Science.gov

Sample records for chemotherapeutic drug delivery

  1. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment.

    PubMed

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-05-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  2. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment

    PubMed Central

    Kang, Lin; Gao, Zhonggao; Huang, Wei; Jin, Mingji; Wang, Qiming

    2015-01-01

    The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems. PMID:26579443

  3. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs.

    PubMed

    Gidwani, Bina; Vyas, Amber

    2015-01-01

    Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carriers, and various approaches used for the delivery. The present review article aims to assess the utility of cyclodextrin-based carriers like liposomes, niosomes, nanoparticles, micelles, millirods, and siRNA for delivery of antineoplastic agents. These systems based on cyclodextrin complexation and nanotechnology will camouflage the undesirable properties of drug and lead to synergistic or additive effect. Cyclodextrin-based nanotechnology seems to provide better therapeutic effect and sustain long life of healthy and recovered cells. Still, considerable study on delivery system and administration routes of cyclodextrin-based carriers is necessary with respect to their pharmacokinetics and toxicology to substantiate their safety and efficiency. In future, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents. PMID:26582104

  4. A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs

    PubMed Central

    Gidwani, Bina; Vyas, Amber

    2015-01-01

    Most of the cytotoxic chemotherapeutic agents have poor aqueous solubility. These molecules are associated with poor physicochemical and biopharmaceutical properties, which makes the formulation difficult. An important approach in this regard is the use of combination of cyclodextrin and nanotechnology in delivery system. This paper provides an overview of limitations associated with anticancer drugs, their complexation with cyclodextrins, loading/encapsulating the complexed drugs into carriers, and various approaches used for the delivery. The present review article aims to assess the utility of cyclodextrin-based carriers like liposomes, niosomes, nanoparticles, micelles, millirods, and siRNA for delivery of antineoplastic agents. These systems based on cyclodextrin complexation and nanotechnology will camouflage the undesirable properties of drug and lead to synergistic or additive effect. Cyclodextrin-based nanotechnology seems to provide better therapeutic effect and sustain long life of healthy and recovered cells. Still, considerable study on delivery system and administration routes of cyclodextrin-based carriers is necessary with respect to their pharmacokinetics and toxicology to substantiate their safety and efficiency. In future, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents. PMID:26582104

  5. Chemotherapeutic Drugs Interfere with Gene Delivery Mediated by Chitosan-Graft-Poly(ethylenimine).

    PubMed

    Lai, Wing-Fu; Lin, Marie C

    2015-01-01

    Combined chemo-gene therapy is one of the treatment modalities that have attracted extensive research interests; however, there is little information regarding the influence of drug application on gene transfer. This study bridges this gap by examining how chemotherapeutic drugs (teniposide, cis-diamminedichloroplatinum(II) and temozolomide) interfere with polyplex formation and transfection of chitosan-graft-poly(ethylenimine). Our results indicate that the degree of drug interference varies with the mechanism of drug action, with the transgene expression being severely suppressed when the plasmid is co-delivered with cis-diamminedichloroplatinum(II) or teniposide but not temozolomide. In addition, the interference with transfection by drugs varies with different gene/drug co-formulations. This is the first study to evidence that, though combined chemo-gene therapy has therapeutic potential, some chemotherapeutic drugs may reduce the treatment efficiency of gene therapy. PMID:25961282

  6. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor.

    PubMed

    Li, Xiaoyu; Wu, Meiying; Pan, Limin; Shi, Jianlin

    2016-01-01

    To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4) and a chemotherapeutic drug (doxorubicin) and conjugate with targeting molecules (iRGD peptide) for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors.

  7. Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems.

    PubMed

    Patel, Niravkumar R; Aryasomayajula, Bhawani; Abouzeid, Abraham H; Torchilin, Vladimir P

    2015-01-01

    Over the last few decades, the most popular platform to perform high-throughput screening for viable anti-neoplastic compounds has been monolayer cell culture. However, cells in monolayer culture lose many of their in vivo characteristics. As a result, this platform provides a limited predictive value in determining the clinical outcome of the compounds of interest. Using a technique known as 3D spheroid culture, may be the answer to this conundrum. Spheroids have been shown to mimic the tissue-like properties of tumors necessary for the proper evaluation of compounds. In this review, production of cancer cell spheroids, utilization of these spheroids in understanding various therapeutic mechanisms and the potential for their use in high-throughput screening of drugs and drug-delivery systems are discussed in detail. PMID:25996047

  8. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.

    PubMed

    Tao, Cuilian; Zhu, Yufang

    2014-11-01

    Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient cell uptake ability. MMS nanoparticles exhibited a sustained drug release in the medium of pH 5.0, but a very slow release in the medium of pH 7.4. On the other hand, MMS nanoparticles could controllably generate heat to reach the hyperthermia temperature within a short time upon exposure to an alternating magnetic field due to the superparamagnetic behavior and controllable magnetization. Therefore, MMS nanoparticles could provide a promising multifunctional platform for the combination of chemotherapy and hyperthermia for cancer therapy. PMID:25190592

  9. Synthesis and Applications of Multimodal Hybrid Albumin Nanoparticles for Chemotherapeutic Drug Delivery and Photothermal Therapy Platforms

    NASA Astrophysics Data System (ADS)

    Peralta, Donna V.

    cellular uptake of AuNR-HSAPs via fluorescence microscopy. Finally, camptothecin (CPT) an antineoplastic agent and BACPT (7-butyl-10-aminocamptothecin) were loaded into HSAPs to combat their aqueous insolubility. BACPT-HSAPs loaded up to 5.25 micrograms BACPT/ mg of HSA. CPT encapsulation could not be determined. BACPT-HSAPs and CPT-HSAPs showed cytotoxicity to human sarcoma cells in vitro. Key words: Hybrid Nanoparticles, Photothermal Therapy, Gold Nanomaterials, Drug Delivery, Combinational Cancer Therapies, Materials, Human Serum Albumin, Colloidal Carriers.

  10. Active nanodiamond hydrogels for chemotherapeutic delivery.

    PubMed

    Huang, Houjin; Pierstorff, Erik; Osawa, Eiji; Ho, Dean

    2007-11-01

    Nanodiamond materials can serve as highly versatile platforms for the controlled functionalization and delivery of a wide spectrum of therapeutic elements. In this work, doxorubicin hydrochloride (DOX), an apoptosis-inducing drug widely used in chemotherapy, was successfully applied toward the functionalization of nanodiamond materials (NDs, 2-8 nm) and introduced toward murine macrophages as well as human colorectal carcinoma cells with preserved efficacy. The adsorption of DOX onto the NDs and its reversible release were achieved by regulating Cl- ion concentration, and the NDs were found to be able to efficiently ferry the drug inside living cells. Comprehensive bioassays were performed to assess and confirm the innate biocompatibility of the NDs, via real-time quantitative polymerase chain reaction (RT-PCR), and electrophoretic DNA fragmentation as well as MTT analysis confirmed the functional apoptosis-inducing mechanisms driven by the DOX-functionalized NDs. We extended the applicability of the DOX-ND composites toward a translational context, where MTT assays were performed on the HT-29 colon cancer cell line to assess DOX-ND induced cell death and ND-mediated chemotherapeutic sequestering for potential slow/sustained released capabilities. These and other medically relevant capabilities enabled by the NDs forge its strong potential as a therapeutically significant nanomaterial.

  11. β-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells

    PubMed Central

    Bar-Zeev, Maya; Assaraf, Yehuda G.; Livney, Yoav D.

    2016-01-01

    Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer. PMID:26989076

  12. Progress in Aptamer-Mediated Drug Delivery Vehicles for Cancer Targeting and Its Implications in Addressing Chemotherapeutic Challenges

    PubMed Central

    Zhu, Jie; Huang, He; Dong, Shiwu; Ge, Liang; Zhang, Yuan

    2014-01-01

    Aptamers are novel oligonucleotides with flexible three-dimensional configurations that recognize and bind to their cognate targets, including tumor surface receptors, in a high-affinity and highly specific manner. Because of their unique intrinsic properties, a variety of aptamer-mediated nanovehicles have been developed to directionally transport anti-cancer drugs to tumor sites to minimize systemic cytotoxicity and to enhance permeation by these tumoricidal agents. Despite advances in the selection and synthesis of aptamers and in the conjugation and self-assembly of nanotechnologies, current chemotherapy and drug delivery systems face great challenges. These challenges are due to the limitations of aptamers and vehicles and because of complicated tumor mechanisms, including heterogeneity, anti-cancer drug resistance, and hypoxia-induced aberrances. In this review, we will summarize current approaches utilizing tumor surface hallmarks and aptamers and their roles and mechanisms in therapeutic nanovehicles targeting tumors. Delivery forms include nanoparticles, nanotubes, nanogels, aptamer-drug conjugates, and novel molecular trains. Moreover, the obstacles posed by the aforementioned issues will be highlighted, and possible solutions will be acknowledged. Furthermore, future perspectives will be presented, including cutting-edge integration with RNA interference nanotechnology and personalized chemotherapy, which will facilitate innovative approaches to aptamer-based therapeutics. PMID:25057317

  13. Nanoparticles for delivery of chemotherapeutic agents to tumors.

    PubMed

    Vijayaraghavalu, Sivakumar; Raghavan, Derek; Labhasetwar, Vinod

    2007-06-01

    Despite decades of research, progress in cancer chemotherapy is relatively slow, hampered, in part, by the lack of appropriate mechanisms to deliver anticancer drugs selectively to tumor tissues. This is a challenging task, as various cellular, anatomical and physiological barriers impede effective delivery of drugs to tumors. Systemic or oral administration can cause severe toxicity, which limits the therapeutic potential of anticancer drugs. Therefore, the most important goal of drug delivery is to minimize the exposure of normal tissues to these drugs while maintaining their therapeutic concentration in tumors. Furthermore, the risk of subtherapeutic dosing of anticancer drugs is significant as tumors may develop drug resistance as a result of biochemical changes, drug export mechanisms, or limitations in mechanisms of cellular drug importation. As the field of cancer nanomedicine advances, it is anticipated that many drug delivery-related issues concerning cancer chemotherapeutics will be resolved. This review discusses the current status of nanoparticle-mediated cancer drug delivery, challenges to its utilization, and potential implications of its use in cancer therapy.

  14. Cisplatin@US-tube Carbon Nanocapsules For Enhanced Chemotherapeutic Delivery

    PubMed Central

    Guven, Adem; Rusakova, Irene A.; Lewis, Michael T.; Wilson, Lon J.

    2012-01-01

    The use of chemotherapeutic drugs in cancer therapy is often limited by problems with administration such as insolubility, inefficient biodistribution, lack of selectivity, and inability of the drug to cross cellular barriers. To overcome these limitations, various types of drug delivery systems have been explored, and recently, carbon nanotube (CNT) materials have also garnered attention in the area of drug delivery. In this study, we describe the preparation, characterization, and in vitro testing of a new ultra-short single-walled carbon nanotube (US-tube)-based drug delivery system for the treatment of cancer. In particular, the encapsulation of cisplatin (CDDP), a widely-used anticancer drug, within US-tubes has been achieved, and the resulting CDDP@US-tube material characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively-coupled optical emission spectrometry (ICP-OES). Dialysis studies performed in phosphate-buffered saline (PBS) at 37 °C have demonstrated that CDDP release from CDDP@US-tubes can be controlled (retarded) by wrapping the CDDP@US-tubes with Pluronic-F108 surfactant. Finally, the anticancer activity of pluronic-wrapped CDDP@US-tubes has been evaluated against two different breast cancer cell lines, MCF-7 and MDA-MB-231, and found to exhibit enhanced cytotoxicity over free CDDP after 24 hours. These studies have laid the foundation for developing US-tube-based delivery of chemotherapeutics, with drug release mainly limited to within cancer cells only. PMID:22078812

  15. Analysis of Chemotherapeutic Drug Delivery at the Single Cell Level Using 3D-MSI-TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Vanbellingen, Quentin P.; Castellanos, Anthony; Rodriguez-Silva, Monica; Paudel, Iru; Chambers, Jeremy W.; Fernandez-Lima, Francisco A.

    2016-08-01

    In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3 +) and depth profiling (20 keV with a distribution centered at Ar1500 +) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial (~250 nm) and high mass resolution (m/Δm ~10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion (m/z 811.26 C42H44ClN6O5S2 - [M - H]-) as well as characteristic fragment ions. We propose a novel approach based on the inspection of the drug secondary ion yield, which showed a good correlation with the drug concentration during cell treatment at therapeutic dosages (0-200 μM with 4 h incubation). Chemical maps using endogenous molecular markers showed that the ABT-737 is mainly localized in subsurface regions and absent in the nucleus. A semiquantitative workflow is proposed to account for the biological cell diversity based on the spatial distribution of endogenous molecular markers (e.g., nuclei and cytoplasm) and secondary ion confirmation based on the ratio of drug-specific fragments to molecular ion as a function of the therapeutic dosage.

  16. Direct chemotherapeutic dual drug delivery through intra-articular injection for synergistic enhancement of rheumatoid arthritis treatment

    PubMed Central

    Reum Son, A; Kim, Da Yeon; Hun Park, Seung; Yong Jang, Ja; Kim, Kyungsook; Ju Kim, Byoung; Yun Yin, Xiang; Ho Kim, Jae; Hyun Min, Byoung; Keun Han, Dong; Suk Kim, Moon

    2015-01-01

    The effectiveness of systemic rheumatoid arthritis (RA) treatments is limited by difficulties in achieving therapeutic doses within articular joints. We evaluated the ability of intra-articular administration of injectable formulations to synergistically enhance repair of RA joints. Methotrexate-loaded hyaluronic acid (Met-HA), dexamethasone-loaded microcapsules (Dex-M), and Dex-M dispersed inside Met-HA were prepared as viscous emulsions and injected into articular joints using a needle to form a drug depot. By near-infrared (NIR) fluorescence imaging, we confirmed the local release of NIR from the depot injected into the articular joint over an extended period. In comparison with the subjects treated with Met-HA or Dex-M alone, subjects treated simultaneously with Met-HA and Dex-M exhibited faster and more significant RA repair. Collectively, these results indicated that the drug depot formed after intra-articular injection of Met-HA/Dex-M induced long-lasting drug release and allowed Met and Dex to effectively act in the articular joint, resulting in enhanced RA repair. PMID:26424611

  17. Multiphysics and Multiscale Analysis for Chemotherapeutic Drug

    PubMed Central

    Zhang, Linan; Kim, Sung Youb; Kim, Dongchoul

    2015-01-01

    This paper presents a three-dimensional dynamic model for the chemotherapy design based on a multiphysics and multiscale approach. The model incorporates cancer cells, matrix degrading enzymes (MDEs) secreted by cancer cells, degrading extracellular matrix (ECM), and chemotherapeutic drug. Multiple mechanisms related to each component possible in chemotherapy are systematically integrated for high reliability of computational analysis of chemotherapy. Moreover, the fidelity of the estimated efficacy of chemotherapy is enhanced by atomic information associated with the diffusion characteristics of chemotherapeutic drug, which is obtained from atomic simulations. With the developed model, the invasion process of cancer cells in chemotherapy treatment is quantitatively investigated. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of chemotherapy treatment. PMID:26491672

  18. Efficacy of combined photothermal therapy and chemotherapeutic drugs

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Shih, En-Chung; Hirschberg, Henry

    2015-03-01

    Hyperthermia has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of a number of commonly used chemotherapeutic drugs (bleomycin, doxorubicin and cisplatin) with photothermal therapy (PTT)-induced hyperthermia in an in vitro system consisting of human head and neck squamous carcinoma cells and murine lymphocytic monocytes which were used as delivery vehicles for gold-silica nanoshells (AuNS). PTT was accomplished via near infra-red (NIR) irradiation of AuNS. The results showed that PTT combined with cisplatin resulted in only a mild degree of synergism while additive effects were observed for concurrent treatments of PTT and doxorubicin and PTT and bleomycin.

  19. Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs.

    PubMed

    Corti, Angelo; Ponzoni, Mirco

    2004-12-01

    The poor selectivity of chemotherapeutic drugs for neoplastic cells may lead to dose-limiting side effects that compromise clinical outcomes. Moreover, heterogeneous tumor perfusion and vascular permeability, and increased interstitial pressure, could represent critical barriers that limit the penetration of drugs into neoplastic cells distant from tumor vessels and, consequently, the effectiveness of chemotherapy. We have recently developed two strategies for increasing the local concentration of chemotherapeutic drugs in tumors and their therapeutic index, based on tumor vascular targeting. First, we have found that vascular targeting with minute amounts of tumor necrosis factor alpha (TNF-alpha), an inflammatory cytokine able to increase vascular permeability, alters tumor barriers and increases the penetration of chemotherapeutic drugs in subcutaneous tumors in mouse models. Targeted delivery of TNF-alpha to tumor vessels was achieved by coupling this cytokine with cyclic CNGRC peptide, an aminopeptidase N (CD13) ligand that targets the tumor neovasculature. Second, we have observed that encapsulation of doxorubicin into liposomes able to home to tumor vessels markedly improves drug uptake by neuroblastoma tumors, in an orthotopic xenograft model, and its therapeutic index. Targeted delivery of liposomes was achieved by coupling linear GNGRG peptide to the surface of liposomal doxorubicin. Vascular targeting, either indirectly with NGR-TNF-alpha or directly with NGR-targeted liposomes, could be a novel strategy for increasing the therapeutic index of chemotherapeutic drugs.

  20. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model

    PubMed Central

    Bae, Yun Jung; Yoon, Young Il; Yoon, Tae-Jong

    2016-01-01

    Objective To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Materials and Methods Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Results Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Conclusion Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo. PMID:27390541

  1. Predicting chemotherapeutic drug combinations through gene network profiling

    PubMed Central

    Nguyen, Thi Thuy Trang; Chua, Jacqueline Kia Kee; Seah, Kwi Shan; Koo, Seok Hwee; Yee, Jie Yin; Yang, Eugene Guorong; Lim, Kim Kiat; Pang, Shermaine Yu Wen; Yuen, Audrey; Zhang, Louxin; Ang, Wee Han; Dymock, Brian; Lee, Edmund Jon Deoon; Chen, Ee Sin

    2016-01-01

    Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells. PMID:26791325

  2. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems

    NASA Astrophysics Data System (ADS)

    Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu

    2015-11-01

    Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied

  3. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    PubMed Central

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  4. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    NASA Astrophysics Data System (ADS)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  5. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics.

    PubMed

    Wijdeven, Ruud H; Pang, Baoxu; Assaraf, Yehuda G; Neefjes, Jacques

    2016-09-01

    Efficacy of chemotherapy in the treatment of distinct malignancies is often hampered by drug resistance arising in the tumor. Understanding the molecular basis of drug resistance and translating this knowledge into personalized treatment decisions can enhance therapeutic efficacy and even curative outcome. Over the years, multiple drug resistance mechanisms have been identified that enable tumors to cope with the damage instigated by a specific drug or group of anti-tumor agents. Here we provide an overview of the molecular pathways leading to resistance against conventional anti-cancer drugs, with emphasis on the utility of these pathways for rational selection of treatments for individual cancer patients. We further complement the review by discussing the pitfalls and difficulties in translating these findings into novel treatment strategies for cancer patients. PMID:27620955

  6. Nanotransporters for drug delivery.

    PubMed

    Lühmann, Tessa; Meinel, Lorenz

    2016-06-01

    Soluble nanotransporters for drugs can be profiled for targeted delivery particularly to maximize the efficacy of highly potent drugs while minimizing off target effects. This article outlines on the use of biological carrier molecules with a focus on albumin, various drug linkers for site specific release of the drug payload from the nanotransporter and strategies to combine these in various ways to meet different drug delivery demands particularly the optimization of the payload per nanotransporter.

  7. An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced Drug Perfusion and Efficacy in Pancreatic Cancer.

    PubMed

    Ji, Tianjiao; Li, Suping; Zhang, Yinlong; Lang, Jiayan; Ding, Yanping; Zhao, Xiao; Zhao, Ruifang; Li, Yiye; Shi, Jian; Hao, Jihui; Zhao, Ying; Nie, Guangjun

    2016-02-10

    Fibrotic stroma, a critical character of pancreatic tumor microenvironment, provides a critical barrier against the penetration and efficacy of various antitumor drugs. Therefore, new strategies are urgently needed to alleviate the fibrotic mass and increase the drug perfusion within pancreatic cancer tissue. In our current work, we developed a β-cyclodextrin (β-CD) modified matrix metalloproteinase-2 (MMP-2) responsive liposome, integrating antifibrosis and chemotherapeutic drugs for regulation of pancreatic stellate cells (PSCs), a key source of the fibrosis, and targeted delivery of cytotoxic drugs for pancreatic cancer therapy. These liposomes disassembed into two functional parts upon MMP-2 cleavage at the tumor site. One part was constituted by the β-CDs and the antifibrosis drug pirfenidone, which was kept in the stroma and inhibited the expression of collagen I and TGF-β in PSCs, down-regulating the fibrosis and decreasing the stromal barrier. The other segment, the RGD peptide-modified-liposome loading the chemotherapeutic drug gemcitabine, targeted and killed pancreatic tumor cells. This integrated nanomedicine, showing an increased drug perfusion without any overt side effects, may provide a potential strategy for improvement of the pancreatic cancer therapy. PMID:26759926

  8. Ocular drug delivery.

    PubMed

    Gaudana, Ripal; Ananthula, Hari Krishna; Parenky, Ashwin; Mitra, Ashim K

    2010-09-01

    Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases. PMID:20437123

  9. Ocular drug delivery.

    PubMed

    Gaudana, Ripal; Ananthula, Hari Krishna; Parenky, Ashwin; Mitra, Ashim K

    2010-09-01

    Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.

  10. Transdermal drug delivery

    PubMed Central

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  11. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.

  12. Dual-Crosslinked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery

    PubMed Central

    Scherrer, Ryan M.; Oldinski, Rachael A.

    2016-01-01

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently crosslinked sub-microspheres were formed via exposure to green light, in order to investigate effects of crosslinking on drug release and cell internalization, compared to traditional techniques such as ultra violet (UV) light. Crosslinking was performed using light exposure alone, or in combination with ionic crosslinking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 – 617 nm, and zeta-potentials were between −20 and −37 mV. Using human lung epithelial carcinoma cells (A549s) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-crosslinked sub-microspheres achieving the highest internalization percentages. While blank (non-loaded) Alg-MA sub-microspheres were non-cytotoxic to A549s, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after five days of culture. Photo-crosslinked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment. PMID:27378419

  13. Antibody–drug conjugates as novel anti-cancer chemotherapeutics

    PubMed Central

    Peters, Christina; Brown, Stuart

    2015-01-01

    Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics. PMID:26182432

  14. Nanosize drug delivery system.

    PubMed

    Mukherjee, Biswajit

    2013-01-01

    Nanosize materials provide hopes, speculations and chances for an unprecedented change in drug delivery in near future. Nanotechnology is an emerging field to produce nanomaterials for drug delivery that can offer a new tool, opportunities and scope to provide more focused and fine-tuned treatment of diseases at a molecular level, enhancing the therapeutic potential of drugs so that they become less toxic and more effective. Nanodimensional drug delivery systems are of great scientific interest as they project their tremendous utility because of their capability of altering biodistribution of therapeutic agents so that they can concentrate more in the target tissues. Nanosize drug delivery systems generally focus on formulating bioactive molecules in biocompatible nanosystems such as nanocrystals, solid lipid nanoparticles, nanostructure lipid carriers, lipid drug conjugates, nanoliposomes, dendrimers, nanoshells, emulsions, nanotubes, quantum dots etc. Extensively versatile molecules like synthetic chemicals to naturally occurring complex macromolecules such as nucleic acids and proteins could be dispensed in such formulations maintaining their stability and efficacy. Empty viral capsids are being tried to deliver drug as these uniformly sized bionanomaterials can be utilized to load drug to improve solubility, reduce toxicity and provide site specific targeting. Nanomedicines offer a wide scope for delivery of smart materials from tissue engineering to more recently artificial RBCs. Nanocomposites are the future hope for tailored and personalized medicines as well as for bone repairing and rectification of cartilage impairment. Nanosize drug delivery systems are addressing the challenges to overcome the delivery problems of wide ranges of drugs through their narrow submicron particle size range, easily manipulatable surface characteristics in achievement of versatile tissue targeting (includes active and passive drug targeting), controlled and sustained drug

  15. Single compartment drug delivery

    PubMed Central

    Cima, Michael J.; Lee, Heejin; Daniel, Karen; Tanenbaum, Laura M.; Mantzavinou, Aikaterini; Spencer, Kevin C.; Ong, Qunya; Sy, Jay C.; Santini, John; Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert S.

    2014-01-01

    Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as “privileged,” since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective. PMID:24798478

  16. Mucoadhesive drug delivery systems

    PubMed Central

    Shaikh, Rahamatullah; Raj Singh, Thakur Raghu; Garland, Martin James; Woolfson, A David; Donnelly, Ryan F.

    2011-01-01

    Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal). PMID:21430958

  17. Optically generated ultrasound for enhanced drug delivery

    DOEpatents

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  18. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs.

    PubMed

    Jackson, Rebecca A; Chen, Ee Sin

    2016-06-01

    The recent advances in pharmacogenomics have made personalized medicine no longer a pipedream but a precise and powerful way to tailor individualized cancer treatment strategies. Cancer is a devastating disease, and contemporary chemotherapeutic strategies now integrate several agents in the treatment of some types of cancer, with the intent to block more than one target simultaneously. This constitutes the premise of synthetic lethality, an attractive therapeutic strategy already demonstrating clinical success in patients with breast and ovarian cancers. Synthetic lethal combinations offer the potential to also target the hitherto "undruggable" mutations that have challenged the cancer field for decades. However, synthetic lethality in clinical cancer therapy is very much still in its infancy, and selecting the most appropriate combinations-or synthetic lethal pairs-is not always an intuitive process. Here, we review some of the recent progress in identifying synthetic lethal combinations and their potential for therapy and highlight some of the tools through which synthetic lethal pairs are identified.

  19. Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic and viral therapies in neuro-oncology.

    PubMed

    Chiocca, E Antonio; Broaddus, William C; Gillies, George T; Visted, Therese; Lamfers, Martine L M

    2004-01-01

    Local delivery of biologic agents, such as gene and viruses, has been tested preclinically with encouraging success, and in some instances clinical trials have also been performed. In addition, the positive pressure infusion of various therapeutic agents is undergoing human testing and approval has already been granted for routine clinical use of biodegradable implants that diffuse a chemotherapeutic agent into peritumoral regions. Safety in glioma patients has been shown, but anticancer efficacy needs additional refinements in the technologies employed. In this review, we will describe these modalities and provide a perspective on needed improvements that should render them more successful.

  20. Photomechanical drug delivery

    NASA Astrophysics Data System (ADS)

    Doukas, Apostolos G.; Lee, Shun

    2000-05-01

    Photomechanical waves (PW) are generated by Q-switched or mode-locked lasers. Ablation is a reliable method for generating PWs with consistent characteristics. Depending on the laser wavelength and target material, PWs with different parameters can be generated which allows the investigation of PWs with cells and tissue. PWs have been shown to permeabilize the stratum corneum (SC) in vivo and facilitate the transport of drugs into the skin. Once a drug has diffused into the dermis it can enter the vasculature, thus producing a systemic effect. Fluorescence microscopy of biopsies show that 40-kDa molecules can be delivered to a depth of > 300 micrometers into the viable skin of rats. Many important drugs such as insulin, and erythropoietin are smaller or comparable in size, making the PWs attractive for transdermal drug delivery. There are three possible pathways through the SC: Transappendageal via hair follicles or other appendages, transcellular through the corneocytes, and intercellular via the extracellular matrix. The intracellular route appears to be the most likely pathway of drug delivery through the SC.

  1. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    PubMed

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies. PMID:25469267

  2. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    PubMed

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies.

  3. Polymeric multilayer capsules in drug delivery.

    PubMed

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  4. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed.

  5. Exploiting the Tumor Phenotype Using Biodegradable Submicron Carriers of Chemotherapeutic Drugs

    PubMed Central

    Geary, Sean M.; Salem, Aliasger K.

    2014-01-01

    Tumor tissues possess characteristics that distinguish them from healthy tissues and make them attractive targets for submicron carriers of chemotherapeutic drugs (CTX). CTX are generally administered systemically in free form to cancer patients resulting in unwanted cytotoxic effects and placing limitations on the deliverable CTX dose. In an effort to raise the therapeutic index of CTX there are now liposome-based CTX formulations in clinical use that are more tumor specific than the free form of CTX. However, progression to liposome-based chemotherapy in the clinic has been slow and there have been no approved formulations introduced in the last decade. Alternative carrier systems such as those made from the biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) have been investigated in preclinical settings with promising outcomes. Here we review the principle behind biodegradable submicron carriers as CTX delivery vehicles for solid tumors with a specific focUS on liposomes and PLGA-based carriers, highlighting the strengths and weaknesses of each system. PMID:25271435

  6. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  7. Schistosomiasis--a century searching for chemotherapeutic drugs.

    PubMed

    Ribeiro-dos-Santos, Gabriela; Verjovski-Almeida, Sergio; Leite, Luciana C C

    2006-10-01

    Schistosomiasis affects 200 million individuals in underdeveloped and developing regions and is a growing concern for travelers worldwide. There has been evidence of resistance to the praziquantel-based therapy and reports of acute-disease manifestation; therefore, other drugs affecting different stages of the schistosome parasites life cycle and alternative therapeutic regimens should be developed and become accessible. The present review results from a comprehensive search in the scientific literature for substances and compounds tested in the past centennial for schistosomiasis therapy. We gathered over 40 drugs providing information on therapeutic action in humans or animal model, toxicity, susceptible Schistosoma stages, species, etc. The drugs were grouped according to their known metabolic effects on the parasite, whether they are on membrane structure and function, carbohydrate metabolism, protein synthesis and function, or on nucleic acid metabolism. We discuss the current knowledge of drug-target interactions, their mechanism of action and possible therapy combinations. Furthermore, based in the literature and in our own experience with large-scale Schistosoma mansoni genome and transcriptome analyses, we put forward several recently described gene products that are promising target candidates for existing or new drugs. PMID:16636847

  8. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  9. Microprocessor controlled transdermal drug delivery.

    PubMed

    Subramony, J Anand; Sharma, Ashutosh; Phipps, J B

    2006-07-01

    Transdermal drug delivery via iontophoresis is reviewed with special focus on the delivery of lidocaine for local anesthesia and fentanyl for patient controlled acute therapy such as postoperative pain. The role of the microprocessor controller in achieving dosimetry, alternating/reverse polarity, pre-programmed, and sensor-based delivery is highlighted. Unique features such as the use of tactile signaling, telemetry control, and pulsatile waveforms in iontophoretic drug delivery are described briefly.

  10. Improving drug delivery to solid tumors: priming the tumor microenvironment.

    PubMed

    Khawar, Iftikhar Ali; Kim, Jung Ho; Kuh, Hyo-Jeong

    2015-03-10

    Malignant transformation and growth of the tumor mass tend to induce changes in the surrounding microenvironment. Abnormality of the tumor microenvironment provides a driving force leading not only to tumor progression, including invasion and metastasis, but also to acquisition of drug resistance, including pharmacokinetic (drug delivery-related) and pharmacodynamic (sensitivity-related) resistance. Drug delivery systems exploiting the enhanced permeability and retention (EPR) effect and active targeting moieties were expected to be able to cope with delivery-related drug resistance. However, recent evidence supports a considerable barrier role of tumors via various mechanisms, which results in imperfect or inefficient EPR and/or targeting effect. The components of the tumor microenvironment such as abnormal tumor vascular system, deregulated composition of the extracellular matrix, and interstitial hypertension (elevated interstitial fluid pressure) collectively or cooperatively hinder the drug distribution, which is prerequisite to the efficacy of nanoparticles and small-molecule drugs used in cancer medicine. Hence, the abnormal tumor microenvironment has recently been suggested to be a promising target for the improvement of drug delivery to improve therapeutic efficacy. Strategies to modulate the abnormal tumor microenvironment, referred to here as "solid tumor priming" (vascular normalization and/or solid stress alleviation leading to improvement in blood perfusion and convective molecular movement), have shown promising results in the enhancement of drug delivery and anticancer efficacy. These strategies may provide a novel avenue for the development of new chemotherapeutics and combination chemotherapeutic regimens as well as reassessment of previously ineffective agents. PMID:25526702

  11. Emerging Frontiers in Drug Delivery.

    PubMed

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact.

  12. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  13. Recent advances of cocktail chemotherapy by combination drug delivery systems.

    PubMed

    Hu, Quanyin; Sun, Wujin; Wang, Chao; Gu, Zhen

    2016-03-01

    Combination chemotherapy is widely exploited for enhanced cancer treatment in the clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end.

  14. Improvement of chemotherapeutic drug efficacy by endoplasmic reticulum stress.

    PubMed

    Mihailidou, Chrysovalantou; Chatzistamou, Ioulia; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2015-04-01

    Tunicamycin (TUN), an inhibitor of protein glycosylation and therefore a potent stimulator of endoplasmic reticulum (ER) stress, has been used to improve anticancer drug efficacy, but the underlying mechanism remains obscure. In this study, we show that acute administration of TUN in mice induces the unfolded protein response and suppresses the levels of P21, a cell cycle regulator with anti-apoptotic activity. The inhibition of P21 after ER stress appears to be C/EBP homologous protein (CHOP)-dependent because in CHOP-deficient mice, TUN not only failed to suppress, but rather induced the expression of P21. Results of promoter-activity reporter assays using human cancer cells and mouse fibroblasts indicated that the regulation of P21 by CHOP operates at the level of transcription and involves direct binding of CHOP transcription factor to the P21 promoter. The results of cell viability and clonogenic assays indicate that ER-stress-related suppression of P21 expression potentiates caspase activation and sensitizes cells to doxorubicin treatment, while administration of TUN to mice increases the therapeutic efficacy of anticancer therapy for HepG2 liver and A549 lung cancers.

  15. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer

    PubMed Central

    Fujita, Ken-ichi; Kubota, Yutaro; Ishida, Hiroo; Sasaki, Yasutsuna

    2015-01-01

    Irinotecan hydrochloride is a camptothecin derivative that exerts antitumor activity against a variety of tumors. SN-38 produced in the body by carboxylesterase is the active metabolite of irinotecan. After irinotecan was introduced for the treatment of metastatic colorectal cancer (CRC) at the end of the last century, survival has improved dramatically. Irinotecan is now combined with 5-fluorouracil, oxaliplatin and several molecularly-targeted anticancer drugs, resulting in the extension of overall survival to longer than 30 mo. Severe, occasionally life-threatening toxicity occurs sporadically, even in patients in relatively good condition who have a low risk of chemotherapy-induced toxicity, often causing the failure of irinotecan-based chemotherapy. Clinical pharmacological studies have revealed that such severe toxicity is related to exposure to SN-38 and genetic polymorphisms in UDP-glucuronosyltransferase 1A1 gene. The large inter- and intra-patient variability in systemic exposure to SN-38 is determined not only by genetic factors but also by physiological and environmental factors. This review first summarizes the roles of irinotecan in chemotherapy for metastatic CRC and then discusses the optimal dosing of irinotecan based on the aforementioned factors affecting systemic exposure to SN-38, with the ultimate goal of achieving personalized irinotecan-based chemotherapy. PMID:26604633

  16. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  17. Nanocarrier mediated Delivery of siRNA/miRNA in Combination with Chemotherapeutic Agents for Cancer Therapy: Current Progress and Advances

    PubMed Central

    Gandhi, Nishant S.; Tekade, Rakesh K.; Chougule, Mahavir B.

    2014-01-01

    Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibits drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), Multidrug resistant protein 1(MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer. PMID:25204288

  18. Assessment of urinary excretion of antimalarial drugs in large-scale chemotherapeutic eradication projects

    PubMed Central

    Bruce-Chwatt, L. J.

    1959-01-01

    Assessment of the urinary excretion of an antimalarial drug is a useful means of checking the amount of drug administered and the regularity of intake. The author describes the various methods available for the qualitative and quantitative estimation of antimalarial drugs in urine and discusses their relative merits, with special reference to their suitability for use in the field. He points out the difficulties involved in estimating the urinary excretion of antimalarials in large-scale chemotherapeutic eradication projects and stress the importance of simplifying testing techniques as far as possible. PMID:13805135

  19. Drug delivery to the ear.

    PubMed

    Hoskison, E; Daniel, M; Al-Zahid, S; Shakesheff, K M; Bayston, R; Birchall, J P

    2013-01-01

    Drug delivery to the ear is used to treat conditions of the middle and inner ear such as acute and chronic otitis media, Ménière's disease, sensorineural hearing loss and tinnitus. Drugs used include antibiotics, antifungals, steroids, local anesthetics and neuroprotective agents. A literature review was conducted searching Medline (1966-2012), Embase (1988-2012), the Cochrane Library and Ovid (1966-2012), using search terms 'drug delivery', 'middle ear', 'inner ear' and 'transtympanic'. There are numerous methods of drug delivery to the middle ear, which can be categorized as topical, systemic (intravenous), transtympanic and via the Eustachian tube. Localized treatments to the ear have the advantages of targeted drug delivery allowing higher therapeutic doses and minimizing systemic side effects. The ideal scenario would be a carrier system that could cross the intact tympanic membrane loaded with drugs or biochemical agents for the treatment of middle and inner ear conditions.

  20. Advances in ophthalmic drug delivery.

    PubMed

    Morrison, Peter W J; Khutoryanskiy, Vitaliy V

    2014-12-01

    Various strategies for ocular drug delivery are considered; from basic formulation techniques for improving availability of drugs; viscosity enhancers and mucoadhesives aid drug retention and penetration enhancers promote drug transport into the eye. The use of drug-loaded contact lenses and ocular inserts allows drugs to be better placed where they are needed for more direct delivery. Developments in ocular implants gives a means to overcome the physical barriers that traditionally prevented effective treatment. Implant technologies are under development allowing long-term drug delivery from a single procedure, these devices allow posterior chamber diseases to be effectively treated. Future developments could bring artificial corneas to eliminate the need for donor tissue and one-off implantable drug depots lasting the patient's lifetime.

  1. Transmucosal macromolecular drug delivery.

    PubMed

    Prego, C; García, M; Torres, D; Alonso, M J

    2005-01-01

    Mucosal surfaces are the most common and convenient routes for delivering drugs to the body. However, macromolecular drugs such as peptides and proteins are unable to overcome the mucosal barriers and/or are degraded before reaching the blood stream. Among the approaches explored so far in order to optimize the transport of these macromolecules across mucosal barriers, the use of nanoparticulate carriers represents a challenging but promising strategy. The present paper aims to compare the characteristics and potential of nanostructures based on the mucoadhesive polysaccharide chitosan (CS). These are CS nanoparticles, CS-coated oil nanodroplets (nanocapsules) and CS-coated lipid nanoparticles. The characteristics and behavior of CS nanoparticles and CS-coated lipid nanoparticles already reported [A. Vila, A. Sanchez, M. Tobio, P. Calvo, M.J. Alonso, Design of biodegradable particles for protein delivery, J. Control. Rel. 78 (2002) 15-24; R. Fernandez-Urrusuno, P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Enhancement of nasal absorption of insulin using chitosan nanoparticles, Pharm. Res. 16 (1999) 1576-1581; M. Garcia-Fuentes, D. Torres, M.J. Alonso, New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin (submitted for publication).] are compared with those of CS nanocapsules originally reported here. The three types of systems have a size in the nanometer range and a positive zeta potential that was attributed to the presence of CS on their surface. They showed an important capacity for the association of peptides such as insulin, salmon calcitonin and proteins, such as tetanus toxoid. Their mechanism of interaction with epithelia was investigated using the Caco-2 model cell line. The results showed that CS-coated systems caused a concentration-dependent reduction in the transepithelial resistance of the cell monolayer. Moreover, within the range of concentrations investigated, these systems were internalized in the

  2. Bioresponsive matrices in drug delivery

    PubMed Central

    2010-01-01

    For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli. PMID:21114841

  3. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    PubMed

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory. PMID:27385173

  4. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    PubMed

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory.

  5. Liposome-based drug delivery in breast cancer treatment

    PubMed Central

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies. PMID:12052251

  6. Nanoencapsulation for drug delivery

    PubMed Central

    Kumari, Avnesh; Singla, Rubbel; Guliani, Anika; Yadav, Sudesh Kumar

    2014-01-01

    Nanoencapsulation of drug/small molecules in nanocarriers (NCs) is a very promising approach for development of nanomedicine. Modern drug encapsulation methods allow efficient loading of drug molecules inside the NCs thereby reducing systemic toxicity associated with drugs. Targeting of NCs can enhance the accumulation of nanonencapsulated drug at the diseased site. This article focussed on the synthesis methods, drug loading, drug release mechanism and cellular response of nanoencapsulated drugs on liposomes, micelles, carbon nanotubes, dendrimers, and magnetic NCs. Also the uses of these various NCs have been highlighted in the field of nanotechnology. PMID:26417260

  7. Microchip technology in drug delivery.

    PubMed

    Santini, J T; Richards, A C; Scheidt, R A; Cima, M J; Langer, R S

    2000-09-01

    The realization that the therapeutic efficacy of certain drugs can be affected dramatically by the way in which they are delivered has created immense interest in controlled drug delivery systems. Much previous work in drug delivery focused on achieving sustained drug release rates over time, while a more recent trend is to make devices that allow the release rate to be varied over time. Advances in microfabrication technology have made an entirely new type of drug delivery device possible. Proof-of-principle experiments have shown that silicon microchips have the ability to store and release multiple chemicals on demand. Future integration of active control electronics, such as microprocessors, remote control units, or biosensors, could lead to the development of a 'pharmacy on a chip,' ie 'smart' microchip implants or tablets that release drugs into the body automatically when needed.

  8. Photoresponsive nanoparticles for drug delivery

    PubMed Central

    Rwei, Alina Y.; Wang, Weiping; Kohane, Daniel S.

    2015-01-01

    Summary Externally triggerable drug delivery systems provide a strategy for the delivery of therapeutic agents preferentially to a target site, presenting the ability to enhance therapeutic efficacy while reducing side effects. Light is a versatile and easily tuned external stimulus that can provide spatiotemporal control. Here we will review the use of nanoparticles in which light triggers drug release or induces particle binding to tissues (phototargeting). PMID:26644797

  9. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was

  10. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    PubMed

    Hong, Zai-Fa; Zhao, Wen-Xiu; Yin, Zhen-Yu; Xie, Cheng-Rong; Xu, Ya-Ping; Chi, Xiao-Qin; Zhang, Sheng; Wang, Xiao-Min

    2015-01-01

    Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU) was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI) < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.

  11. Insight to drug delivery aspects for colorectal cancer

    PubMed Central

    Gulbake, Arvind; Jain, Aviral; Jain, Ashish; Jain, Ankit; Jain, Sanjay K

    2016-01-01

    Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide in human beings. Surgery, chemotherapy, radiotherapy and targeted therapies are the conventional four approaches which are currently used for the treatment of CRC. The site specific delivery of chemotherapeutics to their site of action would increase effectiveness with reducing side effects. Targeted oral drug delivery systems based on polysaccharides are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific drug delivery to colon increases its concentration at the target site, and thus requires a lower dose and hence abridged side effects. Some novel therapies are also briefly discussed in article such as receptor (epidermal growth factor receptor, folate receptor, wheat germ agglutinin, VEGF receptor, hyaluronic acid receptor) based targeting therapy; colon targeted proapoptotic anticancer drug delivery system, gene therapy. Even though good treatment options are available for CRC, the ultimate therapeutic approach is to avert the incidence of CRC. It was also found that CRCs could be prevented by diet and nutrition such as calcium, vitamin D, curcumin, quercetin and fish oil supplements. Immunotherapy and vaccination are used nowadays which are showing better results against CRC. PMID:26811609

  12. Insight to drug delivery aspects for colorectal cancer.

    PubMed

    Gulbake, Arvind; Jain, Aviral; Jain, Ashish; Jain, Ankit; Jain, Sanjay K

    2016-01-14

    Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide in human beings. Surgery, chemotherapy, radiotherapy and targeted therapies are the conventional four approaches which are currently used for the treatment of CRC. The site specific delivery of chemotherapeutics to their site of action would increase effectiveness with reducing side effects. Targeted oral drug delivery systems based on polysaccharides are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific drug delivery to colon increases its concentration at the target site, and thus requires a lower dose and hence abridged side effects. Some novel therapies are also briefly discussed in article such as receptor (epidermal growth factor receptor, folate receptor, wheat germ agglutinin, VEGF receptor, hyaluronic acid receptor) based targeting therapy; colon targeted proapoptotic anticancer drug delivery system, gene therapy. Even though good treatment options are available for CRC, the ultimate therapeutic approach is to avert the incidence of CRC. It was also found that CRCs could be prevented by diet and nutrition such as calcium, vitamin D, curcumin, quercetin and fish oil supplements. Immunotherapy and vaccination are used nowadays which are showing better results against CRC. PMID:26811609

  13. Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs.

    PubMed

    Cordero, Mario David; Sánchez-Alcázar, José Antonio; Bautista-Ferrufino, María Rosa; Carmona-López, María Inés; Illanes, Matilde; Ríos, María José; Garrido-Maraver, Juan; Alcudia, Ana; Navas, Plácido; de Miguel, Manuel

    2010-11-01

    Oxidative therapy is a relatively new anticancer strategy based on the induction of high levels of oxidative stress, achieved by increasing intracellular reactive oxygen species (ROS) and/or by depleting the protective antioxidant machinery of tumor cells. We focused our investigations on the antitumoral potential of amitriptyline in three human tumor cell lines: H460 (lung cancer), HeLa (cervical cancer), and HepG2 (hepatoma); comparing the cytotoxic effect of amitriptyline with three commonly used chemotherapeutic drugs: camptothecin, doxorubicin, and methotrexate. We evaluated apoptosis, ROS production, mitochondrial mass and activity, and antioxidant defenses of tumor cells. Our results show that amitriptyline produces the highest cellular damage, inducing high levels of ROS followed by irreversible serious mitochondrial damage. Interestingly, an unexpected decrease in antioxidant machinery was observed only for amitriptyline. In conclusion, based on the capacity of generating ROS and inhibiting antioxidants in tumor cells, amitriptyline emerges as a promising new drug to be tested for anticancer therapy.

  14. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-01-01

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  15. Trojan-horse nanotube on-command intracellular drug delivery.

    PubMed

    Wu, Chia-Hsuan; Cao, Cong; Kim, Jin Ho; Hsu, Chih-Hsun; Wanebo, Harold J; Bowen, Wayne D; Xu, Jimmy; Marshall, John

    2012-11-14

    A major challenge to nanomaterial-based medicine is the ability to release drugs on-command. Here, we describe an innovative drug delivery system based on carbon nanotubes (CNTs), in which compounds can be released inside cells from within the nanotube "on-command" by inductive heating with an external alternating current or pulsed magnetic field. Without inductive heating the drug remains safely inside the CNTs, showing no toxicity in cell viability tests. Similar to the "Trojan-Horse" in function, we demonstrate the delivery of a combination of chemotherapeutic agents with low aqueous solubility, paclitaxel (Taxol), and C6-ceramide, to multidrug resistant pancreatic cancer cells. Nanotube encapsulation permitted the drugs to be used at a 100-fold lower concentration compared to exogenous treatment yet achieve a comparable ~70% cancer kill rate.

  16. The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation

    PubMed Central

    Hu, J; Kinn, J; Zirakzadeh, A A; Sherif, A; Norstedt, G; Wikström, A-C; Winqvist, O

    2013-01-01

    Recent studies indicate that chemotherapeutic agents may increase the anti-tumoral immune response. Based on the pivotal role of dendritic cells (DCs) in host tumour-specific immune responses, we investigated the effect of commonly used chemotherapeutic drugs dexamethasone, doxorubicin, cisplatin and irinotecan and glucocorticoids on monocyte-derived DCs (moDCs). Dexamethasone displayed the strongest inhibitory effect on DC differentiation. The effect of cisplatin and irinotecan was moderate, while only weak effects were noticed for doxorubicin. Surprisingly, when the functional consequence of chemotherapy-treated CD14+ monocytes and their capacity to activate CD4+ T responders cells were investigated, cisplatin-treated monocytes gave rise to increased T cell proliferation. However, dexamethasone, doxorubicin and irinotecan-pretreated monocytes did not stimulate any increased T cell proliferation. Further investigation of this observation revealed that cisplatin treatment during DC differentiation up-regulated significantly the interferon (IFN)-β transcript. By contrast, no effect was evident on the expression of interleukin (IL)-1β, tumour necrosis factor (TNF)-α, IL-6 or IFN-α transcripts. Blocking IFN-β attenuated the cisplatin-enhanced T cell proliferation significantly. In conclusion, cisplatin treatment enhanced the immune stimulatory ability of human monocytes, a mechanism mediated mainly by the increased production of IFN-β. PMID:23600838

  17. Role of Cytochrome P450 Monooxygenase in Carcinogen and Chemotherapeutic Drug Metabolism.

    PubMed

    Wahlang, B; Falkner, K Cameron; Cave, Matt C; Prough, Russell A

    2015-01-01

    The purpose of this chapter is to provide insight into which human cytochromes P450 (CYPs) may be involved in metabolism of chemical carcinogens and anticancer drugs. A historical overview of this field and the development of literature using relevant animal models and expressed human CYPs have provided information about which specific CYPs may be involved in carcinogen metabolism. Definition of the biochemical properties of CYP activity came from several groups who studied the reaction stoichiometry of butter yellow and benzo[α]pyrene, including their role in induction of these enzyme systems. This chapter will list as much as is known about the human CYPs involved in carcinogen and anticancer drug metabolism, as well as summarize studies with rodent CYPs. A review of three major classes of anticancer drugs and their metabolism in humans is covered for cyclophosphamide, procarbazine, and anthracycline antibiotics, cancer chemotherapeutic compounds extensively metabolized by CYPs. The emerging information about human CYP gene polymorphisms as well as other enzymes involved in foreign compound metabolism provides considerable information about how these genetic variants affect carcinogen and anticancer drug metabolism. With information available from individual's genomic sequences, consideration of populations who may be at risk due to environmental exposure to carcinogens or how to optimize their cancer therapy regimens to enhance efficacy of the anticancer drugs appears to be an important field of study to benefit individuals in the future. PMID:26233902

  18. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance.

    PubMed

    Shi, Zhi; Tiwari, Amit K; Shukla, Suneet; Robey, Robert W; Singh, Satyakam; Kim, In-Wha; Bates, Susan E; Peng, Xingxiang; Abraham, Ioana; Ambudkar, Suresh V; Talele, Tanaji T; Fu, Li-Wu; Chen, Zhe-Sheng

    2011-04-15

    Sildenafil is a potent and selective inhibitor of the type 5 cGMP (cyclic guanosine 3',5'-monophosphate)-specific phosphodiesterase that is used clinically to treat erectile dysfunction and pulmonary arterial hypertension. Here, we report that sildenafil has differential effects on cell surface ABC transporters such as ABCB1, ABCC1, and ABCG2 that modulate intracompartmental and intracellular concentrations of chemotherapeutic drugs. In ABCB1-overexpressing cells, nontoxic doses of sildenafil inhibited resistance and increased the effective intracellular concentration of ABCB1 substrate drugs such as paclitaxel. Similarly, in ABCG2-overexpressing cells, sildenafil inhibited resistance to ABCG2 substrate anticancer drugs, for example, increasing the effective intracellular concentration of mitoxantrone or the fluorescent compound BODIPY-prazosin. Sildenafil also moderately inhibited the transport of E(2)17βG and methotrexate by the ABCG2 transporter. Mechanistic investigations revealed that sildenafil stimulated ABCB1 ATPase activity and inhibited photolabeling of ABCB1 with [(125)I]-iodoarylazidoprazosin (IAAP), whereas it only slightly stimulated ABCG2 ATPase activity and inhibited photolabeling of ABCG2 with [(125)I]-IAAP. In contrast, sildenafil did not alter the sensitivity of parental, ABCB1-, or ABCG2-overexpressing cells to non-ABCB1 and non-ABCG2 substrate drugs, nor did sildenafil affect the function of another ABC drug transporter, ABCC1. Homology modeling predicted the binding conformation of sildenafil within the large cavity of the transmembrane region of ABCB1. Overall, we found that sildenafil inhibits the transporter function of ABCB1 and ABCG2, with a stronger effect on ABCB1. Our findings suggest a possible strategy to enhance the distribution and potentially the activity of anticancer drugs by jointly using a clinically approved drug with known side effects and drug-drug interactions. PMID:21402712

  19. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  20. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    PubMed

    Hong, Zai-Fa; Zhao, Wen-Xiu; Yin, Zhen-Yu; Xie, Cheng-Rong; Xu, Ya-Ping; Chi, Xiao-Qin; Zhang, Sheng; Wang, Xiao-Min

    2015-01-01

    Cholangiocarcinoma (CCA), a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU) was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI) < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA. PMID:25933112

  1. Development of lattice-inserted 5-Fluorouracil-hydroxyapatite nanoparticles as a chemotherapeutic delivery system.

    PubMed

    Tseng, Ching-Li; Chen, Jung-Chih; Wu, Yu-Chun; Fang, Hsu-Wei; Lin, Feng-Huei; Tang, Tzu-Piao

    2015-10-01

    Developing an effective vehicle for cancer treatment, hydroxyapatite nanoparticles were fabricated for drug delivery. When 5-Fluorouracil, a major chemoagent, is combined with hydroxyapatite nanocarriers by interclay insertion, the modified hydroxyapatite nanoparticles have superior lysosomal degradation profiles, which could be leveraged as controlled drug release. The decomposition of the hydroxyapatite nanocarriers facilitates the release of 5-Fluorouracil into the cytoplasm causing cell death. Hydroxyapatite nanoparticles with/without 5-Fluorouracil were synthesized and analyzed in this study. Their crystallization properties and chemical composition were examined by X-ray diffraction and Fourier transforms infrared spectroscopy. The 5-Fluorouracil release rate was determined by UV spectroscopy. The biocompatibility of hydroxyapatite-5-Fluorouracil extraction solution was assessed using 3T3 cells via a WST-8 assay. The effect of hydroxyapatite-5-Fluorouracil particles which directly work on the human lung adenocarcinoma (A549) cells was evaluated by a lactate dehydrogenase assay via contact cultivation. A 5-Fluorouracil-absorbed hydroxyapatite particles were also tested. Overall, hydroxyapatite-5-Fluorouracils were prepared using a co-precipitation method wherein 5-Fluorouracil was intercalated in the hydroxyapatite lattice as determined by X-ray diffraction. Energy dispersive scanning examination showed the 5-Fluorouracil content was higher in hydroxyapatite-5-Fluorouracil than in a prepared absorption formulation. With 5-Fluorouracil insertion in the lattice, the widths of the a and c axial constants of the hydroxyapatite crystal increased. The extraction solution of hydroxyapatite-5-Fluorouracil was nontoxic to 3T3 cells, in which 5-Fluorouracil was not released in a neutral phosphate buffer solution. In contrast, at a lower pH value (2.5), 5-Fluorouracil was released by the acidic decomposition of hydroxyapatite. Finally, the results of the lactate

  2. Microfabricated injectable drug delivery system

    DOEpatents

    Krulevitch, Peter A.; Wang, Amy W.

    2002-01-01

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  3. Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy.

    PubMed

    Batista de Carvalho, A L M; Pilling, M; Gardner, P; Doherty, J; Cinque, G; Wehbe, K; Kelley, C; Batista de Carvalho, L A E; Marques, M P M

    2016-06-23

    Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents. PMID:27063935

  4. Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments.

    PubMed

    Lin, Angela Yu-Chen; Lin, Yen-Ching; Lee, Wan-Ning

    2014-04-01

    This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L(-1) level in the hospital effluents and the ng L(-1) level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment. PMID:24508644

  5. The Targeted-liposome Delivery System of Antitumor Drugs.

    PubMed

    Wu, Wei-dang; Yi, Xiu-lin; Jiang, Li-xin; Li, Ya-zhuo; Gao, Jing; Zeng, Yong; Yi, Rong-da; Dai, Li-peng; Li, Wei; Ci, Xiao-yan; Si, Duan-yun; Liu, Chang-xiao

    2015-01-01

    The liposome delivery system has been intensively explored as novel drug delivery system (DDS) for antitumor drugs, due to its safety, selective cytotoxicity, long circulation and slow elimination in blood, which is favorable for cancer therapy. The liposome-based chemotherapeutics are used to treat a variety of cancers to enhance the therapeutic index of antitumor drugs. Here, the author reviewed the important targets for cancer therapy and the pharmacokinetic behavior of liposomal drugs in vivo, as well as the application of the targeting liposomal system in cancer therapy. Considering further application for clinical use, the great challenges of the liposome-based delivery system were also proposed as follows: 1) prepare stealth liposome with steric stabilization and further enhance the therapeutic effects and safety; 2) explore more safe clinical targets and complementary or different types of targeting liposome; 3) thirdly, more investment is needed on the research of pharmacokinetics of the elements such as the ligands (antibody), PEG and lipids of liposome delivery system as well as safety evaluation. Considering the complex process of the liposomal encapsulation drugs in vivo, the author inferred that there are maybe different forms of the encapsulation drug to be internalized by the tumor tissues at the same time and space, although there are little reports on it. PMID:26652257

  6. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  7. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  8. Perispinal Delivery of CNS Drugs.

    PubMed

    Tobinick, Edward Lewis

    2016-06-01

    Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.

  9. Opportunities in respiratory drug delivery.

    PubMed

    Pritchard, John N; Giles, Rachael D

    2014-12-01

    A wide range of asthma and chronic obstructive pulmonary disease products are soon to be released onto the inhaled therapies market and differentiation between these devices will help them to gain market share over their competitors. Current legislation is directing healthcare towards being more efficient and cost-effective in order to continually provide quality care despite the challenges of aging populations and fewer resources. Devices and drugs that can be differentiated by producing improved patient outcomes would, therefore, be likely to win market share. In this perspective article, the current and potential opportunities for the successful delivery and differentiation of new inhaled drug products are discussed.

  10. Superhydrophobic materials for drug delivery

    NASA Astrophysics Data System (ADS)

    Yohe, Stefan Thomas

    Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension

  11. Therapeutic applications of hydrogels in oral drug delivery

    PubMed Central

    Sharpe, Lindsey A; Daily, Adam M; Horava, Sarena D; Peppas, Nicholas A

    2015-01-01

    Introduction Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest. PMID:24848309

  12. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    PubMed

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process.

  13. Microspheres and Nanotechnology for Drug Delivery.

    PubMed

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. PMID:26501994

  14. Microspheres and Nanotechnology for Drug Delivery.

    PubMed

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye.

  15. Cellular robustness conferred by genetic crosstalk underlies resistance against chemotherapeutic drug doxorubicin in fission yeast.

    PubMed

    Tay, Zoey; Eng, Ru Jun; Sajiki, Kenichi; Lim, Kim Kiat; Tang, Ming Yi; Yanagida, Mitsuhiro; Chen, Ee Sin

    2013-01-01

    Doxorubicin is an anthracycline antibiotic that is among one of the most commonly used chemotherapeutic agents in the clinical setting. The usage of doxorubicin is faced with many problems including severe side effects and chemoresistance. To overcome these challenges, it is important to gain an understanding of the underlying molecular mechanisms with regards to the mode of action of doxorubicin. To facilitate this aim, we identified the genes that are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. We further demonstrated interplay between factors controlling various aspects of chromosome metabolism, mitochondrial respiration and membrane transport. In the nucleus we observed that the subunits of the Ino80, RSC, and SAGA complexes function in the similar epistatic group that shares significant overlap with the homologous recombination genes. However, these factors generally act in synergistic manner with the chromosome segregation regulator DASH complex proteins, possibly forming two major arms for regulating doxorubicin resistance in the nucleus. Simultaneous disruption of genes function in membrane efflux transport or the mitochondrial respiratory chain integrity in the mutants defective in either Ino80 or HR function resulted in cumulative upregulation of drug-specific growth defects, suggesting a rewiring of pathways that synergize only when the cells is exposed to the cytotoxic stress. Taken together, our work not only identified factors that are required for survival of the cells in the presence of doxorubicin but has further demonstrated that an extensive molecular crosstalk exists between these factors to robustly confer doxorubicin resistance.

  16. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules.

    PubMed

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R; Ghazi, Phaedra C; Tonga, Gulen Yesilbag; Farkas, Michelle E; Rotello, Vincent M

    2016-09-16

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death. PMID:27505356

  17. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules

    NASA Astrophysics Data System (ADS)

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R.; Ghazi, Phaedra C.; Yesilbag Tonga, Gulen; Farkas, Michelle E.; Rotello, Vincent M.

    2016-09-01

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.

  18. Interaction of standardized mistletoe (Viscum album) extracts with chemotherapeutic drugs regarding cytostatic and cytotoxic effects in vitro

    PubMed Central

    2014-01-01

    Background Given the importance of complementary and alternative medicine (CAM) to cancer patients, there is an increasing need to learn more about possible interactions between CAM and anticancer drugs. Mistletoe (Viscum album L.) belongs to the medicinal herbs that are used as supportive care during chemotherapy. In the in vitro study presented here the effect of standardized mistletoe preparations on the cytostatic and cytotoxic activity of several common conventional chemotherapeutic drugs was investigated using different cancer cell lines. Methods Human breast carcinoma cell lines HCC1937 and HCC1143 were treated with doxorubicin hydrochloride, pancreas adenocarcinoma cell line PA-TU-8902 with gemcitabine hydrochloride, prostate carcinoma cell line DU145 with docetaxel and mitoxantrone hydrochloride and lung carcinoma cell line NCI-H460 was treated with docetaxel and cisplatin. Each dose of the respective chemotherapeutic drug was combined with Viscum album extract (VAE) in clinically relevant concentrations and proliferation and apoptosis were measured. Results VAE did not inhibit chemotherapy induced cytostasis and cytotoxicity in any of our experimental settings. At higher concentrations VAE showed an additive inhibitory effect. Conclusions Our in vitro results suggest that no risk of safety by herb drug interactions has to be expected from the exposition of cancer cells to chemotherapeutic drugs and VAE simultaneously. PMID:24397864

  19. Ocular drug delivery systems: An overview

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    2014-01-01

    The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments

  20. Cubosomes: remarkable drug delivery potential.

    PubMed

    Karami, Zahra; Hamidi, Mehrdad

    2016-05-01

    Cubosomes are nanostructured liquid crystalline particles, made of certain amphiphilic lipids in definite proportions, known as biocompatible carriers in drug delivery. Cubosomes comprise curved bicontinuous lipid bilayers that are organized in three dimensions as honeycombed structures and divided into two internal aqueous channels that can be exploited by various bioactive ingredients, such as chemical drugs, peptides and proteins. Owing to unique properties such as thermodynamic stability, bioadhesion, the ability of encapsulating hydrophilic, hydrophobic and amphiphilic substances, and the potential for controlled release through functionalization, cubosomes are regarded as promising vehicles for different routes of administration. Based on the most recent reports, this review introduces cubosomes focusing on their structure, preparation methods, mechanism of release and potential routes of administration. PMID:26780385

  1. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    PubMed

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  2. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs

    PubMed Central

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-01-01

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors. PMID:25837486

  3. Single-wall carbon nanotubes based anticancer drug delivery system

    NASA Astrophysics Data System (ADS)

    Tripisciano, C.; Kraemer, K.; Taylor, A.; Borowiak-Palen, E.

    2009-08-01

    Conventional administration of chemotherapeutic agents is compromised by their lack of selectivity which is the cause of a lethal effect accomplishment on healthy tissues. Since therapeutic and diagnostic agents could functionalize the structure of carbon nanotubes (CNTs), the development of CNTs as drug containers would pave the way to their employment as nanovectors into the cells. Here a study on cisplatin (Cis-Diamminedichloroplatinum (CDDP) - a platinum-based chemotherapy drug) embedding to single-wall CNTs (SWCNTs) is shown.Being sure that the anticancer drug discharge occurred, in vitro analysis have been performed. The inhibition of prostate cancer cells (PC3 and DU145) viability from tubes encapsulating cisplatin proved the efficiency of the produced delivery system.

  4. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems

    PubMed Central

    Qiu, Jichuan; Zhang, Ruibin; Li, Jianhua; Sang, Yuanhua; Tang, Wei; Rivera Gil, Pilar; Liu, Hong

    2015-01-01

    Graphene quantum dots (GQDs) were rationally fabricated as a traceable drug delivery system for the targeted, pH-sensitive delivery of a chemotherapeutic drug into cancer cells. The GQDs served as fluorescent carriers for a well-known anticancer drug, doxorubicin (Dox). The whole system has the capacity for simultaneous tracking of the carrier and of drug release. Dox release is triggered upon acidification of the intracellular vesicles, where the carriers are located after their uptake by cancer cells. Further functionalization of the loaded carriers with targeting moieties such as arginine-glycine-aspartic acid (RGD) peptides enhanced their uptake by cancer cells. DU-145 and PC-3 human prostate cancer cell lines were used to evaluate the anticancer ability of Dox-loaded RGD-modified GQDs (Dox-RGD-GQDs). The results demonstrated the feasibility of using GQDs as traceable drug delivery systems with the ability for the pH-triggered delivery of drugs into target cells. PMID:26604747

  5. Heart-targeted nanoscale drug delivery systems.

    PubMed

    Liu, Meifang; Li, Minghui; Wang, Guangtian; Liu, Xiaoying; Liu, Daming; Peng, Haisheng; Wang, Qun

    2014-09-01

    The efficacious delivery of drugs to the heart is an important treatment strategy for various heart diseases. Nanocarriers have shown increasing promise in targeted drug delivery systems. The success of nanocarriers for delivering drugs to therapeutic sites in the heart mainly depends on specific target sites, appropriate drug delivery carriers and effective targeting ligands. Successful targeted drug delivery suggests the specific deposition of a drug in the heart with minimal effects on other organs after administration. This review discusses the pathological manifestations, pathogenesis, therapeutic limitations and new therapeutic advances in various heart diseases. In particular, we summarize the recent advances in heart-targeted nanoscale drug delivery systems, including dendrimers, liposomes, polymer-drug conjugates, microparticles, nanostents, nanoparticles, micelles and microbubbles. Current clinical trials, the commercial market and future perspective are further discussed in the conclusions.

  6. Ungual and transungual drug delivery.

    PubMed

    Shivakumar, H N; Juluri, Abhishek; Desai, B G; Murthy, S Narasimha

    2012-08-01

    Topical therapy is desirable in treatment of nail diseases like onychomycosis (fungal infection of nail) and psoriasis. The topical treatment avoids the adverse effects associated with systemic therapy, thereby enhancing the patient compliance and reducing the treatment cost. However the effectiveness of the topical therapies has been limited due to the poor permeability of the nail plate to topically applied therapeutic agents. Research over the past one decade has been focused on improving the transungual permeability by means of chemical treatment, penetration enhancers, mechanical and physical methods. The present review is an attempt to discuss the different physical and chemical methods employed to increase the permeability of the nail plate. Minimally invasive electrically mediated techniques such as iontophoresis have gained success in facilitating the transungual delivery of actives. In addition drug transport across the nail plate has been improved by filing the dorsal surface of the nail plate prior to application of topical formulation. But attempts to improve the trans-nail permeation using transdermal chemical enhancers have failed so far. Attempts are on to search suitable physical enhancement techniques and chemical transungual enhancers in view to maximize the drug delivery across the nail plate. PMID:22149347

  7. Ungual and transungual drug delivery.

    PubMed

    Shivakumar, H N; Juluri, Abhishek; Desai, B G; Murthy, S Narasimha

    2012-08-01

    Topical therapy is desirable in treatment of nail diseases like onychomycosis (fungal infection of nail) and psoriasis. The topical treatment avoids the adverse effects associated with systemic therapy, thereby enhancing the patient compliance and reducing the treatment cost. However the effectiveness of the topical therapies has been limited due to the poor permeability of the nail plate to topically applied therapeutic agents. Research over the past one decade has been focused on improving the transungual permeability by means of chemical treatment, penetration enhancers, mechanical and physical methods. The present review is an attempt to discuss the different physical and chemical methods employed to increase the permeability of the nail plate. Minimally invasive electrically mediated techniques such as iontophoresis have gained success in facilitating the transungual delivery of actives. In addition drug transport across the nail plate has been improved by filing the dorsal surface of the nail plate prior to application of topical formulation. But attempts to improve the trans-nail permeation using transdermal chemical enhancers have failed so far. Attempts are on to search suitable physical enhancement techniques and chemical transungual enhancers in view to maximize the drug delivery across the nail plate.

  8. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  9. Physically facilitating drug-delivery systems

    PubMed Central

    Rodriguez-Devora, Jorge I; Ambure, Sunny; Shi, Zhi-Dong; Yuan, Yuyu; Sun, Wei; Xu, Tao

    2012-01-01

    Facilitated/modulated drug-delivery systems have emerged as a possible solution for delivery of drugs of interest to pre-allocated sites at predetermined doses for predefined periods of time. Over the past decade, the use of different physical methods and mechanisms to mediate drug release and delivery has grown significantly. This emerging area of research has important implications for development of new therapeutic drugs for efficient treatments. This review aims to introduce and describe different modalities of physically facilitating drug-delivery systems that are currently in use for cancer and other diseases therapy. In particular, delivery methods based on ultrasound, electrical, magnetic and photo modulations are highlighted. Current uses and areas of improvement for these different physically facilitating drug-delivery systems are discussed. Furthermore, the main advantages and drawbacks of these technologies reviewed are compared. The review ends with a speculative viewpoint of how research is expected to evolve in the upcoming years. PMID:22485192

  10. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  11. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  12. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  13. Polymers for Colon Targeted Drug Delivery

    PubMed Central

    Rajpurohit, H.; Sharma, P.; Sharma, S.; Bhandari, A.

    2010-01-01

    The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems. PMID:21969739

  14. Drug delivery systems: An updated review

    PubMed Central

    Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K

    2012-01-01

    Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. For the treatment of human diseases, nasal and pulmonary routes of drug delivery are gaining increasing importance. These routes provide promising alternatives to parenteral drug delivery particularly for peptide and protein therapeutics. For this purpose, several drug delivery systems have been formulated and are being investigated for nasal and pulmonary delivery. These include liposomes, proliposomes, microspheres, gels, prodrugs, cyclodextrins, among others. Nanoparticles composed of biodegradable polymers show assurance in fulfilling the stringent requirements placed on these delivery systems, such as ability to be transferred into an aerosol, stability against forces generated during aerosolization, biocompatibility, targeting of specific sites or cell populations in the lung, release of the drug in a predetermined manner, and degradation within an acceptable period of time. PMID:23071954

  15. Collagen macromolecular drug delivery systems

    SciTech Connect

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t{sup {1/2}} and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and {sup 14}C-inulin release rates were evaluated subcutaneously in rats.

  16. Nanodisks: hydrophobic drug delivery vehicles.

    PubMed

    Ryan, Robert O

    2008-03-01

    Members of the class of exchangeable apolipoproteins possess the unique capacity to transform phospholipid vesicle substrates into nanoscale disk-shaped bilayers. This reaction can proceed in the presence of exogenous hydrophobic biomolecules, resulting in the formation of novel transport vehicles termed nanodisks (NDs). The objective of this study is to describe the structural organization of NDs and evaluate the utility of these complexes as hydrophobic biomolecule transport vehicles. The topics presented focus on two distinct water insoluble drugs, amphotericin B (AMB) and all trans retinoic acid (ATRA). In vitro and in vivo studies reveal that AMB-ND display potent anti-fungal and anti-protozoal activity, while ATRA-ND show promise in the treatment of cancer. The versatility conferred by the presence of a polypeptide component provides opportunities for targeted delivery of ND to cells.

  17. Implantable Devices for Sustained, Intravesical Drug Delivery

    PubMed Central

    2016-01-01

    In clinical settings, intravesical instillation of a drug bolus is often performed for the treatment of bladder diseases. However, it requires repeated instillations to extend drug efficacy, which may result in poor patient compliance. To alleviate this challenge, implantable devices have been developed for the purpose of sustained, intravesical drug delivery. In this review, we briefly summarize the current trend in the development of intravesical drug-delivery devices. We also introduce the most recently developed devices with strong potential for intravesical drug-delivery applications. PMID:27377941

  18. Development of an Acoustic Droplet Vaporization, Ultrasound Drug Delivery Emulsion

    NASA Astrophysics Data System (ADS)

    Fabiilli, Mario L.; Sebastian, Ian E.; Fowlkes, J. Brian

    2010-03-01

    Many therapeutic applications of ultrasound (US) include the use of pefluorocarbon (PFC) microbubbles or emulsions. These colloidal systems can be activated in the presence of US, which in the case of emulsions, results in the production of bubbles—a process known as acoustic droplet vaporization (ADV). ADV can be used as a drug delivery mechanism, thereby yielding the localized release of toxic agents such a chemotherapeutics. In this work, emulsions that contain PFC and chlorambucil, a chemotherapy drug, are formulated using albumin or lipid shells. For albumin droplets, the oil phase—which contained CHL—clearly enveloped the PFC phase. The albumin emulsion also displayed better retention of CHL in the absence of US, which was evaluated by incubating Chinese hamster ovary cells with the various formulations. Thus, the developed emulsions are suitable for further testing in ADV-induced release of CHL.

  19. Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids.

    PubMed

    Kulkarni, Prajakta; Haldar, Manas K; Katti, Preeya; Dawes, Courtney; You, Seungyong; Choi, Yongki; Mallik, Sanku

    2016-08-17

    Solid tumors are often poorly irrigated due to structurally compromised microcirculation. Uncontrolled multiplication of cancer cells, insufficient blood flow, and the lack of enough oxygen and nutrients lead to the development of hypoxic regions in the tumor tissues. As the partial pressure of oxygen drops below the necessary level (10 psi), the cancer cells modulate their genetic makeup to survive. Hypoxia triggers tumor progression by enhancing angiogenesis, cancer stem cell production, remodeling of the extracellular matrix, and epigenetic changes in the cancer cells. However, the hypoxic regions are usually located deep in the tumors and are usually inaccessible to the intravenously injected drug carrier or the drug. Considering the designs of the reported nanoparticles, it is likely that the drug is delivered to the peripheral tumor tissues, close to the blood vessels. In this study, we prepared lipid nanoparticles (LNs) comprising the synthesized hypoxia-responsive lipid and a peptide-lipid conjugate. We observed that the resultant LNs penetrated to the hypoxic regions of the tumors. Under low oxygen partial pressure, the hypoxia-responsive lipid undergoes reduction, destabilizing the lipid membrane, and releasing encapsulated drugs from the nanoparticles. We demonstrated the results employing spheroidal cultures of the pancreatic cancer cells BxPC-3. We observed that the peptide-decorated, drug encapsulated LNs reduced the viability of pancreatic cancer cells of the spheroids to 35% under hypoxic conditions. PMID:27391789

  20. Applications of Important Polysaccharides in Drug Delivery.

    PubMed

    Huang, Gangliang; Mei, Xinya; Xiao, Feng; Chen, Xin; Tang, Qilin; Peng, Daquan

    2015-01-01

    Polysaccharide is a kind of biological material, which has good biocompatibility, non-toxicity, and non-immunogenicity. So, the polysaccharide has widely been applied in drug delivery system. The applications of chitosan, hyaluronic acid and dextran in drug delivery have been summarized herein. PMID:25578889

  1. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery.

    PubMed

    Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok Kumar; Kesharwani, Prashant; Gupta, Lokesh; Iyer, Arun K; Gupta, Umesh

    2016-01-01

    Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents. PMID:27651101

  2. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  3. Recent advances in ocular drug delivery.

    PubMed

    Achouri, Djamila; Alhanout, Kamel; Piccerelle, Philippe; Andrieu, Véronique

    2013-11-01

    Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. Recent research has focused on the characteristic advantages and limitations of the various drug delivery systems, and further research will be required before the ideal system can be developed. Administration of drugs to the ocular region with conventional delivery systems leads to short contact time of the formulations on the epithelium and fast elimination of drugs. This transient residence time involves poor bioavailability of drugs which can be explained by the tear production, non-productive absorption and impermeability of corneal epithelium. Anatomy of the eye is shortly presented and is connected with ophthalmic delivery and bioavailability of drugs. In the present update on ocular dosage forms, chemical delivery systems such as prodrugs, the use of cyclodextrins to increase solubility of various drugs, the concept of penetration enhancers and other ocular drug delivery systems such as polymeric gels, bioadhesive hydrogels, in-situ forming gels with temperature-, pH-, or osmotically induced gelation, combination of polymers and colloidal systems such as liposomes, niosomes, cubosomes, microemulsions, nanoemulsions and nanoparticles are discussed. Novel ophthalmic delivery systems propose the use of many excipients to increase the viscosity or the bioadhesion of the product. New formulations like gels or colloidal systems have been tested with numerous active substances by in vitro and in vivo studies. Sustained drug release and increase in drug bioavailability have been obtained, offering the promise of innovation in drug delivery systems for ocular administration. Combining different properties of pharmaceutical formulations appears to offer a genuine synergy in bioavailability and sustained release. Promising results are obtained with colloidal systems which present very comfortable

  4. In vitro evaluation of antitumoral efficacy of catalase in combination with traditional chemotherapeutic drugs against human lung adenocarcinoma cells.

    PubMed

    de Oliveira, Valeska Aguiar; da Motta, Leonardo Lisbôa; De Bastiani, Marco Antônio; Lopes, Fernanda Martins; Müller, Carolina Beatriz; Gabiatti, Bernardo Papini; França, Fernanda Stapenhorst; Castro, Mauro Antônio Alves; Klamt, Fabio

    2016-08-01

    Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn(®) software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.

  5. Colloidal microgels in drug delivery applications

    PubMed Central

    Vinogradov, Serguei V.

    2005-01-01

    Colloidal microgels have recently received attention as environmentally responsive systems and now are increasingly used in applications as carriers for therapeutic drugs and diagnostic agents. Synthetic microgels consist of a crosslinked polymer network that provides a depot for loaded drugs, protection against environmental hazards and template for post-synthetic modification or vectorization of the drug carriers. The aim of this manuscript is to review recent attempts to develop new microgel formulations for oral drug delivery, to design metal-containing microgels for diagnostic and therapeutic applications, and to advance approaches including the systemic administration of microgels. Novel nanogel drug delivery systems developed in the authors’ laboratory are discussed in details including aspects of their synthesis, vectorization and recent applications for encapsulation of low molecular weight drugs or formulation of biological macromolecules. The findings reviewed here are encouraging for further development of the nanogels as intelligent drug carriers with such features as targeted delivery and triggered drug release. PMID:17168773

  6. Magnetic nanoparticles for gene and drug delivery

    PubMed Central

    McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

    2008-01-01

    Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. PMID:18686777

  7. Nanomedicine and drug delivery: a mini review

    NASA Astrophysics Data System (ADS)

    Mirza, Agha Zeeshan; Siddiqui, Farhan Ahmed

    2014-02-01

    The field of nanotechnology now has pivotal roles in electronics, biology and medicine. Its application can be appraised, as it involves the materials to be designed at atomic and molecular level. Due to the advantage of their size, nanospheres have been shown to be robust drug delivery systems and may be useful for encapsulating drugs and enabling more precise targeting with a controlled release. In this review specifically, we highlight the recent advances of this technology for medicine and drug delivery systems.

  8. Biologically responsive polymeric nanoparticles for drug delivery.

    PubMed

    Colson, Yolonda L; Grinstaff, Mark W

    2012-07-24

    Responsive nanoparticles that release their drug cargo in accordance with a change in pH or oxidative stress are of significant clinical interest as this approach offers the opportunity to link drug delivery to a specific location or disease state. This research news article reviews the current state of this field by examining a series of published articles that highlight the novelty and benefits of using responsive polymeric particles to achieve functionally-targeted drug delivery. PMID:22988558

  9. Anti-platelet agents augment cisplatin nanoparticle cytotoxicity by enhancing tumor vasculature permeability and drug delivery

    NASA Astrophysics Data System (ADS)

    Pandey, Ambarish; Sarangi, Sasmit; Chien, Kelly; Sengupta, Poulomi; Papa, Anne-Laure; Basu, Sudipta; Sengupta, Shiladitya

    2014-11-01

    Tumor vasculature is critically dependent on platelet mediated hemostasis and disruption of the same can augment delivery of nano-formulation based chemotherapeutic agents which depend on enhanced permeability and retention for tumor penetration. Here, we evaluated the role of Clopidogrel, a well-known inhibitor of platelet aggregation, in potentiating the tumor cytotoxicity of cisplatin nano-formulation in a murine breast cancer model. In vivo studies in murine syngeneic 4T1 breast cancer model showed a significant greater penetration of macromolecular fluorescent nanoparticles after clopidogrel pretreatment. Compared to self-assembling cisplatin nanoparticles (SACNs), combination therapy with clopidogrel and SACN was associated with a 4 fold greater delivery of cisplatin to tumor tissue and a greater reduction in tumor growth as well as higher survival rate. Clopidogrel enhances therapeutic efficiency of novel cisplatin based nano-formulations agents by increasing tumor drug delivery and can be used as a potential targeting agent for novel nano-formulation based chemotherapeutics.

  10. Recent Advances in Delivery of Drug-Nucleic Acid Combinations for Cancer Treatment

    PubMed Central

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-01-01

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. PMID:23624358

  11. Smart Polymers in Nasal Drug Delivery

    PubMed Central

    Chonkar, Ankita; Nayak, Usha; Udupa, N.

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones. PMID:26664051

  12. Nanotechnology-based drug delivery systems

    PubMed Central

    Suri, Sarabjeet Singh; Fenniri, Hicham; Singh, Baljit

    2007-01-01

    Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA) and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF) receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression. PMID:18053152

  13. Magnetizable implants for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Forbes, Zachary Graham

    The capability to deliver high effective dosages to specific sites in the human body has become the holy grail of drug delivery research. Drugs with proven effectiveness under in vitro investigation often reach a major roadblock under in vivo testing due to a lack of an effective delivery strategy. In addition, many clinical scenarios require delivery of agents that are therapeutic at the desired delivery point, but otherwise systemically toxic. This project proposes a method for targeted drug delivery by applying high magnetic field gradients within the body to an injected superparamagnetic colloidal fluid carrying a drug, with the aid of modest uniform magnetic field. The design involves patterning of endovascular implants, such as coronary stents, with soft magnetic coatings capable of applying high local magnetic field gradients within the body. Examination of the feasibility of the design has been focused around the treatment of coronary restenosis following angioplasty. Drug-eluting stents, which have debuted in hospitals over the past two years, have thus far reduced restenosis rates to below 10%. Our local drug delivery system is a viable alternative or enhancement to drug-eluting stents, offering increased clinician control of dose size, the ability to treat a site repeatedly, and a wide array of applications for treatment of other pathologies. The theoretical models, parallel plate and pipe flow analysis, and cell culture models presented give insight into the use of micron and sub-micron scale magnetic particles for site-specific delivery of pharmaceuticals and magnetically labeled cells.

  14. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study. PMID:27301169

  15. BMX Negatively Regulates BAK Function, Thereby Increasing Apoptotic Resistance to Chemotherapeutic Drugs.

    PubMed

    Fox, Joanna L; Storey, Alan

    2015-04-01

    The ability of chemotherapeutic agents to induce apoptosis, predominantly via the mitochondrial (intrinsic) apoptotic pathway, is thought to be a major determinant of the sensitivity of a given cancer to treatment. Intrinsic apoptosis, regulated by the BCL2 family, integrates diverse apoptotic signals to determine cell death commitment and then activates the nodal effector protein BAK to initiate the apoptotic cascade. In this study, we identified the tyrosine kinase BMX as a direct negative regulator of BAK function. BMX associates with BAK in viable cells and is the first kinase to phosphorylate the key tyrosine residue needed to maintain BAK in an inactive conformation. Importantly, elevated BMX expression prevents BAK activation in tumor cells treated with chemotherapeutic agents and is associated with increased resistance to apoptosis and decreased patient survival. Accordingly, BMX expression was elevated in prostate, breast, and colon cancers compared with normal tissue, including in aggressive triple-negative breast cancers where BMX overexpression may be a novel biomarker. Furthermore, BMX silencing potentiated BAK activation, rendering tumor cells hypersensitive to otherwise sublethal doses of clinically relevant chemotherapeutic agents. Our finding that BMX directly inhibits a core component of the intrinsic apoptosis machinery opens opportunities to improve the efficacy of existing chemotherapy by potentiating BAK-driven cell death in cancer cells. PMID:25649765

  16. Radiation sterilization of new drug delivery systems

    PubMed Central

    Abuhanoğlu, Gürhan

    2014-01-01

    Radiation sterilization has now become a commonly used method for sterilization of several active ingredients in drugs or drug delivery systems containing these substances. In this context, many applications have been performed on the human products that are required to be sterile, as well as on pharmaceutical products prepared to be developed. The new drug delivery systems designed to deliver the medication to the target tissue or organ, such as microspheres, nanospheres, microemulsion, and liposomal systems, have been sterilized by gamma (γ) and beta (β) rays, and more recently, by e-beam sterilization. In this review, the sterilization of new drug delivery systems was discussed other than conventional drug delivery systems by γ irradiation. PMID:24936306

  17. Potential of magnetic nanoparticles for targeted drug delivery

    PubMed Central

    Yang, Hung-Wei; Hua, Mu-Yi; Liu, Hao-Li; Huang, Chiung-Yin; Wei, Kuo-Chen

    2012-01-01

    Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications. PMID:24198498

  18. Lipid nanoparticles for dermal drug delivery.

    PubMed

    Kakadia, Pratibha G; Conway, Barbara R

    2015-01-01

    Lipid based drug delivery systems have been widely studied and reported over the past decade and offer a useful alternative to other colloidal drug delivery systems. Skin is a popular route of drug delivery for locally and systemically acting drugs and nanoparticles are reported as a potential formulation strategy for dermal delivery. Although the skin acts as a natural physical barrier against penetration of foreign materials, including particulates, opportunities exist for the delivery of therapeutic nanoparticles, especially in diseased and damaged skin and via appendageal routes such as the openings of hair follicles. The extent and ability of nanoparticles to penetrate into the underlying viable tissue is still the subject of debate although recent studies have identified the follicular route as the most likely route of entry; this influences the potential applications of these dosage forms as a drug delivery strategy. This paper reviews present state of art of lipid-based nanocarriers focussing on solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions, their production methods, potential advantages and applications in dermal drug delivery. PMID:25925115

  19. Nanoparticulate devices for brain drug delivery.

    PubMed

    Celia, Christian; Cosco, Donato; Paolino, Donatella; Fresta, Massimo

    2011-09-01

    The blood-brain barrier (BBB) limits the transport of therapeutic molecules from the blood compartment into the brain, thus greatly reducing the species of therapeutic compounds that can be efficiently accumulated in the central nervous system (CNS). Various strategies have been proposed for improving the delivery of drugs to this tissue, and numerous invasive and noninvasive methods have been proposed by different scientists in an attempt to circumvent the BBB and to increase the delivery of drug compounds into the brain. An interesting alternative, in the solution of this problem and also that of reaching a suitable target in the CNS, has recently been provided through the use of nanoparticulate colloidal devices as a noninvasive technique for brain drug delivery. These systems offer diverse advantages over invasive strategies, because (1) they are designed using biocompatible and biodegradable materials; (2) they avoid the disruption and/or modification of the BBB; and (3) they modulate the biopharmaceutical properties of the entrapped drugs. Moreover, the possibility of targeting specific brain tissue, thanks to ligands linked to the surface of the nanoparticulate colloidal devices, confers the necessary characteristics for the treatment of CNS pathologies to these drug carriers. The aim of this review is to focus on describing the main strategies in use for designing nanoparticulate colloidal devices for CNS delivery, their potentiality as noninvasive strategies in the delivery of drugs to the cerebral tissues, and their biological and clinical applications in cerebral drug delivery.

  20. Recent advances in ophthalmic drug delivery

    PubMed Central

    Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent HL

    2011-01-01

    Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert™ (~6 months), Retisert™ (~3 years) and Iluvien™ (~3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724

  1. Synthetic micro/nanomotors in drug delivery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Wang, Joseph

    2014-08-01

    Nanomachines offer considerable promise for the treatment of diseases. The ability of man-made nanomotors to rapidly deliver therapeutic payloads to their target destination represents a novel nanomedicine approach. Synthetic nanomotors, based on a multitude of propulsion mechanisms, have been developed over the past decade toward diverse biomedical applications. In this review article, we journey from the use of chemically powered drug-delivery nanovehicles to externally actuated (fuel-free) drug-delivery nanomachine platforms, and conclude with future prospects and challenges for such practical propelling drug-delivery systems. As future micro/nanomachines become more powerful and functional, these tiny devices are expected to perform more demanding biomedical tasks and benefit different drug delivery applications.

  2. Adaptations and innovations in drug delivery.

    PubMed

    Cavalla, D

    2001-10-01

    The most recent meeting organized by the Society for Medicines Research, entitled Improving Medicines Through Drug Delivery, was held at the National Heart and Lung Institute in London on July 5, 2001. Drug delivery is increasingly becoming a central technology in the research and development of better medicines. This is so for at least three reasons. First, new drugs are being derived from complex biological molecules that are not readily amenable to oral delivery. Second, improved medicine is recognized as requiring better dosing regimens for the patient. Both compliance and preference are improved by reduced dosing frequency, and it is rare for new products to require three-times-daily administration. Lastly, drug delivery technology has come a long way in the past 20 years, beyond controlled-release pharmaceuticals to polymer conjugates and dry powder-inhaled proteins. PMID:12806435

  3. Chitosan Microspheres in Novel Drug Delivery Systems

    PubMed Central

    Mitra, Analava; Dey, Baishakhi

    2011-01-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems. PMID:22707817

  4. Targeted Delivery of Chemotherapeutic Agents Using Improved Radiosensitive Liquid Core Microcapsules and Assessment of Their Antitumor Effect

    SciTech Connect

    Harada, Satoshi Ehara, Shigeru; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Sato, Takahiro; Oikawa, Shyoichi; Kamiya, Tomihiro; Arakawa, Kazuo; Yokota, Wataru; Sera, Koichiro; Ito, Jyun

    2009-10-01

    Purpose: Radiation-sensitive microcapsules composed of alginate and hyaluronic acid are being developed. We report the development of improved microcapsules that were prepared using calcium- and yttrium-induced polymerization. We previously reported on the combined antitumor effect of carboplatin-containing microcapsules and radiotherapy. Methods and Materials: We mixed a 0.1% (wt/vol) solution of hyaluronic acid with a 0.2% alginate solution. Carboplatin (l mg) and indocyanine green (12.5 {mu}g) were added to this mixture, and the resultant material was used for capsule preparation. The capsules were prepared by spraying the material into a mixture containing a 4.34% CaCl{sub 2} solution supplemented with 0-0.01% yttrium. These capsules were irradiated with single doses of 0.5, 1.0, 1.5, or 2 Gy {sup 60}Co {gamma}-rays. Immediately after irradiation, the frequency of microcapsule decomposition was determined using a microparticle-induced X-ray emission camera. The amount of core content released was estimated by particle-induced X-ray emission and colorimetric analysis with 0.25% indocyanine green. The antitumor effect of the combined therapy was determined by monitoring its effects on the diameter of an inoculated Meth A fibrosarcoma. Results: Microcapsules that had been polymerized using a 4.34% CaCl{sub 2} solution supplemented with 5.0 x 10{sup -3}% (10{sup -3}% meant or 10%{sup -3}) yttrium exhibited the maximal decomposition, and the optimal release of core content occurred after 2-Gy irradiation. The microcapsules exhibited a synergistic antitumor effect combined with 2-Gy irradiation and were associated with reduced adverse effects. Conclusion: The results of our study have shown that our liquid core microcapsules can be used in radiotherapy for targeted delivery of chemotherapeutic agents.

  5. Methods of Drug Delivery in Neurotrauma.

    PubMed

    Deng-Bryant, Ying; Readnower, Ryan; Leung, Lai Yee; Tortella, Frank; Shear, Deborah

    2016-01-01

    The central nervous system (CNS) is protected by blood-brain barrier (BBB) and blood-cerebrospinal-fluid (CSF) barrier that limit toxic agents and most molecules from penetrating the brain and spinal cord. However, these barriers also prevent most pharmaceuticals from entering into the CNS. Drug delivery to the CNS following neurotrauma is complicated. Although studies have shown BBB permeability increases in various TBI models, it remains as the key mitigating factor for delivering drugs into the CNS. The commonly used methods for drug delivery in preclinical neurotrauma studies include intraperitoneal, subcutaneous, intravenous, and intracerebroventricular delivery. It should be noted that for a drug to be successfully translated into the clinic, it needs to be administered preclinically as it would be anticipated to be administered to patients. And this likely leads to better dose selection of the drug, as well as recognition of any possible side effects, prior to transition into a clinical trial. Additionally, novel approach that is noninvasive and yet circumvents BBB, such as drug delivery through nerve pathways innervating the nasal passages, needs to be investigated in animal models, as it may provide a viable drug delivery method for patients who sustain mild CNS injury or require chronic treatments. Therefore, the focus of this chapter is to present rationales and methods for delivering drugs by IV infusion via the jugular vein, and intranasally in preclinical studies. PMID:27604714

  6. Role of microemuslsions in advanced drug delivery.

    PubMed

    Sharma, Aman Kumar; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-06-01

    Microemulsions have gained significant attention from formulation scientists since the time they have been discovered, because of their excellent properties related to their stability, solubility, simplicity, and formulation aspects. The application of microemulsions is not limited to drug delivery via the oral, topical or ocular routes, but may also be seen in cosmetics, immunology, sensor devices, coating, textiles, analytical chemistry, and spermicide. Finally, the objective of this review is to discuss briefly the applications of microemulsions in advanced drug delivery. PMID:25711493

  7. Double layered hydroxides as potential anti-cancer drug delivery agents.

    PubMed

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  8. Progress in antiretroviral drug delivery using nanotechnology.

    PubMed

    Mallipeddi, Rama; Rohan, Lisa Cencia

    2010-08-09

    There are currently a number of antiretroviral drugs that have been approved by the Food and Drug Administration for use in the treatment of human immunodeficiency virus (HIV). More recently, antiretrovirals are being evaluated in the clinic for prevention of HIV infection. Due to the challenging nature of treatment and prevention of this disease, the use of nanocarriers to achieve more efficient delivery of antiretroviral drugs has been studied. Various forms of nanocarriers, such as nanoparticles (polymeric, inorganic, and solid lipid), liposomes, polymeric micelles, dendrimers, cyclodextrins, and cell-based nanoformulations have been studied for delivery of drugs intended for HIV prevention or therapy. The aim of this review is to provide a summary of the application of nanocarrier systems to the delivery of anti-HIV drugs, specifically antiretrovirals. For anti-HIV drugs to be effective, adequate distribution to specific sites in the body must be achieved, and effective drug concentrations must be maintained at those sites for the required period of time. Nanocarriers provide a means to overcome cellular and anatomical barriers to drug delivery. Their application in the area of HIV prevention and therapy may lead to the development of more effective drug products for combating this pandemic disease.

  9. Progress in antiretroviral drug delivery using nanotechnology

    PubMed Central

    Mallipeddi, Rama; Rohan, Lisa Cencia

    2010-01-01

    There are currently a number of antiretroviral drugs that have been approved by the Food and Drug Administration for use in the treatment of human immunodeficiency virus (HIV). More recently, antiretrovirals are being evaluated in the clinic for prevention of HIV infection. Due to the challenging nature of treatment and prevention of this disease, the use of nanocarriers to achieve more efficient delivery of antiretroviral drugs has been studied. Various forms of nanocarriers, such as nanoparticles (polymeric, inorganic, and solid lipid), liposomes, polymeric micelles, dendrimers, cyclodextrins, and cell-based nanoformulations have been studied for delivery of drugs intended for HIV prevention or therapy. The aim of this review is to provide a summary of the application of nanocarrier systems to the delivery of anti-HIV drugs, specifically antiretrovirals. For anti-HIV drugs to be effective, adequate distribution to specific sites in the body must be achieved, and effective drug concentrations must be maintained at those sites for the required period of time. Nanocarriers provide a means to overcome cellular and anatomical barriers to drug delivery. Their application in the area of HIV prevention and therapy may lead to the development of more effective drug products for combating this pandemic disease. PMID:20957115

  10. Microneedles for drug and vaccine delivery.

    PubMed

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R

    2012-11-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  11. Microneedles for drug and vaccine delivery

    PubMed Central

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  12. Intracellular Drug Delivery: Mechanisms for Cell Entry.

    PubMed

    Garnacho, Carmen

    2016-01-01

    Over the last half century, the delivery of pharmacologically active substances, such as synthetic drugs, natural compounds, gene material and many other pharmaceutical products, has been widely studied. Understanding the interactions of drug carriers with cells and how these interactions influence the cellular uptake is of paramount importance, since targets for many therapeutic agents against several disorders are localized in the subcellular compartments. Besides, the route of drug carrier entry (direct or via endocytosis) often defines the efficiency, kinetics and final destination of the drug itself. Although classical endocytic pathways such as phagocytosis, macropinocytosis, clathrin-mediated and caveola-dependent pathways are well characterized, their control for pharmaceutical drug delivery applications is still a challenging issue. Also, better knowledge of non-classical endocytic pathways may help optimize targeted drug delivery systems for intracellular delivery. Therefore, this review focuses on mechanisms of intracellular delivery, including direct internalization and endocytosis, as well as factors such as targeting moiety, target receptor, and size, shape, and surface properties of the drug carrier that can influence uptake process. PMID:26675221

  13. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    SciTech Connect

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J.

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  14. Transpapillary Drug Delivery to the Breast

    PubMed Central

    Dave, Kaushalkumar; Averineni, Ranjith; Sahdev, Preety; Perumal, Omathanu

    2014-01-01

    The study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies. The removal of keratin plug enhanced the drug transport through the nipple. The drug penetration was significantly higher through the nipple compared to breast skin. The drug’s lipophilicity had a significant influence on drug penetration through nipple. The ducts in the nipple served as a major transport pathway to the underlying breast tissue. Results showed that porcine nipple could be a potential model for human nipple. The topical application of 5-FU on the rat nipple resulted in high drug concentration in the breast and minimal drug levels in plasma and other organs. Overall, the findings from this study demonstrate the feasibility of localized drug delivery to the breast through nipple. PMID:25545150

  15. Learning from Biology: Synthetic Lipoproteins for Drug Delivery

    PubMed Central

    Huang, Huang; Cruz, William; Chen, Juan; Zheng, Gang

    2014-01-01

    Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages on drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (<30nm), high biocompatibility, favorable circulation half-life and natural ability to bind specific lipoprotein receptors i.e. low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g. cancer, atherosclerosis), make them superior delivery strategies when compared to other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the way to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. PMID:25346461

  16. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  17. Implication of nanofibers in oral drug delivery.

    PubMed

    Kapahi, Himani; Khan, Nikhat Mansoor; Bhardwaj, Ankur; Mishra, Neeraj

    2015-01-01

    Nanofibers has gained significant prominence in recent years due to its wide applications in medicinal pharmacy, textile, tissue engineering and in various drug delivery system. In oral drug delivery system (DDS), nanofibers can be delivered as Nanofiber scaffolds, electrosponge nanofibers as oral fast delivery system, multilayered nanofiber loaded mashes, surface modified cross-linked electrospun nanofibers. Nanofibers are of 50- 1000 nm size fibres having large surface area, high porosity, small pore size, low density. Various approaches for formulation of nanofibers are molecular assembly, thermally induced phase separation, electrospining. Most commonly used by using electrospining polymer nanofibres with different range can be produced collective usage of electro spinning with pharmaceutical polymers offers novel tactics for developing drug delivery system (DDS). Different polymers used in preparation of nanofibers include biodegradable hydrophilic polymers, hydrophobic polymers and amphiphilic polymers. Electrospun nanofibers are often used to load insoluble drugs for enhancing their dissolution properties due to their high surface area per unit mass. Besides the water insoluble drugs freely water soluble sodium can also spun into the fibers. The most commonly polymers used for nanofibers are gelatin, dextran, nylon, polystyrene, polyacrylonitrile, polycarbonate, polyimides, poly vinyl alchol, polybenzimidazole. Delivery systems reviewed rely on temporal control, changes in pH along the GIT, the action of local enzymes to trigger drug release, and changes in intraluminal pressure. Dissolution of enteric polymer coatings due to a change in local pH and reduction of azo-bonds to release an active agent are both used in commercially marketed products. In vitro and in vivo studies have demonstrated that the release rates of drugs from these nanofiber formulations are enhanced compared to those from original drug substance. This review is focused on the different

  18. A wireless actuating drug delivery system

    NASA Astrophysics Data System (ADS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-04-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s-1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator.

  19. Electroresponsive nanoparticles for drug delivery on demand

    NASA Astrophysics Data System (ADS)

    Samanta, Devleena; Hosseini-Nassab, Niloufar; Zare, Richard N.

    2016-04-01

    The potential of electroresponsive conducting polymer nanoparticles to be used as general drug delivery systems that allow electrically pulsed, linearly scalable, and on demand release of incorporated drugs is demonstrated. As examples, facile release from polypyrrole nanoparticles is shown for fluorescein, a highly water-soluble model compound, piroxicam, a lipophilic small molecule drug, and insulin, a large hydrophilic peptide hormone. The drug loading is about 13 wt% and release is accomplished in a few seconds by applying a weak constant current or voltage. To identify the parameters that should be finely tuned to tailor the carrier system for the release of the therapeutic molecule of interest, a systematic study of the factors that affect drug delivery is performed, using fluorescein as a model compound. The parameters studied include current, time, voltage, pH, temperature, particle concentration, and ionic strength. Results indicate that there are several degrees of freedom that can be optimized for efficient drug delivery. The ability to modulate linearly drug release from conducting polymers with the applied stimulus can be utilized to design programmable and minimally invasive drug delivery devices.

  20. Electroresponsive nanoparticles for drug delivery on demand.

    PubMed

    Samanta, Devleena; Hosseini-Nassab, Niloufar; Zare, Richard N

    2016-04-28

    The potential of electroresponsive conducting polymer nanoparticles to be used as general drug delivery systems that allow electrically pulsed, linearly scalable, and on demand release of incorporated drugs is demonstrated. As examples, facile release from polypyrrole nanoparticles is shown for fluorescein, a highly water-soluble model compound, piroxicam, a lipophilic small molecule drug, and insulin, a large hydrophilic peptide hormone. The drug loading is about 13 wt% and release is accomplished in a few seconds by applying a weak constant current or voltage. To identify the parameters that should be finely tuned to tailor the carrier system for the release of the therapeutic molecule of interest, a systematic study of the factors that affect drug delivery is performed, using fluorescein as a model compound. The parameters studied include current, time, voltage, pH, temperature, particle concentration, and ionic strength. Results indicate that there are several degrees of freedom that can be optimized for efficient drug delivery. The ability to modulate linearly drug release from conducting polymers with the applied stimulus can be utilized to design programmable and minimally invasive drug delivery devices. PMID:27088543

  1. Microfabrication Technologies for Oral Drug Delivery

    PubMed Central

    Sant, Shilpa; Tao, Sarah L.; Fisher, Omar; Xu, Qiaobing; Peppas, Nicholas A.; Khademhosseini, Ali

    2012-01-01

    Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy. PMID:22166590

  2. A pulsed mode electrolytic drug delivery device

    NASA Astrophysics Data System (ADS)

    Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.

    2015-10-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power.

  3. Nanomedicine-nanoscale drugs and delivery systems.

    PubMed

    Singh, Surya

    2010-12-01

    Significant progress has been made in nanoscale drugs and delivery systems employing diverse chemical formulations to facilitate the rate of drug delivery and release from the human body. The biocompatible nanomaterials have been used in biological markers, contrast agents for biological imaging, healthcare products, pharmaceuticals, drug-delivery systems as well as in detection, diagnosis and treatment of various types of diseases. Nanomedicines offer delivery of potential drugs to human organs which were previously beyond reach of microscale drugs due to specific biological barriers. The nanoscale systems work as nanocarriers for the delivery of drugs. The nanocarriers are made of biocompatible and biodegradable materials such as synthetic proteins, peptides, lipids, polysaccharides, biodegradable polymers and fibers. This review article reports the recent developments in the field of nanomedicine covering biodegradable polymers, nanoparticles, cyclodextrin, dendrimeres, liposomes and lipid-based nanocarriers, nanofibers, nanowires and carbon nanotubes and their chemical functionalization for distribution to different organs, their solubility, surface, chemical and biological properties, stability and release systems. The toxicity and safety of nanomaterials on human health is also briefly discussed.

  4. Nanoparticles for drug delivery to the lungs.

    PubMed

    Sung, Jean C; Pulliam, Brian L; Edwards, David A

    2007-12-01

    The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. Incorporating therapeutics with polymeric nanoparticles offers additional degrees of manipulation for delivery systems, providing sustained release and the ability to target specific cells and organs. However, nanoparticle delivery to the lungs has many challenges including formulation instability due to particle-particle interactions and poor delivery efficiency due to exhalation of low-inertia nanoparticles. Thus, novel methods formulating nanoparticles into the form of micron-scale dry powders have been developed. These carrier particles exhibit improved handling and delivery, while releasing nanoparticles upon deposition in the lungs. This review covers the development of nanoparticle formulations for pulmonary delivery as both individual nanoparticles and encapsulated within carrier particles.

  5. Modification of polyethylene glycol onto solid lipid nanoparticles encapsulating a novel chemotherapeutic agent (PK-L4) to enhance solubility for injection delivery

    PubMed Central

    Fang, Yi-Ping; Wu, Pao-Chu; Huang, Yaw-Bin; Tzeng, Cherng-Chyi; Chen, Yeh-Long; Hung, Yu-Han; Tsai, Ming-Jun; Tsai, Yi-Hung

    2012-01-01

    Background The synthetic potential chemotherapeutic agent 3-Chloro-4-[(4-methoxyphenyl) amino]furo[2,3-b]quinoline (PK-L4) is an analog of amsacrine. The half-life of PK-L4 is longer than that of amsacrine; however, PK-L4 is difficult to dissolve in aqueous media, which is problematic for administration by intravenous injection. Aims To utilize solid lipid nanoparticles (SLNs) modified with polyethylene glycol (PEG) to improve the delivery of PK-L4 and investigate its biodistribution behavior after intravenous administration. Results The particle size of the PK-L4-loaded SLNs was 47.3 nm and the size of the PEGylated form was smaller, at 28 nm. The entrapment efficiency (EE%) of PK-L4 in SLNs with and without PEG showed a high capacity of approximately 100% encapsulation. Results also showed that the amount of PK-L4 released over a prolonged period from SLNs both with and without PEG was comparable to the non-formulated group, with 16.48% and 30.04%, respectively, of the drug being released, which fit a zero-order equation. The half-maximal inhibitory concentration values of PK-L4-loaded SLNs with and those without PEG were significantly reduced by 45%–64% in the human lung carcinoma cell line (A549), 99% in the human breast adenocarcinoma cell line with estrogen receptor (MCF7), and 95% in the human breast adenocarcinoma cell line (MDA-MB-231). The amount of PK-L4 released by SLNs with PEG was significantly higher than that from the PK-L4 solution (P < 0.05). After intravenous bolus of the PK-L4-loaded SLNs with PEG, there was a marked significant difference in half-life alpha (0.136 ± 0.046 hours) when compared with the PK-L4 solution (0.078 ± 0.023 hours); also the area under the curve from zero to infinity did not change in plasma when compared to the PK-L4 solution. This demonstrated that PK-L4-loaded SLNs were rapidly distributed from central areas to tissues and exhibited higher accumulation in specific organs. The highest deposition of PK-L4-loaded SLNs

  6. Liposome-like Nanostructures for Drug Delivery

    PubMed Central

    Gao, Weiwei; Hu, Che-Ming J.; Fang, Ronnie H.; Zhang, Liangfang

    2013-01-01

    Liposomes are a class of well-established drug carriers that have found numerous therapeutic applications. The success of liposomes, together with recent advancements in nanotechnology, has motivated the development of various novel liposome-like nanostructures with improved drug delivery performance. These nanostructures can be categorized into five major varieties, namely: (1) polymer-stabilized liposomes, (2) nanoparticle-stabilized liposomes, (3) core-shell lipid-polymer hybrid nanoparticles, (4) natural membrane-derived vesicles, and (5) natural membrane coated nanoparticles. They have received significant attention and have become popular drug delivery platforms. Herein, we discuss the unique strengths of these liposome-like platforms in drug delivery, with a particular emphasis on how liposome-inspired novel designs have led to improved therapeutic efficacy, and review recent progress made by each platform in advancing healthcare. PMID:24392221

  7. Brain drug delivery systems for neurodegenerative disorders.

    PubMed

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2012-09-01

    Neurodegenerative disorders (NDs) are rapidly increasing as population ages. However, successful treatments for NDs have so far been limited and drug delivery to the brain remains one of the major challenges to overcome. There has recently been growing interest in the development of drug delivery systems (DDS) for local or systemic brain administration. DDS are able to improve the pharmacological and therapeutic properties of conventional drugs and reduce their side effects. The present review provides a concise overview of the recent advances made in the field of brain drug delivery for treating neurodegenerative disorders. Examples include polymeric micro and nanoparticles, lipidic nanoparticles, pegylated liposomes, microemulsions and nanogels that have been tested in experimental models of Parkinson's, Alzheimer's and Huntington's disease. Overall, the results reviewed here show that DDS have great potential for NDs treatment. PMID:23016644

  8. Classification of stimuli-responsive polymers as anticancer drug delivery systems.

    PubMed

    Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab

    2015-02-01

    Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.

  9. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells.

    PubMed

    Li, Shi-Yong; Sun, Rong; Wang, Hong-Xia; Shen, Song; Liu, Yang; Du, Xiao-Jiao; Zhu, Yan-Hua; Jun, Wang

    2015-05-10

    Aberrant DNA hypermethylation is critical in the regulation of renewal and maintenance of cancer stem cells (CSCs), which represent targets for carcinogenic initiation by chemical and environmental agents. The administration of decitabine (DAC), which is a DNA hypermethylation inhibitor, is an attractive approach to enhancing the chemotherapeutic response and overcoming drug resistance by CSCs. In this study, we investigated whether low-dose DAC encapsulated in nanoparticles could be used to sensitize bulk breast cancer cells and CSCs to chemotherapy. In vitro studies revealed that treatment with nanoparticles loaded with low-dose DAC (NPDAC) combined with nanoparticles loaded with doxorubicin (NPDOX) better reduced the proportion of CSCs with high aldehyde dehydrogenase activity (ALDH(hi)) in the mammospheres of MDA-MB-231 cells, and better overcame the drug resistance by ALDH(hi) cells. Subsequently, systemic delivery of NPDAC significantly down-regulated the expression of DNMT1 and DNMT3b in a MB-MDA-231 xenograft murine model and induced increased caspase-9 expression, which contributed to the increased sensitivity of the bulk cancer cells and CSCs to NPDOX treatment. Importantly, the combined treatment of NPDAC and NPDOX resulted in the lowest proportion of ALDH(hi) CSCs and the highest proportion of apoptotic tumor cells, and the best tumor suppressive effects in inhibiting breast cancer growth.

  10. Inhaled nano- and microparticles for drug delivery

    PubMed Central

    El-Sherbiny, Ibrahim M.; El-Baz, Nancy M.; Yacoub, Magdi H.

    2015-01-01

    The 21st century has seen a paradigm shift to inhaled therapy, for both systemic and local drug delivery, due to the lung's favourable properties of a large surface area and high permeability. Pulmonary drug delivery possesses many advantages, including non-invasive route of administration, low metabolic activity, control environment for systemic absorption and avoids first bypass metabolism. However, because the lung is one of the major ports of entry, it has multiple clearance mechanisms, which prevent foreign particles from entering the body. Although these clearance mechanisms maintain the sterility of the lung, clearance mechanisms can also act as barriers to the therapeutic effectiveness of inhaled drugs. This effectiveness is also influenced by the deposition site and delivered dose. Particulate-based drug delivery systems have emerged as an innovative and promising alternative to conventional inhaled drugs to circumvent pulmonary clearance mechanisms and provide enhanced therapeutic efficiency and controlled drug release. The principle of multiple pulmonary clearance mechanisms is reviewed, including mucociliary, alveolar macrophages, absorptive, and metabolic degradation. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems. PMID:26779496

  11. Applications of chitosan nanoparticles in drug delivery.

    PubMed

    Tajmir-Riahi, H A; Nafisi, Sh; Sanyakamdhorn, S; Agudelo, D; Chanphai, P

    2014-01-01

    We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug-polymer complexes. Drug-chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD. PMID:24567139

  12. A Novel Combined Approach of Short-Chain Sphingolipids and Thermosensitive Liposomes for Improved Drug Delivery to Tumor Cells.

    PubMed

    Haeri, Azadeh; Pedrosa, Lilia R C; Ten Hagen, Timo L M; Dadashzadeh, Simin; Koning, Gerben A

    2016-04-01

    Despite the advantages of liposomal drug delivery, the bioavailability of the chemotherapeutic drugs to tumor cells is limited by their slow release from nanocarriers and low drug permeability across cell membranes. Drug encapsulation into stealth thermosensitive liposomes can improve drug delivery to tumors by combining efficient accumulation at tumors and the active release of the payload following remote heat triggering. Short-chain sphingolipids are known to enhance cellular uptake of amphiphilic drugs. We hypothesized that short-chain sphingolipids could be utilized to further improve intracellular drug delivery from a thermoresponsive formulation by enhancing the cell membrane passage of released drug. The following two strategies were investigated: (1) co-delivery of C8-glucosylceramide and doxorubicin within the thermosensitive liposomes and (2) pretreatment with glucosylceramide-enriched drug-free liposomes and subsequent treatment with doxorubicin loaded thermosensitive liposomes. Liposomes were prepared and extensively characterized. Drug uptake, cell cytotoxicity and live cell imaging were performed under normothermic and hyperthermic conditions in melanoma cells. In these studies, hyperthermia improved drug delivery from doxorubicin loaded thermosensitive formulations. However, the results from cell experiments indicated that there was no additional benefit in the co-delivery strategy using doxorubicin loaded glucosylceramide-enriched thermosensitive liposomes. In contrast, cellular studies showed significantly higher doxorubicin internalization in the pretreatment strategy. One-hour exposure of the cells to C8-glucosylceramide before applying hyperthermia caused improved doxorubicin uptake and cytotoxicity as well as an almost instantaneous cellular entry of the doxorubicin released from thermosensitive liposomes. This novel, two-step drug delivery approach can be potentially beneficial for the intracellular delivery of cell impermeable

  13. Functional Cyclodextrin Polyrotaxanes for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Yui, Nobuhiko; Katoono, Ryo; Yamashita, Atsushi

    The mobility of cyclodextrins (CDs) threaded onto a linear polymeric chain and the dethreading of the CDs from the chain are the most fascinating features seen in polyrotaxanes. These structural characteristics are very promising for their possible applications in drug delivery. Enhanced multivalent interaction between ligand-receptor systems by using ligand-conjugated polyrotaxanes would be just one of the excellent properties related to the CD mobility. Gene delivery using cytocleavable polyrotaxanes is a more practical but highly crucial issue in drug delivery. Complexation of the polyrotaxanes with DNA and its intracellular DNA release ingeniously utilizes both CD mobility and polyrotaxane dissociation to achieve effective gene delivery. Such a supramolecular approach using CD-containing polyrotaxanes is expected to exploit a new paradigm of biomaterials.

  14. Trojan Microparticles for Drug Delivery

    PubMed Central

    Anton, Nicolas; Jakhmola, Anshuman; Vandamme, Thierry F.

    2012-01-01

    During the last decade, the US Food and Drug Administration (FDA) have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco) which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal), the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review. PMID:24300177

  15. Nanoparticles and nanofibers for topical drug delivery

    PubMed Central

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  16. Engineered inorganic nanoparticles for drug delivery applications.

    PubMed

    Ojea-Jiménez, Isaac; Comenge, Joan; García-Fernández, Lorena; Megson, Zoë A; Casals, Eudald; Puntes, Victor F

    2013-06-01

    Inorganic nanoparticles (NPs) currently have immense potential as drug delivery vectors due to their unique physicochemical properties such as high surface area per unit volume, their optical and magnetic uniqueness and the ability to be functionalized with a large number of ligands to enhance their affinity towards target molecules. These features, together with the therapeutic activity of some drugs, render the combination of these two entities (NP-drug) as an attractive alternative in the area of drug delivery. One of the major advantages of these conjugates is the possibility to have a local delivery of the drug, thus reducing systemic side effects and enabling a higher efficiency of the therapeutic molecule. This review highlights the direct implications of nanoscale particles in the development of drug delivery systems. In more detail, it is also remarked the extensive use of inorganic NPs for targeted cancer therapies. As the range of nanoparticles and their applications continues to increase, human safety concerns are gaining importance, which makes it necessary to better understand the potential toxicity hazards of these materials.

  17. Engineered inorganic nanoparticles for drug delivery applications.

    PubMed

    Ojea-Jiménez, Isaac; Comenge, Joan; García-Fernández, Lorena; Megson, Zoë A; Casals, Eudald; Puntes, Victor F

    2013-06-01

    Inorganic nanoparticles (NPs) currently have immense potential as drug delivery vectors due to their unique physicochemical properties such as high surface area per unit volume, their optical and magnetic uniqueness and the ability to be functionalized with a large number of ligands to enhance their affinity towards target molecules. These features, together with the therapeutic activity of some drugs, render the combination of these two entities (NP-drug) as an attractive alternative in the area of drug delivery. One of the major advantages of these conjugates is the possibility to have a local delivery of the drug, thus reducing systemic side effects and enabling a higher efficiency of the therapeutic molecule. This review highlights the direct implications of nanoscale particles in the development of drug delivery systems. In more detail, it is also remarked the extensive use of inorganic NPs for targeted cancer therapies. As the range of nanoparticles and their applications continues to increase, human safety concerns are gaining importance, which makes it necessary to better understand the potential toxicity hazards of these materials. PMID:23116108

  18. Genetically engineered nanocarriers for drug delivery

    PubMed Central

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309

  19. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  20. Suppression of PRKAR1A expression enhances anti-proliferative and apoptotic effects of protein kinase inhibitors and chemotherapeutic drugs on cholangiocarcinoma cells.

    PubMed

    Loilome, Watcharin; Juntana, Sirinun; Pinitsoontorn, Chadamas; Namwat, Nisana; Tassaneeyakul, Wichittra; Yongvanit, Puangrat

    2012-01-01

    Suppression of protein kinase A regulatory subunit 1 alpha (PRKAR1A) has been proven to inhibit cholangiocarcinoma (CCA) cell growth and enhance apoptosis. In the present study, we aimed to determine synergistic and/or additive effects of chemotherapeutic agents, including protein kinase inhibitors (i.e. sorafenib, sunitinib, gefitinib, Met inhibitor) and conventional chemotherapeutic drugs (i.e. 5-fluorouracil, doxorubicin, paclitaxel, gemcitabine), in PRKARIA knockdown CCA cell lines. The results revealed that PRKAR1A suppressed CCA cell lines demonstrated enhanced sensitivity to some chemotherapeutic drugs when compared to control cells. Moreover, PRKAR1A knockdown in combination with either sorafenib or 5-fluorouracil increased apoptotic effects on CCA cell lines. Therefore, selective inhibition of PRKAR1A appears to enhance the growth inhibitory effects of chemotherapeutic drugs as well as induce apoptotic cell death. Our findings suggest that additional suppression of PRKAR1A expression may increase the efficacy of conventional CCA chemotherapeutic treatment. Clinical studies in CCA patients now need to be conducted. PMID:23480756

  1. Barriers to drug delivery in solid tumors.

    PubMed

    Sriraman, Shravan Kumar; Aryasomayajula, Bhawani; Torchilin, Vladimir P

    2014-01-01

    Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic. PMID:25068098

  2. Barriers to drug delivery in solid tumors

    PubMed Central

    Sriraman, Shravan Kumar; Aryasomayajula, Bhawani; Torchilin, Vladimir P

    2014-01-01

    Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic. PMID:25068098

  3. Ultrasound-mediated gastrointestinal drug delivery.

    PubMed

    Schoellhammer, Carl M; Schroeder, Avi; Maa, Ruby; Lauwers, Gregory Yves; Swiston, Albert; Zervas, Michael; Barman, Ross; DiCiccio, Angela M; Brugge, William R; Anderson, Daniel G; Blankschtein, Daniel; Langer, Robert; Traverso, Giovanni

    2015-10-21

    There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn's and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease.

  4. Ultrasound-mediated gastrointestinal drug delivery

    PubMed Central

    Schoellhammer, Carl M.; Schroeder, Avi; Maa, Ruby; Lauwers, Gregory Yves; Swiston, Albert; Zervas, Michael; Barman, Ross; DiCiccio, Angela M.; Brugge, William R.; Anderson, Daniel G.; Blankschtein, Daniel; Langer, Robert; Traverso, Giovanni

    2016-01-01

    There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn’s and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease. PMID:26491078

  5. The Interaction of the Chemotherapeutic Drug Chlorambucil with Human Glutathione Transferase A1-1: Kinetic and Structural Analysis

    PubMed Central

    Karpusas, Michael; Axarli, Irine; Chiniadis, Lykourgos; Papakyriakou, Athanasios; Bethanis, Kostas; Scopelitou, Katholiki; Clonis, Yannis D.; Labrou, Nikolaos E.

    2013-01-01

    Glutathione transferases (GSTs) are enzymes that contribute to cellular detoxification by catalysing the nucleophilic attack of glutathione (GSH) on the electrophilic centre of a number of xenobiotic compounds, including several chemotherapeutic drugs. In the present work we investigated the interaction of the chemotherapeutic drug chlorambucil (CBL) with human GSTA1-1 (hGSTA1-1) using kinetic analysis, protein crystallography and molecular dynamics. In the presence of GSH, CBL behaves as an efficient substrate for hGSTA1-1. The rate-limiting step of the catalytic reaction between CBL and GSH is viscosity-dependent and kinetic data suggest that product release is rate-limiting. The crystal structure of the hGSTA1-1/CBL-GSH complex was solved at 2.1 Å resolution by molecular replacement. CBL is bound at the H-site attached to the thiol group of GSH, is partially ordered and exposed to the solvent, making specific interactions with the enzyme. Molecular dynamics simulations based on the crystal structure indicated high mobility of the CBL moiety and stabilization of the C-terminal helix due to the presence of the adduct. In the absence of GSH, CBL is shown to be an alkylating irreversible inhibitor for hGSTA1-1. Inactivation of the enzyme by CBL followed a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of CBL per mol of dimeric enzyme being incorporated. Structural analysis suggested that the modifying residue is Cys112 which is located at the entrance of the H-site. The results are indicative of a structural communication between the subunits on the basis of mutually exclusive modification of Cys112, indicating that the two enzyme active sites are presumably coordinated. PMID:23460799

  6. The interaction of the chemotherapeutic drug chlorambucil with human glutathione transferase A1-1: kinetic and structural analysis.

    PubMed

    Karpusas, Michael; Axarli, Irine; Chiniadis, Lykourgos; Papakyriakou, Athanasios; Bethanis, Kostas; Scopelitou, Katholiki; Clonis, Yannis D; Labrou, Nikolaos E

    2013-01-01

    Glutathione transferases (GSTs) are enzymes that contribute to cellular detoxification by catalysing the nucleophilic attack of glutathione (GSH) on the electrophilic centre of a number of xenobiotic compounds, including several chemotherapeutic drugs. In the present work we investigated the interaction of the chemotherapeutic drug chlorambucil (CBL) with human GSTA1-1 (hGSTA1-1) using kinetic analysis, protein crystallography and molecular dynamics. In the presence of GSH, CBL behaves as an efficient substrate for hGSTA1-1. The rate-limiting step of the catalytic reaction between CBL and GSH is viscosity-dependent and kinetic data suggest that product release is rate-limiting. The crystal structure of the hGSTA1-1/CBL-GSH complex was solved at 2.1 Å resolution by molecular replacement. CBL is bound at the H-site attached to the thiol group of GSH, is partially ordered and exposed to the solvent, making specific interactions with the enzyme. Molecular dynamics simulations based on the crystal structure indicated high mobility of the CBL moiety and stabilization of the C-terminal helix due to the presence of the adduct. In the absence of GSH, CBL is shown to be an alkylating irreversible inhibitor for hGSTA1-1. Inactivation of the enzyme by CBL followed a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of CBL per mol of dimeric enzyme being incorporated. Structural analysis suggested that the modifying residue is Cys112 which is located at the entrance of the H-site. The results are indicative of a structural communication between the subunits on the basis of mutually exclusive modification of Cys112, indicating that the two enzyme active sites are presumably coordinated.

  7. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy

    PubMed Central

    Tamburrino, Anna; Piro, Geny; Carbone, Carmine; Tortora, Giampaolo; Melisi, Davide

    2013-01-01

    Pancreatic cancer remains one of the most lethal and poorly understood human malignancies and will continue to be a major unsolved health problem in the 21st century. Despite efforts over the past three decades to improve diagnosis and treatment, the prognosis for patients with pancreatic cancer is extremely poor with or without treatment, and incidence rates are virtually identical to mortality rates. Although advances have been made through the identification of relevant molecular pathways in pancreatic cancer, there is still a critical, unmet need for the translation of these findings into effective therapeutic strategies that could reduce the intrinsic drug resistance of this disease and for the integration of these molecularly targeted agents into established combination chemotherapy and radiotherapy regimens in order to improve patients’ survival. Tumors are heterogeneous cellular entities whose growth and progression depend on reciprocal interactions between genetically altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the mechanisms of resistance studied have been related to tumor cell-autonomous signaling pathways. However, recent data suggest a putative important role of tumor microenvironment in the development and maintenance of resistance to classic chemotherapeutic and targeted therapies. This present review is meant to describe and discuss some of the most important advances in the comprehension of the tumor cell-autonomous and tumor microenvironment-related molecular mechanisms responsible for the resistance of pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic targets for the modulation of this resistant phenotype. PMID:23641216

  8. Light induced drug delivery into cancer cells.

    PubMed

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery. PMID:21074848

  9. Light induced drug delivery into cancer cells.

    PubMed

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.

  10. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery.

    PubMed

    Lee, Min Hee; Sessler, Jonathan L; Kim, Jong Seung

    2015-11-17

    Theranostics, chemical entities designed to combine therapeutic effects and imaging capability within one molecular system, have received considerable attention in recent years. Much of this interest reflects the promise inherent in personalized medicine, including disease-targeted treatments for cancer patients. One important approach to realizing this latter promise involves the development of so-called theranostic conjugates, multicomponent constructs that selectively target cancer cells and deliver cytotoxic agents while producing a readily detectable signal that can be monitored both in vitro and in vivo. This requires the synthesis of relatively complex systems comprising imaging reporters, masked chemotherapeutic drugs, cleavable linkers, and cancer targeting ligands. Ideally, the cleavage process should take place within or near cancer cells and be activated by cellular components that are associated with cancer states or specifically expressed at a higher level in cancer cells. Among the cleavable linkers currently being explored for the construction of such localizing conjugates, disulfide bonds are particularly attractive. This is because disulfide bonds are stable in most blood pools but are efficiently cleaved by cellular thiols, including glutathione (GSH) and thioredoxin (Trx), which are generally found at elevated levels in tumors. When disulfide bonds are linked to fluorophores, changes in emission intensity or shifts in the emission maxima are typically seen upon cleavage as the result of perturbations to internal charge transfer (ICT) processes. In well-designed systems, this allows for facile imaging. In this Account, we summarize our recent studies involving disulfide-based fluorescent drug delivery conjugates, including preliminary tests of their biological utility in vitro and in vivo. To date, a variety of chemotherapeutic agents, such as doxorubicin, gemcitabine, and camptothecin, have been used to create disulfide-based conjugates, as have

  11. The potentials of nanotechnology-based drug delivery system for treatment of ovarian cancer.

    PubMed

    Gidwani, Bina; Vyas, Amber

    2015-01-01

    Ovarian cancer is one of the leading causes for death of women. Every year the percentage of mortality rate is increasing day by day. Various chemotherapeutic agents are used to increase the survival rate of patients with ovarian cancer, but the available conventional dosage forms/marketed preparations are associated with several limitations. The use of nanotechnology in drug delivery contributes to their small size (10-100 nm), which improves the circulation and enables superior accumulation of therapeutic drugs at the tumor sites. In future, the use of nanotechnology will enable passive targeting and further improvements can be made using targeting moieties.

  12. Drug delivery and nanoparticles: Applications and hazards

    PubMed Central

    De Jong, Wim H; Borm, Paul JA

    2008-01-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells

  13. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review

    PubMed Central

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy. PMID:26078967

  14. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed. PMID:19819318

  15. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed.

  16. Recent technologies in pulsatile drug delivery systems

    PubMed Central

    Jain, Deepika; Raturi, Richa; Jain, Vikas; Bansal, Praveen; Singh, Ranjit

    2011-01-01

    Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as PulsincapTM, Diffucaps®, CODAS®, OROS® and PULSYSTM, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases. PMID:23507727

  17. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  18. Drug delivery system and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  19. Aptamers for Targeted Drug Delivery

    PubMed Central

    Ray, Partha; White, Rebekah R.

    2010-01-01

    Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery. PMID:27713328

  20. Aptamers for Targeted Drug Delivery

    PubMed Central

    Ray, Partha; White, Rebekah R.

    2010-01-01

    Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX). SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  1. Tuberculosis chemotherapy: current drug delivery approaches

    PubMed Central

    du Toit, Lisa Claire; Pillay, Viness; Danckwerts, Michael Paul

    2006-01-01

    Tuberculosis is a leading killer of young adults worldwide and the global scourge of multi-drug resistant tuberculosis is reaching epidemic proportions. It is endemic in most developing countries and resurgent in developed and developing countries with high rates of human immunodeficiency virus infection. This article reviews the current situation in terms of drug delivery approaches for tuberculosis chemotherapy. A number of novel implant-, microparticulate-, and various other carrier-based drug delivery systems incorporating the principal anti-tuberculosis agents have been fabricated that either target the site of tuberculosis infection or reduce the dosing frequency with the aim of improving patient outcomes. These developments in drug delivery represent attractive options with significant merit, however, there is a requisite to manufacture an oral system, which directly addresses issues of unacceptable rifampicin bioavailability in fixed-dose combinations. This is fostered by the need to deliver medications to patients more efficiently and with fewer side effects, especially in developing countries. The fabrication of a polymeric once-daily oral multiparticulate fixed-dose combination of the principal anti-tuberculosis drugs, which attains segregated delivery of rifampicin and isoniazid for improved rifampicin bioavailability, could be a step in the right direction in addressing issues of treatment failure due to patient non-compliance. PMID:16984627

  2. Nanocarriers for delivery of platinum anticancer drugs.

    PubMed

    Oberoi, Hardeep S; Nukolova, Natalia V; Kabanov, Alexander V; Bronich, Tatiana K

    2013-11-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum-polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs.

  3. A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release.

    PubMed

    Liu, Heng; Fu, Yike; Li, Yangyang; Ren, Zhaohui; Li, Xiang; Han, Gaorong; Mao, Chuanbin

    2016-09-01

    Implantable localized drug delivery systems (LDDSs) with intelligent functionalities have emerged as a powerful chemotherapeutic platform in curing cancer. Developing LDDSs with rationally controlled drug release and real-time monitoring functionalities holds promise for personalized therapeutic protocols but suffers daunting challenges. To overcome such challenges, a series of porous Yb(3+)/Er(3+) codoped CaTiO3 (CTO:Yb,Er) nanofibers, with specifically designed surface functionalization, were synthesized for doxorubicin (DOX) delivery. The content of DOX released could be optically monitored by increase in the intensity ratio of green to red emission (I550/I660) of upconversion photoluminescent nanofibers under 980 nm near-infrared (NIR) excitation owing to the fluorescence resonance energy transfer (FRET) effect between DOX molecules and the nanofibers. More importantly, the 808 nm NIR irradiation enabled markedly accelerated DOX release, confirming representative NIR-triggered drug release properties. In consequence, such CTO:Yb,Er nanofibers presented significantly enhanced in vitro anticancer efficacy under NIR irradiation. This study has thus inspired another promising fibrous LDDS platform with NIR-triggered and optics-monitored DOX releasing for personalized tumor chemotherapy. PMID:27557281

  4. SOX4 contributes to the progression of cervical cancer and the resistance to the chemotherapeutic drug through ABCG2.

    PubMed

    Sun, R; Jiang, B; Qi, H; Zhang, X; Yang, J; Duan, J; Li, Y; Li, G

    2015-11-19

    SOX4, a member of the SOX (sex-determining region Y-related HMG box) transcription factor family, has been reported to be abnormally expressed in a wide variety of cancers, and to exert a pleiotropic function. However, its function in progression of cervical cancer (CC) remains unknown. In this study, we found that SOX4 was highly expressed in CC cells and tissues, and overexpression of SOX4 in CC CaSki cells enhanced tumor clone formation and cell proliferation, and accelerated cell cycle progress. Meanwhile, downregulation of SOX4 by shRNA in CaSki cells inhibited cell proliferation, and slowed cell cycle progress, indicating that SOX4 contributes to the development of CC. In addition, SOX4 overexpression by gene transfer reduced the sensitivity of CaSki cells in response to the chemotherapeutic drug cisplatin, and SOX4 downregulation by RNA interference increased the sensitivity of CaSki cells in response to cisplatin. Moreover, SOX4 overexpression upregulated multiple drug resistant gene ABCG2, and SOX4 downregulation inhibited ABCG2 expression. Taken together, these results suggested that SOX4 functions to modulate cancer proliferation by regulation of cell cycle, and inhibit cancer cell sensitivity to therapeutic drug via upregulation of ABCG2. Thus, SOX4 may be a target for CC chemotherapy.

  5. SOX4 contributes to the progression of cervical cancer and the resistance to the chemotherapeutic drug through ABCG2

    PubMed Central

    Sun, R; Jiang, B; Qi, H; Zhang, X; Yang, J; Duan, J; Li, Y; Li, G

    2015-01-01

    SOX4, a member of the SOX (sex-determining region Y-related HMG box) transcription factor family, has been reported to be abnormally expressed in a wide variety of cancers, and to exert a pleiotropic function. However, its function in progression of cervical cancer (CC) remains unknown. In this study, we found that SOX4 was highly expressed in CC cells and tissues, and overexpression of SOX4 in CC CaSki cells enhanced tumor clone formation and cell proliferation, and accelerated cell cycle progress. Meanwhile, downregulation of SOX4 by shRNA in CaSki cells inhibited cell proliferation, and slowed cell cycle progress, indicating that SOX4 contributes to the development of CC. In addition, SOX4 overexpression by gene transfer reduced the sensitivity of CaSki cells in response to the chemotherapeutic drug cisplatin, and SOX4 downregulation by RNA interference increased the sensitivity of CaSki cells in response to cisplatin. Moreover, SOX4 overexpression upregulated multiple drug resistant gene ABCG2, and SOX4 downregulation inhibited ABCG2 expression. Taken together, these results suggested that SOX4 functions to modulate cancer proliferation by regulation of cell cycle, and inhibit cancer cell sensitivity to therapeutic drug via upregulation of ABCG2. Thus, SOX4 may be a target for CC chemotherapy. PMID:26583330

  6. Drug delivery applications with ethosomes.

    PubMed

    Ainbinder, D; Paolino, D; Fresta, M; Touitou, E

    2010-10-01

    Ethosomes are specially tailored vesicular carriers able to efficiently deliver various molecules with different physicochemical properties into deep skin layers and across the skin. This paper reviews the unique characteristics of the ethosomal carriers, focusing on work carried out with drug containing ethosomal systems in animal models and in clinical studies. The paper concludes with a discussion on the safety of the ethosomal system applications.

  7. Drug delivery applications with ethosomes.

    PubMed

    Ainbinder, D; Paolino, D; Fresta, M; Touitou, E

    2010-10-01

    Ethosomes are specially tailored vesicular carriers able to efficiently deliver various molecules with different physicochemical properties into deep skin layers and across the skin. This paper reviews the unique characteristics of the ethosomal carriers, focusing on work carried out with drug containing ethosomal systems in animal models and in clinical studies. The paper concludes with a discussion on the safety of the ethosomal system applications. PMID:21329048

  8. A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs

    PubMed Central

    Mitra, Moutushy; Mohanty, Chandana; Harilal, Anju; Maheswari, Uma K.; Sahoo, Sanjeeb Kumar

    2012-01-01

    Purpose Novel strategies are being applied for creating better in vitro models that simulate in vivo conditions for testing the efficacy of anticancer drugs. In the present study we developed surface-engineered, large and porous, biodegradable, polymeric microparticles as a scaffold for three dimensional (3-D) growth of a Y79 retinoblastoma (RB) cell line. We evaluated the effect of three anticancer drugs in naïve and nanoparticle-loaded forms on a 3-D versus a two-dimensional (2-D) model. We also studied the influence of microparticles on extracellular matrix (ECM) synthesis and whole genome miRNA-gene expression profiling to identify 3D-responsive genes that are implicated in oncogenesis in RB cells. Methods Poly(D,L)-lactide-co-glycolide (PLGA) microparticles were prepared by the solvent evaporation method. RB cell line Y79 was grown alone or with PLGA–gelatin microparticles. Antiproliferative activity, drug diffusion, and cellular uptake were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole (MTT) assay, fluorescent microscope, and flow cytometry. Extra cellular matrix (ECM) synthesis was observed by collagenase assay and whole genome miRNA-microarray profiling by using an Agilent chip. Results With optimized composition of microparticles and cell culture conditions, an eightfold increase from the seeding density was achieved in 5 days of culture. The antiproliferative effect of the drugs in the 3-D model was significantly lower than in the 2-D suspension, which was evident from the 4.5 to 21.8 fold differences in their IC50 values. Using doxorubicin, the flow cytometry data demonstrated a 4.4 fold lower drug accumulation in the cells grown in the 3-D model at 4 h. The collagen content of the cells grown in the 3-D model was 2.3 fold greater than that of the cells grown in the 2-D model, suggesting greater synthesis of the extracellular matrix in the 3-D model as the extracellular matrix acted as a barrier to drug

  9. Local drug and gene delivery through microbubbles.

    PubMed

    Unger, E C; Hersh, E; Vannan, M; Matsunaga, T O; McCreery, T

    2001-01-01

    Ultrasound contrast agents (microbubbles) lower the threshold for cavitation by ultrasound energy. Ultrasound microbubbles may be used as cavitation nuclei for drug and gene delivery. By tailoring the physical properties of microbubbles and coating materials, drugs and genetic drugs can be incorporated into ultrasound contrast agents. As the microbubbles enter the region of insonation, the microbubbles cavitate, locally releasing the therapeutic agents. Cavitation also causes a local shockwave that improves cellular uptake of the therapeutic agent. As a result of the human genome project and continuing advances in molecular biology, many therapeutic genes have been discovered. In the cardiovascular system, gene therapy has the potential to improve myocardial vascularization and ameliorate congestive heart failure. For successful development of clinical gene therapy, however, effective gene delivery vectors are needed. Ultrasound contrast agents can be used to develop new, more effective vectors for gene delivery. Transthoracic ultrasound can be focused on the heart so that an intravenous injection of gene-bearing microbubbles will deliver genes relatively selectively to the myocardium. Using this technique, we have produced high levels of transgene expression in the insonated region of the myocardium. This new technology, using microbubbles and ultrasound for drug and gene delivery, merits further study and development.

  10. Intravesical drug delivery for dysfunctional bladder.

    PubMed

    Hsu, Chun-Chien; Chuang, Yao-Chi; Chancellor, Michael B

    2013-06-01

    The bladder is a hollow organ that can be treated locally by transurethral catheter for intravesical drug instillation or cystoscopy for intravesical drug injection. With advancing technology, local organ-specific therapy and drug delivery is of expanding interest for treating dysfunctional bladder, including interstitial cystitis/bladder pain syndrome, overactive bladder and sterile hemorrhagic cystitis after chemotherapy or pelvic radiation. Intravesical therapy has shown varying degrees of efficacy and safety in treating interstitial cystitis/bladder pain syndrome, overactive bladder and hemorrhagic cystitis with new modalities being developed. Intravesical (regional) therapy has several advantages than oral (systemic) therapy, including high local concentration and less systemic toxicity. In recent years, intravesical delivery of biotechnological products including neurotoxins and immunosuppressive agents, and delivery platform including liposomes has shown promise for lower urinary tract symptoms. This review considers the current status of intravesical therapy in dysfunctional bladder including interstitial cystitis/bladder pain syndrome, overactive bladder and hemorrhagic cystitis with special attention to lipid based novel drug-delivery.

  11. Recent Perspectives in Ocular Drug Delivery

    PubMed Central

    Gaudana, Ripal; Jwala, J.; Boddu, Sai H. S.; Mitra, Ashim K.

    2015-01-01

    Anatomy and physiology of the eye makes it a highly protected organ. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a formidable task. Limitations of topical and intravitreal route of administration have challenged scientists to find alternative mode of administration like periocular routes. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of nanotechnology has been very promising in the treatment of a gamut of diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, dendrimers, implants, and hydrogels. Potential for ocular gene therapy has also been described in this article. In near future, a great deal of attention will be paid to develop non-invasive sustained drug release for both anterior and posterior segment eye disorders. A better understanding of nature of ocular diseases, barriers and factors affecting in vivo performance, would greatly drive the development of new delivery systems. Current momentum in the invention of new drug delivery systems hold a promise towards much improved therapies for the treatment of vision threatening disorders. PMID:18758924

  12. Inhalation delivery of asthma drugs.

    PubMed

    Matthys, H

    1990-01-01

    In the immediate future, metered-dose inhalers (MDIs) with spacers remain the aerosol application of choice for topical steroids, mainly to reduce side effects. For beta 2-agonist, anticholinergics and prophylactic drugs, MDI (with or without demand valve), dry powder inhalers (multidose inhalers), ultrasonic or jet aerosol generators (with or without mechanical breathing assistance [IPPB]) are chosen according to the preference or the ability of the patients to perform the necessary breathing maneuvers as well as the availability of different products in different countries.

  13. Strategies for antimicrobial drug delivery to biofilm.

    PubMed

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  14. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers.

    PubMed

    Tsouris, Vasilios; Joo, Min Kyung; Kim, Sun Hwa; Kwon, Ick Chan; Won, You-Yeon

    2014-01-01

    Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. The drug resistance has a genetic basis that is caused by an abnormal gene expression. There are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints (Gottesman et al., 2002; Holohan et al., 2013). siRNA is used to silence the drug resistant phenotype and prevent this drug resistance response. Of the listed types of drug resistance, pump-type resistance (e.g., high expression of ATP-binding cassette transporter proteins such as P-glycoproteins (Pgp; also known as multi-drug resistance protein 1 or MDR1, encoded by the ATP-Binding Cassette Sub-Family B Member 1 (ABCB1) gene)) and apoptosis inhibition (e.g., expression of anti-apoptotic proteins such as Bcl-2) are the most frequently targeted for gene silencing. The co-delivery of siRNA and chemotherapeutic drugs has a synergistic effect, but many of the current projects do not control the drug release from the nanocarrier. This means that the drug payload is released before the drug resistance proteins have degraded and the drug resistance phenotype has been silenced. Current research focuses on cross-linking the carrier's polymers to prevent premature drug release, but these carriers still rely on environmental cues to release the drug payload, and the drug may be released too early. In this review, we studied the release kinetics of siRNA and chemotherapeutic drugs from a broad range of carriers. We also give examples of carriers used to co-deliver siRNA and drugs to drug-resistant tumor cells, and we examine how modifications to the carrier affect the delivery. Lastly, we give our recommendations for the future directions of the co-delivery of si

  15. Structural DNA nanotechnology for intelligent drug delivery.

    PubMed

    Chao, Jie; Liu, Huajie; Su, Shao; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2014-11-01

    Drug delivery carriers have been popularly employed to improve solubility, stability, and efficacy of chemical and biomolecular drugs. Despite the rapid progress in this field, it remains a great challenge to develop an ideal carrier with minimal cytotoxicity, high biocompatibility and intelligence for targeted controlled release. The emergence of DNA nanotechnology offers unprecedented opportunities in this regard. Due to the unparalleled self-recognition properties of DNA molecules, it is possible to create numerous artificial DNA nanostructures with well-defined structures and DNA nanodevices with precisely controlled motions. More importantly, recent studies have proven that DNA nanostructures possess greater permeability to the membrane barrier of cells, which pave the way to developing new drug delivery carriers with nucleic acids, are summarized. In this Concept, recent advances on the design and fabrication of both static and dynamic DNA nanostructures, and the use of these nanostructures for the delivery of various types of drugs, are highlighted. It is also demonstrated that dynamic DNA nanostructures provide the required intelligence to realize logically controlled drug release.

  16. Advanced materials and nanotechnology for drug delivery.

    PubMed

    Yan, Li; Yang, Yang; Zhang, Wenjun; Chen, Xianfeng

    2014-08-20

    Many biological barriers are of great importance. For example, stratum corneum, the outmost layer of skin, effectively protects people from being invaded by external microorganisms such as bacteria and viruses. Cell membranes help organisms maintain homeostasis by controlling substances to enter and leave cells. However, on the other hand, these biological barriers seriously restrict drug delivery. For instance, stratum corneum has a very dense structure and only allows very small molecules with a molecular weight of below 500 Da to permeate whereas most drug molecules are much larger than that. A wide variety of drugs including genes needs to enter cells for proper functioning but cell membranes are not permeable to them. To overcome these biological barriers, many drug-delivery routes are being actively researched and developed. In this research news, we will focus on two advanced materials and nanotechnology approaches for delivering vaccines through the skin for painless and efficient immunization and transporting drug molecules to cross cell membranes for high-throughput intracellular delivery.

  17. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance.

    PubMed

    Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant

    2013-12-01

    Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy.

  18. Tight junction modulator and drug delivery.

    PubMed

    Matsuhisa, Koji; Kondoh, Masuo; Takahashi, Azusa; Yagi, Kiyohito

    2009-05-01

    Recent progress in pharmaceutical technology based on genomic and proteomic research has provided many drug candidates, including not only chemicals but peptides, antibodies and nucleic acids. These candidates do not show pharmaceutical activity without their absorption into systemic flow and movement from the systemic flow into the target tissue. Epithelial and endothelial cell sheets play a pivotal role in the barrier between internal and external body and tissues. Tight junctions (TJs) between adjacent epithelial cells limit the movement of molecules through the intercellular space in epithelial and endothelial cell sheets. Thus, a promising strategy for drug delivery is the modulation of TJ components to allow molecules to pass through the TJ-based cellular barriers. In this review, we discuss recent progress in the development of TJ modulators and the possibility of absorption enhancers and drug-delivery systems based on TJ components.

  19. Stemness and chemotherapeutic drug resistance induced by EIF5A2 overexpression in esophageal squamous cell carcinoma.

    PubMed

    Yang, Hong; Li, Xiao-dong; Zhou, Ying; Ban, Xiaojiao; Zeng, Ting-ting; Li, Lei; Zhang, Bao-zhu; Yun, Jingping; Xie, Dan; Guan, Xin-Yuan; Li, Yan

    2015-09-22

    Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies of the digestive tract in East Asian countries. Multimodal therapies, including adjuvant chemotherapy and neo-adjuvant chemotherapy, have become more often used for patients with advanced ESCC. However, the chemotherapy effect is often limited by patients' drug resistance. This study demonstrated that EIF5A2 (eukaryotic translation initiation factor 5A2) overexpression induced stemness and chemoresistance in ESCC cells. We showed that EIF5A2 overexpression in ESCC cells resulted in increased chemoresistance to 5-fluorouracil (5-FU), docetaxel and taxol. In contrast, shRNAs suppressing eIF5A2 increased tumor sensitivity to these chemotherapeutic drugs. In addition, EIF5A2 overexpression was correlated with a poorer overall survival in patients with ESCC who underwent taxane-based chemotherapy after esophagectomy (P < 0.05). Based on these results, we suggest that EIF5A2 could be a predictive biomarker for selecting appropriate chemo-treatment for ESCC patients and EIF5A2 inhibitors might be considered as combination therapy to enhance chemosensitivity in patients with ESCC.

  20. A Molecular Communications Model for Drug Delivery.

    PubMed

    Femminella, Mauro; Reali, Gianluca; Vasilakos, Athanasios V

    2015-12-01

    This paper considers the scenario of a targeted drug delivery system, which consists of deploying a number of biological nanomachines close to a biological target (e.g., a tumor), able to deliver drug molecules in the diseased area. Suitably located transmitters are designed to release a continuous flow of drug molecules in the surrounding environment, where they diffuse and reach the target. These molecules are received when they chemically react with compliant receptors deployed on the receiver surface. In these conditions, if the release rate is relatively high and the drug absorption time is significant, congestion may happen, essentially at the receiver site. This phenomenon limits the drug absorption rate and makes the signal transmission ineffective, with an undesired diffusion of drug molecules elsewhere in the body. The original contribution of this paper consists of a theoretical analysis of the causes of congestion in diffusion-based molecular communications. For this purpose, it is proposed a reception model consisting of a set of pure loss queuing systems. The proposed model exhibits an excellent agreement with the results of a simulation campaign made by using the Biological and Nano-Scale communication simulator version 2 (BiNS2), a well-known simulator for molecular communications, whose reliability has been assessed through in vitro experiments. The obtained results can be used in rate control algorithms to optimally determine the optimal release rate of molecules in drug delivery applications.

  1. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    PubMed

    Chen, Hong; Chen, Cherry C; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (i.n.) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n.) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v.) drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  2. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  3. BioMEMS in drug delivery.

    PubMed

    Nuxoll, Eric

    2013-11-01

    The drive to design micro-scale medical devices which can be reliably and uniformly mass produced has prompted many researchers to adapt processing technologies from the semiconductor industry. By operating at a much smaller length scale, the resulting biologically-oriented microelectromechanical systems (BioMEMS) provide many opportunities for improved drug delivery: Low-dose vaccinations and painless transdermal drug delivery are possible through precisely engineered microneedles which pierce the skin's barrier layer without reaching the nerves. Low-power, low-volume BioMEMS pumps and reservoirs can be implanted where conventional pumping systems cannot. Drug formulations with geometrically complex, extremely uniform micro- and nano-particles are formed through micromolding or with microfluidic devices. This review describes these BioMEMS technologies and discusses their current state of implementation. As these technologies continue to develop and capitalize on their simpler integration with other MEMS-based systems such as computer controls and telemetry, BioMEMS' impact on the field of drug delivery will continue to increase.

  4. Pharmaceutical technology, biopharmaceutics and drug delivery.

    PubMed

    Youn, Yu Seok; Lee, Beom-Jin

    2011-03-01

    The 40th annual international conference of the Korean Society of Pharmaceutical Sciences and Technology on Pharmaceutical Technology, Biopharmaceutics and Drug Delivery was held on 2-3 December 2010 in Jeju Special Self-Governing Providence, Korea, to celebrate its 40th anniversary. A comprehensive review of a wide spectrum of recent topics on pharmaceutical technology, biopharmaceutics and drug delivery was presented. Invited lectures and poster presentations over 2 days were divided into six parallel sessions covering areas such as biotechnology, biopharmaceutics, drug delivery, formulation/manufacture, regulatory science and frontier science. Among these, there were two sessions related to regulatory science and biopharmaceutics that were co-sponsored by the Korea Food and Drug Administration. In fact, this conference provided an opportunity for many investigators to discuss their research, collect new information and to promote the advancement of knowledge in each pharmaceutical area. This conference report summarizes the keynote podium presentations provided by many distinguished speakers, including Gordon L Amidon of the University of Michigan.

  5. Drug delivery nanoparticles in skin cancers.

    PubMed

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported.

  6. Drug Delivery Nanoparticles in Skin Cancers

    PubMed Central

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298

  7. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  8. Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy.

    PubMed

    Kersten, Kelly; Salvagno, Camilla; de Visser, Karin E

    2015-01-01

    Cancer immunotherapy is gaining momentum in the clinic. The current challenge is to understand why a proportion of cancer patients do not respond to cancer immunotherapy, and how this can be translated into the rational design of combinatorial cancer immunotherapy strategies aimed at maximizing success of immunotherapy. Here, we discuss how tumors orchestrate an immunosuppressive microenvironment, which contributes to their escape from immune attack. Relieving the immunosuppressive networks in cancer patients is an attractive strategy to extend the clinical success of cancer immunotherapy. Since the clinical availability of drugs specifically targeting immunosuppressive cells or mediators is still limited, an alternative strategy is to use conventional chemotherapy drugs with immunomodulatory properties to improve cancer immunotherapy. We summarize the preclinical and clinical studies that illustrate how the anti-tumor T cell response can be enhanced by chemotherapy-induced relief of immunosuppressive networks. Treatment strategies aimed at combining chemotherapy-induced relief of immunosuppression and T cell-boosting checkpoint inhibitors provide an attractive and clinically feasible approach to overcome intrinsic and acquired resistance to cancer immunotherapy, and to extend the clinical success of cancer immunotherapy.

  9. Ultraviolet light-mediated drug delivery: Principles, applications, and challenges.

    PubMed

    Barhoumi, Aoune; Liu, Qian; Kohane, Daniel S

    2015-12-10

    UV light has been extensively employed in drug delivery because of its versatility, ease of manipulation, and ability to induce chemical changes on the therapeutic carrier. Here we review the mechanisms by which UV light affects drug delivery systems. We will present the challenges facing UV-induced drug delivery and some of the proposed solutions.

  10. In vitro Antiproliferative Activity of Benzopyranone Derivatives in Comparison with Standard Chemotherapeutic Drugs

    PubMed Central

    Musa, Musiliyu A.; Cooperwood, John S.; Khan, M. Omar F.; Rahman, Taufiq

    2012-01-01

    SUMMARY The cytotoxic activities of five new benzopyranone derivatives containing basic amino side chain are described. Their cytotoxicities against ER (+) MCF-7 and ER (−) MDA-MB-231 human breast cancer cell lines, and Ishikawa human endometrial cell line were determined after 72 h drug exposure employing CellTiter-Glo assay at concentrations ranging from 0.01 – 1.0 × 105 nM. The antiproliferative activities of these compounds were compared to tamoxifen (TAM), 4-hydroxytamoxifen (4-OHT, active metabolite of tamoxifen) and raloxifene (RAL). In vitro results indicated that compounds 9, 10, 12 and 13 were more potent than TAM against the human breast cancer cell lines with IC50 < 20 µM. The in silico structure-activity relationships of these compounds and their binding mode within the estrogen receptor (ER) binding site using AutoDock vina are discussed. PMID:21290426

  11. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  12. Nanotechnology Approaches for Ocular Drug Delivery

    PubMed Central

    Xu, Qingguo; Kambhampati, Siva P.; Kannan, Rangaramanujam M.

    2013-01-01

    Blindness is a major health concern worldwide that has a powerful impact on afflicted individuals and their families, and is associated with enormous socio-economical consequences. The Middle East is heavily impacted by blindness, and the problem there is augmented by an increasing incidence of diabetes in the population. An appropriate drug/gene delivery system that can sustain and deliver therapeutics to the target tissues and cells is a key need for ocular therapies. The application of nanotechnology in medicine is undergoing rapid progress, and the recent developments in nanomedicine-based therapeutic approaches may bring significant benefits to address the leading causes of blindness associated with cataract, glaucoma, diabetic retinopathy and retinal degeneration. In this brief review, we highlight some promising nanomedicine-based therapeutic approaches for drug and gene delivery to the anterior and posterior segments. PMID:23580849

  13. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  14. Inhalation drug delivery devices: technology update

    PubMed Central

    Ibrahim, Mariam; Verma, Rahul; Garcia-Contreras, Lucila

    2015-01-01

    The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided. PMID:25709510

  15. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  16. Intratumoral Drug Delivery with Nanoparticulate Carriers

    PubMed Central

    Holback, Hillary

    2011-01-01

    Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers. PMID:21213021

  17. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  18. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  19. Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery.

    PubMed

    Jin, Qiao; Chen, Yangjun; Wang, Yin; Ji, Jian

    2014-12-01

    Nanomaterials self-assembled from amphiphilic functional copolymers have emerged as safe and efficient nanocarriers for delivery of therapeutics. Surface engineering of the nanocarriers is extremely important for the design of drug delivery systems. Bioinspired zwitterions are considered as novel nonfouling materials to construct biocompatible and bioinert nanocarriers. As an alternative to poly(ethylene glycol) (PEG), zwitterions exhibit some unique properties that PEG do not have. In this review, we highlight recent progress of the design of drug nanocarriers using a zwitterionic strategy. The possible mechanism of stealth properties of zwitterions was proposed. The advantages of zwitterionic drug nanocarriers deriving from phosphorylcholine (PC), carboxybetaine (CB), and sulfobetaine (SB) are also discussed. PMID:25092584

  20. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines. PMID:26418537

  1. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  2. Ultrasound-mediated nail drug delivery system.

    PubMed

    Abadi, Danielle; Zderic, Vesna

    2011-12-01

    A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P < .05) with a permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative. PMID:22124008

  3. Protein and Peptide drug delivery: oral approaches.

    PubMed

    Shaji, Jessy; Patole, V

    2008-01-01

    Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery.

  4. Ultrasound-mediated nail drug delivery system.

    PubMed

    Abadi, Danielle; Zderic, Vesna

    2011-12-01

    A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P < .05) with a permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative.

  5. Controlled ocular drug delivery with nanomicelles.

    PubMed

    Vaishya, Ravi D; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K

    2014-01-01

    Many vision threatening ocular diseases such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma, and proliferative vitreoretinopathy may result in blindness. Ocular drug delivery specifically to the intraocular tissues remains a challenging task due to the presence of various physiological barriers. Nonetheless, recent advancements in the field of nanomicelle-based novel drug delivery system could fulfil these unmet needs. Nanomicelles consists of amphiphilic molecules that self-assemble in aqueous media to form organized supramolecular structures. Micelles can be prepared in various sizes (10-1000 nm) and shapes depending on the molecular weights of the core and corona forming blocks. Nanomicelles have been an attractive carrier for their potential to solubilize hydrophobic molecules in aqueous solution. In addition, small size in nanometer range and highly modifiable surface properties have been reported to be advantageous in ocular drug delivery. In this review, various factors influencing rationale design of nanomicelles formulation and disposition are discussed along with case studies. Despite the progress in the field, influence of various properties of nanomicelles such as size, shape, surface charge, rigidity of structure on ocular disposition need to be studied in further details to develop an efficient nanocarrier system.

  6. Controlled Ocular Drug Delivery with Nanomicelles

    PubMed Central

    Vaishya, Ravi D.; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K.

    2014-01-01

    Many vision threatening ocular diseases such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma, and proliferative vitreoretinopathy may result in blindness. Ocular drug delivery specifically to the intraocular tissues remains a challenging task due to the presence of various physiological barriers. Nonetheless, recent advancements in the field of nanomicelle based novel drug delivery system could fulfil these unmet needs. Nanomicelles consists of amphiphilic molecules that self-assemble in aqueous media to form organized supramolecular structures. Micelles can be prepared in various sizes (10 to 1000nm) and shapes depending on the molecular weights of the core and corona forming blocks. Nanomicelles have been an attractive carriers for their potential to solubilize hydrophobic molecules in aqueous solution. In addition, small size in nanometer range and highly modifiable surface properties have been reported to be advantageous in ocular drug delivery. In the present review various factors influencing rationale design of nanomicelles formulation and disposition are discussed along with case studies. Despite the progress in the field, influence of various properties of nanomicelles such as size, shape, surface charge, rigidity of structure on ocular disposition need to be studied in further details to develop an efficient nanocarrier system. PMID:24888969

  7. Approaches for drug delivery with intracortical probes.

    PubMed

    Spieth, Sven; Schumacher, Axel; Trenkle, Fabian; Brett, Olivia; Seidl, Karsten; Herwik, Stanislav; Kisban, Sebastian; Ruther, Patrick; Paul, Oliver; Aarts, Arno A A; Neves, Hercules P; Rich, P Dylan; Theobald, David E; Holtzman, Tahl; Dalley, Jeffrey W; Verhoef, Bram-Ernst; Janssen, Peter; Zengerle, Roland

    2014-08-01

    Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.

  8. A model of axonal transport drug delivery

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey V.

    2012-04-01

    In this paper a model of targeted drug delivery by means of active (motor-driven) axonal transport is developed. The model is motivated by recent experimental research by Filler et al. (A.G. Filler, G.T. Whiteside, M. Bacon, M. Frederickson, F.A. Howe, M.D. Rabinowitz, A.J. Sokoloff, T.W. Deacon, C. Abell, R. Munglani, J.R. Griffiths, B.A. Bell, A.M.L. Lever, Tri-partite complex for axonal transport drug delivery achieves pharmacological effect, Bmc Neuroscience 11 (2010) 8) that reported synthesis and pharmacological efficiency tests of a tri-partite complex designed for axonal transport drug delivery. The developed model accounts for two populations of pharmaceutical agent complexes (PACs): PACs that are transported retrogradely by dynein motors and PACs that are accumulated in the axon at the Nodes of Ranvier. The transitions between these two populations of PACs are described by first-order reactions. An analytical solution of the coupled system of transient equations describing conservations of these two populations of PACs is obtained by using Laplace transform. Numerical results for various combinations of parameter values are presented and their physical significance is discussed.

  9. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents

    PubMed Central

    Walker, Sarah R.; Chaudhury, Mousumi; Frank, David A.

    2011-01-01

    To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies. PMID:21949561

  10. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma.

    PubMed

    Li, Cheng-Jun; Liu, Xiao-Zhou; Zhang, Lei; Chen, Long-Bang; Shi, Xin; Wu, Su-Jia; Zhao, Jian-Ning

    2016-05-01

    Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma.

  11. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  12. Protein-Based Nanomedicine Platforms for Drug Delivery

    SciTech Connect

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also

  13. Phospholipid nanodisc engineering for drug delivery systems.

    PubMed

    Murakami, Tatsuya

    2012-06-01

    Biocompatible mesoscale nanoparticles (5-100 nm in diameter) are attractive tools for drug delivery. Among them are several types of liposomes and polymer micelles already in clinical trial or use. Generally, biocompatibility of such particles is achieved by coating them with polyethylene glycol (PEG). Without PEG coating, particles are quickly trapped in the reticuloendothelial system when intravenously administered. However, recent studies have revealed several potential problems with PEG coating, including antigenicity and restriction of cellular uptake. This has motivated the development of alternative drug and gene delivery vehicles, including chemically and genetically engineered high-density lipoprotein (HDL)-like nanodiscs or "bicelles". HDL is a naturally occurring mesoscale nanoparticle that normally ferries cholesterol around in the body. Its initial "nascent" form is thought to be a simple 10 nm disc of phospholipids in a bilayer, and can be easily synthesized in vitro by mixing recombinant apoA-I proteins with various phospholipids. In this review, the use of synthetic HDL-like phospholipid nanodiscs as biocompatible drug carriers is summarized, focussing on manufacturing, size-control, drug loading and cell targeting.

  14. Silk Electrogel Based Gastroretentive Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  15. Microemulsions based transdermal drug delivery systems.

    PubMed

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored. PMID:25466399

  16. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery.

    PubMed

    Islam, Nazrul; Ferro, Vito

    2016-08-14

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  17. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  18. Logical enzyme triggered (LET) layer-by-layer nanocapsules for drug delivery system

    NASA Astrophysics Data System (ADS)

    Kelley, Marie-Michelle

    Breast cancer is the second leading cause of morbidity and mortality among women in the United States. Early detection and treatment methods have resulted in 100% 5-year survival rates for stage 0-I breast cancer. Unfortunately, the 5-year survival rate of metastatic breast cancer (stage IV) is reduced fivefold. The most challenging issues of metastatic breast cancer treatment are the ability to selectively target the adenoma and adenocarcinoma cells both in their location of origin and as they metastasize following initial treatment. Multilayer/Layer-by-Layer (LbL) nanocapsules have garnered vast interest as anticancer drug delivery systems due to their ability to be easily modified, their capacity to encapsulate a wide range of chemicals and proteins, and their improved pharmacokinetics. Multilayer nanocapsule formation requires the layering of opposing charged polyelectrolytic polymers over a removable core nanoparticle. Our goal is to have a programmable nanocapsules degrade only after receiving and validating specific breast cancer biomarkers. The overall objective is to fabricate a novel programmable LbL nanocapsule with a specific logical system that will enhance functions pertinent to drug delivery systems. Our central hypothesis is that LbL technology coupled with extracellular matrix (ECM) protein substrates will result in a logical enzyme triggered LbL nanocapsule drug delivery system. This platform represents a novel approach toward a logically regulated nano-encapsulated cancer therapy that can selectively follow and deliver chemotherapeutics to cancer cells. The rationale for this project is to overcome a crucial limitation of existing drug delivery systems where chemotherapeutic can be erroneously delivered to non-carcinogenic cells.

  19. Polymeric drug delivery for the treatment of glioblastoma

    PubMed Central

    Wait, Scott D.; Prabhu, Roshan S.; Burri, Stuart H.; Atkins, Tyler G.; Asher, Anthony L.

    2015-01-01

    Glioblastoma (GBM) remains an almost universally fatal diagnosis. The current therapeutic mainstay consists of maximal safe surgical resection followed by radiation therapy (RT) with concomitant temozolomide (TMZ), followed by monthly TMZ (the “Stupp regimen”). Several chemotherapeutic agents have been shown to have modest efficacy in the treatment of high-grade glioma (HGG), but blood-brain barrier impermeability remains a major delivery obstacle. Polymeric drug-delivery systems, developed to allow controlled local release of biologically active substances for a variety of conditions, can achieve high local concentrations of active agents while limiting systemic toxicities. Polymerically delivered carmustine (BCNU) wafers, placed on the surface of the tumor-resection cavity, can potentially provide immediate chemotherapy to residual tumor cells during the standard delay between surgery and chemoradiotherapy. BCNU wafer implantation as monochemotherapy (with RT) in newly diagnosed HGG has been investigated in 2 phase III studies that reported significant increases in median overall survival. A number of studies have investigated the tumoricidal synergies of combination chemotherapy with BCNU wafers in newly diagnosed or recurrent HGG, and a primary research focus has been the integration of BCNU wafers into multimodality therapy with the standard Stupp regimen. Overall, the results of these studies have been encouraging in terms of safety and efficacy. However, the data must be qualified by the nature of the studies conducted. Currently, there are no phase III studies of BCNU wafers with the standard Stupp regimen. We review the rationale, biochemistry, pharmacokinetics, and research history (including toxicity profile) of this modality. PMID:25746091

  20. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities.

    PubMed

    Waite, Carolyn L; Roth, Charles M

    2012-01-01

    Poor penetration of anticancer drags into solid tumors significantly limits their efficacy. This phenomenon has long been observed for small-molecule chemotherapeutics, and it can be even more pronounced for nanoscale therapies. Nanoparticles have enormous potential for the treatment of cancer due to their wide applicability as drug delivery and imaging vehicles and their size-dependent accumulation into solid tumors by the enhanced permeability and retention (EPR) effect. Further, synthetic nanoparticles can be engineered to overcome barriers to drag delivery. Despite their promise for the treatment of cancer, relatively little work has been done to study and improve their ability to diffuse into solid tumors following passive accumulation in the tumor vasculature. In this review, we present the complex issues governing efficient penetration of nanoscale therapies into solid tumors. The current methods available to researchers to study nanoparticle penetration into malignant tumors are described, and the most recent works studying the penetration of nanoscale materials into solid tumors are summarized. We conclude with an overview of the important nanoparticle design parameters governing their tumor penetration, as well as by highlighting critical directions in this field.

  1. Topical Drug Delivery for Chronic Rhinosinusitis

    PubMed Central

    Liang, Jonathan; Lane, Andrew P.

    2013-01-01

    Chronic rhinosinusitis is a multifactorial disorder that may be heterogeneous in presentation and clinical course. While the introduction of endoscopic sinus surgery revolutionized surgical management and has led to significantly improved patient outcomes, medical therapy remains the foundation of long-term care of chronic rhinosinusitis, particularly in surgically recalcitrant cases. A variety of devices and pharmaceutical agents have been developed to apply topical medical therapy to the sinuses, taking advantage of the access provided by endoscopic surgery. The goal of topical therapy is to address the inflammation, infection, and mucociliary dysfunction that underlies the disease. Major factors that impact success include the patient’s sinus anatomy and the dynamics of the delivery device. Despite a growing number of topical treatment options, the evidence-based literature to support their use is limited. In this article, we comprehensively review current delivery methods and the available topical agents. We also discuss biotechnological advances that promise enhanced delivery in the future, and evolving pharmacotherapeutical compounds that may be added to rhinologist’s armamentarium. A complete understand of topical drug delivery is increasingly essential to the management of chronic rhinosinusitis when traditional forms of medical therapy and surgery have failed. PMID:23525506

  2. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  3. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    PubMed

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.

  4. Drug transport and drug delivery--the Midnight Sun meeting.

    PubMed

    Uchegbu, Ijeoma F

    2004-08-01

    The Midnight Sun Meeting on Drug Transport and Drug Delivery was held on the island of Tromso in northern Norway, where the sun does not set for 2 months during the summer. The meeting was hosted by the University of Tromso's newly established Institute of Pharmacy and the Controlled Release Society (Nordic Chapter). The meeting, attended by approximately 80 delegates from across Europe, showcased recent advances in drug transport through biological barriers, solid-state pharmaceuticals and particulate drug delivery systems. This report will focus on the particulate and solid-state pharmaceuticals sessions, in which lectures were given to demonstrate the benefits in cognitive function associated with omega-3 fish oils, the increase in drug release rates observed on the processing-induced deformation of tablet granules, and the size of polymeric particulates being directly and linearly related to the molecular weight of a polymer. The meeting was held as a single-session event, giving delegates the opportunity to attend all presentations. There was a small poster and exhibitor display, and the meeting attracted sponsorship from a number of companies, namely Polypure AS, Weifa AS, ProBioNeutraceuticals AS, Lipoid GmbH, Clavis Pharma AS and Thermometric AB.

  5. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    PubMed Central

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans. PMID:23326195

  6. Adenovirus Dodecahedron, as a Drug Delivery Vector

    PubMed Central

    Zochowska, Monika; Paca, Agnieszka; Schoehn, Guy; Andrieu, Jean-Pierre; Chroboczek, Jadwiga; Dublet, Bernard; Szolajska, Ewa

    2009-01-01

    Background Bleomycin (BLM) is an anticancer antibiotic used in many cancer regimens. Its utility is limited by systemic toxicity and dose-dependent pneumonitis able to progress to lung fibrosis. The latter can affect up to nearly 50% of the total patient population, out of which 3% will die. We propose to improve BLM delivery by tethering it to an efficient delivery vector. Adenovirus (Ad) dodecahedron base (DB) is a particulate vector composed of 12 copies of a pentameric viral protein responsible for virus penetration. The vector efficiently penetrates the plasma membrane, is liberated in the cytoplasm and has a propensity to concentrate around the nucleus; up to 300000 particles can be observed in one cell in vitro. Principal Findings Dodecahedron (Dd) structure is preserved at up to about 50°C at pH 7–8 and during dialysis, freezing and drying in the speed-vac in the presence of 150 mM ammonium sulfate, as well as during lyophilization in the presence of cryoprotectants. The vector is also stable in human serum for 2 h at 37°C. We prepared a Dd-BLM conjugate which upon penetration induced death of transformed cells. Similarly to free bleomycin, Dd-BLM caused dsDNA breaks. Significantly, effective cytotoxic concentration of BLM delivered with Dd was 100 times lower than that of free bleomycin. Conclusions/Significance Stability studies show that Dds can be conveniently stored and transported, and can potentially be used for therapeutic purposes under various climates. Successful BLM delivery by Ad Dds demonstrates that the use of virus like particle (VLP) results in significantly improved drug bioavailability. These experiments open new vistas for delivery of non-permeant labile drugs. PMID:19440379

  7. Micro- and nano-fabricated implantable drug-delivery systems

    PubMed Central

    Meng, Ellis; Hoang, Tuan

    2013-01-01

    Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted. PMID:23323562

  8. Enhancement of therapeutic drug and DNA delivery into cells by electroporation* Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    NASA Astrophysics Data System (ADS)

    Rabussay, Dietmar; Dev, Nagendu B.; Fewell, Jason; Smith, Louis C.; Widera, Georg; Zhang, Lei

    2003-02-01

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as `electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing `pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm-1 generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes. The safety and pharmaco

  9. Recent approaches for reducing hemolytic activity of chemotherapeutic agents.

    PubMed

    Jeswani, Gunjan; Alexander, Amit; Saraf, Shailendra; Saraf, Swarnlata; Qureshi, Azra; Ajazuddin

    2015-08-10

    Drug induced hemolysis is a frequent complication associated with chemotherapy. It results from interaction of drug with erythrocyte membrane and leads to cell lysis. In recent past, various approaches were made to reduce drug-induced hemolysis, which includes drug polymer conjugation, drug delivery via colloidal carriers and hydrogels, co-administration of botanical agents and modification in molecular chemistry of drug molecules. The basic concept behind these strategies is to protect the red blood cells from membrane damaging effects of drugs. There are several examples of drug polymer conjugate that either are approved by Food and Drug Administration or are under clinical trial for delivering drugs with reduced toxicities. Likewise, colloidal carriers are also used successfully nowadays for the delivery of various chemotherapeutic agents like gemcitabine and amphotericin B with remarkable decrease in their hemolytic activity. Similarly, co-administration of botanical agents with drugs works as secondary system proving protection and strength to erythrocyte membranes. In addition to the above statement, interaction hindrance between RBC and drug molecule by molecular modification plays an important role in reducing hemolysis. This review predominantly describes the above recent approaches explored to achieve the reduced hemolytic activity of drugs especially chemotherapeutic agents. PMID:26047758

  10. Biomedical Imaging in Implantable Drug Delivery Systems

    PubMed Central

    Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.

    2015-01-01

    Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857

  11. Provesicles as novel drug delivery systems.

    PubMed

    Bayindir, Zerrin S; Yuksel, Nilufer

    2015-01-01

    Vesicular systems exhibit many attractive properties such as controlled drug release, ability to carry both hydrophilic and hydrophobic drugs, targetability and good biocompatibility. With these unique properties they can provide improved drug bioavailability and reduced side effects. Until now, many vesicular formulations have been studied in clinical and preclinical stages. Nevertheless, the major concern about these systems is their low physicochemical stability and high manufacturing expenses. The stability problems (fusion, aggregation, sedimentation, swelling, and drug leakage during storage) associated with the aqueous nature of vesicular systems hinders their effective usage. The advances on improving the stability of vesicular systems led to the emergence of provesicular systems, which are commonly described as dry, free flowing preformulations of vesicular drug delivery systems. Provesicles form vesicular systems upon hydratation with water and exhibit the advantages of vesicular systems with improved stability. The present article briefly reviews vesicular systems (particularly liposomes and niosomes) and enlightens about the innovations in the field. Overall investigations are reviewed and the provesicle approach is explained by giving detailed information on the composition, preparation, administration and characterization methods of provesicular systems (proliposomes and proniosomes). The scope of this article is expected to give insight to the researchers and industrialists to perform further research in this area. PMID:25658383

  12. Laser assisted Drug Delivery: Grundlagen und Praxis.

    PubMed

    Braun, Stephan Alexander; Schrumpf, Holger; Buhren, Bettina Alexandra; Homey, Bernhard; Gerber, Peter Arne

    2016-05-01

    Die topische Applikation von Wirkstoffen ist eine zentrale Therapieoption der Dermatologie. Allerdings mindert die effektive Barrierefunktion der Haut die Bioverfügbarkeit der meisten Externa. Fraktionierte ablative Laser stellen ein innovatives Verfahren dar, um die epidermale Barriere standardisiert, kontaktfrei zu überwinden. Die Bioverfügbarkeit im Anschluss applizierter Externa wird im Sinne einer laser assisted drug delivery (LADD) signifikant gesteigert. Das Prinzip der LADD wird bereits in einigen Bereichen der Dermatologie erfolgreich eingesetzt. Die vorliegende Übersichtsarbeit soll einen Überblick über die aktuellen aber auch perspektivischen Einsatzmöglichkeiten der LADD bieten. PMID:27119467

  13. Dendrimer based nanotherapeutics for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Kambhampati, Siva Pramodh

    PAMAM dendrimers are a class of well-defined, hyperbranched polymeric nanocarriers that are being investigated for ocular drug and gene delivery. Their favorable properties such as small size, multivalency and water solubility can provide significant opportunities for many biologically unstable drugs and allows potentially favorable ocular biodistribution. This work exploits hydroxyl terminated dendrimers (G4-OH) as drug/gene delivery vehicles that can target retinal microglia and pigment epithelium via systemic delivery with improved efficacy at much lower concentrations without any side effects. Two different drugs Triamcinolone acetonide (TA) and N-Acetyl Cysteine (NAC) conjugated to G4-OH dendrimers showed tailorable sustained release in physiological relevant solutions and were evaluated in-vitro and in-vivo. Dendrimer-TA conjugates enhanced the solubility of TA and were 100 fold more effective at lower concentrations than free TA in its anti-inflammatory activity in activated microglia and in suppressing VEGF production in hypoxic RPE cells. Dendrimers targeted activated microglia/macrophages and RPE and retained for a period of 21 days in I/R mice model. The relative retention of intravitreal and intravenous dendrimers was comparable, if a 30-fold intravenous dose is used; suggesting intravenous route targeting retinal diseases are possible with dendrimers. D-NAC when injected intravenously attenuated retinal and choroidal inflammation, significantly reduced (˜73%) CNV growth at early stage of AMD in rat model of CNV. A combination therapy of D-NAC + D-TA significantly suppressed microglial activation and promoted CNV regression in late stages of AMD without causing side-effects. G4-OH was modified with linker having minimal amine groups and incorporation of TA as a nuclear localization enhancer resulted in compact gene vectors with favorable safety profile and achieved high levels of transgene expression in hard to transfect human retinal pigment

  14. Stability of nanosuspensions in drug delivery.

    PubMed

    Wang, Yancai; Zheng, Ying; Zhang, Ling; Wang, Qiwei; Zhang, Dianrui

    2013-12-28

    Nanosuspensions are nanosized colloidal dispersion systems that are stabilized by surfactants and/or polymers. Because nanosizing results in the creation of new interfaces and in a positive Gibbs free energy change, nanosuspensions are thermodynamically unstable systems with a tendency toward agglomeration or crystal growth. Despite extensive research on nanosuspension technology, stability remains a limitation for pharmaceutical or industrial applications of nanosuspensions. Furthermore, the empirical relationship between stabilizer efficacy and nanosuspension stability has not been well characterized. This review focuses on the issue of nanosuspension stability in drug delivery to present the state of the art of nanosuspensions. Therefore, this review will discuss unstable suspensions, methods and guidelines for selecting and optimizing stabilizers, approaches for enhancing stability, and other factors that influence nanosuspension stability. This review could serve as a reference for the educated selection of a stabilizer for a specific drug candidate and the optimization of the operational parameters for nanosuspension formulation, rather than the currently practiced trial-and-error approach.

  15. Implantable microchip: the futuristic controlled drug delivery system.

    PubMed

    Sutradhar, Kumar Bishwajit; Sumi, Chandra Datta

    2016-01-01

    There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized.

  16. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.

    PubMed

    Sharma, Harshita; Kumar, Krishan; Choudhary, Chetan; Mishra, Pawan K; Vaidya, Bhuvaneshwar

    2016-01-01

    The aim of the study was to prepare chemotherapeutic agent-loaded zinc oxide nanoparticles for the intracellular delivery of drug, for better therapeutic activity. Zinc oxide nanoparticles have inherent anticancer properties, hence it was envisaged that by loading the anticancer drug into zinc oxide nanoparticles, enhanced anticancer activity might be observed. Zinc oxide nanoparticles were prepared using zinc nitrate and sodium hydroxide. Starch was used as the stabilizing agent. The nanoparticles prepared were characterized for size, shape, entrapment efficiency, and drug release. Further, cell line studies were performed to evaluate cellular uptake and cytotoxicity profile using MCF-7 cells. A hemolysis study was performed to check the acute toxicity of the nanoparticles. The nanoparticles were found to be 476.4 ± 2.51 nm in size, with low PDI (0.312 ± 0.02) and high entrapment efficiency (> 85%). The nanoparticles were stable, and did not form aggregates on storage in the dispersed form. A cytotoxicity study demonstrated that drug-loaded zinc oxide nanoparticles exhibited higher anticancer activity as compared to either blank zinc oxide nanoparticles and doxorubicin (DOX) alone, or their mixture. A hemolytic test revealed that the prepared zinc oxide nanoparticles caused negligible hemolysis. Thus, it can be concluded that zinc oxide nanoparticles loaded with DOX resulted in better uptake of the chemotherapeutic agent, and at the same time, showed low toxicity towards normal cells.

  17. Ultrasound-Propelled Nanocups for Drug Delivery

    PubMed Central

    Kwan, James J; Myers, Rachel; Coviello, Christian M; Graham, Susan M; Shah, Apurva R; Stride, Eleanor; Carlisle, Robert C; Coussios, Constantin C

    2015-01-01

    Ultrasound-induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation-promoting agents are micron-sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound-responsive single-cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof-of-concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound-propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications. PMID:26296985

  18. Smart Nanoparticles for Drug Delivery: Boundaries and Opportunities

    PubMed Central

    Lee, Byung Kook; Yun, Yeon Hee; Park, Kinam

    2014-01-01

    Various pharmaceutical particles have been used in developing different drug delivery systems ranging from traditional tablets to state-of-the-art nanoparticle formulations. Nanoparticle formulations are unique in that the small size with huge surface area sometimes provides unique properties that larger particles and bulk materials do not have. Nanoparticle formulations have been used in improving the bioavailability of various drugs, in particular, poorly soluble drugs. Nanoparticle drug delivery systems have found their unique applications in targeted drug delivery to tumors. While nanoparticle formulations have been successful in small animal xenograft models, their translation to clinical applications has been very rare. Developing nanoparticle systems designed for targeted drug delivery, e.g., treating tumors in humans, requires clear understanding of the uniqueness of nanoparticles, as well as limitations and causes of failures in clinical applications. It also requires designing novel smart nanoparticle delivery systems that can increase the drug bioavailability and at the same time reduce the drug's side effects. PMID:25684780

  19. Vascular Permeability and Drug Delivery in Cancers

    PubMed Central

    Azzi, Sandy; Hebda, Jagoda K.; Gavard, Julie

    2013-01-01

    The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents. PMID:23967403

  20. Challenges in modelling nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Barnard, Amanda S.

    2016-01-01

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar.

  1. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  2. Cooperative assembly in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  3. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.

  4. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  5. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy.

    PubMed

    Vivek, Raju; Thangam, Ramar; NipunBabu, Varukattu; Rejeeth, Chandrababu; Sivasubramanian, Srinivasan; Gunasekaran, Palani; Muthuchelian, Krishnasamy; Kannan, Soundarapandian

    2014-05-14

    Nanotechnology-based medical approaches have made tremendous potential for enhancing the treatment efficacy with minimal doses of chemotherapeutic drugs against cancer. In this study, using tamoxifen (Tam), biodegradable antibody conjugated polymeric nanoparticles (NPs) was developed to achieve targeted delivery as well as sustained release of the drug against breast cancer cells. Poly(D,L-lactic-co-glycolic acid) (PLGA) NPs were stabilized by coating with poly(vinyl alcohol) (PVA), and copolymer polyvinyl-pyrrolidone (PVP) was used to conjugate herceptin (antibody) with PLGA NPs for promoting the site-specific intracellular delivery of Tam against HER2 receptor overexpressed breast cancer (MCF-7) cells. The Tam-loaded PVP-PLGA NPs and herceptin-conjugated Tam-loaded PVP-PLGA NPs were characterized in terms of morphology, size, surface charge, and structural chemistry by dynamic light scattering (DLS), Transmission electron microscopy (TEM), ζ potential analysis, 1H nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectroscopy. pH-based drug release property and the anticancer activity (in vitro and in vivo models) of the herceptin conjugated polymeric NPs were evaluated by flow cytometry and confocal image analysis. Besides, the extent of cellular uptake of drug via HER2 receptor-mediated endocytosis by herceptin-conjugated Tam-loaded PVP-PLGA NPs was examined. Furthermore, the possible signaling pathway of apoptotic induction in MCF-7 cells was explored by Western blotting, and it was demonstrated that drug-loaded PLGA NPs were capable of inducing apoptosis in a caspase-dependent manner. Hence, this nanocarrier drug delivery system (DDS) not only actively targets a multidrug-resistance (MDR) associated phenotype (HER2 receptor overexpression) but also improves therapeutic efficiency by enhancing the cancer cell targeted delivery and sustained release of therapeutic agents. PMID:24780315

  6. Spatiotemporally synchronized cancer combination therapy using photo-activated nanoparticle drug delivery systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hasan, Tayyaba

    2016-03-01

    This talk will introduce a new nanotechnology platform for cancer combination therapy that utilizes near infrared light activation not only for photodynamic damage but also as an extrinsic mechanism to initiate release of complimentary drugs to suppress dynamic bursts in molecular signaling networks that promote tumor cell survival and treatment escape. The goal is to achieve co-delivery with concomitant activity of photodynamic, molecular inhibitor and chemotherapeutic agents, selectively within the tumor. This approach overcomes challenges in achieving synergistic interactions using sequential drug delivery. Conventional drug delivery is compromised by the differential pharmacokinetics of individual agents and potentially antagonistic effects—such as vascular shutdown by one agent that limits delivery of the second. Here, photodynamic damage—which efficiently kills drug-resistant cells via damage of common proteins involved in drug-resistance (such as anti-apoptosis factors and drug-efflux transporters)—is synchronized spatially and temporally with the photo-initiated release of complimentary agents—to enable full interaction amongst the individual therapies. This spatiotemporal synchronization offers new prospects for exploiting time-sensitive synergistic interactions. Specific implementations of these concepts will be presented in preclinical models of cancer. Strategies to enable molecular-targeting of cancer cells via site-specific attachment of targeting moieties to the outer lipid shell of these nanovehicles will also be discussed. If successful in humans, this new paradigm for synchronized, tumor-focused combination therapy will ultimately supersede the present use of chronic drug injection by increasing efficacy per cycle whilst reducing systemic exposure to toxic drugs.

  7. Dendrimeric micelles for controlled drug release and targeted delivery

    PubMed Central

    Ambade, Ashootosh V.; Savariar, Elamprakash N.; Thayumanavan, S.

    2008-01-01

    This review highlights the developments in dendrimer-based micelles for drug delivery. Dendrimers, the perfectly branched monodisperse macromolecules, have certain structural advantages that make them attractive candidates as drug carriers for controlled release or targeted delivery. As polymeric micelle-based approaches precede the work in dendrimers, these are also discussed briefly. The review concludes with a perspective on possible applications of biaryl-based dendrimeric micelles that exhibit environment-dependent conformations, in drug delivery. PMID:16053329

  8. Two Important Polysaccharides as Carriers for Drug Delivery.

    PubMed

    Huang, Gangliang; Chen, Yingli; Li, Yue; Huang, Dan; Han, Jie; Yang, Min

    2015-01-01

    Chitosan can be used to prepare the carriers, such as nanoparticles (NPs), intelligent gels, microspheres, nano/microencapsulation, and so on. Its applications in the drug delivery are more broad. Dextran can be combined with drugs by non-covalent crosslinking method or covalent modification mode in the course of delivery. The applications of chitosan and dextran as carriers for drug delivery were summed up herein. PMID:26156418

  9. Intrathecal Drug Delivery (ITDD) systems for cancer pain

    PubMed Central

    Bhatia, Gaurav; Lau, Mary E; Koury, Katharine M; Gulur, Padma

    2014-01-01

    Intrathecal drug delivery is an effective pain management option for patients with chronic and cancer pain. The delivery of drugs into the intrathecal space provides superior analgesia with smaller doses of analgesics to minimize side effects while significantly improving quality of life. This article aims to provide a general overview of the use of intrathecal drug delivery to manage pain, dosing recommendations, potential risks and complications, and growing trends in the field. PMID:24555051

  10. Lipoidal Soft Hybrid Biocarriers of Supramolecular Construction for Drug Delivery

    PubMed Central

    Kumar, Dinesh; Sharma, Deepak; Singh, Gurmeet; Singh, Mankaran; Rathore, Mahendra Singh

    2012-01-01

    Lipid-based innovations have achieved new heights during the last few years as an essential component of drug development. The current challenge of drug delivery is liberation of drug agents at the right time in a safe and reproducible manner to a specific target site. A number of novel drug delivery systems has emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery. Microparticulate lipoidal vesicular system represents a unique technology platform suitable for the oral and systemic administration of a wide variety of molecules with important therapeutic biological activities, including drugs, genes, and vaccine antigens. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. Also, novel lipid carrier-mediated vesicular systems are originated. This paper has focused on the lipid-based supramolecular vesicular carriers that are used in various drug delivery and drug targeting systems. PMID:22888455

  11. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was

  12. Local arterial wall drug delivery using balloon catheter system.

    PubMed

    Tesfamariam, Belay

    2016-09-28

    Balloon-based drug delivery systems allow localized application of drugs to a vascular segment to reduce neointimal hyperplasia and restenosis. Drugs are coated onto balloons using excipients as drug carriers to facilitate adherence and release of drug during balloon inflation. Drug-coated balloon delivery system is characterized by a rapid drug transfer that achieves high drug concentration along the vessel wall surface, intended to correspond to the balloon dilation-induced vascular injury and healing processes. The balloon catheter system allows homogenous drug delivery to the vessel wall, such that the drug release per unit surface area is kept constant along balloons of different lengths. Optimization of the balloon coating matrix is essential for efficient drug transfer and tissue retention until the artery remodels to a normal set point. Challenges in the development of balloon-based drug delivery to the arterial wall include finding suitable excipients for drug formulation to enable drug release to a targeted lesion site effectively, maintain coating integrity during transit, prolong tissue retention and reduce particulate generation. This review highlights various factors involved in the successful design of balloon-based delivery systems, including drug release kinetics, matrix coating transfer, transmural drug partitioning, dissolution rate and release of unbound active drug. PMID:27473765

  13. Polymeric carriers: role of geometry in drug delivery

    PubMed Central

    Simone, Eric A; Dziubla, Thomas D; Muzykantov, Vladimir R

    2009-01-01

    The unique properties of synthetic nanostructures promise a diverse set of applications as carriers for drug delivery, which are advantageous in terms of biocompatibility, pharmacokinetics, targeting and controlled drug release. Historically, more traditional drug delivery systems have focused on spherical carriers. However, there is a growing interest in pursuing non-spherical carriers, such as elongated or filamentous morphologies, now available due to novel formulation strategies. Unique physiochemical properties of these supramolecular structures offer distinct advantages as drug delivery systems. In particular, results of recent studies in cell cultures and lab animals indicate that rational design of carriers of a given geometry (size and shape) offers an unprecedented control of their longevity in circulation and targeting to selected cellular and subcellular locations. This article reviews drug delivery aspects of non-spherical drug delivery systems, including material selection and formulation, drug loading and release, biocompatibility, circulation behavior, targeting and subcellular addressing. PMID:19040392

  14. Extended Release Drug Delivery Strategies in Psychiatry

    PubMed Central

    2005-01-01

    Objective: An overview of the emerging field of long-term delivery strategies for improved convenience and adherence with psychiatric medications is provided. This review is motivated by the hypothesis that adherence to treatment is an important determinant of clinical outcomes in a wide range of settings and is particularly important in psychiatry practice where patients require treatment for months or years and premature discontinuation can have serious consequences for patient health and quality of life. Design: The author reviews the relevant literature and highlights several approaches to providing improved access to continuous medication through new and innovative delivery strategies ranging from days to annual intervals. Benefits and Disadvantages: Several solutions to the problem of discontinuous access to pharmacotherapy are being developed in the form of new, long-acting drug-delivery systems, which gradually release medication over a period of several days or weeks with a single application. Long-acting formulations of psychiatric medications offer a number of potential benefits in comparison with conventional immediate-release agents, including improved safety and effectiveness. Potential limitations to using long-acting formulations may include pain and discomfort at the injection site, perceived inconvenience of a new treatment method, preference for oral medications, and length of time to titrate down to the lowest effective dose. Conclusions: The introduction of new, long-acting drug formulations could provide significant improvements in clinical outcomes and patient satisfaction for many patients, including those with affective disorders, schizophrenia, and alcohol dependence. Switching from oral administration to these new agents requires careful monitoring to reach the optimal dose, and patient concerns regarding the use of new delivery methods must be addressed. Long-acting formulations are not intended to be a sole form of treatment, and the

  15. Controlled drug delivery systems: past forward and future back.

    PubMed

    Park, Kinam

    2014-09-28

    Controlled drug delivery technology has progressed over the last six decades. This progression began in 1952 with the introduction of the first sustained release formulation. The 1st generation of drug delivery (1950-1980) focused on developing oral and transdermal sustained release systems and establishing controlled drug release mechanisms. The 2nd generation (1980-2010) was dedicated to the development of zero-order release systems, self-regulated drug delivery systems, long-term depot formulations, and nanotechnology-based delivery systems. The latter part of the 2nd generation was largely focused on studying nanoparticle formulations. The Journal of Controlled Release (JCR) has played a pivotal role in the 2nd generation of drug delivery technologies, and it will continue playing a leading role in the next generation. The best path towards a productive 3rd generation of drug delivery technology requires an honest, open dialog without any preconceived ideas of the past. The drug delivery field needs to take a bold approach to designing future drug delivery formulations primarily based on today's necessities, to produce the necessary innovations. The JCR provides a forum for sharing the new ideas that will shape the 3rd generation of drug delivery technology.

  16. ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy

    NASA Astrophysics Data System (ADS)

    Fang, Shengtao; Wu, Lei; Li, Mingxing; Yi, Huqiang; Gao, Guanhui; Sheng, Zonghai; Gong, Ping; Ma, Yifan; Cai, Lintao

    2014-08-01

    Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced metastasis in the lung. When DOX and siRNA were co-delivered by the nanocarriers (siRNA-DOX-NP), a synergistic therapeutic effect was observed, resulting in dramatic inhibition of tumor growth in a H460 xenograft model. These results demonstrated that the siRNA-NP or siRNA-DOX-NP complex targeting ZEB1 could be developed into a new therapeutic approach for non-small cell lung cancer (NSCLC) treatment.Metastasis and drug resistance are the main causes for the failure in clinical cancer therapy. Emerging evidence suggests an intricate role of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) in metastasis and drug resistance. The EMT-activator ZEB1 is crucial in malignant tumor progression by linking EMT-activation and stemness-maintenance. Here, we used multifunctional polypeptide micelle nanoparticles (NP) as nanocarriers for the delivery of ZEB1 siRNA and doxorubicin (DOX). The nanocarriers could effectively deliver siRNA to the cytoplasm and knockdown the target gene in H460 cells and H460 xenograft tumors, leading to reduced EMT and repressed CSC properties in vitro and in vivo. The complex micelle nanoparticles with ZEB1 siRNA (siRNA-NP) significantly reduced

  17. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was

  18. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  19. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    PubMed

    Raz, Nasibeh Rady; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes.

  20. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    PubMed

    Raz, Nasibeh Rady; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes. PMID:26529771

  1. Microencapsulation: A promising technique for controlled drug delivery

    PubMed Central

    Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.

    2010-01-01

    Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795

  2. Approaches to Neural Tissue Engineering Using Scaffolds for Drug Delivery

    PubMed Central

    Willerth, Stephanie M.; Sakiyama-Elbert, Shelly E.

    2007-01-01

    This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented. PMID:17482308

  3. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles

    PubMed Central

    Trivedi, Ruchit; Kompella, Uday B

    2010-01-01

    Micellar delivery systems smaller than 100 nm can be readily prepared. While micelles allow a great depth of tissue penetration for targeted drug delivery, they usually disintegrate rapidly in the body. Thus, sustained drug delivery from micellar nanocarriers is a challenge. This article summarizes various key strategies and underlying principles for sustained drug delivery using micellar nanocarriers. Comparisons are made with other competing delivery systems such as polymeric microparticles and nanoparticles. Amphiphilic molecules self-assemble in appropriate liquid media to form nanoscale micelles. Strategies for sustained release nanomicellar carriers include use of prodrugs, drug polymer conjugates, novel polymers with low critical micellar concentration or of a reverse thermoresponsive nature, reverse micelles, multi-layer micelles with layer by layer assembly, polymeric films capable of forming micelles in vivo and micelle coats on a solid support. These new micellar systems are promising for sustained drug delivery. PMID:20394539

  4. Impact and mechanism of non-steroidal anti-inflammatory drugs combined with chemotherapeutic drugs on human lung cancer-nude mouse transplanted tumors

    PubMed Central

    SUN, WEIYI; CHEN, GANG

    2016-01-01

    The present study aimed to investigate the impact of indomethacin treatment combined with oxaliplatin treatment on the expression of cluster of differentiation 44 variant 6 (CD44v6), matrix metalloproteinase-2 (MMP-2) and survivin in human lung cancer-nude mouse transplanted tumors. The human lung adenocarcinoma (A549)-nude mouse transplanted tumor model was established, and the mice were divided into a control group, an indomethacin treatment group, an oxaliplatin treatment group and an indomethacin-oxaliplatin combination treatment group. The tumor inhibition rate was calculated following sacrificing of the mice. Immunohistochemical staining and fluorescence reverse transcription-quantitative polymerase chain reaction were utilized to detect the protein and messenger (m)RNA expression of CD44v6, MMP-2 and survivin. The tumor inhibition rates of the indomethacin group, the oxaliplatin group and the combination group were 26.67, 47.70 and 68.88%, respectively. The protein and mRNA expression levels of CD44v6, MMP-2 and survivin in the transplanted tumors of each treatment group were reduced compared with the control group (P<0.05), and those of the combination group were lower compared with the single-drug treatment groups (P<0.05). Survivin and MMP-2, MMP-2 and CD44v6, and MMP-2 and CD44v6 all exhibited linear positive correlation. The present study provides evidence that the administration of indomethacin alone, or in combination with oxaliplatin, may significantly inhibit the growth of lung cancer-nude mouse transplanted tumors and the expression of CD44v6, MMP-2 and survivin inside the tumor. The combination of non-steroidal anti-inflammatory drugs with chemotherapeutic drugs may improve the antitumor effects. PMID:27313765

  5. Click chemistry for drug delivery nanosystems.

    PubMed

    Lallana, Enrique; Sousa-Herves, Ana; Fernandez-Trillo, Francisco; Riguera, Ricardo; Fernandez-Megia, Eduardo

    2012-01-01

    The purpose of this Expert Review is to discuss the impact of click chemistry in nanosized drug delivery systems. Since the introduction of the click concept by Sharpless and coworkers in 2001, numerous examples of click reactions have been reported for the preparation and functionalization of polymeric micelles and nanoparticles, liposomes and polymersomes, capsules, microspheres, metal and silica nanoparticles, carbon nanotubes and fullerenes, or bionanoparticles. Among these click processes, Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has attracted most attention based on its high orthogonality, reliability, and experimental simplicity for non-specialists. A renewed interest in the use of efficient classical transformations has been also observed (e.g., thiol-ene coupling, Michael addition, Diels-Alder). Special emphasis is also devoted to critically discuss the click concept, as well as practical aspects of application of CuAAC to ensure efficient and harmless bioconjugation.

  6. Drug delivery by organ-specific immunoliposomes

    SciTech Connect

    Maruyama, Kazuo; Mori, Atsuhide; Hunag, Leaf . Dept. of Biochemistry); Kennel, S.J. )

    1990-01-01

    Monoclonal antibodies highly specific to the mouse pulmonary endothelial cells were conjugated to liposomes. The resulting immunoliposomes showed high levels of lung accumulation when injected intravenously into mice. Optimal target binding and retention were achieved if the lipid composition included ganglioside GM{sub 1} to reduce the uptake of immunoliposomes by the reticuloendothelial system. Details of the construction and optimization of these organ-specific immunoliposomes are reviewed. The drug delivery potential of this novel liposome system was demonstrated in an experimental pulmonary metastasis model. Immunoliposomes containing a lipophilic prodrug of deoxyfluorouridine effectively prolonged the survival time of the tumor-bearing mice. This and other therapeutic applications of the immunoliposomes are discussed. 25 refs., 5 figs.

  7. Advances in Nanocarriers for Anticancer Drugs Delivery.

    PubMed

    Ali, Imran; Lone, Mohammad Nadeem; Suhail, Mohammad; Mukhtar, Sofi Danish; Asnin, Leonid

    2016-01-01

    Cancer is the most dangerous disease to haunt the mankind in the world today. Generally, the overall cancer mortality rates are similar in both the sexes. The reasons for most of these deaths are inefficacy and failure of the current methods of treatments or the unavailability of treatment options. The researchers of the world are actively integrating nanotechnology of treating of various cancers. The development of smart nanocarriers is one of the most important innovations in this direction. The nanocarriers of the different materials are being developed to improve the efficacy of current treatments. The present article describes the role of nanotechnology in cancer treatment emphasizing cancer nanotherapy, nanocarriers for drug delivery, types and the mechanisms of the nanocarriers. Besides, the efforts are made to discuss the recent advances in the nanocarriers, current challenges and the future prospective. PMID:27048343

  8. Effect of nanoparticles on transdermal drug delivery.

    PubMed

    Cappel, M J; Kreuter, J

    1991-01-01

    The purpose of the present study was to assess by in vitro means the effect of poly (methylmethacrylate) nanoparticles and poly (butylcyanoacrylate) nanoparticles on transdermal drug delivery. Methanol and octanol were chosen as test permeants. In order to distinguish between thermodynamic effect and those due to biological consequences, two different membranes were employed, i.e., full thickness hairless mouse skin and silicone elastomer sheeting (175 microns). It is evident that poly (methylmethacrylate) nanoparticles and poly (butylcyanoacrylate) nanoparticles increase the permeability of methanol through hairless mouse skin by a factor of 1.2-2. The permeability of lipophilic octanol is either unaffected by nanoparticles or decreases as a function of nanoparticle concentration depending on the lipophilicity of the polymer material.

  9. Enzyme-responsive nanomaterials for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2014-10-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.

  10. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery

    PubMed Central

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2015-01-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug release have achieved significant development and been studied as an important class of drug delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024

  11. Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    PubMed Central

    Mo, Jingxin; Eggers, Paul K.; Yuan, Zhi-xiang; Raston, Colin L.; Lim, Lee Yong

    2016-01-01

    A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells. PMID:27009430

  12. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology

    NASA Astrophysics Data System (ADS)

    Levi-Polyachenko, Nicole H.; Carroll, David L.; Stewart, John H.

    The goal of this chapter is to introduce carbon nanomaterials and highlight research focused on their use as cancer therapeutics. The physical properties of fullerenes and carbon nanotubes, including their spectral characteristics are described. Current oncology treatment regimes are described to provide an overview of where carbon nanomaterials may have significant value in further development of the established standards of care procedures. Photodynamic therapy and drug delivery using fullerene C60 is explored. Thermal ablation techniques using carbon nanotubes are explained and alternate hyperthermic methods using carbon nanotubes are described. Specifically, carbon nanotubes are examined for their potential contribution to the currently practiced clinical therapy intraperitoneal hyperthermic chemoperfusion. Nanotubes and nanohorns filled with chemotherapeutic agents are examined as are different methods for filling and containment of drug moieties. The attachment of active molecules to fullerenes is described with examples for use in oncology. Toxicity issues are explored and the future directions and potential for carbon nanomaterial types concludes the chapter.

  13. Detection and drug delivery from superhydrophobic materials

    NASA Astrophysics Data System (ADS)

    Falde, Eric John

    The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.

  14. Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors

    PubMed Central

    Luk, Brian T.; Fang, Ronnie H.; Hu, Che-Ming J.; Copp, Jonathan A.; Thamphiwatana, Soracha; Dehaini, Diana; Gao, Weiwei; Zhang, Kang; Li, Shulin; Zhang, Liangfang

    2016-01-01

    The therapeutic potential of nanoparticle-based drug carriers depends largely on their ability to evade the host immune system while delivering their cargo safely to the site of action. Of particular interest are simple strategies for the functionalization of nanoparticle surfaces that are both inherently safe and can also bestow immunoevasive properties, allowing for extended blood circulation times. Here, we evaluated a recently reported cell membrane-coated nanoparticle platform as a drug delivery vehicle for the treatment of a murine model of lymphoma. These biomimetic nanoparticles, consisting of a biodegradable polymeric material cloaked with natural red blood cell membrane, were shown to efficiently deliver a model chemotherapeutic, doxorubicin, to solid tumor sites for significantly increased tumor growth inhibition compared with conventional free drug treatment. Importantly, the nanoparticles also showed excellent immunocompatibility as well as an advantageous safety profile compared with the free drug, making them attractive for potential translation. This study demonstrates the promise of using a biomembrane-coating approach as the basis for the design of functional, safe, and immunocompatible nanocarriers for cancer drug delivery. PMID:27217833

  15. Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite for targeted drug delivery

    SciTech Connect

    Gu, Lina; He, Xiaomei; Wu, Zhenyu

    2014-11-15

    Highlights: • Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe{sub 3}O{sub 4}/hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug release behavior of Fe{sub 3}O{sub 4}/HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe{sub 3}O{sub 4}/hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery.

  16. Nilotinib enhances the efficacy of conventional chemotherapeutic drugs in CD34⁺CD38⁻ stem cells and ABC transporter overexpressing leukemia cells.

    PubMed

    Wang, Fang; Wang, Xiao-Kun; Shi, Cheng-Jun; Zhang, Hui; Hu, Ya-Peng; Chen, Yi-Fan; Fu, Li-Wu

    2014-03-19

    Incomplete chemotherapeutic eradication of leukemic CD34⁺CD38⁻ stem cells is likely to result in disease relapse. The purpose of this study was to evaluate the effect of nilotinib on eradicating leukemia stem cells and enhancing the efficacy of chemotherapeutic agents. Our results showed that ABCB1 and ABCG2 were preferentially expressed in leukemic CD34⁺CD38⁻ cells. Nilotinib significantly enhanced the cytotoxicity of doxorubicin and mitoxantrone in CD34⁺CD38⁻ cells and led to increased apoptosis. Moreover, nilotinib strongly reversed multidrug resistance and increased the intracellular accumulation of rhodamine 123 in primary leukemic blasts overexpressing ABCB1 and/or ABCG2. Studies with ABC transporter-overexpressing carcinoma cell models confirmed that nilotinib effectively reversed ABCB1- and ABCG2-mediated drug resistance, while showed no significant reversal effect on ABCC1- and ABCC4-mediated drug resistance. Results from cytotoxicity assays showed that CD34⁺CD38⁻ cells exhibited moderate resistance (2.41-fold) to nilotinib, compared with parental K562 cells. Furthermore, nilotinib was less effective in blocking the phosphorylation of Bcr-Abl and CrkL (a substrate of Bcr-Abl kinase) in CD34⁺CD38⁻ cells. Taken together, these data suggest that nilotinib particularly targets CD34⁺CD38⁻ stem cells and MDR leukemia cells, and effectively enhances the efficacy of chemotherapeutic drugs by blocking the efflux function of ABC transporters.

  17. Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: a comparative study.

    PubMed

    Arias, José L; Ruiz, M A Adolfina; López-Viota, Margarita; Delgado, Angel V

    2008-03-15

    Because of the fundamental importance of new therapeutic routes for cancer treatment, a number of systems based on colloidal particles as vehicles for the delivery of chemotherapeutic agents have been devised. The target is always to provide the proper dose of the antitumour agent only at the desired locus of action, thus reducing the unwanted side effects. The systems studied in this work are nanospheres of the biodegradable polymers poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate) and poly(octylcyanoacrylate), all suitable for parenteral administration, as vehicles for 5-fluorouracil, a well studied drug used for the treatment of solid tumours. Two loading methods have been analyzed: the first one is based on drug addition during the process of generation of the particles, by an anionic emulsion/polymerization procedure, and the subsequent drug trapping in the polymeric network. The second method is based on surface adsorption in already formed nanoparticles, after incubation in the drug solution. A detailed investigation of the capabilities of the polymer particles to load this drug is described. The main factors determining the drug incorporation to the polymer network were the type of monomer, the pH and the drug concentration. The release kinetics of 5-fluorouracil is found to be controlled by the pH of the release medium, the type of drug incorporation and the type of polymer.

  18. Programmable biomaterials for dynamic and responsive drug delivery

    PubMed Central

    Stejskalová, Anna; Kiani, Mehrdad T

    2016-01-01

    Biomaterials are continually being designed that enable new methods for interacting dynamically with cell and tissues, in turn unlocking new capabilities in areas ranging from drug delivery to regenerative medicine. In this review, we explore some of the recent advances being made in regards to programming biomaterials for improved drug delivery, with a focus on cancer and infection. We begin by explaining several of the underlying concepts that are being used to design this new wave of drug delivery vehicles, followed by examining recent materials systems that are able to coordinate the temporal delivery of multiple therapeutics, dynamically respond to changing tissue environments, and reprogram their bioactivity over time. PMID:27190245

  19. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2012-01-01

    Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier. PMID:22212900

  20. Nanoparticle-based drug delivery to the vagina: a review

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2014-01-01

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. PMID:24830303

  1. Hydrogels for ocular drug delivery and tissue engineering

    PubMed Central

    Fathi, Marzieh; Barar, Jaleh; Aghanejad, Ayuob; Omidi, Yadollah

    2015-01-01

    Hydrogels, as crosslinked polymeric three dimensional networks, possess unique structure and behavior in response to the internal and/or external stimuli. As a result, they offer great prospective applications in drug delivery, cell therapy and human tissue engineering. Here, we highlight the potential of hydrogels in prolonged intraocular drug delivery and ocular surface therapy using stem cells incorporated hydrogels. PMID:26929918

  2. Clinical applications of biomedical microdevices for controlled drug delivery.

    PubMed

    Gurman, Pablo; Miranda, Oscar R; Clayton, Kevin; Rosen, Yitzhak; Elman, Noel M

    2015-01-01

    Miniaturization of devices to micrometer and nanometer scales, combined with the use of biocompatible and functional materials, has created new opportunities for the implementation of drug delivery systems. Advances in biomedical microdevices for controlled drug delivery platforms promise a new generation of capabilities for the treatment of acute conditions and chronic illnesses, which require high adherence to treatment, in which temporal control over the pharmacokinetic profiles is critical. In addition, clinical conditions that require a combination of drugs with specific pharmacodynamic profiles and local delivery will benefit from drug delivery microdevices. This review provides a summary of various clinical applications for state-of-the-art controlled drug delivery microdevices, including cancer, endocrine and ocular disorders, and acute conditions such as hemorrhagic shock. Regulatory considerations for clinical translation of drug delivery microdevices are also discussed. Drug delivery microdevices promise a remarkable gain in clinical outcomes and a substantial social impact. A review of articles covering the field of microdevices for drug delivery was performed between January 1, 1990, and January 1, 2014, using PubMed as a search engine.

  3. Drug Delivery Approaches for the Treatment of Cervical Cancer

    PubMed Central

    Ordikhani, Farideh; Erdem Arslan, Mustafa; Marcelo, Raymundo; Sahin, Ilyas; Grigsby, Perry; Schwarz, Julie K.; Azab, Abdel Kareem

    2016-01-01

    Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods. PMID:27447664

  4. Nano- and microfabrication for overcoming drug delivery challenges

    PubMed Central

    Kam, Kimberly R.

    2013-01-01

    This highlight article describes current nano- and microfabrication techniques for creating drug delivery devices. We first review the main physiological barriers to delivering therapeutic agents. Then, we describe how novel fabrication methods can be utilized to combine many features into a single physiologically relevant device to overcome drug delivery challenges. PMID:23730504

  5. Electrically Controlled Drug Delivery from Graphene Oxide Nanocomposite Films

    PubMed Central

    2015-01-01

    On-demand, local delivery of drug molecules to target tissues provides a means for effective drug dosing while reducing the adverse effects of systemic drug delivery. This work explores an electrically controlled drug delivery nanocomposite composed of graphene oxide (GO) deposited inside a conducting polymer scaffold. The nanocomposite is loaded with an anti-inflammatory molecule, dexamethasone, and exhibits favorable electrical properties. In response to voltage stimulation, the nanocomposite releases drug with a linear release profile and a dosage that can be adjusted by altering the magnitude of stimulation. No drug passively diffuses from the composite in the absence of stimulation. In vitro cell culture experiments demonstrate that the released drug retains its bioactivity and that no toxic byproducts leach from the film during electrical stimulation. Decreasing the size and thickness of the GO nanosheets, by means of ultrasonication treatment prior to deposition into the nanocomposite, alters the film morphology, drug load, and release profile, creating an opportunity to fine-tune the properties of the drug delivery system to meet a variety of therapeutic needs. The high level of temporal control and dosage flexibility provided by the electrically controlled GO nanocomposite drug delivery platform make it an exciting candidate for on-demand drug delivery. PMID:24428340

  6. Pharmacosomes: An Emerging Novel Vesicular Drug Delivery System for Poorly Soluble Synthetic and Herbal Drugs

    PubMed Central

    2013-01-01

    In the arena of solubility enhancement, several problems are encountered. A novel approach based on lipid drug delivery system has evolved, pharmacosomes. Pharmacosomes are colloidal, nanometric size micelles, vesicles or may be in the form of hexagonal assembly of colloidal drug dispersions attached covalently to the phospholipid. They act as befitting carrier for delivery of drugs quite precisely owing to their unique properties like small size, amphiphilicity, active drug loading, high entrapment efficiency, and stability. They help in controlled release of drug at the site of action as well as in reduction in cost of therapy, drug leakage and toxicity, increased bioavailability of poorly soluble drugs, and restorative effects. There has been advancement in the scope of this delivery system for a number of drugs used for inflammation, heart diseases, cancer, and protein delivery along with a large number of herbal drugs. Hence, pharmacosomes open new challenges and opportunities for improved novel vesicular drug delivery system. PMID:24106615

  7. Nanobiotechnology-based drug delivery in brain targeting.

    PubMed

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity

  8. Drug Delivery Systems and Combination Therapy by Using Vinca Alkaloids

    PubMed Central

    Lee, Chun-Ting; Huang, Yen-Wei; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Developing new methods for chemotherapy drug delivery has become a topic of great concern. Vinca alkaloids are among the most widely used chemotherapy reagents for tumor therapy; however, their side effects are particularly problematic for many medical doctors. To reduce the toxicity and enhance the therapeutic efficiency of vinca alkaloids, many researchers have developed strategies such as using liposome-entrapped drugs, chemical- or peptide-modified drugs, polymeric packaging drugs, and chemotherapy drug combinations. This review mainly focuses on the development of a vinca alkaloid drug delivery system and the combination therapy. Five vinca alkaloids (eg, vincristine, vinblastine, vinorelbine, vindesine, and vinflunine) are reviewed. PMID:25877096

  9. Pulmonary drug delivery systems: recent developments and prospects.

    PubMed

    Courrier, H M; Butz, N; Vandamme, Th F

    2002-01-01

    Targeting drug delivery into the lungs has become one of the most important aspects of systemic or local drug delivery systems. Consequently, in the last few years, techniques and new drug delivery devices intended to deliver drugs into the lungs have been widely developed. Currently, the main drug targeting regimens include direct application of a drug into the lungs, mostly by inhalation therapy using either pressurized metered dose inhalers (pMDI) or dry powder inhalers (DPI). Intratracheal administration is commonly used as a first approach in lung drug delivery in vivo. To convey a sufficient dose of drug to the lungs, suitable drug carriers are required. These can be either solid, liquid, or gaseous excipients. Liposomes, nano- and microparticles, cyclodextrins, microemulsions, micelles, suspensions, or solutions are all examples of this type of pharmaceutical carrier that have been successfully used to target drugs into the lungs. The use of microreservoir-type systems offers clear advantages, such as high loading capacity and the possibility of controlling size and permeability, and thus of controlling the release kinetics of the drugs from the carrier systems. These systems make it possible to use relatively small numbers of vector molecules to deliver substantial amounts of a drug to the target. This review discusses the drug carriers administered or intended to be administered into the lungs. The transition to CFC-free inhalers and drug delivery systems formulated with new propellants are also discussed. Finally, in addition to the various advances made in the field of pulmonary-route administration, we describe new systems based on perfluorooctyl bromide, which guarantee oxygen delivery in the event of respiratory distress and drug delivery into the lungs.

  10. Novel Approaches in Formulation and Drug Delivery using Contact Lenses.

    PubMed

    Singh, Kishan; Nair, Anroop B; Kumar, Ashok; Kumria, Rachna

    2011-03-01

    The success of ocular delivery relies on the potential to enhance the drug bioavailability by controlled and extended release of drug on the eye surface. Several new approaches have been attempted to augment the competence and diminish the intrinsic side effects of existing ocular drug delivery systems. In this contest, progress has been made to develop drug-eluting contact lens using different techniques, which have the potential to control and sustain the delivery of drug. Further, the availability of novel polymers have facilitated and promoted the utility of contact lenses in ocular drug delivery. Several research groups have already explored the feasibility and potential of contact lens using conventional drugs for the treatment of periocular and intraocular diseases. Contact lenses formulated using modern technology exhibits high loading, controlled drug release, apposite thickness, water content, superior mechanical and optical properties as compared to commercial lenses. In general, this review discus various factors and approaches designed and explored for the successful delivery of ophthalmic drugs using contact lenses as drug delivery device.

  11. Nanofibers based antibacterial drug design, delivery and applications.

    PubMed

    Ulubayram, Kezban; Calamak, Semih; Shahbazi, Reza; Eroglu, Ipek

    2015-01-01

    Infections caused by microorganisms like bacteria, fungi, etc. are the main obstacle in healing processes. Conventional antibacterial administration routes can be listed as oral, intravenous/intramuscular, topical and inhalation. These kinds of drug administrations are faced with critical vital issues such as; more rapid delivery of the drug than intended which can result in bacterial resistance, dose related systemic toxicity, tissue irritation and finally delayed healing process that need to be tackled. Recently, studies have been focused on new drug delivery systems, overcoming resistance and toxicological problems and finally localizing the molecules at the site of action in a proper dose. In this regard, many nanotechnological approaches such as nanoparticulate therapeutic systems have been developed to address accompanying problems mentioned above. Among them, drug loaded electrospun nanofibers propose main advantages like controlled drug delivery, high drug loading capacity, high encapsulation efficiency, simultaneous delivery of multiple drugs, ease of production and cost effectiveness for pharmaceutical and biomedical applications. Therefore, some particular attention has been devoted to the design of electrospun nanofibers as promising antibacterial drug carrier systems. A variety of antibacterials e.g., biocides, antibiotics, quaternary ammonium salts, triclosan, metallic nanoparticles (silver, titanium dioxide, and zinc oxide) and antibacterial polymers (chitosan, polyethyleneimine, etc.) have been impregnated by various techniques into nanofibers that exhibit strong antibacterial activity in standard assays. This review highlights the design and delivery of antibacterial drug loaded nanofibers with particular focus on their function in the fields of drug delivery, wound healing, tissue engineering, cosmetics and other biomedical applications.

  12. Novel Approaches in Formulation and Drug Delivery using Contact Lenses

    PubMed Central

    Singh, Kishan; Nair, Anroop B; Kumar, Ashok; Kumria, Rachna

    2011-01-01

    The success of ocular delivery relies on the potential to enhance the drug bioavailability by controlled and extended release of drug on the eye surface. Several new approaches have been attempted to augment the competence and diminish the intrinsic side effects of existing ocular drug delivery systems. In this contest, progress has been made to develop drug-eluting contact lens using different techniques, which have the potential to control and sustain the delivery of drug. Further, the availability of novel polymers have facilitated and promoted the utility of contact lenses in ocular drug delivery. Several research groups have already explored the feasibility and potential of contact lens using conventional drugs for the treatment of periocular and intraocular diseases. Contact lenses formulated using modern technology exhibits high loading, controlled drug release, apposite thickness, water content, superior mechanical and optical properties as compared to commercial lenses. In general, this review discus various factors and approaches designed and explored for the successful delivery of ophthalmic drugs using contact lenses as drug delivery device PMID:24826007

  13. Nanofibers based antibacterial drug design, delivery and applications.

    PubMed

    Ulubayram, Kezban; Calamak, Semih; Shahbazi, Reza; Eroglu, Ipek

    2015-01-01

    Infections caused by microorganisms like bacteria, fungi, etc. are the main obstacle in healing processes. Conventional antibacterial administration routes can be listed as oral, intravenous/intramuscular, topical and inhalation. These kinds of drug administrations are faced with critical vital issues such as; more rapid delivery of the drug than intended which can result in bacterial resistance, dose related systemic toxicity, tissue irritation and finally delayed healing process that need to be tackled. Recently, studies have been focused on new drug delivery systems, overcoming resistance and toxicological problems and finally localizing the molecules at the site of action in a proper dose. In this regard, many nanotechnological approaches such as nanoparticulate therapeutic systems have been developed to address accompanying problems mentioned above. Among them, drug loaded electrospun nanofibers propose main advantages like controlled drug delivery, high drug loading capacity, high encapsulation efficiency, simultaneous delivery of multiple drugs, ease of production and cost effectiveness for pharmaceutical and biomedical applications. Therefore, some particular attention has been devoted to the design of electrospun nanofibers as promising antibacterial drug carrier systems. A variety of antibacterials e.g., biocides, antibiotics, quaternary ammonium salts, triclosan, metallic nanoparticles (silver, titanium dioxide, and zinc oxide) and antibacterial polymers (chitosan, polyethyleneimine, etc.) have been impregnated by various techniques into nanofibers that exhibit strong antibacterial activity in standard assays. This review highlights the design and delivery of antibacterial drug loaded nanofibers with particular focus on their function in the fields of drug delivery, wound healing, tissue engineering, cosmetics and other biomedical applications. PMID:25732666

  14. Microemulsion: New Insights into the Ocular Drug Delivery

    PubMed Central

    Hegde, Rahul Rama; Verma, Anurag; Ghosh, Amitava

    2013-01-01

    Delivery of drugs into eyes using conventional drug delivery systems, such as solutions, is a considerable challenge to the treatment of ocular diseases. Drug loss from the ocular surface by lachrymal fluid secretion, lachrymal fluid-eye barriers, and blood-ocular barriers are main obstacles. A number of ophthalmic drug delivery carriers have been made to improve the bioavailability and to prolong the residence time of drugs applied topically onto the eye. The potential use of microemulsions as an ocular drug delivery carrier offers several favorable pharmaceutical and biopharmaceutical properties such as their excellent thermodynamic stability, phase transition to liquid-crystal state, very low surface tension, and small droplet size, which may result in improved ocular drug retention, extended duration of action, high ocular absorption, and permeation of loaded drugs. Further, both lipophilic and hydrophilic characteristics are present in microemulsions, so that the loaded drugs can diffuse passively as well get significantly partitioned in the variable lipophilic-hydrophilic corneal barrier. This review will provide an insight into previous studies on microemulsions for ocular delivery of drugs using various nonionic surfactants, cosurfactants, and associated irritation potential on the ocular surface. The reported in vivo experiments have shown a delayed effect of drug incorporated in microemulsion and an increase in the corneal permeation of the drug. PMID:23936681

  15. Microemulsion: new insights into the ocular drug delivery.

    PubMed

    Hegde, Rahul Rama; Verma, Anurag; Ghosh, Amitava

    2013-01-01

    Delivery of drugs into eyes using conventional drug delivery systems, such as solutions, is a considerable challenge to the treatment of ocular diseases. Drug loss from the ocular surface by lachrymal fluid secretion, lachrymal fluid-eye barriers, and blood-ocular barriers are main obstacles. A number of ophthalmic drug delivery carriers have been made to improve the bioavailability and to prolong the residence time of drugs applied topically onto the eye. The potential use of microemulsions as an ocular drug delivery carrier offers several favorable pharmaceutical and biopharmaceutical properties such as their excellent thermodynamic stability, phase transition to liquid-crystal state, very low surface tension, and small droplet size, which may result in improved ocular drug retention, extended duration of action, high ocular absorption, and permeation of loaded drugs. Further, both lipophilic and hydrophilic characteristics are present in microemulsions, so that the loaded drugs can diffuse passively as well get significantly partitioned in the variable lipophilic-hydrophilic corneal barrier. This review will provide an insight into previous studies on microemulsions for ocular delivery of drugs using various nonionic surfactants, cosurfactants, and associated irritation potential on the ocular surface. The reported in vivo experiments have shown a delayed effect of drug incorporated in microemulsion and an increase in the corneal permeation of the drug. PMID:23936681

  16. Vascular Priming Enhances Chemotherapeutic Efficacy against Head and Neck Cancer

    PubMed Central

    Folaron, Margaret; Kalmuk, James; Lockwood, Jaimee; Frangou, Costakis; Vokes, Jordan; Turowski, Steven G.; Merzianu, Mihai; Rigual, Nestor R.; Sullivan-Nasca, Maureen; Kuriakose, Moni A.; Hicks, Wesley L.; Singh, Anurag K.; Seshadri, Mukund

    2013-01-01

    Purpose The need to improve chemotherapeutic efficacy against head and neck squamous cell carcinomas (HNSCC) is well recognized. In this study, we investigated the potential of targeting the established tumor vasculature in combination with chemotherapy in head and neck cancer. Methods Experimental studies were carried out in multiple human HNSCC xenograft models to examine the activity of the vascular disrupting agent (VDA) 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in combination with chemotherapy. Multimodality imaging (magnetic resonance imaging, bioluminescence) in conjunction with drug delivery assessment (fluorescence microscopy), histopathology and microarray analysis was performed to characterize tumor response to therapy. Long-term treatment outcome was assessed using clinically-relevant end points of efficacy. Results Pretreatment of tumors with VDA prior to administration of chemotherapy increased intratumoral drug delivery and treatment efficacy. Enhancement of therapeutic efficacy was dependent on the dose and duration of VDA treatment but was independent of the chemotherapeutic agent evaluated. Combination treatment resulted in increased tumor cell kill and improvement in progression-free survival and overall survival in both ectopic and orthotopic HNSCC models. Conclusion Our results show that preconditioning of the tumor microenvironment with an antivascular agent primes the tumor vasculature and results in enhancement of chemotherapeutic delivery and efficacy in vivo. Further investigation into the activity of antivascular agents in combination with chemotherapy against HNSCC is warranted. PMID:23890930

  17. NanoART, neuroAIDS and CNS drug delivery

    PubMed Central

    Nowacek, Ari; Gendelman, Howard E

    2009-01-01

    A broad range of nanomedicines is being developed to improve drug delivery for CNS disorders. The structure of the blood–brain barrier (BBB), the presence of efflux pumps and the expression of metabolic enzymes pose hurdles for drug-brain entry. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release and ingress across the barrier. This is important as the brain is a sanctuary for a broad range of pathogens including HIV-1. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This article focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed nanoART, across the BBB and affect the biodistribution and clinical benefit for HIV-1 disease. PMID:19572821

  18. Facing the Truth about Nanotechnology in Drug Delivery

    PubMed Central

    Park, Kinam

    2013-01-01

    Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targeted drug delivery to tumors. Numerous nanoparticle formulations have been designed and tested to great effect in small animal models, but the translation of the small animal results to clinical success has been limited. Successful translation requires revisiting the meaning of nanotechnology in drug delivery, understanding the limitations of nanoparticles, identifying the misconceptions pervasive in the field, and facing inconvenient truths. Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release. PMID:24490875

  19. Facing the truth about nanotechnology in drug delivery.

    PubMed

    Park, Kinam

    2013-09-24

    Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targeted drug delivery to tumors. Numerous nanoparticle formulations have been designed and tested to great effect in small animal models, but the translation of the small animal results to clinical success has been limited. Successful translation requires revisiting the meaning of nanotechnology in drug delivery, understanding the limitations of nanoparticles, identifying the misconceptions pervasive in the field, and facing inconvenient truths. Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release. PMID:24490875

  20. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  1. Controlled release for local delivery of drugs: barriers and models.

    PubMed

    Weiser, Jennifer R; Saltzman, W Mark

    2014-09-28

    Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin.

  2. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery

    NASA Astrophysics Data System (ADS)

    Dehaini, Diana; Fang, Ronnie H.; Luk, Brian T.; Pang, Zhiqing; Hu, Che-Ming J.; Kroll, Ashley V.; Yu, Chun Lai; Gao, Weiwei; Zhang, Liangfang

    2016-07-01

    Lipid-polymer hybrid nanoparticles, consisting of a polymeric core coated by a layer of lipids, are a class of highly scalable, biodegradable nanocarriers that have shown great promise in drug delivery applications. Here, we demonstrate the facile synthesis of ultra-small, sub-25 nm lipid-polymer hybrid nanoparticles using an adapted nanoprecipitation approach and explore their utility for targeted delivery of a model chemotherapeutic. The fabrication process is first optimized to produce a monodisperse population of particles that are stable under physiological conditions. It is shown that these ultra-small hybrid nanoparticles can be functionalized with a targeting ligand on the surface and loaded with drug inside the polymeric matrix. Further, the in vivo fate of the nanoparticles after intravenous injection is characterized by examining the blood circulation and biodistribution. In a final proof-of-concept study, targeted ultra-small hybrid nanoparticles loaded with the cancer drug docetaxel are used to treat a mouse tumor model and demonstrate improved efficacy compared to a clinically available formulation of the drug. The ability to synthesize a significantly smaller version of the established lipid-polymer hybrid platform can ultimately enhance its applicability across a wider range of applications.

  3. Advances and Challenges of Liposome Assisted Drug Delivery

    PubMed Central

    Sercombe, Lisa; Veerati, Tejaswi; Moheimani, Fatemeh; Wu, Sherry Y.; Sood, Anil K.; Hua, Susan

    2015-01-01

    The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented. PMID:26648870

  4. Kontrollierte therapeutische Systeme (Controlled drug delivery systems)

    NASA Astrophysics Data System (ADS)

    Ha, Suk-Woo; Wintermantel, Erich

    Es gibt eine grosse Anzahl von Arzneistoffen, die nicht mit der höchsten Effizienz eingesetzt werden können, weil das geeignete therapeutische System (drug delivery system) für die optimale Applikation fehlt. Viele Arzneistoffe setzen eine häufige Anwendung voraus und sind oft mit mehr oder weniger starken Nebenwirkungen oder aber mit Beeinträchtigungen von Arbeits- und Lebensrhythmus der Patienten verbunden. Der therapeutische Erfolg einer medikamentösen Behandlung setzt eine korrekte Diagnose, die Wahl der richtigen Wirksubstanz sowie ihr Vorliegen in geeigneter Darreichungsform voraus. Zudem muss ein genauer Verabreichungsplan erstellt werden, dessen Einhaltung seitens der Patienten eine wesentliche Voraussetzung für die optimale Wirkung des Arzneistoffes ist. Das Mass, mit dem eine Wirksubstanz therapeutisch voll genutzt werden kann, korreliert direkt mit der Darreichungsform, in der sie angewandt wird. Da viele hochwirksame Arzneimittel bereits existieren, hat sich, neben Neuentwicklungen, das Interesse im vergangenen Jahrzehnt der Optimierung von Arzneimittelwirkungen durch neue Darreichungsformen zugewandt.

  5. Marine Origin Polysaccharides in Drug Delivery Systems

    PubMed Central

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  6. Hollow Pollen Shells to Enhance Drug Delivery

    PubMed Central

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  7. Preparation of copolymer paclitaxel covalently linked via a disulfide bond and its application on controlled drug delivery.

    PubMed

    Chen, Wulian; Shi, Yuanlin; Feng, Hua; Du, Ming; Zhang, Jin Zhong; Hu, Jianhua; Yang, Dong

    2012-08-01

    A novel controlled drug delivery system based on copolymer covalently linked paclitaxel via a disulfide bond was constructed. Copolymer with poly(ethylene glycol) (PEG) side chains and carboxyl groups on the backbone was prepared by radical copolymerization of tert-butyl acrylate and poly(ethylene glycol) methyl ether acrylate, followed by selectively hydrolyzing tert-butyl groups to carboxyl groups. Utilizing the carboxyl group as an active reaction site, paclitaxel, a well-known chemotherapeutic drug, could be covalently linked to the backbone of a copolymer via a disulfide bond, and the loading content of paclitaxel could reach up to 32 wt %. In aqueous solution, this drug-loaded copolymer could self-assemble into a spherical micelle, with the hydrophobic drug as the core and hydrophilic PEG as the shell. The mean diameter of the micelles evaluated by transmission electron microscopy (TEM) and dynamic light scattering (DLS) was approximately 60 nm. The in vitro cytotoxicity experiments showed that the copolymer was biocompatible and suitable to use as a drug carrier. After covalently loading the drug, the copolymer showed apparent cytotoxicity to OS-RC-2 cells (kidney tumor cells) and low cytotoxicity to macrophage cells (human normal cells), indicating that the disulfide bond was stable in human normal cells, but would be broken in tumor cells. This selective bond scission behavior is potentially favorable for reducing the toxic and side effects of chemotherapeutic drugs. PMID:22774761

  8. CSE1L/CAS, a microtubule-associated protein, inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs.

    PubMed

    Liao, Ching-Fong; Luo, Shue-Fen; Shen, Tzu-Yun; Lin, Chin-Huang; Chien, Jung-Tsun; Du, Shin-Yi; Jiang, Ming-Chung

    2008-03-31

    CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.

  9. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  10. Cell membrane-camouflaged nanoparticles for drug delivery.

    PubMed

    Luk, Brian T; Zhang, Liangfang

    2015-12-28

    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.

  11. Progress and perspectives on targeting nanoparticles for brain drug delivery.

    PubMed

    Gao, Huile

    2016-07-01

    Due to the ability of the blood-brain barrier (BBB) to prevent the entry of drugs into the brain, it is a challenge to treat central nervous system disorders pharmacologically. The development of nanotechnology provides potential to overcome this problem. In this review, the barriers to brain-targeted drug delivery are reviewed, including the BBB, blood-brain tumor barrier (BBTB), and nose-to-brain barrier. Delivery strategies are focused on overcoming the BBB, directly targeting diseased cells in the brain, and dual-targeted delivery. The major concerns and perspectives on constructing brain-targeted delivery systems are discussed. PMID:27471668

  12. Bioavailability of phytochemicals and its enhancement by drug delivery systems

    PubMed Central

    Aqil, Farrukh; Munagala, Radha; Jeyabalan, Jeyaprakash; Vadhanam, Manicka V.

    2013-01-01

    Issues of poor oral bioavailability of cancer chemopreventives have hindered progress in cancer prevention. Novel delivery systems that modulate the pharmacokinetics of existing drugs, such as nanoparticles, cyclodextrins, niosomes, liposomes and implants, could be used to enhance the delivery of chemopreventive agents to target sites. The development of new approaches in prevention and treatment of cancer could encompass new delivery systems for approved and newly investigated compounds. In this review, we discuss some of the delivery approaches that have already made an impact by either delivering a drug to target tissue or increasing its bioavailability by many fold. PMID:23435377

  13. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    PubMed Central

    Shelate, Pragna; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients.

  14. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    PubMed Central

    Shelate, Pragna; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247

  15. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s.

    PubMed

    Patel, Apurv; Dodiya, Hitesh; Shelate, Pragna; Shastri, Divyesh; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247

  16. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    PubMed Central

    Bi, Xue; Zhang, Hui; Dou, Liguang

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; (ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed. PMID:24940733

  17. Colloidal drug delivery systems: current status and future directions.

    PubMed

    Garg, Tarun; Rath, Goutam; Goyal, Amit Kumar

    2015-01-01

    In this paper, we provide an overview an extensive range of colloidal drug delivery systems with special focus on vesicular and particulates systems that are being used in research or might be potentially useful as carriers systems for drug or active biomolecules or as cell carriers with application in the therapeutic field. We present some important examples of commercially available drug delivery systems with applications in research or in clinical fields. This class of systems is widely used due to excellent drug targeting, sustained and controlled release behavior, higher entrapment efficiency of drug molecules, prevention of drug hydrolysis or enzymatic degradation, and improvement of therapeutic efficacy. These characteristics help in the selection of suitable carrier systems for drug, cell, and gene delivery in different fields.

  18. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes. PMID:23888183

  19. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review.

    PubMed

    Ma, Ping; Mumper, Russell J

    2013-06-01

    Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes.

  20. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles.

    PubMed

    Baek, Seonmi; Singh, Rajendra K; Khanal, Dipesh; Patel, Kapil D; Lee, Eun-Jung; Leong, Kam W; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-09-14

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  1. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    NASA Astrophysics Data System (ADS)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  2. Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery

    PubMed Central

    Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.

    2011-01-01

    Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations. PMID:21736358

  3. Dendrimeric systems and their applications in ocular drug delivery.

    PubMed

    Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Unlü, Nurşen

    2013-01-01

    Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed. PMID:24396306

  4. Dendrimeric Systems and Their Applications in Ocular Drug Delivery

    PubMed Central

    Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen

    2013-01-01

    Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed. PMID:24396306

  5. Ultrasound/Magnetic Targeting with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors

    PubMed Central

    Fan, Ching-Hsiang; Cheng, Yu-Hang; Ting, Chien-Yu; Ho, Yi-Ju; Hsu, Po-Hung; Liu, Hao-Li; Yeh, Chih-Kuang

    2016-01-01

    One of the greatest challenges in the deployment of chemotherapeutic drugs against brain tumors is ensuring that sufficient drug concentrations reach the tumor, while minimizing drug accumulation at undesired sites. Recently, injection of therapeutic agents following blood-brain barrier (BBB) opening by focused ultrasound (FUS) with microbubbles (MBs) has been shown to enhance drug delivery in targeted brain regions. Nevertheless, the distribution and quantitative deposition of agents delivered to the brain are still hard to estimate. Based on our previous work on superparamagnetic iron oxide (SPIO)-loaded MBs, we present a novel theranostic complex of SPIO-Doxorubicin (DOX)-conjugated MB (SD-MB) for drug delivery to the brain. Magnetic labeling of the drug enables direct visualization via magnetic resonance imaging, and also facilitates magnetic targeting (MT) to actively enhance targeted deposition of the drug. In a rat glioma model, we demonstrated that FUS sonication can be used with SD-MBs to simultaneously facilitate BBB opening and allow dual ultrasound/magnetic targeting of chemotherapeutic agent (DOX) delivery. The accumulation of SD complex within brain tumors can be significantly enhanced by MT (25.7 fold of DOX, 7.6 fold of SPIO). The change in relaxation rate R2 (1/T2) within tumors was highly correlated with SD deposition as quantified by high performance liquid chromatography (R2 = 0.93) and inductively coupled plasma-atomic emission spectroscopy (R2 = 0.94), demonstrating real-time monitoring of DOX distribution. Our results suggest that SD-MBs can serve as multifunction agents to achieve advanced molecular theranostics. PMID:27446489

  6. Cyclodextrin nanoassemblies: a promising tool for drug delivery.

    PubMed

    Bonnet, Véronique; Gervaise, Cédric; Djedaïni-Pilard, Florence; Furlan, Aurélien; Sarazin, Catherine

    2015-09-01

    Among the biodegradable and nontoxic compounds that can form nanoparticles for drug delivery, amphiphilic cyclodextrins are very promising. Apart from ionic cyclodextrins, which have been extensively studied and reviewed because of their application in gene delivery, our purpose is to provide a clear description of the supramolecular assemblies of nonionic amphiphilic cyclodextrins, which can form nanoassemblies for controlled drug release. Moreover, we focus on the relationship between their structure and physicochemical characteristics, which is crucial for self assembly and drug delivery. We also highlight the importance of the nanoparticle technology preparation for the stability and application of this nanodevice. PMID:26037681

  7. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  8. Chondroitin sulfate derived theranostic nanoparticles for targeted drug delivery.

    PubMed

    Varghese, Oommen P; Liu, Jianping; Sundaram, Karthi; Hilborn, Jöns; Oommen, Oommen P

    2016-08-16

    Glycosaminoglycan derived nanoparticles are a promising delivery system owing to their unique tumour targeting ability. Exploiting fluorescein for inducing amphiphilicity in these biopolymers provides inherent imaging and drug stabilization capabilities by π-π stacking interactions with aromatic antineoplastic agents. This offers a versatile and highly customizable nanocarrier with narrow size distribution and high drug loading efficiency (80%) with sustained drug release. PMID:27431007

  9. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  10. [Development of drug delivery systems for targeting to macrophages].

    PubMed

    Chono, Sumio

    2007-09-01

    Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.

  11. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  12. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.

    PubMed

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-11-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.

  13. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    SciTech Connect

    Rezaee, Mohammad Hunting, Darel John; Sanche, Léon

    2013-11-15

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2 Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10{sup −4} Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances.

  14. Nasal Drug Delivery in Traditional Persian Medicine

    PubMed Central

    Zarshenas, Mohammad Mehdi; Zargaran, Arman; Müller, Johannes; Mohagheghzadeh, Abdolali

    2013-01-01

    Background Over one hundred different pharmaceutical dosage forms have been recorded in literatures of Traditional Persian Medicine among which nasal forms are considerable. Objectives This study designed to derive the most often applied nasal dosage forms together with those brief clinical administrations. Materials and Methods In the current study remaining pharmaceutical manuscripts of Persia during 9th to 18th century AD have been studied and different dosage forms related to nasal application of herbal medicines and their therapeutic effects were derived. Results By searching through pharmaceutical manuscripts of medieval Persia, different nasal dosage forms involving eleven types related to three main groups are found. These types could be derived from powder, solution or liquid and gaseous forms. Gaseous form were classified into fumigation (Bakhoor), vapor bath (Enkebab), inhalation (Lakhlakheh), aroma agents (Ghalieh) and olfaction or smell (Shomoom). Nasal solutions were as drops (Ghatoor), nasal snuffing drops (Saoot) and liquid snuff formulations (Noshoogh). Powders were as nasal insufflation or snorting agents (Nofookh) and errhine or sternutator medicine (Otoos). Nasal forms were not applied only for local purposes. Rather systemic disorders and specially CNS complications were said to be a target for these dosage forms. Discussion While this novel type of drug delivery is known as a suitable substitute for oral and parenteral administration, it was well accepted and extensively mentioned in Persian medical and pharmaceutical manuscripts and other traditional systems of medicine as well. Accordingly, medieval pharmaceutical standpoints on nasal dosage forms could still be an interesting subject of study. Therefore, the current work can briefly show the pharmaceutical knowledge on nasal formulations in medieval Persia and clarify a part of history of traditional Persian pharmacy. PMID:24624204

  15. The delivery of poly(lactic acid)-poly(ethylene glycol) nanoparticles loaded with non-toxic drug to overcome drug resistance for the treatment of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Dhulekar, Jhilmil

    Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the

  16. A Controllable Aptamer-Based Self-Assembled DNA Dendrimer for High Affinity Targeting, Bioimaging and Drug Delivery

    PubMed Central

    Zhang, Huimin; Ma, Yanli; Xie, Yi; An, Yuan; Huang, Yishun; Zhu, Zhi; Yang, Chaoyong James

    2015-01-01

    Targeted drug delivery is important in cancer therapy to decrease the systemic toxicity resulting from nonspecific drug distribution and to enhance drug delivery efficiency. We have developed an aptamer-based DNA dendritic nanostructure as a multifunctional vehicle for targeted cancer cell imaging and drug delivery. The multifunctional DNA dendrimer is constructed from functional Y-shaped building blocks with predesigned base-pairing hybridization including fluorophores, targeting DNA aptamers and intercalated anticancer drugs. With controllable step-by-step self-assembly, the programmable DNA dendrimer has several appealing features, including facile modular design, excellent biostability and biocompatibility, high selectivity, strong binding affinity, good cell internalization efficiency, and high drug loading capacity. Due to the unique structural features of DNA dendrimers, multiple copies of aptamers can be incorporated into each dendrimer, generating a multivalent aptamer-tethered nanostructure with enhanced binding affinity. A model chemotherapeutic anticancer drug, doxorubicin, was delivered via these aptamer-based DNA dendrimers and exerted a potent toxicity for target cancer cells (human T cell acute lymphoblastic leukemia cell line) with low side effects for the non-target cells (human Burkitt’s lymphoma cell line). This controllable aptamer-based DNA dendrimer is a promising candidate for biomedical applications. PMID:25959874

  17. Development and Optimization of a Doxorubicin Loaded Poly Lactic Acid Contrast Agent for Ultrasound Directed Drug Delivery

    PubMed Central

    Eisenbrey, J.R.; Burstein, O. Mualem; Kambhampati, R.; Forsberg, F.; Liu, J-B.; Wheatley, M.A.

    2010-01-01

    An echogenic, intravenous drug delivery platform is proposed in which an encapsulated chemotherapeutic can travel to a desired location and drug delivery can be triggered using external, focused ultrasound at the area of interest. Three methods of loading poly lactic acid (PLA) shelled ultrasound contrast agents (UCA) with doxorubicin are presented. Effects on encapsulation efficiency, in vitro enhancement, stability, particle size, morphology and release during UCA rupture are compared by loading method and drug concentration. An agent containing doxorubicin within the shell was selected as an ideal candidate for future hepatocellular carcinoma studies. The agent achieved a maximal drug load of 6.2 mg Dox/g PLA with an encapsulation efficiency of 20.5%, showed a smooth surface morphology and tight size distribution (poly dispersity index = 0.309) with a peak size of 1865 nm. Acoustically, the agent provided 19 dB of enhancement in vitro at a dosage of 10 µg/ml, with a half life of over 15 mins. In vivo, the agent provided ultrasound enhancement of 13.4 ± 1.6 dB within the ascending aorta of New Zealand rabbits at a dose of 0.15 ml/kg. While the drug-incorporated agent is thought to be well suited for future drug delivery experiments, this study has shown that agent properties can be tailored for specific applications based on choice of drug loading method. PMID:20060024

  18. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment.

    PubMed

    Jeetah, Roubeena; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2014-09-01

    This review is an attempt to assess the different classes of phytochemicals and some of their members which have been encapsulated into nanocarrier systems for their chemotherapeutic or chemopreventive properties. Given the broad spectrum of nanomedicines currently in clinical trial and clinical use from polymer-protein conjugates, through nanocrystals, nanogels, dendrimers to ethosomes, the focus of this review will be on block copolymer nanomicelles, nanoparticles, polymer-drug conjugates, liposomes and solid lipid nanocarriers (SLNs). The twenty phytochemicals investigated for encapsulation and targeted delivery were selected from a variety of classes intended to encompass the largest possible chemical compositions, namely flavonoids, aromatic acids, xanthones, terpenes, quinones, lignans and alkaloids. To the best of our knowledge, reviews on the nanoencapsulation of these phytochemicals and their delivery are not available. In this review, the issues associated with the limited use of each phytochemical in cancer therapy in humans are reviewed and the advantages of entrapment into nanocarriers are assessed in terms of drug loading efficiency, size of nanocarriers, drug release profiles and in vitro and/or in vivo testing specific to cancer research, e.g., cytotoxicity assay, cell inhibition/viability, scavenging of reactive oxygen species and biodistribution studies (elimination half-life and mean residence time). PMID:25992442

  19. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Ding, Xingwei; Li, Jinghua; Luo, Zhong; Hu, Yan; Liu, Junjie; Dai, Liangliang; Zhou, Jun; Hou, Changjun; Cai, Kaiyong

    2015-04-01

    To reduce the toxic side effects of traditional chemotherapeutics in vivo, we designed and constructed a biocompatible, matrix metalloproteinases (MMPs) responsive drug delivery system based on mesoporous silica nanoparticles (MSNs). MMPs substrate peptide containing PLGLAR (sensitive to MMPs) was immobilized onto the surfaces of amino-functionalized MSNs via an amidation reaction, serving as MMPs sensitive intermediate linker. Bovine serum albumin was then covalently coupled to linker as end-cap for sealing the mesopores of MSNs. Lactobionic acid was further conjugated to the system as targeting motif. Doxorubicin hydrochloride was used as the model anticancer drug in this study. A series of characterizations revealed that the system was successfully constructed. The peptide-functionalized MSNs system demonstrated relatively high sensitivity to MMPs for triggering drug delivery, which was potentially important for tumor therapy since the tumor’s microenvironment overexpressed MMPs in nature. The in vivo experiments proved that the system could efficiently inhibit the tumor growth with minimal side effects. This study provides an approach for the development of the next generation of nanotherapeutics toward efficient cancer treatment.

  20. Nanotechnology approaches for pain therapy through transdermal drug delivery.

    PubMed

    Peptu, Cristian; Rotaru, Razvan; Ignat, Leonard; Humelnicu, Andra Cristina; Harabagiu, Valeria; Peptu, Catalina Anisoara; Leon, Maria-Magdalena; Mitu, Florin; Cojocaru, Elena; Boca, Andreea; Tamba, Bogdan Ionel

    2015-01-01

    The paper focuses on the advances in the field of pain treatment by transdermal delivery of specific drugs. Starting from a short description of the skin barrier, the pharmacodynamics and pharmacokinetics including absorption, distribution, action mechanism, metabolism and toxicity, aspects related to the use of pain therapy drugs are further discussed. Most recent results on topical anesthetic agents as well as the methods proved to overcome the skin barrier and to provide efficient delivery of the drug are also discussed. The present review is proposing to summarize the recent literature on the pharmacotherapeutic principles of local anesthetics and non-steroidal anti-inflammatory drugs, generally used to alleviate pain but also the drugs as nanoformulations with potential applications in transdermal delivery. A special attention is given to efficient formulations meant for transdermal penetration enhancement of anesthetics where the drug is encapsulated into macrocyclic molecules (cyclodextrins, cyclodextrin derivatives), liposomes or polymer nanoparticles and hydrogels. PMID:26503147

  1. Microneedles: a valuable physical enhancer to increase transdermal drug delivery.

    PubMed

    Escobar-Chávez, José Juan; Bonilla-Martínez, Dalia; Villegas-González, Martha Angélica; Molina-Trinidad, Eva; Casas-Alancaster, Norma; Revilla-Vázquez, Alma Luisa

    2011-07-01

    Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.

  2. Recent advancement of gelatin nanoparticles in drug and vaccine delivery.

    PubMed

    Sahoo, Nityananda; Sahoo, Ranjan Ku; Biswas, Nikhil; Guha, Arijit; Kuotsu, Ketousetuo

    2015-11-01

    Novel drug delivery system using nanoscale materials with a broad spectrum of applications provides a new therapeutic foundation for technological integration and innovation. Nanoparticles are suitable drug carrier for various routes of administration as well as rapid recognition by the immune system. Gelatin, the biological macromolecule is a versatile drug/vaccine delivery carrier in pharmaceutical field due to its biodegradable, biocompatible, non-antigenicity and low cost with easy availability. The surface of gelatin nanoparticles can be modified with site-specific ligands, cationized with amine derivatives or, coated with polyethyl glycols to achieve targeted and sustained release drug delivery. Compared to other colloidal carriers, gelatin nanoparticles are better stable in biological fluids to provide the desired controlled and sustained release of entrapped drug molecules. The current review highlights the different formulation aspects of gelatin nanoparticles which affect the particle characteristics like zeta potential, polydispersity index, entrapment efficacy and drug release properties. It has also given emphasis on the major applications of gelatin nanoparticles in drug and vaccine delivery, gene delivery to target tissues and nutraceutical delivery for improving the poor bioavailabity of bioactive phytonutrients.

  3. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development.

    PubMed

    Rao, Sripriya Venkata Ramana; Shao, Jun

    2008-10-01

    The global aim of this research project was to develop a self-nanoemulsifying drug delivery system (SNEDDS) for non-invasive delivery of protein drugs. The specific aim of this study was to develop SNEDDS formulations. An experimental design was adopted to develop SNEDDS. Fluorescent labeled beta-lactamase (FITC-BLM), a model protein, was loaded into SNEDDS through solid dispersion technique. The experimental design provided 720 compositions of different oil, surfactant, and co-surfactant at various ratios, of which 33 SNEDDS prototypes were obtained. Solid dispersion of FITC-BLM in SoyPC prepared was able to dissolve in 16 SNEDDS prototypes (approximately 2200 mU BLM in 1g SNEDDS). SNEDDS NE-12-7 (composition: Lauroglycol FCC, Cremophor EL and Transcutol; ratio: 5:4:3) formed O/W nanoemulsion with mean droplet size in the range of 22-50 nm when diluted with various pH media and different dilution factor with PBS (pH 7.4). The phase diagram of NE-12-7 indicated a broad region of nanoemulsion. BLM-loaded SNEDDS (NE-12-7) stored at 4 degrees C for 12 weeks indicated 10% loss of BLM activity. A SNEDDS was developed to load FITC-BLM into the oil phase which can spontaneously form O/W nanoemulsion upon the addition of water.

  4. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety

    PubMed Central

    Donnelly, Ryan F.; Raj Singh, Thakur Raghu; Woolfson, A. David

    2010-01-01

    Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN. PMID:20297904

  5. Coacervate delivery systems for proteins and small molecule drugs

    PubMed Central

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future. PMID:25138695

  6. Coacervate delivery systems for proteins and small molecule drugs.

    PubMed

    Johnson, Noah R; Wang, Yadong

    2014-12-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.

  7. Carbon nanotubes for delivery of small molecule drugs.

    PubMed

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs. PMID:23954402

  8. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes

    PubMed Central

    2016-01-01

    Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications. PMID:27725960

  9. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration.

    PubMed

    Amler, Evžen; Filová, Eva; Buzgo, Matej; Prosecká, Eva; Rampichová, Michala; Nečas, Alois; Nooeaid, Patcharakamon; Boccaccini, Aldo R

    2014-05-01

    A wide range of drug-delivery systems are currently attracting the attention of researchers. Nanofibers are very interesting carriers for drug delivery. This is because nanofibers are versatile, flexible, nanobiomimetic and similar to extracellular matrix components, possible to be functionalized both on their surface as well as in their core, and also because they can be produced easily and cost effectively. There have been increasing attempts to use nanofibers in the construction of a range of tissues, including cartilage and bone. Nanofibers have also been favorably engaged as a drug-delivery system in cell-free scaffolds. This short overview is devoted to current applications and to further perspectives of nanofibers as drug-delivery devices in the field of cartilage and bone regeneration, and also in osteochondral reconstruction. PMID:24978465

  10. Multifunctional inverse opal particles for drug delivery and monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Cheng, Yao; Wang, Huan; Ye, Baofen; Shang, Luoran; Zhao, Yuanjin; Gu, Zhongze

    2015-06-01

    Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials.Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02324f

  11. Carbon nanotubes for delivery of small molecule drugs.

    PubMed

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.

  12. Micro/nanofabricated platforms for oral drug delivery.

    PubMed

    Fox, Cade B; Kim, Jean; Le, Long V; Nemeth, Cameron L; Chirra, Hariharasudhan D; Desai, Tejal A

    2015-12-10

    The oral route of drug administration is most preferred due to its ease of use, low cost, and high patient compliance. However, the oral uptake of many small molecule drugs and biotherapeutics is limited by various physiological barriers, and, as a result, drugs suffer from issues with low solubility, low permeability, and degradation following oral administration. The flexibility of micro- and nanofabrication techniques has been used to create drug delivery platforms designed to address these barriers to oral drug uptake. Specifically, micro/nanofabricated devices have been designed with planar, asymmetric geometries to promote device adhesion and unidirectional drug release toward epithelial tissue, thereby prolonging drug exposure and increasing drug permeation. Furthermore, surface functionalization, nanotopography, responsive drug release, motion-based responses, and permeation enhancers have been incorporated into such platforms to further enhance drug uptake. This review will outline the application of micro/nanotechnology to specifically address the physiological barriers to oral drug delivery and highlight technologies that may be incorporated into these oral drug delivery systems to further enhance drug uptake.

  13. Polymeric Nanoparticle Drug Delivery Technologies for Oral Delivery Applications

    PubMed Central

    Pridgen, Eric M.; Alexis, Frank; Farokhzad, Omid C.

    2016-01-01

    Introduction Many therapeutics are limited to parenteral administration. Oral administration is a desirable alternative because of the convenience and increased compliance by patients, especially for chronic diseases that require frequent administration. Polymeric nanoparticles are one technology being developed to enable clinically feasible oral delivery. Areas covered This review discusses the challenges associated with oral delivery. Strategies used to overcome gastrointestinal barriers using polymeric nanoparticles will be considered, including mucoadhesive biomaterials and targeting of nanoparticles to transcytosis pathways associated with M cells and enterocytes. Applications of oral delivery technologies will also be discussed, such as oral chemotherapies, oral insulin, treatment of inflammatory bowel disease, and mucosal vaccinations. Expert opinion There have been many approaches used to overcome the transport barriers presented by the gastrointestinal tract, but most have been limited by low bioavailability. Recent strategies targeting nanoparticles to transcytosis pathways present in the intestines have demonstrated that it is feasible to efficiently transport both therapeutics and nanoparticles across the intestines and into systemic circulation after oral administration. Further understanding of the physiology and pathophysiology of the intestines could lead to additional improvements in oral polymeric nanoparticle technologies and enable the translation of these technologies to clinical practice. PMID:25813361

  14. Effect of Chemotherapeutic Drugs on Caspase-3 Activity, as a Key Biomarker for Apoptosis in Ovarian Tumor Cell Cultured as Monolayer. A Pilot Study

    PubMed Central

    Gregoraszczuk, Ewa L; Rak-Mardyła, Agnieszka; Ryś, Janusz; Jakubowicz, Jerzy; Urbański, Krzysztof

    2015-01-01

    We aimed to develop a cost-effective and robust method to predict drug resistance in individual patients. Representative tissue fragments were obtained from tumors removed from female patients, aged 24-74 years old. The tumor tissue was taken by a histopathology’s or a surgeon under sterile conditions. Cells obtained by enzymatic dissociation from tumor after surgery, were cultured as a monolayer for 6 days. Paclitaxel, doxorubicin, carboplatin and endoxan alone or in combination were added at the beginning of culture and after 6 days, Alamar blue test was used for showing action on cell proliferation why caspase- 3 activity assays for verifying action on apoptosis. Inhibitory action on cell proliferation was noted in 2 of 12 patients tumor treated with both single and combined drugs. Using caspase-3 assay we showed that 50% of tumor cells was resistant to single chemotherapeutic drugs and 40% for combined. In 2 of 12 tumors, which did not reacted on single drugs, positive synergistic action on cell proliferation was observed in combination of D + E and C + E. This pilot study suggests: 1) monolayer culture of tumor cells, derived from individual patients, before chemotherapy could provide a suitable model for studying resistance for drugs; 2) caspase-3 activity is cheap and useful methods; 3) Alamar blue test should be taken into consideration for measuring cell proliferation. PMID:26664382

  15. Contact lenses: promising devices for ocular drug delivery.

    PubMed

    Guzman-Aranguez, Ana; Colligris, Basilio; Pintor, Jesús

    2013-03-01

    In the ocular pharmacology market, there is a noteworthy unmet demand for more efficacious delivery of ocular therapeutics. Contact lenses are emerging as an alternative ophthalmic drug delivery system to resolve the drawbacks of the conventional topical application methods. Thus, contact lenses drug delivery systems have been developed to provide an increased residence time of the drug at the surface of the eye leading to enhanced bioavailability and more convenient and efficacious therapy. Several research groups have already explored the feasibility and potential of contact lenses loading conventional drugs used to treat anterior eye disorders. Drug incorporation to the lens body is achieved with techniques, like simple soaking, inclusion of drug-loaded colloidal nanoparticles, or molecular imprinting. Regardless of the technique used, key properties of the contact lens, such as transparency and oxygen permeability, should be preserved. In this article, we reviewed the different techniques used for drug delivery through contact lenses, analyzing their advantages and disadvantages, and focused on articles describing contact lens-based ophthalmic drug delivery systems with significant potential to use in ocular therapeutics.

  16. Formulation and Stability Aspects of Nanosized Solid Drug Delivery Systems.

    PubMed

    Szabo, Peter; Zelko, Romana

    2015-01-01

    Nano drug delivery systems are considered as useful means to remedy the problems of drugs of poor solubility, permeability and bioavailability, which became one of the most troublesome questions of the pharmaceutical industry. Different types of nanosized drug delivery systems have been developed and investigated for oral administration, providing auspicious solutions for drug development. In this paper nanosized drug delivery systems intended for oral administration are discussed based on the chemical nature of the carrier of drug molecules. Lipid nanoparticles comprising solid lipid nanoparticles, improved nanostructured lipid carriers and nanostructured silica- lipid hybrid particles have become popular in the formulation of lipophilic drugs of poor oral bioavailability. Polymeric nanoparticles including nanospheres and nanocapsules and polymeric fibrous systems have also emerged as potential drug delivery systems owing to their unique structure. The feasibility of surface functionalization of mesoporous materials and gold nanoparticles enables high level of control over particle characteristics making inorganic nanoparticles an exceptional formulation approach. The authors paid particular attention to the functionality-related stability of the reviewed delivery systems. PMID:26027571

  17. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori

    PubMed Central

    Zhao, Shan; Lv, Yan; Zhang, Jian-Bin; Wang, Bing; Lv, Guo-Jun; Ma, Xiao-Jun

    2014-01-01

    Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world’s population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections. PMID:25071326

  18. Nanoparticle hardness controls the internalization pathway for drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2015-01-01

    Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery.

  19. Albumin-based nanocomposite spheres for advanced drug delivery systems.

    PubMed

    Misak, Heath E; Asmatulu, Ramazan; Gopu, Janani S; Man, Ka-Poh; Zacharias, Nora M; Wooley, Paul H; Yang, Shang-You

    2014-01-01

    A novel drug delivery system incorporating human serum albumin, poly(lactic-co-glycolic acid, magnetite nanoparticles, and therapeutic agent(s) was developed for potential application in the treatment of diseases such as rheumatoid arthritis and skin cancer. An oil-in-oil emulsion/solvent evaporation (O/OSE) method was modified to produce a drug delivery system with a diameter of 0.5–2 μm. The diameter was mainly controlled by adjusting the viscosity of albumin in the discontinuous phase of the O/OSE method. The drug-release study showed that the release of drug and albumin was mostly dependent on the albumin content of the drug delivery system, which is very similar to the drug occlusion-mesopore model. Cytotoxicity tests indicated that increasing the albumin content in the drug delivery system increased cell viability, possibly due to the improved biocompatibility of the system. Overall, these studies show that the proposed system could be a viable option as a drug delivery system in the treatment of many illnesses, such as rheumatoid arthritis, and skin and breast cancers. PMID:24106002

  20. A smart multifunctional drug delivery nanoplatform for targeting cancer cells.

    PubMed

    Hoop, M; Mushtaq, F; Hurter, C; Chen, X-Z; Nelson, B J; Pané, S

    2016-07-01

    Wirelessly guided magnetic nanomachines are promising vectors for targeted drug delivery, which have the potential to minimize the interaction between anticancer agents and healthy tissues. In this work, we propose a smart multifunctional drug delivery nanomachine for targeted drug delivery that incorporates a stimuli-responsive building block. The nanomachine consists of a magnetic nickel (Ni) nanotube that contains a pH-responsive chitosan hydrogel in its inner cavity. The chitosan inside the nanotube serves as a matrix that can selectively release drugs in acidic environments, such as the extracellular space of most tumors. Approximately a 2.5 times higher drug release from Ni nanotubes at pH = 6 is achieved compared to that at pH = 7.4. The outside of the Ni tube is coated with gold. A fluorescein isothiocyanate (FITC) labeled thiol-ssDNA, a biological marker, was conjugated on its surface by thiol-gold click chemistry, which enables traceability. The Ni nanotube allows the propulsion of the device by means of external magnetic fields. As the proposed nanoarchitecture integrates different functional building blocks, our drug delivery nanoplatform can be employed for carrying molecular drug conjugates and for performing targeted combinatorial therapies, which can provide an alternative and supplementary solution to current drug delivery technologies. PMID:27297037

  1. Micelles and Nanoparticles for Ultrasonic Drug and Gene Delivery

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    Drug delivery research employing micelles and nanoparticles has expanded in recent years. Of particular interest is the use of these nanovehicles that deliver high concentrations of cytotoxic drugs to diseased tissues selectively, thus reducing the agent’s side effects on the rest of the body. Ultrasound, traditionally used in diagnostic medicine, is finding a place in drug delivery in connection with these nanoparticles. In addition to their non-invasive nature and the fact that they can be focused on targeted tissues, acoustic waves have been credited with releasing pharmacological agents from nanocarriers, as well as rendering cell membranes more permeable. In this article, we summarize new technologies that combine the use of nanoparticles with acoustic power both in drug and gene delivery. Ultrasonic drug delivery from micelles usually employs polyether block copolymers, and has been found effective in vivo for treating tumors. Ultrasound releases drug from micelles, most probably via shear stress and shock waves from collapse of cavitation bubbles. Liquid emulsions and solid nanoparticles are used with ultrasound to deliver genes in vitro and in vivo. The small packaging allows nanoparticles to extravasate into tumor tissues. Ultrasonic drug and gene delivery from nano-carriers has tremendous potential because of the wide variety of drugs and genes that could be delivered to targeted tissues by fairly non-invasive means. PMID:18486269

  2. Formulation and Stability Aspects of Nanosized Solid Drug Delivery Systems.

    PubMed

    Szabo, Peter; Zelko, Romana

    2015-01-01

    Nano drug delivery systems are considered as useful means to remedy the problems of drugs of poor solubility, permeability and bioavailability, which became one of the most troublesome questions of the pharmaceutical industry. Different types of nanosized drug delivery systems have been developed and investigated for oral administration, providing auspicious solutions for drug development. In this paper nanosized drug delivery systems intended for oral administration are discussed based on the chemical nature of the carrier of drug molecules. Lipid nanoparticles comprising solid lipid nanoparticles, improved nanostructured lipid carriers and nanostructured silica- lipid hybrid particles have become popular in the formulation of lipophilic drugs of poor oral bioavailability. Polymeric nanoparticles including nanospheres and nanocapsules and polymeric fibrous systems have also emerged as potential drug delivery systems owing to their unique structure. The feasibility of surface functionalization of mesoporous materials and gold nanoparticles enables high level of control over particle characteristics making inorganic nanoparticles an exceptional formulation approach. The authors paid particular attention to the functionality-related stability of the reviewed delivery systems.

  3. Drug delivery systems for ovarian cancer treatment: a systematic review and meta-analysis of animal studies

    PubMed Central

    Raavé, René; de Vries, Rob B.M.; Massuger, Leon F.; van Kuppevelt, Toin H.

    2015-01-01

    Current ovarian cancer treatment involves chemotherapy that has serious limitations, such as rapid clearance, unfavorable biodistribution and severe side effects. To overcome these limitations, drug delivery systems (DDS) have been developed to encapsulate chemotherapeutics for delivery to tumor cells. However, no systematic assessment of the efficacy of chemotherapy by DDS compared to free chemotherapy (not in a DDS) has been performed for animal studies. Here, we assess the efficacy of chemotherapy in DDS on survival and tumor growth inhibition in animal studies. We searched PubMed and EMBASE (via OvidSP) to systematically identify studies evaluating chemotherapeutics encapsulated in DDS for ovarian cancer treatment in animal studies. Studies were assessed for quality and risk of bias. Study characteristics were collected and outcome data (survival/hazard ratio or tumor growth inhibition) were extracted and used for meta-analyses. Meta-analysis was performed to identify and explore which characteristics of DDS influenced treatment efficacy. A total of 44 studies were included after thorough literature screening (2,735 studies found after initial search). The risk of bias was difficult to assess, mainly because of incomplete reporting. A total of 17 studies (377 animals) and 16 studies (259 animals) could be included in the meta-analysis for survival and tumor growth inhibition, respectively. In the majority of the included studies chemotherapeutics entrapped in a DDS significantly improved efficacy over free chemotherapeutics regarding both survival and tumor growth inhibition. Subgroup analyses, however, revealed that cisplatin entrapped in a DDS did not result in additional tumor growth inhibition compared to free cisplatin, although it did result in improved survival. Micelles did not show a significant tumor growth inhibition compared to free chemotherapeutics, which indicates that micelles may not be a suitable DDS for ovarian cancer treatment. Other

  4. Multifunctional inverse opal particles for drug delivery and monitoring.

    PubMed

    Zhang, Bin; Cheng, Yao; Wang, Huan; Ye, Baofen; Shang, Luoran; Zhao, Yuanjin; Gu, Zhongze

    2015-06-28

    Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials.

  5. Multifunctional inverse opal particles for drug delivery and monitoring.

    PubMed

    Zhang, Bin; Cheng, Yao; Wang, Huan; Ye, Baofen; Shang, Luoran; Zhao, Yuanjin; Gu, Zhongze

    2015-06-28

    Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials. PMID:26035621

  6. Mucus-penetrating nanoparticles for vaginal and gastrointestinal drug delivery

    NASA Astrophysics Data System (ADS)

    Ensign-Hodges, Laura

    A method that could provide more uniform and longer-lasting drug delivery to mucosal surfaces holds the potential to greatly improve the effectiveness of prophylactic and therapeutic approaches for numerous diseases and conditions, including sexually transmitted infections and inflammatory bowel disease. However, the body's natural defenses, including adhesive, rapidly cleared mucus linings coating nearly all entry points to the body not covered by skin, has limited the effectiveness of drug and gene delivery by nanoscale delivery systems. Here, we investigate the use of muco-inert mucus-penetrating nanoparticles (MPP) for improving vaginal and gastrointestinal drug delivery. Conventional hydrophobic nanoparticles strongly adhere to mucus, facilitating rapid clearance from the body. Here, we demonstrate that mucoadhesive polystyrene nanoparticles (conventional nanoparticles, CP) become mucus-penetrating in human cervicovaginal mucus (CVM) after pretreatment with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large MPP did not change in F127 pretreated CVM, implying there is no affect on the native pore structure of CVM. Additionally, there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for one week. Importantly, HSV virus remains adherent in F127-pretreated CVM. Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that hypotonically-induced fluid uptake could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We evaluated hypotonic formulations for delivering water-soluble drugs and for drug delivery with MPP. Hypotonic formulations markedly increased the rate at which drugs and MPP reached the epithelial surface. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that isotonic formulations

  7. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    PubMed Central

    Rajan, Reshmy; Jose, Shoma; Mukund, V. P. Biju; Vasudevan, Deepa T.

    2011-01-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era. PMID:22171309

  8. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    PubMed Central

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  9. Planar bioadhesive microdevices: a new technology for oral drug delivery

    PubMed Central

    Fox, Cade B.; Chirra, Hariharasudhan D.; Desai, Tejal A.

    2014-01-01

    The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery. PMID:25219863

  10. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug.

  11. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    PubMed

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  12. Electrohydrodynamics: A facile technique to fabricate drug delivery systems

    PubMed Central

    Chakraborty, Syandan; Liao, I-Chien; Adler, Andrew; Leong, Kam W.

    2009-01-01

    Electrospinning and electrospraying are facile electrohydrodynamic fabrication methods that can generate drug delivery systems (DDS) through a one-step process. The nano-structured fiber and particle morphologies produced by these techniques offer tunable release kinetics applicable to diverse biomedical applications. Coaxial-electrospinning/electrospraying, a relatively new technique of fabricating core-shell fibers/particles have added to the versatility of these DDS by affording a near zero-order drug release kinetics, dampening of burst release, and applicability to a wider range of bioactive agents. Controllable electrospinning/spraying of fibers and particles and subsequent drug release from these chiefly polymeric vehicles depends on well-defined solution and process parameters. The additional drug delivery capability from electrospun fibers can further enhance the material’s functionality in tissue engineering applications. This review discusses the state-of-the-art of using electrohydrodynamic technique to generate nano-fiber/particles as drug delivery devices. PMID:19651167

  13. A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    PubMed Central

    Mufamadi, Maluta S.; Pillay, Viness; Choonara, Yahya E.; Du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Ndesendo, Valence M. K.

    2011-01-01

    The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications. PMID:21490759

  14. Oral Dispersible System: A New Approach in Drug Delivery System

    PubMed Central

    Hannan, P. A.; Khan, J. A.; Khan, A.; Safiullah, S.

    2016-01-01

    Dosage form is a mean used for the delivery of drug to a living body. In order to get the desired effect the drug should be delivered to its site of action at such rate and concentration to achieve the maximum therapeutic effect and minimum adverse effect. Since oral route is still widely accepted route but having a common drawback of difficulty in swallowing of tablets and capsules. Therefore a lot of research has been done on novel drug delivery systems. This review is about oral dispersible tablets a novel approach in drug delivery systems that are now a day's more focused in formulation world, and laid a new path that, helped the patients to build their compliance level with the therapy, also reduced the cost and ease the administration especially in case of pediatrics and geriatrics. Quick absorption, rapid onset of action and reduction in drug loss properties are the basic advantages of this dosage form. PMID:27168675

  15. Oral Dispersible System: A New Approach in Drug Delivery System.

    PubMed

    Hannan, P A; Khan, J A; Khan, A; Safiullah, S

    2016-01-01

    Dosage form is a mean used for the delivery of drug to a living body. In order to get the desired effect the drug should be delivered to its site of action at such rate and concentration to achieve the maximum therapeutic effect and minimum adverse effect. Since oral route is still widely accepted route but having a common drawback of difficulty in swallowing of tablets and capsules. Therefore a lot of research has been done on novel drug delivery systems. This review is about oral dispersible tablets a novel approach in drug delivery systems that are now a day's more focused in formulation world, and laid a new path that, helped the patients to build their compliance level with the therapy, also reduced the cost and ease the administration especially in case of pediatrics and geriatrics. Quick absorption, rapid onset of action and reduction in drug loss properties are the basic advantages of this dosage form.

  16. A review of nebulized drug delivery in COPD

    PubMed Central

    Tashkin, Donald P

    2016-01-01

    Current guidelines recommend inhaled pharmacologic therapy as the preferred route of administration for treating COPD. Bronchodilators (β2-agonists and antimuscarinics) are the mainstay of pharmacologic therapy in patients with COPD, with long-acting agents recommended for patients with moderate to severe symptoms or those who are at a higher risk for COPD exacerbations. Dry powder inhalers and pressurized metered dose inhalers are the most commonly used drug delivery devices, but they may be inadequate in various clinical scenarios (eg, the elderly, the cognitively impaired, and hospitalized patients). As more drugs become available in solution formulations, patients with COPD and their caregivers are becoming increasingly satisfied with nebulized drug delivery, which provides benefits similar to drugs delivered by handheld inhalers in both symptom relief and improved quality of life. This article reviews recent innovations in nebulized drug delivery and the important role of nebulized therapy in the treatment of COPD. PMID:27799757

  17. Electrothermally activated microchips for implantable drug delivery and biosensing.

    PubMed

    Maloney, John M; Uhland, Scott A; Polito, Benjamin F; Sheppard, Norman F; Pelta, Christina M; Santini, John T

    2005-12-01

    Novel drug delivery and biosensing devices have the potential to increase the efficacy of drug therapy by providing physicians and patients the ability to precisely control key therapy parameters. Such "intelligent" systems can enable control of dose amount and the time, rate, and location of drug delivery. We have developed and demonstrated the operation of an electrothermal mechanism to precisely control the delivery of drugs and exposure of biosensors. These microchip devices contain an array of individually sealed and actuated reservoirs, each capped by a thin metal membrane comprised of either gold or multiple layers of titanium and platinum. The passage of a threshold level of electric current through the membrane causes it to disintegrate, thereby exposing the protected contents (drugs or biosensors) of the reservoir to the surrounding environment. This paper describes the theory and experimental characterization of the electrothermal method and includes in vitro release results for a model compound.

  18. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    PubMed

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.

  19. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    NASA Astrophysics Data System (ADS)

    Hwang, Tae Heon; Kim, Jin Bum; Som Yang, Da; Park, Yong-il; Ryu, WonHyoung

    2013-03-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro.

  20. Intracellular Delivery System for Antibody–Peptide Drug Conjugates

    PubMed Central

    Berguig, Geoffrey Y; Convertine, Anthony J; Frayo, Shani; Kern, Hanna B; Procko, Erik; Roy, Debashish; Srinivasan, Selvi; Margineantu, Daciana H; Booth, Garrett; Palanca-Wessels, Maria Corinna; Baker, David; Hockenbery, David; Press, Oliver W; Stayton, Patrick S

    2015-01-01

    Antibodies armed with biologic drugs could greatly expand the therapeutic potential of antibody–drug conjugates for cancer therapy, broadening their application to disease targets currently limited by intracellular delivery barriers. Additional selectivity and new therapeutic approaches could be realized with intracellular protein drugs that more specifically target dysregulated pathways in hematologic cancers and other malignancies. A multifunctional polymeric delivery system for enhanced cytosolic delivery of protein drugs has been developed that incorporates endosomal-releasing activity, antibody targeting, and a biocompatible long-chain ethylene glycol component for optimized safety, pharmacokinetics, and tumor biodistribution. The pH-responsive polymeric micelle carrier, with an internalizing anti-CD22 monoclonal targeting antibody, effectively delivered a proapoptotic Bcl-2 interacting mediator (BIM) peptide drug that suppressed tumor growth for the duration of treatment and prolonged survival in a xenograft mouse model of human B-cell lymphoma. Antitumor drug activity was correlated with a mechanistic induction of the Bcl-2 pathway biomarker cleaved caspase-3 and a marked decrease in the Ki-67 proliferation biomarker. Broadening the intracellular target space by more effective delivery of protein/peptide drugs could expand the repertoire of antibody–drug conjugates to currently undruggable disease-specific targets and permit tailored drug strategies to stratified subpopulations and personalized medicines. PMID:25669432

  1. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  2. Drug delivery systems, CNS protection, and the blood brain barrier.

    PubMed

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  3. Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation

    PubMed Central

    Wang, Xiaoying; Tryndyak, Volodymyr; Apostolov, Eugene O.; Yin, Xiaoyan; Shah, Sudhir V.; Pogribny, Igor P.; Basnakian, Alexei G.

    2016-01-01

    Analysis of promoter sequences of all known human cytotoxic endonucleases showed that endonuclease G (EndoG) is the only endonuclease that contains a CpG island, a segment of DNA with high G+C content and a site for methylation, in the promoter region. A comparison of three human prostate cancer cell lines showed that EndoG is highly expressed in 22Rv1 and LNCaP cells. In PC3 cells, EndoG was not expressed and the EndoG CpG island was hypermethylated. The expression of EndoG correlated positively with sensitivity to cisplatin and etoposide, and the silencing of EndoG by siRNA decreased the sensitivity of the cells to the chemotherapeutic agents in the two EndoG-expressing cell lines. 5-aza-2′-deoxycytidine caused hypomethylation of the EndoG promoter in PC3 cells, induced EndoG mRNA and protein expression, and made the cells sensitive to both cisplatin and etoposide. The acetylation of histones by trichostatin A, the histone deacetylase inhibitor, induced EndoG expression in 22Rv1 cells, while it had no such effect in PC3 cells. These data are the first indication that EndoG may be regulated by methylation of its gene promoter, and partially by histone acetylation, and that EndoG is essential for prostate cancer cell death in the used models. PMID:18565644

  4. Microsystems Technologies for Drug Delivery to the Inner Ear

    PubMed Central

    Leary Pararas, Erin E.; Borkholder, David A.; Borenstein, Jeffrey T.

    2012-01-01

    The inner ear represents one of the most technologically challenging targets for local drug delivery, but its clinical significance is rapidly increasing. The prevalence of sensorineural hearing loss and other auditory diseases, along with balance disorders and tinnitus, has spurred broad efforts to develop therapeutic compounds and regenerative approaches to treat these conditions, necessitating advances in systems capable of targeted and sustained drug delivery. The delicate nature of hearing structures combined with the relative inaccessibility of the cochlea by means of conventional delivery routes together necessitate significant advancements in both the precision and miniaturization of delivery systems, and the nature of the molecular and cellular targets for these therapies suggests that multiple compounds may need to be delivered in a time-sequenced fashion over an extended duration. Here we address the various approaches being developed for inner ear drug delivery, including micropump-based devices, reciprocating systems, and cochlear prosthesis-mediated delivery, concluding with an analysis of emerging challenges and opportunities for the first generation of technologies suitable for human clinical use. These developments represent exciting advances that have the potential to repair and regenerate hearing structures in millions of patients for whom no currently available medical treatments exist, a situation that requires them to function with electronic hearing augmentation devices or to live with severely impaired auditory function. These advances also have the potential for broader clinical applications that share similar requirements and challenges with the inner ear, such as drug delivery to the central nervous system. PMID:22386561

  5. Discovery and Delivery of Synergistic Chemotherapy Drug Combinations to Tumors

    NASA Astrophysics Data System (ADS)

    Camacho, Kathryn Militar

    Chemotherapy combinations for cancer treatments harbor immense therapeutic potentials which have largely been untapped. Of all diseases, clinical studies of drug combinations are the most prevalent in oncology, yet their effectiveness is disputable, as complete tumor regressions are rare. Our research has been devoted towards developing delivery vehicles for combinations of chemotherapy drugs which elicit significant tumor reduction yet limit toxicity in healthy tissue. Current administration methods assume that chemotherapy combinations at maximum tolerable doses will provide the greatest therapeutic effect -- a presumption which often leads to unprecedented side effects. Contrary to traditional administration, we have found that drug ratios rather than total cumulative doses govern combination therapeutic efficacy. In this thesis, we have developed nanoparticles to incorporate synergistic ratios of chemotherapy combinations which significantly inhibit cancer cell growth at lower doses than would be required for their single drug counterparts. The advantages of multi-drug incorporation in nano-vehicles are many: improved accumulation in tumor tissue via the enhanced permeation and retention effect, limited uptake in healthy tissue, and controlled exposure of tumor tissue to optimal synergistic drug ratios. To exploit these advantages for polychemotherapy delivery, two prominent nanoparticles were investigated: liposomes and polymer-drug conjugates. Liposomes represent the oldest class of nanoparticles, with high drug loading capacities and excellent biocompatibility. Polymer-drug conjugates offer controlled drug incorporations through reaction stoichiometry, and potentially allow for delivery of precise ratios. Here, we show that both vehicles, when armed with synergistic ratios of chemotherapy drugs, significantly inhibit tumor growth in an aggressive mouse breast carcinoma model. Furthermore, versatile drug incorporation methods investigated here can be broadly

  6. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  7. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  8. Coaxial electrohydrodynamic atomization: microparticles for drug delivery applications.

    PubMed

    Davoodi, Pooya; Feng, Fang; Xu, Qingxing; Yan, Wei-Cheng; Tong, Yen Wah; Srinivasan, M P; Sharma, Vijay Kumar; Wang, Chi-Hwa

    2015-05-10

    As cancer takes its toll on human health and well-being, standard treatment techniques such as chemotherapy and radiotherapy often fall short of ideal solutions. In particular, adverse side effects due to excess dosage and collateral damage to healthy cells as well as poor patient compliance due to multiple administrations continue to pose challenges in cancer treatment. Thus, the development of appropriately engineered drug delivery systems (DDS) for effective, controlled and sustained delivery of drugs is of interest for patient treatment. Moreover, the physiopathological characteristics of tumors play an essential role in the success of cancer treatment. Here, we present an overview of the application of double-walled microparticles for local drug delivery with particular focus on the electrohydrodynamic atomization (EHDA) technique and its fabrication challenges. The review highlights the importance of a combination of experimental data and computational simulations for the design of an optimal delivery system. PMID:25483422

  9. Mucoadhesive and thermogelling systems for vaginal drug delivery.

    PubMed

    Caramella, Carla M; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria Cristina; Sandri, Giuseppina

    2015-09-15

    This review focuses on two formulation approaches, mucoadhesion and thermogelling, intended for prolonging residence time on vaginal mucosa of medical devices or drug delivery systems, thus improving their efficacy. The review, after a brief description of the vaginal environment and, in particular, of the vaginal secretions that strongly affect in vivo performance of vaginal formulations, deals with the above delivery systems. As for mucoadhesive systems, conventional formulations (gels, tablets, suppositories and emulsions) and novel drug delivery systems (micro-, nano-particles) intended for vaginal administration to achieve either local or systemic effect are reviewed. As for thermogelling systems, poly(ethylene oxide-propylene oxide-ethylene oxide) copolymer-based and chitosan-based formulations are discussed as thermogelling systems. The methods employed for functional characterization of both mucoadhesive and thermogelling drug delivery systems are also briefly described.

  10. An Intravaginal Ring for the Simultaneous Delivery of Multiple Drugs

    PubMed Central

    Baum, Marc M.; Butkyavichene, Irina; Gilman, Joshua; Kennedy, Sean; Kopin, Etana; Malone, Amanda M.; Nguyen, Cali; Smith, Thomas J.; Friend, David R.; Clark, Meredith R.; Moss, John A.

    2013-01-01

    Intravaginal delivery of microbicide combinations is a promising approach for the prevention of sexually transmitted infections, but requires a method of providing simultaneous, independent release of multiple agents into the vaginal compartment. A novel intravaginal ring (IVR) platform has been developed for simultaneous delivery of the reverse-transcriptase inhibitor tenofovir (TFV) and the guanosine analogue antiviral acyclovir (ACV) with independent control of release rate for each drug. The IVR is based on a pod design, with up to 10 individual polymer-coated drug cores embedded in the ring releasing through preformed delivery channels. The release rate from each pod is controlled independently of the others by the drug properties, polymer coating, and size and number of delivery channels. Pseudo-zero-order in vitro release of TFV (144 ± 10 µg day) and ACV (120 ± 19 µg day−1) from an IVR containing both drugs was sustained for 28 days. The mechanical properties of the pod IVR were evaluated and compared with the commercially available Estring® (Pfizer, NY, NY). The pod-IVR design enables the vaginal delivery of multiple microbicides with differing physicochemical properties, and is an attractive approach for the sustained intravaginal delivery of relatively hydrophilic drugs that are difficult to deliver using conventional matrix IVR technology. PMID:22619076

  11. Ultrasonic-Activated Micellar Drug Delivery for Cancer Treatment

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    The use of nanoparticles and ultrasound in medicine continues to evolve. Great strides have been made in the areas of producing micelles, nanoemulsions and solid nanoparticles that can be used in drug delivery. An effective nanocarrier allows for the delivery of a high concentration of potent medications to targeted tissue while minimizing the side effect of the agent to the rest of the body. Polymeric micelles have been shown to encapsulate therapeutic agents and maintain their structural integrity at lower concentrations. Ultrasound is currently being used in drug delivery as well as diagnostics, and has many advantages that elevate its importance in drug delivery. The technique is non-invasive, thus no surgery is needed; the ultrasonic waves can be easily controlled by advanced electronic technology so that they can be focused on the desired target volume. Additionally, the physics of ultrasound are widely used and well understood; thus ultrasonic application can be tailored towards a particular drug delivery system. In this article, we review the recent progress made in research that utilizes both polymeric micelles and ultrasonic power in drug delivery. PMID:18506804

  12. Drug delivery to the brain--realization by novel drug carriers.

    PubMed

    Müller, Rainer H; Keck, Cornelia M

    2004-05-01

    Delivery of drugs to the brain is still a major challenge. Successful delivery across the bloodbrain barrier has only been achieved in some cases, e.g., using pro-drugs. The review describes the delivery to the brain using nanoparticulate drug carriers in combination with the novel targeting principle of "differential protein adsorption" (PathFinder technology). The PathFinder technology exploits proteins in the blood which adsorb onto the surface of intravenously injected carriers for targeting. Apolipoprotein E is the targeting moiety for the delivery of particles to the endothelials of the blood-brain barrier. To reach therapeutic drug level in the brain, nanoparticulate drug carriers with sufficiently high loading capacity are reviewed, including drug nanocrystals (nanosuspensions), lipid drug conjugate (LDC) nanoparticles and lipid nanoparticles (solid lipid nanoparticles-SLN, nanostructured lipid carriers-NLC). The features are described, including regulatory aspects and large scale production. PMID:15503432

  13. Drug delivery to the brain--realization by novel drug carriers.

    PubMed

    Müller, Rainer H; Keck, Cornelia M

    2004-05-01

    Delivery of drugs to the brain is still a major challenge. Successful delivery across the bloodbrain barrier has only been achieved in some cases, e.g., using pro-drugs. The review describes the delivery to the brain using nanoparticulate drug carriers in combination with the novel targeting principle of "differential protein adsorption" (PathFinder technology). The PathFinder technology exploits proteins in the blood which adsorb onto the surface of intravenously injected carriers for targeting. Apolipoprotein E is the targeting moiety for the delivery of particles to the endothelials of the blood-brain barrier. To reach therapeutic drug level in the brain, nanoparticulate drug carriers with sufficiently high loading capacity are reviewed, including drug nanocrystals (nanosuspensions), lipid drug conjugate (LDC) nanoparticles and lipid nanoparticles (solid lipid nanoparticles-SLN, nanostructured lipid carriers-NLC). The features are described, including regulatory aspects and large scale production.

  14. Stabilized Heptapeptide A7R for Enhanced Multifunctional Liposome-Based Tumor-Targeted Drug Delivery.

    PubMed

    Ying, Man; Shen, Qing; Liu, Yu; Yan, Zhiqiang; Wei, Xiaoli; Zhan, Changyou; Gao, Jie; Xie, Cao; Yao, Bingxin; Lu, Weiyue

    2016-06-01

    (L)A7R (ATWLPPR) is a heptapeptide with high binding affinity in vitro to vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) overexpressed on glioma, glioma vasculogenic mimicry and neovasculature. However, its tumor targeting efficacy is significantly reduced in vivo due to proteolysis in blood circulation. To improve the in vivo stability and targeting efficacy, the retro inverso isomer of (L)A7R ((D)A7R) was developed for glioma-targeted drug delivery. (D)A7R was expected to have a similar binding affinity to its receptors in vitro (VEGFR2 and NRP-1), which was experimentally confirmed. In vivo, (D)A7R-modified liposomes achieved improved glioma-targeted efficiency than did (L)A7R-modified liposomes. After loading a chemotherapeutic agent (doxorubicin), (D)A7R-modified liposomes significantly inhibited subcutaneous model tumor in comparison to free doxorubicin, plain liposomes and (L)A7R-modified liposomes. In summary, the present study presented the potential of a proteolytically stable d-peptide ligand for in vivo tumor-targeted drug delivery. PMID:27195531

  15. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    PubMed Central

    Ozalp, Veli Cengiz; Eyidogan, Fusun; Oktem, Huseyin Avni

    2011-01-01

    Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  16. Porous Carriers for Controlled/Modulated Drug Delivery

    PubMed Central

    Ahuja, G.; Pathak, K.

    2009-01-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211

  17. The potential of magneto-electric nanocarriers for drug delivery

    PubMed Central

    Kaushik, Ajeet; Jayant, Rahul Dev; Sagar, Vidya; Nair, Madhavan

    2015-01-01

    Introduction The development and design of personalized nanomedicine for better health quality is receiving great attention. In order to deliver and release a therapeutic concentration at the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) which possess ideal properties of high drug loading, site-specificity and precise on-demand controlled drug delivery. Areas covered This review explores the potential of ME-NCs for on-demand and site-specific drug delivery and release for personalized therapeutics. The main features including effect of magnetism, improvement in drug loading, drug transport across blood-brain barriers and on-demand controlled release are also discussed. The future directions and possible impacts on upcoming nanomedicine are highlighted. Expert opinion Numerous reports suggest that there is an urgent need to explore novel NC formulations for safe and targeted drug delivery and release at specific disease sites. The challenges of formulation lie in the development of NCs that improve biocompatibility and surface modifications for optimum drug loading/preservation/transmigration and tailoring of electrical–magnetic properties for on-demand drug release. Thus, the development of novel NCs is anticipated to overcome the problems of targeted delivery of therapeutic agents with desired precision that may lead to better patient compliance. PMID:24986772

  18. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems.

  19. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems. PMID:20485835

  20. Porous carriers for controlled/modulated drug delivery.

    PubMed

    Ahuja, G; Pathak, K

    2009-11-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state.

  1. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers.

    PubMed

    Yan, Fei; Li, Lu; Deng, Zhiting; Jin, Qiaofeng; Chen, Juanjuan; Yang, Wei; Yeh, Chih-Kuang; Wu, Junru; Shandas, Robin; Liu, Xin; Zheng, Hairong

    2013-03-28

    Liposome-microbubble complexes (LMC) have become a promising therapeutic carrier for ultrasound-triggered drug delivery to treat malignant tumors. However, the efficacy for ultrasound-assisted chemotherapy in vivo and the underlying mechanisms remain to be elucidated. Here, we investigated the feasibility of using paclitaxel-liposome-microbubble complexes (PLMC) as possible ultrasound (US)-triggered targeted chemotherapy against breast cancer. PTX-liposomes (PL) were conjugated to the microbubble (MB) surface through biotin-avidin linkage, increasing the drug-loading efficiency of MBs. The significant increased release of payloads from liposome-microbubble complexes was achieved upon US exposure. We used fluorescent quantum dots (QDs) as a model drug to show that released QDs were taken up by 4T1 breast cancer cells treated with QD-liposome-microbubble complexes (QLMC) and US, and uptake depended on the exposure time and intensity of insonication. We found that PLMC plus US inhibited tumor growth more effectively than PL plus US or PLMC without US, not only in vitro, but also in vivo. Histologically, the inhibition of tumor growth appeared to result from increased apoptosis and reduced angiogenesis in tumor xenografts. In addition, a significant increase of drug concentration in tumors was observed in comparison to treatment with non-conjugated PL or PLMC without US. The significant increase in an antitumor efficacy of PLMC plus US suggests their potential use as a new targeted US chemotherapeutic approach to inhibit breast cancer growth.

  2. Targeting tumor metastases: drug delivery mechanisms and technologies

    PubMed Central

    Ganapathy, Vidya; Moghe, Prabhas V.; Roth, Charles M.

    2016-01-01

    Primary sites of tumor are the focal triggers of cancers, yet it is the subsequent metastasis events that cause the majority of the morbidity and mortality. Metastatic tumor cells exhibit a phenotype that differs from that of the parent cells, as they represent a resistant, invasive subpopulation of the original tumor, may have acquired additional genetic or epigenetic alterations under exposure to prior chemotherapeutic or radiotherapeutic treatments, and reside in a microenvironment differing from that of its origin. This combination of resistant phenotype and distal location make tracking and treating metastases particularly challenging. In this review, we highlight some of the unique biological traits of metastasis, which in turn, inspire emerging strategies for targeted imaging of metastasized tumors and metastasis-directed delivery of therapeutics. PMID:26409123

  3. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease

    PubMed Central

    Gunay, Mine Silindir; Ozer, A. Yekta; Chalon, Sylvie

    2016-01-01

    Background: Although a variety of therapeutic approaches are available for the treatment of Parkinson’s disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. Methods: This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. Results: It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson’s disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α-synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Conclusion: Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson’s disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson’s Disease therapy and reduce its side effects. PMID:26714584

  4. Basics and recent advances in peptide and protein drug delivery

    PubMed Central

    Bruno, Benjamin J; Miller, Geoffrey D; Lim, Carol S

    2014-01-01

    While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed. PMID:24228993

  5. Development of cup shaped microneedle array for transdermal drug delivery.

    PubMed

    Vinayakumar, Kadayar B; Hegde, Gopal M; Ramachandra, Subbaraya G; Nayak, Mangalore M; Dinesh, Narasimhian S; Rajanna, Konandur

    2015-01-01

    Microneedle technology is one of the attractive methods in transdermal drug delivery. However, the clinical applications of this method are limited owing to: complexity in the preparation of multiple coating solutions, drug leakage while inserting the microneedles into the skin and the outer walls of the solid microneedle can hold limited quantity of drug. Here, the authors present the fabrication of an array of rectangular cup shaped silicon microneedles, which provide for reduced drug leakage resulting in improvement of efficiency of drug delivery and possibility of introducing multiple drugs. The fabricated solid microneedles with rectangular cup shaped tip have a total height of 200 μm. These cup shaped tips have dimensions: 60 × 60 μm (length × breadth) with a depth of 60 μm. The cups are filled with drug using a novel in-house built drop coating system. Successful drug dissolution was observed when the coated microneedle was used on mice. Also, using the above method, it is possible to fill the cups selectively with different drugs, which enables simultaneous multiple drug delivery. PMID:25956180

  6. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    PubMed

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites.

  7. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery

    PubMed Central

    Donnelly, Ryan F; Singh, Thakur Raghu Raj; Garland, Martin J; Migalska, Katarzyna; Majithiya, Rita; McCrudden, Cian M; Kole, Prashant Laxman; Mahmood, Tuan Mazlelaa Tuan; McCarthy, Helen O; Woolfson, A David

    2012-01-01

    Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients. PMID:23606824

  8. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

    PubMed Central

    Ren, Muqing; Duval, Kayla; Guo, Xing; Chen, Zi

    2016-01-01

    Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this article, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting and physical targeting), compare methods of action, advantages, limitations, and the current stage of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery. PMID:27398083

  9. Drug delivery systems improve pharmaceutical profile and facilitate medication adherence.

    PubMed

    Wertheimer, Albert I; Santella, Thomas M; Finestone, Albert J; Levy, Richard A

    2005-01-01

    Innovations in dosage forms and dose delivery systems across a wide range of medications offer substantial clinical advantages, including reduced dosing frequency and improved patient adherence; minimized fluctuation of drug concentrations and maintenance of blood levels within a desired range; localized drug delivery; and the potential for reduced adverse effects and increased safety. The advent of new large-molecule drugs for previously untreatable or only partially treatable diseases is stimulating the development of suitable delivery systems for these agents. Although advanced formulations may be more expensive than conventional dosage forms, they often have a more favorable pharmacologic profile and can be cost-effective. Inclusion of these dosage forms on drug formulary lists may help patients remain on therapy and reduce the economic and social burden of care.

  10. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    PubMed

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  11. Micro and Nanoparticle Drug Delivery Systems for Preventing Allotransplant Rejection

    PubMed Central

    Fisher, James D.; Acharya, Abhinav P.; Little, Steven R.

    2015-01-01

    Despite decades of advances in transplant immunology, tissue damage caused by acute allograft rejection remains the primary cause of morbidity and mortality in the transplant recipient. Moreover, the long-term sequelae of lifelong immunosuppression leaves patients at risk for developing a host of other deleterious conditions. Controlled drug delivery using micro- and nanoparticles (MNPs) is an effective way to deliver higher local doses of a given drug to specific tissues and cells while mitigating systemic effects. Herein, we review several descriptions of MNP immunotherapies aimed at prolonging allograft survival. We also discuss developments in the field of biomimetic drug delivery that use MNP constructs to induce and recruit our bodies' own suppressive immune cells. Finally, we comment on the regulatory pathway associated with these drug delivery systems. Collectively, it is our hope the studies described in this review will help to usher in a new era of immunotherapy in organ transplantation. PMID:25937032

  12. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  13. Smart surface-enhanced Raman scattering traceable drug delivery systems.

    PubMed

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-07-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. PMID:27297745

  14. Recent advances in liposome surface modification for oral drug delivery.

    PubMed

    Nguyen, Thanh Xuan; Huang, Lin; Gauthier, Mario; Yang, Guang; Wang, Qun

    2016-05-01

    Oral delivery via the gastrointestinal (GI) tract is the dominant route for drug administration. Orally delivered liposomal carriers can enhance drug solubility and protect the encapsulated theraputic agents from the extreme conditions found in the GI tract. Liposomes, with their fluid lipid bilayer membrane and their nanoscale size, can significantly improve oral absorption. Unfortunately, the clinical applications of conventional liposomes have been hindered due to their poor stability and availability under the harsh conditions typically presented in the GI tract. To overcome this problem, the surface modification of liposomes has been investigated. Although liposome surface modification has been extensively studied for oral drug delivery, no review exists so far that adequately covers this topic. The purpose of this paper is to summarize and critically analyze emerging trends in liposome surface modification for oral drug delivery. PMID:27074098

  15. Lipid nanocarriers (LNC) and their applications in ocular drug delivery.

    PubMed

    Puglia, Carmelo; Offerta, Alessia; Carbone, Claudia; Bonina, Francesco; Pignatello, Rosario; Puglisi, Giovanni

    2015-01-01

    The peculiar physio-anatomical structure of the eye and the poor physico-chemical properties of many drug molecules are often responsible for the inefficient treatment of ocular diseases by conventional dosage forms, and justify the development of innovative ocular drug delivery systems. Lipid-based nanocarriers (LNC) are among the newer and interesting colloidal drug delivery systems; they show the capability to improve the local bioavailability of drugs administered by various ocular routes and, therefore, their therapeutic efficacy. Furthermore, their extreme biodegradability and biocompatible chemical nature have secured them the title of 'nanosafe carriers.' This review treats the main features of LNC [namely, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid-drug conjugates (LDC)]; examples and advantages of the application of these colloidal carrier systems for the ophthalmic administration of drugs are presented. PMID:25666802

  16. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug.

    PubMed

    Zhao, Yang; Luo, Zhong; Li, Menghuan; Qu, Qiuyu; Ma, Xing; Yu, Shu-Hong; Zhao, Yanli

    2015-01-12

    Biomedical applications of nontoxic amorphous calcium carbonate (ACC) nanoparticles have mainly been restricted because of their aqueous instability. To improve their stability in physiological environments while retaining their pH-responsiveness, a novel nanoreactor of ACC-doxorubicin (DOX)@silica was developed for drug delivery for use in cancer therapy. As a result of its rationally engineered structure, this nanoreactor maintains a low drug leakage in physiological and lysosomal/endosomal environments, and responds specifically to pH 6.5 to release the drug. This unique ACC-DOX@silica nanoreactor releases DOX precisely in the weakly acidic microenvironment of cancer cells and results in efficient cell death, thus showing its great potential as a desirable chemotherapeutic nanosystem for cancer therapy.

  17. Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model

    PubMed Central

    2013-01-01

    Background Many aspects of the mechanisms involved in ultrasound-mediated therapy remain obscure. In particular, the relative roles of drug and ultrasound, the effect of the time of ultrasound application, and the effect of tissue heating are not yet clear. The current study was undertaken with the goal to clarify these aspects of the ultrasound-mediated drug delivery mechanism. Methods Focused ultrasound-mediated drug delivery was performed under magnetic resonance imaging guidance (MRgFUS) in a pancreatic ductal adenocarcinoma (PDA) model grown subcutaneously in nu/nu mice. Paclitaxel (PTX) was used as a chemotherapeutic agent because it manifests high potency in the treatment of gemcitabine-resistant PDA. Poly(ethylene oxide)-co-poly(d,l-lactide) block copolymer stabilized perfluoro-15-crown-5-ether nanoemulsions were used as drug carriers. MRgFUS was applied at sub-ablative pressure levels in both continuous wave and pulsed modes, and only a fraction of the tumor was treated. Results Positive treatment effects and even complete tumor resolution were achieved by treating the tumor with MRgFUS after injection of nanodroplet encapsulated drug. The MRgFUS treatment enhanced the action of the drug presumably through enhanced tumor perfusion and blood vessel and cell membrane permeability that increased the drug supply to tumor cells. The effect of the pulsed MRgFUS treatment with PTX-loaded nanodroplets was clearly smaller than that of continuous wave MRgFUS treatment, supposedly due to significantly lower temperature increase as measured with MR thermometry and decreased extravasation. The time of the MRgFUS application after drug injection also proved to be an important factor with the best results observed when ultrasound was applied at least 6 h after the injection of drug-loaded nanodroplets. Some collateral damage was observed with particular ultrasound protocols supposedly associated with enhanced inflammation. Conclusion This presented data suggest that

  18. Smart surface-enhanced Raman scattering traceable drug delivery systems

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03869g

  19. Dissolving Microneedles for Transdermal Drug Delivery

    PubMed Central

    Lee, Jeong Woo; Park, Jung-Hwan; Prausnitz, Mark R.

    2008-01-01

    Microfabrication technology has been adapted to produce micron-scale needles as a safer and painless alternative to hypodermic needle injection, especially for protein biotherapeutics and vaccines. This study presents a design that encapsulates molecules within microneedles that dissolve within the skin for bolus or sustained delivery and leave behind no biohazardous sharp medical waste. A fabrication process was developed based on casting a viscous aqueous solution during centrifugation to fill a micro-fabricated mold with biocompatible carboxymethylcellulose or amylopectin formulations. This process encapsulated sulforhodamine B, bovine serum albumin, and lysozyme; lysozyme was shown to retain full enzymatic activity after encapsulation and to remain 96% active after storage for two months at room temperature. Microneedles were also shown to be strong enough to insert into cadaver skin and then to dissolve within minutes. Bolus delivery was achieved by encapsulating molecules just within microneedle shafts. For the first time, sustained delivery over hours to days was achieved by encapsulating molecules within the microneedle backing, which served as a controlled release reservoir that delivered molecules by a combination of swelling the backing with interstitial fluid drawn out of the skin and molecule diffusion into the skin via channels formed by dissolved microneedles. We conclude that dissolving microneedles can be designed to gently encapsulate molecules, insert into skin, and enable bolus or sustained release delivery. PMID:18261792

  20. Current therapies and technological advances in aqueous aerosol drug delivery.

    PubMed

    Watts, Alan B; McConville, Jason T; Williams, Robert O

    2008-09-01

    Recent advances in aerosolization technology have led to renewed interest in pulmonary delivery of a variety of drugs. Pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs) have experienced success in recent years; however, many limitations are presented by formulation difficulties, inefficient delivery, and complex device designs. Simplification of the formulation process as well as adaptability of new devices has led many in the pharmaceutical industry to reconsider aerosolization in an aqueous carrier. In the acute care setting, breath-enhanced air-jet nebulizers are controlling and minimizing the amount of wasted medication, while producing a high percentage of respirable droplets. Vibrating mesh nebulizers offer advantages in higher respirable fractions (RFs) and slower velocity aerosols when compared with air-jet nebulizers. Vibrating mesh nebulizers incorporating formulation and patient adaptive components provide improvements to continuous nebulization technology by generating aerosol only when it is most likely to reach the deep lung. Novel innovations in generation of liquid aerosols are now being adapted for propellant-free pulmonary drug delivery to achieve unprecedented control over dose delivered and are leading the way for the adaptation of systemic drugs for delivery via the pulmonary route. Devices designed for the metered dose delivery of insulin, morphine, sildenafil, triptans, and various peptides are all currently under investigation for pulmonary delivery to treat nonrespiratory diseases. Although these devices are currently still in clinical testing (with the exception of the Respimat), metered dose liquid inhalers (MDLIs) have already shown superior outcomes to current pulmonary and systemic delivery methods.

  1. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  2. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation. PMID:25925119

  3. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation.

  4. Insights into drug delivery across the nail plate barrier.

    PubMed

    Saner, Manish V; Kulkarni, Abhijeet D; Pardeshi, Chandrakantsing V

    2014-11-01

    Topical therapy is at the forefront in treating nail ailments (especially onychomycosis and nail psoriasis) due to its local effects, which circumvents systemic adverse events, improves patient compliance and reduces treatment cost. However, the success of topical therapy has been hindered due to poor penetration of topical therapeutics across densely keratinized nail plate barrier. For effective topical therapy across nail plate, ungual drug permeation must be enhanced. Present review is designed to provide an insight into prime aspects of transungual drug delivery viz. nail structure and physiology, various onychopathies, techniques of nail permeation enhancement and in vitro models for trans-nail drug permeation studies. Updated list of drug molecules studied across the nail plate and key commercial products have been furnished with sufficient depth. Patents pertinent to, and current clinical status of transungual drug delivery have also been comprehensively reviewed. This is the first systematic critique encompassing the detailed aspects of transungual drug delivery. In our opinion, transungual drug delivery is a promising avenue for researchers to develop novel formulations, augmenting pharmaceutical industries to commercialize the products for nail disorders. PMID:24964054

  5. Using DNA nanotechnology to produce a drug delivery system

    NASA Astrophysics Data System (ADS)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  6. Insights into drug delivery across the nail plate barrier.

    PubMed

    Saner, Manish V; Kulkarni, Abhijeet D; Pardeshi, Chandrakantsing V

    2014-11-01

    Topical therapy is at the forefront in treating nail ailments (especially onychomycosis and nail psoriasis) due to its local effects, which circumvents systemic adverse events, improves patient compliance and reduces treatment cost. However, the success of topical therapy has been hindered due to poor penetration of topical therapeutics across densely keratinized nail plate barrier. For effective topical therapy across nail plate, ungual drug permeation must be enhanced. Present review is designed to provide an insight into prime aspects of transungual drug delivery viz. nail structure and physiology, various onychopathies, techniques of nail permeation enhancement and in vitro models for trans-nail drug permeation studies. Updated list of drug molecules studied across the nail plate and key commercial products have been furnished with sufficient depth. Patents pertinent to, and current clinical status of transungual drug delivery have also been comprehensively reviewed. This is the first systematic critique encompassing the detailed aspects of transungual drug delivery. In our opinion, transungual drug delivery is a promising avenue for researchers to develop novel formulations, augmenting pharmaceutical industries to commercialize the products for nail disorders.

  7. Towards soft robotic devices for site-specific drug delivery.

    PubMed

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications. PMID:26415110

  8. An emerging platform for drug delivery: aerogel based systems.

    PubMed

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.

  9. Towards soft robotic devices for site-specific drug delivery.

    PubMed

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  10. Co-delivery of platinum drug and siNotch1 with micelleplex for enhanced hepatocellular carcinoma therapy.

    PubMed

    Shen, Song; Sun, Chun-Yang; Du, Xiao-Jiao; Li, Hong-Jun; Liu, Yang; Xia, Jin-Xing; Zhu, Yan-Hua; Wang, Jun

    2015-11-01

    As part of HCC tumor cellularity, cancer stem cells (CSCs) are considered a major obstacle to eradicate hepatocellular carcinoma (HCC), which is the third most common cause of cancer-related death worldwide, and the accumulation of chemotherapeutic drug-resistant CSCs invariably accounts for poor prognosis and HCC relapse. In the present study, we explored the efficacy of co-delivery of platinum drug and siRNA targeting Notch1 to treat CSCs-harboring HCC. To overcome the challenging obstacles of platinum drug and siRNA in the systemic administration, we developed a micellar nanoparticle (MNP) to deliver platinum(IV) prodrug and siNotch1, hereafter referred to as (Pt(IV))MNP/siNotch1. We demonstrated that (Pt(IV))MNP/siNotch1 was able to efficiently deliver two drugs into both non-CSCs and CSCs of SMMC7721, a HCC cell line. We further found that siRNA-mediated inhibition of Notch1 suppression can increase the sensitivity of HCC cells to platinum drugs and decrease the percentage of HCC CSCs, and consequently resulting in enhanced proliferation inhibition and apoptosis induction in HCC cells in vitro. Moreover, our results indicated that the combined drug delivery system can remarkably augment drug enrichment in tumor tissues, substantially suppressing the tumor growth while avoiding the accumulation of CSCs in a synergistic manner in the SMMC7721 xenograft model.

  11. Self-Healing Spongy Coating for Drug "Cocktail" Delivery.

    PubMed

    Chen, Xia-chao; Ren, Ke-feng; Lei, Wen-xi; Zhang, Jia-hui; Martins, M Cristina L; Barbosa, Mário A; Ji, Jian

    2016-02-01

    Optimized ratio in the codelivery of therapeutics is of crucial importance to promote the synergism rather than the antagonistic effects. In this study, a self-healing spongy coating was described to facilitate the surface-mediated delivery of drug "cocktails" proportionally. The formation of spongy structures within the coating was achieved by acidic treatment and freeze-drying. Various drug combinations can be readily integrated through wicking method and subsequent micropore self-healing. The ratio of drug loading can be precisely regulated by the composition of loading solution and the embedded drugs were released in proportion according to the initial ratio of drug combination. PMID:26844588

  12. Nanocrystal technology, drug delivery and clinical applications

    PubMed Central

    Junghanns, Jens-Uwe A H; Müller, Rainer H

    2008-01-01

    Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmacy. Transfer of materials into the nanodimension changes their physical properties which were used in pharmaceutics to develop a new innovative formulation principle for poorly soluble drugs: the drug nanocrystals. The drug nanocrystals do not belong to the future; the first products are already on the market. The industrially relevant production technologies, pearl milling and high pressure homogenization, are reviewed. The physics behind the drug nanocrystals and changes of their physical properties are discussed. The marketed products are presented and the special physical effects of nanocrystals explained which are utilized in each market product. Examples of products in the development pipelines (clinical phases) are presented and the benefits for in vivo administration of drug nanocrystals are summarized in an overview. PMID:18990939

  13. A look at emerging delivery systems for topical drug products.

    PubMed

    Fireman, Sharon; Toledano, Ofer; Neimann, Karine; Loboda, Natalia; Dayan, Nava

    2011-01-01

    The introduction of new topical drugs based on new chemical entities has become a rare event. Instead, pharmaceutical companies have been focused on reformulating existing drugs resulting in an ever-growing number of topical drug products for every approved drug substance. In light of this trend, soon reformulations may not be as rewarding to their sponsors as they are today unless they offer a substantial improvement over other formulations of the same drug substance and the same indication, namely improved efficacy over existing drugs, reduced side effects, unique drug combinations, or applicability for new indications. This article reviews and compares topical drug delivery systems currently under active research that are designed to offer such advantages in the coming years. The reviewed delivery systems are: liposomes, niosomes, transferosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, cyclodextrin, and sol-gel microcapsules. Among all the topical drug delivery systems currently undergoing active research, only the sol-gel microencapsulation is at clinical stages. PMID:22353154

  14. Novel Strategies for Anterior Segment Ocular Drug Delivery

    PubMed Central

    Cholkar, Kishore; Patel, Sulabh P.; Vadlapudi, Aswani Dutt

    2013-01-01

    Abstract Research advancements in pharmaceutical sciences have led to the development of new strategies in drug delivery to anterior segment. Designing a new delivery system that can efficiently target the diseased anterior ocular tissue, generate high drug levels, and maintain prolonged and effective concentrations with no or minimal side effects is the major focus of current research. Drug delivery by traditional method of administration via topical dosing is impeded by ocular static and dynamic barriers. Various products have been introduced into the market that prolong drug retention in the precorneal pocket and to improve bioavailability. However, there is a need of a delivery system that can provide controlled release to treat chronic ocular diseases with a reduced dosing frequency without causing any visual disturbances. This review provides an overview of anterior ocular barriers along with strategies to overcome these ocular barriers and deliver therapeutic agents to the affected anterior ocular tissue with a special emphasis on nanotechnology-based drug delivery approaches. PMID:23215539

  15. Nanoparticles and nanostructured carriers for drug delivery and contrast enhancement

    NASA Astrophysics Data System (ADS)

    Godage, Olga S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; German, Sergey V.; Zuev, Viktor V.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Gorin, Dmitry A.

    2016-04-01

    Currently, nanotechnologies are widely used in science and industry. It is known that the application of drug delivery nanostructured carriers for biomedicine is one of the promising areas of nanotechnology. Nanostructured carriers can be used in the diagnosis process for detecting a neoplastic tumor cells in peripheral blood, for contrast enhancement on magnetic resonance imaging (MRI), as well as for targeted drug delivery to tumor tissues. Agents for the targeted delivery (nanoparticles, liposomes, microcapsules, and etc) can affect the healthy tissues and organs, cause side effects and have a toxic effect. Therefore, it necessary to study the morphological changes that occur not only in the "target", such as a tumor, but also the internal organs, taking place under the influence of both the agents for targeted drug delivery and physical impact induced remote controlled drug release. Thus , the aim of our work is selection of the most promising agents for targeted drug delivery to tumor and contrast agents for in vivo visualization of tumor tissue boundaries , as well as their impact on the organs and tissues as results of nanostructured o