From Wang-Chen System with Only One Stable Equilibrium to a New Chaotic System Without Equilibrium
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Wang, Xiong; Jafari, Sajad; Volos, Christos; Kapitaniak, Tomasz
2017-06-01
Wang-Chen system with only one stable equilibrium as well as the coexistence of hidden attractors has attracted increasing interest due to its striking features. In this work, the effect of state feedback on Wang-Chen system is investigated by introducing a further state variable. It is worth noting that a new chaotic system without equilibrium is obtained. We believe that the system is an interesting example to illustrate the conversion of hidden attractors with one stable equilibrium to hidden attractors without equilibrium.
Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control
NASA Astrophysics Data System (ADS)
Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan
2014-03-01
This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.
Horseshoes in a Chaotic System with Only One Stable Equilibrium
NASA Astrophysics Data System (ADS)
Huan, Songmei; Li, Qingdu; Yang, Xiao-Song
To confirm the numerically demonstrated chaotic behavior in a chaotic system with only one stable equilibrium reported by Wang and Chen, we resort to Poincaré map technique and present a rigorous computer-assisted verification of horseshoe chaos by virtue of topological horseshoes theory.
Adaptive feedback synchronization of a unified chaotic system
NASA Astrophysics Data System (ADS)
Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu
2004-08-01
This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn
With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaoticmore » complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.« less
Multiswitching combination synchronisation of non-identical fractional-order chaotic systems
NASA Astrophysics Data System (ADS)
Bhat, Muzaffar Ahmad; Khan, Ayub
2018-06-01
In this paper, multiswitching combination synchronisation (MSCS) scheme has been investigated in a class of three non-identical fractional-order chaotic systems. The fractional-order Lorenz and Chen systems are taken as the drive systems. The combination of multidrive systems is then synchronised with the fractional-order Lü chaotic system. In MSCS, the state variables of the two drive systems synchronise with different state variables of the response system, simultaneously. Based on the stability of fractional-order chaotic systems, the MSCS of three fractional-order non-identical systems has been investigated. For the synchronisation of three non-identical fractional-order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method.
Sudheer, K Sebastian; Sabir, M
2010-03-01
Recently introduced function projective synchronization in which chaotic systems synchronize up to a scaling function has important applications in secure communications. We design coupling function for unidirectional coupling in identical and mismatched oscillators to realize function projective synchronization through open-plus-closed-loop coupling method. Numerical simulations on Lorenz system, Rossler system, hyperchaotic Lorenz, and hyperchaotic Chen system are presented to verify the effectiveness of the proposed scheme.
Making chaotic behavior in a damped linear harmonic oscillator
NASA Astrophysics Data System (ADS)
Konishi, Keiji
2001-06-01
The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed; Karami-Mollaee, Ali
2018-06-01
Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
A one-time pad color image cryptosystem based on SHA-3 and multiple chaotic systems
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Wang, Siwei; Zhang, Yingqian; Luo, Chao
2018-04-01
A novel image encryption algorithm is proposed that combines the SHA-3 hash function and two chaotic systems: the hyper-chaotic Lorenz and Chen systems. First, 384 bit keystream hash values are obtained by applying SHA-3 to plaintext. The sensitivity of the SHA-3 algorithm and chaotic systems ensures the effect of a one-time pad. Second, the color image is expanded into three-dimensional space. During permutation, it undergoes plane-plane displacements in the x, y and z dimensions. During diffusion, we use the adjacent pixel dataset and corresponding chaotic value to encrypt each pixel. Finally, the structure of alternating between permutation and diffusion is applied to enhance the level of security. Furthermore, we design techniques to improve the algorithm's encryption speed. Our experimental simulations show that the proposed cryptosystem achieves excellent encryption performance and can resist brute-force, statistical, and chosen-plaintext attacks.
A discrete-time chaos synchronization system for electronic locking devices
NASA Astrophysics Data System (ADS)
Minero-Ramales, G.; López-Mancilla, D.; Castañeda, Carlos E.; Huerta Cuellar, G.; Chiu Z., R.; Hugo García López, J.; Jaimes Reátegui, R.; Villafaña Rauda, E.; Posadas-Castillo, C.
2016-11-01
This paper presents a novel electronic locking key based on discrete-time chaos synchronization. Two Chen chaos generators are synchronized using the Model-Matching Approach, from non-linear control theory, in order to perform the encryption/decryption of the signal to be transmitted. A model/transmitter system is designed, generating a key of chaotic pulses in discrete-time. A plant/receiver system uses the above mentioned key to unlock the mechanism. Two alternative schemes to transmit the private chaotic key are proposed. The first one utilizes two transmission channels. One channel is used to encrypt the chaotic key and the other is used to achieve output synchronization. The second alternative uses only one transmission channel for obtaining synchronization and encryption of the chaotic key. In both cases, the private chaotic key is encrypted again with chaos to solve secure communication-related problems. The results obtained via simulations contribute to enhance the electronic locking devices.
NASA Astrophysics Data System (ADS)
Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong
2016-12-01
To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.
A new scheme of general hybrid projective complete dislocated synchronization
NASA Astrophysics Data System (ADS)
Chu, Yan-dong; Chang, Ying-Xiang; An, Xin-lei; Yu, Jian-Ning; Zhang, Jian-Gang
2011-03-01
Based on the Lyapunov stability theorem, a new type of chaos synchronization, general hybrid projective complete dislocated synchronization (GHPCDS), is proposed under the framework of drive-response systems. The difference between the GHPCDS and complete synchronization is that every state variable of drive system does not equal the corresponding state variable, but equal other ones of response system while evolving in time. The GHPCDS includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. As examples, the Lorenz chaotic system, Rössler chaotic system, hyperchaotic Chen system and hyperchaotic Lü system are discussed. Numerical simulations are given to show the effectiveness of these methods.
Multisynchronization of chaotic oscillators via nonlinear observer approach.
Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L
2014-01-01
The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology.
Multisynchronization of Chaotic Oscillators via Nonlinear Observer Approach
Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Mata-Machuca, Juan L.
2014-01-01
The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves' oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology. PMID:24578671
Dynamic states of a unidirectional ring of chen oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Ana; Pinto, Carla M.A.
2015-03-10
We study curious dynamical patterns appearing in a network of a unidirectional ring of Chen oscillators coupled to a ‘buffer’ cell. The network has Z{sub 3} exact symmetry group. We simulate the coupled cell systems associated to the two networks and obtain steady-states, rotating waves, quasiperiodic behavior, and chaos. The different patterns appear to arise through a sequence of Hopf, period-doubling and period-halving bifurcations. The network architecture appears to explain some patterns, whereas the properties of the chaotic oscillator may explain others. We use XPPAUT and MATLAB to compute numerically the relevant states.
NASA Astrophysics Data System (ADS)
Min, Lequan; Chen, Guanrong
This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.
NASA Astrophysics Data System (ADS)
Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen
If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Xu, Minjie; Tian, Ailing
2017-04-01
A novel optical image encryption scheme is proposed based on quick response code and high dimension chaotic system, where only the intensity distribution of encoded information is recorded as ciphertext. Initially, the quick response code is engendered from the plain image and placed in the input plane of the double random phase encoding architecture. Then, the code is encrypted to the ciphertext with noise-like distribution by using two cascaded gyrator transforms. In the process of encryption, the parameters such as rotation angles and random phase masks are generated as interim variables and functions based on Chen system. A new phase retrieval algorithm is designed to reconstruct the initial quick response code in the process of decryption, in which a priori information such as three position detection patterns is used as the support constraint. The original image can be obtained without any energy loss by scanning the decrypted code with mobile devices. The ciphertext image is the real-valued function which is more convenient for storing and transmitting. Meanwhile, the security of the proposed scheme is enhanced greatly due to high sensitivity of initial values of Chen system. Extensive cryptanalysis and simulation have performed to demonstrate the feasibility and effectiveness of the proposed scheme.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations.
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju
2004-10-01
Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuanlong; Huang, Tingwen; Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn
2014-03-15
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zoumore » [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.« less
Complex dynamics of a delayed discrete neural network of two nonidentical neurons.
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-03-01
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Kwok, T; Smith, K A
2000-09-01
The aim of this paper is to study both the theoretical and experimental properties of chaotic neural network (CNN) models for solving combinatorial optimization problems. Previously we have proposed a unifying framework which encompasses the three main model types, namely, Chen and Aihara's chaotic simulated annealing (CSA) with decaying self-coupling, Wang and Smith's CSA with decaying timestep, and the Hopfield network with chaotic noise. Each of these models can be represented as a special case under the framework for certain conditions. This paper combines the framework with experimental results to provide new insights into the effect of the chaotic neurodynamics of each model. By solving the N-queen problem of various sizes with computer simulations, the CNN models are compared in different parameter spaces, with optimization performance measured in terms of feasibility, efficiency, robustness and scalability. Furthermore, characteristic chaotic neurodynamics crucial to effective optimization are identified, together with a guide to choosing the corresponding model parameters.
Chaotic Behavior of a Generalized Sprott E Differential System
NASA Astrophysics Data System (ADS)
Oliveira, Regilene; Valls, Claudia
A chaotic system with only one equilibrium, a stable node-focus, was introduced by Wang and Chen [2012]. This system was found by adding a nonzero constant b to the Sprott E system [Sprott, 1994]. The coexistence of three types of attractors in this autonomous system was also considered by Braga and Mello [2013]. Adding a second parameter to the Sprott E differential system, we get the autonomous system ẋ = ayz + b,ẏ = x2 - y,ż = 1 - 4x, where a,b ∈ ℝ are parameters and a≠0. In this paper, we consider theoretically some global dynamical aspects of this system called here the generalized Sprott E differential system. This polynomial differential system is relevant because it is the first polynomial differential system in ℝ3 with two parameters exhibiting, besides the point attractor and chaotic attractor, coexisting stable limit cycles, demonstrating that this system is truly complicated and interesting. More precisely, we show that for b sufficiently small this system can exhibit two limit cycles emerging from the classical Hopf bifurcation at the equilibrium point p = (1/4, 1/16, 0). We also give a complete description of its dynamics on the Poincaré sphere at infinity by using the Poincaré compactification of a polynomial vector field in ℝ3, and we show that it has no first integrals in the class of Darboux functions.
NASA Astrophysics Data System (ADS)
Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.
2017-11-01
Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
Stability Analysis of Distributed Order Fractional Chen System
Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.
2013-01-01
We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508
2011-05-10
Methanol’, Chien-Cheng Li, Ran-Jin Lin, Hong-Ping Lin, Ching-Chun Chang, Yu - Kai Lin, Li-Chyong Chen*, Kuei-Hsien Chen*, Chem. Comm. 47, 1473 (2011). (5...CuO-ZnO Inverse Opals as High-performance Methanol Microreformer’, Yan-Gu Lin, Yu -Kuei Hsu, San-Yuan Chen, Li-Chyong Chen* and Kuei-Hsien Chen*, J...Chun Lo, Hsin-I Hsiung, Surojit Chattopadhyay*, Hsieh -Cheng Han, Chia-Fu Chen*, Jih Perng Leu, Kuei-Hsien Chen and Li-Chyong Chen*, Biosens
Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.
ERIC Educational Resources Information Center
Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis
This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…
Hybrid electronic/optical synchronized chaos communication system.
Toomey, J P; Kane, D M; Davidović, A; Huntington, E H
2009-04-27
A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.
A novel high-resolution chaotic lidar with optical injection to chaotic laser diode
NASA Astrophysics Data System (ADS)
Wang, Yun-cai; Wang, An-bang
2008-03-01
A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.
NASA Astrophysics Data System (ADS)
Vaidyanathan, S.; Akgul, A.; Kaçar, S.; Çavuşoğlu, U.
2018-02-01
Hyperjerk systems have received significant interest in the literature because of their simple structure and complex dynamical properties. This work presents a new chaotic hyperjerk system having two exponential nonlinearities. Dynamical properties of the chaotic hyperjerk system are discovered through equilibrium point analysis, bifurcation diagram, dissipativity and Lyapunov exponents. Moreover, an adaptive backstepping controller is designed for the synchronization of the chaotic hyperjerk system. Also, a real circuit of the chaotic hyperjerk system has been carried out to show the feasibility of the theoretical hyperjerk model. The chaotic hyperjerk system can also be useful in scientific fields such as Random Number Generators (RNGs), data security, data hiding, etc. In this work, three implementations of the chaotic hyperjerk system, viz. RNG, image encryption and sound steganography have been performed by using complex dynamics characteristics of the system.
Urey Prize Lecture - Chaotic dynamics in the solar system
NASA Technical Reports Server (NTRS)
Wisdom, Jack
1987-01-01
Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.
A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.
Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki
2005-01-01
We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.
Using Chaotic System in Encryption
NASA Astrophysics Data System (ADS)
Findik, Oğuz; Kahramanli, Şirzat
In this paper chaotic systems and RSA encryption algorithm are combined in order to develop an encryption algorithm which accomplishes the modern standards. E.Lorenz's weather forecast' equations which are used to simulate non-linear systems are utilized to create chaotic map. This equation can be used to generate random numbers. In order to achieve up-to-date standards and use online and offline status, a new encryption technique that combines chaotic systems and RSA encryption algorithm has been developed. The combination of RSA algorithm and chaotic systems makes encryption system.
Dynamics and circuit of a chaotic system with a curve of equilibrium points
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Volos, Christos; Kapitaniak, Tomasz; Jafari, Sajad; Wang, Xiong
2018-03-01
Although chaotic systems have been intensively studied since the 1960s, new systems with mysterious features are still of interest. A novel chaotic system including hyperbolic functions is proposed in this work. Especially, the system has an infinite number of equilibrium points. Dynamics of the system are investigated by using non-linear tools such as phase portrait, bifurcation diagram, and Lyapunov exponent. It is interesting that the system can display coexisting chaotic attractors. An electronic circuit for realising the chaotic system has been implemented. Experimental results show a good agreement with theoretical ones.
NASA Astrophysics Data System (ADS)
Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.
Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.
2017-11-01
It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-06-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-03-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
NASA Astrophysics Data System (ADS)
Sun, Changchun; Chen, Zhongtang; Xu, Qicheng
2017-12-01
An original three-dimensional (3D) smooth continuous chaotic system and its mirror-image system with eight common parameters are constructed and a pair of symmetric chaotic attractors can be generated simultaneously. Basic dynamical behaviors of two 3D chaotic systems are investigated respectively. A double-scroll chaotic attractor by connecting the pair of mutual mirror-image attractors is generated via a novel planar switching control approach. Chaos can also be controlled to a fixed point, a periodic orbit and a divergent orbit respectively by switching between two chaotic systems. Finally, an equivalent 3D chaotic system by combining two 3D chaotic systems with a switching law is designed by utilizing a sign function. Two circuit diagrams for realizing the double-scroll attractor are depicted by employing an improved module-based design approach.
Information encoder/decoder using chaotic systems
Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson
1997-01-01
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.
Information encoder/decoder using chaotic systems
Miller, S.L.; Miller, W.M.; McWhorter, P.J.
1997-10-21
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojun; School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001; Hong, Ling, E-mail: hongling@mail.xjtu.edu.cn
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuousmore » change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.« less
A novel double-convection chaotic attractor, its adaptive control and circuit simulation
NASA Astrophysics Data System (ADS)
Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.
NASA Astrophysics Data System (ADS)
Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto
2018-03-01
A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.
Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system
NASA Astrophysics Data System (ADS)
Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad
2018-02-01
This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.
Analysis of chaotic saddles in a nonlinear vibro-impact system
NASA Astrophysics Data System (ADS)
Feng, Jinqian
2017-07-01
In this paper, a computational investigation of chaotic saddles in a nonlinear vibro-impact system is presented. For a classical Duffing vibro-impact oscillator, we employ the bisection procedure and an improved stagger-and-step method to present evidence of visual chaotic saddles on the fractal basin boundary and in the internal basin, respectively. The results show that the period saddles play an important role in the evolution of chaotic saddle. The dynamics mechanics of three types of bifurcation such as saddle-node bifurcation, chaotic saddle crisis bifurcation and interior chaotic crisis bifurcation are discussed. The results reveal that the period saddle created at saddle-node bifurcation is responsible for the switch of the internal chaotic saddle to the boundary chaotic saddle. At chaotic saddle crisis bifurcation, a large chaotic saddle can divide into two different chaotic saddle connected by a period saddle. The intersection points between stable and unstable manifolds of this period saddle supply access for chaotic orbits from one chaotic saddle to another and eventually induce the coupling of these two chaotic saddle. Interior chaotic crisis bifurcation is associated with the intersection of stable and unstable manifolds of the period saddle connecting two chaotic invariant sets. In addition, the gaps in chaotic saddle is responsible for the fractal structure.
NASA Astrophysics Data System (ADS)
Abdolmohammadi, Hamid Reza; Khalaf, Abdul Jalil M.; Panahi, Shirin; Rajagopal, Karthikeyan; Pham, Viet-Thanh; Jafari, Sajad
2018-06-01
Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.
Timing variation in an analytically solvable chaotic system
NASA Astrophysics Data System (ADS)
Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.
2017-02-01
We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.
Stages of chaotic synchronization.
Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.
1998-09-01
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.
Visibility graphlet approach to chaotic time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn
Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less
A combination chaotic system and application in color image encryption
NASA Astrophysics Data System (ADS)
Parvaz, R.; Zarebnia, M.
2018-05-01
In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.
A new transiently chaotic flow with ellipsoid equilibria
NASA Astrophysics Data System (ADS)
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
Synchronisation and Circuit Realisation of Chaotic Hartley System
NASA Astrophysics Data System (ADS)
Varan, Metin; Akgül, Akif; Güleryüz, Emre; Serbest, Kasım
2018-06-01
Hartley chaotic system is topologically the simplest, but its dynamical behaviours are very rich and its synchronisation has not been seen in literature. This paper aims to introduce a simple chaotic system which can be used as alternative to classical chaotic systems in synchronisation fields. Time series, phase portraits, and bifurcation diagrams reveal the dynamics of the mentioned system. Chaotic Hartley model is also supported with electronic circuit model simulations. Its exponential dynamics are hard to realise on circuit model; this paper is the first in literature that handles such a complex modelling problem. Modelling, synchronisation, and circuit realisation of the Hartley system are implemented respectively in MATLAB-Simulink and ORCAD environments. The effectiveness of the applied synchronisation method is revealed via numerical methods, and the results are discussed. Retrieved results show that this complex chaotic system can be used in secure communication fields.
The equal combination synchronization of a class of chaotic systems with discontinuous output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Runzi; Zeng, Yanhui
This paper investigates the equal combination synchronization of a class of chaotic systems. The chaotic systems are assumed that only the output state variable is available and the output may be discontinuous state variable. By constructing proper observers, some novel criteria for the equal combination synchronization are proposed. The Lorenz chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.
Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems
NASA Astrophysics Data System (ADS)
Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.
2018-05-01
We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.
NASA Astrophysics Data System (ADS)
Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng
2016-06-01
Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.
NASA Astrophysics Data System (ADS)
Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry
2009-03-01
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.
Synchronization of Chaotic Systems without Direct Connections Using Reinforcement Learning
NASA Astrophysics Data System (ADS)
Sato, Norihisa; Adachi, Masaharu
In this paper, we propose a control method for the synchronization of chaotic systems that does not require the systems to be connected, unlike existing methods such as that proposed by Pecora and Carroll in 1990. The method is based on the reinforcement learning algorithm. We apply our method to two discrete-time chaotic systems with mismatched parameters and achieve M step delay synchronization. Moreover, we extend the proposed method to the synchronization of continuous-time chaotic systems.
Synchronization of chaotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecora, Louis M.; Carroll, Thomas L.
2015-09-15
We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years tomore » a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.« less
Synchronization and an application of a novel fractional order King Cobra chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumar, P., E-mail: muthukumardgl@gmail.com; Balasubramaniam, P., E-mail: balugru@gmail.com; Ratnavelu, K., E-mail: kuru052001@gmail.com
2014-09-01
In this paper, we design a new three dimensional King Cobra face shaped fractional order chaotic system. The multi-scale synchronization scheme of two fractional order chaotic systems is described. The necessary conditions for the multi-scale synchronization of two identical fractional order King Cobra chaotic systems are derived through feedback control. A new cryptosystem is proposed for an image encryption and decryption by using synchronized fractional order King Cobra chaotic systems with the supports of multiple cryptographic assumptions. The security of the proposed cryptosystem is analyzed by the well known algebraic attacks. Numerical simulations are given to show the effectiveness ofmore » the proposed theoretical results.« less
Vehicle/Guideway Interaction in Maglev Systems
1992-03-01
Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1
Modelling of long-wave chaotic radar system for anti-stealth applications
NASA Astrophysics Data System (ADS)
Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi
2018-04-01
Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.
A new chaotic communication scheme based on adaptive synchronization.
Xiang-Jun, Wu
2006-12-01
A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed
2018-03-01
Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.
NASA Astrophysics Data System (ADS)
Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.
2016-05-01
This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.
Stability of uncertain impulsive complex-variable chaotic systems with time-varying delays.
Zheng, Song
2015-09-01
In this paper, the robust exponential stabilization of uncertain impulsive complex-variable chaotic delayed systems is considered with parameters perturbation and delayed impulses. It is assumed that the considered complex-variable chaotic systems have bounded parametric uncertainties together with the state variables on the impulses related to the time-varying delays. Based on the theories of adaptive control and impulsive control, some less conservative and easily verified stability criteria are established for a class of complex-variable chaotic delayed systems with delayed impulses. Some numerical simulations are given to validate the effectiveness of the proposed criteria of impulsive stabilization for uncertain complex-variable chaotic delayed systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Analytically solvable chaotic oscillator based on a first-order filter.
Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N
2016-02-01
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.
Analytically solvable chaotic oscillator based on a first-order filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.
2016-02-15
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2016-07-01
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity
NASA Astrophysics Data System (ADS)
Jeevarekha, A.; Paul Asir, M.; Philominathan, P.
2016-06-01
This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.
New World species of the genus Calliscelio Ashmead (Hymenoptera, Platygastridae, Scelioninae).
Chen, Hua-Yan; Masner, Lubomír; Johnson, Norman F
2017-01-01
The genus Calliscelio Ashmead is presumed to be a diverse group of parasitoids of the eggs of crickets (Orthoptera: Gryllidae). A least one species has been found to be an important factor in depressing cricket pest populations. The New World species of Calliscelio are revised. Forty-two species are recognized, 3 are redescribed: Calliscelio bisulcatus (Kieffer), Calliscelio laticinctus Ashmead, Calliscelio rubriclavus (Ashmead), comb. n. ; and 38 are described as new: Calliscelio absconditum Chen & Johnson, sp. n. , Calliscelio absum Chen & Johnson, sp. n. , Calliscelio alcoa Chen & Masner, sp. n. , Calliscelio amadoi Chen & Johnson, sp. n. , Calliscelio armila Chen & Masner, sp. n. , Calliscelio bidens Chen & Masner, sp. n. , Calliscelio brachys Chen & Johnson, sp. n. , Calliscelio brevinotaulus Chen & Johnson, sp. n. , Calliscelio brevitas Chen & Johnson, sp. n. , Calliscelio carinigena Chen & Johnson, sp. n. , Calliscelio crater Chen & Johnson, sp. n. , Calliscelio crena Chen & Johnson, sp. n. , Calliscelio eboris Chen & Johnson, sp. n. , Calliscelio extenuatus Chen & Johnson, sp. n. , Calliscelio flavicauda Chen & Johnson, sp. n. , Calliscelio foveolatus Chen & Johnson, sp. n. , Calliscelio gatineau Chen & Johnson, sp. n. , Calliscelio glaber Chen & Masner, sp. n. , Calliscelio granulatus Chen & Masner, sp. n. , Calliscelio latifrons Chen & Johnson, sp. n. , Calliscelio levis Chen & Johnson, sp. n. , Calliscelio longius Chen & Johnson, sp. n. , Calliscelio magnificus Chen & Masner, sp. n. , Calliscelio migma Chen & Johnson, sp. n. , Calliscelio minutia Chen & Johnson, sp. n. , Calliscelio paraglaber Chen & Johnson, sp. n. , Calliscelio pararemigio Chen & Masner, sp. n. , Calliscelio prolixus Chen & Johnson, sp. n. , Calliscelio punctatifrons Chen & Johnson, sp. n. , Calliscelio remigio Chen & Masner, sp. n. , Calliscelio ruga Chen & Johnson, sp. n. , Calliscelio rugicoxa Chen & Masner, sp. n. , Calliscelio sfina Chen & Johnson, sp. n. , Calliscelio storea Chen & Johnson, sp. n. , Calliscelio suni Chen & Johnson, sp. n. , Calliscelio telum Chen & Johnson, sp. n. , Calliscelio torqueo Chen & Johnson, sp. n. , Calliscelio virga Chen & Johnson, sp. n. Four species are treated as junior synonyms of Calliscelio rubriclavus (Ashmead): Anteris nigriceps Ashmead, syn. n. , Caloteleia marlattii Ashmead, syn. n. , Caloteleia grenadensis Ashmead, syn. n. , and Macroteleia ruskini Girault, syn. n.
Experimental realization of a highly secure chaos communication under strong channel noise
NASA Astrophysics Data System (ADS)
Ye, Weiping; Dai, Qionglin; Wang, Shihong; Lu, Huaping; Kuang, Jinyu; Zhao, Zhenfeng; Zhu, Xiangqing; Tang, Guoning; Huang, Ronghuai; Hu, Gang
2004-09-01
A one-way coupled spatiotemporally chaotic map lattice is used to construct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to practice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.
Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai
2008-06-01
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com; Wang, Xiaowei
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numericalmore » simulations.« less
New World species of the genus Calliscelio Ashmead (Hymenoptera, Platygastridae, Scelioninae)
Chen, Hua-yan; Masner, Lubomír; Johnson, Norman F.
2017-01-01
Abstract The genus Calliscelio Ashmead is presumed to be a diverse group of parasitoids of the eggs of crickets (Orthoptera: Gryllidae). A least one species has been found to be an important factor in depressing cricket pest populations. The New World species of Calliscelio are revised. Forty-two species are recognized, 3 are redescribed: Calliscelio bisulcatus (Kieffer), Calliscelio laticinctus Ashmead, Calliscelio rubriclavus (Ashmead), comb. n.; and 38 are described as new: Calliscelio absconditum Chen & Johnson, sp. n., Calliscelio absum Chen & Johnson, sp. n., Calliscelio alcoa Chen & Masner, sp. n., Calliscelio amadoi Chen & Johnson, sp. n., Calliscelio armila Chen & Masner, sp. n., Calliscelio bidens Chen & Masner, sp. n., Calliscelio brachys Chen & Johnson, sp. n., Calliscelio brevinotaulus Chen & Johnson, sp. n., Calliscelio brevitas Chen & Johnson, sp. n., Calliscelio carinigena Chen & Johnson, sp. n., Calliscelio crater Chen & Johnson, sp. n., Calliscelio crena Chen & Johnson, sp. n., Calliscelio eboris Chen & Johnson, sp. n., Calliscelio extenuatus Chen & Johnson, sp. n., Calliscelio flavicauda Chen & Johnson, sp. n., Calliscelio foveolatus Chen & Johnson, sp. n., Calliscelio gatineau Chen & Johnson, sp. n., Calliscelio glaber Chen & Masner, sp. n., Calliscelio granulatus Chen & Masner, sp. n., Calliscelio latifrons Chen & Johnson, sp. n., Calliscelio levis Chen & Johnson, sp. n., Calliscelio longius Chen & Johnson, sp. n., Calliscelio magnificus Chen & Masner, sp. n., Calliscelio migma Chen & Johnson, sp. n., Calliscelio minutia Chen & Johnson, sp. n., Calliscelio paraglaber Chen & Johnson, sp. n., Calliscelio pararemigio Chen & Masner, sp. n., Calliscelio prolixus Chen & Johnson, sp. n., Calliscelio punctatifrons Chen & Johnson, sp. n., Calliscelio remigio Chen & Masner, sp. n., Calliscelio ruga Chen & Johnson, sp. n., Calliscelio rugicoxa Chen & Masner, sp. n., Calliscelio sfina Chen & Johnson, sp. n., Calliscelio storea Chen & Johnson, sp. n., Calliscelio suni Chen & Johnson, sp. n., Calliscelio telum Chen & Johnson, sp. n., Calliscelio torqueo Chen & Johnson, sp. n., Calliscelio virga Chen & Johnson, sp. n. Four species are treated as junior synonyms of Calliscelio rubriclavus (Ashmead): Anteris nigriceps Ashmead, syn. n., Caloteleia marlattii Ashmead, syn. n., Caloteleia grenadensis Ashmead, syn. n., and Macroteleia ruskini Girault, syn. n. PMID:28325969
NASA Astrophysics Data System (ADS)
Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue
2013-03-01
The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.
Parameter estimation for chaotic systems using improved bird swarm algorithm
NASA Astrophysics Data System (ADS)
Xu, Chuangbiao; Yang, Renhuan
2017-12-01
Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.
A novel grid multiwing chaotic system with only non-hyperbolic equilibria
NASA Astrophysics Data System (ADS)
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-05-01
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.
Chaotic diffusion in the Gliese-876 planetary system
NASA Astrophysics Data System (ADS)
Martí, J. G.; Cincotta, P. M.; Beaugé, C.
2016-07-01
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067
Pei, Yan
2015-01-01
We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Chaotic dynamics of controlled electric power systems
NASA Astrophysics Data System (ADS)
Kozlov, V. N.; Trosko, I. U.
2016-12-01
The conditions for appearance of chaotic dynamics of electromagnetic and electromechanical processes in energy systems described by the Park-Gorev bilinear differential equations with account for lags of coordinates and restrictions on control have been formulated. On the basis of classical equations, the parameters of synchronous generators and power lines, at which the chaotic dynamics of energy systems appears, have been found. The qualitative and quantitative characteristics of chaotic processes in energy associations of two types, based on the Hopf theorem, and methods of nonstationary linearization and decompositions are given. The properties of spectral characteristics of chaotic processes have been investigated, and the qualitative similarity of bilinear equations of power systems and Lorentz equations have been found. These results can be used for modernization of the systems of control of energy objects. The qualitative and quantitative characteristics for power energy systems as objects of control and for some laws of control with the feedback have been established.
NASA Astrophysics Data System (ADS)
Srivastava, R.; Srivastava, P. K.; Chattopadhyay, J.
2013-07-01
Chaotic oscillations have been observed experimentally in dual-frequency oscillator OAP - Ce+4-BrO- 3-H2SO4 in CSTR. The system shows variation of oscillating potential and frequencies when it moves from low frequency to high frequency region and vice-versa. It was observed that system bifurcate from low frequency to chaotic regime through periode-2 and period-3 on the other hand system bifurcate from chaotic regime to high frequency oscillation through period-2. It was established that the observed oscillations are chaotic in nature on the basis of next amplitude map and bifurcation sequences.
Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun
2012-01-01
This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.
Oscillators: Old and new perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Jayanta K.; Roy, Jyotirmoy
We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies thatmore » are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.« less
Wang, Rong; Gao, Jin-Yue
2005-09-01
In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.
Compound synchronization of four memristor chaotic oscillator systems and secure communication.
Sun, Junwei; Shen, Yi; Yin, Quan; Xu, Chengjie
2013-03-01
In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.
NASA Astrophysics Data System (ADS)
Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre
2018-01-01
This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.
Breaking chaotic secure communication using a spectrogram
NASA Astrophysics Data System (ADS)
Yang, Tao; Yang, Lin-Bao; Yang, Chun-Mei
1998-10-01
We present the results of breaking a kind of chaotic secure communication system called chaotic switching scheme, also known as chaotic shift keying, in which a binary message signal is scrambled by two chaotic attractors. The spectrogram which can reveal the energy evolving process in the spectral-temporal space is used to distinguish the two different chaotic attractors, which are qualitatively and statistically similar in phase space. Then mathematical morphological filters are used to decode the binary message signal without the knowledge of the binary message signal and the transmitter. The computer experimental results are provided to show how our method works when both the chaotic and hyper-chaotic transmitter are used.
Chimera states in coupled Kuramoto oscillators with inertia.
Olmi, Simona
2015-12-01
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
NASA Astrophysics Data System (ADS)
Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin
2017-12-01
Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.
Simple Chaotic Flow with Circle and Square Equilibrium
NASA Astrophysics Data System (ADS)
Gotthans, Tomas; Sprott, Julien Clinton; Petrzela, Jiri
Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium. This unique property has apparently not yet been described. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are interesting and important in engineering applications. The mathematical model is accompanied by an electrical circuit implementation, demonstrating structural stability of the strange attractor. The circuit is simulated with PSpice, constructed, and analyzed (measured).
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad
2018-04-01
The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.
Chaotic interactions of self-replicating RNA.
Forst, C V
1996-03-01
A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less
Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice
NASA Astrophysics Data System (ADS)
Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan
2018-01-01
We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Detecting unstable periodic orbits in chaotic time series using synchronization
NASA Astrophysics Data System (ADS)
Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold
2017-07-01
An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.
A new chaotic oscillator with free control
NASA Astrophysics Data System (ADS)
Li, Chunbiao; Sprott, Julien Clinton; Akgul, Akif; Iu, Herbert H. C.; Zhao, Yibo
2017-08-01
A novel chaotic system is explored in which all terms are quadratic except for a linear function. The slope of the linear function rescales the amplitude and frequency of the variables linearly while its zero intercept allows offset boosting for one of the variables. Therefore, a free-controlled chaotic oscillation can be obtained with any desired amplitude, frequency, and offset by an easy modification of the linear function. When implemented as an electronic circuit, the corresponding chaotic signal can be controlled by two independent potentiometers, which is convenient for constructing a chaos-based application system. To the best of our knowledge, this class of chaotic oscillators has never been reported.
NASA Astrophysics Data System (ADS)
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.
2017-12-01
In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.
Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Blonigan, Patrick J.; Wang, Qiqi
2018-02-01
Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.
NASA Astrophysics Data System (ADS)
Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao
2013-04-01
According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng; Zhang, Kai; Jiang, Yu-Mei; Wang, Xu-Ming; He, Da-Ren
2002-03-01
A system concatenated by two area-preserving maps may be addressed as "quasi- dissipative," since such a system can display dissipative behaviors^1. This is due to noninvertibility induced by discontinuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically. It reads:
NASA Astrophysics Data System (ADS)
Lai, Bang-Cheng; He, Jian-Jun
2018-03-01
In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.
Chaotic carrier pulse position modulation communication system and method
Abarbanel, Henry D. I.; Larson, Lawrence E.; Rulkov, Nikolai F.; Sushchik, Mikhail M.; Tsimring, Lev S.; Volkovskii, Alexander R.
2001-01-01
A chaotic carrier pulse position modulation communication system and method is disclosed. The system includes a transmitter and receiver having matched chaotic pulse regenerators. The chaotic pulse regenerator in the receiver produces a synchronized replica of a chaotic pulse train generated by the regenerator in the transmitter. The pulse train from the transmitter can therefore act as a carrier signal. Data is encoded by the transmitter through selectively altering the interpulse timing between pulses in the chaotic pulse train. The altered pulse train is transmitted as a pulse signal. The receiver can detect whether a particular interpulse interval in the pulse signal has been altered by reference to the synchronized replica it generates, and can therefore detect the data transmitted by the receiver. Preferably, the receiver predicts the earliest moment in time it can expect a next pulse after observation of at least two consecutive pulses. It then decodes the pulse signal beginning at a short time before expected arrival of a pulse.
A novel image encryption algorithm based on the chaotic system and DNA computing
NASA Astrophysics Data System (ADS)
Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun
A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
NASA Astrophysics Data System (ADS)
Drótos, G.; Jung, C.
2016-06-01
The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.
NASA Astrophysics Data System (ADS)
Lu, Jia; Zhang, Xiaoxing; Xiong, Hao
The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.
NASA Astrophysics Data System (ADS)
Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min
2017-10-01
This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.
Entanglement as a signature of quantum chaos.
Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi
2004-01-01
We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it; INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaoticmore » but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.« less
NASA Astrophysics Data System (ADS)
Chavarette, Fábio Roberto; Balthazar, José Manoel; Felix, Jorge L. P.; Rafikov, Marat
2009-05-01
This paper analyzes the non-linear dynamics, with a chaotic behavior of a particular micro-electro-mechanical system. We used a technique of the optimal linear control for reducing the irregular (chaotic) oscillatory movement of the non-linear systems to a periodic orbit. We use the mathematical model of a (MEMS) proposed by Luo and Wang.
Chaotic behavior in Malaysian stock market: A study with recurrence quantification analysis
NASA Astrophysics Data System (ADS)
Niu, Betty Voon Wan; Noorani, Mohd Salmi Md; Jaaman, Saiful Hafizah
2016-11-01
The dynamics of stock market has been questioned for decades. Its behavior appeared random yet some found it behaves as chaos. Up to 5000 daily adjusted closing data of FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLSE) was investigated through recurrence plot and recurrence quantification analysis. Results were compared between stochastic system, chaotic system and deterministic system. Results show that KLSE daily adjusted closing data behaves chaotically.
Chaotic Motions in the Real Fuzzy Electronic Circuits
2012-12-30
field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be...Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended ...model. The overall fuzzy model of the system is achieved by fuzzy blending of the linear system models. Consider a continuous-time nonlinear dynamic
Characterization of normality of chaotic systems including prediction and detection of anomalies
NASA Astrophysics Data System (ADS)
Engler, Joseph John
Accurate prediction and control pervades domains such as engineering, physics, chemistry, and biology. Often, it is discovered that the systems under consideration cannot be well represented by linear, periodic nor random data. It has been shown that these systems exhibit deterministic chaos behavior. Deterministic chaos describes systems which are governed by deterministic rules but whose data appear to be random or quasi-periodic distributions. Deterministically chaotic systems characteristically exhibit sensitive dependence upon initial conditions manifested through rapid divergence of states initially close to one another. Due to this characterization, it has been deemed impossible to accurately predict future states of these systems for longer time scales. Fortunately, the deterministic nature of these systems allows for accurate short term predictions, given the dynamics of the system are well understood. This fact has been exploited in the research community and has resulted in various algorithms for short term predictions. Detection of normality in deterministically chaotic systems is critical in understanding the system sufficiently to able to predict future states. Due to the sensitivity to initial conditions, the detection of normal operational states for a deterministically chaotic system can be challenging. The addition of small perturbations to the system, which may result in bifurcation of the normal states, further complicates the problem. The detection of anomalies and prediction of future states of the chaotic system allows for greater understanding of these systems. The goal of this research is to produce methodologies for determining states of normality for deterministically chaotic systems, detection of anomalous behavior, and the more accurate prediction of future states of the system. Additionally, the ability to detect subtle system state changes is discussed. The dissertation addresses these goals by proposing new representational techniques and novel prediction methodologies. The value and efficiency of these methods are explored in various case studies. Presented is an overview of chaotic systems with examples taken from the real world. A representation schema for rapid understanding of the various states of deterministically chaotic systems is presented. This schema is then used to detect anomalies and system state changes. Additionally, a novel prediction methodology which utilizes Lyapunov exponents to facilitate longer term prediction accuracy is presented and compared with other nonlinear prediction methodologies. These novel methodologies are then demonstrated on applications such as wind energy, cyber security and classification of social networks.
Experimental chaotic quantification in bistable vortex induced vibration systems
NASA Astrophysics Data System (ADS)
Huynh, B. H.; Tjahjowidodo, T.
2017-02-01
The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear out the regularity of periodic responses. For this purpose, a surrogate data test is used in order to check the hypotheses for the presence of chaotic behavior. The analyses from the experimental results support the hypothesis from simulation that chaotic response is likely occur on the real system.
Proceedings of the 2nd Experimental Chaos Conference
NASA Astrophysics Data System (ADS)
Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep
1995-02-01
The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud
Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A
2012-03-01
We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian
2018-06-01
In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.
Dynamic Long-Term Anticipation of Chaotic States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Henning U.
2001-07-02
Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.
Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenova, N.; Anishchenko, V.; Zakharova, A.
2016-06-08
In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.
NASA Astrophysics Data System (ADS)
de Oliveira, G. L.; Ramos, R. V.
2018-03-01
In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.
A novel chaos-based image encryption algorithm using DNA sequence operations
NASA Astrophysics Data System (ADS)
Chai, Xiuli; Chen, Yiran; Broyde, Lucie
2017-01-01
An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.
Detection of chaotic dynamics in human gait signals from mobile devices
NASA Astrophysics Data System (ADS)
DelMarco, Stephen; Deng, Yunbin
2017-05-01
The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.
Terminal Transient Phase of Chaotic Transients
NASA Astrophysics Data System (ADS)
Lilienkamp, Thomas; Parlitz, Ulrich
2018-03-01
Transient chaos in spatially extended systems can be characterized by the length of the transient phase, which typically grows quickly with the system size (supertransients). For a large class of these systems, the chaotic phase terminates abruptly, without any obvious precursors in commonly used observables. Here we investigate transient spatiotemporal chaos in two different models of this class. By probing the state space using perturbed trajectories we show the existence of a "terminal transient phase," which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact of perturbations is significantly different from the earlier transient and particular patterns of (non)susceptible regions in state space occur close to the chaotic trajectories. We therefore hypothesize that even without perturbations proper precursors for the collapse of chaotic transients exist, which might be highly relevant for coping with spatiotemporal chaos in cardiac arrhythmias or brain functionality, for example.
On adaptive modified projective synchronization of a supply chain management system
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed
2017-12-01
In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.
NASA Astrophysics Data System (ADS)
Chiun, Lee Chia; Mandangan, Arif; Daud, Muhamad Azlan; Hussin, Che Haziqah Che
2017-04-01
We may secure the content of text, audio, image and video during their transmission from one party to another party via an open channel such as the internet by using cryptograph. Logistic-Sine System (LSS) is a combination on two 1D chaotic maps which are Logistic Map and Sine Map. By applying the LSS into cryptography, the image encryption and decryption can be performed. This study is focusing on the performance test of the image encryption and decryption processes by using the LSS. For comparison purpose, we compare the performance of the encryption and decryption by using two different chaotic systems, which are the LSS and Logistic-Tent System (LTS). The result shows that system with LSS is less efficient than LTS in term of encryption time but both systems have similar efficiency in term of decryption time.
Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman
2011-06-01
This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
Fast and secure encryption-decryption method based on chaotic dynamics
Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.
1995-01-01
A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.
Regular transport dynamics produce chaotic travel times
NASA Astrophysics Data System (ADS)
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
A Simulation Study on Take-Off and Landing Dynamics of the Aircraft of a Fly-By-Wire Control System
1993-01-07
L:V,"DIN G DYN;AMICS OF THE AIRCRAFT OF A FLY-BY-WIRE CONTROL SYSTEM by Y achang Feng, Gang Chert, Peiqiong Li 93-00985 Distribution unlimit ed. FASTC...FLY-BY-WIRE CONTROL SYSTEM By: Yachang Feng, Gang Chen, Peiqiong- Li English pages: 17 Source: Hangkon, Xuebao, Vol. 12, No. 6, June, 1991; pp. 252-258...Landing Dynamics of the Aircraft of a Fly-By-Wire Control System Beijing University of Aeronautics and Astronautics Yachang FENG, Gang CHEN and Peiqiong Li
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2017-03-01
In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Desktop chaotic systems: Intuition and visualization
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.
1993-01-01
This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.
Transversal homoclinic orbits in a transiently chaotic neural network.
Chen, Shyan-Shiou; Shih, Chih-Wen
2002-09-01
We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.
Advanced Polymer Systems for Defence Applications: Power Generation, Protection and Sensing
2014-05-01
oxide nanoparticles synthesized via non-sol-gel methods, e.g., via a flame process; and, (d) Amine sensors based on silver nanoparticle- doped ...Hongmin Chen, Guodong Chen, Xiaohong Gu, James L. Lee, E. E. Abdel-Hady, Y. C. Jean. Free Volumes, Glass Transitions, and Cross-Links in Zinc Oxide ...properties in a system of zinc oxide (ZnO) nanoparticles (20 nm) dispersed in waterborne polyurethane (WBPU) were measured using positron annihilation
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Jafari, Sajad; Akgul, Akif; Karthikeyan, Anitha; Çiçek, Serdar; Shekofteh, Yasser
2018-05-01
In this paper, we report a novel chaotic snap oscillator with one nonlinear function. Dynamic analysis of the system shows the existence of bistability. To study the time delay effects on the proposed snap oscillator, we introduce multiple time delay in the fourth state equation. Investigation of dynamical properties of the time-delayed system shows that the snap oscillator exhibits the same multistable properties as the nondelayed system. The new multistable hyperjerk chaotic system has been tested in chaos shift keying and symmetric choc shift keying modulated communication designs for engineering applications. It has been determined that the symmetric chaos shift keying modulated communication system implemented with the new chaotic system is more successful than the chaos shift keying modulation for secure communication. Also, circuit implementation of the chaotic snap oscillator with tangent function is carried out showing its feasibility.
Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles
NASA Astrophysics Data System (ADS)
Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.
2007-01-01
The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.
Video encryption using chaotic masks in joint transform correlator
NASA Astrophysics Data System (ADS)
Saini, Nirmala; Sinha, Aloka
2015-03-01
A real-time optical video encryption technique using a chaotic map has been reported. In the proposed technique, each frame of video is encrypted using two different chaotic random phase masks in the joint transform correlator architecture. The different chaotic random phase masks can be obtained either by using different iteration levels or by using different seed values of the chaotic map. The use of different chaotic random phase masks makes the decryption process very complex for an unauthorized person. Optical, as well as digital, methods can be used for video encryption but the decryption is possible only digitally. To further enhance the security of the system, the key parameters of the chaotic map are encoded using RSA (Rivest-Shamir-Adleman) public key encryption. Numerical simulations are carried out to validate the proposed technique.
Biologically inspired rate control of chaos.
Olde Scheper, Tjeerd V
2017-10-01
The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.
Pseudo-Random Number Generator Based on Coupled Map Lattices
NASA Astrophysics Data System (ADS)
Lü, Huaping; Wang, Shihong; Hu, Gang
A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.
Information's role in the estimation of chaotic signals
NASA Astrophysics Data System (ADS)
Drake, Daniel Fred
1998-11-01
Researchers have proposed several methods designed to recover chaotic signals from noise-corrupted observations. While the methods vary, their qualitative performance does not: in low levels of noise all methods effectively recover the underlying signal; in high levels of noise no method can recover the underlying signal to any meaningful degree of accuracy. Of the methods proposed to date, all represent sub-optimal estimators. So: Is the inability to recover the signal in high noise levels simply a consequence of estimator sub-optimality? Or is estimator failure actually a manifestation of some intrinsic property of chaos itself? These questions are answered by deriving an optimal estimator for a class of chaotic systems and noting that it, too, fails in high levels of noise. An exact, closed- form expression for the estimator is obtained for a class of chaotic systems whose signals are solutions to a set of linear (but noncausal) difference equations. The existence of this linear description circumvents the difficulties normally encountered when manipulating the nonlinear (but causal) expressions that govern. chaotic behavior. The reason why even the optimal estimator fails to recover underlying chaotic signals in high levels of noise has its roots in information theory. At such noise levels, the mutual information linking the corrupted observations to the underlying signal is essentially nil, reducing the estimator to a simple guessing strategy based solely on a priori statistics. Entropy, long the common bond between information theory and dynamical systems, is actually one aspect of a far more complete characterization of information sources: the rate distortion function. Determining the rate distortion function associated with the class of chaotic systems considered in this work provides bounds on estimator performance in high levels of noise. Finally, a slight modification of the linear description leads to a method of synthesizing on limited precision platforms ``pseudo-chaotic'' sequences that mimic true chaotic behavior to any finite degree of precision and duration. The use of such a technique in spread-spectrum communications is considered.
An Exploratory Study of the Butterfly Effect Using Agent-Based Modeling
NASA Technical Reports Server (NTRS)
Khasawneh, Mahmoud T.; Zhang, Jun; Shearer, Nevan E. N.; Rodriquez-Velasquez, Elkin; Bowling, Shannon R.
2010-01-01
This paper provides insights about the behavior of chaotic complex systems, and the sensitive dependence of the system on the initial starting conditions. How much does a small change in the initial conditions of a complex system affect it in the long term? Do complex systems exhibit what is called the "Butterfly Effect"? This paper uses an agent-based modeling approach to address these questions. An existing model from NetLogo library was extended in order to compare chaotic complex systems with near-identical initial conditions. Results show that small changes in initial starting conditions can have a huge impact on the behavior of chaotic complex systems. The term the "butterfly effect" is attributed to the work of Edward Lorenz [1]. It is used to describe the sensitive dependence of the behavior of chaotic complex systems on the initial conditions of these systems. The metaphor refers to the notion that a butterfly flapping its wings somewhere may cause extreme changes in the ecological system's behavior in the future, such as a hurricane.
NASA Astrophysics Data System (ADS)
Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan
2017-12-01
An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.
Randomly chosen chaotic maps can give rise to nearly ordered behavior
NASA Astrophysics Data System (ADS)
Boyarsky, Abraham; Góra, Paweł; Islam, Md. Shafiqul
2005-10-01
Parrondo’s paradox [J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett. 85 (2000), 5226-5229] (see also [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72]) states that two losing gambling games when combined one after the other (either deterministically or randomly) can result in a winning game: that is, a losing game followed by a losing game = a winning game. Inspired by this paradox, a recent study [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] asked an analogous question in discrete time dynamical system: can two chaotic systems give rise to order, namely can they be combined into another dynamical system which does not behave chaotically? Numerical evidence is provided in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] that two chaotic quadratic maps, when composed with each other, create a new dynamical system which has a stable period orbit. The question of what happens in the case of random composition of maps is posed in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] but left unanswered. In this note we present an example of a dynamical system where, at each iteration, a map is chosen in a probabilistic manner from a collection of chaotic maps. The resulting random map is proved to have an infinite absolutely continuous invariant measure (acim) with spikes at two points. From this we show that the dynamics behaves in a nearly ordered manner. When the foregoing maps are applied one after the other, deterministically as in [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72], the resulting composed map has a periodic orbit which is stable.
NASA Astrophysics Data System (ADS)
Yu, Yue; Zhang, Zhengdi; Han, Xiujing
2018-03-01
In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.
Chaotic Stochasticity: A Ubiquitous Source of Unpredictability in Epidemics
NASA Astrophysics Data System (ADS)
Rand, D. A.; Wilson, H. B.
1991-11-01
We address the question of whether or not childhood epidemics such as measles and chickenpox are chaotic, and argue that the best explanation of the observed unpredictability is that it is a manifestation of what we call chaotic stochasticity. Such chaos is driven and made permanent by the fluctuations from the mean field encountered in epidemics, or by extrinsic stochastic noise, and is dependent upon the existence of chaotic repellors in the mean field dynamics. Its existence is also a consequence of the near extinctions in the epidemic. For such systems, chaotic stochasticity is likely to be far more ubiquitous than the presence of deterministic chaotic attractors. It is likely to be a common phenomenon in biological dynamics.
Robust control for fractional variable-order chaotic systems with non-singular kernel
NASA Astrophysics Data System (ADS)
Zuñiga-Aguilar, C. J.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Romero-Ugalde, H. M.
2018-01-01
This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen's attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com; Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx
2015-10-15
This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.
NASA Astrophysics Data System (ADS)
Gac, J. M.; Żebrowski, J. J.
A chaotic transition occurs when a continuous change of one of the parameters of the system causes a discontinuous change in the properties of the chaotic attractor of the system. Such phenomena are present in many dynamical systems, in which a chaotic behavior occurs. The best known of these transitions are: the period-doubling bifurcation cascade, intermittency and crises. The effect of dichotomous Markov noise (DMN) on the properties of systems with chaotic transitions is discussed. DMN is a very simple two-valued stochastic process, with constant transition rates between the two states. In spite of its simplicity, this kind of noise is a very powerful tool to describe various phenomena present in many physical, chemical or biological systems. Many interesting phenomena induced by DMN are known. However, there is no research on the effect of this kind of noise on intermittency or crises. We present the change of the mean laminar phase length and of laminar phase length distribution caused by DMN modulating the parameters of a system with intermittency and the modification of the mean life time on the pre-crisis attractor in the case of a boundary crisis. The results obtained analytically are compared with numerical simulations for several simple dynamical systems.
Mobayen, Saleh
2018-06-01
This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A Novel Type of Chaotic Attractor for Quadratic Systems Without Equilibriums
NASA Astrophysics Data System (ADS)
Dantsev, Danylo
In this paper, a new chaotic dynamic system without equilibriums is presented. A conducted research of the qualitative properties of the discovered system reveals a noncompliance between the bifurcation behavior of the system and the Feigenbaum-Sharkovskii-Magnitsky theory. Additional research of known systems confirms the discrepancy.
NASA Astrophysics Data System (ADS)
Khanzadeh, Alireza; Pourgholi, Mahdi
2016-08-01
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.
NASA Astrophysics Data System (ADS)
Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai
2014-05-01
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
Amplification through chaotic synchronization in spatially extended beam-plasma systems
NASA Astrophysics Data System (ADS)
Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.
2017-12-01
In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.
NASA Astrophysics Data System (ADS)
Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun
2018-07-01
Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.
Chaotic Mixing in Magmatic Systems: a new experiment
NASA Astrophysics Data System (ADS)
de Campos, C. P.; Perugini, D.; Dingwell, D. B.; Poli, G.; Ertel-Ingrisch, W.; Hess, K.
2007-12-01
Previous studies on magma mixing systems have evidenced that mixing processes could be controlled by chaotic dynamics. These processes are thought to be the source of fractal structures propagating within natural magmatic systems, from meter to the micrometer length scale (Perugini et al., 2006. EPSL, 234: 669-680 and references therein). We have developed a device for experimental studies of chaotic mixing dynamics in silicate melts at high temperatures (up to 1700°C). This device has been inspired by the journal bearing or eccentric cylinder geometry for viscous fluids for the study of chaotic mixing in slow flows (Swanson and Ottino, 1990. J. Fluid Mech., 213:227-249). This geometry is thought to be an ideal system for chaotic studies because a) it is experimentally accessible/feasible for silicate rheologies and b) it is subject to an analytical solution for the stream function. In the journal bearing system the flow region, is confined in the torus between the centers of the two cylinders. Their central axes are parallel but not coincident, i. e. the cylinders are eccentric. In order to generate chaos in a flow, the streamlines must be time dependent, resulting in alternating movements between the two cylinders. This means that at least one of the cylinders has alternating rotation directions. The dimension of this new experimental device follows the required main dimensionless numbers for a chaotic flow. Our first experimental goal is to characterize the mixing process in a prototypical system (haplogranite-haplobasalt)under variable mixing protocols. muenchen.de/
2013-01-01
A new approach, the projective system approach, is proposed to realize modified projective synchronization between two different chaotic systems. By simple analysis of trajectories in the phase space, a projective system of the original chaotic systems is obtained to replace the errors system to judge the occurrence of modified projective synchronization. Theoretical analysis and numerical simulations show that, although the projective system may not be unique, modified projective synchronization can be achieved provided that the origin of any of projective systems is asymptotically stable. Furthermore, an example is presented to illustrate that even a necessary and sufficient condition for modified projective synchronization can be derived by using the projective system approach. PMID:24187522
Uenohara, Seiji; Mitsui, Takahito; Hirata, Yoshito; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki
2013-06-01
We experimentally study strange nonchaotic attractors (SNAs) and chaotic attractors by using a nonlinear integrated circuit driven by a quasiperiodic input signal. An SNA is a geometrically strange attractor for which typical orbits have nonpositive Lyapunov exponents. It is a difficult problem to distinguish between SNAs and chaotic attractors experimentally. If a system has an SNA as a unique attractor, the system produces an identical response to a repeated quasiperiodic signal, regardless of the initial conditions, after a certain transient time. Such reproducibility of response outputs is called consistency. On the other hand, if the attractor is chaotic, the consistency is low owing to the sensitive dependence on initial conditions. In this paper, we analyze the experimental data for distinguishing between SNAs and chaotic attractors on the basis of the consistency.
Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.
Namikawa, Jun
2005-08-01
Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.
Characterizing chaotic melodies in automatic music composition
NASA Astrophysics Data System (ADS)
Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang
2010-09-01
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.
Numerical explorations of R. M. Goodwin's business cycle model.
Jakimowicz, Aleksander
2010-01-01
Goodwin's model, which was formulated in , still attracts economists' attention. The model possesses numerous interesting properties that have been discovered only recently due to the development of the chaos theory and the complexity theory. The first numerical explorations of the model were conducted in the early s by Strotz, McAnulty and Naines (1953). They discovered the coexistence of attractors that are well-known today, two properties of chaotic systems: the sensitive dependence on the initial conditions and the sensitive dependence on parameters. The occurrence of periodic and chaotic attractors is dependent on the value of parameters in a system. In case of certain parametric values fractal basin boundaries exist which results in enormous system sensitivity to external noise. If periodic attractors are placed in the neighborhood of the fractal basin boundaries, then even a low external noise can move the trajectory into the region in which the basin's structure is tangled. This leads to a kind of movement that resembles a chaotic movement on a strange attractor. In Goodwin's model, apart from typical chaotic behavior, there exists yet another kind of complex movements - transient chaotic behavior that is caused by the occurrence of invariant chaotic sets that are not attracting. Such sets are represented by chaotic saddles. Some of the latest observation methods of trajectories lying on invariant chaotic sets that are not attracting are straddle methods. This article provides examples of the basin boundary straddle trajectory and the saddle straddle trajectory. These cases were studied by Lorenz and Nusse (2002). I supplement the results they acquired with calculations of capacity dimension and correlation dimension.
Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.
Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu
2016-08-01
We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.
Modelling chaotic vibrations using NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1993-01-01
Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
Robust anonymous authentication scheme for telecare medical information systems.
Xie, Qi; Zhang, Jun; Dong, Na
2013-04-01
Patient can obtain sorts of health-care delivery services via Telecare Medical Information Systems (TMIS). Authentication, security, patient's privacy protection and data confidentiality are important for patient or doctor accessing to Electronic Medical Records (EMR). In 2012, Chen et al. showed that Khan et al.'s dynamic ID-based authentication scheme has some weaknesses and proposed an improved scheme, and they claimed that their scheme is more suitable for TMIS. However, we show that Chen et al.'s scheme also has some weaknesses. In particular, Chen et al.'s scheme does not provide user's privacy protection and perfect forward secrecy, is vulnerable to off-line password guessing attack and impersonation attack once user's smart card is compromised. Further, we propose a secure anonymity authentication scheme to overcome their weaknesses even an adversary can know all information stored in smart card.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jinwoo; Lee, Jewon; Song, Hanjung
2011-03-15
This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performedmore » simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.« less
Partially chaotic orbits in a perturbed cubic force model
NASA Astrophysics Data System (ADS)
Muzzio, J. C.
2017-11-01
Three types of orbits are theoretically possible in autonomous Hamiltonian systems with 3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic (they obey an additional isolating integral besides energy) and regular (they obey two isolating integrals besides energy). The existence of partially chaotic orbits has been denied by several authors, however, arguing either that there is a sudden transition from regularity to full chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might play a significant role in the process of chaotic diffusion. Here we use numerically computed Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits are actually present in that model. They turn out to be double orbits joined by a bifurcation zone, which is the most likely source of their chaos, and they are encapsulated in regions of phase space bounded by regular orbits similar to each one of the components of the double orbit.
Design and Hardware Implementation of a New Chaotic Secure Communication Technique
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness. PMID:27548385
Design and Hardware Implementation of a New Chaotic Secure Communication Technique.
Xiong, Li; Lu, Yan-Jun; Zhang, Yong-Fang; Zhang, Xin-Guo; Gupta, Parag
2016-01-01
In this paper, a scheme for chaotic modulation secure communication is proposed based on chaotic synchronization of an improved Lorenz system. For the first time, the intensity limit and stability of the transmitted signal, the characteristics of broadband and the requirements for accuracy of electronic components are presented by Multisim simulation. In addition, some improvements are made on the measurement method and the proposed experimental circuit in order to facilitate the experiments of chaotic synchronization, chaotic non-synchronization, experiment without signal and experiment with signal. To illustrate the effectiveness of the proposed scheme, some numerical simulations are presented. Then, the proposed chaotic secure communication circuit is implemented through analog electronic circuit, which is characterized by its high accuracy and good robustness.
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Improved numerical solutions for chaotic-cancer-model
NASA Astrophysics Data System (ADS)
Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair
2017-01-01
In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
Persistent stability of a chaotic system
NASA Astrophysics Data System (ADS)
Huber, Greg; Pradas, Marc; Pumir, Alain; Wilkinson, Michael
2018-02-01
We report that trajectories of a one-dimensional model for inertial particles in a random velocity field can remain stable for a surprisingly long time, despite the fact that the system is chaotic. We provide a detailed quantitative description of this effect by developing the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this system. Specifically, the determination of the entropy function for the distribution reduces to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The system has 'generic' instability properties, and we consider the broader implications of our observation of long-term stability in chaotic systems.
Lithwick, Yoram; Wu, Yanqin
2014-09-02
In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.
Lithwick, Yoram; Wu, Yanqin
2014-01-01
In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1990-01-01
While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.
Chimeras and clusters in networks of hyperbolic chaotic oscillators
NASA Astrophysics Data System (ADS)
Cano, A. V.; Cosenza, M. G.
2017-03-01
We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.
Temperature crossover of decoherence rates in chaotic and regular bath dynamics.
Sanz, A S; Elran, Y; Brumer, P
2012-03-01
The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.
On the adaptivity and complexity embedded into differential evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senkerik, Roman; Pluhacek, Michal; Jasek, Roman
2016-06-08
This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less
Quantification of chaotic strength and mixing in a micro fluidic system
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Beskok, Ali
2007-11-01
Comparative studies of five different techniques commonly employed to identify the chaotic strength and mixing efficiency in micro fluidic systems are presented to demonstrate the competitive advantages and shortcomings of each method. The 'chaotic electroosmotic stirrer' of Qian and Bau (2002 Anal. Chem. 74 3616-25) is utilized as the benchmark case due to its well-defined flow kinematics. Lagrangian particle tracking methods are utilized to study particle dispersion in the conceptual device using spectral element and fourth-order Runge-Kutta discretizations in space and time, respectively. Stirring efficiency is predicted using the stirring index based on the box counting method, and Poincaré sections are utilized to identify the chaotic and regular regions under various actuation conditions. Finite time Lyapunov exponents are calculated to quantify the chaotic strength, while the probability density function of the stretching field is utilized as an alternative method to demonstrate the statistical analysis of chaotic and partially chaotic cases. Mixing index inverse, based on the standard deviation of scalar species distribution, is utilized as a metric to quantify the mixing efficiency. Series of numerical simulations are performed by varying the Peclet number (Pe) at fixed kinematic conditions. The mixing time (tm) is characterized as a function of the Pe number, and tm ~ ln(Pe) scaling is demonstrated for fully chaotic cases, while tm ~ Peα scaling with α ≈ 0.33 and α = 0.5 are observed for partially chaotic and regular cases, respectively. Employing the aforementioned techniques, optimum kinematic conditions and the actuation frequency of the stirrer that result in the highest mixing/stirring efficiency are identified.
Complex dynamics of a new 3D Lorenz-type autonomous chaotic system
NASA Astrophysics Data System (ADS)
Zhang, Fuchen; Liao, Xiaofeng; Zhang, Guangyun; Mu, Chunlai
2017-12-01
This paper investigates a new three-dimensional continuous quadratic autonomous chaotic system which is not topologically equivalent to the Lorenz system. The dynamical behaviours of this system are further investigated in detail, including the ultimate boundedness, the invariant sets and the global attraction domain according to Lyapunov stability theory of dynamical systems. The innovation of the paper lies in the fact that this paper not only proves this chaotic system is globally bounded for the parameters of this system but also gives a family of mathematical expressions of global exponential attractive sets with respect to the parameters of this system. To validate the ultimate bound estimation, numerical simulations are also investigated. Numerical simulations verify the effectiveness and feasibility of the theoretical scheme.
NASA Astrophysics Data System (ADS)
Glenn, Chance Michael, Sr.
This work is the conceptualization, derivation, analysis, and fabrication of a fully practical digital signal source designed from a chaotic oscillator. In it we show how a simple electronic circuit based upon the Colpitts oscillator, can be made to produce highly complex signals capable of carrying digital information. We show a direct relationship between the continuous-time chaotic oscillations produced by the circuit and the logistic map, which is discrete-time, one-dimensional map that is a fundamental paradigm for the study of chaotic systems. We demonstrate the direct encoding of binary information into the oscillations of the chaotic circuit. We demonstrate a new concept in power amplification, called syncrodyne amplification , which uses fundamental properties of chaotic oscillators to provide high-efficiency, high gain amplification of standard communication waveforms as well as typical chaotic oscillations. We show modeling results of this system providing nearly 60-dB power gain and 80% PAE for communications waveforms conforming to GMSK modulation. Finally we show results from a fabricated syncrodyne amplifier circuit operating at 2 MHz, providing over 40-dB power gain and 72% PAE, and propose design criteria for an 824--850 MHz circuit utilizing heterojunction bipolar transistors (HBTs), providing the basis for microwave frequency realization.
Design and implementation of grid multi-scroll fractional-order chaotic attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao
2016-08-15
This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.
Ballard, Christopher C; Esty, C Clark; Egolf, David A
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
Efficient topological chaos embedded in the blinking vortex system.
Kin, Eiko; Sakajo, Takashi
2005-06-01
We consider the particle mixing in the plane by two vortex points appearing one after the other, called the blinking vortex system. Mathematical and numerical studies of the system reveal that the chaotic particle mixing, i.e., the chaotic advection, is observed due to the homoclinic chaos, but the mixing region is restricted locally in the neighborhood of the vortex points. The present article shows that it is possible to realize a global and efficient chaotic advection in the blinking vortex system with the help of the Thurston-Nielsen theory, which classifies periodic orbits for homeomorphisms in the plane into three types: periodic, reducible, and pseudo-Anosov (pA). It is mathematically shown that periodic orbits of pA type generate a complicated dynamics, which is called topological chaos. We show that the combination of the local chaotic mixing due to the topological chaos and the dipole-like return orbits realize an efficient and global particle mixing in the blinking vortex system.
A secure communication using cascade chaotic computing systems on clinical decision support.
Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat
2016-06-01
Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.
Devaney chaos plus shadowing implies distributional chaos.
Li, Jian; Li, Jie; Tu, Siming
2016-09-01
We explore connections among the regional proximal relation, the asymptotic relation, and the distal relation for a topological dynamical system with the shadowing property and show that if a Devaney chaotic system has the shadowing property then it is distributionally chaotic.
Analysis of the time structure of synchronization in multidimensional chaotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarenko, A. V., E-mail: avm.science@mail.ru
2015-05-15
A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.
NASA Astrophysics Data System (ADS)
Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.
2017-02-01
We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.
Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm
NASA Astrophysics Data System (ADS)
Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat
2018-01-01
This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.
NASA Astrophysics Data System (ADS)
Abramov, R. V.
2011-12-01
Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Generating Random Numbers by Means of Nonlinear Dynamic Systems
ERIC Educational Resources Information Center
Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi
2018-01-01
To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the…
Generation of 2N + 1-scroll existence in new three-dimensional chaos systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yue; Guan, Jian; Ma, Chunyang
2016-08-15
We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a{sub 12}a{sub 21} = 0, while the Chua system satisfies a{sub 12}a{sub 21} > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential usemore » in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.« less
Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media
NASA Astrophysics Data System (ADS)
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2018-01-01
The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.
Xiaowen Chen Photo of Xiaowen Chen Xiaowen Chen Researcher IV-Chemical Engineering Xiaowen.Chen Education Ph.D., Chemical Engineering, University of Maine, 2009 M.S., Chemical Engineering, University of Maine, 2005 B.S., Chemical Engineering in Polymer Science and Technology, Nanjing University of Science
Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit
NASA Astrophysics Data System (ADS)
Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou
This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.
Fuzzy fractals, chaos, and noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zardecki, A.
1997-05-01
To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the conceptmore » of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.« less
Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei
2012-05-20
We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.
Active synchronization between two different chaotic dynamical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheri, M.; Arifin, N. Md; Ismail, F.
2015-05-15
In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.
The complexity of proving chaoticity and the Church-Turing thesis
NASA Astrophysics Data System (ADS)
Calude, Cristian S.; Calude, Elena; Svozil, Karl
2010-09-01
Proving the chaoticity of some dynamical systems is equivalent to solving the hardest problems in mathematics. Conversely, classical physical systems may "compute the hard or even the incomputable" by measuring observables which correspond to computationally hard or even incomputable problems.
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
NASA Technical Reports Server (NTRS)
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
NASA Astrophysics Data System (ADS)
Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang
2016-03-01
The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).
Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.
Ben Zion, Yossi; Horwitz, Lawrence
2010-04-01
An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.
Linear transformation and oscillation criteria for Hamiltonian systems
NASA Astrophysics Data System (ADS)
Zheng, Zhaowen
2007-08-01
Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.
NASA Astrophysics Data System (ADS)
Fakhraei, J.; Khanlo, H. M.; Ghayour, M.; Faramarzi, Kh.
In this paper, the chaotic behavior of a ground vehicle system with driver subjected to road disturbances is studied and the relationship between the nonlinear vibration of the vehicle and ride comfort is evaluated. The vehicle system is modeled as fully nonlinear with seven degrees of freedom and an additional degree of freedom for driver (8-DOF). The excitation force is the road irregularities that are assumed as road speed control bumps. The sinusoidal, consecutive half-sine and dented-rectangular waveforms are considered to simulate the road speed control bumps. The nonlinearities of the system are due to the nonlinear springs and dampers that are used in the suspension system and tires. The governing differential equations are extracted under Newton-Euler laws and solved via numerical methods. The chaotic behaviors were studied in more detail with special techniques such as bifurcation diagrams, phase plane portrait, Poincaré map and Lyapunov exponents. The ride comfort was evaluated as the RMS value of the vertical displacement of the vehicle body and driver. Firstly, the effect of amplitude (height) and frequency (vehicle’s speed) of these speed control bumps on chaotic vibrations of vehicle are studied. The obtained results show that various forms of vibrations, such as periodic, subharmonic and chaotic vibrations, can be detected in the system behavior with the change of the height and frequency of speed control bumps and present different types of strange attractors in the vehicle with and without driver. Then, the influence of nonlinear vibration on ride comfort and the relationship between chaotic vibrations of the vehicle and driving comfort are investigated. The results of analyzing the RMS diagrams reveal that the chaotic behaviors can directly affect the driving comfort and lead to the driver’s comfort being reduced. The obtained results can be used in the design of vehicle and road bumps pavement.
Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.
Chacón, Ricardo
2006-09-15
A review on the application of Melnikov's method to control homoclinic and heteroclinic chaos in low-dimensional, non-autonomous and dissipative oscillator systems by weak harmonic excitations is presented, including diverse applications, such as chaotic escape from a potential well, chaotic solitons in Frenkel-Kontorova chains and chaotic-charged particles in the field of an electrostatic wave packet.
Cooling of a magmatic system under thermal chaotic mixing
NASA Astrophysics Data System (ADS)
Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego
2015-04-01
The cooling of a melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a 2D cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing even of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly affects the temperature field during time and greatly increases the cooling rates. This mechanism has implications for the lifetime of a magmatic body and may favor the appearance of chemical heterogeneities in igneous systems as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations. Among them, the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositionally zoning observed in many plutons worldwide.
Chaotic behaviour of the short-term variations in ozone column observed in Arctic
NASA Astrophysics Data System (ADS)
Petkov, Boyan H.; Vitale, Vito; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo
2015-09-01
The diurnal variations observed in the ozone column at Ny-Ålesund, Svalbard during different periods of 2009, 2010 and 2011 have been examined to test the hypothesis that they could be a result of a chaotic process. It was found that each of the attractors, reconstructed by applying the time delay technique and corresponding to any of the three time series can be embedded by 6-dimensional space. Recurrence plots, depicted to characterise the attractor features revealed structures typical for a chaotic system. In addition, the two positive Lyapunov exponents found for the three attractors, the fractal Hausdorff dimension presented by the Kaplan-Yorke estimator and the feasibility to predict the short-term ozone column variations within 10-20 h, knowing the past behaviour make the assumption about their chaotic character more realistic. The similarities of the estimated parameters in all three cases allow us to hypothesise that the three time series under study likely present one-dimensional projections of the same chaotic system taken at different time intervals.
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-04-01
A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.
Coexistence and chaos in complex ecologies [rapid communication
NASA Astrophysics Data System (ADS)
Sprott, J. C.; Vano, J. A.; Wildenberg, J. C.; Anderson, M. B.; Noel, J. K.
2005-02-01
Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete for limited resources, exhibit apparently chaotic fluctuations. This Letter proposes a purely deterministic mechanism for evolving robustly but weakly chaotic systems that exhibit adaptation, self-organization, sporadic volatility, and punctuated equilibria.
Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling
NASA Astrophysics Data System (ADS)
Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin
2018-01-01
In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.
Nonlinear filtering techniques for noisy geophysical data: Using big data to predict the future
NASA Astrophysics Data System (ADS)
Moore, J. M.
2014-12-01
Chaos is ubiquitous in physical systems. Within the Earth sciences it is readily evident in seismology, groundwater flows and drilling data. Models and workflows have been applied successfully to understand and even to predict chaotic systems in other scientific fields, including electrical engineering, neurology and oceanography. Unfortunately, the high levels of noise characteristic of our planet's chaotic processes often render these frameworks ineffective. This contribution presents techniques for the reduction of noise associated with measurements of nonlinear systems. Our ultimate aim is to develop data assimilation techniques for forward models that describe chaotic observations, such as episodic tremor and slip (ETS) events in fault zones. A series of nonlinear filters are presented and evaluated using classical chaotic systems. To investigate whether the filters can successfully mitigate the effect of noise typical of Earth science, they are applied to sunspot data. The filtered data can be used successfully to forecast sunspot evolution for up to eight years (see figure).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebogi, C.; Yorke, J.A.
This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)
NASA Astrophysics Data System (ADS)
Hajipour, Ahmad; Tavakoli, Hamidreza
2017-12-01
In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.
2018-05-01
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz, Pablo R.; Rempel, Erico L.; Barroso, Joaquim J.
We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle, and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge of chaos persists after the interior crisis, when the global attractor of the system increases its size in the phase space.
Chimeralike states in a network of oscillators under attractive and repulsive global coupling.
Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K
2015-12-01
We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.
Maximizing the security of chaotic optical communications.
Hou, T T; Yi, L L; Yang, X L; Ke, J X; Hu, Y; Yang, Q; Zhou, P; Hu, W S
2016-10-03
The practical application of chaotic optical communications has been limited by two aspects: the difficulty in concealing the time delay - a critical security parameter in feedback chaotic systems, and the difficulty of significantly enlarging the key space without complicating the implementation. Here we propose an architecture to break the above limits. By introducing a frequency-dependent group delay module with frequency tuning resolution of 1 MHz into the chaotic feedback loop, we demonstrate excellent time delay concealment effect, and an additional huge key space of 1048 can be achieved at the same time. The effectiveness is proved by both numerical simulation and experiment. Besides, the proposed scheme is compatible with the existing commercial optical communication systems, thus pave the way for high-speed secure optical communications.
Chaotic dynamics of large-scale double-diffusive convection in a porous medium
NASA Astrophysics Data System (ADS)
Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.
2018-02-01
We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.
Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C
2016-01-01
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.
Generating random numbers by means of nonlinear dynamic systems
NASA Astrophysics Data System (ADS)
Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi
2018-07-01
To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.
NASA Astrophysics Data System (ADS)
Demirbaş, Şevki; Fidanboy, Hikmet; Kurt, Erol
2016-08-01
In this paper, detailed analyses of the chaotic behavior observed in a buck-boost converter are presented. Although this basic converter system is already known world-wide for the purpose of dc-dc conversion of the output of renewable energy systems, it indicates certain chaotic regimes where both the output amplitude and frequency change randomly. This chaotic regime can yield an unstable output over the resistive or resistive/inductive electrical loads. This study presents a detailed map for the regular and chaotic regions in terms of material parameters, such as converter capacitance C, resistive load R, and inductive load L. Thus, the stable area of operation for efficient and renewable electricity production will be ascertained for the studied converter system. We emphasize that the material parameters C, R, and L play important roles in generating energy from the solar cell; indeed, the stability increases with higher values of the converter capacitor and load inductance, whereas it decreases according to the resistive load. A number of periodic windows have been observed and the output frequency gives a broad-band spectrum of up to 50 kHz.
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio
2018-05-30
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
A Unit on Deterministic Chaos for Student Teachers
ERIC Educational Resources Information Center
Stavrou, D.; Assimopoulos, S.; Skordoulis, C.
2013-01-01
A unit aiming to introduce pre-service teachers of primary education to the limited predictability of deterministic chaotic systems is presented. The unit is based on a commercial chaotic pendulum system connected with a data acquisition interface. The capabilities and difficulties in understanding the notion of limited predictability of 18…
Chaotic attractors in tumor growth and decay: a differential equation model.
Harney, Michael; Yim, Wen-sau
2015-01-01
Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.
How to Generate Chaos at Home.
ERIC Educational Resources Information Center
Smith, Douglas
1992-01-01
Describes an electronic circuit that can function as a prototype for chaotic systems. Specific applied voltages produce chaotic signals that can be viewed with an oscilloscope or be made audible with a home stereo system. Provides directions for assembly with typical costs, mathematical basis of chaos theory, and experimental extensions. (JJK)
Multiswitching compound antisynchronization of four chaotic systems
NASA Astrophysics Data System (ADS)
Khan, Ayub; Khattar, Dinesh; Prajapati, Nitish
2017-12-01
Based on three drive-one response system, in this article, the authors investigate a novel synchronization scheme for a class of chaotic systems. The new scheme, multiswitching compound antisynchronization (MSCoAS), is a notable extension of the earlier multiswitching schemes concerning only one drive-one response system model. The concept of multiswitching synchronization is extended to compound synchronization scheme such that the state variables of three drive systems antisynchronize with different state variables of the response system, simultaneously. The study involving multiswitching of three drive systems and one response system is first of its kind. Various switched modified function projective antisynchronization schemes are obtained as special cases of MSCoAS, for a suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of the presented method.
Li, Xi-Ying; van Achterberg, Cornelis; Tan, Ji-Cai
2013-01-01
Abstract The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealis Li & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n., Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae(Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n., Rhogadopsis tabidula(Weng & Chen, 2005) comb. n., Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n., Xynobius multiarculatus (Chen & Weng, 2005) comb. n. The following (sub)genera are synonymised: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862. PMID:23653521
Coexisting multiple attractors and riddled basins of a memristive system.
Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu
2018-01-01
In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.
Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Wenwu; Xu, Lan
2018-06-01
The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.
Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Wenwu; Xu, Lan
2018-04-01
The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.
Cooling of a Magmatic System Under Thermal Chaotic Mixing
NASA Astrophysics Data System (ADS)
El Omari, Kamal; Le Guer, Yves; Perugini, Diego; Petrelli, Maurizio
2015-07-01
The cooling of a basaltic melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a two-dimensional (2D) cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly modulates the temperature fields over time and greatly increases the cooling rates. This mechanism has implications for the thermal lifetime of the magmatic body and may favor the appearance of chemical heterogeneities in the igneous system as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations, including the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositional zoning observed in many plutons worldwide.
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
Quantum-classical correspondence in the vicinity of periodic orbits
NASA Astrophysics Data System (ADS)
Kumari, Meenu; Ghose, Shohini
2018-05-01
Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.
NASA Astrophysics Data System (ADS)
Deng, Ke; Zhang, Lu; Luo, Mao-Kang
2010-03-01
The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.
Kügler, Philipp; Bulelzai, M A K; Erhardt, André H
2017-04-04
Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.
2017-08-01
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.
Chaotic behavior in Casimir oscillators: A case study for phase-change materials.
Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George
2017-10-01
Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.
Improvement and empirical research on chaos control by theory of "chaos + chaos = order".
Fulai, Wang
2012-12-01
This paper focuses on advancing the understanding of Parrondian effects and their paradoxical behavior in nonlinear dynamical systems. Some examples are given to show that a dynamics combined by more than two discrete chaotic dynamics in deterministic manners can give rise to order when combined. The chaotic maps in our study are more general than those in the current literatures as far as "chaos + chaos = order" is concerned. Some problems left over in the current literatures are solved. It is proved both theoretically and numerically that, given any m chaotic dynamics generated by the one-dimensional real Mandelbrot maps, it is no possible to get a periodic system when all the m chaotic dynamics are alternated in random manner, but for any integer m(m ≥ 2) a dynamics combined in deterministic manner by m Mandelbrot chaotic dynamics can be found to give rise to a periodic dynamics of m periods. Numerical and mathematical analysis prove that the paradoxical phenomenon of "chaos + chaos = order" also exist in the dynamics generated by non-Mandelbrot maps.
Zhang, Yinping; Wang, Qing-Guo
2008-12-01
In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.
NASA Astrophysics Data System (ADS)
Mallory, Kristina; van Gorder, Robert A.
We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.
Lyapunov exponents from CHUA's circuit time series using artificial neural networks
NASA Technical Reports Server (NTRS)
Gonzalez, J. Jesus; Espinosa, Ismael E.; Fuentes, Alberto M.
1995-01-01
In this paper we present the general problem of identifying if a nonlinear dynamic system has a chaotic behavior. If the answer is positive the system will be sensitive to small perturbations in the initial conditions which will imply that there is a chaotic attractor in its state space. A particular problem would be that of identifying a chaotic oscillator. We present an example of three well known different chaotic oscillators where we have knowledge of the equations that govern the dynamical systems and from there we can obtain the corresponding time series. In a similar example we assume that we only know the time series and, finally, in another example we have to take measurements in the Chua's circuit to obtain sample points of the time series. With the knowledge about the time series the phase plane portraits are plotted and from them, by visual inspection, it is concluded whether or not the system is chaotic. This method has the problem of uncertainty and subjectivity and for that reason a different approach is needed. A quantitative approach is the computation of the Lyapunov exponents. We describe several methods for obtaining them and apply a little known method of artificial neural networks to the different examples mentioned above. We end the paper discussing the importance of the Lyapunov exponents in the interpretation of the dynamic behavior of biological neurons and biological neural networks.
THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, André; Raymond, Sean N.; Pierens, Arnaud
The orbital structure of the asteroid belt holds a record of the solar system’s dynamical history. The current belt only contains ∼10{sup −3} Earth masses yet the asteroids’ orbits are dynamically excited, with a large spread in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have been excited by Jupiter’s orbital migration. The terrestrial planets can also be reproduced without invoking a migrating Jupiter; however, as it requires a severe mass deficit beyond Earth’s orbit, this model systematically under-excites the asteroid belt. Here we show that the orbits of the asteroids may havemore » been excited to their current state if Jupiter’s and Saturn’s early orbits were chaotic. Stochastic variations in the gas giants’ orbits cause resonances to continually jump across the main belt and excite the asteroids’ orbits on a timescale of tens of millions of years. While hydrodynamical simulations show that the gas giants were likely in mean motion resonance at the end of the gaseous disk phase, small perturbations could have driven them into a chaotic but stable state. The gas giants’ current orbits were achieved later, during an instability in the outer solar system. Although it is well known that the present-day solar system exhibits chaotic behavior, our results suggest that the early solar system may also have been chaotic.« less
The chaotic set and the cross section for chaotic scattering in three degrees of freedom
NASA Astrophysics Data System (ADS)
Jung, C.; Merlo, O.; Seligman, T. H.; Zapfe, W. P. K.
2010-10-01
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step towards a more general understanding of chaotic scattering in higher dimensions. Despite the strong restrictions, it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out the implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern that reflects the fractal structure of the chaotic invariant set. This allows us to determine structures in the cross section from the invariant set and, conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.
A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations
NASA Technical Reports Server (NTRS)
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2017-01-01
We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.
Regular-to-Chaotic Tunneling Rates: From the Quantum to the Semiclassical Regime
NASA Astrophysics Data System (ADS)
Löck, Steffen; Bäcker, Arnd; Ketzmerick, Roland; Schlagheck, Peter
2010-03-01
We derive a prediction of dynamical tunneling rates from regular to chaotic phase-space regions combining the direct regular-to-chaotic tunneling mechanism in the quantum regime with an improved resonance-assisted tunneling theory in the semiclassical regime. We give a qualitative recipe for identifying the relevance of nonlinear resonances in a given ℏ regime. For systems with one or multiple dominant resonances we find excellent agreement to numerics.
Color encryption scheme based on adapted quantum logistic map
NASA Astrophysics Data System (ADS)
Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.
2014-04-01
This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.
Zhou, Ping; Bai, Rongji
2014-01-01
Based on a new stability result of equilibrium point in nonlinear fractional-order systems for fractional-order lying in 1 < q < 2, one adaptive synchronization approach is established. The adaptive synchronization for the fractional-order Lorenz chaotic system with fractional-order 1 < q < 2 is considered. Numerical simulations show the validity and feasibility of the proposed scheme. PMID:25247207
A Wave Chaotic Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.
Chaos in the sunspot cycle - Analysis and prediction
NASA Technical Reports Server (NTRS)
Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.
1991-01-01
The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.
Liang, Tian; Wang, Ke; Lim, Christina; Wong, Elaine; Song, Tingting; Nirmalathas, Ampalavanapillai
2017-09-04
In this paper, we report a novel mechanism to simultaneously provide secure connections for multiple users in indoor optical wireless communication systems by employing the time-slot coding scheme together with chaotic phase sequence. The chaotic phase sequence is generated according to the logistic map and applied to each symbol to secure the transmission. Proof-of-concept experiments are carried out for multiple system capacities based on both 4-QAM and 16-QAM modulation formats, i.e. 1.25 Gb/s, 2 Gb/s and 2.5 Gb/s for 4-QAM, and 2.5 Gb/s, 3.33 Gb/s and 4 Gb/s for 16-QAM. Experimental results show that in all cases the added chaotic phase does not degrade the legitimate user's signal quality while the illegal user cannot detect the signal without the key.
NASA Astrophysics Data System (ADS)
Hsiao, Feng-Hsiag
2017-10-01
In order to obtain double encryption via elliptic curve cryptography (ECC) and chaotic synchronisation, this study presents a design methodology for neural-network (NN)-based secure communications in multiple time-delay chaotic systems. ECC is an asymmetric encryption and its strength is based on the difficulty of solving the elliptic curve discrete logarithm problem which is a much harder problem than factoring integers. Because it is much harder, we can get away with fewer bits to provide the same level of security. To enhance the strength of the cryptosystem, we conduct double encryption that combines chaotic synchronisation with ECC. According to the improved genetic algorithm, a fuzzy controller is synthesised to realise the exponential synchronisation and achieves optimal H∞ performance by minimising the disturbances attenuation level. Finally, a numerical example with simulations is given to demonstrate the effectiveness of the proposed approach.
Chaotic Zones around Rotating Small Bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr
Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less
Various Types of Coexisting Attractors in a New 4D Autonomous Chaotic System
NASA Astrophysics Data System (ADS)
Lai, Qiang; Akgul, Akif; Zhao, Xiao-Wen; Pei, Huiqin
An unique 4D autonomous chaotic system with signum function term is proposed in this paper. The system has four unstable equilibria and various types of coexisting attractors appear. Four-wing and four-scroll strange attractors are observed in the system and they will be broken into two coexisting butterfly attractors and two coexisting double-scroll attractors with the variation of the parameters. Numerical simulation shows that the system has various types of multiple coexisting attractors including two butterfly attractors with four limit cycles, two double-scroll attractors with a limit cycle, four single-scroll strange attractors, four limit cycles with regard to different parameters and initial values. The coexistence of the attractors is determined by the bifurcation diagrams. The chaotic and hyperchaotic properties of the attractors are verified by the Lyapunov exponents. Moreover, we present an electronic circuit to experimentally realize the dynamic behavior of the system.
Monte Carlo Sampling in Fractal Landscapes
NASA Astrophysics Data System (ADS)
Leitão, Jorge C.; Lopes, J. M. Viana Parente; Altmann, Eduardo G.
2013-05-01
We design a random walk to explore fractal landscapes such as those describing chaotic transients in dynamical systems. We show that the random walk moves efficiently only when its step length depends on the height of the landscape via the largest Lyapunov exponent of the chaotic system. We propose a generalization of the Wang-Landau algorithm which constructs not only the density of states (transient time distribution) but also the correct step length. As a result, we obtain a flat-histogram Monte Carlo method which samples fractal landscapes in polynomial time, a dramatic improvement over the exponential scaling of traditional uniform-sampling methods. Our results are not limited by the dimensionality of the landscape and are confirmed numerically in chaotic systems with up to 30 dimensions.
NASA Astrophysics Data System (ADS)
Chao, Luo
2015-11-01
In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
Design and simulation of the micromixer with chaotic advection in twisted microchannels.
Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi
2003-05-01
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.
NASA Astrophysics Data System (ADS)
Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng
2016-01-01
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-15
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
Experimental Demonstration of Coherent Control in Quantum Chaotic Systems
NASA Astrophysics Data System (ADS)
Bitter, M.; Milner, V.
2017-01-01
We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.
NASA Astrophysics Data System (ADS)
Liu, Jian; Xu, Rui
2018-04-01
Chaotic synchronisation has caused extensive attention due to its potential application in secure communication. This paper is concerned with the problem of adaptive synchronisation for two different kinds of memristor-based neural networks with time delays in leakage terms. By applying set-valued maps and differential inclusions theories, synchronisation criteria are obtained via linear matrix inequalities technique, which guarantee drive system being synchronised with response system under adaptive control laws. Finally, a numerical example is given to illustrate the feasibility of our theoretical results, and two schemes for secure communication are introduced based on chaotic masking method.
Preliminary chaotic model of snapover on high voltage solar cells
NASA Technical Reports Server (NTRS)
Mackey, Willie R.
1995-01-01
High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-01
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.
2015-03-10
We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs aftermore » several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.« less
2014-02-26
set of anomaly detection rules 62 I.-R. Chen et al. / Ad Hoc Networks 19 (2014) 59–74 Author’s personal copy including the interval rule (for...deficiencies in anomaly detection (e.g., imperfection of rules) by a false negative probability (PHfn) of misidentifying an unhealthy node as a...multimedia servers, Multimedia Syst. 8 (2) (2000) 83–91. [53] R. Mitchell, I.R. Chen, Adaptive intrusion detection for unmanned aircraft systems based on
ERIC Educational Resources Information Center
Helal, Ahmed H., Ed.; Weiss, Joachim W., Ed.
The 16 papers in this collection explore the microcomputer revolution as it affects library information systems: (1) "HyperMedia/Multimedia Technology and New Opportunities for Libraries in the 1990s" (Ching-chih Chen); (2) "Use of CD-ROMs in West German Libraries" (David I. Raitt and Ching-chih Chen); (3) "Purposes of Interactive Optical Discs…
Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom
NASA Astrophysics Data System (ADS)
Jung, Christof; Zapfe, W. P. Karel; Merlo, Olivier; Seligman, T. H.
2010-12-01
We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.
Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Christof; Zapfe, W. P. Karel; Seligman, T. H.
2010-12-23
We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.
Chaotic Brillouin optical correlation-domain analysis
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Zhang, Mingtao; Zhang, Mingjiang; Liu, Yi; Feng, Changkun; Wang, Yahui; Wang, Yuncai
2018-04-01
We propose and experimentally demonstrate a chaotic Brillouin optical correlation-domain analysis (BOCDA) system for distributed fiber sensing. The utilization of the chaotic laser with low coherent state ensures high spatial resolution. The experimental results demonstrate a 3.92-cm spatial resolution over a 906-m measurement range. The uncertainty in the measurement of the local Brillouin frequency shift is 1.2MHz. The measurement signal-to-noise ratio is given, which is agreement with the theoretical value.
VizieR Online Data Catalog: BOSS narrow CIV absorption lines. III. (Chen+, 2016)
NASA Astrophysics Data System (ADS)
Chen, Z.-F.; Gu, Q.-S.; Zhou, L.; Chen, Y.-M.
2018-03-01
In this paper, we extend our previous search of CIV NALs released in Papers I (Chen et al., 2014, Cat. J/ApJS/210/7) and II (Chen et al., 2014, Cat. J/ApJS/215/12) to spectral data redwards of CIV 1549 emission lines. Therefore, the quasar sample and selection criteria are the combination of Papers I (Chen et al., 2014, Cat. J/ApJS/210/7) and II (Chen et al., 2014, Cat. J/ApJS/215/12). (1 data file).
Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations
NASA Astrophysics Data System (ADS)
Knio, Omar M.; Collorec, Luc; Juvé, Daniel
1995-02-01
The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.
Inverse full state hybrid projective synchronization for chaotic maps with different dimensions
NASA Astrophysics Data System (ADS)
Ouannas, Adel; Grassi, Giuseppe
2016-09-01
A new synchronization scheme for chaotic (hyperchaotic) maps with different dimensions is presented. Specifically, given a drive system map with dimension n and a response system with dimension m, the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states. The method, based on the Lyapunov stability theory and the pole placement technique, presents some useful features: (i) it enables synchronization to be achieved for both cases of n < m and n > m; (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) maps defined to date. Finally, the capability of the approach is illustrated by synchronization examples between the two-dimensional Hénon map (as the drive system) and the three-dimensional hyperchaotic Wang map (as the response system), and the three-dimensional Hénon-like map (as the drive system) and the two-dimensional Lorenz discrete-time system (as the response system).
NASA Astrophysics Data System (ADS)
Gottwald, Georg; Melbourne, Ian
2013-04-01
Whereas diffusion limits of stochastic multi-scale systems have a long and successful history, the case of constructing stochastic parametrizations of chaotic deterministic systems has been much less studied. We present rigorous results of convergence of a chaotic slow-fast system to a stochastic differential equation with multiplicative noise. Furthermore we present rigorous results for chaotic slow-fast maps, occurring as numerical discretizations of continuous time systems. This raises the issue of how to interpret certain stochastic integrals; surprisingly the resulting integrals of the stochastic limit system are generically neither of Stratonovich nor of Ito type in the case of maps. It is shown that the limit system of a numerical discretisation is different to the associated continuous time system. This has important consequences when interpreting the statistics of long time simulations of multi-scale systems - they may be very different to the one of the original continuous time system which we set out to study.
NASA Astrophysics Data System (ADS)
Pada Das, Krishna; Roy, Prodip; Ghosh, Subhabrata; Maiti, Somnath
This paper deals with an eco-epidemiological approach with disease circulating through the predator species. Disease circulation in the predator species can be possible by contact as well as by external sources. Here, we try to discuss the role of external source of infection along with nutritional value on system dynamics. To establish our findings, we have worked out the local and global stability analysis of the equilibrium points with Hopf bifurcation analysis associated with interior equilibrium point. The ecological consequence by ecological basic reproduction number as well as the disease basic reproduction number or basic reproductive ratio are obtained and we have analyzed the community structure of the particular system with the help of ecological and disease basic reproduction numbers. Further we pay attention to the chaotic dynamics which is produced by disease circulating in predator species by contact. Our numerical simulations reveal that eco-epidemiological system without external source of infection induced chaotic dynamics for increasing force of infection due to contact, whereas in the presence of external source of infection, it exhibits stable solution. It is also observed that nutritional value can prevent chaotic dynamics. We conclude that chaotic dynamics can be controlled by the external source of infection as well as nutritional value. We apply basic tools of nonlinear dynamics such as Poincare section and maximum Lyapunov exponent to investigate chaotic behavior of the system.
Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
NASA Astrophysics Data System (ADS)
Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley
2017-08-01
At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.
Chaotic trajectories in the standard map. The concept of anti-integrability
NASA Astrophysics Data System (ADS)
Aubry, Serge; Abramovici, Gilles
1990-07-01
A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops
NASA Astrophysics Data System (ADS)
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo
2013-12-15
We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delaymore » in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.« less
Kim, Min-Young; Sramek, Christopher; Uchida, Atsushi; Roy, Rajarshi
2006-07-01
Synchronization of chaotic systems has been studied extensively, and especially, the possible applications to the communication systems motivated many research areas. We demonstrate the effect of the frequency bandwidth limitations in the communication channel on the synchronization of two unidirectionally coupled Mackey-Glass (MG) analog circuits, both numerically and experimentally. MG system is known to generate high dimensional chaotic signals. The chaotic signal generated from the drive MG system is modified by a low pass filter and is then transmitted to the response MG system. Our results show that the inclusion of the dominant frequency component of the original drive signals is crucial to achieve synchronization between the drive and response circuits. The maximum cross correlation and the corresponding time shift reveal that the frequency-dependent coupling introduced by the low pass filtering effect in the communication channel change the quality of synchronization.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
NASA Astrophysics Data System (ADS)
Kuusela, Tom A.
2017-09-01
A He-Ne laser is an example of a class A laser, which can be described by a single nonlinear differential equation of the complex electric field. This laser system has only one degree of freedom and is thus inherently stable. A He-Ne laser can be driven to the chaotic condition when a large fraction of the output beam is injected back to the laser. In practice, this can be done simply by adding an external mirror. In this situation, the laser system has infinite degrees of freedom and therefore it can have a chaotic attractor. We show the fundamental laser equations and perform elementary stability analysis. In experiments, the laser intensity variations are measured by a simple photodiode circuit. The laser output intensity time series is studied using nonlinear analysis tools which can be found freely on the internet. The results show that the laser system with feedback has an attractor of a reasonably high dimension and that the maximal Lyapunov exponent is positive, which is clear evidence of chaotic behaviour. The experimental setup and analysis steps are so simple that the studies can even be implemented in the undergraduate physics laboratory.
Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor
NASA Astrophysics Data System (ADS)
Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez
A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.
Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures
NASA Astrophysics Data System (ADS)
Russell, Francis P.; Düben, Peter D.; Niu, Xinyu; Luk, Wayne; Palmer, T. N.
2017-12-01
Reconfigurable architectures are becoming mainstream: Amazon, Microsoft and IBM are supporting such architectures in their data centres. The computationally intensive nature of atmospheric modelling is an attractive target for hardware acceleration using reconfigurable computing. Performance of hardware designs can be improved through the use of reduced-precision arithmetic, but maintaining appropriate accuracy is essential. We explore reduced-precision optimisation for simulating chaotic systems, targeting atmospheric modelling, in which even minor changes in arithmetic behaviour will cause simulations to diverge quickly. The possibility of equally valid simulations having differing outcomes means that standard techniques for comparing numerical accuracy are inappropriate. We use the Hellinger distance to compare statistical behaviour between reduced-precision CPU implementations to guide reconfigurable designs of a chaotic system, then analyse accuracy, performance and power efficiency of the resulting implementations. Our results show that with only a limited loss in accuracy corresponding to less than 10% uncertainty in input parameters, the throughput and energy efficiency of a single-precision chaotic system implemented on a Xilinx Virtex-6 SX475T Field Programmable Gate Array (FPGA) can be more than doubled.
Banknote authentication using chaotic elements technology
NASA Astrophysics Data System (ADS)
Ambadiyil, Sajan; P. S., Krishnendu; Mahadevan Pillai, V. P.; Prabhu, Radhakrishna
2017-10-01
The counterfeit banknote is a growing threat to the society since the advancements in the field of computers, scanners and photocopiers, as they have made the duplication process for banknote much simpler. The fake note detection systems developed so far have many drawbacks such as high cost, poor accuracy, unavailability, lack of user-friendliness and lower effectiveness. One possible solution to this problem could be the use of a system uniquely linked to the banknote itself. In this paper, we present a unique identification and authentication process for the banknote using chaotic elements embedded in it. A chaotic element means that the physical elements are formed from a random process independent from human intervention. The chaotic elements used in this paper are the random distribution patterns of such security fibres set into the paper pulp. A unique ID is generated from the fibre pattern obtained from UV image of the note, which can be verified by any person who receives the banknote to decide whether the banknote is authentic or not. Performance analysis of the system is also studied in this paper.
Nuclear power grows in China`s energy mix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xavier
1996-07-01
China`s rapid economic growth in the past two decades has caused the nations`s demand for electricity to exceed its capacity. AS of 1992, with power shortages as high as 25 percent, {open_quotes}power plant operators were often forced to resort to rolling brownouts to avoid complete system breakdowns,{close_quotes} says Xavier Chen, an assistant professor with the Asian Institute of Technology`s Energy Program in Bangkok, Thailand. To keep pace with China`s economic development, Chen estimates that {open_quotes}China must increase its electricity capacity 6 to 8 percent a year each year into the foreseeable future.{close_quotes} For now, coal is transported to power plantsmore » in the rapidly developing eastern coastal provinces at great expense. Chen also notes that the environmental disadvantages of coal make it a less desirable source of energy than nuclear. Development of nuclear energy is likely to go forward for another reason: In China, there is much less opposition to nuclear power plants than in other developing nations. {open_quotes}Nuclear energy likely will plan an important role in China`s future energy mix and help close the gap between electricity production and demand,{close_quotes} Chen says.« less
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.
Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong
2015-07-01
The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang
2015-07-15
The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510
Recent developments in chaotic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, E.
1994-02-01
Before the relatively recent wide acceptance of the existence of chaotic dynamics, many physicists and engineers were under the impression that simple systems could necessarily only display simple solutions. This feeling had been unintentionally reinforced by conventional college courses which emphasize linear dynamics (partly because that is the only case with nice general solutions). More recently, physical experiments and numerical examples have abundantly demonstrated how wrong this feeling is. A brief review of chaotic dynamics is presented. Topics discussed include basic concepts, recent developments, and applications.
Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers
NASA Astrophysics Data System (ADS)
Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos
2017-01-01
We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.
Experimental Control of a Fast Chaotic Time-Delay Opto-Electronic Device
2003-01-01
chaotic sources such as the erbium-doped Þber laser. The basic idea is to use the message as a driving signal for the chaotic system. The message...47 x 3.10 Block diagram of feedback loop. Light from the interferometer is con- verted into an electrical signal by the photodiode (PD). All...a time delay of τD. Finally, the electrical signal is converted back into light by the laser diode (LD). . . . . . . . . . . . . . . . . 48 3.11 Setup
On the robustness of complex heterogeneous gene expression networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M
2005-04-01
We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.
Working Towards Führer: A Chaotic View
NASA Astrophysics Data System (ADS)
Cakar, Ulas
Leadership is a concept that has been discussed since the beginning of history. Even though there have been many theories in the field accepting leadership's role in bringing order, chaotic aspects of leadership are generally neglected. This chapter aims to examine the leadership beyond an orderly interpretation of universe. For this purpose, Third Reich period and leadership during this period will be examined. Ian Kershaw's "Working Towards Führer" concept provides a unique understanding of leadership concept. It goes beyond the dualist depiction of Third Reich, it does not state Adolf Hitler as an all powerful dictator, or a weak one. Rather, he expresses that due to the conditions in the Third Reich, Adolf Hitler was both of this. This complex situation can be understood deeper when it is examined through the lens of chaos theory. This study contributes to the field by being the first in using chaos theory for examining "Working Towards Führer" concept and its development. Seemingly orderly nature of synchronization process and its vortex will be shown. Adolf Hitler's storm spot position in the chaotic system and its dynamics are explained. War's entropic power and its effect on the downfall of the system is crucial in understanding this unique chaotic system. The chaotic pattern of "Working Towards Führer" offers an opportunity to analyze the complexities of the leadership concept.
NASA Astrophysics Data System (ADS)
Kalantari, Bahman
Polynomiography is the algorithmic visualization of iterative systems for computing roots of a complex polynomial. It is well known that iterations of a rational function in the complex plane result in chaotic behavior near its Julia set. In one scheme of computing polynomiography for a given polynomial p(z), we select an individual member from the Basic Family, an infinite fundamental family of rational iteration functions that in particular include Newton's. Polynomiography is an excellent means for observing, understanding, and comparing chaotic behavior for variety of iterative systems. Other iterative schemes in polynomiography are possible and result in chaotic behavior of different kinds. In another scheme, the Basic Family is collectively applied to p(z) and the iterates for any seed in the Voronoi cell of a root converge to that root. Polynomiography reveals chaotic behavior of another kind near the boundary of the Voronoi diagram of the roots. We also describe a novel Newton-Ellipsoid iterative system with its own chaos and exhibit images demonstrating polynomiographies of chaotic behavior of different kinds. Finally, we consider chaos for the more general case of polynomiography of complex analytic functions. On the one hand polynomiography is a powerful medium capable of demonstrating chaos in different forms, it is educationally instructive to students and researchers, also it gives rise to numerous research problems. On the other hand, it is a medium resulting in images with enormous aesthetic appeal to general audiences.
A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT
NASA Astrophysics Data System (ADS)
Yuxia, Zhao; Jingbo, Fan
A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.
Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization.
Wang, Xiao Fan
2002-06-01
We show that two initially weakly coupled chaotic systems can achieve synchronization by adaptively reducing their speed and/or enhancing the coupling strength. Explicit adaptive algorithms for speed reduction and coupling enhancement are provided. We apply these algorithms to the synchronization of two coupled Lorenz systems. It is found that after a long-time adaptive process, the two coupled chaotic systems can achieve synchronization with almost the minimum required coupling-speed ratio.
Adjoint sensitivity analysis of chaotic dynamical systems with non-intrusive least squares shadowing
NASA Astrophysics Data System (ADS)
Blonigan, Patrick J.
2017-11-01
This paper presents a discrete adjoint version of the recently developed non-intrusive least squares shadowing (NILSS) algorithm, which circumvents the instability that conventional adjoint methods encounter for chaotic systems. The NILSS approach involves solving a smaller minimization problem than other shadowing approaches and can be implemented with only minor modifications to preexisting tangent and adjoint solvers. Adjoint NILSS is demonstrated on a small chaotic ODE, a one-dimensional scalar PDE, and a direct numerical simulation (DNS) of the minimal flow unit, a turbulent channel flow on a small spatial domain. This is the first application of an adjoint shadowing-based algorithm to a three-dimensional turbulent flow.
Quantum synchronization of chaotic oscillator behaviors among coupled BEC-optomechanical systems
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2017-03-01
We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.
NASA Astrophysics Data System (ADS)
Mahmud, M. N.
2018-04-01
The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.
Menstruation, perimenopause, and chaos theory.
Derry, Paula S; Derry, Gregory N
2012-01-01
This article argues that menstruation, including the transition to menopause, results from a specific kind of complex system, namely, one that is nonlinear, dynamical, and chaotic. A complexity-based perspective changes how we think about and research menstruation-related health problems and positive health. Chaotic systems are deterministic but not predictable, characterized by sensitivity to initial conditions and strange attractors. Chaos theory provides a coherent framework that qualitatively accounts for puzzling results from perimenopause research. It directs attention to variability within and between women, adaptation, lifespan development, and the need for complex explanations of disease. Whether the menstrual cycle is chaotic can be empirically tested, and a summary of our research on 20- to 40-year-old women is provided.
Preliminary Chaotic Model of Snapover on High Voltage Solar Cells
NASA Technical Reports Server (NTRS)
Mackey, Willie R.
1995-01-01
High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
Gross-Pitaevski map as a chaotic dynamical system.
Guarneri, Italo
2017-03-01
The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
A preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity is presented. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. It is shown that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
NASA Technical Reports Server (NTRS)
Ashrafi, S.; Roszman, L.
1991-01-01
Presented here is a preliminary study of the limits to solar flux intensity prediction, and of whether the general lack of predictability in the solar flux arises from the nonlinear chaotic nature of the Sun's physical activity. Statistical analysis of a chaotic signal can extract only its most gross features, and detailed physical models fail, since even the simplest equations of motion for a nonlinear system can exhibit chaotic behavior. A recent theory by Feigenbaum suggests that nonlinear systems that can be led into chaotic behavior through a sequence of period-doubling bifurcations will exhibit a universal behavior. As the control parameter is increased, the bifurcation points occur in such a way that a proper ratio of these will approach the universal Feigenbaum number. Experimental evidence supporting the applicability of the Feigenbaum scenario to solar flux data is sparse. However, given the hypothesis that the Sun's convection zones are similar to a Rayleigh-Bernard mechanism, we can learn a great deal from the remarkable agreement observed between the prediction by theory (period doubling - a universal route to chaos) and the amplitude decrease of the signal's regular subharmonics. The authors show that period-doubling-type bifurcation is a possible route to a chaotic pattern of solar flux that is distinguishable from the logarithm of its power spectral density. This conclusion is the first positive step toward a reformulation of solar flux by a nonlinear chaotic approach. The ultimate goal of this research is to be able to predict an estimate of the upper and lower bounds for solar flux within its predictable zones. Naturally, it is an important task to identify the time horizons beyond which predictability becomes incompatible with computability.
Synchronizability of nonidentical weakly dissipative systems
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, Irene; Letellier, Christophe
2017-10-01
Synchronization is a very generic process commonly observed in a large variety of dynamical systems which, however, has been rarely addressed in systems with low dissipation. Using the Rössler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly, and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch between two coupled such systems does not affect the synchronizability and the underlying structure of the joint attractor in the same way. By computing the Shannon entropy associated with the corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a more complex behavior with higher values of the Shannon entropy. In comparison, conservative dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified periodic ones.
Chaos in the brain: imaging via chaoticity of EEG/MEG signals
NASA Astrophysics Data System (ADS)
Kowalik, Zbigniew J.; Elbert, Thomas; Rockstroh, Brigitte; Hoke, Manfried
1995-03-01
Brain electro- (EEG) or magnetoencephalogram (MEG) can be analyzed by using methods of the nonlinear system theory. We show that even for very short and nonstationary time series it is possible to functionally differentiate various brain activities. Usually the analysis assumes that the analyzed signals are both long and stationary, so that the classic spectral methods can be used. Even more convincing results can be obtained under these circumstances when the dimensional analysis or estimation of the Kolmogorov entropy or the Lyapunov exponent are performed. When measuring the spontaneous activity of a human brain the assumption of stationarity is questionable and `static' methods (correlation dimension, entropy, etc.) are then not adequate. In this case `dynamic' methods like pointwise-D2 dimension or chaoticity measures should be applied. Predictability measures in the form of local Lyapunov exponents are capable of revealing directly the chaoticity of a given process, and can practically be applied for functional differentiation of brain activity. We exemplify these in cases of apallic syndrome, tinnitus and schizophrenia. We show that: the average chaoticity in apallic syndrome differentiates brain states both in space and time, chaoticity changes temporally in case of schizophrenia (critical jumps of chaoticity), chaoticity changes locally in space, i.e., in the cortex plane in case of tinnitus.
A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium
NASA Astrophysics Data System (ADS)
Ren, Shuili; Panahi, Shirin; Rajagopal, Karthikeyan; Akgul, Akif; Pham, Viet-Thanh; Jafari, Sajad
2018-02-01
Discovering unknown aspects of non-equilibrium systems with hidden strange attractors is an attractive research topic. A novel quadratic hyperjerk system is introduced in this paper. It is noteworthy that this non-equilibrium system can generate hidden chaotic attractors. The essential properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram, and Lyapunov exponents. In addition, a fractional-order differential equation of this new system is presented. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model.
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.
2018-04-01
A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.
Chaotic Motion in the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)
2001-01-01
The motion of planetary bodies is the archetypal clockwork system. Indeed, clocks and calendars were developed to keep track of the relative motions of the Earth, the Sun and the Moon. However, studies over the past few decades imply that this predictable regularity does not extend to small bodies, nor does it apply to the precise trajectories of the planets themselves over long timescale.s. Various examples of chaotic motion within our Solar System and, extrasolar planetary systems will be discussed.
Hardware implementation of Lorenz circuit systems for secure chaotic communication applications.
Chen, Hsin-Chieh; Liau, Ben-Yi; Hou, Yi-You
2013-02-18
This paper presents the synchronization between the master and slave Lorenz chaotic systems by slide mode controller (SMC)-based technique. A proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. Then, extending the concept of equivalent control and using some basic electronic components, a secure communication system is constructed. Experimental results show the feasibility of synchronizing two Lorenz circuits via the proposed SMC.
An effective and secure key-management scheme for hierarchical access control in E-medicine system.
Odelu, Vanga; Das, Ashok Kumar; Goswami, Adrijit
2013-04-01
Recently several hierarchical access control schemes are proposed in the literature to provide security of e-medicine systems. However, most of them are either insecure against 'man-in-the-middle attack' or they require high storage and computational overheads. Wu and Chen proposed a key management method to solve dynamic access control problems in a user hierarchy based on hybrid cryptosystem. Though their scheme improves computational efficiency over Nikooghadam et al.'s approach, it suffers from large storage space for public parameters in public domain and computational inefficiency due to costly elliptic curve point multiplication. Recently, Nikooghadam and Zakerolhosseini showed that Wu-Chen's scheme is vulnerable to man-in-the-middle attack. In order to remedy this security weakness in Wu-Chen's scheme, they proposed a secure scheme which is again based on ECC (elliptic curve cryptography) and efficient one-way hash function. However, their scheme incurs huge computational cost for providing verification of public information in the public domain as their scheme uses ECC digital signature which is costly when compared to symmetric-key cryptosystem. In this paper, we propose an effective access control scheme in user hierarchy which is only based on symmetric-key cryptosystem and efficient one-way hash function. We show that our scheme reduces significantly the storage space for both public and private domains, and computational complexity when compared to Wu-Chen's scheme, Nikooghadam-Zakerolhosseini's scheme, and other related schemes. Through the informal and formal security analysis, we further show that our scheme is secure against different attacks and also man-in-the-middle attack. Moreover, dynamic access control problems in our scheme are also solved efficiently compared to other related schemes, making our scheme is much suitable for practical applications of e-medicine systems.
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence
NASA Astrophysics Data System (ADS)
Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.
2017-02-01
Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.
Ma, Chao; Meyers, Stephen R; Sageman, Bradley B
2017-02-22
Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
NASA Astrophysics Data System (ADS)
Oden, Jérémy; Lavrov, Roman; Chembo, Yanne K.; Larger, Laurent
2017-11-01
We propose a chaos communication scheme based on a chaotic optical phase carrier generated with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedicated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This particular feature increases the complexity of the chaotic waveform and thus the security of the transmitted information, as these interferometers are characterized by four independent parameters which are part of the secret key for the chaos encryption scheme. We first analyze the route to chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state to fully developed chaos. Then, in the chaotic regime, we study the synchronization between the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.
Secure Communication Based on a Hybrid of Chaos and Ica Encryptions
NASA Astrophysics Data System (ADS)
Chen, Wei Ching; Yuan, John
Chaos and independent component analysis (ICA) encryptions are two novel schemes for secure communications. In this paper, a new scheme combining chaos and ICA techniques is proposed to enhance the security level during communication. In this scheme, a master chaotic system is embedded at the transmitter. The message signal is mixed with a chaotic signal and a Gaussian white noise into two mixed signals and then transmitted to the receiver through the public channels. A signal for synchronization is transmitted through another public channel to the receiver where a slave chaotic system is embedded to reproduce the chaotic signal. A modified ICA is used to recover the message signal at the receiver. Since only two of the three transmitted signals contain the information of message signal, a hacker would not be able to retrieve the message signal by using ICA even though all the transmitted signals are intercepted. Spectrum analyses are used to prove that the message signal can be securely hidden under this scheme.
Understanding the Role of Chaos Theory in Military Decision Making
2009-01-01
Because chaos is bounded, planners can create allowances for system noise. The existence of strange and normal chaotic attractors helps explain why... strange and normal chaotic attractors helps explain why system turbulence is uneven or concentrated around specific solution regions. Finally, the...give better understanding of the implications of chaos: sensitivity to initial conditions, strange attractors , and constants of motion. By showing the
Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions
NASA Astrophysics Data System (ADS)
Blessy, B. S. Gnana; Latha, M. M.
2017-10-01
We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.
Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential
NASA Astrophysics Data System (ADS)
Li, Fei; Xu, Lan; Li, Wenwu
2018-02-01
We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.
Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.
Zou, Yong; Donner, Reik V; Kurths, Jürgen
2012-03-01
Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic Rössler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.
Phase synchronization in the forced Lorenz system
NASA Astrophysics Data System (ADS)
Park, Eun-Hyoung; Zaks, Michael A.; Kurths, Jürgen
1999-12-01
We demonstrate that the dynamics of phase synchronization in a chaotic system under weak periodic forcing depends crucially on the distribution of intrinsic characteristic times of this system. Under the external periodic action, the frequency of every unstable periodic orbit is locked to the frequency of the force. In systems which in the autonomous case displays nearly isochronous chaotic rotations, the locking ratio is the same for all periodic orbits; since a typical chaotic orbit wanders between the periodic ones, its phase follows the phase of the force. For the Lorenz attractor with its unbounded times of return onto a Poincaré surface, such state of perfect phase synchronization is inaccessible. Analysis with the help of unstable periodic orbits shows that this state is replaced by another one, which we call ``imperfect phase synchronization,'' and in which we observe alternation of temporal segments, corresponding to different rational values of frequency lockings.
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
Modified Levenberg-Marquardt Method for RÖSSLER Chaotic System Fuzzy Modeling Training
NASA Astrophysics Data System (ADS)
Wang, Yu-Hui; Wu, Qing-Xian; Jiang, Chang-Sheng; Xue, Ya-Li; Fang, Wei
Generally, fuzzy approximation models require some human knowledge and experience. Operator's experience is involved in the mathematics of fuzzy theory as a collection of heuristic rules. The main goal of this paper is to present a new method for identifying unknown nonlinear dynamics such as Rössler system without any human knowledge. Instead of heuristic rules, the presented method uses the input-output data pairs to identify the Rössler chaotic system. The training algorithm is a modified Levenberg-Marquardt (L-M) method, which can adjust the parameters of each linear polynomial and fuzzy membership functions on line, and do not rely on experts' experience excessively. Finally, it is applied to training Rössler chaotic system fuzzy identification. Comparing this method with the standard L-M method, the convergence speed is accelerated. The simulation results demonstrate the effectiveness of the proposed method.
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
Seven new species of Begonia (Begoniaceae) in Northern Vietnam and Southern China
Chen, Wen-Hong; Radbouchoom, Sirilak; Nguyen, Hieu Quang; Nguyen, Hiep Tien; Nguyen4, Khang Sinh; Shui, Yu-Min
2018-01-01
Abstract Since 2016, KIB (Kunming Institute of Botany) and CPC (Centre for Plant Conservation of Vietnam) have conducted several surveys in the transboundary karst regions in Northern Vietnam and Southern China and seven new species in the genus Begonia Linn. (Begoniaceae) are firstly described. Amongst them, two species, Begonia albopunctata Y.M. Shui, W.H. Chen & H.Q. Nguyen and B. erectocarpa H.Q. Nguyen, Y.M. Shui & W.H. Chen, respectively belong to section Sphenanthera with berry fruits and section Leprosae with clavate berry fruits; four species, B. gulongshanensis Y.M. Shui & W. H. Chen, B. minissima H.Q. Nguyen, Y.M. Shui & W.H. Chen, B. mollissima Y.M. Shui, H.Q. Nguyen & W.H. Chen, B. rhytidophylla Y.M. Shui & W.H. Chen, belong to section Coelocentrum with parietal placentation; one species, Begonia bambusetorum H.Q. Nguyen, Y.M. Shui & W.H. Chen, belongs to section Diploclinium with 3-loculed ovary and capsules. The diagnostic characters of these species are described and illustrated in the text and photographs. PMID:29416422
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
NASA Astrophysics Data System (ADS)
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
Lee, Tian-Fu
2013-12-01
A smartcard-based authentication and key agreement scheme for telecare medicine information systems enables patients, doctors, nurses and health visitors to use smartcards for secure login to medical information systems. Authorized users can then efficiently access remote services provided by the medicine information systems through public networks. Guo and Chang recently improved the efficiency of a smartcard authentication and key agreement scheme by using chaotic maps. Later, Hao et al. reported that the scheme developed by Guo and Chang had two weaknesses: inability to provide anonymity and inefficient double secrets. Therefore, Hao et al. proposed an authentication scheme for telecare medicine information systems that solved these weaknesses and improved performance. However, a limitation in both schemes is their violation of the contributory property of key agreements. This investigation discusses these weaknesses and proposes a new smartcard-based authentication and key agreement scheme that uses chaotic maps for telecare medicine information systems. Compared to conventional schemes, the proposed scheme provides fewer weaknesses, better security, and more efficiency.
Investigation of Antennas for a High-Sensitivity Polarization Measurement Sensor
2010-09-01
Burkholder and Chi-Chih Chen The Ohio State University ElectroScience Laboratory Department of Electrical Engineering Columbus, Ohio 43212 Final Report...Antennas for a High-Sensitivity Polarization Measurement Sensor 5. Report Date September 2010 6. 7. Author(s) Robert J. Burkholder and Chi-Chih Chen...POLARIZATION Mustafa Kuloglu, Robert J. Burkholder , and Chi-Chih Chen kuloglu.l@osu.edu, rjb@electroscience.osu.edu, chen.l 18@osu.edu ElectroScience
Chang, Zhi-Min; Yang, Lin; Zhang, Zheng-Guang; Chen, Xiang-Sheng
2015-12-11
Two new species of the issid genus Neotetricodes Zhang et Chen (Hemiptera: Fulgoromorpha: Issidae): Neotetricodes longispinus Chang et Chen sp. nov. (China: Yunnan) and Neotetricodes xiphoideus Chang et Chen sp. nov. (China: Yunnan) are described and illustrated. The generic characteristic is redefined. A checklist and key to the species of the genus are provided. The female genitalia of the genus are firstly described.
Entanglement Entropy of Eigenstates of Quantum Chaotic Hamiltonians.
Vidmar, Lev; Rigol, Marcos
2017-12-01
In quantum statistical mechanics, it is of fundamental interest to understand how close the bipartite entanglement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with a deviation that is, at most, a constant. Here we prove that, in a system that is away from half filling and divided in two equal halves, an upper bound for the average entanglement entropy of random pure states with a fixed particle number and normally distributed real coefficients exhibits a deviation from the maximal value that grows with the square root of the volume of the system. Exact numerical results for highly excited eigenstates of a particle number conserving quantum chaotic model indicate that the bound is saturated with increasing system size.
Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures
NASA Astrophysics Data System (ADS)
Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You
1998-09-01
Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.
Inhibition of quantum transport due to 'scars' of unstable periodic orbits
NASA Technical Reports Server (NTRS)
Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.
1989-01-01
A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.
Experiments of reconstructing discrete atmospheric dynamic models from data (I)
NASA Astrophysics Data System (ADS)
Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang
1995-03-01
In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.
Chaotic itinerancy in the oscillator neural network without Lyapunov functions.
Uchiyama, Satoki; Fujisaka, Hirokazu
2004-09-01
Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions. Copyright 2004 American Institute of Physics
DiBona, G F; Jones, S Y; Sawin, L L
2000-09-01
Nonlinear dynamic analysis was used to examine the chaotic behavior of renal sympathetic nerve activity in conscious rats subjected to either complete baroreceptor denervation (sinoaortic and cardiac baroreceptor denervation) or induction of congestive heart failure (CHF). The peak interval sequence of synchronized renal sympathetic nerve discharge was extracted and used for analysis. In control rats, this yielded a system whose correlation dimension converged to a low value over the embedding dimension range of 10-15 and whose greatest Lyapunov exponent was positive. Complete baroreceptor denervation was associated with a decrease in the correlation dimension of the system (before 2.65 +/- 0.27, after 1.64 +/- 0.17; P < 0.01) and a reduction in chaotic behavior (greatest Lyapunov exponent: 0.201 +/- 0.008 bits/data point before, 0.177 +/- 0.004 bits/data point after, P < 0.02). CHF, a state characterized by impaired sinoaortic and cardiac baroreceptor regulation of renal sympathetic nerve activity, was associated with a similar decrease in the correlation dimension (control 3.41 +/- 0.23, CHF 2.62 +/- 0.26; P < 0.01) and a reduction in chaotic behavior (greatest Lyapunov exponent: 0.205 +/- 0.048 bits/data point control, 0.136 +/- 0.033 bits/data point CHF, P < 0.02). These results indicate that removal of sinoaortic and cardiac baroreceptor regulation of renal sympathetic nerve activity, occurring either physiologically or pathophysiologically, is associated with a decrease in the correlation dimensions of the system and a reduction in chaotic behavior.
Chaotic sources of noise in machine acoustics
NASA Astrophysics Data System (ADS)
Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.
1994-05-01
In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.
Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu
2014-06-15
The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate ourmore » algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.« less
The existence of almost periodic solutions of certain perturbation systems
NASA Astrophysics Data System (ADS)
Xia, Yonghui; Lin, Muren; Cao, Jinde
2005-10-01
Certain almost periodic perturbation systems are considered in this paper. By using the roughness theory of exponential dichotomies and the contraction mapping principle, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of the above systems. Our results generalize those in [J.K. Hale, Ordinary Differential Equations, Krieger, Huntington, 1980; C. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (1992) 173-181; M. Lin, The existence of almost periodic solution and bounded solution of perturbation systems, Acta Math. Sinica 22A (2002) 61-70 (in Chinese); W.A. Coppel, Almost periodic properties of ordinary differential equations, Ann. Math. Pura Appl. 76 (1967) 27-50; A.M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, New York, 1974; Y. Xia, F. Chen, A. Chen, J. Cao, Existence and global attractivity of an almost periodic ecological model, Appl. Math. Comput. 157 (2004) 449-475].
Xia, H M; Wan, S Y M; Shu, C; Chew, Y T
2005-07-01
We report two chaotic micromixers that exhibit fast mixing at low Reynolds numbers in this paper. Passive mixers usually use the channel geometry to stir the fluids, and many previously reported designs rely on inertial effects which are only available at moderate Re. In this paper, we propose two chaotic micromixers using two-layer crossing channels. Both numerical and experimental studies show that the mixers are very efficient for fluid manipulation at low Reynolds numbers, such as stretching and splitting, folding and recombination, through which chaotic advection can be generated and the mixing is significantly promoted. More importantly, the generation of chaotic advection does not rely on the fluid inertial forces, so the mixers work well at very low Re. The mixers are benchmarked against a three-dimensional serpentine mixer. Results show that the latter is inefficient at Re = 0.2, while the new design exhibits rapid mixing at Re = 0.2 and at Re of O(10(-2)). The new mixer design will benefit various microfluidic systems.
Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model
NASA Astrophysics Data System (ADS)
Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.
2018-04-01
The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.
Chaotic CDMA watermarking algorithm for digital image in FRFT domain
NASA Astrophysics Data System (ADS)
Liu, Weizhong; Yang, Wentao; Feng, Zhuoming; Zou, Xuecheng
2007-11-01
A digital image-watermarking algorithm based on fractional Fourier transform (FRFT) domain is presented by utilizing chaotic CDMA technique in this paper. As a popular and typical transmission technique, CDMA has many advantages such as privacy, anti-jamming and low power spectral density, which can provide robustness against image distortions and malicious attempts to remove or tamper with the watermark. A super-hybrid chaotic map, with good auto-correlation and cross-correlation characteristics, is adopted to produce many quasi-orthogonal codes (QOC) that can replace the periodic PN-code used in traditional CDAM system. The watermarking data is divided into a lot of segments that correspond to different chaotic QOC respectively and are modulated into the CDMA watermarking data embedded into low-frequency amplitude coefficients of FRFT domain of the cover image. During watermark detection, each chaotic QOC extracts its corresponding watermarking segment by calculating correlation coefficients between chaotic QOC and watermarked data of the detected image. The CDMA technique not only can enhance the robustness of watermark but also can compress the data of the modulated watermark. Experimental results show that the watermarking algorithm has good performances in three aspects: better imperceptibility, anti-attack robustness and security.
NASA Astrophysics Data System (ADS)
He, Da-Ren; Wang, Xu-Ming; Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng
2002-03-01
A kind of discontinuous and noninvertible area-preserving maps can display behaviors as a dissipative one, so it may be addressed as a "quasi-dissipative system"^1. In a quasi-dissipative system the disappearance of some elliptic periodic orbits and the elliptic islands around them via a collision with the discontinuous border of the system function can be observed. A chaotic quasi-attractor dominates behavior of the system after the disappearance of the elliptic periodic orbit and a sequence of transition elliptic periodic orbits. When the chaotic quasi-attractor just appears, the chaotic time sequence shows a random intersperse between laminar and turbulence phases. All these are very similar to the properties of type V intermittency happened in a dissipative system. So, we may call the phenomenon as a "type V quasi-intermittency". However, there can be only some remnants of the last disappeared transition elliptic island instead of its "ghost", therefore type V quasi-intermittency does not obey the characteristic scaling laws of type V intermittency. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.
Chaos based encryption system for encrypting electroencephalogram signals.
Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De
2014-05-01
In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.
Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database
2017-01-01
Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799
Transition from a conservative system to a quasi-dissipative one
NASA Astrophysics Data System (ADS)
Ding, Xiao-Ling; Lu, Yun-Qing; Jiang, Yu-Mei; Chen, He-Sheng; He, Da-Ren
2002-03-01
A quasi-dissipative system can display some dissipative properties and also some conservative properties. Such a system can be realized by a discontinuous and noninvertible two-dimensional area-preserving map. The first example is a model of an electronic relaxation oscillator with over-voltage protection^1. When the system gradually changes from the state without over-voltage protection to the state with protection, it displays a transition from a conservative system to a quasi-dissipative one. Firstly, with a chosen group of parameters, a stochastic web formed by the image set of the discontinuous borderline of the system function becomes chaotic supertransients. The chaotic motion in the web escapes to some elliptic islands. Then, as the over-voltage protection increases, the image set gradually loses the characteristics of a web. More and more it looks like a typical chaotic attractor in a dissipative system. Some other phenomena those happened only in dissipative systems, such as crisis and intermittency, can be also observed in this case. Such a transition can be found also in a kicked rotator. ^1 J. Wang et al., Phys.Rev.E, 64(2001)026202.
On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.
Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.
Structure of chaotic magnetic field lines in IR-T1 tokamak due to ergodic magnetic limiter
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Salar Elahi, A.; Ghorannevis, M.
2018-03-01
In this paper we have studied an Ergodic Magnetic Limiter (EML) based chaotic magnetic field for transport control in the edge plasma of IR-T1 tokamak. The resonance created by the EML causes perturbation of the equilibrium field line in tokamak and as a result, the field lines are chaotic in the vicinity of the dimerized island chains. Transport barriers are formed in the chaotic field line and actually observe in tokamak with reverse magnetic shear. We used area-preserving non-twist (and twist) Poincaré maps to describe the formation of transport barriers, which are actually features of Hamiltonian systems. This transport barrier is useful in reducing radial diffusion of the field line and thus improving the plasma confinement.
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
NASA Astrophysics Data System (ADS)
Jordan, Andrew Noble
2002-09-01
In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.
Interesting examples of supervised continuous variable systems
NASA Technical Reports Server (NTRS)
Chase, Christopher; Serrano, Joe; Ramadge, Peter
1990-01-01
The authors analyze two simple deterministic flow models for multiple buffer servers which are examples of the supervision of continuous variable systems by a discrete controller. These systems exhibit what may be regarded as the two extremes of complexity of the closed loop behavior: one is eventually periodic, the other is chaotic. The first example exhibits chaotic behavior that could be characterized statistically. The dual system, the switched server system, exhibits very predictable behavior, which is modeled by a finite state automaton. This research has application to multimodal discrete time systems where the controller can choose from a set of transition maps to implement.
Fourier's law for quasi-one-dimensional chaotic quantum systems
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.; Weidenmüller, Hans A.
2011-05-01
We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.
From globally coupled maps to complex-systems biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp
Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.
Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting
NASA Astrophysics Data System (ADS)
Tong, Howell
1995-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study
NASA Astrophysics Data System (ADS)
Wang, Zhongpeng; Zhang, Shaozhong; Chen, Fangni; Wu, Ming-Wei; Qiu, Weiwei
2017-11-01
A physical encryption scheme for orthogonal frequency-division multiplexing (OFDM) visible light communication (VLC) systems using chaotic discrete cosine transform (DCT) is proposed. In the scheme, the row of the DCT matrix is permutated by a scrambling sequence generated by a three-dimensional (3-D) Arnold chaos map. Furthermore, two scrambling sequences, which are also generated from a 3-D Arnold map, are employed to encrypt the real and imaginary parts of the transmitted OFDM signal before the chaotic DCT operation. The proposed scheme enhances the physical layer security and improves the bit error rate (BER) performance for OFDM-based VLC. The simulation results prove the efficiency of the proposed encryption method. The experimental results show that the proposed security scheme not only protects image data from eavesdroppers but also keeps the good BER and peak-to-average power ratio performances for image-based OFDM-VLC systems.
76 FR 6774 - Equity and Excellence Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
... FURTHER INFORMATION CONTACT: Stephen Chen, Designated Federal Official, Equity and Excellence Commission, U.S. Department of Education, 400 Maryland Avenue, SE., Washington, DC 20202. E-mail: Stephen.Chen... contact Stephen Chen via e-mail at stephen[email protected] Individuals interested in attending the meeting...
A Huygens principle for diffusion and anomalous diffusion in spatially extended systems
Gottwald, Georg A.; Melbourne, Ian
2013-01-01
We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481
Exact coherent structures and chaotic dynamics in a model of cardiac tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Greg; Marcotte, Christopher D.; Grigoriev, Roman O., E-mail: roman.grigoriev@physics.gatech.edu
Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This ismore » especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.« less
Chaotic structure of oil prices
NASA Astrophysics Data System (ADS)
Bildirici, Melike; Sonustun, Fulya Ozaksoy
2018-01-01
The fluctuations in oil prices are very complicated and therefore, it is unable to predict its effects on economies. For modelling complex system of oil prices, linear economic models are not sufficient and efficient tools. Thus, in recent years, economists attached great attention to non-linear structure of oil prices. For analyzing this relationship, GARCH types of models were used in some papers. Distinctively from the other papers, in this study, we aimed to analyze chaotic pattern of oil prices. Thus, it was used the Lyapunov Exponents and Hennon Map to determine chaotic behavior of oil prices for the selected time period.
Bunimovich, Leonid A; Vela-Arevalo, Luz V
2015-09-01
"Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.
Applied Chaos: From Oxymoron to Reality.
NASA Astrophysics Data System (ADS)
Ditto, William
1996-11-01
The rapidly emerging field of chaotic dynamics has presented the applied scientist with intriguing new tools to understand and manipulate systems that behave chaotically. An overview will be presented which will answer the questions: What is Chaos? and What can you do with Chaos? Examples of recent applications of chaos theory to the physical and biological sciences will be presented covering applications that range from encryption in communications to control of chaotically beating human hearts. Part A of program listing
A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.
Feng, Peihua; Wu, Ying; Zhang, Jiazhong
2017-01-01
Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.
A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation
Feng, Peihua; Wu, Ying; Zhang, Jiazhong
2017-01-01
Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior. PMID:29089882
Breaking time reversal in a simple smooth chaotic system.
Tomsovic, Steven; Ullmo, Denis; Nagano, Tatsuro
2003-06-01
Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the presence (or absence) of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement extends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting numerical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a minor proportion of regular motion in its phase space.
Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System
NASA Astrophysics Data System (ADS)
Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung
At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.
A chaotic view of behavior change: a quantum leap for health promotion.
Resnicow, Ken; Vaughan, Roger
2006-09-12
The study of health behavior change, including nutrition and physical activity behaviors, has been rooted in a cognitive-rational paradigm. Change is conceptualized as a linear, deterministic process where individuals weigh pros and cons, and at the point at which the benefits outweigh the cost change occurs. Consistent with this paradigm, the associated statistical models have almost exclusively assumed a linear relationship between psychosocial predictors and behavior. Such a perspective however, fails to account for non-linear, quantum influences on human thought and action. Consider why after years of false starts and failed attempts, a person succeeds at increasing their physical activity, eating healthier or losing weight. Or, why after years of success a person relapses. This paper discusses a competing view of health behavior change that was presented at the 2006 annual ISBNPA meeting in Boston. Rather than viewing behavior change from a linear perspective it can be viewed as a quantum event that can be understood through the lens of Chaos Theory and Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic Systems relevant to understanding health behavior change include: 1) Chaotic systems can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems are sensitive to initial conditions; 3) Complex Systems involve multiple component parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are often greater than the sum of their parts. Accordingly, small changes in knowledge, attitude, efficacy, etc may dramatically alter motivation and behavioral outcomes. And the interaction of such variables can yield almost infinite potential patterns of motivation and behavior change. In the linear paradigm unaccounted for variance is generally relegated to the catch all "error" term, when in fact such "error" may represent the chaotic component of the process. The linear and chaotic paradigms are however, not mutually exclusive, as behavior change may include both chaotic and cognitive processes. Studies of addiction suggest that many decisions to change are quantum rather than planned events; motivation arrives as opposed to being planned. Moreover, changes made through quantum processes appear more enduring than those that involve more rational, planned processes. How such processes may apply to nutrition and physical activity behavior and related interventions merits examination.
NASA Astrophysics Data System (ADS)
Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.
2018-03-01
This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.
Exploiting chaos for applications.
Ditto, William L; Sinha, Sudeshna
2015-09-01
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Yue, Yuan; Miao, Pengcheng; Xie, Jianhua; Celso, Grebogi
2016-11-01
Quasiperiodic chaos (QC), which is a combination of quasiperiodic sets and a chaotic set, is uncovered in the six dimensional Poincaré map of a symmetric three-degree of freedom vibro-impact system. Accompanied by symmetry restoring bifurcation, this QC is the consequence of a novel intermittency that occurs between two conjugate quasiperiodic sets and a chaotic set. The six dimensional Poincaré map P is the 2-fold composition of another virtual implicit map Q, yielding the symmetry of the system. Map Q can capture two conjugate attractors, which is at the core of the dynamics of the vibro-impact system. Three types of symmetry restoring bifurcations are analyzed in detail. First, if two conjugate chaotic attractors join together, the chaos-chaos intermittency induced by attractor-merging crisis takes place. Second, if two conjugate quasiperiodic sets are suddenly embedded in a chaotic one, QC is induced by a new intermittency between the three attractors. Third, if two conjugate quasiperiodic attractors connect with each other directly, they merge to form a single symmetric quasiperiodic one. For the second case, the new intermittency is caused by the collision of two conjugate quasiperiodic attractors with an unstable symmetric limit set. As the iteration number is increased, the largest finite-time Lyapunov exponent of the QC does not converge to a constant, but fluctuates in the positive region.
Hash function based on chaotic map lattices.
Wang, Shihong; Hu, Gang
2007-06-01
A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.
Transport properties in nontwist area-preserving maps
Szezech Jr., J. D.; Caldas, I. L.; Lopes, S. R.; ...
2009-10-23
Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds.
Ahmed, Hafiz; Salgado, Ivan; Ríos, Héctor
2018-02-01
Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Dawei; Qian, Xin; Wang, Nian; Liang, Dong
2018-05-01
In this paper, the issue of synchronization and anti-synchronization for fractional-delayed memristor-based chaotic system is studied by using active control strategy. Firstly, some explicit conditions are proposed to guarantee the synchronization and anti-synchronization of the proposed system. Secondly, the influence of order and time delay on the synchronization (anti-synchronization) is discussed. It reveals that synchronization (anti-synchronization) is faster as the order increases or the time delay decreases. Finally, some numerical simulations are presented to verify the validity of our theoretical analysis.
NASA Astrophysics Data System (ADS)
Huang, Chengdai; Cao, Jinde
2017-05-01
This paper is concerned with the issues of synchronization and anti-synchronization for fractional chaotic financial system with market confidence by taking advantage of active control approach. Some sufficient conditions are derived to guarantee the synchronization and anti-synchronization for the proposed fractional system. Moreover, the relationship between the order and synchronization(anti-synchronization) is demonstrated numerically. It reveals that synchronization(anti-synchronization) is faster as the order increases. Finally, two illustrative examples are exploited to verify the efficiency of the obtained theoretical results.
Hash function based on chaotic map lattices
NASA Astrophysics Data System (ADS)
Wang, Shihong; Hu, Gang
2007-06-01
A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.
Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin
2010-08-01
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kengne, Jacques; Kenmogne, Fabien
2014-12-15
The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less
Is the normal heart rate ``chaotic'' due to respiration?
NASA Astrophysics Data System (ADS)
Wessel, Niels; Riedl, Maik; Kurths, Jürgen
2009-06-01
The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman
2013-01-01
Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.
Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottino, J.M.
1991-05-01
Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of microstructures'' whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context ofmore » the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.« less
NASA Astrophysics Data System (ADS)
Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng
In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.
NASA Astrophysics Data System (ADS)
Murali, K.; Sinah, Sudeshna; Ditto, William
2004-03-01
Recently there has been a new theoretical direction in harnessing the richness of spatially extended chaotic systems, namely the exploitation of coupled chaotic elements to do flexible computations [1]. The aim of this presentation is to demonstrate the use a single chaotic element to emulate different logic gates and perform different arithmetic tasks. Additionally we demonstrate that the elements can be controlled to switch easily between the different operational roles. Such a computing unit may then allow a more dynamic computer architecture and serve as ingredients of a general-purpose device more flexible than statically wired hardware. The theoretical scheme for flexible implementation of all these fundamental logical operations utilizing low dimensional chaos [1] will be reviewed along with a specific realization of the theory in a chaotic circuit [2]. Results will also be presented from experiments done on leech neurons. [1] Sinha, S., Munakata, T. and Ditto, W.L., Phys. Rev. E 65 036216 [2] "Experimental realization of the fundamental NOR Gate using a chaotic circuit," K. Murali, Sudeshna Sinha and William L. Ditto Phys. Rev. E 68, 016205 (2003).
Suppression of chaos via control of energy flow
NASA Astrophysics Data System (ADS)
Guo, Shengli; Ma, Jun; Alsaedi, Ahmed
2018-03-01
Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.
Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.
NASA Astrophysics Data System (ADS)
Greenfield, Alan Barry
Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
NASA Astrophysics Data System (ADS)
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
An example of a chaotic micromixer: the cross-channel micromixer
NASA Astrophysics Data System (ADS)
Dodge, Arash; Jullien, Marie-Caroline; Lee, Yi-Kuen; Niu, X.; Okkels, Fridolin; Tabeling, Patrick
2004-06-01
In this article dedicated to micromixing, we concentrate here on a particular micromixer - the 'cross-channel micromixer'. This mixer exploits an oscillatory perturbation to induce chaotic trajectories, favoring mixing. We present here theory, numerical simulations and experiments performed on this system. To cite this article: A. Dodge et al., C. R. Physique 5 (2004).
Wang, Ting; Guo, Rixin; Zhou, Guohong; Zhou, Xidan; Kou, Zhenzhen; Sui, Feng; Li, Chun; Tang, Liying; Wang, Zhuju
2016-07-21
Panax notoginseng (Burk.) F.H. Chen is a widely used traditional Chinese medicine known as Sanqi or Tianqi in China. This plant, which is distributed primarily in the southwest of China, has wide-ranging pharmacological effects and can be used to treat cardiovascular diseases, pain, inflammation and trauma as well as internal and external bleeding due to injury. This paper provides up-to-date information on investigations of this plant, including its botany, ethnopharmacology, phytochemistry, pharmacology and toxicology. The possible uses and perspectives for future investigation of this plant are also discussed. The relevant information on Panax notoginseng (Burk.) F.H. Chen was collected from numerous resources, including classic books about Chinese herbal medicine, and scientific databases, including Pubmed, SciFinder, ACS, Ebsco, Elsevier, Taylor, Wiley and CNKI. More than 200 chemical compounds have been isolated from Panax notoginseng (Burk.) F.H. Chen, including saponins, flavonoids and cyclopeptides. The plant has pharmacological effects on the cardiovascular system, immune system as well as anti-inflammatory, anti-atherosclerotic, haemostatic and anti-tumour activities, etc. Panax notoginseng is a valuable traditional Chinese medical herb with multiple pharmacological effects. This review summarizes the botany, ethnopharmacology, phytochemistry, pharmacology and toxicology of P. notoginseng, and presents the constituents and their corresponding chemical structures found in P. notoginseng comprehensively for the first time. Future research into its phytochemistry of bio-active components should be performed by using bioactivity-guided isolation strategies. Further work on elucidation of the structure-function relationship among saponins, understanding of multi-target network pharmacology of P. notoginseng, as well as developing its new clinical usage and comprehensive utilize will enhance the therapeutic potentials of P. notoginseng. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Aufbau und Belastung tribologischer Systeme
NASA Astrophysics Data System (ADS)
Schumacher, Jan; Murrenhoff, Hubertus
Die Tribologie ist laut DIN 50323 die Wissenschaft und Technik von aufeinander einwirkenden Oberflächen in Relativbewegung. Es werden die Teilgebiete Reibung, Verschleiß und Schmierung von ihr behandelt.
Intrusion Detection and Forensics for Self-Defending Wireless Networks
2012-12-01
ICNP), Nov. 2007. 5. Yao Zhao, Yan Chen, Bo Li, and Qian Zhang, Hop ID: A Virtual Coordinate based Routing for Sparse Mobile Ad Hoc Networks, in...Liu, Hongbo Zhao, Kai Chen and Yan Chen, " DISCO : Memory Efficient and Accurate Flow Statistics for Network Measurement", in the Proc. of IEEE ICDCS
Free and Beautiful: Lucia Chen--New York Public Library
ERIC Educational Resources Information Center
Library Journal, 2004
2004-01-01
This article details the work of Lucia Chen of the New York Public Library. Lucia Chen combined her two passions--organization and beautification--in her recent project, creating an online version of the New York Public Library's (NYPL) legendary picture collection. Artists ranging from set designers to filmmakers have long used the collection,…
USDA-ARS?s Scientific Manuscript database
Four fruit fly genera, Ichneumonosoma Meijere, Pelmatops Enderlein, Pseudopelmatops Shiraki and Soita Walker, were studied and 19 species are recognized. Three new species, S. infuscata Chen et Norrbom n. sp., I. quadripunctata Chen et Freidberg, n. sp. and I. triangularis Chen et Norrbom, n. sp. ar...
Chaotic Excitation and Tidal Damping in the GJ 876 System
NASA Astrophysics Data System (ADS)
Puranam, Abhijit; Batygin, Konstantin
2018-04-01
The M-dwarf GJ 876 is the closest known star to harbor a multi-planetary system. With three outer planets locked in a chaotic Laplace-type resonance and an appreciably eccentric short-period super-Earth, this system represents a unique exposition of extrasolar planetary dynamics. A key question that concerns the long-term evolution of this system, and the fate of close-in planets in general, is how the significant eccentricity of the inner-most planet is maintained against tidal circularization on timescales comparable to the age of the universe. Here, we employ stochastic secular perturbation theory and N-body simulations to show that the orbit of the inner-most planet is shaped by a delicate balance between extrinsic chaotic forcing and tidal dissipation. As such, the planet’s orbital eccentricity represents an indirect measure of its tidal quality factor. Based on the system’s present-day architecture, we estimate that the extrasolar super-Earth GJ 876 d has a tidal Q ∼ 104–105, a value characteristic of solar system gas giants.
NASA Astrophysics Data System (ADS)
Antonik, Piotr; Haelterman, Marc; Massar, Serge
2017-05-01
Reservoir computing is a bioinspired computing paradigm for processing time-dependent signals. Its hardware implementations have received much attention because of their simplicity and remarkable performance on a series of benchmark tasks. In previous experiments, the output was uncoupled from the system and, in most cases, simply computed off-line on a postprocessing computer. However, numerical investigations have shown that feeding the output back into the reservoir opens the possibility of long-horizon time-series forecasting. Here, we present a photonic reservoir computer with output feedback, and we demonstrate its capacity to generate periodic time series and to emulate chaotic systems. We study in detail the effect of experimental noise on system performance. In the case of chaotic systems, we introduce several metrics, based on standard signal-processing techniques, to evaluate the quality of the emulation. Our work significantly enlarges the range of tasks that can be solved by hardware reservoir computers and, therefore, the range of applications they could potentially tackle. It also raises interesting questions in nonlinear dynamics and chaos theory.
NASA Astrophysics Data System (ADS)
Massoud, E. C.; Huisman, J.; Benincà, E.; Bouten, W.; Vrugt, J. A.
2017-12-01
Species abundances in ecological communities can display chaotic non-equilibrium dynamics. A characteristic feature of chaotic systems is that long-term prediction of the system's trajectory is fundamentally impossible. How then should we make predictions for complex multi-species communities? We explore data assimilation (DA) with the Ensemble Kalman Filter (EnKF) to fuse a two-predator-two-prey model with abundance data from a long term experiment of a plankton community which displays chaotic dynamics. The results show that DA improves substantially the predictability and ecological forecast horizon of complex community dynamics. In addition, we show that DA helps provide guidance on measurement design, for instance on defining the frequency of observations. The study presented here is highly innovative, because DA methods at the current stage are almost unknown in ecology.
Wang, Chunhua; Liu, Xiaoming; Xia, Hu
2017-03-01
In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.
Precisely cyclic sand: self-organization of periodically sheared frictional grains.
Royer, John R; Chaikin, Paul M
2015-01-06
The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.
Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.
Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong
2015-04-15
A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.
Precisely cyclic sand: Self-organization of periodically sheared frictional grains
Royer, John R.; Chaikin, Paul M.
2015-01-01
The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Paulson, D. A.; Irvine, S. Q.; Martindale, M. Q.
2001-01-01
We are interested in understanding whether the annelids and arthropods shared a common segmented ancestor and have approached this question by characterizing the expression pattern of the segment polarity gene engrailed (en) in a basal annelid, the polychaete Chaetopterus. We have isolated an en gene, Ch-en, from a Chaetopterus cDNA library. Genomic Southern blotting suggests that this is the only en class gene in this animal. The predicted protein sequence of the 1.2-kb cDNA clone contains all five domains characteristic of en proteins in other taxa, including the en class homeobox. Whole-mount in situ hybridization reveals that Ch-en is expressed throughout larval life in a complex spatial and temporal pattern. The Ch-en transcript is initially detected in a small number of neurons associated with the apical organ and in the posterior portion of the prototrochophore. At later stages, Ch-en is expressed in distinct patterns in the three segmented body regions (A, B, and C) of Chaetopterus. In all segments, Ch-en is expressed in a small set of segmentally iterated cells in the CNS. In the A region, Ch-en is also expressed in a small group of mesodermal cells at the base of the chaetal sacs. In the B region, Ch-en is initially expressed broadly in the mesoderm that then resolves into one band/segment coincident with morphological segmentation. The mesodermal expression in the B region is located in the anterior region of each segment, as defined by the position of ganglia in the ventral nerve cord, and is involved in the morphogenesis of segment-specific feeding structures late in larval life. We observe banded mesodermal and ectodermal staining in an anterior-posterior sequence in the C region. We do not observe a segment polarity pattern of expression of Ch-en in the ectoderm, as is observed in arthropods. Copyright 2001 Academic Press.
Underwater Chaotic Lidar using Blue Laser Diodes
NASA Astrophysics Data System (ADS)
Rumbaugh, Luke K.
The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal cavity. The possibility of overcoming this limit by increasing optical feedback strength is discussed. 2. Power scaling in the blue-green spectrum using no optical frequency doubler. Synchronization of two 462 nm blue InGaN laser diodes by bi-directional optical injection is demonstrated for the first time in laboratory experiments. The improvement in chaotic intensity modulation signal strength is demonstrated to be 2.5x over the single-diode case. The signal strength is again shown to be limited by the onset of internal cavity lasing. The synchronized-laser arrangement is shown to be theoretically equivalent to a single-diode scenario in which the optical feedback is amplified by 2x, supporting the idea that increased optical feedback strength can be used to scale optical chaotic modulation of InGaN diodes to high powers. 3. Underwater impulse response measurements using a calibrated chaotic lidar system. An underwater chaotic lidar system using two synchronized diodes as transmitters is demonstrated in laboratory experiments for the first time. Reflective impulse response measurements using the lidar system are made in free space, and in a variety of clear and turbid water conditions, using a quasi-monostatic (i.e. co-located transmitter and receiver) arrangement. A calibration routine is implemented that increases accuracy and instantaneous dynamic range of the impulse response measurement, resulting in a baseline temporal resolution of 750 ps and a PSLR of over 10 dB. The calibrated system is shown to be able to simultaneously measure localized and distributed reflections, and to allow separation of the localized ( i.e. surface and target) reflections from the distributed ( i.e. backscatter) returns in several domains. Accurate range measurement with sub-inch typical error is demonstrated in laboratory water tank tests, which show accurate measurement through >6 feet of turbid water, as limited by the experimental water tank setup. Strong performance to the limit of the setup is shown at dwell times down to 1 mus. 4. Range measurement through turbid water using no large-aperture photodetector. The possibility of using a synchronized optical receiver to make range measurements through an attenuating channel (i.e. turbid water) is tested using two InGaN diodes for the first time. Using a variable optical attenuator to simulate channel attenuation, synchronization is maintained through 30 dB channel attenuation in the current experimental setup. Distance measurements are demonstrated by using the output of only one of the two diodes, suggesting that this method could be used to measure distance between two bi-static (i.e. physically separated), cooperative chaotic lidar systems in some water conditions. This thesis concludes that the proposed approach is a feasible path to a novel high resolution underwater lidar sensor capable of operating in turbid water, which would have significant size, weight, power, and cost reductions because it would not use an electrical signal generator, an electro-optic modulator, or an optical frequency doubler. The work also suggests the possibility of range measurement in a limited range of water conditions using no large-aperture photodetector, most feasibly in a bi-static cooperative arrangement.
Nonlinear modeling of chaotic time series: Theory and applications
NASA Astrophysics Data System (ADS)
Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.
We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.
Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul
2012-09-01
In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.
Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons
NASA Astrophysics Data System (ADS)
Ciszak, Marzena; Euzzor, Stefano; Arecchi, F. Tito; Meucci, Riccardo
2013-02-01
The FitzHugh-Nagumo neurons driven by a periodic forcing undergo a period-doubling route to chaos and a transition to mixed-mode oscillations. When coupled, their dynamics tend to be synchronized. We show that the chaotically spiking neurons change their internal dynamics to subthreshold oscillations, the phenomenon referred to as firing death. These dynamical changes are observed below the critical coupling strength at which the transition to full chaotic synchronization occurs. Moreover, we find various dynamical regimes in the subthreshold oscillations, namely, regular, quasiperiodic, and chaotic states. We show numerically that these dynamical states may coexist with large-amplitude spiking regimes and that this coexistence is characterized by riddled basins of attraction. The reported results are obtained for neurons implemented in the electronic circuits as well as for the model equations. Finally, we comment on the possible scenarios where the coupling-induced firing death could play an important role in biological systems.
2006-08-01
64Cu -Labeled Abegrin™, a Humanized Monoclonal Antibody against Integrin αvβ3 Cancer Res. 2006;66(19):9673-81. 11. Hsu AR, Hou LC, Veeravagu A...FL, March, 2006. 5. Wu Y, Cai W, Zhang X, Chen K, Cao Q, Tice D, Chen X. In Vitro and In Vivo Characterization of 64Cu -Labeled Vitaxin, a...53rd SNM Annual meeting, San Diego, CA, June 2006 9. Cai W, Wu Y, Cao Q, Chen K, Zhang X, Tice D, Chen X 64Cu -Labeled Humanized Anti
NASA Astrophysics Data System (ADS)
Du, Mao-Kang; He, Bo; Wang, Yong
2011-01-01
Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.
FAST TRACK COMMUNICATION: Quantum anomalies and linear response theory
NASA Astrophysics Data System (ADS)
Sela, Itamar; Aisenberg, James; Kottos, Tsampikos; Cohen, Doron
2010-08-01
The analysis of diffusive energy spreading in quantized chaotic driven systems leads to a universal paradigm for the emergence of a quantum anomaly. In the classical approximation, a driven chaotic system exhibits stochastic-like diffusion in energy space with a coefficient D that is proportional to the intensity ɛ2 of the driving. In the corresponding quantized problem the coherent transitions are characterized by a generalized Wigner time tɛ, and a self-generated (intrinsic) dephasing process leads to nonlinear dependence of D on ɛ2.
Image encryption based on a delayed fractional-order chaotic logistic system
NASA Astrophysics Data System (ADS)
Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na
2012-05-01
A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.
Correlations in electrically coupled chaotic lasers.
Rosero, E J; Barbosa, W A S; Martinez Avila, J F; Khoury, A Z; Rios Leite, J R
2016-09-01
We show how two electrically coupled semiconductor lasers having optical feedback can present simultaneous antiphase correlated fast power fluctuations, and strong in-phase synchronized spikes of chaotic power drops. This quite counterintuitive phenomenon is demonstrated experimentally and confirmed by numerical solutions of a deterministic dynamical system of rate equations. The occurrence of negative and positive cross correlation between parts of a complex system according to time scales, as proved in our simple arrangement, is relevant for the understanding and characterization of collective properties in complex networks.
A full computation-relevant topological dynamics classification of elementary cellular automata.
Schüle, Martin; Stoop, Ruedi
2012-12-01
Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."
Chaos in the gauge/gravity correspondence
NASA Astrophysics Data System (ADS)
Pando Zayas, Leopoldo A.; Terrero-Escalante, César A.
2010-09-01
We study the motion of a string in the background of the Schwarzschild black hole in AdS 5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.
Analysis of Hepatic Blood Flow Using Chaotic Models
Cohen, M. E.; Moazamipour, H.; Hudson, D. L.; Anderson, M. F.
1990-01-01
The study of chaos in physical systems is an important new theoretical development in modeling which has emerged in the last fifteen years. It is particularly useful in explaining phenomena which arise in nonlinear dynamic systems, for which previous mathematical models produced results with intractable solutions. Analysis of blood flow is such an application. In the work described here, chaotic models are used to analyze hepatic artery and portal vein blood flow obtained from a pulsed Doppler ultrasonic flowmeter implanted in dogs. ImagesFigure 3
Chaotic Motions in the Real Fuzzy Electronic Circuits (Preprint)
2012-12-01
the research field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good... blending of the linear system models. Consider a continuous-time nonlinear dynamic system as follows: Rule i: IF )(1 tx is ...1iM and )(txn is...Chaos Solitons Fractals, vol. 21, no. 4, pp. 957–965, 2004. 29. L. M. Tam and W. M. SiTou, “Parametric study of the fractional order Chen–Lee
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
NASA Astrophysics Data System (ADS)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
Chua's Equation was Proved to BE Chaotic in Two Years, Lorenz Equation in Thirty Six Years
NASA Astrophysics Data System (ADS)
Muthuswamy, Bharathwaj
2013-01-01
Although there are probably more publications on Chua's circuit than any other chaotic circuit, a tutorial with a historical emphasis is still lacking. Hence the goal of this chapter is to provide such a tutorial. This chapter will prove useful for a novice who is looking to understand the basics behind chaotic circuits without too much technical details. The chapter also includes a cookbook approach to a rigorous proof of chaos in piecewise-linear systems. The proof is a summary of the original piecewise-linear proof of chaos in Chua's circuit. The chapter concludes with a discussion of circuits derived from Chua's circuit.
An introduction to chaotic and random time series analysis
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.
Exact folded-band chaotic oscillator.
Corron, Ned J; Blakely, Jonathan N
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
Consistency properties of chaotic systems driven by time-delayed feedback
NASA Astrophysics Data System (ADS)
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
The onset of dynamical instability and chaos in navigation satellite orbits
NASA Astrophysics Data System (ADS)
Rosengren, Aaron Jay; Daquin, Jérôme; Alessi, Elisa Maria; Valsecchi, Giovanni B.; Rossi, Alessandro; Deleflie, Florent
2015-05-01
Orbital resonances are ubiquitous in the Solar System and are harbingers for the onset of dynamical instability and chaos. It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Here we will show that the same underlying physical mechanism, the overlapping of secular resonances, responsible for the eventual destabilization of Mercury and recently proposed to explain the orbital architecture of extrasolar planetary systems (Lithwick Y., Wu Y., 2014, PNAS; Batygin K., Morbidelli A., Holman M.J., 2015, ApJ) is at the heart of the orbital instabilities of seemingly more mundane celestial bodies---the Earth's navigation satellites. We will demonstrate that the occurrence and nature of the secular resonances driving these dynamics depend chiefly on one aspect of the Moon's perturbed motion, the regression of the line of nodes. This talk will present analytical models that accurately reflect the true nature of the resonant interactions, and will show how chaotic diffusion is mediated by the web-like structure of secular resonances. We will also present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. The obtained results have remarkable practical applications for space debris mitigation and for satellite technology, and are both of essential dynamical and theoretical importance, with broad implications for planetary science.
Lei, Ting; Belykh, Evgenii; Dru, Alexander B; Yagmurlu, Kaan; Elhadi, Ali M; Nakaji, Peter; Preul, Mark C
2016-07-01
Chen Jingrun (1933-1996), perhaps the most prodigious mathematician of his time, focused on the field of analytical number theory. His work on Waring's problem, Legendre's conjecture, and Goldbach's conjecture led to progress in analytical number theory in the form of "Chen's Theorem," which he published in 1966 and 1973. His early life was ravaged by the Second Sino-Japanese War and the Chinese Cultural Revolution. On the verge of solving Goldbach's conjecture in 1984, Chen was struck by a bicyclist while also bicycling and suffered severe brain trauma. During his hospitalization, he was also found to have Parkinson's disease. Chen suffered another serious brain concussion after a fall only a few months after recovering from the bicycle crash. With significant deficits, he remained hospitalized for several years without making progress while receiving modern Western medical therapies. In 1988 traditional Chinese medicine experts were called in to assist with his treatment. After a year of acupuncture and oxygen therapy, Chen could control his basic bowel and bladder functions, he could walk slowly, and his swallowing and speech improved. When Chen was unable to produce complex work or finish his final work on Goldbach's conjecture, his mathematical pursuits were taken up vigorously by his dedicated students. He was able to publish Youth Math, a mathematics book that became an inspiration in Chinese education. Although he died in 1996 at the age of 63 after surviving brutal political repression, being deprived of neurological function at the very peak of his genius, and having to be supported by his wife, Chen ironically became a symbol of dedication, perseverance, and motivation to his students and associates, to Chinese youth, to a nation, and to mathematicians and scientists worldwide.
Real-Time Demonstration of the Main Characteristics of Chaos in the Motion of a Real Double Pendulum
ERIC Educational Resources Information Center
Vadai, Gergely; Gingl, Zoltan; Mellar, Janos
2012-01-01
Several studies came to the conclusion that chaotic phenomena are worth including in high school and undergraduate education. The double pendulum is one of the simplest systems that is chaotic; therefore, numerical simulations and theoretical studies of it have been given large publicity, and thanks to its spectacular motion, it has become one of…
Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory
ERIC Educational Resources Information Center
Vanko, Peter
2007-01-01
First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…
Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea
NASA Astrophysics Data System (ADS)
Rojo-Garibaldi, Berenice; Salas-de-León, David Alberto; Adela Monreal-Gómez, María; Sánchez-Santillán, Norma Leticia; Salas-Monreal, David
2018-04-01
Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean-atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.
Transition from Exponential to Power Law Income Distributions in a Chaotic Market
NASA Astrophysics Data System (ADS)
Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo
Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.
A cryptographic hash function based on chaotic network automata
NASA Astrophysics Data System (ADS)
Machicao, Jeaneth; Bruno, Odemir M.
2017-12-01
Chaos theory has been used to develop several cryptographic methods relying on the pseudo-random properties extracted from simple nonlinear systems such as cellular automata (CA). Cryptographic hash functions (CHF) are commonly used to check data integrity. CHF “compress” arbitrary long messages (input) into much smaller representations called hash values or message digest (output), designed to prevent the ability to reverse the hash values into the original message. This paper proposes a chaos-based CHF inspired on an encryption method based on chaotic CA rule B1357-S2468. Here, we propose an hybrid model that combines CA and networks, called network automata (CNA), whose chaotic spatio-temporal outputs are used to compute a hash value. Following the Merkle and Damgård model of construction, a portion of the message is entered as the initial condition of the network automata, so that the rest parts of messages are iteratively entered to perturb the system. The chaotic network automata shuffles the message using flexible control parameters, so that the generated hash value is highly sensitive to the message. As demonstrated in our experiments, the proposed model has excellent pseudo-randomness and sensitivity properties with acceptable performance when compared to conventional hash functions.
Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho
2016-03-01
Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian
2015-06-01
The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.
NASA Astrophysics Data System (ADS)
Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya
2017-01-01
In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio
2014-08-15
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outermore » spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.« less
Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems
NASA Astrophysics Data System (ADS)
Skardal, Per Sebastian; Restrepo, Juan G.; Ott, Edward
2017-08-01
In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.
Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars
NASA Technical Reports Server (NTRS)
Janke, D.
1985-01-01
A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.
Statistical inference for noisy nonlinear ecological dynamic systems.
Wood, Simon N
2010-08-26
Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.
Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots
NASA Astrophysics Data System (ADS)
Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus
2005-01-01
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.
Enhancing synchrony in chaotic oscillators by dynamic relaying
NASA Astrophysics Data System (ADS)
Banerjee, Ranjib; Ghosh, Dibakar; Padmanaban, E.; Ramaswamy, R.; Pecora, L. M.; Dana, Syamal K.
2012-02-01
In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in the electronic circuit of Rössler oscillators.
Combinatorial Optimization by Amoeba-Based Neurocomputer with Chaotic Dynamics
NASA Astrophysics Data System (ADS)
Aono, Masashi; Hirata, Yoshito; Hara, Masahiko; Aihara, Kazuyuki
We demonstrate a computing system based on an amoeba of a true slime mold Physarum capable of producing rich spatiotemporal oscillatory behavior. Our system operates as a neurocomputer because an optical feedback control in accordance with a recurrent neural network algorithm leads the amoeba's photosensitive branches to search for a stable configuration concurrently. We show our system's capability of solving the traveling salesman problem. Furthermore, we apply various types of nonlinear time series analysis to the amoeba's oscillatory behavior in the problem-solving process. The results suggest that an individual amoeba might be characterized as a set of coupled chaotic oscillators.
Synchronization in counter-rotating oscillators.
Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K
2011-09-01
An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.
NASA Astrophysics Data System (ADS)
Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.
In the frame of the equilateral equilibrium points exploration, numerous future space missions will require maximization of payload mass, simultaneously achieving reasonable transfer times. To fulfill this request, low-energy non-Keplerian orbits could be used to reach L4 and L5 in the Earth-Moon system instead of high energetic transfers. Previous studies have shown that chaos in physical systems like the restricted three-body Earth-Moon-particle problem can be used to direct a chaotic trajectory to a target that has been previously considered. In this work, we propose to transfer a spacecraft from a circular Earth Orbit in the chaotic region to the equilateral equilibrium points L4 and L5 in the Earth-Moon system, exploiting the chaotic region that connects the Earth with the Moon and changing the trajectory of the spacecraft (relative to the Earth) by using a gravity assist maneuver with the Moon. Choosing a sequence of small perturbations, the time of flight is reduced and the spacecraft is guided to a proper trajectory so that it uses the Moon's gravitational force to finally arrive at a desired target. In this study, the desired target will be an orbit about the Lagrangian equilibrium points L4 or L5. This strategy is not only more efficient with respect to thrust requirement, but also its time transfer is comparable to other known transfer techniques based on time optimization.
Journal of Engineering Thermophysics (Selected Articles).
1982-11-04
ii * Application of Non-OrthogonalCurvilinear Coordinates to Calculate the Flow in Turbomachines, by Chen Nai-xing...from the best quality copy available. APPLICATION OF NON-ORTHOGONAL CURVILINEAR COORDINATES TO CALCULATE THE FLOW IN TURBOMACHINES* Chen Nai-xing...February, 1980. [5] Chen Jingyi, Liu Diankui: The General Form of the Equation of Motion of a Turbomachine along a Curve and its Application February
Suppression of chaos at slow variables by rapidly mixing fast dynamics
NASA Astrophysics Data System (ADS)
Abramov, R.
2012-04-01
One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.
Chaotic coordinates for the Large Helical Device
NASA Astrophysics Data System (ADS)
Hudson, Stuart; Suzuki, Yasuhiro
2014-10-01
The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''
NASA Astrophysics Data System (ADS)
Wang, L. M.
2017-09-01
A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master-slave system and to overcome the bad effects of the external disturbances on the generalized projective synchronization, the radial basis function neural networks are used to approach the packaged unknown master system and the packaged unknown slave system (including the external disturbances). Consequently, based on the slide mode technology and the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized projective synchronization error. The main contribution of this paper is that a control strategy is provided for the generalized projective synchronization between two entirely unknown fractional-order chaotic systems subject to the unknown external disturbances, and the proposed control strategy only requires that the master system has the same fractional orders as the slave system. Moreover, the proposed method allows us to achieve all kinds of generalized projective chaos synchronizations by turning the user-defined parameters onto the desired values. Simulation results show the effectiveness of the proposed method and the robustness of the controlled system.
Dynamic Stability of Maglev Systems,
1992-04-01
AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s
Quantitative Universality for a Class of Weakly Chaotic Systems
NASA Astrophysics Data System (ADS)
Venegeroles, Roberto
2014-02-01
We consider a general class of intermittent maps designed to be weakly chaotic, i.e., for which the separation of trajectories of nearby initial conditions is weaker than exponential. We show that all its spatio and temporal properties, hitherto regarded independently in the literature, can be represented by a single characteristic function ϕ. A universal criterion for the choice of ϕ is obtained within the Feigenbaum's renormalization-group approach. We find a general expression for the dispersion rate ζ( t) of initially nearby trajectories and we show that the instability scenario for weakly chaotic systems is more general than that originally proposed by Gaspard and Wang (Proc. Natl. Acad. Sci. USA 85:4591, 1988). We also consider a spatially extended version of such class of maps, which leads to anomalous diffusion, and we show that the mean squared displacement satisfies σ 2( t)˜ ζ( t). To illustrate our results, some examples are discussed in detail.
A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding
NASA Astrophysics Data System (ADS)
Ji, Xiao-yong; Bai, Sen; Guo, Yu; Guo, Hui
2015-05-01
Though JPEG is an excellent compression standard of images, it does not provide any security performance. Thus, a security solution to JPEG was proposed in Zhang et al. (2014). But there are some flaws in Zhang's scheme and in this paper we propose a new scheme based on discrete hyper-chaotic system and modified zigzag scan coding. By shuffling the identifiers of zigzag scan encoded sequence with hyper-chaotic sequence and accurately encrypting the certain coefficients which have little relationship with the correlation of the plain image in zigzag scan encoded domain, we achieve high compression performance and robust security simultaneously. Meanwhile we present and analyze the flaws in Zhang's scheme through theoretical analysis and experimental verification, and give the comparisons between our scheme and Zhang's. Simulation results verify that our method has better performance in security and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanner, Michael; Batista, Victor S.; Brumer, Paul
2005-02-22
The utility of the Filinov integral conditioning technique, as implemented in semiclassical initial value representation (SC-IVR) methods, is analyzed for a number of regular and chaotic systems. For nonchaotic systems of low dimensionality, the Filinov technique is found to be quite ineffective at accelerating convergence of semiclassical calculations since, contrary to the conventional wisdom, the semiclassical integrands usually do not exhibit significant phase oscillations in regions of large integrand amplitude. In the case of chaotic dynamics, it is found that the regular component is accurately represented by the SC-IVR, even when using the Filinov integral conditioning technique, but that quantummore » manifestations of chaotic behavior was easily overdamped by the filtering technique. Finally, it is shown that the level of approximation introduced by the Filinov filter is, in general, comparable to the simpler ad hoc truncation procedure introduced by Kay [J. Chem. Phys. 101, 2250 (1994)].« less
Study on a new chaotic bitwise dynamical system and its FPGA implementation
NASA Astrophysics Data System (ADS)
Wang, Qian-Xue; Yu, Si-Min; Guyeux, C.; Bahi, J.; Fang, Xiao-Le
2015-06-01
In this paper, the structure of a new chaotic bitwise dynamical system (CBDS) is described. Compared to our previous research work, it uses various random bitwise operations instead of only one. The chaotic behavior of CBDS is mathematically proven according to the Devaney's definition, and its statistical properties are verified both for uniformity and by a comprehensive, reputed and stringent battery of tests called TestU01. Furthermore, a systematic methodology developing the parallel computations is proposed for FPGA platform-based realization of this CBDS. Experiments finally validate the proposed systematic methodology. Project supported by China Postdoctoral Science Foundation (Grant No. 2014M552175), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Chinese Education Ministry, the National Natural Science Foundation of China (Grant No. 61172023), and the Specialized Research Foundation of Doctoral Subjects of Chinese Education Ministry (Grant No. 20114420110003).
A novel chaotic stream cipher and its application to palmprint template protection
NASA Astrophysics Data System (ADS)
Li, Heng-Jian; Zhang, Jia-Shu
2010-04-01
Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.
López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449
López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.
A new kind of metal detector based on chaotic oscillator
NASA Astrophysics Data System (ADS)
Hu, Wenjing
2017-12-01
The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.
NASA Astrophysics Data System (ADS)
Curiac, Daniel-Ioan; Volosencu, Constantin
2014-10-01
The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.
NASA Astrophysics Data System (ADS)
de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero
2010-05-01
A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.
Study of chaos in chaotic satellite systems
NASA Astrophysics Data System (ADS)
Khan, Ayub; Kumar, Sanjay
2018-01-01
In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.
Optimum profit model considering production, quality and sale problem
NASA Astrophysics Data System (ADS)
Chen, Chung-Ho; Lu, Chih-Lun
2011-12-01
Chen and Liu ['Procurement Strategies in the Presence of the Spot Market-an Analytical Framework', Production Planning and Control, 18, 297-309] presented the optimum profit model between the producers and the purchasers for the supply chain system with a pure procurement policy. However, their model with a simple manufacturing cost did not consider the used cost of the customer. In this study, the modified Chen and Liu's model will be addressed for determining the optimum product and process parameters. The authors propose a modified Chen and Liu's model under the two-stage screening procedure. The surrogate variable having a high correlation with the measurable quality characteristic will be directly measured in the first stage. The measurable quality characteristic will be directly measured in the second stage when the product decision cannot be determined in the first stage. The used cost of the customer will be measured by adopting Taguchi's quadratic quality loss function. The optimum purchaser's order quantity, the producer's product price and the process quality level will be jointly determined by maximising the expected profit between them.
2018-02-01
Retracted Review article: Nucleophagy in Human Disease: Beyond the Physiological Role. [Tohoku J. Exp. Med., 2018, 244 (1), 75-81. doi: 10.1620/tjem.244.75.] The above Review article was published online on January 27, 2018. Soon after its publication (on February 1, 2018), Dr. Nian Fu and Prof. Linxi Chen informed the Editor-in-Chief, The Tohoku Journal of Experimental Medicine (TJEM), about serious violation of publication ethics. Indeed, Dr. Nian Fu and Prof. Linxi Chen were astonished to find their names as coauthors of this Review article, because they were not involved in the submission process of this Review article and they do not know any of other coauthors. In addition, the Review article is similar to their unpublished manuscript. After a thorough investigation in accordance with the recommendations of the Committee on Publication Ethics (COPE), the Editor-in-Chief of TJEM decided to retract this Review article. The reasons for Retraction are summarized below: forged authors and an unexpected case of plagiarism. Forged authors: Dr. Nian Fu and Prof. Linxi Chen were added as co-authors of the Review article without their knowledge. In fact, the signature provided by Prof. Linxi Chen is apparently different from the signature of a coauthor, named Linxi Chen, on the AUTHORS’ RESPONSIBILITY FORM, provided by the corresponding author of the Review article. More critically, the signature provided by Dr. Nian Fu is completely different from the signature of Nian Fu, because the Chinese characters are different between the two signatures. In addition, the replies from three authors (Ming Zhou, Hongwen Ji and Yong Xia) clearly indicate that they misunderstand the identity of Dr. Nina Fu. We also attempted to contact two authors, named Nian Fu and Linxi Chen, via e-mail. As expected, the forged authors did not respond to our inquiries, despite that their e-mail addresses appear to be active. An unexpected case of plagiarism: This Review article is similar to the unpublished manuscript prepared by Dr. Nian Fu and Prof. Linxi Chen. Moreover, two figures used in the Review article are identical to the preliminary figures of their unpublished manuscript. According to Dr. Nian Fu, a local agency for language editing had transferred their unpublished manuscript to a third party. Unfortunately, the check system of TJEM is not effective for plagiarism of unpublished materials. We believe that the corresponding author of the Review article included the names of the original two authors to avoid the criticism of plagiarism. Eventually, the corresponding author agreed to retract the Review article. We apologize for any inconvenience caused by this retraction to readers. We also hope that the publication of the plagiarized Review article will not trouble Dr. Nian Fu and Prof. Linxi Chen too much.
Determinism in synthesized chaotic waveforms.
Corron, Ned J; Blakely, Jonathan N; Hayes, Scott T; Pethel, Shawn D
2008-03-01
The output of a linear filter driven by a randomly polarized square wave, when viewed backward in time, is shown to exhibit determinism at all times when embedded in a three-dimensional state space. Combined with previous results establishing exponential divergence equivalent to a positive Lyapunov exponent, this result rigorously shows that such reverse-time synthesized waveforms appear equally to have been produced by a deterministic chaotic system.
Complexity science and leadership in healthcare.
Burns, J P
2001-10-01
The emerging field of complexity science offers an alternative leadership strategy for the chaotic, complex healthcare environment. A survey revealed that healthcare leaders intuitively support principles of complexity science. Leadership that uses complexity principles offers opportunities in the chaotic healthcare environment to focus less on prediction and control and more on fostering relationships and creating conditions in which complex adaptive systems can evolve to produce creative outcomes.
ERIC Educational Resources Information Center
Flouri, Eirini
2009-01-01
Chaotic home systems have been linked with children's adverse psychological and academic outcomes. But, as they represent a departure from the suburban ideal of space, order, and family cohesiveness and stability, they should also be linked with low support for survival values. Using longitudinal data from the 1970 British Cohort Study (BCS70)…
Chaotic coordinates for the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, S. R., E-mail: shudson@pppl.gov; Suzuki, Y.
The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that fluxmore » surfaces become “straight” and islands become “square.”.« less
NASA Astrophysics Data System (ADS)
Wang, Shi-Hong; Ye, Wei-Ping; Lü, Hua-Ping; Kuang, Jin-Yu; Li, Jing-Hua; Luo, Yun-Lun; Hu, Gang
2003-07-01
Spatiotemporal chaos of a two-dimensional one-way coupled map lattice is used for chaotic cryptography. The chaotic outputs of many space units are used for encryption simultaneously. This system shows satisfactory cryptographic properties of high security, fast encryption (decryption) speed, and robustness against noise disturbances in communication channel. The overall features of this spatiotemporal-chaos-based cryptosystem are better than chaotic cryptosystems known so far, and also than currently used conventional cryptosystems, such as the Advanced Encryption Standard (AES). The project supported by National Natural Science Foundation of China under Grant No. 10175010 and the Special Funds for Major State Basic Research Projects under Grant No. G2000077304
Illusion optics in chaotic light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Suheng; Gan Shu; Xiong Jun
2010-08-15
The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoreticalmore » proposal of similar effects in complementary media.« less
Chaotic patterns of autonomic activity during hypnotic recall.
Bob, Petr; Siroka, Ivana; Susta, Marek
2009-01-01
Chaotic neural dynamics likely emerge in cognitive processes and may present time periods that are extremely sensitive to influences affecting the neural system. Recent findings suggest that this sensitivity may increase during retrieval of stressful emotional experiences reflecting underlying mechanism related to consolidation of traumatic memories. In this context, hypnotic recall of anxiety memories in 10 patients, simultaneously with ECG measurement was performed. The same measurement was performed during control cognitive task in 8 anxiety patients and 22 healthy controls. Nonlinear data analysis of ECG records indicates significant increase in the degree of chaos during retrieval of stressful memory in all the patients. The results suggest a role of chaotic neural dynamics during processing of anxiety-related stressful memories.
Implementation of efficient trajectories for an ultrasonic scanner using chaotic maps
NASA Astrophysics Data System (ADS)
Almeda, A.; Baltazar, A.; Treesatayapun, C.; Mijarez, R.
2012-05-01
Typical ultrasonic methodology for nondestructive scanning evaluation uses systematic scanning paths. In many cases, this approach is time inefficient and also energy and computational power consuming. Here, a methodology for the scanning of defects using an ultrasonic echo-pulse scanning technique combined with chaotic trajectory generation is proposed. This is implemented in a Cartesian coordinate robotic system developed in our lab. To cover the entire search area, a chaotic function and a proposed mirror mapping were incorporated. To improve detection probability, our proposed scanning methodology is complemented with a probabilistic approach of discontinuity detection. The developed methodology was found to be more efficient than traditional ones used to localize and characterize hidden flaws.
Spherical visual system for real-time virtual reality and surveillance
NASA Astrophysics Data System (ADS)
Chen, Su-Shing
1998-12-01
A spherical visual system has been developed for full field, web-based surveillance, virtual reality, and roundtable video conference. The hardware is a CycloVision parabolic lens mounted on a video camera. The software was developed at the University of Missouri-Columbia. The mathematical model is developed by Su-Shing Chen and Michael Penna in the 1980s. The parabolic image, capturing the full (360 degrees) hemispherical field (except the north pole) of view is transformed into the spherical model of Chen and Penna. In the spherical model, images are invariant under the rotation group and are easily mapped to the image plane tangent to any point on the sphere. The projected image is exactly what the usual camera produces at that angle. Thus a real-time full spherical field video camera is developed by using two pieces of parabolic lenses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less
Parametric Identification of Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Feeny, Brian
2002-01-01
In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.
Aguilar-López, Ricardo; Mata-Machuca, Juan L
2016-01-01
This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme.
Aguilar-López, Ricardo
2016-01-01
This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme. PMID:27738651
Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui
2011-01-01
To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Le, A.; Daughton, W. S.; Ohia, O.; Chen, L. J.; Liu, Y. H.
2017-12-01
We present 3D fully kinetic simulations of asymmetric reconnection with plasma parameters matching MMS magnetopause diffusion region crossings with varying guide fields of 0.1 [Burch et al., Science (2016)], 0.4 [Chen et al. JGR (2017)], and 1 [Burch and Phan, GRL (2016] of the reconnecting sheath field. Strong diamagnetic drifts across the magnetopause current sheet drive lower-hybrid drift instabilities (LHDI) over a range of wavelengths [Daughton, PoP (2003); Roytershteyn et al., PRL (2012)] that develop into a turbulent state. Magnetic field tracing diagnostics are employed to characterize the turbulent magnetic geometry and to evaluate the global reconnection rate. The contributions to Ohm's law are evaluated field line by field line, including time-averaged diagnostics that allow the quantification of anomalous resistivity and viscosity. We examine how fluctuating electric fields and chaotic magnetic field lines contribute to particle mixing across the separatrix, and we characterize the accelerated electron distributions that form under varying magnetic shear or guide field. The LHDI turbulence is found to strongly enhance transport and parallel electron heating in 3D compared to 2D, particularly along the magnetospheric separatrix [Le et al., GRL (2017)]. The PIC simulation results are compared to MMS observations.
Nonlinear Time-Reversal in a Wave Chaotic System
NASA Astrophysics Data System (ADS)
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.
Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi
2014-08-12
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
A Systems Thinking Approach to Engineering Challenges of Military Systems-of-Systems
2016-09-01
UNCLASSIFIED UNCLLASIFIED A Systems Thinking Approach to Engineering Challenges of Military Systems -of- Systems Pin Chen and Mark...Unewisse Joint & Operations Analysis Division Defence Science and Technology Group DST-Group-TR-3271 ABSTRACT System (s)-of- Systems (SoS...their products and outcomes. This report introduces a systems thinking-based approach, SoS thinking, which offers a language and a thoughtful process
Tori and chaos in a simple C1-system
NASA Astrophysics Data System (ADS)
Roessler, O. E.; Kahiert, C.; Ughleke, B.
A piecewise-linear autonomous 3-variable ordinary differential equation is presented which permits analytical modeling of chaotic attractors. A once-differentiable system of equations is defined which consists of two linear half-systems which meet along a threshold plane. The trajectories described by each equation is thereby continuous along the divide, forming a one-parameter family of invariant tori. The addition of a damping term produces a system of equations for various chaotic attractors. Extension of the system by means of a 4-variable generalization yields hypertori and hyperchaos. It is noted that the hierarchy established is amenable to analysis by the use of Poincare half-maps. Applications of the systems of ordinary differential equations to modeling turbulent flows are discussed.
Long-term influence of asteroids on planet longitudes and chaotic dynamics of the solar system
NASA Astrophysics Data System (ADS)
Woillez, E.; Bouchet, F.
2017-11-01
Over timescales much longer than an orbital period, the solar system exhibits large-scale chaotic behavior and can thus be viewed as a stochastic dynamical system. The aim of the present paper is to compare different sources of stochasticity in the solar system. More precisely we studied the importance of the long term influence of asteroids on the chaotic dynamics of the solar system. We show that the effects of asteroids on planets is similar to a white noise process, when those effects are considered on a timescale much larger than the correlation time τϕ ≃ 104 yr of asteroid trajectories. We computed the timescale τe after which the effects of the stochastic evolution of the asteroids lead to a loss of information for the initial conditions of the perturbed Laplace-Lagrange secular dynamics. The order of magnitude of this timescale is precisely determined by theoretical argument, and we find that τe ≃ 104 Myr. Although comparable to the full main-sequence lifetime of the sun, this timescale is considerably longer than the Lyapunov time τI ≃ 10 Myr of the solar system without asteroids. This shows that the external sources of chaos arise as a small perturbation in the stochastic secular behavior of the solar system, rather due to intrinsic chaos.
Giant Suppression of the Activation Rate in Dynamical Systems Exhibiting Chaotic Transitions
NASA Astrophysics Data System (ADS)
Gac, J. M.; Xafebrowski, J. J.
2008-05-01
The phenomenon of giant suppression of activation, when two or more correlated noise signals act on the system, was found a few years ago in dynamical bistable or metastable systems. When the correlation between these noise signals is strong enough and the amplitudes of the noise are chosen correctly --- the life time of the metastable state may be longer than in the case of the application of only a single noise even by many orders of magnitude. In this paper, we investigate similar phenomena in systems exhibiting several chaotic transitions: Pomeau--Manneville intermittency, boundary crisis and interior crisis induced intermittency. Our goal is to show that, in these systems the application of two noise components with the proper choice of the parameters in the case of intermittency can also lengthen the mean laminar phase length or, in the case of boundary crisis, lengthen the time the trajectory spends on the pre-crisis attractor. In systems with crisis induced intermittency, we introduce a new phenomenon we called quasi-deterministic giant suppression of activation in which the lengthening of the laminar phase lengths is caused not by the action of two correlated noise signals but by a single noise term which is correlated with one of the chaotic variables of the system.
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
Nonlinear modeling of chaotic time series: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casdagli, M.; Eubank, S.; Farmer, J.D.
1990-01-01
We review recent developments in the modeling and prediction of nonlinear time series. In some cases apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifyingmore » and quantifying low-dimensional chaotic behavior. During the past few years methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics and human speech. 162 refs., 13 figs.« less
Chaotic orbits obeying one isolating integral in a four-dimensional map
NASA Astrophysics Data System (ADS)
Muzzio, J. C.
2018-02-01
We have recently presented strong evidence that chaotic orbits that obey one isolating integral besides energy exist in a toy Hamiltonian model with three degrees of freedom and are bounded by regular orbits that isolate them from the Arnold web. The interval covered by those numerical experiments was equivalent to about one million Hubble times in a galactic context. Here, we use a four-dimensional map to confirm our previous results and to extend that interval 50 times. We show that, at least within that interval, features found in lower dimension Hamiltonian systems and maps are also present in our study, e.g. within the phase space occupied by a chaotic orbit that obeys one integral there are subspaces where that orbit does not enter and are, instead, occupied by regular orbits that, if tori, bound other chaotic orbits obeying one integral and, if cantori, produce stickiness. We argue that the validity of our results might exceed the time intervals covered by the numerical experiments.
Noise induced stabilization of chaotic free-running laser diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virte, Martin, E-mail: mvirte@b-phot.org
In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematicallymore » pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.« less
Symmetric encryption algorithms using chaotic and non-chaotic generators: A review
Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.
2015-01-01
This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561
Analysis of chaos in high-dimensional wind power system.
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping
2018-01-01
A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.