conclusion: Our in silico study has explored the possible chemopreventive mechanism of these phytochemicals against the NF-κB precursor protein p105 and deciphered that quercetin, 1-caffeoylquinic acid and guggulsterone were the potent inhibitors against target molecule. In addition, large scale preclinical and clinical trials are needed to explore the role of these chemotherapeutic

  8. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells.

    PubMed

    Banerjee, Kacoli; Mandal, Mahitosh

    2015-08-01

    Recent studies involving phytochemical polyphenolic compounds have suggested flavones often exert pro-oxidative effect in vitro against wide array of cancer cell lines. The aim of this study was to evaluate the in-vitro pro-oxidative activity of apigenin, a plant based flavone against colorectal cancer cell lines and investigate cumulative effect on long term exposure. In the present study, treatment of colorectal cell lines HT-29 and HCT-15 with apigenin resulted in anti-proliferative and apoptotic effects characterized by biochemical and morphological changes, including loss of mitochondrial membrane potential which aided in reversing the impaired apoptotic machinery leading to negative implications in cancer pathogenesis. Apigenin induces rapid free radical species production and the level of oxidative damage was assessed by qualitative and quantitative estimation of biochemical markers of oxidative stress. Increased level of mitochondrial superoxide suggested dose dependent mitochondrial oxidative damage which was generated by disruption in anti-apoptotic and pro-apoptotic protein balance. Continuous and persistent oxidative stress induced by apigenin at growth suppressive doses over extended treatment time period was observed to induce senescence which is a natural cellular mechanism to attenuate tumor formation. Senescence phenotype inducted by apigenin was attributed to changes in key molecules involved in p16-Rb and p53 independent p21 signaling pathways. Phosphorylation of retinoblastoma was inhibited and significant up-regulation of p21 led to simultaneous suppression of cyclins D1 and E which indicated the onset of senescence. Pro-oxidative stress induced premature senescence mediated by apigenin makes this treatment regimen a potential chemopreventive strategy and an in vitro model for aging research.

  9. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells

    PubMed Central

    Banerjee, Kacoli; Mandal, Mahitosh

    2015-01-01

    Recent studies involving phytochemical polyphenolic compounds have suggested flavones often exert pro-oxidative effect in vitro against wide array of cancer cell lines. The aim of this study was to evaluate the in-vitro pro-oxidative activity of apigenin, a plant based flavone against colorectal cancer cell lines and investigate cumulative effect on long term exposure. In the present study, treatment of colorectal cell lines HT-29 and HCT-15 with apigenin resulted in anti-proliferative and apoptotic effects characterized by biochemical and morphological changes, including loss of mitochondrial membrane potential which aided in reversing the impaired apoptotic machinery leading to negative implications in cancer pathogenesis. Apigenin induces rapid free radical species production and the level of oxidative damage was assessed by qualitative and quantitative estimation of biochemical markers of oxidative stress. Increased level of mitochondrial superoxide suggested dose dependent mitochondrial oxidative damage which was generated by disruption in anti-apoptotic and pro-apoptotic protein balance. Continuous and persistent oxidative stress induced by apigenin at growth suppressive doses over extended treatment time period was observed to induce senescence which is a natural cellular mechanism to attenuate tumor formation. Senescence phenotype inducted by apigenin was attributed to changes in key molecules involved in p16-Rb and p53 independent p21 signaling pathways. Phosphorylation of retinoblastoma was inhibited and significant up-regulation of p21 led to simultaneous suppression of cyclins D1 and E which indicated the onset of senescence. Pro-oxidative stress induced premature senescence mediated by apigenin makes this treatment regimen a potential chemopreventive strategy and an in vitro model for aging research. PMID:25965143

  10. ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy

    NASA Astrophysics Data System (ADS)

    Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao

    2014-08-01

    Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced

  11. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition.

    PubMed

    French, Michael D; Churcher, Thomas S; Basáñez, María-Gloria; Norton, Alice J; Lwambo, Nicholas J S; Webster, Joanne P

    2013-11-01

    Detecting potential changes in genetic diversity in schistosome populations following chemotherapy with praziquantel (PZQ) is crucial if we are to fully understand the impact of such chemotherapy with respect to the potential emergence of resistance and/or other evolutionary outcomes of interventions. Doing so by implementing effective, and cost-efficient sampling protocols will help to optimise time and financial resources, particularly relevant to a disease such as schistosomiasis currently reliant on a single available drug. Here we explore the effect on measures of parasite genetic diversity of applying various field sampling approaches, both in terms of the number of (human) hosts sampled and the number of transmission stages (miracidia) sampled per host for a Schistosoma mansoni population in Tanzania pre- and post-treatment with PZQ. In addition, we explore population structuring within and between hosts by comparing the estimates of genetic diversity obtained assuming a 'component population' approach with those using an 'infrapopulation' approach. We found that increasing the number of hosts sampled, rather than the number of miracidia per host, gives more robust estimates of genetic diversity. We also found statistically significant population structuring (using Wright's F-statistics) and significant differences in the measures of genetic diversity depending on the parasite population definition. The relative advantages, disadvantages and, hence, subsequent reliability of these metrics for parasites with complex life-cycles are discussed, both for the specific epidemiological and ecological scenario under study here and for their future application to other areas and schistosome species. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the Wnt pathway.

    PubMed

    Zhao, Ziming; Wang, Hongyu; Zhang, Liao; Mei, Xifan; Hu, Jing; Huang, Keqiang

    2017-02-01

    Tongue squamous cell carcinoma (TSCC) is one of the most severe types of cancer with poor outcomes. Cisplatin is used widely to treat cancer cells, but many patients develop acquired drug resistance. The receptor for advanced glycation end products (RAGE) is expressed widely in TSCC and associated with drug-induced chemotherapy resistance. However, the effect of RAGE and cisplatin on Tca-8113 cells remains unknown. We assayed the combined use of RAGE blockade and cisplatin effect on Tca-8113 cells' viability by MTT and apoptosis rate of Tca-8113 cells on RAGE blockade+cisplatin treatment; cisplatin alone; or RAGE blockade alone by flow cytometry. We observed the expressions of autophagy-related proteins beclin1, LC3II, p62; Wnt signaling-related proteins β-catenin, GSK3β, WNT5A, ROR-2; and apoptosis-related protein cleaved caspase-3, bcl-2-associated X proteins using western blot. We determined WNT5A and beclin1 expression on Tca-8113 cells by immunofluorescence. We further observed autophagy vacuoles by monodansylcadaverine staining. We found that RAGE blockade and cisplatin significantly decreased cell viability and increased the cell apoptosis rate compared with cisplatin alone. Furthermore, RAGE blockade suppressed the canonical Wnt pathway proteins β-catenin and GSK-3β, but upregulated noncanonical WNT5A and receptor ROR-2. We show that RAGE blockade suppressed the levels of autophagy-related protein LC3II/I, beclin1, accelerated degradation of autophagy for the increasing p62 expression, and increased cell apoptosis for the increasing expressions of cleaved caspase-3 and bcl-2-associated X proteins. We observed the location of WNT5A and beclin1 expressions on cells by immunofluorescence and their trends were consistent with western blotting. Taken together, our findings suggested that RAGE blockade+cisplatin improved chemotherapeutic effects by reducing autophagy and regulating Wnt/β-catenin to suppress the progression of TSCC.

  13. The influence of active hexose correlated compound (AHCC) on cisplatin-evoked chemotherapeutic and side effects in tumor-bearing mice

    SciTech Connect

    Hirose, Aya; Sato, Eri; Fujii, Hajime; Sun Buxiang; Nishioka, Hiroshi . E-mail: nishioka@aminoup.co.jp; Aruoma, Okezie I. . E-mail: okezie.aruoma@touro.edu

    2007-07-15

    Cisplatin (cis-diaminedichloroplatinum (II) or CDDP) (a widely used platinum-containing anticancer drug) is nephrotoxic and has a low percentage of tolerance in patients during chemotherapy. The active hexose correlated compound (AHCC) is an extract of Basidiomycotina marketed as a supplement for cancer patients due to its nutrients and fibre content and its ability to strengthen and optimize the capacity of the immune system. The possibility that AHCC could reduce the side effects of cisplatin was assessed in the tumor-bearing BALB/cA mice on the basis of the ability to ameliorate the cisplatin-induced body weight loss, anorexia, nephrotoxicity and hematopoietic toxicity. Although cisplatin (8 mg/kg body weight) reduced the size and weight of the solid tumors, supplementation with AHCC significantly enhanced cisplatin-induced antitumor effect in both the size (p < 0.05) and weight (p < 0.05). Food intake in the cisplatin-treated mice were decreased following commencement of treatment and this remained low compared with the cisplatin-untreated group (control) throughout the experiment period. Supplementation with AHCC increased the food intake in the cisplatin-treated mice. The blood urea nitrogen and serum creatinine concentrations, and the ratio of blood urea nitrogen to serum creatinine were significantly increased in the cisplatin alone treated group compared to the control group. Their increased levels were mitigated by supplementation with AHCC (100 mg/kg body weight) in the cisplatin-treated group. AHCC was also able to modulate the suppression of bone marrow due to cisplatin and the improvement was statistically significant. The histopathological examination of the kidney revealed the presence of cisplatin-induced damage and this was modulated by AHCC treatment. The potential for AHCC to ameliorate the cisplatin-evoked toxicity as well as the chemotherapeutic effect could have beneficial economic implications for patients undergoing chemotherapy with

  14. Effects of Agent Transparency on Multi-Robot Management Effectiveness

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7466 ● SEP 2015 US Army Research Laboratory Effects of Agent Transparency on Multi- Robot Management Effectiveness by...SEP 2015 US Army Research Laboratory Effects of Agent Transparency on Multi- Robot Management Effectiveness by Joseph E Mercado Oak...Final 3. DATES COVERED (From - To) October 2013–September 2014 4. TITLE AND SUBTITLE Effects of Agent Transparency on Multi- Robot Management

  15. Some characteristics of activity of potential chemotherapeutics--benzimidazole derivatives.

    PubMed

    Błaszczak-Świątkiewicz, Katarzyna; Mikiciuk-Olasik, Elżbieta

    2015-03-01

    In this work, the biological activity of some benzimidazoles and benzimidazole-4,7-diones was compared. These two groups of compounds were evaluated as potential chemotherapeutics and their characteristic relationship structure to biological activity was discussed. The authors compared their effect into the cytotoxic, apoptosis and DNA destruction approach. Their cytotoxic effect on the human lung adenocarcinoma A549 cells line was determined by WST-1 test. Next the cytotoxic way of tumor cells death was determined by caspase 3/7 test. The last point referred to the DNA destruction of A549 cells and test in situ DNA Assay Kit was applied. Two of the examined compounds (B2 and D2) show a very good correlation of the cytotoxic effect normoxia to hypoxia and they have been found as the potential agents of the DNA damage. The most cytotoxic feature possesses N-oxide benzimidazole derivatives (D and B groups). The screening test of the DNA damage established that N-oxide benzimidazole derivatives (D and B groups) can be more potent as the hypoxia-selective agents for tumor cells than benzimidazole derivatives (A and C groups). Additionally, the test of the caspase-dependent apoptosis proved that the exposure of benzimidazole-4,7-diones against A549 cells, especially in hypoxia, promotes apoptotic cell death.

  16. Effects of HGF gene polymorphisms and protein expression on transhepatic arterial chemotherapeutic embolism efficacy and prognosis in patients with primary liver cancer

    PubMed Central

    Chen, Hai-Yong; Chen, Yao-Min; Wu, Jian; Yang, Fu-Chun; Lv, Zhen; Qian, Yi-Gang; Zheng, Shu-Sen

    2017-01-01

    Objective To investigate the correlations of two hepatocyte growth factor (HGF) gene polymorphisms (rs5745652 and rs2074725) and their protein expression levels with the efficacy of transhepatic arterial chemotherapeutic embolism (TACE) and prognosis in patients with primary liver cancer (PLC). Methods From March 2011 to June 2012, 109 PLC patients (the case group) who chose TACE as primary treatment and 80 healthy people (the control group) who had undergone physical examination in The First Affiliated Hospital, Zhejiang University were selected during the same period. Gene polymorphisms of HGF rs5745652 and HGF rs2074725 were detected. Serum HGF level, treating efficacy, survival quality, and 3-year survival rate for PLC patients who received TACE were observed. Results There were significant differences in genotype and allele frequencies of HGF rs5745652 and HGF rs2074725, between the case and control groups (all P<0.05). Compared with CT+TT genotype of HGF rs5745652, patients carrying CC genotype had lower serum HGF levels, higher efficacy, better survival quality, and prolonged 3-year survival rate (all P<0.05). In rs2074725, patients carrying CA+AA genotype had lower serum HGF levels, higher efficacy, better survival quality, and prolonged 3-year survival rate compared with patients carrying rs2074725 CC genotype (all P<0.05). Gene polymorphisms of HGF rs5745652 and HGF rs2074725, tumor size, and Barcelona Clinic Liver Cancer stage were independent prognostic factors for PLC (P<0.05). Conclusion Our results indicated that HGF gene polymorphisms affect TACE efficacy and survival quality of PLC patients. Patients with HGF CC genotype of rs5745652 and CA+AA genotype of rs2074725 had decreased HGF level, better curative effect, high survival quality, and a good prognosis after TACE treatment. PMID:28243116

  17. Proton pump inhibitors enhance the effects of cytotoxic agents in chemoresistant epithelial ovarian carcinoma

    PubMed Central

    Hong, Ji Eun; Cho, Young Jae; Ryu, Ji Yoon; Choi, Jung-Joo; Lee, Sang Hoon; Yoon, Gun; Kim, Woo Young; Do, In-Gu; Kim, Min Kyu; Kim, Tae-Joong; Choi, Chel Hun; Lee, Jeong-Won; Bae, Duk-Soo; Kim, Byoung-Gie

    2015-01-01

    This study was designed to investigate whether proton pump inhibitors (PPI, V-ATPase blocker) could increase the effect of cytotoxic agents in chemoresistant epithelial ovarian cancer (EOC). Expression of V-ATPase protein was evaluated in patients with EOC using immunohistochemistry, and patient survival was compared based on expression of V-ATPase mRNA from a TCGA data set. In vitro, EOC cell lines were treated with chemotherapeutic agents with or without V-ATPase siRNA or PPI (omeprazole) pretreatment. Cell survival and apoptosis was assessed using MTT assay and ELISA, respectively. In vivo experiments were performed to confirm the synergistic effect with omeprazole and paclitaxel on tumor growth in orthotopic and patient-derived xenograft (PDX) mouse models. Expression of V-ATPase protein in ovarian cancer tissues was observed in 44 patients (44/59, 74.6%). Higher expression of V-ATPase mRNA was associated with poorer overall survival in TCGA data. Inhibition of V-ATPase by siRNA or omeprazole significantly increased cytotoxicity or apoptosis to paclitaxel in chemoresistant (HeyA8-MDR, SKOV3-TR) and clear cell carcinoma cells (ES-2, RMG-1), but not in chemosensitive cells (HeyA8, SKOV3ip1). Moreover, the combination of omeprazole and paclitaxel significantly decreased the total tumor weight compared with paclitaxel alone in a chemoresistant EOC animal model and a PDX model of clear cell carcinoma. However, this finding was not observed in chemosensitive EOC animal models. These results show that omeprazole pretreatment can increase the effect of chemotherapeutic agents in chemoresistant EOC and clear cell carcinoma via reduction of the acidic tumor microenvironment. PMID:26418900

  18. Xenon fluoride solutions effective as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Hyman, H. H.; Quarterman, L. A.; Sheft, I.

    1967-01-01

    Solutions of xenon fluorides in anhydrous hydrogen fluoride have few disruptive effects and leave a residue consisting of gaseous xenon, which can be recovered and refluorinated. This mild agent can be used with materials which normally must be fluorinated with fluorine alone at high temperatures.

  19. Clinical effectiveness of contemporary dentin bonding agents

    PubMed Central

    Krithikadatta, Jogikalmat

    2010-01-01

    Aim: The purpose of this paper is to review the literature on the clinical effectiveness of contemporary resin-based dentin bonding agents primarily focussing on the longevity of restoration. Materials and Methods: The literature published from June 2004 up to September 2010 was reviewed for clinical trials that tested the effectiveness of dentin bonding agents in the longevity of noncarious class V restoration. Results of each study reported using the USPHS criteria for clinical assessment of restoration were included and tabulated. The American Dental Association guidelines for dentin and enamel adhesives were used as a reference to compare the performance of individual bonding agents. Kruskal–Wallis followed by Mann–Whitney U was done to compare the mean Alfa score percentage for the three categories of bonding systems [etch-and-rinse (ER), self-etch primer (SEP), and self-etch-adhesive (SEA)]. Results: A comparison of the mean Alfa score percentages revealed no difference between the ER, SEP, and SEA categories of bonding systems except for marginal adaptation where ER was found to be superior to SEA. Conclusion: The clinical effectiveness of resin-based bonding agents is comparable among the three categories. PMID:21217944

  20. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    SciTech Connect

    May, Jennifer E. Morse, H. Ruth Xu, Jinsheng Donaldson, Craig

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  1. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation

    PubMed Central

    Lee, Chun Seng; Ryan, Elizabeth J; Doherty, Glen A

    2014-01-01

    Chemotherapy-induced diarrhea (CID) is a common and often severe side effect experienced by colorectal cancer (CRC) patients during their treatment. As chemotherapy regimens evolve to include more efficacious agents, CID is increasingly becoming a major cause of dose limiting toxicity and merits further investigation. Inflammation is a key factor behind gastrointestinal (GI) toxicity of chemotherapy. Different chemotherapeutic agents activate a diverse range of pro-inflammatory pathways culminating in distinct histopathological changes in the small intestine and colonic mucosa. Here we review the current understanding of the mechanisms behind GI toxicity and the mucositis associated with systemic treatment of CRC. Insights into the inflammatory response activated during this process gained from various models of GI toxicity are discussed. The inflammatory processes contributing to the GI toxicity of chemotherapeutic agents are increasingly being recognised as having an important role in the development of anti-tumor immunity, thus conferring added benefit against tumor recurrence and improving patient survival. We review the basic mechanisms involved in the promotion of immunogenic cell death and its relevance in the treatment of colorectal cancer. Finally, the impact of CID on patient outcomes and therapeutic strategies to prevent or minimise the effect of GI toxicity and mucositis are discussed. PMID:24744571

  2. Effects of pharmacological agents on gastrointestinal motility.

    PubMed

    Gerring, E L

    1989-08-01

    The control mechanisms of gastrointestinal motility are complex. Extrinsic neurohormonal effects modulate an intrinsic system, often called the "gut brain," composed of nervous and neuropeptide components. To exert pharmacologic influence on GI motility, use is made of agents that mimic the external control system. Agents that stimulate opioid receptors, block adrenoceptors, block or facilitate acetylcholine action, or antagonize the action of prostaglandins are used to effect changes in GI motility. The major indications for pharmacologic intervention are to increase motility in constipation, to reduce it in most cases of diarrhea, and to restore propulsive coordination in postoperative ileus. In cases of clinical colic the primary requirement is control of pain. Agents used for this purpose may adversely affect motility, and choice requires knowledge of their actions in this respect. In addition, drugs used for other purposes, anthelmintics for instance, may also influence gut motility. A synopsis of the actions of the agents commonly employed in GI motility control and some associated drugs are displayed in Table 3. Recent advances in the understanding of drug action on the gut should help in the selection of drugs for clinical use.

  3. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites.

    PubMed

    Urbina, J A

    1997-01-01

    Inhibitors of sterol and phospholipid biosynthesis in kinetoplastid parasites such as Trypanosoma cruzi, the causative agent of Chagas' disease, and different species of Leishmania have potent and selective activity as chemotherapeutic agents in vitro and in vivo. Recent work with the sterol C14 alpha-demethylase inhibitor D0870, a bis triazole derivative, showed that this compound is capable of inducing radical parasitological cure in murine models of both acute and chronic Chagas' disease. Other inhibitors of this type, such as SCH 56592, have also shown curative, rather than suppressive, activity against T. cruzi in these models. Leishmania species have different susceptibilities to sterol biosynthesis inhibitors, both in vitro and in vivo. Leishmania braziliensis promastigotes, naturally resistant to C14 alpha-demethylase inhibitors such as ketoconazole and D0870, were susceptible to these drugs when used in combination with the squalene epoxidase inhibitor terbinafine. Inhibitors of delta 24(25) sterol methyl transferase have been shown to act as potent antiproliferative agents against Trypanosoma cruzi, both in vitro and in vivo. New inhibitors of this type which show enhanced activity and novel mechanisms of action have been synthesized. Recent work has also demonstrated that this type of enzyme inhibitors can block sterol biosynthesis and cell proliferation in Pneumocystis carinii, a fungal pathogen which had previously been found resistant to other sterol biosynthesis inhibitors. Ajoene, an antiplatelet compound derived from garlic, was shown to have potent antiproliferative activity against epimastigotes and amastigotes of Trypanosoma cruzi in vitro; this activity was associated with a significant alteration of the phospholipid composition of the cells with no significant effects on the sterol content. In addition, alkyllsophospholipids such as ilmofosine, miltefosine and edelfosine have been shown to block the proliferation of T. cruzi and Leishmania and

  4. Chemotherapeutic potential of quercetin on human bladder cancer cells.

    PubMed

    Oršolić, Nada; Karač, Ivo; Sirovina, Damir; Kukolj, Marina; Kunštić, Martina; Gajski, Goran; Garaj-Vrhovac, Vera; Štajcar, Damir

    2016-07-28

    In an effort to improve local bladder cancer control, we investigated the cytotoxic and genotoxic effects of quercetin on human bladder cancer T24 cells. The cytotoxic effect of quercetin against T24 cells was examined by MTT test, clonogenic assay as well as DNA damaging effect by comet assay. In addition, the cytotoxic effect of quercetin on the primary culture of papillary urothelial carcinoma (PUC), histopathological stage T1 of low- or high-grade tumours, was investigated. Our analysis demonstrated a high correlation between reduced number of colony and cell viability and an increase in DNA damage of T24 cells incubated with quercetin at doses of 1 and 50 µM during short term incubation (2 h). At all exposure times (24, 48 and 72 h), the efficacy of quercetin, administered at a 10× higher dose compared to T24 cells, was statistically significant (P < 0.05) for the primary culture of PUC. In conclusion, our study suggests that quercetin could inhibit cell proliferation and colony formation of human bladder cancer cells by inducing DNA damage and that quercetin may be an effective chemopreventive and chemotherapeutic agent for papillary urothelial bladder cancer after transurethral resection.

  5. [Looking for the new preparations for antibacterial therapy. I. New antibiotics and chemotherapeutics on the market].

    PubMed

    Karpiuk, Izabela; Tyski, Stefan

    2012-01-01

    Development of new mechanisms of resistance and relatively easy and fast transferring of resistance genes between cells have resulted in emergence of large number of multi-drug resistant bacteria in recent years. Therefore, it is important to intensively search for new, effective compounds possessing antibacterial potential and apply them as active ingredients of medicinal products. This procedure may lead to eradication of clinically relevant, dangerous bacteria. In the twentyfirst century, three new classes of antibacterial agents: oxazolidinones, lipopeptides and pleuromutilins were introduced into the therapy. Compounds from the last group, such as tiamulin, were used previously, but only in veterinary. New 18 antimicrobial compounds, belonging to known therapeutic groups, have been registered since 2000. The largest group among antibacterial chemotherapeutics is quinolones. Group of natural compounds includes: new carbapenems, cephalosporins of V generation and other agents, like telithromycin, tigecycline, telavancin and fidaxomicin. This article is a part of the series associated with searching for new antibacterial agents and it relates to new antibiotics and antibacterial chemotherapeutics approved for the world-wide market since 2000. The next parts of this cycle will be devoted to compounds ongoing the clinical trials.

  6. A minimum core outcome dataset for the reporting of preclinical chemotherapeutic drug studies: Lessons learned from multiple discordant methodologies in the setting of colorectal cancer.

    PubMed

    West, M A; Roman, A; Sayan, E; Primrose, J N; Wedge, S R; Underwood, T J; Mirnezami, A H

    2017-04-01

    In vivo studies in animal models are critical tools necessary to study the fundamental complexity of carcinogenesis. A constant strive to improve animal models in cancer exists, especially those investigating the use of chemotherapeutic effectiveness. In the present systematic review, colorectal cancer (CRC) is used as an example to highlight and critically evaluate the range of reporting strategies used when investigating chemotherapeutic agents in the preclinical setting. A systematic review examining the methodology and reporting of preclinical chemotherapeutic drug studies using CRC murine models was conducted. A total of 45 studies were included in this systematic review. The literature was found to be highly heterogeneous with various cell lines, animal strains, animal ages and chemotherapeutic compounds/regimens tested, proving difficult to compare outcomes between similar studies or indeed gain any significant insight into which chemotherapeutic regimen caused adverse events. From this analysis we propose a minimum core outcome dataset that could be regarded as a standardised way of reporting results from in vivo experimentation.

  7. A novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells

    PubMed Central

    Wang, Si; Placzek, William J.; Stebbins, John L.; Mitra, Sayantan; Noberini, Roberta; Koolpe, Mitchell; Zhang, Ziming; Dahl, Russell; Pasquale, Elena B.; Pellecchia, Maurizio

    2012-01-01

    The efficacy of anti-cancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is over-expressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anti-cancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel. We found that the peptide-drug conjugate is dramatically more effective than paclitaxel alone at inhibiting tumor growth in a prostate cancer xenograft model, delivering significantly higher levels of drug to the tumor site. We believe these studies open the way to the development of a new class of therapeutic compounds that exploit the EphA2 receptor for drug delivery to cancer cells. PMID:22329578

  8. The Use of Chemotherapeutics for the Treatment of Keloid Scars

    PubMed Central

    Jones, Christopher David; Guiot, Luke; Samy, Mike; Gorman, Mark; Tehrani, Hamid

    2015-01-01

    Keloid scars are pathological scars, which develop as a result of exaggerated dermal tissue proliferation following cutaneous injury and often cause physical, psychological and cosmetic problems. Various theories regarding keloidogenesis exist, however the precise pathophysiological events remain unclear. Many different treatment modalities have been implicated in their management, but currently there is no entirely satisfactory method for treating all keloid lesions. We review a number of different chemotherapeutic agents which have been proposed for the treatment of keloid and hypertrophic scars while giving insight into some of the novel chemotherapeutic drugs which are currently being investigated. Non-randomized trials evaluating the influence of different chemotherapeutic agents, such as 5-fluorouracil (5-FU); mitomycin C; bleomycin and steroid injection, either alone or in combination with other chemotherapeutic agents or alternative treatment modalities, for the treatment of keloids were identified using a predefined PubMed search strategy. Twenty seven papers were identified. Scar improvement ≥50% was found in the majority of cases treated with 5-FU, with similar results found for mitomycin C, bleomycin and steroid injection. Combined intralesional 5-FU and steroid injection produced statistically significant improvements when compared to monotherapy. Monotherapy recurrence rates ranged from 0-47% for 5-FU, 0-15% for bleomycin and 0-50% for steroid injection. However, combined therapy in the form of surgical excision and adjuvant 5-FU or steroid injections demonstrated lower recurrence rates; 19% and 6% respectively. Currently, most of the literature supports the use of combination therapy (usually surgery and adjuvant chemotherapy) as the mainstay treatment of keloids, however further investigation is necessary to determine success rates over longer time frames. Furthermore, there is the potential for novel therapies, but further investigation is

  9. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    PubMed

    Kelly, Sarah E; Di Benedetto, Altomare; Greco, Adelaide; Howard, Candace M; Sollars, Vincent E; Primerano, Donald A; Valluri, Jagan V; Claudio, Pier Paolo

    2010-04-08

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-)4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  10. Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications

    PubMed Central

    Kelly, Sarah E.; Di Benedetto, Altomare; Greco, Adelaide; Howard, Candace M.; Sollars, Vincent E.; Primerano, Donald A.; Valluri, Jagan V.; Claudio, Pier Paolo

    2010-01-01

    Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133(+)] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133(+) cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a (+)15-fold proliferation of the CD133(+) cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (−)4.8-fold decrease in the CD133(+)cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133(+) cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates. PMID:20386701

  11. Comparative sporicidal effects of liquid chemical agents.

    PubMed Central

    Sagripanti, J L; Bonifacino, A

    1996-01-01

    We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents. PMID:8593054

  12. In vivo chemotherapeutic insight of a novel isocoumarin (3-hexyl-5,7-dimethoxy-isochromen-1-one): Genotoxicity, cell death induction, leukometry and phagocytic evaluation

    PubMed Central

    de Araújo, Flávio Henrique Souza; de Figueiredo, Débora Rojas; Auharek, Sarah Alves; Pesarini, João Renato; Meza, Alisson; Gomes, Roberto da Silva; Monreal, Antônio Carlos Duenhas; Antoniolli-Silva, Andréia Conceição Milan Brochado; de Lima, Dênis Pires; Kassuya, Candida Aparecida Leite; Beatriz, Adilson; Oliveira, Rodrigo Juliano

    2017-01-01

    Abstract Chemotherapy is one of the major approaches for the treatment of cancer. Therefore, the development of new chemotherapy drugs is an important aspect of medicinal chemistry. Chemotherapeutic agents include isocoumarins, which are privileged structures with potential antitumoral activity. Herein, a new 3-substituted isocoumarin was synthesized from 2-iodo-3,5-dimethoxy-benzoic acid and oct-1-yne in a cross-coupling Sonogashira reaction followed by a copper iodide-catalyzed intramolecular cyclization as key step using MeOH/Et3N as the solvent system. The present study also evaluated the leukometry, phagocytic activity, genotoxic potential and cell death induction of three different doses (5 mg/kg, 10 mg/kg and 20 mg/kg) of this newly synthesized isocoumarin, alone and in combination with the commercial chemotherapeutic agents cyclophosphamide (100 mg/kg) and cisplatin (6 mg/kg) in male Swiss mice. The results suggest that the isocoumarin has genotoxicity and causes cell death. Noteworthy, this new compound can increase splenic phagocytosis and lymphocyte frequency, which are related to immunomodulatory activity. When combined with either cyclophosphamide or cisplatin, chemopreventive activity led to a reduction in the effects of both chemotherapeutic drugs. Thus, the new isocoumarin is not a candidate for chemotherapeutic adjuvant in treatments using cyclophosphamide or cisplatin. Nevertheless, the compound itself is an important prototype for the development of new antitumor drugs. PMID:28898353

  13. In vivo chemotherapeutic insight of a novel isocoumarin (3-hexyl-5,7-dimethoxy-isochromen-1-one): Genotoxicity, cell death induction, leukometry and phagocytic evaluation.

    PubMed

    Araújo, Flávio Henrique Souza de; Figueiredo, Débora Rojas de; Auharek, Sarah Alves; Pesarini, João Renato; Meza, Alisson; Gomes, Roberto da Silva; Monreal, Antônio Carlos Duenhas; Antoniolli-Silva, Andréia Conceição Milan Brochado; Lima, Dênis Pires de; Kassuya, Candida Aparecida Leite; Beatriz, Adilson; Oliveira, Rodrigo Juliano

    Chemotherapy is one of the major approaches for the treatment of cancer. Therefore, the development of new chemotherapy drugs is an important aspect of medicinal chemistry. Chemotherapeutic agents include isocoumarins, which are privileged structures with potential antitumoral activity. Herein, a new 3-substituted isocoumarin was synthesized from 2-iodo-3,5-dimethoxy-benzoic acid and oct-1-yne in a cross-coupling Sonogashira reaction followed by a copper iodide-catalyzed intramolecular cyclization as key step using MeOH/Et3N as the solvent system. The present study also evaluated the leukometry, phagocytic activity, genotoxic potential and cell death induction of three different doses (5 mg/kg, 10 mg/kg and 20 mg/kg) of this newly synthesized isocoumarin, alone and in combination with the commercial chemotherapeutic agents cyclophosphamide (100 mg/kg) and cisplatin (6 mg/kg) in male Swiss mice. The results suggest that the isocoumarin has genotoxicity and causes cell death. Noteworthy, this new compound can increase splenic phagocytosis and lymphocyte frequency, which are related to immunomodulatory activity. When combined with either cyclophosphamide or cisplatin, chemopreventive activity led to a reduction in the effects of both chemotherapeutic drugs. Thus, the new isocoumarin is not a candidate for chemotherapeutic adjuvant in treatments using cyclophosphamide or cisplatin. Nevertheless, the compound itself is an important prototype for the development of new antitumor drugs.

  14. Cell Membrane Capsules for Encapsulation of Chemotherapeutic and Cancer Cell Targeting in Vivo.

    PubMed

    Peng, Li-Hua; Zhang, Yuan-Hong; Han, Li-Jie; Zhang, Chen-Zhen; Wu, Jia-He; Wang, Xia-Rong; Gao, Jian-Qing; Mao, Zheng-Wei

    2015-08-26

    Systemic administration of chemotherapeutic agents can cause indiscriminate drug distribution and severe toxicity. Until now, encapsulation and targeting of drugs have typically relied on synthetic vehicles, which cannot minimize the clearance by the renal system and may also increase the risk of chemical side effects. Cell membrane capsules (CMCs) provide a generic and far more natural approach to the challenges of drug encapsulation and delivery in vivo. Here aptamer AS1411, which can recognize and bind overexpressed nucleolin on a cancer cell membrane, was chemically conjugated onto CMCs. As a result, AS1411 modified CMCs showed enhanced ingestion in certain cancer cells in vitro and accumulation in mouse cancer xenografts in vivo. Chemotherapeutics and contrast agents with therapeutically significant concentrations can be packaged into CMCs by reversible permeating their plasma membranes. The systematic administration of cancer targeting CMCs loaded with doxorubicin hydrochloride can significantly inhibit tumor growth in mouse xenografts, with significantly reduced toxicity compared to free drug. These findings suggest that cancer targeting CMCs may have considerable benefits in drug delivery and cancer treatment.

  15. Self-assembled Nanomaterials for Chemotherapeutic Applications

    NASA Astrophysics Data System (ADS)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  16. The Second-Agent Effect: Communicative Gestures Increase the Likelihood of Perceiving a Second Agent

    PubMed Central

    Manera, Valeria; Del Giudice, Marco; Bara, Bruno G.; Verfaillie, Karl; Becchio, Cristina

    2011-01-01

    Background Beyond providing cues about an agent's intention, communicative actions convey information about the presence of a second agent towards whom the action is directed (second-agent information). In two psychophysical studies we investigated whether the perceptual system makes use of this information to infer the presence of a second agent when dealing with impoverished and/or noisy sensory input. Methodology/Principal Findings Participants observed point-light displays of two agents (A and B) performing separate actions. In the Communicative condition, agent B's action was performed in response to a communicative gesture by agent A. In the Individual condition, agent A's communicative action was replaced with a non-communicative action. Participants performed a simultaneous masking yes-no task, in which they were asked to detect the presence of agent B. In Experiment 1, we investigated whether criterion c was lowered in the Communicative condition compared to the Individual condition, thus reflecting a variation in perceptual expectations. In Experiment 2, we manipulated the congruence between A's communicative gesture and B's response, to ascertain whether the lowering of c in the Communicative condition reflected a truly perceptual effect. Results demonstrate that information extracted from communicative gestures influences the concurrent processing of biological motion by prompting perception of a second agent (second-agent effect). Conclusions/Significance We propose that this finding is best explained within a Bayesian framework, which gives a powerful rationale for the pervasive role of prior expectations in visual perception. PMID:21829472

  17. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro

    PubMed Central

    Bryukhovetskiy, Igor; Lyakhova, Irina; Mischenko, Polina; Milkina, Elena ; Zaitsev, Sergei ; Khotimchenko, Yuri; Bryukhovetskiy, Andrey; Polevshchikov, Alexander ; Kudryavtsev, Igor; Khotimchenko, Maxim; Zhidkov, Maxim

    2017-01-01

    Glioblastoma multiforme is an invasive malignant glial brain tumor with a poor prognosis for patients. The primary reasons that lead to the development of treatment resistance are associated with tumor cells infiltrating the brain parenchyma and the specific properties of tumor stem cells. A crucial research area in medical science is the search for effective agents that are able to act on these targets. Fascaplysin alkaloids possess potent antitumor activity. Modern methods for the targeted delivery of drugs reveal extensive possibilities in terms of the clinical use of these compounds. The aim of the present study was to establish effective concentrations of fascaplysin that inhibit the growth and kill the cells of glial tumors, as well as to perform a comparative analysis of fascaplysin's effectiveness in relation to other chemotherapy drugs. C6 glioma cells were utilized as an optimal model of glioblastoma. It was established that fascaplysin at 0.5 µM has a strong cytotoxic effect, which is subsequently replaced by tumor cell death via apoptosis as the length of drug exposure time is increased. Fascaplysin kills glioma cells at a dose higher than 0.5 µM. The efficiency of fascaplysin was observed to significantly exceed that of temozolomide. Therefore, a significant feature of fascaplysin is its ability to inhibit the growth of and kill multipotent tumor cells. PMID:28356953

  18. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles--a novel aspect in cancer therapy.

    PubMed

    Sack, Maren; Alili, Lirija; Karaman, Elif; Das, Soumen; Gupta, Ankur; Seal, Sudipta; Brenneisen, Peter

    2014-07-01

    Nanotechnology is becoming an important field of biomedical and clinical research and the application of nanoparticles in disease may offer promising advances in treatment of many diseases, especially cancer. Malignant melanoma is one of the most aggressive forms of cancer and its incidence is rapidly increasing. Redox-active cerium oxide nanoparticles (CNP) are known to exhibit significant antitumor activity in cells derived from human skin tumors in vitro and in vivo, whereas CNP is nontoxic and beyond that even protective (antioxidative) in normal, healthy cells of the skin. As the application of conventional chemotherapeutics is associated with harmful side effects on healthy cells and tissues, the clinical use is restricted. In this study, we addressed the question of whether CNP supplement a classical chemotherapy, thereby enhancing its efficiency without additional damage to normal cells. The anthracycline doxorubicin, one of the most effective cancer drugs, was chosen as reference for a classical chemotherapeutic agent in this study. Herein, we show that CNP enhance the antitumor activity of doxorubicin in human melanoma cells. Synergistic effects on cytotoxicity, reactive oxygen species generation, and oxidative damage in tumor cells were observed after co-incubation. In contrast to doxorubicin, CNP do not cause DNA damage and even protect human dermal fibroblasts from doxorubicin-induced cytotoxicity. A combination of classical chemotherapeutics with nongenotoxic but antitumor active CNP may provide a new strategy against cancer by improving therapeutic outcome and benefit for patients.

  19. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs

    PubMed Central

    Braidwood, Lynne; Graham, Sheila V; Graham, Alex; Conner, Joe

    2013-01-01

    Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVexGM-CSF]), is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with “standard-of-care” drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with “standard-of-care” drugs merits further investigation, both preclinically and in the clinic. Numerous publications report such studies of oncolytic HSV in combination with other drugs, and we review their findings here. Viral interactions with cellular hosts are complex and frequently involve intracellular signaling networks, thus creating diverse opportunities for synergistic or additive combinations with many anticancer drugs. We discuss potential mechanisms that may lead to synergistic interactions

  20. SEROTONIN AND OTHER VASOACTIVE AGENTS IN EXPERIMENTAL DECOMPRESSION SICKNESS,

    DTIC Science & Technology

    SEROTONIN, DECOMPRESSION SICKNESS), (*VASOACTIVE AGENTS, DECOMPRESSION SICKNESS), RATS, EXERCISE(PHYSIOLOGY), DOSAGE, CHEMOTHERAPEUTIC AGENTS, BLOOD ANALYSIS, TOXICITY, BLOOD CIRCULATION, MORTALITY RATES , CANADA

  1. Effects of psoralens as anti-tumoral agents in breast cancer cells

    PubMed Central

    Panno, Maria Luisa; Giordano, Francesca

    2014-01-01

    This review examines the biological properties of coumarins, widely distributed at the highest levels in the fruit, followed by the roots, stems and leaves, by considering their beneficial effects in the prevention of some diseases and as anti-cancer agents. These compounds are well known photosensitizing drugs which have been used as pharmaceuticals for a broad number of therapeutic applications requiring cell division inhibitors. Despite this, even in the absence of ultraviolet rays they are active. The current paper mainly focuses on the effects of psoralens on human breast cancer as they are able to influence many aspects of cell behavior, such as cell growth, survival and apoptosis. In addition, analytical and pharmacological data have demonstrated that psoralens antagonize some metabolizing enzymes, affect estrogen receptor stability and counteract cell invasiveness as well as cancer drug resistance. The scientific findings summarized highlight the pleiotropic functions of phytochemical drugs, given that recently their target signals and how these are modified in the cells have been identified. The encouraging results in this field suggest that multiple modulating strategies based on coumarin drugs in combination with canonical chemotherapeutic agents or radiotherapy could be a useful approach to address the treatment of many types of cancer. PMID:25114850

  2. Effects of antirheumatic agents on cytokines.

    PubMed

    Barrera, P; Boerbooms, A M; van de Putte, L B; van der Meer, J W

    1996-02-01

    A review of the literature concerning the effects of traditional antirheumatic drugs on cytokines and the cytokine and anticytokine approaches already used in the therapy of rheumatoid arthritis (RA) is presented. Many antirheumatic drugs are capable of cytokine modulation in vitro. Corticosteroids inhibit the transcription of a broad spectrum of genes including those encoding monocyte, T cell-derived cytokines and several hemopoietic growth factors, whereas drugs such as cyclosporin A and D-penicillamine interfere with T cell activation more specifically by suppressing interleukin 2 (IL-2) production. The in vivo effects of drug therapy on cytokines in RA patients are less well established. Gold compounds reduce circulating IL-6 levels and the expression of monocyte-derived cytokines, such as IL-1, tumor necrosis factor (TNF), and IL-6, in the rheumatoid synovium. Decreases in circulating IL-6, soluble IL-2 (sIL-2R), and TNF receptors and in synovial fluid IL-1 levels have been reported with methotrexate. Reductions in circulating IL-6 and sIL-2R concentrations have also been observed with cyclosporin and corticosteroids, whereas azathioprine reduces IL-6 but not sIL-2R. Studies on sulfasalazine are conflicting and the in vivo effects of D-penicillamine and antimalarials have not been studied yet. Interferon gamma therapy is not effective in RA but may prove a useful antifibrotic for systemic sclerosis. Colony stimulating factors improve the granulocytopenia associated with Felty's syndrome or drug toxicities but can induce arthritis flares and should be reserved to treat infectious complications. Promising results are being obtained with selective antagonism of TNF and IL-1 in RA, and combinations of anticytokine strategies with traditional antirheumatic drugs have been already envisaged. These should preferably be based in a broader knowledge of the effects of antirheumatic agents on the cytokine network.

  3. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Buday, Craig; Jordan, Jameson; Rehaume, Vicki; Cabecinha, Melissa; Dubetz, Cory; Chamberlain, Jon; Pittroff, Sabrina; Vallée, Kurtis; van Aggelen, Graham; Helbing, Caren C

    2012-02-01

    The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1-4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K(p)) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, β-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Heat Shock Protein translocation induced by membrane fluidization increases tumor-cell sensitivity to chemotherapeutic drugs.

    PubMed

    Dempsey, Nina C; Ireland, H Elyse; Smith, Carly M; Hoyle, Christine F; Williams, John H H

    2010-10-28

    Treatment of chronic lymphocytic leukemia (CLL) remains a challenge due to the frequency of drug resistance amongst patients. Improving the delivery of chemotherapeutic agents while reducing the expression of anti-apoptotic Heat Shock Proteins (HSPs) within the cancer cells may facilitate in overcoming this drug resistance. We demonstrate for the first time that sub-lethal doses of chemotherapeutic agents can be combined with membrane fluidizing treatments to produce a significant increase in drug efficacy and apoptosis in vitro. We show that fluidizers result in a transient decrease in intracellular HSPs, resulting in increased tumor-cell sensitivity and a membrane-associated induction of HSP gene expression.

  5. Multi-agent Reinforcement Learning Model for Effective Action Selection

    NASA Astrophysics Data System (ADS)

    Youk, Sang Jo; Lee, Bong Keun

    Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocop Keep away which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.

  6. Bioactive carbohydrates and recently discovered analogues as chemotherapeutics.

    PubMed

    Wrodnigg, Tanja M; Sprenger, Friedrich K Fitz

    2004-05-01

    Infectious diseases such as tuberculosis, malaria, the "simple flu" or HIV and HBV, are killing more than 50,000 people a day according to estimations by the World Health Organisation (WHO). Consequently, the development of biologically active agents in general, such as antibiotics and chemotherapeutics, is of great importance. Hand in hand with the understanding of the mechanisms of biological agents, structures carrying sugar moieties have become increasingly important during the last decades. This review will cover the most recent developments in the field of new antibiotics and synthetic agents containing carbohydrates which are active against tuberculosis and malaria. In addition, compounds having antiviral, antibacterial and anticancer properties will be examined. Compounds such as aminoglycosides, iminosugars, carbacycles, nucleosides, and other selected substance classes will be considered.

  7. Development of a novel, physiologically relevant cytotoxicity model: application to the study of chemotherapeutic damage to mesenchymal stromal cells.

    PubMed

    May, Jennifer E; Morse, H Ruth; Xu, Jinsheng; Donaldson, Craig

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis

    PubMed Central

    Li, Xiaojin; Guo, Hua; Duan, Hongyang; Yang, Yanlian; Meng, Jie; Liu, Jian; Wang, Chen; Xu, Haiyan

    2015-01-01

    Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5’s capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis. PMID:26538086

  9. Overseas nurses--effective therapeutic agents?

    PubMed

    Shanley, E

    1980-09-01

    Factors affecting the effectiveness of overseas people employed as psychiatric nurses are discussed. Basic cultural influences, especially different value systems between the immigrant and the host population, are seen as unlikely to be greatly altered by the environment in which the immigrant nurses find themselves. In fact a greater divergence would seem more likely to occur. The different experiences of immigrant nurses compared with nurses recruited in Britain are considered under the following headings: expectations of the immigrants on entering nursing, their contact with the host culture, the reaction of the indigenous population to the immigrant, language difficulties, and the insecurity of employment. The conclusion drawn is that the cultural differences, recruitment methods, the immigrants' experiences in employment and lack of contact with the culture of the indigenous population (apart from their deviant members) are likely to adversely affect his/her ability to function as a therapeutic agent. This is particularly important where the form of treatment is based on the social model.

  10. A New Concept of Enhancing Immuno-Chemotherapeutic Effects Against B16F10 Tumor via Systemic Administration by Taking Advantages of the Limitation of EPR Effect

    PubMed Central

    Yang, Yuting; Tai, Xiaowei; Shi, Kairong; Ruan, Shaobo; Qiu, Yue; Zhang, Zhirong; Xiang, Bing; He, Qin

    2016-01-01

    The enhanced permeability and retention (EPR) effect has been comfortably accepted, and extensively assumed as a keystone in the research on tumor-targeted drug delivery system. Due to the unsatisfied tumor-targeting efficiency of EPR effect being one conspicuous drawback, nanocarriers that merely relying on EPR effect are difficult to access the tumor tissue and consequently trigger efficient tumor therapy in clinic. In the present contribution, we break up the shackles of EPR effect on nanocarriers thanks to their universal distribution characteristic. We successfully design a paclitaxel (PTX) and alpha-galactosylceramide (αGC) co-loaded TH peptide (AGYLLGHINLHHLAHL(Aib)HHIL-Cys) -modified liposome (PTX/αGC-TH-Lip) and introduce a new concept of immuno-chemotherapy combination via accumulation of these liposomes at both spleen and tumor sites naturally and simultaneously. The PTX-initiated cytotoxicity attacks tumor cells at tumor sites, meanwhile, the αGC-triggered antitumor immune response emerges at spleen tissue. Different to the case that liposomes are loaded with sole drug, in this concept two therapeutic processes effectively reinforce each other, thereby elevating the tumor therapy efficiency significantly. The data demonstrates that the PTX/αGC-TH-Lip not only possess therapeutic effect against highly malignant B16F10 melanoma tumor, but also adjust the in vivo immune status and induce a more remarkable systemic antitumor immunity that could further suppress the growth of tumor at distant site. This work exhibits the capability of the PTX/αGC-TH-Lip in improving immune-chemotherapy against tumor after systemic administration. PMID:27698946

  11. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications.

    PubMed

    Weisman, Jeffery A; Nicholson, James C; Tappa, Karthik; Jammalamadaka, UdayaBhanu; Wilson, Chester G; Mills, David K

    2015-01-01

    Three-dimensional (3D) printing and additive manufacturing holds potential for highly personalized medicine, and its introduction into clinical medicine will have many implications for patient care. This paper demonstrates the first application of 3D printing as a method for the potential sustained delivery of antibiotic and chemotherapeutic drugs from constructs for patient treatment. Our design is focused on the on-demand production of anti-infective and chemotherapeutic filaments that can be used to create discs, beads, catheters, or any medical construct using a 3D printing system. The design parameters for this project were to create a system that could be modularly loaded with bioactive agents. All 3D-printed constructs were loaded with either gentamicin or methotrexate and were optimized for efficient and extended antibacterial and cancer growth-inhibiting cytostatic activity. Preliminary results demonstrate that combining gentamicin and methotrexate with polylactic acid forms a composite possessing a superior combination of strength, versatility, and enhanced drug delivery. Antibacterial effects and a reduction in proliferation of osteosarcoma cells were observed with all constructs, attesting to the technical and clinical viability of our composites. In this study, 3D constructs were loaded with gentamicin and methotrexate, but the method can be extended to many other drugs. This method could permit clinicians to provide customized and tailored treatment that allows patient-specific treatment of disease and has significant potential for use as a tunable drug delivery system with sustained-release capacity for an array of biomedical applications.

  12. Rational Choice of Antiemetic Agents during Cancer Chemotherapy

    PubMed Central

    Brigden, Malcolm L.; Wilson, Kenneth S.; Barnett, Jeffrey B.

    1983-01-01

    Nausea and vomiting are major limitations in cancer chemotherapy. Individual susceptibility to nausea varies enormously. There is no ideal antiemetic, but some work with some chemotherapeutic agents, and some are more effective in younger patients. This article describes a flexible, stepped approach using the phenothiazines, metoclopramide, cannabinoids, anticholinergics, antihistamines and others. PMID:21283402

  13. Principles and major agents in clinical oncology chemotherapy

    SciTech Connect

    Weller, R.E.

    1991-10-01

    This paper provides a brief classification of drugs available for veterinary chemotherapy, as well as justifications for their use. Some common neoplasia and the drugs of choice for their treatment are described. A listing by class of systemic chemotherapeutic agents, their mode of action, tumors responsive to the drugs, precautions and common adverse effects and mode of administration is provided. 2 tabs. (MHB)

  14. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer

    PubMed Central

    Shree, Tanaya; Olson, Oakley C.; Elie, Benelita T.; Kester, Jemila C.; Garfall, Alfred L.; Simpson, Kenishana; Bell-McGuinn, Katherine M.; Zabor, Emily C.; Brogi, Edi; Joyce, Johanna A.

    2011-01-01

    The microenvironment is known to critically modulate tumor progression, yet its role in regulating treatment response is poorly understood. Here we found increased macrophage infiltration and cathepsin protease levels in mammary tumors following paclitaxel (Taxol) chemotherapy. Cathepsin-expressing macrophages protected against Taxol-induced tumor cell death in coculture, an effect fully reversed by cathepsin inhibition and mediated partially by cathepsins B and S. Macrophages were also found to protect against tumor cell death induced by additional chemotherapeutics, specifically etoposide and doxorubicin. Combining Taxol with cathepsin inhibition in vivo significantly enhanced efficacy against primary and metastatic tumors, supporting the therapeutic relevance of this effect. Additionally incorporating continuous low-dose cyclophosphamide dramatically impaired tumor growth and metastasis and improved survival. This study highlights the importance of integrated targeting of the tumor and its microenvironment and implicates macrophages and cathepsins in blunting chemotherapeutic response. PMID:22156207

  15. Schistosoma mansoni Sirtuins: Characterization and Potential as Chemotherapeutic Targets

    PubMed Central

    Lancelot, Julien; Caby, Stéphanie; Dubois-Abdesselem, Florence; Vanderstraete, Mathieu; Trolet, Jacques; Oliveira, Guilherme; Bracher, Franz; Jung, Manfred; Pierce, Raymond J.

    2013-01-01

    Background The chemotherapy of schistosomiasis currently depends on the use of a single drug, praziquantel. In order to develop novel chemotherapeutic agents we are investigating enzymes involved in the epigenetic modification of chromatin. Sirtuins are NAD+ dependent lysine deacetylases that are involved in a wide variety of cellular processes including histone deacetylation, and have been demonstrated to be therapeutic targets in various pathologies, including cancer. Methodology, Principal Findings In order to determine whether Schistosoma mansoni sirtuins are potential therapeutic targets we first identified and characterized their protein sequences. Five sirtuins (SmSirt) are encoded in the S. mansoni genome and phylogenetic analysis showed that they are orthologues of mammalian Sirt1, Sirt2, Sirt5, Sirt6 and Sirt7. Both SmSirt1 and SmSirt7 have large insertion in the catalytic domain compared to their mammalian orthologues. SmSirt5 is the only mitochondrial sirtuin encoded in the parasite genome (orthologues of Sirt3 and Sirt4 are absent) and transcripts corresponding to at least five splicing isoforms were identified. All five sirtuins are expressed throughout the parasite life-cycle, but with distinct patterns of expression. Sirtuin inhibitors were used to treat both schistosomula and adult worms maintained in culture. Three inhibitors in particular, Sirtinol, Salermide and MS3 induced apoptosis and death of schistosomula, the separation of adult worm pairs, and a reduction in egg laying. Moreover, Salermide treatment led to a marked disruption of the morphology of ovaries and testes. Transcriptional knockdown of SmSirt1 by RNA interference in adult worms led to morphological changes in the ovaries characterized by a marked increase in mature oocytes, reiterating the effects of sirtuin inhibitors and suggesting that SmSirt1 is their principal target. Conclusion, Significance Our data demonstrate the potential of schistosome sirtuins as therapeutic targets

  16. Developing Effective Extension Agents: Experience Concerns.

    ERIC Educational Resources Information Center

    Goddu, Roland

    This paper is a description of the requirements placed on persons selected to fill the role of extension agents for the purpose of penetrating an educational environment, installing change in an educational organization, and completing tasks as a resource outside of the education establishment. These experience concerns are summarized by…

  17. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  18. γ-Tocotrienol but not γ-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents.

    PubMed

    Kannappan, Ramaswamy; Yadav, Vivek R; Aggarwal, Bharat B

    2010-10-22

    Although γ-tocotrienol (T3), a vitamin E isolated primarily from palm and rice bran oil, has been linked with anticancer activities, the mechanism of this action is poorly understood. In this study, we investigated whether γ-T3 can modulate the STAT3 cell signaling pathway, closely linked to inflammation and tumorigenesis. We found that γ-T3 but not γ-tocopherol, the most common saturated form of vitamin E, inhibited constitutive activation of STAT3 in a dose- and time-dependent manner, and this inhibition was not cell type-specific. γ-T3 also inhibited STAT3 DNA binding. This correlated with inhibition of Src kinase and JAK1 and JAK2 kinases. Pervanadate reversed the γ-T3-induced down-regulation of STAT3 activation, suggesting the involvement of a protein-tyrosine phosphatase. When examined further, we found that γ-T3 induced the expression of the tyrosine phosphatase SHP-1, and gene silencing of the SHP-1 by small interfering RNA abolished the ability of γ-T3 to inhibit STAT3 activation, suggesting a vital role for SHP-1 in the action of γ-T3. Also γ-T3 down-modulated activation of STAT3 and induced SHP-1 in vivo. Eventually, γ-T3 down-regulated the expression of STAT3-regulated antiapoptotic (Bcl-2, Bcl-xL, and Mcl-1), proliferative (cyclin D1), and angiogenic (VEGF) gene products; and this correlated with suppression of proliferation, the accumulation of cells in sub-G(1) phase of the cell cycle, and induction of apoptosis. This vitamin also sensitized the tumor cells to the apoptotic effects of thalidomide and bortezomib. Overall, our results suggest that γ-T3 is a novel blocker of STAT3 activation pathway both in vitro and in vivo and thus may have potential in prevention and treatment of cancers.

  19. Chemotherapeutic management of advanced ovarian cancer.

    PubMed

    Gordon, Alan N; Butler, Julie

    2003-08-01

    To review current treatment strategies for patients with advanced ovarian cancer. Factors for treatment selection are discussed. Research articles and textbooks. Research efforts continue to identify novel agents and/or combination therapies that can effect a cure or prolong survival. Several agents offer similar efficacy outcomes but vary in safety aspects and administration requirements. Numerous clinical trials have defined the efficacy and safety of chemotherapy in patients with ovarian cancer. Oncology nurses can prepare patients to make treatment decisions; educate them about treatment-related side effects; and develop an ongoing relationship as patient advocates to ensure quality of life.

  20. Hantzsch-Type dihydropyridines and Biginelli-type tetra-hydropyrimidines: a review of their chemotherapeutic activities.

    PubMed

    Sepehri, Saghi; Sanchez, Horacio Perez; Fassihi, Afshin

    2015-01-01

    Years after the first report on 1,4-dihydropyridines (1,4-DHPs) and 1,2,3,4-tetrahydropyrimidines (1,2,3,4-THPMs) appeared, they are revisited as plausible therapeutic agents. This is mainly due to the convenient methods that exist for their synthesis and the diverse pharmacologic properties that these scaffolds present. 1,4-Dihydropyridines and 1,2,3,4-tetrahydropyrimidines are usually regarded as analogous in several aspects. They are both prepared in multi-component reactions using very similar starting materials and synthesis protocols. This leads to common structural features between 1,4-DHPs and 1,2,3,4-THPMs, as well several related biological effects. For example, they share many pharmacological features such as analgesic, anti-tumor, antioxidant, anti-inflammatory, antitubercular, antibacterial, cardiovascular and adrenoceptor blocking activities. Numerous reviews have been devoted to the chemistry and cardiovascular effects of these compounds. However, the lack of a comprehensive literature overview on the chemotherapeutic ability of these scaffolds is behind the present attempt to provide a detailed survey of 1,4-DHPs and 1,2,3,4-THPMs and their structural features as chemotherapeutic agents.

  1. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs

    PubMed Central

    Gidwani, Bina; Vyas, Amber

    2015-01-01

    Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carriers, and various approaches used for the delivery. The present review article aims to assess the utility of cyclodextrin-based carriers like liposomes, niosomes, nanoparticles, micelles, millirods, and siRNA for delivery of antineoplastic agents. These systems based on cyclodextrin complexation and nanotechnology will camouflage the undesirable properties of drug and lead to synergistic or additive effect. Cyclodextrin-based nanotechnology seems to provide better therapeutic effect and sustain long life of healthy and recovered cells. Still, considerable study on delivery system and administration routes of cyclodextrin-based carriers is necessary with respect to their pharmacokinetics and toxicology to substantiate their safety and efficiency. In future, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents. PMID:26582104

  2. Learning Spanish with "Laura": The Effects of a Pedagogical Agent

    ERIC Educational Resources Information Center

    Theodoridou, Katerina

    2011-01-01

    The purpose of this study was to investigate the effects of an animated pedagogical agent on Spanish vocabulary learning. Furthermore, the study examined learners' reactions and attitudes towards the presence of the pedagogical agent in the web-based environments. A total of 47 university students enrolled in two fourth-semester Spanish classes…

  3. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  4. Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology.

    PubMed

    Klopfleisch, R; Kohn, B; Gruber, A D

    2016-01-01

    Several classes of chemotherapy drugs are used as first line or adjuvant treatment of the majority of tumour types in veterinary oncology. However, some types of tumour are intrinsically resistant to several anti-cancer drugs, and others, while initially sensitive, acquire resistance during treatment. Chemotherapy often significantly prolongs survival or disease free interval, but is not curative. The exact mechanisms behind intrinsic and acquired chemotherapy resistance are unknown for most animal tumours, but there is increasing knowledge on the mechanisms of drug resistance in humans and a few reports on molecular changes in resistant canine tumours have emerged. In addition, approaches to overcome or prevent chemotherapy resistance are becoming available in humans and, given the overlaps in molecular alterations between human and animal tumours, these may also be relevant in veterinary oncology. This review provides an overview of the current state of research on general chemotherapy resistance mechanisms, including drug efflux, DNA repair, apoptosis evasion and tumour stem cells. The known resistance mechanisms in animal tumours and the potential of these findings for improving treatment efficacy in veterinary oncology are also explored.

  5. Design and Sythesis of New Breast Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2000-08-01

    Point, PA) Smith, Kline and Beckmann Invited Lecturer, Symposium on Organic Synthesis , Great Lakes Regional ACS Meeting, Dekalb, Illinois Invited...Ann Arbor, Michigan Invited Lecturer, Symposium on Organic Synthesis , Middle Atlantic Regional ACS Meeting, Baltimore, Maryland Technion-Israel...Photochemical Key Steps in Organic Synthesis 1994, J. Mattay and A. Griesbeck, Eds., VCH, Weinheim, 109-111. 40. K. Davis, T. Berrodin, T., J. Stelmach

  6. Synthesis of Taxol-Like Prostate Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2006-11-01

    opening reaction of sulfolene 1 where the corresponding chiral epoxide 19 was readily available from L-tartaric acid.5) The resulting secondary alcohol...toluene, reflux OH OTBS 41% over 2 steps MOMBr DIPEA, DMAP DCMSO2 + OMOM OTBS 64% 1) TBAF 2) SO3- pyridine OMOM O 20191 21 22 40% over 2 steps

  7. Xenograft Model for Identifying Chemotherapeutic Agents against Papillomaviruses

    PubMed Central

    Pawellek, A.; Hewlett, G.; Kreuter, J.; Rübsamen-Waigmann, H.; Weber, O.

    2001-01-01

    The report describes the establishment and characterization of a mouse xenograft transplantation model for the study of papillomavirus infection of bovine skin. Calf scrotal skin was inoculated with bovine papillomavirus type 2 before grafting it to the dorsum of severe combined immunodeficient mice. The grafted skin contained epidermis, dermis, and a thin layer of fat. After 5 months the induced warts not only showed histological features of papillomavirus infections but also tested positive for viral DNA and papillomavirus capsid antigen. The formation of infectious virions was demonstrated by inoculation of new transplants with crude extract from the induced warts as well as in a cell culture focus assay. Topical application of bromovinyl-2′-deoxyuridine led to a reduction in viral DNA content in the developing wart. This small-animal xenograft model should be useful for characterizing antiviral compounds and providing an understanding of the regulation of papillomavirus infections. PMID:11257010

  8. Synthesis of Taxol-Like Prostate Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2008-11-01

    activation of the secondary alcohol were achieved. Due to the difficulty in Sm- mediated fragmentation and capricious nature of the tandem Diels - Alder ...development of prostate- cancer specific analogues, we studied the synthetic methods to the eleutherobin core using tandem Diels - Alder reaction. Our...demonstrated that a tandem Diels - Alder reaction of bis-dienophile precursor 1 and bis-diene 2 followed by Grob fragmentation of carbonate 4 gave

  9. Synthesis of Taxol-Like Prostate Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    2007-11-01

    of hydrazinereactant is now being under investigation. On the other hand, coupling of two key fragmentsfor the intramolecular Diels - Alder reaction...the synthesis of Eleutherobin utilizing a tandem Diels - Alder reaction and Grob-fragmentation strategy. During the second year of the grant, we studied...key fragments for the intramolecular Diels - Alder approach as proposed in the previous annual report. OMOM O OTBS OTES + nBuLi, THF X BnO OTBS OTBS O

  10. Design and Synthesis of New Breast Cancer Chemotherapeutic Agents

    DTIC Science & Technology

    1999-08-01

    87% overall & 1) 27 V^ DCC, 66% 2) TFA,77% OTBS 25 VN I 1) 26 DCC. 87% 2) TFA, 60% OH XA Aldol condensation of 17 and 10...the aldol reaction of 10 and 11, using the ß-ketol stereochemistry in 11 to control the asymmetric induction in the aldol reaction. s Scheme 2...15, which was condensed with anisaldehyde dimethyl acetal to give secondary alcohol acetal 16 [accompanied by the primary alcohol acetal (not shown

  11. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea

    NASA Astrophysics Data System (ADS)

    Huber, S. E.; Śmiałek, M. A.; Tanzer, K.; Denifl, S.

    2016-06-01

    Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO-, water, and the amidogen (NH2) radical. The second and third most dominant dissociation channels are associated with formation of NCNH- and NHCONH2-, respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH2-/O-, OH-, CN-, HNOH-, NCONH2-, and ONHCONH2-.

  12. [Experience with vaginal suppositories containing chemotherapeutic agents (author's transl)].

    PubMed

    Török, J; Kószó, E; Altmayer, P; Mezey, G

    1981-01-01

    The authors determined the release of chloramphenicol, oxytetracycline, neomycin and sulphadimidine from different bases (polyoxethene mass, solid fat, 95% solid fat +5% Span 20). The diffusion of chloramphenicol and sulphadimidine was best from hydrophilic bases; that of oxytetracycline and neomycin, from emulsifier-containing lipophil bases. This may be explained by the solubilities of the pharmaca and by interactions between base and active substance.

  13. Differentiation by NK cells is a prerequisite for effective targeting of cancer stem cells/poorly differentiated tumors by chemopreventive and chemotherapeutic drugs

    PubMed Central

    Kozlowska, Anna Karolina; Topchyan, Paytsar; Kaur, Kawaljit; Tseng, Han-Ching; Teruel, Antonia; Hiraga, Toru; Jewett, Anahid

    2017-01-01

    Natural Killer (NK) cells target oral, pancreatic, lung, breast, glioblastoma and melanoma stem-like/poorly differentiated tumors. Differentiation of the abovementioned tumors with supernatants from split-anergized NK cells decreases their susceptibility to NK cells, but increases their sensitivity to cisplatin (CDDP)-mediated cell death. Breast and melanoma tumor cells with CD44 knockdown display enhanced susceptibility to NK cell-mediated lysis, potentially due to decreased differentiation. We also demonstrate that sulindac, a non-steroidal anti-inflammatory drug and a chemopreventive agent, not only limits the growth of oral tumor cells, but also aids in cancer cell elimination by NK cells. Treatment of oral tumors with sulindac, but not adriamycin inversely modulates the expression and function of NFκB and JNK, resulting in a significant down-regulation of IL-6, and VEGF secretion by oral tumor cells. In addition, increased secretion of IL-6 and VEGF is blocked by sulindac during interaction of oral tumors with NK cells. Sulindac treatment prevents synergistic induction of VEGF secretion by the tumor cells after their co-culture with untreated NK cells since non-activated NK cells lack the ability to efficiently kill tumor cells. Moreover, sulindac is able to profoundly reduce VEGF secretion by tumor cells cultured with IL-2 activated NK cells, which are able to significantly lyse the tumor cells. Based on the data presented in this study, we propose the following combinatorial approach for the treatment of stem-like/ poorly differentiated tumors in cancer patients with metastatic disease. Stem-like/ poorly differentiated tumor cells may in part undergo lysis or differentiation after NK cell immunotherapy, followed by treatment of differentiated tumors with chemotherapy and chemopreventive agents to eliminate the bulk of the tumor. This dual approach should limit tumor growth and prevent metastasis. PMID:28367234

  14. Diaryl sulfide analogs of combretastatin A-4: Toxicogenetic, immunomodulatory and apoptotic evaluations and prospects for use as a new chemotherapeutic drug.

    PubMed

    Carvalho, Pamela Castilho; Santos, Edson Anjos; Schneider, Beatriz Ursinos Catelán; Matuo, Renata; Pesarini, João Renato; Cunha-Laura, Andréa Luiza; Monreal, Antônio Carlos Duenhas; Lima, Dênis Pires; Antoniolli, Andréia Conceição Milan Brochado; Oliveira, Rodrigo Juliano

    2015-11-01

    Combretastatin A-4 exhibits efficient anti-cancer potential in human tumors, including multidrug-resistant tumors. We evaluated the mutagenic, apoptotic and immunomodulatory potential of two diaryl sulfide analogs of combretastatin A-4, 1,2,3-trimethoxy-5-([4-methoxy-3-nitrophenyl]thio)benzene (analog 1) and 1,2,3-trimethoxy-5-([3-amino-4-methoxyphenyl]thio)benzene (analog 2), as well as their association with the anti-tumor agent cyclophosphamide, in Swiss mice. Such evaluation was achieved using the comet assay, peripheral blood micronucleus test, splenic phagocytosis assay, and apoptosis assay. Both analogs were found to be genotoxic, mutagenic and to induce apoptosis. They also increased splenic phagocytosis, although this increase was more pronounced for analog 2. When combined with cyclophosphamide, analog 1 enhanced the mutagenic and apoptotic effects of this anti-tumor agent. In contrast, analog 2 did not enhance the effects of cyclophosphamide and prevented apoptosis at lower doses. These data suggest that analog 1 could be an adjuvant chemotherapeutic agent and possibly improve the anti-neoplastic effect of cyclophosphamide. Additionally, this compound could be a candidate chemotherapeutic agent and/or an adjuvant for use in combined anti-cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Research to Identify Effective Antifungal Agents, 1991 Annual Report.

    SciTech Connect

    Schreck, Carl

    1991-09-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990). The objectives of the present study was to evaluate up to 10 candidate fungicides.

  16. Antidotal Effects of Curcumin Against Agents-Induced Cardiovascular Toxicity.

    PubMed

    Farkhondeh, Tahereh; Samarghandian, Saeed

    Curcumin, the major phenolic compound in turmeric, shows preventive effects in various diseases. Curcumin is commonly found in rhizome of the Curcuma species and traditionally used in herbal medicine. Numeros studies has indicated that curcumin posses protective effects against toxic agents in various systems including cardiovascular. This study found that curcumin may be effective in cardiovascular diseases induced by toxic agents including Streptozotocin, Doxorubicin, Cyclosporin A, Methotrexate, Isoproterenol, Cadmium, Diesel exhaust particle, Nicotine, Hydrogen peroxide, and tert- Butyl hydroperoxide. However, due to the lake of information on human, further studies are needed to determine the efficacy of curcumin as an antidote agent. The present study aimed to critically review the recent literature data from that regarding the protective effects of curcumin against agents-induced cardiovascular toxicity.

  17. Research to Identify Effective Antifungal Agents, 1993 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-10-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990, 1991, and 1992). The objectives of the present study were to select and evaluate candidate fungicides.

  18. Protective Effects of Chrysin Against Drugs and Toxic Agents.

    PubMed

    Samarghandian, Saeed; Farkhondeh, Tahereh; Azimi-Nezhad, Mohsen

    2017-01-01

    Polyphenolic compounds, especially flavonoids, are known as the most common chemical class of phytochemicals, which possess a multiple range of health-promoting effects. Flavonoids are ubiquitous in nature. They are also present in food, providing an essential link between diet and prevention of several diseases. Chrysin (CH), a natural flavonoid, was commonly found in propolis and honey and traditionally used in herbal medicine. A growing body of scientific evidence has shown that CH possesses protective effects against toxic agents in various animal tissues, including brain, heart, liver, kidney, and lung. This study found that CH may be effective in disease management induced by toxic agents. However, due to the lack of information on human, further studies are needed to determine the efficacy of CH as an antidote agent in human. The present article aimed to critically review the available literature data regarding the protective effects of CH against toxic agent-induced toxicities as well as its possible mechanisms.

  19. Multiphysics and Multiscale Analysis for Chemotherapeutic Drug

    PubMed Central

    Zhang, Linan; Kim, Sung Youb; Kim, Dongchoul

    2015-01-01

    This paper presents a three-dimensional dynamic model for the chemotherapy design based on a multiphysics and multiscale approach. The model incorporates cancer cells, matrix degrading enzymes (MDEs) secreted by cancer cells, degrading extracellular matrix (ECM), and chemotherapeutic drug. Multiple mechanisms related to each component possible in chemotherapy are systematically integrated for high reliability of computational analysis of chemotherapy. Moreover, the fidelity of the estimated efficacy of chemotherapy is enhanced by atomic information associated with the diffusion characteristics of chemotherapeutic drug, which is obtained from atomic simulations. With the developed model, the invasion process of cancer cells in chemotherapy treatment is quantitatively investigated. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of chemotherapy treatment. PMID:26491672

  20. Effects of a Pedagogical Agent's Emotional Expressiveness on Learner Perceptions

    NASA Technical Reports Server (NTRS)

    Romero, Enilda J.; Watson, Ginger S.

    2012-01-01

    The use of animated pedagogical agents or avatars in instruction has lagged behind their use in entertainment. This is due in part to the cost and complexity of development and implementation of agents in educational settings, but also results from a lack of research to understand how emotions from animated agents influence instructional effectiveness. The phenomenological study presented here assesses the perceptions of eight learners interacting with low and high intensity emotionally expressive pedagogical agents in a computer-mediated environment. Research methods include maximum variation and snowball sampling with random assignment to treatment. The resulting themes incorporate perceptions of importance, agent humanness, enjoyment, implementation barriers, and suggested improvements. Design recommendations and implications for future research are presented.

  1. Current Chemotherapeutic Management of Patients with Gestational Trophoblastic Neoplasia

    PubMed Central

    May, Taymaa; Goldstein, Donald P.; Berkowitz, Ross S.

    2011-01-01

    Gestational trophoblastic neoplasia (GTN) describes a heterogeneous group of interrelated lesions that arise from abnormal proliferation of placental trophoblasts. GTN lesions are histologically distinct, malignant lesions that include invasive hydatidiform mole, choriocarcinoma, placental site trophoblastic tumor (PSTT) and epithelioid trophoblastic tumor (ETT). GTN tumors are generally highly responsive to chemotherapy. Early stage GTN disease is often cured with single-agent chemotherapy. In contrast, advanced stage disease requires multiagent combination chemotherapeutic regimens to achieve a cure. Various adjuvant surgical procedures can be helpful to treat women with GTN. Patients require careful followup after completing treatment and recurrent disease should be aggressively managed. Women with a history of GTN are at increased risk of subsequent GTN, hence future pregnancies require careful monitoring to ensure normal gestational development. This article will review the workup, management and followup of women with all stages of GTN as well as with recurrent disease. PMID:22312558

  2. Cardiotoxicity of Molecularly Targeted Agents

    PubMed Central

    Hedhli, Nadia; Russell, Kerry S

    2011-01-01

    Cardiac toxicity of molecularly targeted cancer agents is increasingly recognized as a significant side effect of chemotherapy. These new potent therapies may not only affect the survival of cancer cells, but have the potential to adversely impact normal cardiac and vascular function. Unraveling the mechanisms by which these therapies affect the heart and vasculature is crucial for improving drug design and finding alternative therapies to protect patients predisposed to cardiovascular disease. In this review, we summarize the classification and side effects of currently approved molecularly targeted chemotherapeutics. PMID:22758623

  3. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed.

  4. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    PubMed

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors.

  5. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

    PubMed Central

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2015-01-01

    Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression. PMID:27158238

  6. The effectiveness of nano chemotherapeutic particles combined with mifepristone depends on the PR isoform ratio in preclinical models of breast cancer

    PubMed Central

    Rojas, Paola; Lamb, Caroline; Colombo, Lucas; May, María; Molinolo, Alfredo; Lanari, Claudia

    2014-01-01

    There is clinical and experimental evidence suggesting that antiprogestins might be used for the treatment of selected breast cancer patients. Our aim was to evaluate the effect of albumin-bound paclitaxel (Nab-paclitaxel) and pegylated doxorubicin liposomes (PEG-LD) in combination with mifepristone (MFP) in experimental breast cancer models expressing different ratios of progesterone receptor (PR) isoforms A and B. We used two antiprogestin-responsive (PRA>PRB) and two resistant (PRAeffects of suboptimal doses of Nab-paclitaxel or PEG-LD in murine and human carcinomas with higher levels of PRA than PRB. MFP induced tissue remodeling in PRA-overexpressing tumors, increasing the stromal/tumor cell ratio and the number of functional vessels. Accordingly, an increase in nanoparticles and drug accumulation was observed in stromal and tumor cells in MFP-treated tumors. We conclude that MFP induces an increase in vessels during tissue remodeling, favoring the selective accumulation of nanoparticles inside the tumors. We propose that antiprogestins have the potential to enhance the efficacy of chemotherapy in breast tumors with a high PRA/PRB ratio. PMID:24912774

  7. Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents.

    PubMed

    Khan, Mohammad K; Khan, Niloufer; Almasan, Alex; Macklis, Roger

    2011-01-01

    The incidence of melanoma is rising. The primary initial treatment for melanoma continues to be wide local excision of the primary tumor and affected lymph nodes. Exceptions to wide local excision include cases where surgical excision may be cosmetically disfiguring or associated with increased morbidity and mortality. The role of definitive or adjuvant radiotherapy has largely been relegated to palliative measures because melanoma has been viewed as a prototypical radiotherapy-resistant cancer. However, the emerging clinical and radiobiological data summarized here suggests that many types of effective radiation therapy, such as radiosurgery for melanoma brain metastases, plaque brachytherapy for uveal melanoma, intensity modulated radiotherapy for melanoma of the head and neck, and adjuvant radiotherapy for selected high-risk, node-positive patients can improve outcomes. Similarly, although certain chemotherapeutic agents and biologics have shown limited responses, long-term control for unresectable tumors or disseminated metastatic disease has been rather disappointing. Recently, several powerful new biologics and treatment combinations have yielded new hope for this patient group. The recent identification of several clinically linked melanoma gene mutations involved in mitogen-activated protein kinase (MAPK) pathway such as BRAF, NRAS, and cKIT has breathed new life into the drive to develop more effective therapies. Some of these new therapeutic approaches relate to DNA damage repair inhibitors, cellular immune system activation, and pharmacological cell cycle checkpoint manipulation. Others relate to the investigation of more effective targeting and dosing schedules for underutilized therapeutics, such as radiotherapy. This paper summarizes some of these new findings and attempts to give some context to the renaissance in melanoma therapeutics and the potential role for multimodality regimens, which include certain types of radiotherapy as aids to

  8. Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation

    PubMed Central

    Reed, April M; Fishel, Melissa L; Kelley, Mark R

    2009-01-01

    There has been a recent upsurge in the development of small-molecule inhibitors specific to DNA repair proteins or proteins peripherally involved in base excision repair and the DNA damage response. These specific, nominally toxic inhibitors are able to potentiate the effect of existing cancer cell treatments in a wide array of cancers. One of the largest obstacles to overcome in the treatment of cancer is incomplete killing with initial cancer treatments, leading to resistant cancer. The progression of our understanding of cancer and normal cell responses to DNA damage has allowed us to develop biomarkers that we can use to help us predict responses of cancers, more specifically target cancer cells and overcome resistance. Initial successes using these small-molecule DNA repair inhibitors in target-validation experiments and in the early stages of clinical trials indicate an important role for these inhibitors, and allow for the possibility of a future in which cancers are potentially treated in a highly specific, individual manner. PMID:19519210

  9. Behavioral effects of cannabinoid agents in animals.

    PubMed

    Chaperon, F; Thiébot, M H

    1999-01-01

    Two subtypes of cannabinoid receptors have been identified to date, the CB1 receptor, essentially located in the CNS, but also in peripheral tissues, and the CB2 receptor, found only at the periphery. The identification of delta9-tetrahydrocannabinol (delta9-THC) as the major active component of marijuana (Cannabis sativa), the recent emergence of potent synthetic ligands and the identification of anandamide and sn-2 arachidonylglycerol as putative endogenous ligands for cannabinoid receptors in the brain, have contributed to advancing cannabinoid pharmacology and approaching the neurobiological mechanisms involved in physiological and behavioral effects of cannabinoids. Most of the agonists exhibit nonselective affinity for CB1/CB2 receptors, and delta9-THC and anandamide probably act as partial agonists. Some recently synthesized molecules are highly selective for CB2 receptors, whereas selective agonists for the CB1 receptors are not yet available. A small number of antagonists exist that display a high selectivity for either CB1 or CB2 receptors. Cannabinomimetics produce complex pharmacological and behavioral effects that probably involve numerous neuronal substrates. Interactions with dopamine, acetylcholine, opiate, and GABAergic systems have been demonstrated in several brain structures. In animals, cannabinoid agonists such as delta9-THC, WIN 55,212-2, and CP 55,940 produce a characteristic combination of four symptoms, hypothermia, analgesia, hypoactivity, and catalepsy. They are reversed by the selective CB1 receptor antagonist, SR 141716, providing good evidence for the involvement of CB1-related mechanisms. Anandamide exhibits several differences, compared with other agonists. In particular, hypothermia, analgesia, and catalepsy induced by this endogenous ligand are not reversed by SR 141716. Cannabinoid-related processes seem also involved in cognition, memory, anxiety, control of appetite, emesis, inflammatory, and immune responses. Agonists may

  10. Antibacterial effect of a new haemostatic agent on oral microorganisms

    PubMed Central

    Çinar, Çağdaş; Akca, Gülçin; Işik, Berrin

    2012-01-01

    Objective: The purpose of this study was to determine the antibacterial effect of a newly developed haemostatic agent Ankaferd Blood Stopper® (ABS) and Ferric Sulphate (FS) on various oral microorganisms. Study design: Bacterial strains were freshly incubated in their specific broth media. For each of the strains, 3 wells per each agent, with a 5 mm diameter were made under aseptic conditions in the specific agar media. Then they were filled with a test agents or 0.2% chlorhexidine digluconate (CHX) (control group). After 24h and 48h incubation periods, inhibition zones were measured. Results: ABS showed antibacterial effect on all test microorganisms except Lactobacillus acidophilus and Lactobacillus salivarius. Ferric sulphate and CHX have antibacterial effect on all microorganisms. When the test agents compared, the inhibition zones of the ABS were found smaller than the ferric sulphate and CHX. Conclusions: Although ferric sulphate and ABS have antibacterial effect, ferric sulphate had better antibacterial activity than ABS on oral microorganisms under in vitro condition. FS and ABS not only exhibit the haemostatic activity but also antimicrobial activity. Key words:Ankaferd blood stopper, ferric sulphate, haemostatic agent, haemostasia, bleeding, bactericide. PMID:24558546

  11. Effect of whitening agents on dentin bonding.

    PubMed

    Spyrides, G M; Perdigão, J; Pagani, C; Araújo, M A; Spyrides, S M

    2000-01-01

    Several studies have shown a reduction in enamel bond strengths when the bonding procedure is carried out immediately after vital bleaching with peroxides. This reduction in bond strengths has become a concern in cosmetic dentistry with the introduction of new "in-office" and "waiting-room" bleaching techniques. The aim of this in vitro study was to evaluate the effect of three bleaching regimens: 35% hydrogen peroxide (HP), 35% carbamide peroxide (CP), and 10% CP, on dentin bond strengths. One hundred and twenty fresh bovine incisors were used in this study. The labial surface of each tooth was ground flat to expose dentin and was subsequently polished with 600-grit wet silicon carbide paper. The remaining dentin thickness was monitored and kept at an average of 2 mm. The teeth were randomly assigned to four bleaching regimens (n = 30): (A) control, no bleaching treatment; (B) 35% HP for 30 minutes; (C) 35% CP for 30 minutes; and (D) 10% CP for 6 hours. For each group, half of the specimens (n = 15) were bonded with Single Bond/Z100 immediately after the bleaching treatment, whereas the other half was bonded after the specimens were stored for 1 week in artificial saliva at 37 degrees C. The specimens were fractured in shear using an Instron machine. For the groups bonded immediately after bleaching, one-way analysis of variance (ANOVA) followed by the Duncan's post hoc test revealed a statistically significant reduction in bond strengths in a range from 71% to 76%. For the groups bonded at 1 week, one-way ANOVA showed that group B (35% HP for 30 min) resulted in the highest bond strengths, whereas 10% CP resulted in the lowest bond strengths. Student's t-test showed that delayed bonding resulted in a significant increase in bond strengths for groups B (35% HP) and C (35% CP); whereas the group bleached with 10% CP (group D) remained in the same range obtained for immediate bonding. Storage in artificial saliva also affected the control group, reducing its bond

  12. Remineralization agents - new and effective or just marketing hype?

    PubMed

    Lynch, R J M; Smith, S R

    2012-09-01

    This is a review of the need for better remineralization and of the status of calcium-based remineralizing agents for use in anti-caries toothpastes. Use of fluoride toothpastes has markedly reduced caries. However, the decline may be over or in reverse. There is a limit to what fluoride alone can do; complementary agents are needed. Using plaque as a reservoir for calcium-based agents holds promise. Plaque fluid is already supersaturated with respect to relevant calcium phosphates at neutral pH; extra calcium may lead to surface-blocking and sub-optimal lesion consolidation. However, at cariogenic pH, lesions may be more porous to the ingress of mineral, leading to fuller consolidation, and controlled release of calcium should reduce undersaturation with respect to enamel and accelerate deposition of fluorhydroxyapatite. Clinical data to validate in vitro screening models are scarce. Direct progression to in situ models may often be appropriate. The spectrum of lesion types, from softening to relatively advanced subsurface, and lesion activity should be considered. Far from being 'marketing hype', progress with calcium-based remineralizing agents is both encouraging and scientifically sound. Clinical evidence exists for the efficacy of some agents, but further unequivocal clinical data are needed before these agents might be considered 'effective' when delivered from toothpaste.

  13. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.

    PubMed

    Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki

    2015-11-01

    Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. © 2015 Wiley Periodicals, Inc.

  14. Chemotherapeutic treatment of colorectal cancer in pregnancy: case report.

    PubMed

    Makoshi, Ziyad; Perrott, Claire; Al-Khatani, Khadija; Al-Mohaisen, Fadia

    2015-06-13

    Colon cancer in pregnancy is uncommon. Only a small number of case reports have been published in the literature on the use of chemotherapeutic drugs during pregnancy. Reports of such cases assist clinicians in further investigating the use of chemotherapy in pregnancy. FOLFOX-6 was administered to a pregnant, 33-year-old Saudi woman with metastatic colon cancer from 22 to 30 weeks of gestation. Her cancer was diagnosed during her pregnancy. She tolerated the chemotherapy well and delivered a full-term baby girl with no obvious harm, and normal development was documented at her 2-year follow-up examination. Colon cancer during pregnancy is not easily detected and is difficult to manage. A detailed history and high clinical suspicion are needed in patients who present with symptoms and signs suggestive of malignancy. A multidisciplinary approach with patient involvement is needed to decrease morbidity and mortality caused by both treatment and the cancer in the mother and to limit side effects for the fetus. Further data and long-term follow-up are needed to better understand the potential long-term side effects of chemotherapeutic drugs on offspring.

  15. Role of pregnane X receptor in chemotherapeutic treatment

    PubMed Central

    Zhuo, Wei; Hu, Lei; Lv, Jinfeng; Wang, Hongbing; Zhou, Honghao; Fan, Lan

    2015-01-01

    Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily that differently expresses not only in human normal tissues but also in numerous types of human cancers. PXR can be activated by many endogenous substances and exogenous chemicals, and thus affects chemotherapeutic effects and intervenes drug–drug interactions by regulating its target genes involving drug metabolism and transportation, cell proliferation and apoptosis, and modulating endobiotic homeostasis. Tissue and context-specific regulation of PXR contributes to diverse effects in the treatment for numerous cancers. Genetic variants of PXR lead to intra- and inter-individual differences in the expression and inducibility of PXR, resulting in different responses to chemotherapy in PXR-positive cancers. The purpose of this review is to summarize and discuss the role of PXR in the metabolism and clearance of anticancer drugs. It is also expected that this review will provide insights into PXR-mediated enhancement for chemotherapeutic treatment, prediction of drug–drug interactions and personalized medicine. PMID:24889719

  16. Chemotherapeutic Drugs Induce PPAR-γ Expression and Show Sequence-Specific Synergy with PPAR-γ Ligands in Inhibition of Non-Small Cell Lung Cancer1

    PubMed Central

    Reddy, Raju C; Srirangam, Anjaiah; Reddy, Kaunteya; Chen, Jun; Gangireddy, Srinivasareddy; Kalemkerian, Gregory P; Standiford, Theodore J; Keshamouni, Venkateshwar G

    2008-01-01

    Preclinical studies have shown that peroxisome proliferator-activated receptor γ (PPAR-γ) ligands can exert antitumor effects against non-small cell lung cancer (NSCLC) and a variety of other cancers. In this study, we investigate the potential use of a PPAR-γ ligand, troglitazone (Tro), in combination with either of two chemotherapeutic agents, cisplatin (Cis) or paclitaxel (Pac), for the treatment of NSCLC. In vitro, treatment of NSCLC cell lines with Tro potentiated Cis- or Pac-induced growth inhibition. The potentiation of growth inhibition was observed only when Cis or Pac treatment was followed by Tro and not vice versa, demonstrating a sequence-specific effect. Median effect analysis revealed a synergistic interaction between Tro and Cis in the inhibition of NSCLC cell growth and confirmed the sequence-specific effect. We also found that Cis or Pac up-regulated the expression of PPAR-γ protein, accounting for the observed sequence-specific synergy. Similarly, experiments performed using a NSCLC xenograft model demonstrated enhanced effectiveness of combined treatment with Cis and PPAR-γ ligands, Tro or pioglitazone. Tumors from Cis-treated mice also demonstrated enhanced PPAR-γ expression. Together, our data demonstrate a novel sequence-specific synergy between PPAR-γ ligands and chemotherapeutic agents for lung cancer treatment. PMID:18516296

  17. Chemotherapeutic drugs induce PPAR-gamma expression and show sequence-specific synergy with PPAR-gamma ligands in inhibition of non-small cell lung cancer.

    PubMed

    Reddy, Raju C; Srirangam, Anjaiah; Reddy, Kaunteya; Chen, Jun; Gangireddy, Srinivasareddy; Kalemkerian, Gregory P; Standiford, Theodore J; Keshamouni, Venkateshwar G

    2008-06-01

    Preclinical studies have shown that peroxisome proliferator-activated receptor gamma (PPAR-gamma) ligands can exert antitumor effects against non-small cell lung cancer (NSCLC) and a variety of other cancers. In this study, we investigate the potential use of a PPAR-gamma ligand, troglitazone (Tro), in combination with either of two chemotherapeutic agents, cisplatin (Cis) or paclitaxel (Pac), for the treatment of NSCLC. In vitro, treatment of NSCLC cell lines with Tro potentiated Cis- or Pac-induced growth inhibition. The potentiation of growth inhibition was observed only when Cis or Pac treatment was followed by Tro and not vice versa, demonstrating a sequence-specific effect. Median effect analysis revealed a synergistic interaction between Tro and Cis in the inhibition of NSCLC cell growth and confirmed the sequence-specific effect. We also found that Cis or Pac up-regulated the expression of PPAR-gamma protein, accounting for the observed sequence-specific synergy. Similarly, experiments performed using a NSCLC xenograft model demonstrated enhanced effectiveness of combined treatment with Cis and PPAR-gamma ligands, Tro or pioglitazone. Tumors from Cis-treated mice also demonstrated enhanced PPAR-gamma expression. Together, our data demonstrate a novel sequence-specific synergy between PPAR-gamma ligands and chemotherapeutic agents for lung cancer treatment.

  18. Research to Identify Effective Antifungal Agents, 1992 Annual Report.

    SciTech Connect

    Schreck, Carl

    1993-03-01

    This study is a continuation of ``Research to Identify Effective Antifungal Agents'' sponsored by Bonneville Power Administration (Schreck et al. 1990 and Schreck et al. 1991). The objectives of the present study were to select and evaluate up to 10 candidate fungicides.

  19. Effects of Anesthetic Agent Propofol on Postoperative Sex Hormone Levels

    PubMed Central

    Kim, H.; Ku, S.-Y.; Kim, H. C.; Suh, C. S.; Kim, S. H.; Choi, Y. M.

    2016-01-01

    Introduction: Several studies have found anesthetic agents including propofol in ovarian follicular fluid. However, little is known about the effect of anesthetic agents on ovarian function. We aimed to investigate whether there were differences in the postoperative levels of sex hormones when propofol was used as the anesthetic agent. Methods: A retrospective review was done of 80 patients who underwent ovarian surgery, with 72 infertile women serving as controls. Patients were included in the study if their serum estradiol (E2) and follicle stimulating hormone (FSH) levels were measured during their first postoperative menstrual cycle. Results: Patients were grouped according to the use or non-use of propofol as follows: propofol group (n = 39) and non-propofol group (n = 41). The control group did not undergo surgery. Postoperative E2 levels did not differ between the three groups, but FSH levels were significantly higher in the patients who had undergone surgery compared to controls (p < 0.05). Post-hoc analysis of E2 and FSH levels in the propofol and non-propofol groups did not show any significant differences. Conclusions: The use of propofol did not result in any differences compared to other anesthetic agents in terms of postoperative sex hormone levels after gynecologic surgery. The type of anesthetic agent does not seem to affect the postoperative levels of female sex hormones. PMID:27134297

  20. Effects of bleaching agents on surface roughness of filling materials.

    PubMed

    Markovic, Ljubisa; Jordan, Rainer Andreas; Glasser, Marie-Claire; Arnold, Wolfgang Hermann; Nebel, Jan; Tillmann, Wolfgang; Ostermann, Thomas; Zimmer, Stefan

    2014-01-01

    The aim of this study was to use a non-tactile optical measurement system to assess the effects of three bleaching agents' concentrations on the surface roughness of dental restoration materials. Two composites (Grandio, Venus) and one glass ionomer cement (Ketac Fil Plus) were used in this in vitro study. Specimens were treated with three different bleaching agents (16% and 22% carbamide peroxide (Polanight) and 38% hydrogen peroxide (Opalescence Boost)). Surface roughness was measured with an optical profilometer (Infinite Focus G3) before and after the bleaching treatment. Surface roughness increased in all tested specimens after bleaching treatment (p<0.05). Our in vitro study showed that dental bleaching agents influenced the surface roughness of different restoration materials, and the restoration material itself was shown to have an impact on alteration susceptibility. There seemed to be no clinical relevance in case of an optimal finish.

  1. Effect of intracoronal bleaching agents on dentin microhardness.

    PubMed

    de Oliveira, Daniel Pinto; Teixeira, Erica Cappelletto Nogueira; Ferraz, Caio Cezar Randi; Teixeira, Fabricio B

    2007-04-01

    The purpose of this in vitro study was to compare the effect of intracoronal bleaching agents associated or unassociated with chlorhexidine gel on dentin microhardness. Sixty human maxillary incisor crowns were divided into six groups, and bleaching agents were sealed into the pulp chambers as follows: sodium perborate + water (SPW), sodium perborate + 2% chlorhexidine gel (SP + CHX), sodium perborate + 30% hydrogen peroxide solution (SP + HP), 37% carbamide peroxide gel (CP), 37% carbamide peroxide gel + 2% chlorhexidine gel (CP+CHX), and water (W). After the bleaching procedure, microhardness testing was carried out on the dentin surface at three different levels: inner, middle, and outer dentin. The greatest reduction in microhardness was observed for the SP + HP group. No differences were observed between the SPW and SP + CHX group. The 2% chlorhexidine gel did not adversely affect dentin microhardness when associated with the tested bleaching agents. CHX might be considered as an antimicrobial vehicle during intracoronal bleaching.

  2. HISTOCHEMICAL EFFECTS OF SOME BIOLOGICAL AGENTS ON CULEX PIPIENS LARVAE.

    PubMed

    El Sobky, Mona M; Ismail, Howaida I H; Assar, Abada A

    2016-04-01

    The histochemical effects of the lethal concentration that kills 50% of larvae (LC50) of three biological agents, abamectin, Bacillus thuringiensis and spinosad on the carbohydrates (polysaccharides), proteins, nucleic acids and lipids content of the midgut and fat bodies of Culex pipiens 2nd instar larvae were studied. The results showed that the three tested compounds reduced the carbohydrates (polysaccharides), proteins, RNA synthesis and lipids content after 72 hours of treatment where abamectin was the most effective followed by Bacillus thuringiensis then spinosad.

  3. DIOS - database of formalized chemotherapeutic regimens.

    PubMed

    Klimes, Daniel; Smid, Roman; Kubasek, Miroslav; Vyzula, Rostislav; Dušek, Ladislav

    2013-01-01

    Chemotherapeutic regimens (CHR) and their administration are routine practice in contemporary oncology. The development of a structured, electronic database of standard CHR can help the faster propagation of information about new CHR and at the same time enable assessment of their adherence in clinical practice. The goal was to develop a standardized way to describe a regimen using XML, fill the database with currently available regimens and develop tools to assess the adherence of the treatment to chosen regimen, compare the dose-intensity and recognize the regimen from existing data on drug administration. The data are being inserted in cooperation with expert oncologists and the database currently contains about 260 CHRs. Such system can be used to enhance decision support systems and interoperability of HIS. The database and tools are available online on the internet.

  4. Chemotherapeutic trial to control enterobiasis in schoolchildren.

    PubMed

    Yang, Y S; Kim, S W; Jung, S H; Huh, S; Lee, J H

    1997-12-01

    To assess several chemotherapeutic schemes for control of enterobiasis, 738 children in five primary schools in Chunchon, Korea, were studied from May 1994 to June 1995. They were divided into 6 groups by the schemes: treatment of once or twice a year; treatment of positive cases or of whole class students; treatment with or without family members. The overall egg positive rate before intervention was 17.5% out of 789 children. Treating all individuals in a class together with family members of positive cases brought better control efficacy than other schemes (p = 0.000). However, when egg positive rate is less than 30%, treating only egg positive cases also can reduce egg positive rate. The confounding factors for the enterobiasis control in primary schoolchildren were new-comer to a class and familial infection.

  5. The neurotrophic and neuroprotective effects of psychotropic agents

    PubMed Central

    Hunsberger, Joshua; Austin, Daniel R.; Henter, Ioline D.; Chen, Guang

    2009-01-01

    Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia. PMID:19877500

  6. [Neurophysiological analysis of the effects of antihypoxic versus psychotropic agents].

    PubMed

    Krapivin, S V; Malyshev, A Iu; Kharitonov, A V; Ermishina, O S; Shubin, S N; Luk'ianova, L D

    2002-01-01

    The Fourie EEG spectral analysis of thr sensomotor cortex and dorsal hypocampus in freely moving rats could reveal the common pharmacological EEG effects of different antihypoxic agents (gutimin, amtizole, emoxipine, and 3-OPK). All the agents decreased the total EEG power (they all reduced the absolute power in all frequency bands) and simultaneously enhanced (2 relative power. The former suggests that there was a decrease in the energetic level of bioelectric fluctuations, which may indicate that the brain reduces its energetic functioning level. The latter means that antihypoxic drugs activate the central nervous system. This effect may normalize EEG activity during hypoxic conditions, which causes the enhancement of slow-wave activity and reduces fast EEG activity. The pharmacological EEG effects of different groups of psychotropic drugs (nootropic drugs, psychostimulants, antidepressants, benzodiazepine tranquilizers, etc.) versus antihypoxants are discussed.

  7. Can immunostimulatory agents enhance the abscopal effect of radiotherapy?

    PubMed

    Levy, Antonin; Chargari, Cyrus; Marabelle, Aurelien; Perfettini, Jean-Luc; Magné, Nicolas; Deutsch, Eric

    2016-07-01

    Ionising radiation (IR) may harm cancer cells through a rare indirect out-of-field phenomenon described as the abscopal effect. Increasing evidence demonstrates that radiotherapy could be capable of generating tumour-specific immune responses. On the other hand, effects of IR also include inhibitory immune signals on the tumour microenvironment. Following these observations, and in the context of newly available immunostimulatory agents in metastatic cancers (anti-cytotoxic T lymphocyte-associated antigen 4 and programmed cell death protein-1 or -ligand 1 [PD1 or PDL-1]), there is a remarkable potential for synergistic combinations of IR with such agents that act through the reactivation of immune surveillance. Here, we present and discuss the pre-clinical and clinical rationale supporting the enhancement of the abscopal effect of IR on the blockade of immune checkpoints and discuss the evolving potential of immunoradiotherapy.

  8. Evaluation of new antiemetic agents and definition of antineoplastic agent emetogenicity--state of the art.

    PubMed

    Grunberg, Steven M; Warr, David; Gralla, Richard J; Rapoport, Bernardo L; Hesketh, Paul J; Jordan, Karin; Espersen, Birgitte T

    2011-03-01

    Antiemetic drug development can follow the same logical path as antineoplastic drug development from appropriate preclinical models through Phase I, Phase II, and Phase III testing. However, due to the marked success of antiemetic therapy over the last 25 years, placebo antiemetic treatment against highly or moderately emetogenic chemotherapy is not acceptable. Promising antiemetic agents therefore rapidly reach Phase III testing, where they are substituted into or added to effective and accepted regimens. One challenge of antiemetic drug development is determining whether substitution is indeed acceptable or whether prior regimens must be maintained intact as a basis for further antiemetic drug development. An additional challenge is the classification of emetogenic level of new antineoplastic agents. Accurate reporting of emetogenicity of such antineoplastic agents in the absence of preventive antiemetic treatment may not be available. However, at the 2009 Multinational Association of Supportive Care in Cancer (MASCC)/European Society of Medical Oncology (ESMO) Consensus Conference, an expert panel used best available data to establish rankings of emetogenicity. Oral chemotherapeutic agents are ranked separately from intravenous agents, recognizing intrinsic differences in emetogenicity as well as differing schedules of administration. Since oral chemotherapeutic agents are often administered in extended regimens, the distinction between acute and delayed emesis is less clear, and cumulative emesis must be considered. As control of vomiting has improved, attention has shifted to control of nausea, a related but distinct and equally important problem. Additional efforts will be necessary to understand mechanisms of nausea and to identify optimal remedies.

  9. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  10. Effects of quaternary ammonium chain length on antibacterial bonding agents.

    PubMed

    Li, F; Weir, M D; Xu, H H K

    2013-10-01

    The objectives of this study were to synthesize new quaternary ammonium methacrylates (QAMs) with systematically varied alkyl chain lengths (CL) and to investigate, for the first time, the CL effects on antibacterial efficacy, cytotoxicity, and dentin bond strength of bonding agents. QAMs were synthesized with CL of 3 to 18 and incorporated into Scotchbond Multi-Purpose (SBMP) bonding agent. The cured resins were inoculated with Streptococcus mutans. Bacterial early attachment was investigated at 4 hrs. Biofilm colony-forming units (CFU) were measured after 2 days. With CL increasing from 3 to 16, the minimum inhibitory concentration and minimum bactericidal concentration were decreased by 5 orders of magnitude. Incorporating QAMs into SBMP reduced bacterial early attachment, with the least colonization at CL = 16. Biofilm CFU for CL = 16 was 4 log lower than SBMP control (p < .05). All groups had similar dentin bond strengths (p > .1). The new antibacterial materials had fibroblast/odontoblast viability similar to that of commercial controls. In conclusion, increasing the chain length of new QAMs in bonding agents greatly increased the antibacterial efficacy. A reduction in Streptococcus mutans biofilm CFU by 4 log could be achieved, without compromising bond strength and cytotoxicity. New QAM-containing bonding agents are promising for a wide range of restorations to inhibit biofilms.

  11. Antineoplastic agents and the associated myelosuppressive effects: a review.

    PubMed

    Barreto, Jason N; McCullough, Kristen B; Ice, Lauren L; Smith, Judith A

    2014-10-01

    Bone marrow is a complex organ responsible for the regulation of hematopoietic cell distribution throughout the human body. Patients receiving antineoplastic agents as a therapeutic intervention for hematologic malignancy often experience varying degrees of myelotoxicity. Antineoplastic agents cause hypocellularity in marrow resulting in a reduction in hematopoietic tissue activity and a corresponding decline in cell production. Quantifying the adverse effects on hematopoiesis is based on the properties of a single agent, the use of individual drugs within a combination chemotherapy regimen, and the course, or courses, of chemotherapy designed to treat cancer. The direct or indirect suppression of erythrocytes, granulocytes, and megakaryocytes has potential for multiple negative clinical consequences ranging from increased monitoring of blood counts to life-threatening infection and death. This review will provide an overview of the structure and function of competent adult bone marrow, describe the process of hematopoiesis, and characterize the myelotoxicities associated with common antineoplastic agents currently used in the treatment of cancer. © The Author(s) 2014.

  12. Corneal toxicity induced by vesicating agents and effective treatment options

    PubMed Central

    Goswami, Dinesh G.; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-01-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial (HCE) cells and rabbit corneal organ culture models with the SM analog nitrogen mustard (NM), which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  13. Effects of Quaternary Ammonium Chain Length on Antibacterial Bonding Agents

    PubMed Central

    Li, F.; Weir, M.D.; Xu, H.H.K.

    2013-01-01

    The objectives of this study were to synthesize new quaternary ammonium methacrylates (QAMs) with systematically varied alkyl chain lengths (CL) and to investigate, for the first time, the CL effects on antibacterial efficacy, cytotoxicity, and dentin bond strength of bonding agents. QAMs were synthesized with CL of 3 to 18 and incorporated into Scotchbond Multi-Purpose (SBMP) bonding agent. The cured resins were inoculated with Streptococcus mutans. Bacterial early attachment was investigated at 4 hrs. Biofilm colony-forming units (CFU) were measured after 2 days. With CL increasing from 3 to 16, the minimum inhibitory concentration and minimum bactericidal concentration were decreased by 5 orders of magnitude. Incorporating QAMs into SBMP reduced bacterial early attachment, with the least colonization at CL = 16. Biofilm CFU for CL = 16 was 4 log lower than SBMP control (p < .05). All groups had similar dentin bond strengths (p > .1). The new antibacterial materials had fibroblast/odontoblast viability similar to that of commercial controls. In conclusion, increasing the chain length of new QAMs in bonding agents greatly increased the antibacterial efficacy. A reduction in Streptococcus mutans biofilm CFU by 4 log could be achieved, without compromising bond strength and cytotoxicity. New QAM-containing bonding agents are promising for a wide range of restorations to inhibit biofilms. PMID:23958761

  14. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  15. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy

    PubMed Central

    Tamburrino, Anna; Piro, Geny; Carbone, Carmine; Tortora, Giampaolo; Melisi, Davide

    2013-01-01

    Pancreatic cancer remains one of the most lethal and poorly understood human malignancies and will continue to be a major unsolved health problem in the 21st century. Despite efforts over the past three decades to improve diagnosis and treatment, the prognosis for patients with pancreatic cancer is extremely poor with or without treatment, and incidence rates are virtually identical to mortality rates. Although advances have been made through the identification of relevant molecular pathways in pancreatic cancer, there is still a critical, unmet need for the translation of these findings into effective therapeutic strategies that could reduce the intrinsic drug resistance of this disease and for the integration of these molecularly targeted agents into established combination chemotherapy and radiotherapy regimens in order to improve patients’ survival. Tumors are heterogeneous cellular entities whose growth and progression depend on reciprocal interactions between genetically altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the mechanisms of resistance studied have been related to tumor cell-autonomous signaling pathways. However, recent data suggest a putative important role of tumor microenvironment in the development and maintenance of resistance to classic chemotherapeutic and targeted therapies. This present review is meant to describe and discuss some of the most important advances in the comprehension of the tumor cell-autonomous and tumor microenvironment-related molecular mechanisms responsible for the resistance of pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic targets for the modulation of this resistant phenotype. PMID:23641216

  16. Ubiquitin E3 ligase CRL4(CDT2/DCAF2) as a potential chemotherapeutic target for ovarian surface epithelial cancer.

    PubMed

    Pan, Wei-Wei; Zhou, Jian-Jie; Yu, Chao; Xu, Ying; Guo, Lian-Jun; Zhang, Hai-Yi; Zhou, Dawang; Song, Fang-Zhou; Fan, Heng-Yu

    2013-10-11

    Cullin-RING ubiquitin ligases (CRLs) are the largest family of E3 ligases and require cullin neddylation for their activation. The NEDD8-activating enzyme inhibitor MLN4924 reportedly blocked cullin neddylation and inactivated CRLs, which resulted in apoptosis induction and tumor suppression. However, CRL roles in ovarian cancer cell survival and the ovarian tumor repressing effects of MLN4924 are unknown. We show here that CRL4 components are highly expressed in human epithelial ovarian cancer tissues. MLN4924-induced DNA damage, cell cycle arrest, and apoptosis in ovarian cancer cells in a time- and dose-dependent manner. In addition, MLN4924 sensitized ovarian cancer cells to other chemotherapeutic drug treatments. Depletion of CRL4 components Roc1/2, Cul4a, and DDB1 had inhibitory effects on ovarian cancer cells similar to MLN4924 treatment, which suggested that CRL4 inhibition contributed to the chemotherapeutic effect of MLN4924 in ovarian cancers. We also investigated for key CRL4 substrate adaptors required for ovarian cancer cells. Depleting Vprbp/Dcaf1 did not significantly affect ovarian cancer cell growth, even though it was expressed by ovarian cancer tissues. However, depleting Cdt2/Dcaf2 mimicked the pharmacological effects of MLN4924 and caused the accumulation of its substrate, CDT1, both in vitro and in vivo. MLN4924-induced DNA damage and apoptosis were partially rescued by Cdt1 depletion, suggesting that CRL4(CDT2) repression and CDT1 accumulation were key biochemical events contributing to the genotoxic effects of MLN4924 in ovarian cancer cells. Taken together, these results indicate that CRL4(CDT2) is a potential drug target in ovarian cancers and that MLN4924 may be an effective anticancer agent for targeted ovarian cancer therapy.

  17. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms.

    PubMed

    Peng, Mei; Darko, Kwame Oteng; Tao, Ting; Huang, Yanjun; Su, Qiongli; He, Caimei; Yin, Tao; Liu, Zhaoqian; Yang, Xiaoping

    2017-03-01

    Metformin, a widely prescribed drug for treating type II diabetes, is one of the most extensively recognized metabolic modulators which has shown an important anti-cancer property. However, fairly amount of clinical trials on its single administration have not demonstrated a convincing efficiency yet. Thus, recent studies tend to combine metformin with clinical commonly used chemotherapeutic drugs to decrease their toxicity and attenuate their tumor resistance. These strategies have displayed promising clinical benefits. Interestingly, metformin experiences a diversity of molecular mechanisms when it combines different chemotherapeutic drugs. For example, AMPK/mTOR signaling pathway activation plays a major role when it combines with hormone modulating drugs. In contrast, suppression of HIF-1, p-gp and MRP1 protein expression is its main mechanism when metformin combines with anti-metabolites. Furthermore, when combining of metformin with antibiotics, inhibition of oxidative stress and inflammatory signaling pathway becomes a novel pharmaceutical mechanism for its cardio-protective effect. Induction of apoptotic mitochondria and nucleus could be the major player for the synergistic effect of its combination with cisplatin. In contrast, down-regulation of lipoprotein or cholesterol synthesis might be the undefined molecular base when metformin combines with taxane. Thus, deep exploration of molecular mechanisms of metformin with these different drugs is critical to understand its synergistic effect and help for personalized administration. In this mini-review, detailed molecular mechanisms of these combinations are discussed and summarized. This work will promote better understanding of molecular mechanisms of metformin and provide precise targets to identify specific patient groups to achieve satisfactory treatment efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells.

    PubMed

    Sasabe, Eri; Zhou, Xuan; Li, Dechao; Oku, Naohisa; Yamamoto, Tetsuya; Osaki, Tokio

    2007-01-15

    The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) is the key regulator that controls the hypoxic response of mammalian cells. The overexpression of HIF-1alpha has been demonstrated in many human tumors. However, the role of HIF-1alpha in the therapeutic efficacy of chemotherapy and radiotherapy in cancer cells is poorly understood. In this study, we investigated the influence of HIF-1alpha expression on the susceptibility of oral squamous cell carcinoma (OSCC) cells to chemotherapeutic drugs (cis-diamminedichloroplatinum and 5-fluorouracil) and gamma-rays. Treatment with chemotherapeutic drugs and gamma-rays enhanced the expression and nuclear translocation of HIF-1alpha, and the susceptibility of OSCC cells to the drugs and gamma-rays was negatively correlated with the expression level of HIF-1alpha protein. The overexpression of HIF-1alpha induced OSCC cells to become more resistant to the anticancer agents, and down-regulation of HIF-1alpha expression by small interfering RNA enhanced the susceptibility of OSCC cells to them. In the HIF-1alpha-knockdown OSCC cells, the expression of P-glycoprotein, heme oxygenase-1, manganese-superoxide dismutase and ceruloplasmin were downregulated and the intracellular levels of chemotherapeutic drugs and reactive oxygen species were sustained at higher levels after the treatment with the anticancer agents. These results suggest that enhanced HIF-1alpha expression is related to the resistance of tumor cells to chemo- and radio-therapy and that HIF-1alpha is an effective therapeutic target for cancer treatment.

  19. Effect of bleaching agent on dental ceramics roughness.

    PubMed

    Vanderlei, Aleska D; Passos, Sheila P; Salazar-Marocho, Susana M; Pereira, Sarina Mb; Vásquez, Vanessa Zc; Bottino, Marco A

    2010-01-01

    The aim of this study was to assess the effect of bleaching agents (10% and 16% carbamide peroxide) on the roughness of two dental ceramics in vitro, and to analyze the surface by scanning electronic microscopy (SEM). Two bleaching agents (10% and 16%/Whiteness, FGM Gel) and two microparticle feldspathic ceramics (Vita VM7 and Vita VM13) were used. Forty disks of Vita VM7 and Vita VM13 ceramic were manufactured, measuring 4 mm in diameter and 4 mm high, in accordance with the manufacturers' recommendations, and were divided into 4 groups (n = 10): (1) VM7 + Whiteness 10%; (2) VM7 + Whiteness 16%; (3) VM13 + Whiteness 10%; (4) VM13 + Whiteness 16%. The bleaching agent was applied for 8 hours a day for 15 days and during the intervals the test specimens were stored in distilled water at 37 degrees C. The roughness (Ra) of the test specimens was evaluated before and after exposure to the bleaching agents using a laser roughness meter and the topographic description was analyzed by SEM. The statistical analysis of roughness data showed significant differences in the VM7 groups, using paired t-test, p = 0.05 (VM7 + Whiteness 10%: p = 0.002; VM7 + Whiteness 16%: p = 0.001) and two-sample t-test (VM7 p = 0.047), and no significant difference was found among VM13 groups. The qualitative SEM analysis showed different degrees of surface changes. The results suggest that the roughness of the tested ceramic surfaces increased after exposure to the bleaching agents.

  20. Effect of bleaching agents on bonding to pulp chamber dentine.

    PubMed

    Timpawat, S; Nipattamanon, C; Kijsamanmith, K; Messer, H H

    2005-04-01

    To determine the effect of intracoronal bleaching agents on adhesion of bonding agents to pulp chamber dentine. Forty extracted human maxillary anterior teeth were randomly divided into four groups of 10 teeth each. Bleaching agents were sealed in pulp chambers for 7 days, as in clinical use. Group 1 (control): distilled water, group 2: 35% hydrogen peroxide, group 3: sodium perborate mixed with water, and group 4: sodium perborate mixed with 35% hydrogen peroxide. Teeth were stored in saline at 37 degrees C for 7 days. After the bleaching agent was removed, teeth were leached in water for a further 7 days prior to bonding. The crown was cut vertically from mesial to distal and the labial pulp chamber dentine was prepared for bonding with Clearfil SE-Bond and filled with resin composite (Clearfil AP-X). The bonded specimens were kept moist at 37 degrees C for 24 h. Microtensile bond strengths were determined using a universal testing machine. Additional teeth were prepared using the same bleaching procedures to investigate the scanning electron microscopic appearance of the dentine surface. Mean values (+/-SD) of microtensile bond strength for the experimental groups were: group 1: 5.29 +/- 2.21 MPa, group 2: 5.99 +/- 1.51 MPa, group 3: 9.17 +/- 1.65 MPa and group 4: 3.99 +/- 1.31 MPa. Dentine treated with sodium perborate in water (group 3) had significantly higher mean bond strength when compared with the other three groups (P < 0.05, Tukey's test). Mean bond strength was lowest when dentine was treated with sodium perborate plus hydrogen peroxide (group 4). In terms of subsequent bond strength during restoration, sodium perborate mixed with distilled water appears to be the best intracoronal bleaching agent.

  1. Effective Coordination of Multiple Intelligent Agents for Command and Control

    DTIC Science & Technology

    2003-09-01

    Multi - Agent System (MAS) in which heterogeneous agents engage in relations with the support of distributed infrastructure services. The goal of RETSINA project has been to provide the necessary infrastructure and agent types to allow an open system of agents whose interactions are facilitated rather than managed by infrastructure components. Another goal has been to create autonomous software agents functioning robustly in distributed environments, agents that are reusable in different application contexts, and that respond intelligently to changes in their

  2. Cell cycle arrest and clonogenic tumor cell kill by divergent chemotherapeutic drugs.

    PubMed

    Mastbergen, S C; Duivenvoorden, I; Versteegh, R T; Geldof, A A

    2000-01-01

    Regulators of cell cycle phase transitions could be important targets for cancer treatment using cytostatic chemotherapy. Therefore, the extent of cell cycle arrest induced by different cytostatic agents has to be correlated with ultimate clonogenic tumor cell death. Especially the value of early cell cycle perturbations as indicators for the clinical efficacy of drugs should be a matter of investigation. In vitro PC-3 human prostate carcinoma cells were incubated for 24 hours with a panel of six different chemotherapeutic drugs in various concentrations (Aplidine, Cisplatin, Isohomohalichondrin B (IHB), Taxol, Vincristine and Vinorelbine). The short term effects on the cell cycle distribution were determined by DNA flowcytometry while the clonogenic capacity of these cells was quantitated to measure the cytotoxic treatment efficacy. Significant decreases of clonogenic survival proved to be strongly correlated with cell cycle perturbations. IHB, Taxol, Vincristine and Vinorelbine resulted in accumulation (up to 87-92%) in the G2M phase, while Cisplatin and Aplidine led to increases in the S-phase fraction and in both G2M- as well as S-phase fractions, respectively. Cell cycle phase perturbations appear to be suitable, early markers for cytotoxic drug efficacy.

  3. Bcl-2 family genetic profiling reveals microenvironment-specific determinants of chemotherapeutic response.

    PubMed

    Pritchard, Justin R; Gilbert, Luke A; Meacham, Corbin E; Ricks, Jennifer L; Jiang, Hai; Lauffenburger, Douglas A; Hemann, Michael T

    2011-09-01

    The Bcl-2 family encompasses a diverse set of apoptotic regulators that are dynamically activated in response to various cell-intrinsic and -extrinsic stimuli. An extensive variety of cell culture experiments have identified effects of growth factors, cytokines, and drugs on Bcl-2 family functions, but in vivo studies have tended to focus on the role of one or two particular members in development and organ homeostasis. Thus, the ability of physiologically relevant contexts to modulate canonical dependencies that are likely to be more complex has yet to be investigated systematically. In this study, we report findings derived from a pool-based shRNA assay that systematically and comprehensively interrogated the functional dependence of leukemia and lymphoma cells upon various Bcl-2 family members across many diverse in vitro and in vivo settings. This approach permitted us to report the first in vivo loss of function screen for modifiers of the response to a front-line chemotherapeutic agent. Notably, our results reveal an unexpected role for the extrinsic death pathway as a tissue-specific modifier of therapeutic response. In particular, our findings show that particular tissue sites of tumor dissemination play critical roles in demarcating the nature and extent of cancer cell vulnerabilities and mechanisms of chemoresistance. ©2011 AACR.

  4. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma.

    PubMed

    Munson, Jennifer M; Fried, Levi; Rowson, Sydney A; Bonner, Michael Y; Karumbaiah, Lohitash; Diaz, Begoña; Courtneidge, Sara A; Knaus, Ulla G; Brat, Daniel J; Arbiser, Jack L; Bellamkonda, Ravi V

    2012-03-28

    The invasive nature of glioblastoma (GBM) represents a major clinical challenge contributing to poor outcomes. Invasion of GBM into healthy tissue restricts chemotherapeutic access and complicates surgical resection. Here, we test the hypothesis that an effective anti-invasive agent can "contain" GBM and increase the efficacy of chemotherapy. We report a new anti-invasive small molecule, Imipramine Blue (IB), which inhibits invasion of glioma in vitro when tested against several models. IB inhibits NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-mediated reactive oxygen species generation and alters expression of actin regulatory elements. In vivo, liposomal IB (nano-IB) halts invasion of glioma, leading to a more compact tumor in an aggressively invasive RT2 syngeneic astrocytoma rodent model. When nano-IB therapy was followed by liposomal doxorubicin (nano-DXR) chemotherapy, the combination therapy prolonged survival compared to nano-IB or nano-DXR alone. Our data demonstrate that nano-IB-mediated containment of diffuse glioma enhanced the efficacy of nano-DXR chemotherapy, demonstrating the promise of an anti-invasive compound as an adjuvant treatment for glioma.

  5. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis.

    PubMed

    Bastos, I M D; Motta, F N; Grellier, P; Santana, J M

    2013-01-01

    The trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp. cause Chagas disease, leishmaniasis and human African trypanosomiasis, respectively. It is estimated that over 10 million people worldwide suffer from these neglected diseases, posing enormous social and economic problems in endemic areas. There are no vaccines to prevent these infections and chemotherapies are not adequate. This picture indicates that new chemotherapeutic agents must be developed to treat these illnesses. For this purpose, understanding the biology of the pathogenic trypanosomatid- host cell interface is fundamental for molecular and functional characterization of virulence factors that may be used as targets for the development of inhibitors to be used for effective chemotherapy. In this context, it is well known that proteases have crucial functions for both metabolism and infectivity of pathogens and are thus potential drug targets. In this regard, prolyl oligopeptidase and oligopeptidase B, both members of the S9 serine protease family, have been shown to play important roles in the interactions of pathogenic protozoa with their mammalian hosts and may thus be considered targets for drug design. This review aims to discuss structural and functional properties of these intriguing enzymes and their potential as targets for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.

  6. The effects of thermally reversible agents on PVC stability properties

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yao, J.; Xiong, X. H.; Jia, C. X.; Ren, R.; Chen, P.; Liu, X. M.

    2016-07-01

    One kind of thermally reversible cross-linking agents for improving PVC thermally stability was synthesized. The chemical structure and thermally reversible characteristics of cross-linking agents were investigated by FTIR and DSC analysis, respectively. FTIR results confirmed that the cyclopentadienyl barium mercaptides ((CPD-C2H4S)2Ba) were successfully synthesized. DSC results showed it has thermally reversible characteristics and the depolymerization temperature was between 170 °C and 205 °C. The effects of cross-linking reaction time on gel content of Poly(vinyl chloride) compounds was evaluated. The gel content value arrived at 42% after being cross-linked for 25 min at 180 C. The static thermally stability measurement proved that the thermally stability of PVC compounds was improved.

  7. Bacteriocins as Potential Anticancer Agents

    PubMed Central

    Kaur, Sumanpreet; Kaur, Sukhraj

    2015-01-01

    Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have non-specific toxicity toward normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity toward cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies. PMID:26617524

  8. Nonhemostatic adverse effects of anticoagulants and antiplatelet agents.

    PubMed

    Walenga, Jeanine M; Thethi, Indermohan; Lewis, Bruce E

    2012-11-01

    The topic of adverse effects of drugs is now receiving due attention in both the lay and medical communities. For drugs of the coagulation disorder class, such as anticoagulants and antiplatelet agents, the obvious adverse effects are bleeding from a dose too high and thrombosis from a dose too low. However, these drugs have other potential adverse effects that are not directly related to blood coagulation, yet cannot be dismissed due to their medical importance. There has been a recent advancement of several new drugs in this category and this number will soon grow as more drugs are reaching the end of their clinical trials. This article will discuss the nonhemostatic adverse effects of anticoagulants and antiplatelet drugs. As the adverse effects of bleeding and thrombosis will be excluded, this article will be in contrast to the typical discussions on the anticoagulant and antiplatelet drug classes.

  9. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  10. [A review of the effect of tooth bleaching agents on oral microbes].

    PubMed

    Zhang, Bo; Huo, Sibei; Liu, Shiyu; Li, Mingyun

    2016-02-01

    Tooth bleaching agents contain powerful oxidizing agents, which serve as the main part of bleaching agents because of its release of effective bleaching component. It has been a hot topic whether tooth bleaching agents exert negative influence on oral health. In order to provide train of thoughts and reference for further clinical researches and treatments, this review paper focuses on bleaching agents' effects on the growth of oral microbes and the formation of biofilms.

  11. Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics.

    PubMed

    García-González, Aurian P; Ritter, Ashlyn D; Shrestha, Shaleen; Andersen, Erik C; Yilmaz, L Safak; Walhout, Albertha J M

    2017-04-20

    The human microbiota greatly affects physiology and disease; however, the contribution of bacteria to the response to chemotherapeutic drugs remains poorly understood. Caenorhabditis elegans and its bacterial diet provide a powerful system to study host-bacteria interactions. Here, we use this system to study how bacteria affect the C. elegans response to chemotherapeutics. We find that different bacterial species can increase the response to one drug yet decrease the effect of another. We perform genetic screens in two bacterial species using three chemotherapeutic drugs: 5-fluorouracil (5-FU), 5-fluoro-2'-deoxyuridine (FUDR), and camptothecin (CPT). We find numerous bacterial nucleotide metabolism genes that affect drug efficacy in C. elegans. Surprisingly, we find that 5-FU and FUDR act through bacterial ribonucleotide metabolism to elicit their cytotoxic effects in C. elegans rather than by thymineless death or DNA damage. Our study provides a blueprint for characterizing the role of bacteria in the host response to chemotherapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of bulking agents on food waste composting.

    PubMed

    Chang, James I; Chen, Y J

    2010-08-01

    The effects of rice husk, sawdust and rice bran on the composting process of food waste were studied in a 180-L laboratory composter based on a mixture experimental design. Linear and quadratic models of seven important process characteristics (composting and acidification times, lowest and final pH values, highest temperature, the water-soluble organic carbon to water-soluble organic nitrogen (C(OW)/N(OW) ratio), and the water-soluble organic carbon to total organic nitrogen (C(OW)/N(OT)) ratio) in terms of fractional compositions of bulking agents as well as the water absorption capacity and the free air space of the composting matrix were developed.

  13. Effect of certain anesthetic agents on mallard ducks

    USGS Publications Warehouse

    Cline, D.R.; Greenwood, R.J.

    1972-01-01

    Four anesthetic agents used in human or veterinary medicine and 3 experimental anesthetic preparations were evaluated for effectiveness in inducing narcosis when administered orally to game-farm mallard ducks (Anas platyrhynchos).Tribromoethanol was the only compound to satisfy criteria of initial tests. Mean duration of the induction, immobilization, and recovery periods was 2.4 minutes, 8.7 minutes, and 1.3 hours, respectively, at the median effective dosage for immobilization (ED50; 100 mg./kg. of body weight). The median lethal dosage (LD50) was 400 mg./kg. of body weight.Tribromoethanol was also tested on mallards during the reproductive season. Effects on the hatchability of eggs or the survival of young were not detected.

  14. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy

    NASA Astrophysics Data System (ADS)

    Wei, Pengfei; Zhang, Li; Lu, Yang; Man, Na; Wen, Longping

    2010-12-01

    Autophagy, an evolutionally conserved intracellular process degrading cytoplasmic proteins and organelles for recycling, has become one of the most remarkable strategies applied in cancer research. The fullerene C60 nanoparticle (nC60) has been shown to induce autophagy and sensitize chemotherapeutic killing of cancer cells, but the details still remain unknown. Here we show that a water-dispersed nanoparticle solution of derivatized fullerene C60, C60(Nd) nanoparticles (nC60(Nd)), has greater potential in inducing autophagy and sensitizing chemotherapeutic killing of both normal and drug-resistant cancer cells than nC60 does in an autophagy-dependent fashion. Additionally we further demonstrated that autophagy induced by nC60/C60(Nd) and Rapamycin had completely different roles in cancer chemotherapy. Our results, for the first time, revealed a novel and more potent derivative of the C60 nanoparticle in enhancing the cytotoxicity of chemotherapeutic agents and reducing drug resistance through autophagy modulation, which may ultimately lead to novel therapeutic strategies in cancer therapy.

  15. Effects of antitussive agents administered before bronchoalveolar lavage in horses.

    PubMed

    Westermann, Cornélie M; Laan, Tamarinde T; van Nieuwstadt, Roel A; Bull, Sarah; Fink-Gremmels, Johanna

    2005-08-01

    To determine whether treatment of horses with antitussive agents before bronchoalveolar lavage (BAL) reduces the frequency and intensity of the cough reflex during BAL. 8 healthy horses. Standard BAL was performed on each horse weekly for 6 weeks. Detomidine was used as a general sedative, and various antitussive agents were evaluated for their suitability to suppress undesirable coughing. Treatments administered prior to BAL consisted of saline (0.9% NaCl) solution (control treatment), codeine, butorphanol tartrate, glycopyrrolate, lidocaine hydrochloride (final concentration, 0.33%), and lidocaine hydrochloride at a final concentration of 0.66% (lidocaine 0.66%). Frequency and intensity of coughing were digitally recorded throughout the BAL procedure. The volume of BAL fluid collected was measured, and the fluid was cytologically examined to assess potential effects of the medications on composition. Coughing frequency was significantly reduced after intratracheal administration of lidocaine 0.66%. Moreover, intratracheal administration of lidocaine 0.66% or IV administration of butorphanol resulted in a significant reduction in the intensity of coughing episodes. All other treatments failed to significantly suppress coughing frequency and intensity, compared with results for the saline treatment. Glycopyrrolate caused obvious adverse clinical effects. Treatments did not influence the volume of BAL fluid collected nor composition of the fluid. Intratracheal administration of lidocaine (final concentration, 0.66%) proved to be the most reliable method to reduce frequency and intensity of coughing in horses during BAL.

  16. Effectiveness of three bulking agents for food waste composting

    SciTech Connect

    Adhikari, Bijaya K.; Barrington, Suzelle Martinez, Jose; King, Susan

    2009-01-15

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.

  17. Indirect effects of host-specific biological control agents

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2003-01-01

    Biological control is a crucial tool in the battle against biological invasions, but biocontrol agents can have a deleterious impact on native species. Recognition of risks associated with host shifting has increased the emphasis on host specificity of biocontrol agents for invasive weeds. However, recent studies indicate host-specific biocontrol agents can...

  18. Antimicrobial effects of zinc oxide in an orthodontic bonding agent.

    PubMed

    Spencer, Clayton Glen; Campbell, Phillip M; Buschang, Peter H; Cai, John; Honeyman, Allen L

    2009-03-01

    To test the null hypothesis that the addition of zinc oxide (ZnO) has no effect on the antimicrobial benefits and shear bond strength of a light-cured resin-modified glass ionomer. ZnO was added to Fuji Ortho LC to create mixtures of 13% ZnO and 23.1% ZnO. Specimen discs of the modified bonding agent were incubated with Streptococcus mutans for 48 hours in a disc diffusion assay that was used to measure zones of bacterial inhibition. In addition, brackets were bonded to bovine deciduous incisors with the modified bonding agents, and shear bond strength was evaluated with a universal testing machine. The modified samples showed that antimicrobial activity increased as the concentration of ZnO increased. There were significant differences (P < .05) in antimicrobial activity. Post hoc tests showed that the antibacterial effects were 1.6 times greater with 23.1% ZnO than with 13% ZnO. There was no difference between Transbond and 0% ZnO (the negative control). After 1 month of daily rinsing, the antibacterial effects of 23.1% ZnO and 13% ZnO decreased 65% and 77%, respectively, but both maintained significant effects over the negative controls. There were no significant differences (P = .055) in shear bond strength between any of the mixture comparisons. The incorporation of ZnO into Fuji Ortho LC added antimicrobial properties to the original compound without significantly altering the shear bond strength. ZnO holds potential for preventing decalcification associated with orthodontic treatment.

  19. Bharangin, a Diterpenoid Quinonemethide, Abolishes Constitutive and Inducible Nuclear Factor-κB (NF-κB) Activation by Modifying p65 on Cysteine 38 Residue and Reducing Inhibitor of Nuclear Factor-κB α Kinase Activation, Leading to Suppression of NF-κB-Regulated Gene Expression and Sensitization of Tumor Cells to Chemotherapeutic Agents

    PubMed Central

    Gupta, Subash C.; Kannappan, Ramaswamy; Kim, Jihye; Rahman, Ghazi M.; Francis, Sajin K.; Raveendran, Reshma; Nair, Mangalam S.; Das, Joydip

    2011-01-01

    Although inflammatory pathways have been linked with various chronic diseases including cancer, identification of an agent that can suppress these pathways has therapeutic potential. Herein we describe the identification of a novel compound bharangin, a diterpenoid quinonemethide that can suppress pro-inflammatory pathways specifically. We found that bharangin suppresses nuclear factor (NF)-κB activation induced by pro-inflammatory cytokine, tumor promoter, cigarette smoke, and endotoxin. Inhibition of NF-κB activation was mediated through the suppression of phosphorylation and degradation of inhibitor of nuclear factor-κB (IκBα); inhibition of IκBα kinase activation; and suppression of p65 nuclear translocation, and phosphorylation. The diterpenoid inhibited binding of p65 to DNA. A reducing agent reversed the inhibitory effect, and mutation of the Cys38 of p65 to serine abrogated the effect of bharangin on p65-DNA binding. Molecular docking revealed strong interaction of the ligand with the p65 via two hydrogen bonds one with Lys37 (2.204 Å) and another with Cys38 (2.023 Å). The inhibitory effect of bharangin on NF-κB activation was specific, inasmuch as binding of activator protein-1 and octameric transcription factor 1 to DNA was not affected. Suppression of NF-κB activation by this diterpenoid caused the down-regulation of the expression of proteins involved in tumor cell survival, proliferation, invasion, and angiogenesis, leading to potentiation of apoptosis, suppression of proliferation, and invasion of tumor cells. Furthermore, the genetic deletion of p65 and mutation of p65Cys38 residue to Ser abolished the affect of bharangin. Overall, our results demonstrate that bharangin specifically inhibits the NF-κB activation pathway by modifying p65 and inhibiting IκBα kinase activation and potentiates apoptosis in tumor cells. PMID:21795584

  20. Common Adverse Effects of Anti-TNF Agents on Gestation

    PubMed Central

    Antsaklis, Panagiotis; Galanopoulos, Nikolaos; Kontomanolis, Emmanuel

    2016-01-01

    Autoimmune disease has affected up to 50 million Americans, according to the American Autoimmune Related Diseases Association (AARDA) and 75 percent of those affected are women. These inflammatory diseases have variable activity and a lot of women will have to undergo major therapies during and after pregnancy. Many of the women suffering from these disease will improve during gestation. However a lot of women will require continuation of disease-modifying therapies (i.e., biological therapies) throughout pregnancy and post-partum involving many risks. In the past decade all gaze turned to biological therapies, as an attempt, to obtain even more effective medications in order to suppress the exacerbation of autoimmune disease, even at the most unfit circumstances such as pregnancy. The results are both satisfying and promising since increasingly proven thoughts prevail on making anti-TNF agents first-line medications, clearing up the limited knowledge over human influence. The purpose of this review is to summarize the results of the reports with the highest and representative range of patients of the last decade involving the use of anti-TNF agents during pregnancy. PMID:28044081

  1. Susceptibility of Helicobacter pylori to antimicrobial agents: effect of sulglycotide.

    PubMed

    Piotrowski, J; Murty, V L; Slomiany, A; Slomiany, B L

    1995-03-01

    H. pylori is regarded as a primary etiologic factor in gastric disease and the therapies now include a combination of antimicrobial agents with antiulcer drugs. Here, the effect of a new gastroprotective agent, sulglycotide, on the in vitro anti-H. pylori activity of metronidazole, erythromycin, tetracycline, and amoxycillin was assessed. The assays in the absence of sulglycotide gave MIC value 0.10mg/L for erythromycin, 0.12mg/L for amoxycillin, 0.15mg/L for tetracycline and 14mg/L for metronidazole, while sulglycotide alone gave MIC value of 20mg/L. The sulglycotide at its optimal dose (5mg/L) evoked a 4-fold enhancement in the MIC of amoxycillin, 5-fold in tetracycline, and 8.3-fold in erythromycin, while the MIC of metronidazole improved 3.5-fold at 10mg/L sulglycotide. The results point towards the advantage of combination therapy of sulglycotide and antibiotics for H. pylori eradication.

  2. Correlation between radioactivity and chemotherapeutics of the (111)In-VNB-liposome in pharmacokinetics and biodistribution in rats.

    PubMed

    Lee, Wen-Chuan; Chang, Chih-Hsien; Huang, Chih-Min; Wu, Yu-Tse; Chen, Liang-Cheng; Ho, Chung-Li; Chang, Tsui-Jung; Lee, Te-Wei; Tsai, Tung-Hu

    2012-01-01

    The combination of a radioisotope with a chemotherapeutic agent in a liposomal carrier (ie, Indium-111-labeled polyethylene glycol pegylated liposomal vinorelbine, [(111)In-VNB-liposome]) has been reported to show better therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this therapeutic effect is attributable to the combination of a radioisotope with chemotherapeutics. The goal of this study was to investigate the pharmacokinetics, biodistribution, and correlation of Indium-111 radioactivity and vinorelbine concentration in the (111)In-VNB-liposome. The VNB-liposome and (111)In-VNB-liposome were administered to rats. Blood, liver, and spleen tissue were collected to determine the distribution profile of the (111)In-VNB-liposome. A liquid chromatography tandem mass spectrometry system and gamma counter were used to analyze the concentration of vinorelbine and radioactivity of Indium-111. High uptake of the (111)In-VNB-liposome in the liver and spleen demonstrated the properties of a nanosized drug delivery system. Linear regression showed a good correlation (r = 0.97) between Indium-111 radioactivity and vinorelbine concentration in the plasma of rats administered the (111)In-VNB-liposome. A significant positive correlation between the pharmacokinetics and biodistribution of (111)Indium radioactivity and vinorelbine in blood, spleen, and liver was found following administration of the (111)In-VNB-liposome. The liposome efficiently encapsulated both vinorelbine and Indium-111, and showed a similar concentration-radioactivity time profile, indicating the correlation between chemotherapy and radiotherapy could be identical in the liposomal formulation.

  3. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.

    PubMed

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-11-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

  4. Correlation between radioactivity and chemotherapeutics of the 111In-VNB-liposome in pharmacokinetics and biodistribution in rats

    PubMed Central

    Lee, Wen-Chuan; Chang, Chih-Hsien; Huang, Chih-Min; Wu, Yu-Tse; Chen, Liang-Cheng; Ho, Chung-Li; Chang, Tsui-Jung; Lee, Te-Wei; Tsai, Tung-Hu

    2012-01-01

    Background The combination of a radioisotope with a chemotherapeutic agent in a liposomal carrier (ie, Indium-111-labeled polyethylene glycol pegylated liposomal vinorelbine, [111In-VNB-liposome]) has been reported to show better therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this therapeutic effect is attributable to the combination of a radioisotope with chemotherapeutics. The goal of this study was to investigate the pharmacokinetics, biodistribution, and correlation of Indium-111 radioactivity and vinorelbine concentration in the 111In-VNB-liposome. Methods The VNB-liposome and 111In-VNB-liposome were administered to rats. Blood, liver, and spleen tissue were collected to determine the distribution profile of the 111In-VNB-liposome. A liquid chromatography tandem mass spectrometry system and gamma counter were used to analyze the concentration of vinorelbine and radioactivity of Indium-111. Results High uptake of the 111In-VNB-liposome in the liver and spleen demonstrated the properties of a nanosized drug delivery system. Linear regression showed a good correlation (r = 0.97) between Indium-111 radioactivity and vinorelbine concentration in the plasma of rats administered the 111In-VNB-liposome. Conclusion A significant positive correlation between the pharmacokinetics and biodistribution of 111Indium radioactivity and vinorelbine in blood, spleen, and liver was found following administration of the 111In-VNB-liposome. The liposome efficiently encapsulated both vinorelbine and Indium-111, and showed a similar concentration-radioactivity time profile, indicating the correlation between chemotherapy and radiotherapy could be identical in the liposomal formulation. PMID:22359447

  5. Antibody–drug conjugates as novel anti-cancer chemotherapeutics

    PubMed Central

    Peters, Christina; Brown, Stuart

    2015-01-01

    Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics. PMID:26182432

  6. Animated Pedagogical Agents in Multimedia Educational Environments: Effects of Agent Properties, Picture Features, and Redundancy.

    ERIC Educational Resources Information Center

    Craig, Scotty D.; Gholson, Barry; Driscoll, David M.

    2002-01-01

    Two experiments explored the integration of animated agents into multimedia environments in the context of R. E. Mayer's (2001) cognitive theory of multimedia learning. The spoken-narration-only condition outperformed other conditions, with no differences between printed text and printed text with spoken narration. (Author)

  7. Inhibition of poly(ADP-ribose) polymerase-1 or poly(ADP-ribose) glycohydrolase individually, but not in combination, leads to improved chemotherapeutic efficacy in HeLa cells

    PubMed Central

    FENG, XIAOXING; KOH, DAVID W.

    2013-01-01

    The genome-protecting role of poly(ADP-ribose) (PAR) has identified PAR polymerase-1 (PARP-1) and PAR glycohydrolase (PARG), two enzymes responsible for the synthesis and hydrolysis of PAR, as chemotherapeutic targets. Each has been previously individually evaluated in chemotherapy, but the effects of combination PARP-1 and PARG inhibition in cancer cells are not known. Here we determined the effects of the inhibition of PARP-1 and the absence or RNAi knockdown of PARG on PAR synthesis, cell death after chemotherapy and long-term viability. Using three experimental/clinical PARP-1 inhibitors in PARG-null cells, we show decreased levels of PAR and increased short-term and long-term viability with each inhibitor, with the exception of DPQ. Treatment with the experimental chemotherapeutic agent, N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), led to increased cell death in PARG-null cells, but decreased cell death when pretreated with each PARP-1 inhibitor. Similar results were observed in MNNG-treated HeLa cells, where RNAi knockdown of PARG or pretreatment with ABT-888 led to increased HeLa cell death, whereas combination PARG RNAi knockdown + ABT-888 failed to produce increased cell death. The results demonstrate the ability of the PARP-1 inhibitors to decrease PAR levels, maintain viability and decrease PAR-mediated cell death after chemotherapeutic treatment in the absence of PARG. Further, the results demonstrate that the combination of PARP-1 and PARG inhibition in chemotherapy does not produce increased HeLa cell death. Thus, the results indicate that inhibiting both PARP-1 and PARG, which both are chemotherapeutic targets that increase cancer cell death, does not lead to synergistic cell death in HeLa cells. Therefore, strategies that target PAR metabolism for the improved treatment of cancer may be required to target PARP-1 and PARG individually in order to optimize cancer cell death. PMID:23254695

  8. Non-target effects of an introduced biological control agent on deer mouse ecology

    Treesearch

    Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero

    2000-01-01

    Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...

  9. Effectiveness of Septisol Antiseptic Foam as a Surgical Scrub Agent

    PubMed Central

    Dewar, Norman E.; Gravens, Daniel L.

    1973-01-01

    Septisol antiseptic foam (0.23% hexachlorophene in a 46% ethyl alcohol base) is a new surgical scrub agent for both primary and re-entry use that is designed to minimize the harsh effects to the skin of the conventional scrub while retaining effective antibacterial properties. A preliminary surgical scrub study of 1-week duration yielded an immediate reduction in resident flora of 92% from an average single scrub coupled with a residual bacteriostatic effect from repeated use that gave a plateau at 57% of the pretest resident population level. A separate study demonstrated complete elimination of both gram-positive and gram-negative transients from the skin with a single application of the product. In an 8-week surgical scrub study, equal effectiveness was shown between Septisol antiseptic foam and a standard 3% hexachlorophene detergent. However, Septisol antiseptic foam offers considerable advantage in minimizing the harsh effects to the skin of the conventional surgical scrub and results in a substantially lower hemic level of hexachlorophene in the user than that obtained with 3% hexachlorophene detergent. Sampling was conducted by the fingerprint impression plate technique of Gale. PMID:4584593

  10. General effects of hyperosmolar agents on the endolymphatic sac.

    PubMed

    Erwall, C

    1988-11-01

    The effects of glycerol, urea and mannitol on the structure of the murine endolymphatic sac were investigated at various time intervals after their administration. Within 15 min after administration of glycerol and urea the lumen of the endolymphatic sac was partially collapsed and the density of its contents was increased. At the same time many light epithelial cells displayed abundant intracytoplasmic granules containing floccular and/or lamellar material. A similar type of material was observed in the lumen in close proximity to these cells. This suggested that macromolecular substances were secreted into the endolymphatic sac lumen from these cells. Mannitol induced similar changes, though less pronounced. It is proposed that the changes in the endolymphatic sac following systemic administration of hyperosmolar substances reflect an ability of the endolymphatic sac to compensate for endolymphatic volume and pressure changes caused by these agents.

  11. Effect of two desensitizing agents on dentin permeability in vitro

    PubMed Central

    ISHIHATA, Hiroshi; KANEHIRA, Masafumi; FINGER, Werner J.; TAKAHASHI, Hidekazu; TOMITA, Makoto; SASAKI, Keiichi

    2017-01-01

    Abstract Objective The aim of this in vitro study was to investigate the effect of two desensitizing agents and water on hydraulic conductance in human dentin. Material and Methods GLUMA Desensitizer PowerGel (GLU) contains glutaraldehyde (GA) and 2-hydroxyethyl methacrylate (HEMA), and Teethmate Desensitizer (TD) is a powder comprising tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) that is mixed with water. Deionized water was used as a negative control (CTR). Thirty discs with a thickness of 1.2 mm were cut from the coronal dentin of the third molars and cleaned with 0.5 M EDTA (pH 7.4). After being mounted in a split-chamber device, the discs were pressurized with water at 1 kPa and 3 kPa in order to measure flow rates with a highly sensitive micro-flow sensor and to calculate hydraulic conductance as a baseline value (BL). Following the application of GLU, TD, and CTR (n=10), hydraulic conductance was remeasured with intermittent storage in water after 15 min, 1 d, 1 w, and 1 m. Reduction in permeability (PR%) was calculated from hydraulic conductance. Data were statistically analyzed using nonparametric methods (α<0.05). Representative discs were inspected by SEM. Results PR% for GLU and TD were 30-50% 15 min and 1 m after their application. Post hoc tests indicated that PR% of CTR was significantly greater than those of GLU and TD at all time points tested. The PR% of GLU and TD were not significantly different. SEM examinations showed noncollapsed collagen meshes at the tubular entrances after GLU, and crystalline precipitates occluding the tubular orifices after TD, whereas CTR specimens showed typical patterns of etched dentin. Conclusions The present study on hydraulic conductance in dentin discs treated with two chemically different desensitizing agents and water as a control demonstrated that both products may be characterized as effective. PMID:28198974

  12. The effect of anti-plaque agents on gingivitis.

    PubMed

    Spivakovsky, Silvia; Keenan, Analia

    2016-06-01

    Data sourcesAn electronic search was conducted on PubMed Central. References of retrieved papers and previously published systematic reviews were hand searched.Study selectionRandomised controlled trials (RCTs) with at least six months follow-up evaluating the use of test products used in mouthrinses, toothpastes or gels as adjuncts to mechanical oral hygiene (including toothbrushing) were considered.Data extraction and synthesisTwo trained and calibrated reviewers independently assessed the studies for eligibility, with any disagreement being resolved by discussion. Two reviewers under the supervision of a third reviewer extracted data. Risk of bias was evaluated using the Cochrane risk of bias tool and the CONSORT statement. Outcomes were summarised as means and standard deviation (SD) or standard error (SE), the results were pooled and analysed using weighted mean differences (WMD), and heterogeneity among the studies was calculated.ResultsEighty-seven articles with 133 comparisons were included in the review. A majority of the studies (75) were considered to be at high risk of bias, eight at unclear risk and four at low risk. Fifteen different categories of active agent were used in toothpastes and ten in mouthwashes. The additional effects of the tested products were statistically significant for the Loe & Silness gingival index (46 studies), WMD -0.217, the modified gingival index (23 studies) - 0.415, gingivitis severity index (26 studies) - 14.939% or bleeding index (23 studies) - 7.626% with significant heterogeneity. For plaque, additional effects were found for Turesky (66 studies) WMD - 0.0475, Silness & Loe (26 studies) - 0.109 and for plaque severity (12 studies) - 23.4% indices, with significant heterogeneity.ConclusionsWithin the limitations of the present study, formulations with specific agents for chemical plaque control provide statistically significant improvements in terms of gingival, bleeding and plaque indices.

  13. Effect of two desensitizing agents on dentin permeability in vitro.

    PubMed

    Ishihata, Hiroshi; Kanehira, Masafumi; Finger, Werner J; Takahashi, Hidekazu; Tomita, Makoto; Sasaki, Keiichi

    2017-01-01

    The aim of this in vitro study was to investigate the effect of two desensitizing agents and water on hydraulic conductance in human dentin. GLUMA Desensitizer PowerGel (GLU) contains glutaraldehyde (GA) and 2-hydroxyethyl methacrylate (HEMA), and Teethmate Desensitizer (TD) is a powder comprising tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA) that is mixed with water. Deionized water was used as a negative control (CTR). Thirty discs with a thickness of 1.2 mm were cut from the coronal dentin of the third molars and cleaned with 0.5 M EDTA (pH 7.4). After being mounted in a split-chamber device, the discs were pressurized with water at 1 kPa and 3 kPa in order to measure flow rates with a highly sensitive micro-flow sensor and to calculate hydraulic conductance as a baseline value (BL). Following the application of GLU, TD, and CTR (n=10), hydraulic conductance was remeasured with intermittent storage in water after 15 min, 1 d, 1 w, and 1 m. Reduction in permeability (PR%) was calculated from hydraulic conductance. Data were statistically analyzed using nonparametric methods (α<0.05). Representative discs were inspected by SEM. PR% for GLU and TD were 30-50% 15 min and 1 m after their application. Post hoc tests indicated that PR% of CTR was significantly greater than those of GLU and TD at all time points tested. The PR% of GLU and TD were not significantly different. SEM examinations showed noncollapsed collagen meshes at the tubular entrances after GLU, and crystalline precipitates occluding the tubular orifices after TD, whereas CTR specimens showed typical patterns of etched dentin. The present study on hydraulic conductance in dentin discs treated with two chemically different desensitizing agents and water as a control demonstrated that both products may be characterized as effective.

  14. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  15. Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin's disease cells to conventional chemotherapeutics.

    PubMed

    Cerveny, C G; Law, C-L; McCormick, R S; Lenox, J S; Hamblett, K J; Westendorf, L E; Yamane, A K; Petroziello, J M; Francisco, J A; Wahl, A F

    2005-09-01

    SGN-30, a monoclonal antibody with activity against CD30+ malignancies, is currently in phase II clinical evaluation for treatment of Hodgkin's disease (HD) and anaplastic large cell lymphoma. The mechanisms underlying SGN-30's antitumor activity were investigated using cDNA array of L540 cells. SGN-30 treatment activated NF-kappaB and modulation of several messages including the growth regulator p21WAF1/CIP1 (p21) and cellular adhesion marker ICAM-1. p21 protein levels increased coincident with growth arrest and Annexin V/PI staining in treated HD cells. To determine if SGN-30-induced growth arrest would sensitize tumor cells to chemotherapeutics used against HD, L540cy and L428 cells were exposed to SGN-30 in combination with a panel of cytotoxic agents and resultant interactions quantified by the Combination Effects Method. Interactions between SGN-30 and all cytotoxic agents examined were additive or better. These in vitro data translated to increased efficacy of SGN-30 and bleomycin against L540cy tumor xenografts. In addition to direct cell killing, SGN-30 affects growth arrest and drug sensitization through growth regulating and proapoptotic machinery. Importantly, these data suggest that SGN-30 can enhance the efficacy of standard chemotherapies used to treat patients with CD30+ malignancies.

  16. Molecular effects of supraphysiological doses of doping agents on health.

    PubMed

    Imperlini, Esther; Mancini, Annamaria; Alfieri, Andreina; Martone, Domenico; Caterino, Marianna; Orrù, Stefania; Buono, Pasqualina

    2015-06-01

    Performance-enhancing drugs (PEDs) gained wide popularity not only among sportsmen but also among specific subsets of population, such as adolescents. Apart from their claimed effects on athletic performance, they are very appealing due to the body shaping effect exerted on fat mass and fat-free mass. Besides the "underestimated" massive misuse of PEDs, the short- as well as long-term consequences of such habits remain largely unrecognized. They have been strictly associated with serious adverse effects, but molecular mechanisms are yet to be elucidated. Here, we analyze the current understanding of the molecular effects of supraphysiological doses of doping agents in healthy biological systems, at genomic and proteomic levels, in order to define the molecular sensors of organ/tissue impairment, determined by their misuse. The focus is put on the anabolic androgenic steroids (AASs), specifically testosterone (T) and its most potent derivative dihydrotestosterone (DHT), and on the peptide hormones, specifically the growth hormone (GH) and the insulin-like growth factor-1 (IGF-1). A map of molecular targets is defined and the risk incidence for human health is taken into account.

  17. Curcumin potentiates the effect of chemotherapy against acute lymphoblastic leukemia cells via downregulation of NF-κB

    PubMed Central

    Pimentel-Gutiérrez, Helia Judith; Bobadilla-Morales, Lucina; Barba-Barba, César Cenobio; Ortega-De-La-Torre, Citlalli; Sánchez-Zubieta, Fernando Antonio; Corona-Rivera, Jorge Román; González-Quezada, Betsy Annel; Armendáriz-Borunda, Juan S.; Silva-Cruz, Rocío; Corona-Rivera, Alfredo

    2016-01-01

    Acute lymphoblastic leukemia (ALL) accounts for 30% of all pediatric cancers. Currently available treatments exhibit toxicity and certain patients may develop resistance. Thus, less toxic and chemoresistance-reversal agents are required. In the present study, the potential effect of curcumin, a component of Curcuma longa, as a pharmacological co-adjuvant of several chemotherapeutic agents against ALL, including prednisone, 6-mercaptopurine, dexamethasone, cyclophosphamide, l-asparaginase, vincristine, daunorubicin, doxorubicin, methotrexate and cytarabine, was investigated in the REH ALL cell line cultures treated in combination with chemotherapeutic agents and curcumin. The results of cell viability, gene expression and activation of NF-κB and caspase 3 indicated that curcumin potentiates the anticancer effects of the aforementioned chemotherapeutic agents in the REH ALL cell line. Following treatment with the above chemotherapeutic agents, curcumin enhanced caspase-3 activation and downregulated nuclear factor-kappa B (NF-κB) activation. Curcumin also downregulated the oxidative stress induced by certain chemotherapies. Notably, curcumin did not affect the gene expression of cell survival proteins such as B-cell lymphoma (Bcl)-2, Bcl-extra large, survivin, c-Myc and cyclin D1, which are regulated by the NF-κB transcription factor. In conclusion, curcumin has the potential to improve the effect of chemotherapeutic agents against ALL. PMID:27895780

  18. Social effects of an anthropomorphic help agent: humans versus computers.

    PubMed

    David, Prabu; Lu, Tingting; Kline, Susan; Cai, Li

    2007-06-01

    The purpose of this study was to examine perceptions of fairness of a computer-administered quiz as a function of the anthropomorphic features of the help agent offered within the quiz environment. The addition of simple anthropomorphic cues to a computer help agent reduced the perceived friendliness of the agent, perceived intelligence of the agent, and the perceived fairness of the quiz. These differences were observed only for male anthropomorphic cues, but not for female anthropomorphic cues. The results were not explained by the social attraction of the anthropomorphic agents used in the quiz or by gender identification with the agents. Priming of visual cues provides the best account of the data. Practical implications of the study are discussed.

  19. High-Threat Chemical Agents: Characteristics, Effects, and Policy Implications

    DTIC Science & Technology

    2003-09-09

    odor of mustard, onion or garlic.12 These liquids evaporate quickly, and their vapors are also injurious. Blister agents are not naturally occurring...impregnated with special dyes. When a drop of chemical agent is absorbed by the paper, it dissolves one of the pigments , causing the paper to change color...these pigments , causing false positives.40 The pigments involved can be specific to a type of agent, so an array of papers, tickets, or tubes may be

  20. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors

    PubMed Central

    Ayadi, Meriam; Bouygues, Anaïs; Ouaret, Djamila; Ferrand, Nathalie; Chouaib, Salem; Thiery, Jean-Paul; Muchardt, Christian; Sabbah, Michèle; Larsen, Annette K

    2015-01-01

    Most solid tumors contain a subfraction of cells with stem/progenitor cell features. Stem cells are naturally chemoresistant suggesting that chronic chemotherapeutic stress may select for cells with increased “stemness”. We carried out a comprehensive molecular and functional analysis of six independently selected colorectal cancer (CRC) cell lines with acquired resistance to three different chemotherapeutic agents derived from two distinct parental cell lines. Chronic drug exposure resulted in complex alterations of stem cell markers that could be classified into three categories: 1) one cell line, HT-29/5-FU, showed increased “stemness” and WNT-signaling, 2) three cell lines showed decreased expression of stem cell markers, decreased aldehyde dehydrogenase activity, attenuated WNT-signaling and lost the capacity to form colonospheres and 3) two cell lines displayed prominent expression of ABC transporters with a heterogeneous response for stem cell markers. While WNT-signaling could be attenuated in the HT-29/5-FU cells by the WNT-signaling inhibitors ICG-001 and PKF-118, this was not accompanied by any selective growth inhibitory effect suggesting that the cytotoxic activity of these compounds is not directly linked to WNT-signaling inhibition. We conclude that classical WNT-signaling inhibitors have toxic off-target activities that need to be addressed for clinical development. PMID:26041882

  1. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer.

    PubMed

    Mehta, Amit; Zhang, Lisa; Boufraqech, Myriem; Zhang, Yaqin; Patel, Dhaval; Shen, Min; Kebebew, Electron

    2015-06-01

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies. Currently, there is no standard or effective therapy for ATC. Drug repurposing for cancer treatment is an emerging approach for identifying compounds that may have antineoplastic effects. The aim of this study was to use high-throughput drug library screening to identify and subsequently validate novel therapeutic agents with anticancer effects in ATC. We performed quantitative high-throughput screening (qHTS) in ATC cell lines (SW-1736, 8505C, and C-643), using a compound library of 3282 drugs. qHTS identified 100 compounds that were active in all three ATC cell lines. Proteasome inhibitors were one of the most active drug categories according to enrichment analysis. Of the three proteasome inhibitors screened, a second-generation proteasome inhibitor, carfilzomib, was the most active. Treatment of ATC cells with carfilzomib significantly inhibited cellular proliferation and induced G2/M cell cycle arrest and caspase-dependent apoptosis. Mechanistically, carfilzomib increased expression of p27 (CDKN1B) and decreased expression of the anti-apoptotic protein ATF4. Pretreatment with carfilzomib reduced in vivo metastases (lung, bone, liver, and kidney) and disease progression, and decreased N-cadherin expression. Carfilzomib treatment of mice with established, widely metastatic disease significantly increased their survival, without significant toxicity. Our findings support the use or clinical study of carfilzomib as a therapeutic option in patients with advanced and metastatic ATC.

  2. Identification of novel chemotherapeutic strategies for metastatic uveal melanoma

    PubMed Central

    Fagone, Paolo; Caltabiano, Rosario; Russo, Andrea; Lupo, Gabriella; Anfuso, Carmelina Daniela; Basile, Maria Sofia; Longo, Antonio; Nicoletti, Ferdinando; De Pasquale, Rocco; Libra, Massimo; Reibaldi, Michele

    2017-01-01

    Melanoma of the uveal tract accounts for approximately 5% of all melanomas and represents the most common primary intraocular malignancy. Despite improvements in diagnosis and more effective local therapies for primary cancer, the rate of metastatic death has not changed in the past forty years. In the present study, we made use of bioinformatics to analyze the data obtained from three public available microarray datasets on uveal melanoma in an attempt to identify novel putative chemotherapeutic options for the liver metastatic disease. We have first carried out a meta-analysis of publicly available whole-genome datasets, that included data from 132 patients, comparing metastatic vs. non metastatic uveal melanomas, in order to identify the most relevant genes characterizing the spreading of tumor to the liver. Subsequently, the L1000CDS2 web-based utility was used to predict small molecules and drugs targeting the metastatic uveal melanoma gene signature. The most promising drugs were found to be Cinnarizine, an anti-histaminic drug used for motion sickness, Digitoxigenin, a precursor of cardiac glycosides, and Clofazimine, a fat-soluble iminophenazine used in leprosy. In vitro and in vivo validation studies will be needed to confirm the efficacy of these molecules for the prevention and treatment of metastatic uveal melanoma. PMID:28303962

  3. Identification of novel chemotherapeutic strategies for metastatic uveal melanoma.

    PubMed

    Fagone, Paolo; Caltabiano, Rosario; Russo, Andrea; Lupo, Gabriella; Anfuso, Carmelina Daniela; Basile, Maria Sofia; Longo, Antonio; Nicoletti, Ferdinando; De Pasquale, Rocco; Libra, Massimo; Reibaldi, Michele

    2017-03-17

    Melanoma of the uveal tract accounts for approximately 5% of all melanomas and represents the most common primary intraocular malignancy. Despite improvements in diagnosis and more effective local therapies for primary cancer, the rate of metastatic death has not changed in the past forty years. In the present study, we made use of bioinformatics to analyze the data obtained from three public available microarray datasets on uveal melanoma in an attempt to identify novel putative chemotherapeutic options for the liver metastatic disease. We have first carried out a meta-analysis of publicly available whole-genome datasets, that included data from 132 patients, comparing metastatic vs. non metastatic uveal melanomas, in order to identify the most relevant genes characterizing the spreading of tumor to the liver. Subsequently, the L1000CDS(2) web-based utility was used to predict small molecules and drugs targeting the metastatic uveal melanoma gene signature. The most promising drugs were found to be Cinnarizine, an anti-histaminic drug used for motion sickness, Digitoxigenin, a precursor of cardiac glycosides, and Clofazimine, a fat-soluble iminophenazine used in leprosy. In vitro and in vivo validation studies will be needed to confirm the efficacy of these molecules for the prevention and treatment of metastatic uveal melanoma.

  4. Shape Effects in Nanoparticle-Based Imaging Agents

    NASA Astrophysics Data System (ADS)

    Culver, Kayla Shani Brook

    to characterize complex nanoscale structural features and spectral properties of gold nanostars. Specifically, by evaluating the DIC contrast and image patterns of single nanostars, I distinguished between flat and 3D geometries, identified nanostars with 4-fold symmetry, and determined nanostar orientation. Additionally, in multi-wavelength DIC imaging, an inversion in the contrast could be used to indicate the localized surface plasmon resonance of nanostars with 1 and 2 branches. Next, I used DIC to track the rotational and translational dynamics of functionalized nanostars interacting with live cell membranes. The DNA aptamer ligand on the nanostars specifically targets the transmembrane receptor HER2. I tracked single nanoconstructs over long time scales (˜ 20 minutes per particle, > 80 minutes total) with high temporal resolution (4 fps) and found that analysis of the DIC contrast fluctuations could be used to identify multiple modes of rotational behavior on the cell membrane. I developed MATLAB programs to track the moving nanoconstructs in a dynamic background environment and set up a customized live-cell perfusion chamber that is compatible with the bulky high numerical aperture optics. The combination of the environmental control in the chamber and the low light levels required to visualize single nanostars make this technique optimal for long-term tracking of single nanoconstructs in viable cells. Although nanoparticle size is well-known to influence the relaxivity of Gd(III)-based MRI contrast agents that are attached to the surface, the role of nanoparticle shape was previously unknown. Recently, we discovered that the relaxivity of Gd(III)-conjugated DNA bound to nanostars was three-fold higher than that of analogous spherical nanoconstructs. The relaxivities reached enhancements that were beyond limits that could be explained theoretically by size effects alone. We found that the extremely large enhancements could be explained by elongated water

  5. The Effects of Animated Agents on Students' Achievement and Attitudes

    ERIC Educational Resources Information Center

    Unal-Colak, Figen; Ozan, Ozlem

    2012-01-01

    Animated agents are electronic agents that interact with learners through voice, visuals or text and that carry human-like characteristics such as gestures and facial expressions with the purpose of creating a social learning environment, and provide information and guidance and when required feedback and motivation to students during their…

  6. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics

    PubMed Central

    Udeabor, Samuel Ebele; Adisa, Akinyele Olumuyiwa; Lawal, Ahmed Oluwatoyin; Barbeck, Mike; Booms, Patrick; Sader, Robert Alexander; Ghanaati, Shahram

    2015-01-01

    Introduction Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Methods Twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Results Moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. Conclusion The importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents. PMID:27386018

  7. PTCH-1 and MDM2 expression in ameloblastoma from a West African sub-population: implication for chemotherapeutics.

    PubMed

    Udeabor, Samuel Ebele; Adisa, Akinyele Olumuyiwa; Lawal, Ahmed Oluwatoyin; Barbeck, Mike; Booms, Patrick; Sader, Robert Alexander; Ghanaati, Shahram

    2015-01-01

    Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential. The Protein Patched homolog 1 (PTCH-1) is overexpressed in ameloblastoma. Also, mutation in the MDM2 gene can reduce the tumor suppressor function of p53 and promote ameloblastoma growth. No study however has characterized the molecular profile of African cases of ameloblastoma with a view to developing chemotherapeutic alternatives. The objective was to characterize the PTCH-1 genetic profile of Ameloblastoma in Nigerian patients as a first step in investigating its potential for chemotherapeutic intervention. Twenty-eight FFPE blocks of ameloblastoma cases from Nigerian patients were prepared for antibody processing to PTCH-1 (Polyclonal Anti-PTCH antibody ab39266) and MDM2 (Monoclonal Anti-MDM2 antibody (2A10) ab16895). Cytoplasmic brown staining was considered as positive for PTCH while nuclear staining was positive for MDM2. Moderate and strong expressions for PTCH in ameloblast and stellate reticulum were 78.6% and 60.7% respectively. Only 3 (10.7%) cases expressed MDM2. The importance of our study is that it supports, in theory, anti-PTCH/SHH chemotherapeutics for Nigerian ameloblastoma cases and also infers the possible additional use of anti-p53 agents.

  8. Effect of radioprotective agents on X-ray cataracts

    SciTech Connect

    Reddy, V.N.; Ikebe, H.; Giblin, F.J.; Clark, J.I.; Livesey, J.C. )

    1989-01-01

    The effect of some protective agents on cataract development is briefly reviewed and new evidence is presented on the efficacy of a phosphorothioate compound (Amifostine) in inhibiting the development of X-ray-induced cataract. Morphological studies showed that at the end of 4 months, lenses from X-irradiated rats which had not received any drugs showed liquefaction in the equatorial region and at the posterior pole, as well as a marked swelling of the fibers in the anterior cortex. Animals which received 1.16g/kg of WR77913 showed considerable protection against the development of radiation induced cataracts with morphological changes in the lens being less severe than in animals receiving no drugs. When animals were treated with 0.5g/kg of Amifostine (WR2721) the lenses showed much greater protection against cataract development than with WR77913. Amifostine appears to be more effective than WR77913 in inhibiting X-ray-induced cataract development. 20 refs.

  9. Tracing the effects of design changes across distributed design agents

    SciTech Connect

    Guenov, M.; Florida-James, B.; Smith, N.

    1996-12-31

    This paper presents an implementation of a case study taken from the petrochemical industry. It aims to illustrate the practicality of a previously developed model for design change propagation. Apart from the concept of tracing knock-on effects, this work considers communication problems and solutions as well as knowledge sharing mechanisms in distributed Artificial Intelligence. Practical implementation includes maintenance of functional dependencies between design objects at each design model, which can be examined automatically when a design change occurs. The models (agents) can reside on different hardware platforms, run on different operating systems and be accessed across wide area networks. The knowledge sharing component of the system demonstrates extraction and reuse of common domain knowledge between distributed knowledge based systems (KBS) utilizing different knowledge representation languages. The conclusion is that a system for tracing the knock-on effects of design changes can be built as a separate layer on top of existing distributed design models (tools). Practical implementation becomes possible due to recent advances in object oriented technology and distributed computing.

  10. The effect of alkylating agents on male rat fertility

    PubMed Central

    Jackson, H.; Fox, B. W.; Craig, A. W.

    1959-01-01

    The effects of tumour inhibitory doses of tretamine (triethylenemelamine), busulphan, and melphalan on the fertility of male rats have been examined. The aromatic nitrogen mustard, melphalan, was inactive, but busulphan has a highly selective action on spermatogenesis which contrasts strikingly with that of tretamine. The main action of tretamine was exerted upon spermatocytes or spermatids, but, with increasing dose, the effects spread to involve a wide range of spermatogenic cells including mature sperm, so that infertility could be induced very rapidly. Busulphan, however, interfered with the development of spermatogonia for several weeks, although other germinal cells were unaffected and continued to develop into mature spermatozoa. This accounted for the continuation of normal fertility for 7 weeks after a dose, before sterility suddenly developed. The antifertility activity of tretamine could be simulated by a variety of other ethyleneimino compounds, potency being greatest in trifunctional and least in monofunctional compounds. The latter were, however, very destructive to the seminiferous epithelium with increasing dose. In the rat, there appeared to be no definite relationship between the ability of alkylating substances to interfere with the activity of normal and pathological proliferating tissues, as represented by the germinal epithelium, haematopoietic, and tumour tissue. Although carcinogenicity was a biological property of alkylating agents, other chemical types of carcinogen did not interfere with fertility. ImagesFIG. 2aFIG. 2bFIG. 2c PMID:13662565

  11. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    PubMed Central

    Tuomela, Annika; Hirvonen, Jouni; Peltonen, Leena

    2016-01-01

    Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed. PMID:27213435

  12. How Effective Are Pedagogical Agents for Learning? A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Schroeder, Noah L.; Adesope, Olusola O.; Gilbert, Rachel Barouch

    2013-01-01

    Research on the use of software programs and tools such as pedagogical agents has peaked over the last decade. Pedagogical agents are on-screen characters that facilitate instruction. This meta-analysis examined the effect of using pedagogical agents on learning by reviewing 43 studies involving 3,088 participants. Analysis of the results…

  13. Using Animated Agents in Learner-Controlled Training: The Effects of Design Control

    ERIC Educational Resources Information Center

    Behrend, Tara S.; Thompson, Lori Foster

    2012-01-01

    Animated agents have the potential to increase engagement and learning during online training by acting as personalized tutors. However, little is known about the conditions that make these agents most effective. In this study, 183 e-learners completed a Microsoft Excel training course. Approximately half were assigned an agent with predetermined…

  14. Using Animated Agents in Learner-Controlled Training: The Effects of Design Control

    ERIC Educational Resources Information Center

    Behrend, Tara S.; Thompson, Lori Foster

    2012-01-01

    Animated agents have the potential to increase engagement and learning during online training by acting as personalized tutors. However, little is known about the conditions that make these agents most effective. In this study, 183 e-learners completed a Microsoft Excel training course. Approximately half were assigned an agent with predetermined…

  15. The Cell’s Nucleolus: an Emerging Target for Chemotherapeutic Intervention

    PubMed Central

    Pickard, Amanda J.

    2013-01-01

    The transient nucleolus plays a central role in the upregulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this subnuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well asnano-sized particles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase I-mediated rRNA synthesis appears to be a promising mechanism of cancer cell kill. The recent development of molecules targeted at G-quadruplex forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach. PMID:23881648

  16. Synergistic Cytotoxic Effect of L-Asparaginase Combined with Decitabine as a Demethylating Agent in Pediatric T-ALL, with Specific Epigenetic Signature

    PubMed Central

    Melchionda, Fraia; Pession, Andrea

    2016-01-01

    T-Acute Lymphoblastic Leukemia (T-ALL) remains a subgroup of pediatric ALL, with a lower response to standard chemotherapy. Some recent studies established the fundamental role of epigenetic aberrations such as DNA hypermethylation, to influence patients' outcome and response to chemotherapy. Moreover, L-asparaginase is an important chemotherapeutic agent for treatment of ALL and resistance to this drug has been linked to ASNS expression, which can be silenced through methylation. Therefore, we tested whether the sensitivity of T-ALL cell lines towards L-asparaginase is correlated to the epigenetic status of ASNS gene and whether the sensitivity can be modified by concurrent demethylating treatment. Hence we treated different T-ALL cell lines with L-asparaginase and correlated different responses to the treatment with ASNS expression. Then we demonstrated that the ASNS expression was dependent on the methylation status of the promoter. Finally we showed that, despite the demethylating effect on the ASNS gene expression, the combined treatment with the demethylating agent Decitabine could synergistically improve the L-asparaginase sensitivity in those T-ALL cell lines characterized by hypermethylation of the ASNS gene. In conclusion, this preclinical study identified an unexpected synergistic activity of L-asparaginase and Decitabine in the subgroup of T-ALL with low ASNS expression due to hypermethylation of the ASNS promoter, while it did not restore sensitivity in the resistant cell lines characterized by higher ASNS expression. PMID:28003999

  17. Resveratrol enhances the inotropic effect but inhibits the proarrhythmic effect of sympathomimetic agents in rat myocardium

    PubMed Central

    2017-01-01

    Background Resveratrol is a cardioprotective agent with known antiarrhythmic effects that has recently been shown to inhibit phosphodiesterase (PDE) enzyme activity. Thus, it is possible that resveratrol increases the inotropic effect of sympathomimetic agents, as PDE inhibitors do but, unlike other PDE inhibitors, its effect may not be accompanied by proarrhythmia due to its antiarrhythmic action. This work is aimed to test this hypothesis. Methods This is an “in vitro” concentration-response relationship study. The effects of noradrenaline, tyramine and isoproterenol, alone or in combination with either resveratrol or with the typical PDE inhibitor 3-isobutylmethylxantine (IBMX), were studied in electrically driven strips of right ventricle or in the spontaneously beating free wall of the right ventricle of rat heart in order to investigate inotropic or proarrhythmic effects respectively. Also, the effects of resveratrol or IBMX on the sinoatrial node rate were examined in the isolated right atria of rat heart. Results Resveratrol (10 µM and 100 µM) produces a leftward shift in the concentration-response curves for the contractile effects of noradrenaline, tyramine or isoproterenol and reduces the –log EC50 values of these three agents. IBMX produces similar effects. The spontaneous ventricular beating rate was increased by all three compounds, an effect that was further enhanced by the addition of IBMX. In contrast, resveratrol (100 µM) abolished the effects of these sympathomimetic agents on the ventricular rate. Resveratrol (1–100 µM) had no effect on the sinoatrial node rate, while IBMX produce a concentration dependent sinoatrial tachycardia. Discussion Taken together, the finding, indicate that resveratrol, like the PDE inhibitor IBMX enhances the contractile effects of sympathomimetic agents but, in contrast to IBMX, it does not enhance their proarrhythmic effect or produce sinoatrial tachycardia. This is most probably consequence of the

  18. Enhanced delivery of the RAPTA-C macromolecular chemotherapeutic by conjugation to degradable polymeric micelles.

    PubMed

    Blunden, Bianca M; Lu, Hongxu; Stenzel, Martina H

    2013-12-09

    Macromolecular ruthenium complexes are a promising avenue to better and more selective chemotherapeutics. We have previously shown that RAPTA-C [RuCl2(p-cymene)(PTA)], with the water-soluble 1,3,5-phosphaadamantane (PTA) ligand, could be attached to a polymer moiety via nucleophilic substitution of an available iodide with an amide in the PTA ligand. To increase the cell uptake of this macromolecule, we designed an amphiphilic block copolymer capable of self-assembling into polymeric micelles. The block copolymer was prepared by ring-opening polymerization of d,l-lactide (3,6-dimethyl-1,4-dioxane-2,5-dione) using a RAFT agent with an additional hydroxyl functionality, followed by the RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and 2-chloroethyl methacrylate (CEMA). The Finkelstein reaction and reaction with PTA led to polymers that can readily react with the dimer of RuCl2(p-cymene) to create a macromolecular RAPTA-C drug. RAPTA-C conjugation, micellization, and subsequent cytotoxicity and cell uptake of these polymeric moieties was tested on ovarian cancer A2780, A2780cis, and Ovcar-3 cell lines. Confocal microscopy images confirmed cell uptake of the micelles into the lysosome of the cells, indicative of an endocytic pathway. On average, a 10-fold increase in toxicity was found for the macromolecular drugs when compared to the RAPTA-C molecule. Furthermore, the cell uptake of ruthenium was analyzed and a significant increase was found for the micelles compared to RAPTA-C. Notably, micelles prepared from the polymer containing fewer HEA units had the highest cytotoxicity, the best cell uptake of ruthenium and were highly effective in suppressing the colony-forming ability of cells.

  19. Multidrug Resistance-Associated Protein 2 Expression Is Upregulated by Adenosine 5’-Triphosphate in Colorectal Cancer Cells and Enhances Their Survival to Chemotherapeutic Drugs

    PubMed Central

    Vinette, Valérie; Placet, Morgane; Arguin, Guillaume; Gendron, Fernand-Pierre

    2015-01-01

    Extracellular adenosine 5’-triphosphate (ATP) is a signaling molecule that induces a plethora of effects ranging from the regulation of cell proliferation to modulation of cancerous cell behavior. In colorectal cancer, ATP was reported to stimulate epithelial cell proliferation and possibly promote resistance to anti-cancer treatments. However, the exact role of this danger-signaling molecule on cancerous intestinal epithelial cells (IECs) in response to chemotherapeutic agents remains unknown. To address how ATP may influence the response of cancerous IECs to chemotherapeutic agents, we used Caco-2 cells, which display enterocyte-like features, to determine the effect of ATP on the expression of multidrug resistance-associated protein 2 (MRP2). Gene and protein expression were determined by quantitative real-time PCR (qRT-PCR) and Western blotting. Resistance to etoposide, cisplatin and doxorubicin was determined by MTT assays in response to ATP stimulation of Caco-2 cells and in cells for which MRP2 expression was down-regulated by shRNA. ATP increased the expression of MRP2 at both the mRNA and protein levels. MRP2 expression involved an ATP-dependent stimulation of the MEK/ERK signaling pathway that was associated with an increase in relative resistance of Caco-2 cells to etoposide. Abolition of MRP2 expression using shRNA significantly reduced the protective effect of MRP2 toward etoposide as well as to cisplatin and doxorubicin. This study describes the mechanism by which ATP may contribute to the chemoresistance of cancerous IECs in colorectal cancer. Given the heterogeneity of colorectal adenocarcinoma responses to anti-cancer drugs, these findings call for further study to understand the role of P2 receptors in cancer drug therapy and to develop novel therapies aimed at regulating P2 receptor activity. PMID:26295158

  20. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents.

  1. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids

    PubMed Central

    Wang, Qilong; Zhuang, Xiaoying; Mu, Jingyao; Deng, Zhong-Bin; Jiang, Hong; Xiang, Xiaoyu; Wang, Baomei; Yan, Jun; Miller, Donald; Zhang, Huang-Ge

    2015-01-01

    Although the use of nanotechnology for the delivery of a wide range of medical treatments has potential to reduce adverse effects associated with drug therapy, tissue-specific delivery remains challenging. Here we show that nanoparticles made of grapefruit-derived lipids, which we call grapefruit-derived nanovectors (GNVs), can transport chemotherapeutic agents, siRNA, DNA expression vectors and proteins to different types of cells. We demonstrate the in vivo targeting specificity of GNVs by co-delivering therapeutic agents with folic acid, which in turn leads to significantly increasing targeting efficiency to cells expressing folate receptors. The therapeutic potential of GNVs was further demonstrated by enhancing the chemotherapeutic inhibition of tumor growth in two tumor animal models. GNVs are less toxic than nanoparticles made of synthetic lipids and, when injected intravenously into pregnant mice, do not pass the placental barrier, suggesting they may be a useful tool for drug delivery. PMID:23695661

  2. Effects of 1,25(OH)2D3 on Cancer Cells and Potential Applications in Combination with Established and Putative Anti-Cancer Agents

    PubMed Central

    Abu el Maaty, Mohamed A.; Wölfl, Stefan

    2017-01-01

    The diverse effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the bio-active form of vitamin D, on cancer cell metabolism and proliferation has made it an interesting candidate as a supporting therapeutic option in cancer treatment. An important strategy in cancer therapy is the use of combination chemotherapy to overcome drug resistance associated with numerous anti-cancer agents and to provide better means of avoiding undesirable side effects. This complex strategy is widely adopted by oncologists and several established “cocktails” of chemotherapeutics are routinely administered to cancer patients. Among the principles followed in designing such treatment regimens is the use of drugs with different mechanisms of action to overcome the issue of tumor heterogeneity and to evade resistance. In light of the profound and diverse effects of 1,25(OH)2D3 reported by in vitro and in vivo studies, we discuss how these effects could support the use of this molecule in combination with “classical” cytotoxic drugs, such as platins and anti-metabolites, for the treatment of solid and hematological tumors. We also examine recent evidence supporting synergistic activities with other promising anti-cancer drug candidates, and postulate mechanisms through which 1,25(OH)2D3 may help evade chemoresistance. PMID:28124999

  3. Innovative agents in cancer prevention.

    PubMed

    Manson, Margaret M; Farmer, Peter B; Gescher, Andreas; Steward, William P

    2005-01-01

    There are many facets to cancer prevention: a good diet, weight control and physical activity, a healthy environment, avoidance of carcinogens such as those in tobacco smoke, and screening of populations at risk to allow early detection. But there is also the possibility of using drugs or naturally occurring compounds to prevent initiation of, or to suppress, tumour growth. Only a few such agents have been used to date in the clinic with any success, and these include non-steroidal anti-inflammatory drugs for colon, finasteride for prostate and tamoxifen or raloxifene for breast tumours. An ideal chemopreventive agent would restore normal growth control to a preneoplastic or cancerous cell population by modifying aberrant signalling pathways or inducing apoptosis (or both) in cells beyond repair. Characteristics for such an agent include selectivity for damaged or transformed cells, good bioavailability and more than one mechanism of action to foil redundancy or crosstalk in signalling pathways. As more research effort is being targeted towards this area, the distinction between chemotherapeutic and chemopreventive agents is blurring. Chemotherapeutic drugs are now being designed to target over- or under-active signalling molecules within cancer cells, a philosophy which is just as relevant in chemoprevention. Development of dietary agents is particularly attractive because of our long-standing exposure to them, their relative lack of toxicity, and encouraging indications from epidemiology. The carcinogenic process relies on the cell's ability to proliferate abnormally, evade apoptosis, induce angiogenesis and metastasise to distant sites. In vitro studies with a number of different diet-derived compounds suggest that there are molecules capable of modulating each of these aspects of tumour growth. However, on the negative side many of them have rather poor bioavailability. The challenge is to uncover their multiple mechanisms of action in order to predict their

  4. Sugar Pine Seedlings not protected from blister rust by chemotherapeutants

    Treesearch

    George M. Harvey

    1975-01-01

    None of several types of chemotherapeutants applied before inoculation (antibiotics, metallic salts, systemic fungicides) prevented infection of sugar pine seedlings by white pine blister rust. DMSO (dimethyl sulfoxide) did not enhance the action of any material with which it was applied.

  5. Effects of Adaptation Gap on Users' Variation of Impression about Artificial Agents

    NASA Astrophysics Data System (ADS)

    Komatsu, Takanori; Yamada, Seiji

    We describe an ``adaptation gap'' that indicates the differences between the functions of artificial agents users expect before starting their interactions and the functions they perceive after the interactions. We investigated the effects of this adaptation gap on users' impressions of the artificial agents because any variations in impressions before and after the start of an interaction determine whether the user feels that this agent is worth continuing an interaction. The results showed that the positive or negative signs of the adaptation gap and the subjective impression scores of the agents before the experiment affected the final users' impressions of the agents significantly.

  6. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  7. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    NASA Astrophysics Data System (ADS)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  8. Multi-Chemotherapeutic Schedules Containing the pan-FGFR Inhibitor ARQ 087 are Safe and Show Antitumor Activity in Different Xenograft Models.

    PubMed

    Chilà, Rosaria; Hall G, Terence; Abbadessa, Giovanni; Broggini, Massimo; Damia, Giovanna

    2017-02-02

    ARQ 087 is a multi-tyrosine kinase inhibitor with potent activity against the FGFR receptor family, currently in Phase I clinical studies for the treatment of advanced solid tumors. The compound has a very safe profile and induces tumor regressions in FGFR-driven models. The feasibility of combining ARQ 087 with chemotherapy was investigated in FGFR deregulated human xenografts. Nude mice were transplanted subcutaneously with H1581, and when tumor masses reached 150 mg, were randomized to receive vehicle, ARQ 087, paclitaxel, carboplatin as single agents or in combination. Similar experimental conditions were applied in nude mice bearing SNU16 and MFE296 xenografts, with the inclusion of capecitabine in the former xenograft model. In the different xenograft models, the drugs given as single agents ranged from very active to partially active. The double combinations were more active than the single ones, but the triple combinations were the most active. In particular, the combination of ARQ 087 + paclitaxel + carboplatin in H1581 bearing mice was able to induce tumor regression in all the mice, with 6/8 mice tumor free at day 140 after tumor transplant. Of note, no toxic deaths nor premature stopping or delaying of drug administration were observed. The data herein reported demonstrated the feasibility of using xenografts models for poli-chemotherapeutic trials mimicking the best standard of care in treatment of specific tumor type and that ARQ 087, a new pan-FGFR inhibitor, can be safely combined with standard cytotoxic chemotherapeutic drugs with apparently no sign of cumulative toxicity and an associated increased antitumor effect.

  9. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  10. An Agent-Based Intervention to Assist Drivers Under Stereotype Threat: Effects of In-Vehicle Agents' Attributional Error Feedback.

    PubMed

    Joo, Yeon Kyoung; Lee-Won, Roselyn J

    2016-10-01

    For members of a group negatively stereotyped in a domain, making mistakes can aggravate the influence of stereotype threat because negative stereotypes often blame target individuals and attribute the outcome to their lack of ability. Virtual agents offering real-time error feedback may influence performance under stereotype threat by shaping the performers' attributional perception of errors they commit. We explored this possibility with female drivers, considering the prevalence of the "women-are-bad-drivers" stereotype. Specifically, we investigated how in-vehicle voice agents offering error feedback based on responsibility attribution (internal vs. external) and outcome attribution (ability vs. effort) influence female drivers' performance under stereotype threat. In addressing this question, we conducted an experiment in a virtual driving simulation environment that provided moment-to-moment error feedback messages. Participants performed a challenging driving task and made mistakes preprogrammed to occur. Results showed that the agent's error feedback with outcome attribution moderated the stereotype threat effect on driving performance. Participants under stereotype threat had a smaller number of collisions when the errors were attributed to effort than to ability. In addition, outcome attribution feedback moderated the effect of responsibility attribution on driving performance. Implications of these findings are discussed.

  11. Agent Orange exposure and attributed health effects in Vietnam veterans.

    PubMed

    Young, Alvin L; Cecil, Paul F

    2011-07-01

    Serum dioxin studies of Vietnam (VN) veterans, military historical records of tactical herbicide use in Vietnam, and the compelling evidence of the photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aspects of environmental fate and low bioavailability of TCDD are consistent with few, if any, ground troop veterans being exposed to Agent Orange. That conclusion, however, is contrary to the presumption by the Department of Veterans Affairs (DVA) that military service in Vietnam anytime from January 9, 1962 to May 7, 1975 is a proxy for exposure to Agent Orange. The DVA assumption is inconsistent with the scientific principles governing determinations of disease causation. The DVA has nonetheless awarded Agent Orange-related benefits and compensation to an increasing number of VN veterans based on the presumption of exposure and the published findings of the Institute of Medicine that there is sufficient evidence of a "statistical association" (a less stringent standard than "causal relationship") between exposure to tactical herbicides or TCDD and 15 different human diseases. A fairer and more valid approach for VN veterans would have been to enact a program of "Vietnam experience" benefits for those seriously ill, rather than benefits based on the dubious premise of injuries caused by Agent Orange.

  12. Effect of Atmospheric Background Aerosols on Biological Agent Detectors

    DTIC Science & Technology

    2007-06-01

    aerosol concentrations in near real time in order to identify a passing aerosol cloud. Detection algorithms are designed to monitor the ambient...characterize specific background properties. The aerosol concentration fluctuations over time are important to the biological agent detection ...A key assumption used in many detection systems is that the concentration change over time from a passing artificially generated aerosol cloud is

  13. Can agent based models effectively reduce fisheries management implementation uncertainty?

    NASA Astrophysics Data System (ADS)

    Drexler, M.

    2016-02-01

    Uncertainty is an inherent feature of fisheries management. Implementation uncertainty remains a challenge to quantify often due to unintended responses of users to management interventions. This problem will continue to plague both single species and ecosystem based fisheries management advice unless the mechanisms driving these behaviors are properly understood. Equilibrium models, where each actor in the system is treated as uniform and predictable, are not well suited to forecast the unintended behaviors of individual fishers. Alternatively, agent based models (AMBs) can simulate the behaviors of each individual actor driven by differing incentives and constraints. This study evaluated the feasibility of using AMBs to capture macro scale behaviors of the US West Coast Groundfish fleet. Agent behavior was specified at the vessel level. Agents made daily fishing decisions using knowledge of their own cost structure, catch history, and the histories of catch and quota markets. By adding only a relatively small number of incentives, the model was able to reproduce highly realistic macro patterns of expected outcomes in response to management policies (catch restrictions, MPAs, ITQs) while preserving vessel heterogeneity. These simulations indicate that agent based modeling approaches hold much promise for simulating fisher behaviors and reducing implementation uncertainty. Additional processes affecting behavior, informed by surveys, are continually being added to the fisher behavior model. Further coupling of the fisher behavior model to a spatial ecosystem model will provide a fully integrated social, ecological, and economic model capable of performing management strategy evaluations to properly consider implementation uncertainty in fisheries management.

  14. The Effect of an MSN Agent on Learning Community and Achievement

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Huang, Yueh-Min; Wu, Sheng-Yi

    2011-01-01

    The use of instant messaging to support e-learning will continue to gain importance because of its speed, effectiveness, and low cost. This study developed an MSN agent to mediate and facilitate students' learning in a Web-based course. The students' acceptance of the MSN agent and its effect on learning community identification and learning…

  15. The Effect of an MSN Agent on Learning Community and Achievement

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Huang, Yueh-Min; Wu, Sheng-Yi

    2011-01-01

    The use of instant messaging to support e-learning will continue to gain importance because of its speed, effectiveness, and low cost. This study developed an MSN agent to mediate and facilitate students' learning in a Web-based course. The students' acceptance of the MSN agent and its effect on learning community identification and learning…

  16. In Search of Pedagogical Agents' Modality and Dialogue Effects in Open Learning Environments

    ERIC Educational Resources Information Center

    Clarebout, Geraldine; Elen, Jan

    2007-01-01

    The aims of the present studies were to test the generalizability of the modality and dialogue effect to open learning environments, previously found by Moreno and Mayer (e.g., Moreno, Mayer & Lester, 2001) with an agent providing metacognitive support. As an extension, the agent's continuous presence effect on learning was also tested. Three…

  17. An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate, and D-mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that,...

  18. An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate, and D-mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that,...

  19. Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species

    PubMed Central

    Liang, Wenquan; Cai, Aizhen; Chen, Guozhu; Xi, Hongqing; Wu, Xiaosong; Cui, Jianxin; Zhang, Kecheng; Zhao, Xudong; Yu, Jiyun; Wei, Bo; Chen, Lin

    2016-01-01

    The prognosis of gastric cancer remains poor due to clinical drug resistance. Novel drugs are urgently needed. Shikonin (SHK), a natural naphthoquinone, has been reported to trigger cell death and overcome drug resistance in anti-tumour therapy. In this study, we investigated the effectiveness and molecular mechanisms of SHK in treatment with gastric cancer. In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells. SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis. We confirmed that SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade, but also in a caspase-independent manner which mediates the nuclear translocation of apoptosis-inducing factor and Endonuclease G. Furthermore, we demonstrated that SHK enhanced the chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin in vitro and in vivo. Taken together, our data show that SHK may be a novel therapeutic agent in the clinical treatment of gastric cancer. PMID:27905569

  20. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier.

    PubMed

    Kaneshiro, Todd L; Lu, Zheng-Rong

    2009-10-01

    Codelivery of different therapeutics has a potential to efficaciously treat human diseases via their synergetic effects. We have recently developed a new class dendrimers, poly(l-lysine) dendrimers with a silsesquioxane cubic core (nanoglobules). These dendrimers have compact globular and well-defined structures and highly functionalized surfaces, and can be used as versatile carriers for biomedical applications. In this study, a generation-3 (G3) nanoglobular dendrimer was used to conjugate a peptide c(RGDfK) with a PEG spacer for codelivery of doxorubicin (DOX) and siRNA. Doxorubicin (DOX) was coupled to the RGD targeted nanoglobule via a degradable disulfide spacer to give G3-[PEG-RGD]-[DOX]. G3-[PEG-RGD]-[DOX] showed higher cytotoxicity than free DOX at high doses in glioblastoma U87 cells. G3-[PEG-RGD]-[DOX] was further complexed with siRNA and such complexes were readily internalized by U87 cells as shown by confocal microscopy. The siRNA complexes of the targeted conjugate resulted in significantly higher gene silencing efficiency in U87-Luc cells than those of control conjugates G3-[PEG-RGD] and G3-[DOX]. The nanoglobules are promising carriers for the codelivery of nucleic acids and chemotherapeutic agents.

  1. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi

    PubMed Central

    Herrera, Linda J.; Brand, Stephen; Santos, Andres; Nohara, Lilian L.; Harrison, Justin; Norcross, Neil R.; Thompson, Stephen; Smith, Victoria; Lema, Carolina; Varela-Ramirez, Armando; Gilbert, Ian H.; Almeida, Igor C.; Maldonado, Rosa A.

    2016-01-01

    Background Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. Methodology/Principal Findings Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. Conclusions/Significance Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy. PMID:27128971

  2. Effect of an antimitotic agent colchicine on thioacetamide hepatotoxicity.

    PubMed Central

    Mangipudy, R S; Rao, P S; Mehendale, H M

    1996-01-01

    In an earlier study we established that timely and adequate tissue repair response following the administration of a six-fold dose-range of thioacetamide (TA; 50, 150, and 300 mg/kg) prevented progression of injury and led to recovery and animal survival. Delayed and attenuated repair response after the 600 mg/kg TA dose resulted in a marked progression of injury and 100% lethality. The objective of the present study was to further scrutinize this concept in an experimental protocol in which we hypothesized that a selective ablation of the tissue repair response should lead to lethality from the nonlethal, moderately toxic doses of 150 and 300 mg/kg TA. In this study we investigated the effect of the antimitotic agent colchicine (CLC, 1 mg/kg) on the outcome of TA hepatotoxicity. Male Sprague-Dawley rats (175-225 g) were injected intraperitoneally (ip) with 150 and 300 mg/kg TA. We assessed liver injury by serum enzyme elevations and histopathology. Tissue regeneration response was measured by 3H-thymidine incorporation into hepatonuclear DNA and by proliferating cell nuclear antigen (PCNA) assay. S-Phase stimulation, as indicated by 3H-thymidine incorporation, was noted at 36 and 48 hr following the administration of 150 mg/kg TA, whereas with the 300 mg/kg TA S-phase stimulation was elicited at 48 hr following treatment. Therefore, two doses of CLC (30 hr and 42 hr, 1 mg/kg, ip) were administered to the 150 mg/kg treated group while a single dose of CLC (42 hr, 1 mg/kg, ip) was administered to the 300 mg/kg group. CLC treatment resulted in 100% lethality in both groups. Thus, CLC administration converted nonlethal doses into lethal doses. The 150 mg/kg TA dose was then chosen to further investigate the underlying mechanism. Rats treated with TA alone recovered from injury by 36-48 hr while CLC treatment resulted in a progression of injury as indicated by serum enzyme elevation and histopathology. Tissue repair, as evidenced by 3H-thymidine incorporation and PCNA

  3. Chemovirotherapy: combining chemotherapeutic treatment with oncolytic virotherapy.

    PubMed

    Binz, Eike; Lauer, Ulrich M

    2015-01-01

    Oncolytic virotherapy has made significant progress in recent years, however, widespread approval of virotherapeutics is still limited. Primarily, this is due to the fact that currently available virotherapeutics are mostly tested in monotherapeutic clinical trials exclusively (ie, not in combination with other therapies) and so far have achieved only small and often clinically insignificant responses. Given that the predominantly immunotherapeutic mechanism of virotherapeutics is somewhat time-dependent and rapidly growing tumors therefore exhibit only minor chances of being captured in time, scenarios with combination partners are postulated to be more effective. Combinatory settings would help to achieve a rapid stabilization or even reduction of onset tumor masses while providing enough time (numerous months) for achieving immuno(viro)therapeutic success. For this reason, combination strategies of virotherapy with highly genotoxic regimens, such as chemotherapy, are of major interest. A number of clinical trials bringing the concepts of chemotherapy and virotherapy together have previously been undertaken, but optimal scheduling of chemovirotherapy (maximizing the anti-tumor effect while minimizing the risk of overlapping toxicity) still constitutes a major challenge. Therefore, an overview of published as well as ongoing Phase I-III trials should improve our understanding of current challenges and future developments in this field.

  4. Amino acid Asp181 of 5’-flap endonuclease 1 is a useful target for chemotherapeutic development

    PubMed Central

    Panda, Harekrushna; Jaiswal, Aruna S.; Corsino, Patrick E.; Armas, Melissa L.; Law, Brian K.; Narayan, Satya

    2009-01-01

    DNA alkylation-induced damage is one of the most efficacious anti-cancer therapeutic strategies. Increased DNA alkylation and decreased DNA repair capacity in cancer cells is responsible for the effectiveness of DNA-alkylating therapies. 5’-Flap endonuclease 1 (Fen1) is an important enzyme involved in base excision repair (BER), specifically in long-patch (LP)-BER. Using the site-directed mutagenesis approach, we have identified an important role for amino acid Asp181 of Fen1 in its endonuclease activity. The Asp181 is thought be involved in Mg2+ binding in the active site. Using structure-based molecular docking of Fen1 targeted to its metal-binding pocket M2 (Mg2+ site), we have identified a potent small molecular weight inhibitor (SMI; NSC-281680) that efficiently blocks the LP-BER. In this study, we have demonstrated that the interaction of this SMI with Fen1 blocked its endonuclease activity, thereby blocking the LP-BER and enhancing the cytotoxic effect of DNA-alkylating agent, Temozolomide (TMZ) in mismatch repair (MMR)-deficient and MMR-proficient colon cancer cells. The results further suggest that blockade of LP-BER by NSC-281680 may bypass other drug resistance mechanisms such as mismatch repair (MMR) defects. Therefore, our findings provide groundwork for the development of highly specific and safer structure-based small molecular inhibitors targeting the BER pathway, which can be used along with existing chemotherapeutic agents, like TMZ, as combination therapy for the treatment of colorectal cancer. PMID:19769410

  5. Chemotherapeutic potential of cow urine: A review

    PubMed Central

    Randhawa, Gurpreet Kaur; Sharma, Rajiv

    2015-01-01

    In the grim scenario where presently about 70% of pathogenic bacteria are resistant to at least one of the drugs for the treatment, cue is to be taken from traditional/indigenous medicine to tackle it urgently. The Indian traditional knowledge emanates from ayurveda, where Bos indicus is placed at a high pedestal for numerous uses of its various products. Urine is one of the products of a cow with many benefits and without toxicity. Various studies have found good antimicrobial activity of cow’s urine (CU) comparable with standard drugs such as ofloxacin, cefpodoxime, and gentamycin, against a vast number of pathogenic bacteria, more so against Gram-positive than negative bacteria. Interestingly antimicrobial activity has also been found against some resistant strains such as multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae. Antimicrobial action is enhanced still further by it being an immune-enhancer and bioenhancer of some antibiotic drugs. Antifungal activity was comparable to amphotericin B. CU also has anthelmintic and antineoplastic action. CU has, in addition, antioxidant properties, and it can prevent the damage to DNA caused by the environmental stress. In the management of infectious diseases, CU can be used alone or as an adjunctive to prevent the development of resistance and enhance the effect of standard antibiotics. PMID:26401404

  6. Chemotherapeutic potential of cow urine: A review.

    PubMed

    Randhawa, Gurpreet Kaur; Sharma, Rajiv

    2015-01-01

    In the grim scenario where presently about 70% of pathogenic bacteria are resistant to at least one of the drugs for the treatment, cue is to be taken from traditional/indigenous medicine to tackle it urgently. The Indian traditional knowledge emanates from ayurveda, where Bos indicus is placed at a high pedestal for numerous uses of its various products. Urine is one of the products of a cow with many benefits and without toxicity. Various studies have found good antimicrobial activity of cow's urine (CU) comparable with standard drugs such as ofloxacin, cefpodoxime, and gentamycin, against a vast number of pathogenic bacteria, more so against Gram-positive than negative bacteria. Interestingly antimicrobial activity has also been found against some resistant strains such as multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae. Antimicrobial action is enhanced still further by it being an immune-enhancer and bioenhancer of some antibiotic drugs. Antifungal activity was comparable to amphotericin B. CU also has anthelmintic and antineoplastic action. CU has, in addition, antioxidant properties, and it can prevent the damage to DNA caused by the environmental stress. In the management of infectious diseases, CU can be used alone or as an adjunctive to prevent the development of resistance and enhance the effect of standard antibiotics.

  7. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    NASA Astrophysics Data System (ADS)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  8. Effects of Cueing by a Pedagogical Agent in an Instructional Animation: A Cognitive Load Approach

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    This study investigated the effects of a pedagogical agent that cued relevant information in a story-based instructional animation on the cardiovascular system. Based on cognitive load theory, it was expected that the experimental condition with the pedagogical agent would facilitate students to distinguish between relevant and irrelevant…

  9. Effects of Cueing by a Pedagogical Agent in an Instructional Animation: A Cognitive Load Approach

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    This study investigated the effects of a pedagogical agent that cued relevant information in a story-based instructional animation on the cardiovascular system. Based on cognitive load theory, it was expected that the experimental condition with the pedagogical agent would facilitate students to distinguish between relevant and irrelevant…

  10. Indirect nontarget effects of host-specific biological control agents: Implications for biological control

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2005-01-01

    Classical biological control of weeds currently operates under the assumption that biological control agents are safe (i.e., low risk) if they do not directly attack nontarget species. However, recent studies indicate that even highly host-specific biological control agents can impact nontarget species through indirect effects. This finding has profound...

  11. Lapse of time effects on tax evasion in an agent-based econophysics model

    NASA Astrophysics Data System (ADS)

    Seibold, Götz; Pickhardt, Michael

    2013-05-01

    We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.

  12. Barriers and Effective Educational Strategies to Develop Extension Agents' Professional Competencies

    ERIC Educational Resources Information Center

    Lakai, Dona; Jayaratne, K. S. U.; Moore, Gary E.; Kistler, Mark J.

    2012-01-01

    The study reported here determined the barriers and effective educational strategies to develop Extension agents' professional competencies. This was a descriptive survey research conducted with a random sample of Extension agents. Increased workload and lack of time and funding were identified as the most constraining barriers of Extension agents…

  13. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.

    PubMed

    Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K

    2014-08-25

    The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    PubMed Central

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing

  15. Military chemical warfare agent human subjects testing: part 2--long-term health effects among participants of U.S. military chemical warfare agent testing.

    PubMed

    Brown, Mark

    2009-10-01

    Military chemical warfare agent testing from World War I to 1975 produced thousands of veterans with concerns about how their participation affected their health. A companion article describes the history of these experiments, and how the lack of clinical data hampers evaluation of long-term health consequences. Conversely, much information is available about specific agents tested and their long-term health effects in other populations, which may be invaluable for helping clinicians respond effectively to the health care and other needs of affected veterans. The following review describes tested agents and their known long-term health consequences. Although hundreds of chemicals were tested, they fall into only about a half-dozen pharmaceutical classes, including common pharmaceuticals; anticholinesterase agents including military nerve agents and pesticides; anticholinergic glycolic acid esters such as atropine; acetylcholine reactivators such as 2-PAM; psychoactive compounds including cannabinoids, phencyclidine, and LSD; and irritants including tear gas and riot control agents.

  16. Effects of immunosuppressive and biological agents on refractory Takayasu arteritis patients unresponsive to glucocorticoid treatment.

    PubMed

    Ohigashi, Hirokazu; Tamura, Natsuko; Ebana, Yusuke; Harigai, Masayoshi; Maejima, Yasuhiro; Ashikaga, Takashi; Isobe, Mitsuaki

    2017-05-01

    We aimed to investigate the effects of immunosuppressive and biological agents on refractory Takayasu arteritis (TA) patients resistant to or dependent on glucocorticoids. Forty-four consecutive TA patients were enrolled, and the clinical characteristics and effectiveness of the immunosuppressive and biological agents in achieving and maintaining remission among glucocorticoid-resistant or glucocorticoid-dependent patients were investigated. Fifteen patients showed favorable response to the initial glucocorticoid treatment, and 29 patients exhibited resistance to initial glucocorticoid treatment or relapsed with tapering glucocorticoid. Of the 29 patients, 5 responded to additional glucocorticoid treatment, and 22 of the remaining 24 glucocorticoid-resistant or glucocorticoid-dependent patients were prescribed immunosuppressive agents. Methotrexate was the most commonly used in these patients as the first-line treatment. In total, 10 patients maintained remission using immunosuppressive agents, with the effectiveness of each agent about 20%. The only significant difference between patients who were and were not able to achieve and maintain remission with immunosuppressive agents was the presence of the HLA-B52 allele (p<0.0001). Biological agents were administered to 6 patients refractory to immunosuppressive agents. All patients were administered tumor necrosis factor (TNF) inhibitors as the first-line treatment, and 3 patients maintained remission. Anti-interleukin-6 receptor antibody was administered to 2 patients who were resistant to the TNF inhibitors, and 1 patient achieved and maintained remission. In our cohort, 64% of the glucocorticoid-resistant or glucocorticoid-dependent patients maintained remission through a combined treatment with glucocorticoid, immunosuppressive agents, and/or biological agents. The combined use of immunosuppressive and biological agents appears to be a promising treatment option for achieving and maintaining remission in

  17. Hemostatic efficacy and cardiovascular effects of agents used during endodontic surgery.

    PubMed

    Vickers, Francine J; Baumgartner, J Craig; Marshall, Gordon

    2002-04-01

    The hemostatic efficacy, as well as the cardiovascular effects, of two hemostatic agents currently used during endodontic surgery was examined. The hemostatic agents used were epinephrine pellets (Racellet pellets) or 20% ferric sulfate (Viscostat). Patients were assigned to one of two experimental groups. Blood pressure and pulse rate were recorded pre- and postoperatively and at three additional times during the surgery (root-end resection, root-end preparation, and filling). The adequacy of hemostasis was rated by the surgical operator. Results indicated that there is no significant change in cardiovascular effects when using either of these hemostatic agents. Except in one case where ferric sulfate was the agent, both agents produced surgical hemostasis that allowed for a dry field for root-end filling.

  18. EMOTION RECOGNITION OF VIRTUAL AGENTS FACIAL EXPRESSIONS: THE EFFECTS OF AGE AND EMOTION INTENSITY.

    PubMed

    Beer, Jenay M; Fisk, Arthur D; Rogers, Wendy A

    2009-10-01

    People make determinations about the social characteristics of an agent (e.g., robot or virtual agent) by interpreting social cues displayed by the agent, such as facial expressions. Although a considerable amount of research has been conducted investigating age-related differences in emotion recognition of human faces (e.g., Sullivan, & Ruffman, 2004), the effect of age on emotion identification of virtual agent facial expressions has been largely unexplored. Age-related differences in emotion recognition of facial expressions are an important factor to consider in the design of agents that may assist older adults in a recreational or healthcare setting. The purpose of the current research was to investigate whether age-related differences in facial emotion recognition can extend to emotion-expressive virtual agents. Younger and older adults performed a recognition task with a virtual agent expressing six basic emotions. Larger age-related differences were expected for virtual agents displaying negative emotions, such as anger, sadness, and fear. In fact, the results indicated that older adults showed a decrease in emotion recognition accuracy for a virtual agent's emotions of anger, fear, and happiness.

  19. EMOTION RECOGNITION OF VIRTUAL AGENTS FACIAL EXPRESSIONS: THE EFFECTS OF AGE AND EMOTION INTENSITY

    PubMed Central

    Beer, Jenay M.; Fisk, Arthur D.; Rogers, Wendy A.

    2014-01-01

    People make determinations about the social characteristics of an agent (e.g., robot or virtual agent) by interpreting social cues displayed by the agent, such as facial expressions. Although a considerable amount of research has been conducted investigating age-related differences in emotion recognition of human faces (e.g., Sullivan, & Ruffman, 2004), the effect of age on emotion identification of virtual agent facial expressions has been largely unexplored. Age-related differences in emotion recognition of facial expressions are an important factor to consider in the design of agents that may assist older adults in a recreational or healthcare setting. The purpose of the current research was to investigate whether age-related differences in facial emotion recognition can extend to emotion-expressive virtual agents. Younger and older adults performed a recognition task with a virtual agent expressing six basic emotions. Larger age-related differences were expected for virtual agents displaying negative emotions, such as anger, sadness, and fear. In fact, the results indicated that older adults showed a decrease in emotion recognition accuracy for a virtual agent's emotions of anger, fear, and happiness. PMID:25552896

  20. Effect of decalcifying agents on the staining of Mycobacterium tuberculosis.

    PubMed Central

    Anderson, G; Coup, A J

    1975-01-01

    Lymph nodes from guinea pigs inoculated with Mycobacterium tuberculosis were fixed in buffered formalin, then treated for the recommended times in Gooding and Stewart's fluid, EDTA, aqueous nitric acid, von Ebner's fluid, and rapid decalcifier (RDC). The blocks were processed to paraffin wax and sections were stained by the Ziehl-Neelsen technique. Only in sections of the blocks treated with RDC were no acid alcohol fast bacilli demonstrable. Hydrochloric acid is a known constituent of RDC and it was found that Myco. tuberculosis is altered by treatment with 2-5M solutions of hydrochloric acid and above and cannot subseuqently be demonstrated by the Ziehl-Neelsen stain. From these results it is recommended that calcified tissue from patients in whom there is a suspicion of tuberculosis should be decalcified with an agent other than RDC. PMID:51859

<