Science.gov

Sample records for chick embryo limb

  1. Dlx-5 in limb initiation in the chick embryo.

    PubMed

    Ferrari, D; Harrington, A; Dealy, C N; Kosher, R A

    1999-09-01

    Dlx-5 is a vertebrate homolog of the Drosophila Distal-less gene, one of the first genetic signals for limb formation in the fly. In the present study we have explored the possible role of Dlx-5 in limb initiation in the chick embryo. At stage 14 which is well before the initial formation of limb buds Dlx-5 is highly and specifically expressed in the ectoderm of the presumptive wing and leg forming regions of the lateral plate, but not in the intervening non-limb forming prospective flank. Thus, Dlx-5 expression distinguishes the limb-forming territories prior to limb budding, and is one of the first molecular markers of vertebrate limb initiation. Furthermore, Dlx-5 expression is induced in the non-limb-forming flank within 12 hours after implantation of an FGF2-soaked bead, a procedure that results in the induction of an ectopic limb. The rapid induction of Dlx-5 expression in response to a signal which ultimately leads to supernumerary limb formation is consistent with a role for Dlx-5 in limb initiation. We have also examined the expression of Dlx-5 in the limb buds of amelic limbless mutant chick embryos, which undergo normal limb formation but do not form an AER and thus fail to undergo further outgrowth. Dlx-5 is transiently expressed by the ectoderm of emergent limbless limb buds, consistent with a role for Dlx-5 in limb initiation. Together, our results suggest that Dlx-5 may be involved in the specification of the limb territories of the lateral plate, and in the initial formation of the limb bud from these regions. Dev Dyn 1999;216:10-15.

  2. The development of functional innervation in the hind limb of the chick embryo.

    PubMed Central

    Landmesser, L; Morris, D G

    1975-01-01

    1. The development of functional motor innervation was studied in the hind limb of chick embryos from Stages 25 to 43 by observing contraction of individual muscles and by recording the resultant tension when individual spinal nerves were electrically stimulated. 2. At later developmental stages (35-43) a given muscle always received functional innervation from specific spinal nerves. This pattern, with respect to the craniocaudal position of motoneurones, was similar to those described for amphibians and mammals. 3. The observed pattern was similar throughout development from the time that movement could first be elicited at Stages 27-28. There was no indication that motoneurones form initial synapses with inappropriate muscles. 4. Recordings from muscle nerves during excitation of individual spinal nerves gave results similar to the tension recordings, showing that even at early developmental stages muscle nerves did not contain substantial numbers of inappropriate axons. 5. Most limb muscles or primitive muscle masses became functionally innervated at the same time with no clearly defined proximo-distal sequence of limb innervation. 6. It appears that chick motoneurones are initially specified with respect to their peripheral destination and grow out selectively to synapse with appropriate muscles from the outset. PMID:1177095

  3. IGF-I, insulin and FGFs induce outgrowth of the limb buds of amelic mutant chick embryos.

    PubMed

    Dealy, C N; Kosher, R A

    1996-04-01

    IGF-I, insulin, FGF-2 and FGF-4 have been implicated in the reciprocal interactions between the apical ectodermal ridge (AER) and underlying mesoderm required for outgrowth and patterning of the developing limb. To study further the roles of these growth factors in limb outgrowth, we have examined their effects on the in vitro morphogenesis of limb buds of the amelic mutant chick embryos wingless (wl) and limbless (ll). Limb buds of wl and ll mutant embryos form at the proper time in development, but fail to undergo further outgrowth and subsequently degenerate. Wl and ll limb buds lack thickened AERs capable of promoting limb outgrowth, and their thin apical ectoderms fail to express the homeobox-containing gene Msx-2, which is highly expressed by normal AERs and has been implicated in regulating AER activity. Here we report that exogenous IGF-I and insulin, and, to a lesser extent, FGF-2 and FGF-4 induce the proliferation and directed outgrowth of explanted wl and ll mutant limb buds, which in vitro, like in vivo, normally fail to undergo outgrowth and degenerate. IGF-I and insulin, but not FGFs, also cause the thin apical ectoderms of wl and ll limb buds to thicken and form structures that grossly resemble normal AERs and, moreover, induce high level expression of Msx-2 in these thickened AER-like structures. Neither IGF-I, insulin nor FGFs induce expression of the homeobox-containing gene Msx-1 in the subapical mesoderm of wl or ll limb buds, although FGFs, but not IGF-I or insulin, maintain Msx-1 expression in normal (non-mutant) limb bud explants lacking an AER. The implications of these results to the relationships among the wl and ll genes, IGF-I/insulin, FGFs, Msx-2 and Msx-1 in the regulation of limb outgrowth is discussed.

  4. Altered expression of the chicken homeobox-containing genes GHox-7 and GHox-8 in the limb buds of limbless mutant chick embryos.

    PubMed

    Coelho, C N; Krabbenhoft, K M; Upholt, W B; Fallon, J F; Kosher, R A

    1991-12-01

    It has been suggested that the reciprocal expression of the chicken homeobox-containing genes GHox-8 and GHox-7 by the apical ectodermal ridge and subjacent limb mesoderm might be involved in regulating the proximodistal outgrowth of the developing chick limb bud. In the present study the expression of GHox-7 and GHox-8 has been examined by in situ and dot blot hybridization in the developing limb buds of limbless mutant chick embryos. The limb buds of homozygous mutant limbless embryos form at the proper time in development (stage 17/18), but never develop an apical ectodermal ridge, fail to undergo normal elongation, and eventually degenerate. At stage 18, which is shortly following the formation of the limb bud, the expression of GHox-7 is considerably reduced (about 3-fold lower) in the mesoderm of limbless mutant limb buds compared to normal limb bud mesoderm. By stages 20 and 21, as the limb buds of limbless embryos cease outgrowth, GHox-7 expression in limbless mesoderm declines to very low levels, whereas GHox-7 expression increases in the mesoderm of normal limb buds which are undergoing outgrowth. In contrast to GHox-7, expression of GHox-8 in limbless mesoderm at stage 18 is quantitatively similar to its expression in normal limb bud mesoderm, and in limbless and normal mesoderm GHox-8 expression is highly localized in the anterior mesoderm of the limb bud. In normal limb buds, GHox-8 is also expressed in high amounts by the apical ectodermal ridge.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts.

    PubMed

    Mok, Gi Fay; Cardenas, Ryan; Anderton, Helen; Campbell, Keith H S; Sweetman, Dylan

    2014-12-15

    During limb development Pax3 positive myoblasts delaminate from the hypaxial dermomyotome of limb level somites and migrate into the limb bud where they form the dorsal and ventral muscle masses. Only then do they begin to differentiate and express markers of myogenic commitment and determination such as Myf5 and MyoD. However the signals regulating this process remain poorly characterised. We show that FGF18, which is expressed in the distal mesenchyme of the limb bud, induces premature expression of both Myf5 and MyoD and that blocking FGF signalling also inhibits endogenous MyoD expression. This expression is mediated by ERK MAP kinase but not PI3K signalling. We also show that retinoic acid (RA) can inhibit the myogenic activity of FGF18 and that blocking RA signalling allows premature induction of MyoD by FGF18 at HH19. We propose a model where interactions between FGF18 in the distal limb and retinoic acid in the proximal limb regulate the timing of myogenic gene expression during limb bud development.

  6. Application of sonic hedgehog to the developing chick limb.

    PubMed

    Tiecke, Eva; Tickle, Cheryll

    2007-01-01

    Here, we describe methods for applying Sonic hedgehog (Shh) to developing chick limbs. The Sonic hedgehog gene is expressed in the polarizing region, a signaling region at the posterior margin of the limb bud and application of Shh-expressing cells or Shh protein to early limb buds mimics polarizing region signaling. The polarizing region (or zone of polarizing activity) is involved in one of the best known cell-cell interactions in vertebrate embryos and is pivotal in controlling digit number and pattern. At later stages of limb development, the application of Shh protein to the regions between digit primordia can induce changes in digit morphogenesis.

  7. A Chick Embryo in-Vitro Model of Knee Morphogenesis

    PubMed Central

    Rodriguez, Edward K.; Munasinghe, Jeeva

    2016-01-01

    Background: In this feasibility study, a mechanically loaded in-vitro tissue culture model of joint morphogenesis using the isolated lower extremity of the 8 day old chick embryo was developed to assess the effects of mechanical loading on joint morphogenesis. Methods: The developed in-vitro system allows controlled flexion and extension of the chick embryonic knee with a range of motion of 20 degrees from a resting position of 90-100 degrees of flexion. Joint morphogenesis at 2, 3, 4 and 7 days of culture was assessed by histology and micro MRI in 4 specimen types: undisturbed in-ovo control embryos, in-ovo paralyzed embryos, in-vitro unloaded limb cultures, and in-vitro loaded limb cultures. Relative glycosaminoglycan (GAG) concentration across the joint was assessed with an MRI technique referred to as dGEMRIC (delayed gadolinium enhanced MRI of cartilage) where T1 is proportional to glycosaminoglycan concentration. Results: Average T1 over the entire tissue image for the normal control (IC) knee was 480 msec; for the 4 day loaded specimen average T1 was 354 msec; and for the 7 day loaded specimens T1 was 393 msec. The 4 day unloaded specimen had an average T1 of 279 msec while the 7 day unloaded specimen had an average T1 of 224 msec. The higher T1 values in loaded than unloaded specimens suggest that more glycosaminoglycan is produced in the loaded culture than in the unloaded preparation. Conclusion: Isolated limb tissue cultures under flexion-extension load can be viable and exhibit more progression of joint differentiation and glycosaminoglycan production than similarly cultured but unloaded specimens. However, when compared with controls consisting of intact undisturbed embryos in-ovo, the isolated loaded limbs in culture do not demonstrate equivalent amounts of absolute growth or joint differentiation. PMID:27200386

  8. Microwave effects on isolated chick embryo hearts

    SciTech Connect

    Caddemi, A.; Tamburello, C.C.; Zanforlin, L.; Torregrossa, M.V.

    1986-01-01

    This study was designed to examine the effects of microwaves on the electric activity of hearts as a means of elucidating interactive mechanisms of nonionizing radiation with cardiac tissue. Experiments were performed on isolated hearts of 9-12-day-old chick embryos placed in small petri dishes. Oxygenated isotonic Ringer's solution at 37 degrees C permitted heart survival. Samples were irradiated at 2.45 GHz with a power density of 3 mW/cm2. The heart signal was detected with a glass micropipet inserted into the sinoatrial node and examined by means of a Berg-Fourier analyzer. Pulsed microwaves caused the locking of the heartbeat to the modulation frequency, whereas continuous wave irradiation might have induced slight bradycardia. Pulsed fields induced stimulation or regularization of the heartbeat in arrhythmia, fibrillation, or arrest of the heart.

  9. Comparison of Hensen's node and retinoic acid in secondary axis induction in the early chick embryo.

    PubMed

    Chen, Y; Solursh, M

    1992-10-01

    Retinoic acid (RA) and Hensen's node, the organizer center in the chick embryo, have been shown to have polarizing activity when applied or grafted into the chick limb bud. Here we investigate and compare the effects of RA and grafted Hensen's node on the early chick embryo. Anion exchange beads soaked with RA at concentrations ranging from 5 to 100 ng/ml and implanted on the anterior side or on the left side of the host anteroposterior axis of a stage 4 chick embryo in ovo have the ability to induce secondary axis formation, while beads soaked with RA of the same concentration and implanted on the right side or on the posterior side of the host axis are unable to induce the secondary axis. All of the induced axes contain trunk-tail structures. Hensen's node from quail embryos implanted into the early chick blastoderm could also cause the formation of secondary axes in addition to self-differentiation of the graft into a secondary axis. Both RA and grafted Hensen's node caused the inhibition of forebrain development with an increase in hindbrain development and the host heart to loop in an abnormal direction. The results support the hypothesis that Hensen's node is a source of RA which is involved in early embryogenesis. Alternatively, RA might stimulate the formation of Hensen's nodal properties in adjacent tissue.

  10. Limb proportions show developmental plasticity in response to embryo movement

    PubMed Central

    Pollard, A. S.; Charlton, B. G.; Hutchinson, J. R.; Gustafsson, T.; McGonnell, I. M.; Timmons, J. A.; Pitsillides, A. A.

    2017-01-01

    Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development. PMID:28165010

  11. Limb proportions show developmental plasticity in response to embryo movement.

    PubMed

    Pollard, A S; Charlton, B G; Hutchinson, J R; Gustafsson, T; McGonnell, I M; Timmons, J A; Pitsillides, A A

    2017-02-06

    Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development.

  12. Ex Ovo Model for Directly Visualizing Chick Embryo Development

    ERIC Educational Resources Information Center

    Dorrell, Michael I.; Marcacci, Michael; Bravo, Stephen; Kurz, Troy; Tremblay, Jacob; Rusing, Jack C.

    2012-01-01

    We describe a technique for removing and growing chick embryos in culture that utilizes relatively inexpensive materials and requires little space. It can be readily performed in class by university, high school, or junior high students, and teachers of any grade level should be able to set it up for their students. Students will be able to…

  13. Culturing Chick Embryos--A Simplification of New's Method.

    ERIC Educational Resources Information Center

    Downie, J. R.

    1979-01-01

    Describes a simplified version of New's method for culturing early chick embryos. The technique allows continuous observation of the critical first three days of development and the conditions for setting up successful cultures are also presented to help both teachers and students. (HM)

  14. CULTIVATION OF CHICKEN POX VIRUS IN DEVELOPING CHICK EMBRYOS

    DTIC Science & Technology

    The virus of chicken pox adapts readily and multiplies in the chorio- allantoic membranes of a chick embryo. A virus which has undergone several...passages on chorioallantoic membrane causes macroscopic changes in it. The chicken pox virus possesses a hemagglutinating capacity.

  15. Studies on Weak Electromagnetic Fields Effects in Chick Embryos.

    DTIC Science & Technology

    1986-05-31

    of them for the field exposed eggs , the other for the controls. In the first one called "Experimental incubator", are located cylindric coils or...of fertilized chicken eggs in these experimental conditions. In our previous and present studies of EMFs effects on chick embryos development, the...of 34C for eggs in- F30. DISTISUTIONIAVAILAPUTY 00 "ITRACT 21. ABSTRACT SECURITY CLASSIFICATION UCkSSPION~oumITED 03 SAMES As apt. DOI USERS(U

  16. Comparison of Iroquois gene expression in limbs/fins of vertebrate embryos.

    PubMed

    McDonald, Laura A; Gerrelli, Dianne; Fok, Yvonne; Hurst, Laurence D; Tickle, Cheryll

    2010-06-01

    In Drosophila, Iroquois (Irx) genes have various functions including the specification of the identity of wing veins. Vertebrate Iroquois (Irx) genes have been reported to be expressed in the developing digits of mouse limbs. Here we carry out a phylogenetic analysis of vertebrate Irx genes and compare expression in developing limbs of mouse, chick and human embryos and in zebrafish pectoral fin buds. We confirm that the six Irx gene families in vertebrates are well defined and that Clusters A and B are duplicates; in contrast, Irx1 and 3, Irx2 and 5, and Irx4 and 6 are paralogs. All Irx genes in mouse and chick are expressed in developing limbs. Detailed comparison of the expression patterns in mouse and chick shows that expression patterns of genes in the same cluster are generally similar but paralogous genes have different expression patterns. Mouse and chick Irx1 are expressed in digit condensations, whereas mouse and chick Irx6 are expressed interdigitally. The timing of Irx1 expression in individual digits in mouse and chick is different. Irx1 is also expressed in digit condensations in developing human limbs, thus showing conservation of expression of this gene in higher vertebrates. In zebrafish, Irx genes of all but six of the families are expressed in early stage pectoral fin buds but not at later stages, suggesting that these genes are not involved in patterning distal structures in zebrafish fins.

  17. Myogenic potential of chick limb bud mesenchyme in micromass culture.

    PubMed

    Archer, C W; Langille, R M; Teran, M A; Solursh, M

    1992-01-01

    The myogenic potential of chick limb mesenchyme from stages 18-25 was assessed by micromass culture under conditions conductive to myogenesis, and was measured as the proportion of differentiated (muscle myosin-positive) mononucleated cells detected. It was found that similar myogenic potentials existed in mesenchyme from whole limbs between stages 18 and 19, but this potential was halved by stage 20. At stage 21, proximal mesenchyme showed significantly more myogenesis than distal mesenchyme, but this difference was abolished by stage 22. Thereafter, myogenesis was increasingly restricted from the distal mesenchyme, whilst the potential in more proximal regions did not significantly increase after stage 23. When the ratio between total limb myoblasts which differentiated on days 1 and 4 of culture was analysed, it was found that two distinct peaks existed at stages 20 and 23. The significance of these ratio peaks is unclear, but may be related to different proliferative potentials of the pre-myoblasts at these stages.

  18. Titration of vaccinia virus by intravenous injection of chick embryos

    PubMed Central

    Kaplan, C.

    1960-01-01

    The final test of a smallpox vaccine is its capacity to prevent the disease from developing in inoculated individuals. This capacity, however, cannot be measured directly, so that other methods of assessing the efficacy of vaccine have had to be developed. A laboratory method—pock counting on the chorio-allantoic membrane of chick embryos—has recently been shown to provide a reasonably reliable estimate of the number of infective units in a given vaccine. In this paper, the author compares this pock-counting method with another method—titration by intravenous injection of chick embryos. He concludes that, although the reproducibility of titrations by intravenous injection compares very favourably with that obtained by chorio-allantoic inoculation, the former method would not be advantageous for the assay of vaccines, since it is very time-consuming and since differences in virulence might obscure comparisons between the efficacy of vaccines. PMID:14404376

  19. Distinct modes of floor plate induction in the chick embryo.

    PubMed

    Patten, Iain; Kulesa, Paul; Shen, Michael M; Fraser, Scott; Placzek, Marysia

    2003-10-01

    To begin to reconcile models of floor plate formation in the vertebrate neural tube, we have performed experiments aimed at understanding the development of the early floor plate in the chick embryo. Using real-time analyses of cell behaviour, we provide evidence that the principal contributor to the early neural midline, the future anterior floor plate, exists as a separate population of floor plate precursor cells in the epiblast of the gastrula stage embryo, and does not share a lineage with axial mesoderm. Analysis of the tissue interactions associated with differentiation of these cells to a floor plate fate reveals a role for the nascent prechordal mesoderm, indicating that more than one inductive event is associated with floor plate formation along the length of the neuraxis. We show that Nr1, a chick nodal homologue, is expressed in the nascent prechordal mesoderm and we provide evidence that Nodal signalling can cooperate with Shh to induce the epiblast precursors to a floor-plate fate. These results indicate that a shared lineage with axial mesoderm cells is not a pre-requisite for floor plate differentiation and suggest parallels between the development of the floor plate in amniote and anamniote embryos.

  20. MicroRNA processing machinery in the developing chick embryo.

    PubMed

    Carraco, Gil; Gonçalves, Ana N; Serra, Carlos; Andrade, Raquel P

    2014-11-01

    Gene expression regulation during embryo development is under strict regulation to ensure proper gene expression in both time and space. The involvement of microRNAs (miRNA) in early vertebrate development is documented and inactivation of different proteins involved in miRNA synthesis results in severe malformations or even arrests vertebrate embryo development. However, there is very limited information on when and in what tissues the genes encoding these proteins are expressed. Herein, we report a detailed characterization of the expression patterns of DROSHA, DGCR8, XPO5 and DICER1 in the developing chick embryo, from HH1 (when the egg is laid) to HH25 (5-days incubation), using whole mount in situ hybridization and cross-section analysis. We found that these genes are co-expressed in multiple tissues, mostly after stage HH4. Before early gastrulation DICER1 expression was never detected, suggesting the operation of a Dicer-independent pathway for miRNA synthesis. Our results support an important role for miRNAs in vertebrate embryo development and provide the necessary framework to unveil additional roles for these RNA processing proteins in development.

  1. Expression of the short stature homeobox gene Shox is restricted by proximal and distal signals in chick limb buds and affects the length of skeletal elements.

    PubMed

    Tiecke, Eva; Bangs, Fiona; Blaschke, Rudiger; Farrell, Elizabeth R; Rappold, Gudrun; Tickle, Cheryll

    2006-10-15

    SHOX is a homeobox-containing gene, highly conserved among species as diverse as fish, chicken and humans. SHOX gene mutations have been shown to cause idiopathic short stature and skeletal malformations frequently observed in human patients with Turner, Leri-Weill and Langer syndromes. We cloned the chicken orthologue of SHOX, studied its expression pattern and compared this with expression of the highly related Shox2. Shox is expressed in central regions of early chick limb buds and proximal two thirds of later limbs, whereas Shox2 is expressed more posteriorly in the proximal third of the limb bud. Shox expression is inhibited distally by signals from the apical ectodermal ridge, both Fgfs and Bmps, and proximally by retinoic acid signaling. We tested Shox functions by overexpression in embryos and micromass cultures. Shox-infected chick limbs had normal proximo-distal patterning but the length of skeletal elements was consistently increased. Primary chick limb bud cell cultures infected with Shox showed an initial increase in cartilage nodules but these did not enlarge. These results fit well with the proposed role of Shox in cartilage and bone differentiation and suggest chick embryos as a useful model to study further the role of Shox in limb development.

  2. Release of acetylcholine by chick embryo heart before innervation

    PubMed Central

    Coraboeuf, E.; Le Douarin, G.; Obrecht-Coutris, G.

    1970-01-01

    1. In chick embryo hearts, 3-day-old and not yet innervated, repetitive direct stimulation causes a transitory inhibition of the spontaneous rhythm. 2. The degree of post-stimulation inhibition depends on the frequency and duration of the artificial stimulation and on the concentration of K and Ca ions in the extracellular solution. 3. After treatment with atropine (10-5 g/ml.) post-stimulation inhibition is no longer observed. The spontaneous rhythm is accelerated by atropine. The findings therefore suggest that an ACh-like substance is released from the non-innervated embryonic heart during activity. 4. By use of the dorsal muscle of the leech for biological assay the liberation of an ACh-like substance from the non-innervated embryonic heart was confirmed. ImagesPlate 1 PMID:5498489

  3. The generation of vertebral segmental patterning in the chick embryo.

    PubMed

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-06-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline.

  4. How the embryo makes a limb: determination, polarity and identity.

    PubMed

    Tickle, Cheryll

    2015-10-01

    The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs

  5. Creatine regulation in the embryo and growing chick

    PubMed Central

    Ramírez, Oscar; Calva, Edmundo; Trejo, Augusto

    1970-01-01

    1. The absence of creatine was demonstrated enzymically in the hen's-egg yolk and in the albumin contrary to former reports. 2. A comparison of the results obtained by enzymic and colorimetric methods to measure creatine is presented. 3. Creatine phosphate was not detected in the yolk extracts. 4. The content of free arginine enzymically assayed was 15.7μmol in the yolk and 3.38μmol in the albumin. Arginine amounts to practically all of the guanidine compounds in the yolk and one-half of those in the albumin. 5. No glycine amidinotransferase activity was found in the egg-yolk homogenates. 6. The heart of the chick embryo does not receive creatine from the egg and the creatine kinase activity present in this organ starting from the 27th hour of incubation suggests that the enzyme is a constitutive one working probably as an adenosine triphosphatase in a way similar to the kinase isolated from rabbit skeletal muscle. 7. Liver glycine amidinotransferase activity appeared clearly after day 5 of incubation. The specific activity reached a maximum at day 12 and then declined; however, the activity per total mass of liver increased steadily during all the prenatal period. Concomitantly with this steady increase a rise in the creatine content of the whole embryo was observed. An analogous increasing relationship between total liver amidinotransferase activity and liver creatine content was also detected during the postnatal period. 8. Repression of amidinotransferase by creatine cannot be accepted as occurring under physiological conditions since an inverse relationship between the two parameters was not observed. 9. Repression of liver amidinotransferase is observed only when pharmacological concentrations of the exogenous creatine are present in the chick liver. PMID:5493509

  6. The expression of Flrt3 during chick limb development.

    PubMed

    Smith, Terence G; Tickle, Cheryll

    2006-01-01

    The Flrt3 (Fibronectin-Leucine-Rich Transmembrane protein) gene encodes a fibronectin and leucine-rich repeat transmembrane protein whose expression is controlled by fibroblast growth factors (FGFs). FLRT3 has been implicated in neurite outgrowth after nerve damage, as a positive regulator of FGF signalling and in homotypic cell adhesion. Here we describe Flrt3 expression during chick embryonic limb development using whole-mount in situ hybridization. We found very dynamic expression during apical ridge formation and limb bud outgrowth. Initially Flrt3 is expressed in the apical ectodermal ridge and underlying mesenchyme, but then becomes restricted to the dorsal and ventral sides of the apical ridge as a twin stripe. At later stages, abundant expression is seen in the hindlimb and in both the pectoral and pelvic girdle-forming regions. FLRT3 may have a crucial role in regulating cellular adhesion between the epithelial apical ridge and the underlying mesenchyme and in establishing the dorso-ventral position of the ridge.

  7. Actin organization in chick embryo fibroblasts after influenza virus infection. I. Isolation and characterization of actin from chick embryo cells.

    PubMed

    Krizanová, O; Závodská, E; Solariková, L; Ciampor, F; Kocisková, D

    1984-05-01

    Comparison of two starting materials for actin purification has shown that preparation of actin from aceton-dried cytoskeleton was more effective than from native chick embryos (CE). The isolated actin formed a single band of Mr = 42-43000 in SDS-PAGE; less purified samples revealed additional faint bands. G form of actin (non-polymerized) inhibited the activity of DNase I, electron microscopy showed actin filaments and bundles formed upon its polymerization. The freshly purified homogeneous actin has not lost its DNase I-inhibiting activity when incubated for 60 min at 35 degrees or 45 degrees C. Older or less purified actin samples kept under similar conditions showed 18-25% decrease of their DNase I-inhibiting activity and a loss of their polymerization ability. Digestion with trypsin caused a decrease of DNase I-inhibiting activity of fresh as well as for older actin samples.

  8. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  9. The chick embryo as an expanding experimental model for cancer and cardiovascular research

    PubMed Central

    Kain, Kristin H.; Miller, James W.I.; Jones-Paris, Celestial R.; Thomason, Rebecca T.; Lewis, John D.; Bader, David M.; Barnett, Joey V.; Zijlstra, Andries

    2014-01-01

    A long and productive history in biomedical research defines the chick as a model for human biology. Fundamental discoveries, including the description of directional circulation propelled by the heart and the link between oncogenes and the formation of cancer, indicate its utility in cardiac biology and cancer. Despite the more recent arrival of several vertebrate and invertebrate animal models during the last century, the chick embryo remains a commonly used model for vertebrate biology and provides a tractable biological template. With new molecular and genetic tools applied to the avian genome the chick embryo is accelerating the discovery of normal development and elusive disease processes. Moreover, progress in imaging and chick culture technologies is advancing real-time visualization of dynamic biological events, such as tissue morphogenesis, angiogenesis and cancer metastasis. A rich background of information, coupled with new technologies and relative ease of maintenance suggest an expanding utility for the chick embryo in cardiac biology and cancer research. PMID:24357262

  10. Chorio-Allantoic Membrane Grafting of Chick Limb Buds as a Class Practical.

    ERIC Educational Resources Information Center

    McLachlan, John C.

    1981-01-01

    A new method of carrying out grafts of early embryonic chick limb buds to the chick chorio-allantoic membrane and a processing schedule which renders cartilage elements visible in whole mount are discussed, including implications for the procedures and their results. (Author/DC)

  11. High frequency ultrasound imaging of the growth and development of the normal chick embryo.

    PubMed

    Schellpfeffer, Michael A; Bolender, David L; Kolesari, Gary L

    2007-05-01

    The purpose of this study is to delineate with high frequency ultrasound imaging the normal growth and development of the chick embryo throughout its incubation period. White Leghorn chick embryos were imaged through an opening in the egg air cell from incubation day 0-19 (Hamburger & Hamilton stage 1-45) using a 13 MHz clinical high frequency linear small parts transducer. Multiple anatomic growth parameters were measured. Normal growth was confirmed with Hamburger and Hamilton staging. A timeline was constructed showing when each anatomic growth parameter could be visualized. Means and standard deviations of each parameter were plotted against incubation days studied to create nomograms and numerical tables of normal growth and development of the chick embryo. With this set of data, abnormal growth and development of the chick embryo can now be assessed.

  12. The effects of solcoseryl on the growth and multiplication of chick embryo fibroblasts cultivated "in vitro".

    PubMed

    Brasseur, R; De Paermentier, F

    1979-01-01

    The action of Solcoseryl, a free protein extract of calf blood, was studied on chick embryo fibroblasts cultivated in vitro. Solcoseryl stimulates the permitotic DNA synthesis and increases the number of mitoses.,

  13. Endoderm/mesoderm multiplication rates in stage 5-12 chick embryos

    SciTech Connect

    Rosenquist, G.C.

    1982-01-01

    Multiplication rates for the endoderm/mesoderm layer of the head-process to 17-somite-stage chick embryo were studied by implanting essentially identical transplants labeled with tritiated thymidine into paired recipient embryos. One recipient was fixed as soon as the transplant had healed (after 30 min) and the other was reincubated an additional 3.5 to 22.5 hr; the ratios of labeled cells in the paired embryos provided points on a graph that indicated that doubling of endoderm/mesoderm cells in head-process-stage chick embryos occurs at approximately 4.0 and 17.2 hr of reincubation.

  14. Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick.

    PubMed

    Macrae, Vicky E; Davey, Megan G; McTeir, Lynn; Narisawa, Sonoko; Yadav, Manisha C; Millan, Jose Luis; Farquharson, Colin

    2010-04-01

    PHOSPHO1 is a bone-specific phosphatase implicated in the initiation of inorganic phosphate generation for matrix mineralization. The control of mineralization is attributed to the actions of tissue-nonspecific alkaline phosphatase (TNAP). However, matrix vesicles (MVs) containing apatite crystals are present in patients with hypophosphatasia as well as TNAP null (Akp2(-/-)) mice. It is therefore likely that other phosphatases work with TNAP to regulate matrix mineralization. Although PHOSPHO1 and TNAP expression is associated with MVs, it is not known if PHOSPHO1 and TNAP are coexpressed during the early stages of limb development. Furthermore, the functional in vivo role of PHOSPHO1 in matrix mineralization has yet to be established. Here, we studied the temporal expression and functional role of PHOSPHO1 within chick limb bud mesenchymal micromass cultures and also in wild-type and talpid(3) chick mutants. These mutants are characterized by defective hedgehog signalling and the absence of endochondral mineralization. The ability of in vitro micromass cultures to differentiate and mineralize their matrix was temporally associated with increased expression of PHOSPHO1 and TNAP. Comparable changes in expression were noted in developing embryonic legs (developmental stages 23-36HH). Micromass cultures treated with lansoprazole, a small-molecule inhibitor of PHOSPHO1 activity, or FGF2, an inhibitor of chondrocyte differentiation, resulted in reduced alizarin red staining (P<0.05). FGF2 treatment also caused a reduction in PHOSPHO1 (P<0.001) and TNAP (P<0.001) expression. Expression analysis by whole-mount RNA in situ hybridization correlated with qPCR micromass data and demonstrated the existence of a tightly regulated pattern of Phospho1 and Tnap expression which precedes mineralization. Treatment of developing embryos for 5 days with lansoprazole completely inhibited mineralization of all leg and wing long bones as assessed by alcian blue/alizarin red staining

  15. Hypoxia Induces Dilated Cardiomyopathy in the Chick Embryo: Mechanism, Intervention, and Long-Term Consequences

    PubMed Central

    Ahmad, Shakil; Crispi, Fatima; van Bilsen, Marc; Carmeliet, Peter; Staff, Anne Cathrine; Tjwa, Marc; Cetin, Irene; Gratacos, Eduard; Hernandez-Andrade, Edgar; Hofstra, Leo; Jacobs, Michael; Lamers, Wouter H.; Morano, Ingo; Safak, Erdal; Ahmed, Asif; le Noble, Ferdinand

    2009-01-01

    Background Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood. PMID:19357774

  16. Chick embryo proliferation studies using EdU labeling.

    PubMed

    Warren, Michelle; Puskarczyk, Karolina; Chapman, Susan C

    2009-04-01

    Cell proliferation studies are an important experimental tool. The most commonly used thymidine analogues, tritiated thymidine and bromodeoxyuridine (BrdU) label cells during S-phase. Both methods have significant drawbacks: low sensitivity in the case of tritiated thymidine and a denaturation step during BrdU detection that destroys most cellular epitopes, requiring careful optimization. The antibody against BrdU is also large and tissue penetration can be difficult. EdU (5'-ethynyl-2'-deoxyuridine) is closely chemically related to BrdU, with detection achieved by a copper catalyzed reaction requiring a small fluorescently conjugated azide. Cell cultures, flow cytometry and high throughput studies using EdU-labeled cells is exceptionally fast and does not require denaturation or antibodies. We have developed a tissue-labeling technique in chick embryos using EdU. Following EdU chemistry to detect proliferating cells, the tissue can undergo immunolabeling. We demonstrate fluorescent EdU chemistry followed by Tuj1 antibody staining resulting in multiplex fluorescent tissues.

  17. Extracellular pancuronium affects sodium current in chick embryo sensory neurones.

    PubMed Central

    Maestrone, E.; Magnelli, V.; Nobile, M.; Usai, C.

    1994-01-01

    1. The action of pancuronium on transmembrane sodium conductance was investigated in dorsal root ganglion neurones of chick embryos. The Na+ current was measured by use of the patch-clamp technique in whole-cell configuration. 2. Externally perfused pancuronium (50 microM to 1 mM) reversibly inhibited the current by a fast mechanism of action. Inhibition was concentration-dependent (with a half-effective dose of 170 microM) but not voltage-dependent. 3. The activation and inactivation kinetics of the Na+ current were estimated in pancuronium and in control solution by fitting experimental data with a Hodgkin-Huxley theoretical model. 4. The activation time constant tau m, at negative membrane voltages, was larger in the presence of pancuronium than in the control. In contrast, the inactivation time constant tau h was smaller during drug perfusion at membrane voltages < -10 mV. The steady-state inactivation h infinity was not affected by pancuronium. 5. These results suggest that pancuronium may reduce the sodium current by interacting with the sodium channels in both the resting and open states. PMID:8012707

  18. Studies on weak electromagnetic fields effects in chick embryos. Annual report, June 1985-June 1986

    SciTech Connect

    Not Available

    1986-05-31

    This research was directed to test some experimental conditions of the Henhouse project and to enforce a previous study on VLF electromagnetic fields effects on chick embryos. Henhouse Project: the response of White Leghorn Hisex embryos to field exposures effective on the Shaver breed, was studied. 1) A 48-hour exposure, in vivo, to a pulsed horizontal field of 100-Hz frequency, 1.0 micro T intensity, 500-microsecond pulse duration and 2-microsecond rise time induced a significant increase of developmental abnormalities in Hisex embryos. 2) A five-hour exposure of stage 7 Hisex embryos changed the Mitotic Index of their neural tissue. So, the early development of Hisex embryos, like Shaver embryos, can be modified by VLF pulsed electromagnetic fields. In the protocol of the Henhouse project, it was suggested a temperature of 38 C for eggs incubation. Studying the development of chick embryos in relation to the temperature, in the range of 37.4-40 C, it was confirmed that a 48-hour incubation at 38 C (with 55% humidity) does not induce abnormalities and allows a convenient developmental growth rate of the chick embryos. Electromagnetic fields effects in relation to the embryos orientation: preliminary results on the induction of abnormalities in field exposed embryos in relation to their orientation were confirmed. In a East-West oriented horizontal pulsed field, the organisms oriented to Southwest and Southeast showed a significant increase of developmental abnormalities. No effect was appreciable among the embryos Southward oriented.

  19. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.

    PubMed

    Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong

    2016-11-30

    As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.

  20. Ethical euthanasia and short-term anesthesia of the chick embryo.

    PubMed

    Aleksandrowicz, Ewa; Herr, Ingrid

    2015-01-01

    Fertilized chicken eggs are suggested as an alternative to mammalian models. The chorioallantoic membrane (CAM) of the chick embryo is widely used for examination of angiogenesis, xenotransplants and for virus production. Unfortunately, it is mostly not taken into account, that the chick embryo's ability to experience pain starts to develop at day 7 of breeding. In our view, this model is only in accordance with the 3 R principles, if an appropriate anesthesia of the chick embryo in potentially painful procedures is provided. Although many experimental approaches are performed on the none-innervated CAM, the euthanasia of the embryo strongly requires a more human technique than the usually used freezing at -20°C, decapitation or in ovo fixation with paraformaldehyde without prior anesthesia. However, protocols regarding feasible and ethical methods for anesthesia and euthanasia of avian embryos are currently not available. Therefore, we established an easy and reliable method for the euthanasia and short-term anesthesia of the chick embryo.

  1. Establishment of a chick embryo model for analyzing liver development and a search for candidate genes.

    PubMed

    Yokouchi, Yuji

    2005-08-01

    The liver plays a crucial role in metabolism. There is considerable interest in how the liver develops, as such knowledge could prove of importance in regenerative medicine. However, our understanding of liver development remains somewhat limited. We have developed a model system using the chick embryo that is cost effective and is easy to manipulate experimentally. We performed four fundamental studies: (i) construction of an atlas of the developing chick liver; (ii) identification of differentiation marker genes in the developing chick embryo; (iii) development of germ-layer specific electroporation; and (iv) establishment of organ culture from the developing chick liver. Using this system, we have been able to demonstrate the functions of candidate genes within a shorter period and in a more cost-effective manner. In parallel with the establishment of this system, we examined the expression patterns of genes known to be required for organ development in the developing chick embryo in order to identify genes also involved in liver development. To date, we have found sixteen genes that are expressed in the developing chick liver (GELD, genes expressed in liver development). This knowledge will be fundamental to the establishment of the basic technology for engineering liver tissue in the future.

  2. Production of a monoclonal antibody by in vitro immunization that recognizes a native chondroitin sulfate epitope in the embryonic chick limb and heart.

    PubMed

    Capehart, A A; Wienecke, M M; Kitten, G T; Solursh, M; Krug, E L

    1997-11-01

    We report the production of a monoclonal antibody (d1C4) by in vitro immunization that has immunoreactivity with a native chondroitin sulfate epitope in embryonic chick limb and heart. Murine lymphocytes were stimulated by direct exposure to unfixed, unsolubilized precartilage mesenchymal aggregates in high-density micromass culture derived from Stage 22-23 chick limb buds. Specificity of d1C4 reactivity was demonstrated by sensitivity of immunohistochemical staining to pretreatment with chondroitinase ABC or AC, preferential immunoreactivity with chondroitin-6-sulfate glycosaminoglycan (CS-C GAG) in ELISA, and competition of immunohistochemical staining with CS-C GAG. Immunohistochemical analysis of the expression of the d1C4 epitope revealed a striking localization of immunoreactivity in the extracellular matrix (ECM) of precartilage aggregates of chick limb mesenchyme in high-density micromass culture by 16 hr and the prechondrogenic limb core at Stage 23 in vivo. Immunoreactivity in both cultured limb mesenchyme and the embryonic limb continued through differentiation of prechondrogenic condensations into cartilage tissue. In the developing chick heart, d1C4 staining was found throughout the ECM of atrioventricular cushion tissue by Stage 25, but was localized to mesenchyme adjacent to the myocardium in the outflow tract cushions. There was an abrupt demarcation between d1C4-reactive intracardiac mesenchyme and unreactive extracardiac mesenchyme of the dorsal mesocardium in the Stage 22 embryo. This study demonstrates the efficacy of in vitro immunization of lymphocytes for the production of MAbs to native ECM constituents, such as CS-GAGs. Immunohistochemical data utilizing d1C4 suggest that CS-GAGs bearing this epitope may be important in early morphogenetic events leading to cartilage differentiation in the limb and valvuloseptal morphogenesis in the heart.

  3. Studies on the endogenous phospholipids of chick embryo myocardium and their in vitro hydrolysis by endogenous phospholipases during embryogenesis.

    PubMed

    Helmy, Fatma M; Aikins, Anthea; Hughes, Jeniter; Belfield, Carrie; Juracka, Amal

    2007-01-01

    The phospholipid profiles of the myocardium (from 10- and 18-day old chick embryos and 13-day old chick) and their in vitro response to the endogenous lipolytic enzymes (mainly of the phospholipase group) at pH 7.4 and 38 degrees C for 60 min were analyzed by TLC technology and densitometry. Cardiolipin (CL) was shown to be one of the major phospholipids of the chick embryo myocardium and its concentration increased as the chick embryo advanced in development. Monolysocardiolipin (MLCL) was produced subsequent to in vitro incubation of whole tissue homogenates in all myocardia studied as well as a concurrent reduction in CL. This deacylation of CL increased in magnitude as the chick embryo advanced in development indicating its age relatedness. The level of phosphatidyl ethanolamine (PE) plasmalogen was also high in all myocardia studied. Lyso alkenyl PE (LPE) was produced subsequent to in vitro incubation and its level increased as the chick embryo advanced in development, indicating PLA(2) action on the sn-2 fatty acid of PE. Phosphatidyl choline (PC) plasmalogen was also present in the chick embryo myocardium and its level increased gradually as the chick embryo advanced in development. In contrast, yolk-sac membrane contains very minute amounts of CL and PE. No PC was detected and no LPE was formed following in vitro incubation. The yolk of the unfertilized chicken egg has no CL and has very minute amounts of PE, no PC and no lysophospholipids were detected following in vitro incubation in all samples analyzed.

  4. [Influence of L.5-hydroxytryptophan (L.5-HTP) on the development of chick embryo].

    PubMed

    Schowing, J; Sprumont, P; Van Toledo, B

    1977-01-01

    L.5-hydroxytryptophan (L.5-HTP) injections provoke, in the chick embryo, some malformations of the nervous system, when treated at 24 hours of incubation. The same treatement after 48 hours of incubation does not lead to malformations, but to a reduction in size which is as much obvious as the embryos are treated at a later stage. It seems that there could be some relation between the serotonin metabolism and the growth hormon secretion.

  5. Neuronal damage in chick and rat embryos following X-irradiation

    SciTech Connect

    Schneider, B.F.; Norton, S.

    1980-12-01

    Exposure of rat and chick embryos to X-irradiation at the time of development of neurons at the telencephalic-diencephalic border results in prolonged damage to neurons in this area as measured by neuronal nuclear size. A dose of 100 rads to the seven-day-old chick embryo has about the same effect as 125 rads to the 15-day-old rat fetus. The nuclear volume of large, multipolar neurons in the chick paleostriatum primitivum and the rat lateral preoptic area are reduced from 10 to 15%. Larger doses of X-irradiation to the chick (150 and 200 rads) cause progressively greater reductions in nuclear size. The large neurons which were measured in the rat and chick are morphologically similar in the two species. Both contain cytoplasmic acetylcholinesterase and have several branched, spiny dendritic processes. The similarity of response of chick and rat neurons to X-irradiation diminishes the significance of maternal factors as the cause of the effects of fetal irradiation in these experiments.

  6. Alterations in glycosaminoglycan metabolism in β-aminopropionitrile-treated chick embryos

    PubMed Central

    Elders, M. Joycelyn; Smith, James D.; Smith, W. Grady; Hughes, Edwin R.

    1973-01-01

    1. Na235SO4, [1-14C]glucosamine and [1-14C]acetate were used as precursors of the sulphated glycosaminoglycans to study the biochemical effect of β-aminopropionitrile in chick embryos. The incorporation of all three precursors was decreased in the treated embryos between days 7 and 10 of embryonic development. No inhibition of incorporation of these precursors occurred between days 16 and 20 of embryonic development at the dosages of β-aminopropionitrile used. 2. β-Aminopropionitrile treatment also decreased the amount of N-acetylhexosamines in the chick embryo and decreased the percentage of the hexosamine esterified by nucleotides. Respiration was decreased by homogenates prepared from treated embryos. Likewise, UDP-xylosyl- and UDP-galactosyl-transferase activities were decreased in treated embryos and cartilage from embryos and growing chicks. 3. The data suggest that β-aminopropionitrile, in addition to the known lathyrogenic activity, either is or gives rise to a potent metabolic poison that interferes with basic cellular metabolism. The results are consistent with a decreased rate of ATP generation as an explanation for the decrease in glycosaminoglycan synthesis. PMID:4274379

  7. Effects of brief hypoxia and hyperoxia on tissue element levels in the development chick embryo

    SciTech Connect

    Richards, M.P.; Stock, M.K.; Metcalfe, J. Oregon Health Sciences Univ., Portland )

    1991-03-15

    Brief hypoxia or hyperoxia has been shown to affect growth and metabolism of chick embryos during the later stages of development. The objective of this experiment was to alter the availability of oxygen to chick embryos developing in ovo and to determine the effects on tissue levels of Zn, Cu, Fe and Mn. Hypoxia reduced embryo, heart, brain and liver wts (wet wt), whereas, hyperoxia increased embryo, heart, lung and liver wts compared to normoxic controls. Chorioallantoic membrane (CAM) wt was increased by hypoxia and reduced by hyperoxia. Livers from hyperoxic embryos contained more Zn, Fe and Mn and less Cu than livers from hypoxic or normoxic embryos. Tissue levels of Zn, Cu, Fe and Mn were reduced in brains from hypoxic compared to hyperoxic or normoxic embryos. Hyperoxia increased the concentrations of Zn and Cu in CAM; whereas, hypoxia reduced the levels of Zn and Fe. The amounts of Zn and Cu were increased in hyperoxic compared to normoxic lungs. Hearts from hyperoxic embryos had more Zn, Cu and Mn than hypoxic or normoxic hearts. Hypoxic yolk sac contained more Zn, Cu and Mn than hyperoxic or normoxic yolk sac. Except for yolk sac, the amounts of Zn, Cu, Fe and Mn in tissues from normoxic embryos increased from day 15 to day 18 of incubation in concert with tissue growth. The authors conclude that the availability of O{sub 2} to the developing chick embryo affects tissue trace element levels either through its effects on tissue growth or via effects on the regulation of trace element uptake and assimilation by the tissues.

  8. Development of the endolymphatic sac in chick embryos, with reference to the degradation of otoconia

    NASA Technical Reports Server (NTRS)

    Yoshihara, T.; Kaname, H.; Narita, N.; Ishii, T.; Igarashi, M.; Fermin, C. D.

    1992-01-01

    The endolymphatic sac of chick embryos (from embryonic day 7 to 1-day-old chicks) was studied light- and electron-microscopically. At stage 30-31 (embryonic day 7-7.5), the epithelial cells of the endolymphatic sac were cuboidal to columnar in shape. Microvilli were relatively well developed. The intercellular space was wide. In the endolymphatic space of the endolymphatic sac, varying shapes and sizes of otoconia-like bodies were often observed. Intracytoplasmic phagosomes containing these bodies were rarely found. After stage 37 (embryonic day 11), otoconia-like bodies in the endolymphatic sac decreased in number and size. They were almost the same as the otoconia in the macular organs, ultrastructurally. These findings indicate that the endolymphatic sac of the chick embryos may possess the function of otoconial degradation and removal of calcium from otoconia.

  9. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    PubMed

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.

  10. Adrenocortical suppression in highland chick embryos is restored during incubation at sea level.

    PubMed

    Salinas, Carlos E; Villena, Mercedes; Blanco, Carlos E; Giussani, Dino A

    2011-01-01

    By combining the chick embryo model with incubation at high altitude, this study tested the hypothesis that development at high altitude is related to a fetal origin of adrenocortical but not adrenomedullary suppression and that hypoxia is the mechanism underlying the relationship. Fertilized eggs from sea-level or high altitude hens were incubated at sea level or high altitude. Fertilized eggs from sea-level hens were also incubated at altitude with oxygen supplementation. At day 20 of incubation, embryonic blood was taken for measurement of plasma corticotropin, corticosterone, and Po(2). Following biometry, the adrenal glands were collected and frozen for measurement of catecholamine content. Development of chick embryos at high altitude led to pronounced adrenocortical blunting, but an increase in adrenal catecholamine content. These effects were similar whether the fertilized eggs were laid by sea-level or high altitude hens. The effects of high altitude on the stress axes were completely prevented by incubation at high altitude with oxygen supplementation. When chick embryos from high altitude hens were incubated at sea level, plasma hormones and adrenal catecholamine content were partially restored toward levels measured in sea-level chick embryos. There was a significant correlation between adrenocortical blunting and elevated adrenal catecholamine content with both asymmetric growth restriction and fetal hypoxia. The data support the hypothesis tested and provide evidence to isolate the direct contribution of developmental hypoxia to alterations in the stress system.

  11. A method for detecting MFO induction by Japanese pulp mill effluents with chick embryo

    SciTech Connect

    Tatarazako, Norihisa; Kamaya, Yasushi

    1995-12-31

    As a biomarker of physiological responses in fish exposed to pulp and paper mill effluents, mixed function oxygenase (MFO) induction has been investigated by many researchers. The induction and/or inhibition of MFOs is generally affected by various factors of fish such as species, maturity, sex, size and spawning status, and by other environmental variables. Therefore, the method demands technical skills to get a constant result. In addition, the test is costly and also time consuming. In this paper, the authors propose a MFOs induction method using chick embryo, instead of fish, for the assessment of pulp mill effluent. The merits of this method are as follows; inexpensive and commercially available test organisms, easy maintenance of the organisms, no feeding, high uniformity of the developing stage, sensitive responses to xenobiotics, low sample volume requirements, easy testing of various samples at one time and minimal training. P450 1A1 has been found in the microsome of chick embryo. Metabolic function of the P450 1A1 can be regarded basically the same as that of fish. Small amount of xenobiotics, about 100 {micro}l, were injected into the air chamber of 16-day-old chick embryos. Liver microsomes were isolated 48 h after administration. Ethoxyresorufin-O-deethylase (EROD) activity was determined by the direct fluorimetric method. Using the chick embryo method, the authors analyzed various chloro-organics, model bleached kraft pulp mill effluents, model black liquor and several total effluents of Japanese pulp mills. Methylcholanthrene and 2,3,7,8-TCDD were used as positive controls. In this paper, the authors will report the details of the chick embryo method and also some results of the assessment using the method.

  12. Selective excretion of yolk-derived tocotrienols into the bile of the chick embryo.

    PubMed

    Surai, P F; Speake, B K

    1998-12-01

    The aim of this study was to investigate the possibility of biodiscrimination between different forms of vitamin E during the development of the chick embryo. The vitamin E present in the initial yolk consisted of alpha-tocopherol (90%), (beta + gamma)-tocopherol (8%), alpha-tocotrienol (0.3%) and (beta + gamma)-tocotrienol (1.3%). In marked contrast, the vitamin E recovered from the bile of the day-16 embryo contained much higher proportions of alpha-tocotrienol (10%) and especially of (beta + gamma)-tocotrienol (42%). By the time of hatching, 56% of the vitamin E present in the bile was in the form of (beta + gamma)-tocotrienol. The residual yolk of the newly-hatched chick contained far greater proportions of alpha-tocotrienol (2.6%) and (beta + gamma)-tocotrienol (10%) than were present in the initial yolk. The results suggest that the liver of the embryo may selectively excrete tocotrienols as components of bile, whilst retaining the tocopherols within the hepatocytes. The increased proportions of tocotrienols in the residual yolk may result from the recycling of bile from the gall bladder to the yolk. The liver of the day-old chick contained alpha-tocopherol as the main form of vitamin E (90%) with only a small proportion (0.2%) of (beta + gamma)-tocotrienol. The alpha-tocopherol form was also the main vitamin E component in the brain (85%), heart (79%), lung (82%) and adipose tissue (91%) of the day-old chick. The present study suggests the occurrence of a high degree of biodiscrimination between tocopherols and tocotrienols during the development of the chick embryo.

  13. Innervation of the undifferentiated limb bud in rabbit embryo.

    PubMed Central

    Cameron, J; McCredie, J

    1982-01-01

    The concept that there are no nerves in the limb bud of mammalian embryos prior to differentiation has been re-examined. Rabbit embryos were collected at 260 and 290 hours gestation, which is prior to cartilage formation in the forelimb at 320 hours. Forelimb buds and adjacent neural tube were excised, fixed and embedded for light and electron microscopy. The limb buds were sectioned in two planes by serial 1 micrometer sections and inspected by light microscopy. Bundles of nerve fibres were seen within the proximal third of the limb bud, with distal ramification into adjacent zones of condensing mesenchyme. Electron microscopy confirmed the presence of axons and associated immature Schwann cells. These results demonstrate the existence of an anatomical framework through which a neurotrophic influence might be brought to bear upon mesenchyme prior to early differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7130041

  14. Cardiac hypertrophy in chick embryos induced by hypothermia

    SciTech Connect

    Boehm, C.; Johnson, T.R.; Caston, J.D.; Przybylski, R.J.

    1987-01-01

    A decrease in incubation temperature from 38 to 32/sup 0/C elicits a decrease in chicken embryo size and weight with concomitant heart enlargement if done after day 10 of incubation. When assayed at day 18 of incubation with the hypothermia started on day 11 or 14, evidence is presented that the heart enlargement is an hypertrophy with no detectable hyperplasia. Supporting data are presented for various physical parameters showing increases in heart wet and dry weight, volume, area, wall thickness, and cell size. There was little difference in DNA content and nuclear (/sup 3/H)thymidine labeling index between hearts of control and hypothermic embryos. Hearts of hypothermic embryos showed a slight increase in water content and considerable increases in RNA, protein, and glycogen content per unit DNA. The average size of polysomes isolated from hypothermic hearts was larger than that of polysomes isolated from controls. Microscopic studies showed no obvious increase in amount of capillary beds, connective tissue, and myocardial cells. Annulate lamellae were found only in myocardial cells of hypothermic embryos in sparse amounts and low frequency but always associated with large deposits of glycogen.

  15. Plasminogen-independent fibrinolysis by proteases produced by transformed chick embryo fibroblasts.

    PubMed Central

    Chen, L B; Buchanan, J M

    1975-01-01

    The fibrinolytic activity of proteases secreted by chick embryo fibroblasts infected with Rous sarcoma virus was studied by use of a procedure in which a fibrin clot was formed with highly purified fibrinogen and thrombin above the cell layer. This procedure results in the formation of fibrin that is apparently a more suitable substrate for studies on fibrinolysis than is fibrin prepared by other methods. Since neither plasminogen nor serum were included in the assay system in the present studies, the fibrinolytic activity observed cannot be ascribed to the conversion of the plasminogen in serum to plasmin by a plasminogen activator produced by transformed cells. Our procedure, therefore, measures proteolytic activities other than those reported by previous investigators. Maintenance of some of the transformed phenotypes of Rous sarcoma virus transformed chick embryo fibroblasts such as morpholigical change and increased rate of glucose uptake apparently does not depend on the presence of plasminogen in the culture medium. Images PMID:165484

  16. Effect of a single dose of ethanol on developing skeletal muscle of chick embryos.

    PubMed

    Chaudhuri, Joydeep D

    2004-01-01

    Fetal alcohol syndrome is a condition occurring in some children of mothers who have consumed alcohol during pregnancy. Many of these affected children show retarded physical growth in the postnatal period despite adequate nutrition. On the basis of findings from studies with animals, it has been proposed that this is due to allometric retardation of growth of skeletal muscle, although the exact reasons for this are not known. The aim of the current study was to examine the structural changes in skeletal muscle in fetal alcohol syndrome in an attempt to understand the mechanisms of growth retardation in fetal alcohol syndrome. Chick embryos were exposed to single doses of 5%, 10%, and 15% ethanol, and the effects on the general growth and development, as well as on the skeletal muscle, of these chicks were studied. There was a significant retardation in crown rump length, head circumference, and body weight in ethanol-exposed chicks when these parameters were compared with findings for appropriate control groups. This retardation was associated with significant and proportionate reductions in the weights of skeletal muscles. Microscopic examination of skeletal muscle showed areas of neutrophil infiltration and necrosis, suggestive of muscle damage, in chicks exposed to 10% and 15% ethanol. Thus, findings of the current study demonstrate the direct toxic effects of a single dose of ethanol on developing embryos in general and skeletal muscle in particular. The pathologic changes seen in skeletal muscle could account for the failure in postnatal growth in fetal alcohol syndrome.

  17. Physical Mechanisms of Pattern Formation in the Early Chick Embryo

    NASA Astrophysics Data System (ADS)

    Balter, Ariel; Glazier, James; Zaitlen, Benji; Chaplain, Mark; Weijer, Cornelis

    2007-03-01

    Gastrulation marks a critical step in early embryogenesis when the first recognizable patterns are laid down. Although the genome maintains ultimate responsibility for this pattern formation, it cannot actually control the organization of individual cells. The robustness of embryogenic pattern formation suggests that a few simple, physical mechanisms are unleashed and that self-organization results. We perform numerical simulations of early chick gastrulation using an agent based method in which individual cells interact via a handful of behaviors including adhesivity, secretion and chemotaxis. Through these simulations we have identified certain behaviors as being important for various stages and morphological events. For instance, experimental results on primitive streak formation are best reproduced by a model in which the Kohler's Sickle secretes a chemo repellant for streak tip cells, and cell polarization appears to be important for initiating polonaise motion during streak elongation.

  18. Pathological Changes Following the Inoculation of Chick Embryos with Adult Cells

    PubMed Central

    Biggs, P. M.; Payne, L. N.

    1961-01-01

    The pathological changes in the livers and spleens which occur after the inoculation of adult fowl blood into fifteen-day-old embryos have been followed for about 7 weeks. Three consecutive histological stages were noticed. The first two stages, termed the splenomegaly syndrome and the stage of lymphoid hyperplasia, closely resembled those described following the injection of adult spleen cells into fifteen-day-old embryos (Biggs and Payne, 1960). The third stage was found in chicks in the terminal stages of runt disease, and was characterized by involution of the lymphoid tissues. The significance of these changes is discussed. ImagesFIG. 3FIG. 4FIG. 5FIG. 6

  19. Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation.

    PubMed

    Landmesser, L T; O'Donovan, M J

    1984-02-01

    Muscle activation patterns of embryonic chick hind limb muscles were determined from electromyographic (e.m.g.) recordings in an isolated spinal cord/hind limb preparation of stage 34-36 embryos, and were compared with in ovo e.m.g. activity from similarly staged embryos. Muscle activity in ovo consisted of periodically recurring sequences of bursts during which antagonistic muscles often alternated and synergistic muscles were co-active, as compatible with their mature function. However, more variable behaviour was also observed. Burst sequences in ovo were often initiated by a short-duration, high-amplitude discharge that occurred synchronously in all muscles studied, and which was followed by a period of electrical silence that was longest in the flexor muscles. This type of activity has not been described previously in mature animals. In ovo movement sequences were generally initiated by extensor activity which progressively declined in duration and intensity throughout the sequence, while flexor activity progressively intensified. The onset of activity in extensor muscles was accompanied by an abrupt decrease in flexor activity, whereas the converse was not observed. Spontaneous movement sequences also occurred when the spinal cord and hind limb were isolated and maintained in oxygenated Tyrode solution for several hours. Deafferentation experiments indicated that the motor pattern in this preparation was generated centrally by circuits within the spinal cord. Activity from the isolated cord was less variable than that occurring in ovo, consisting of sequences of highly regular recurring bursts. Each burst began with a brief high-amplitude discharge that occurred synchronously in all muscles and which was similar to that observed in ovo. This was followed by a silent period, which was longest in the flexors, and then by a more prolonged burst. Although its behaviour differs from that in ovo in some respects, it is concluded that the isolated cord maintained in

  20. Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation.

    PubMed Central

    Landmesser, L T; O'Donovan, M J

    1984-01-01

    Muscle activation patterns of embryonic chick hind limb muscles were determined from electromyographic (e.m.g.) recordings in an isolated spinal cord/hind limb preparation of stage 34-36 embryos, and were compared with in ovo e.m.g. activity from similarly staged embryos. Muscle activity in ovo consisted of periodically recurring sequences of bursts during which antagonistic muscles often alternated and synergistic muscles were co-active, as compatible with their mature function. However, more variable behaviour was also observed. Burst sequences in ovo were often initiated by a short-duration, high-amplitude discharge that occurred synchronously in all muscles studied, and which was followed by a period of electrical silence that was longest in the flexor muscles. This type of activity has not been described previously in mature animals. In ovo movement sequences were generally initiated by extensor activity which progressively declined in duration and intensity throughout the sequence, while flexor activity progressively intensified. The onset of activity in extensor muscles was accompanied by an abrupt decrease in flexor activity, whereas the converse was not observed. Spontaneous movement sequences also occurred when the spinal cord and hind limb were isolated and maintained in oxygenated Tyrode solution for several hours. Deafferentation experiments indicated that the motor pattern in this preparation was generated centrally by circuits within the spinal cord. Activity from the isolated cord was less variable than that occurring in ovo, consisting of sequences of highly regular recurring bursts. Each burst began with a brief high-amplitude discharge that occurred synchronously in all muscles and which was similar to that observed in ovo. This was followed by a silent period, which was longest in the flexors, and then by a more prolonged burst. Although its behaviour differs from that in ovo in some respects, it is concluded that the isolated cord maintained in

  1. Systematic assessment of blood circulation time of functionalized upconversion nanoparticles in the chick embryo

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Liang, Liuen; Grebenik, Ekaterina; Guller, Anna; Lu, Yiqing; Qian, Yi; Goldys, Ewa; Zvyagin, Andrei

    2015-12-01

    Nanoparticle-based delivery of drugs and contrast agents holds great promise in cancer research, because of the increased delivery efficiency compared to `free' drugs and dyes. A versatile platform to investigate nanotechnology is the chick embryo chorioallantoic membrane tumour model, due to its availability (easy, cheap) and accessibility (interventions, imaging). In our group, we developed this model using several tumour cell lines (e.g. breast cancer, colon cancer). In addition, we have synthesized in-house silica coated photoluminescent upconversion nanoparticles with several functional groups (COOH, NH2, PEG). In this work we will present the systematic assessment of their in vivo blood circulation times. To this end, we injected chick embryos grown ex ovo with the functionalized UCNPs and obtained a small amount of blood at several time points after injection to create blood smears The UCNP signal from the blood smears was quantified using a modified inverted microscope imaging set-up. The results of this systematic study are valuable to optimize biochemistry protocols and guide nanomedicine advancement in the versatile chick embryo tumour model.

  2. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    PubMed

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  3. Comparison of Cobb and Ross strains in embryo physiology and chick juvenile growth.

    PubMed

    Tona, K; Onagbesan, O M; Kamers, B; Everaert, N; Bruggeman, V; Decuypere, E

    2010-08-01

    Broiler performance is known to be related to embryonic developmental parameters. However, strain or genotype differences with regard to embryo physiological parameters and juvenile growth have received little attention. A total of 1,200 hatching eggs produced by Cobb and Ross broiler breeders of the same age were studied. At setting for incubation and between 66 and 130 h of incubation, egg resonant frequency (RF) was measured as an indicator of embryonic development. Also, eggs were weighed before setting and at d 18. From d 10 to 18 of incubation, remaining albumen was weighed. During the last days of incubation, hatching events such as internal pipping (IP), external pipping, and hatch were monitored every 2 h. Hatched chicks were recorded and weighed. At IP stage, gas partial pressures in the egg air chamber were measured. Hatched chicks were reared for 7 d and weighed. Results indicate that RF of Ross eggs were lower than those of Cobb eggs (P < 0.01) and starting time point of RF decrease occurred earlier in Cobb eggs than in Ross eggs. Relative egg weight loss up to 18 d of incubation was lower in Cobb than in Ross (P < 0.05). At IP, partial pressure of CO(2) was higher in Cobb than in Ross (P < 0.05) with shorter incubation duration in Cobb. Between 6 and 60 h posthatch, heat production was higher in Cobb than in Ross (P < 0.05). At 7 d posthatch, Cobb chicks were heavier than Ross chicks (P < 0.05). It is concluded that Cobb and Ross embryos-chicks have different growth trajectories leading in different patterns of growth resulting from differences in physiological parameters.

  4. Shell-Less Chick Embryo Culture as an Alternative in vitro Model to Investigate Glucose-Induced Malformations in Mammalian Embryos

    PubMed Central

    Datar, Savita; Bhonde, Ramesh R.

    2005-01-01

    We have developed a simple shell-less chick embryo culture system to study glucose-induced malformations. This system involves the culturing of chick embryos from the second day to the fifth day of incubation, with associated yolk and thick and thin albumen outside the egg shell. The system allows the observation of embryonic development of chicks in a glass bowl. Developing embryos at 24 h, 48 h and 72 h incubation, corresponding to the Hamberger Hamilton (HH) stages from 7 to 21, were treated with two concentrations of glucose (50 mM and 100 mM) for 24 h. Glucose treatment resulted in a mortality rate of over 70% in younger embryos. Furthermore, a variety of malformations such as retarded growth, abnormal heart development, macrosomia, exencephaly, etc. were observed in older embryos, which were similar to those reported in mammalian embryos as a consequence of diabetic pregnancy. The glucose-induced malformations were found to be concentration- and stage-dependent, thus emphasizing the roles of the degree of hyperglycemia and the stage of embryonic development in diabetic growth anomalies. Here we demonstrate for the first time that the present system can be used (i) for experiments at early stages of chick embryo development and (ii) for assessing the effects of acute glucose toxicity similar to those reported for mammalian embryos in a hyperglycemic environment. PMID:17491698

  5. Distribution and possible function of an adrenomedullin-like peptide in the developing chick limb bud.

    PubMed

    Seghatoleslami, M Reza; Martínez, Alfredo; Cuttitta, Frank; Kosher, Robert A

    2002-01-01

    Adrenomedullin (AM) is a multifunctional peptide that exhibits discrete domains of expression during mouse embryogenesis consistent with a role in regulating growth and differentiation during morphogenesis. Here we report that AM immunoreactivity is present at high levels throughout the apical ectodermal ridge (AER) of the chick limb bud as the AER is directing the outgrowth and patterning of underlying limb mesoderm. Immunostaining is particularly strong along the surfaces of the contiguous cells of the AER. AM immunoreactivity attenuates as the AER regresses and is absent from the distal apical ectoderm of stage 20 limbless mutant limb buds which fail to develop an AER. To explore the possible role of AM in AER activity, we examined the effect of exogenous AM and an AM inhibitor on the in vitro morphogenesis of limb mesoderm, cultured in the presence and absence of the AER. Although exogenous AM cannot substitute for the AER in promoting outgrowth of limb mesoderm in vitro, a specific AM antagonist, AM(22-52), impairs the outgrowth and proliferation of limb mesoderm cultured in the presence of the AER. This is consistent with the possibility that inhibition of endogenous AM activity in the AER impairs the ability of the AER to promote limb morphogenesis. Taken together, these studies suggest that an AM-like molecule may function in an autocrine fashion to regulate some aspect of AER activity.

  6. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    PubMed Central

    Tan, Rui-Rong; Zhang, Shi-Jie; Li, Yi-Fang; Tsoi, Bun; Huang, Wen-Shan; Yao, Nan; Hong, Mo; Zhai, Yu-Jia; Mao, Zhong-Fu; Tang, Lu-Ping; Kurihara, Hiroshi; Wang, Qi; He, Rong-Rong

    2015-01-01

    Gestational diabetes mellitus (GDM) is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg) on embryo development day (EDD) 1. Proanthocyanidins (1 and 10 nmol/egg) were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression. PMID:26262640

  7. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo.

    PubMed

    Tan, Rui-Rong; Zhang, Shi-Jie; Li, Yi-Fang; Tsoi, Bun; Huang, Wen-Shan; Yao, Nan; Hong, Mo; Zhai, Yu-Jia; Mao, Zhong-Fu; Tang, Lu-Ping; Kurihara, Hiroshi; Wang, Qi; He, Rong-Rong

    2015-08-07

    Gestational diabetes mellitus (GDM) is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg) on embryo development day (EDD) 1. Proanthocyanidins (1 and 10 nmol/egg) were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.

  8. Morphometric and autoradiographic analysis of frontonasal development in the chick embryo

    SciTech Connect

    Patterson, S.B.; Minkoff, R.

    1985-05-01

    Dimensional changes in the nasal processes were measured in chick embryos from Hamburger and Hamilton (1951) stages 20 through 27.5. Transverse measurements in the frontonasal region of freshly fixed embryos were compared to frontal sections of the nasal region of comparably staged embryos. These observations were correlated with autoradiographic studies of cell movement employing an implant labeling technique. Morphometric analysis indicated that between stages 20 and 25 the separation of the nasal pit orifices increased coincidentally with rapid forebrain enlargement. Since the separation of the nasal pit fundi increased more rapidly, the orientation of the nasal pits changed. Autoradiographic studies indicated that lateral movement of medial nasal process mesenchyme into the base of the nasal groove and medial area at the base of the lateral nasal process had occurred. After stage 25, the separation of the nasal orifices declined dramatically, coincidental with rapid orbital enlargement. In contrast, the separation of the nasal pit fundi was maintained. It is proposed that nasal development of the chick embryo may be governed initially by forebrain enlargement and associated lateral movements of mesenchyme in the medial nasal processes, resulting in reorientation of the invaginating nasal placodes; subsequently, orbital enlargement and an associated medial redirection of growth of the lateral nasal processes assumes greater significance to the continued development of the frontonasal region.

  9. Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate

    PubMed Central

    1984-01-01

    Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat. PMID:6501414

  10. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo

    PubMed Central

    Zhang, Shi-Jie; Li, Yi-Fang; Tan, Rui-Rong; Tsoi, Bun; Huang, Wen-Shan; Huang, Yi-Hua; Tang, Xiao-Long; Hu, Dan; Yao, Nan; Yang, Xuesong; Kurihara, Hiroshi; Wang, Qi; He, Rong-Rong

    2016-01-01

    ABSTRACT Gestational diabetes mellitus (GDM) is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg) was injected into the air sac of chick embryos on embryo development day (EDD) 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation. PMID:26744353

  11. The effect of chick embryo amniotic fluid on sciatic nerve regeneration of rats

    PubMed Central

    Farjah, Gh. H.; Fazli, F.

    2015-01-01

    The purpose of this experimental study was to evaluate the effect of chicken amniotic fluid (AF) on a cross section of rat sciatic nerves. Thirty adult male Sprague-Dawley rats weighing 275 to 300 g, were randomized into three groups treated with (1) amniotic fluid or AF (n=10), (2) normal saline or NS (n=10), and (3) sham surgery (n=10). The AF was aspirated from the amniotic cavity of incubating chick embryos at day 14. The sciatic nerve was exposed and sharply transected. Immediate epineurial repair was then performed. AF treated animals were given 2 ml/kg of the chick embryo AF subcutaneously, once daily, five times a week for up to 2 weeks. All animals were evaluated by sciatic functional index (SFI), electrophysiology, histology, and immunohistochemistry at days 28 and 56 after surgery. The SFI difference between AF and NS groups at days 21 and 28 after operation was statistically significant (P<0.05). The number of myelinated fibers in the AF group was significantly greater than that of the NS group at day 28 (P<0.05). At days 28 and 56 after operation, the nerve conduction velocity (NCV) mean of the AF group was faster than that of the NS group, but the difference was not statistically significant (P>0.05). The results of this study demonstrate that chick AF can enhance peripheral nerve regeneration. PMID:27175170

  12. Left-right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2

    PubMed Central

    Zhang, Ying; Levin, Michael

    2009-01-01

    Consistent left-right patterning is a fascinating and biomedically important problem. In the chick embryo, it is not known how cells determine their position (left or right) relative to the primitive streak, which is required for subsequent asymmetric gene expression cascades. We show that the subcellular localization of Vangl2, a core planar cell polarity (PCP) protein, is consistently polarized, giving cells in the blastoderm a vector pointing toward the primitive streak. Moreover, morpholino-mediated loss-of-function of Vangl2 by electroporation into chicks at very early stages randomizes the normally left-sided expression of Sonic hedgehog. Strikingly, Vangl2 morpholinos also induce a de-synchronization of asymmetric gene expression within the left and right domains of Hensen’s node. These data reveal the existence of polarized planar cell polarity protein localization in gastrulating chick and demonstrate that the PCP pathway is functionally required for normal asymmetry in the chick upstream of Sonic hedgehog. These data suggest a new and widely-applicable class of models for the spread and coordination of left-right patterning information in the embryonic blastoderm. PMID:19621439

  13. Effects of excess iodine in chick embryo thyroid follicles: initial inhibition and subsequent hypertrophy.

    PubMed Central

    Guo, Z; Narbaitz, R; Fryer, J N

    1991-01-01

    The effects of excess iodine on the development of the thyroid gland of chick embryos was assessed following injections of potassium iodide prior to incubation. Iodide injection resulted in a significantly greater thyroid gland weight (goitre) on Day 18 of incubation and a delay in hatching. Histological studies of the thyroid gland on Day 12 of incubation revealed that iodide injection had inhibited thyroid follicle development. On Day 14, however, the thyroid glands of the iodide-treated embryos were indistinguishable from controls and on Day 18 the thyroid follicles of the iodide-injected embryos were clearly hypertrophied. In agreement with these light microscopical observations, electron microscopical examination showed conspicuous development of rough endoplasmic reticulum in the follicle cells of both iodide-treated 14 and 18 days old embryos and in those of the corresponding controls. Immunocytochemical studies of the pituitary of 18 days old embryos revealed a depletion of immunoreactive TSH suggesting that the iodide-induced hypertrophy of the thyroid was mediated by an activation of the thyrotropes. Iodide treatment was without effect on plasma levels of T3 and T4 for Day 18 embryos suggesting that the compensatory hypertrophy of the thyroid gland was sufficient to maintain circulating levels of thyroid hormones. The present results demonstrate that, in the embryonic chick thyroid, excess iodine produces effects which occur in two phases. The first phase consists of a transitory inhibition of the formation of follicles; it is followed by a second phase of compensatory hypertrophy resulting in goitre. The first phase probably results from a direct inhibitory effect of iodine on the developing thyroid whereas the second phase probably reflects a stimulation of the thyroid by TSH. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:1917670

  14. Behavior of the P1.HTR mastocytoma cell line implanted in the chorioallantoic membrane of chick embryos.

    PubMed

    Avram, S F; Cimpean, A M; Raica, M

    2013-01-01

    The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.

  15. Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner suggesting roles in pattern formation along the proximodistal and dorsoventral axes.

    PubMed

    Dealy, C N; Roth, A; Ferrari, D; Brown, A M; Kosher, R A

    1993-10-01

    The Wnt gene family encodes a group of secreted signalling molecules that have been implicated in the regulation of cell fate and pattern formation during embryogenesis. We have examined the patterns of expression of two members of the chicken Wnt family, Wnt-5a and Wnt-7a, during development of the chick limb bud. Wnt-5a is expressed in the apical ectodermal ridge which directs outgrowth of limb mesoderm. Wnt-5a also exhibits three quantitatively distinct domains of expression along the proximodistal (PD) axis of the limb mesoderm that may correspond to the regions which will give rise to the three distinct PD segments of the limb, the autopod, zeugopod, and stylopod. In contrast, Wnt-7a expression in the limb bud is specifically limited to the dorsal ectoderm. These observations suggest possible roles for Wnt-5a and Wnt-7a in pattern formation along the PD and dorsoventral axes of the developing chick limb bud. In addition, Wnt-5a and Wnt-7a exhibit spatially discrete domains of expression in several other regions of the chick embryo consistent with developmental roles for these genes in a variety of other tissues.

  16. Chick embryogenesis: a unique platform to study the effects of environmental factors on embryo development.

    PubMed

    Yahav, S; Brake, J

    2014-01-01

    . Manipulating environmental temperature during the period of egg storage, during the intermediate pre-incubation period, and incubation period per se has been found to significantly affect embryo development, hatching progress, chick quality at hatching, and chick development post-hatching. These temperature manipulations have also been shown to affect the acquisition of thermotolerance to subsequent post-hatching thermal challenge. This chapter will focus on: a. "maternal effects" on embryo and post-hatching development; b. environmental effects during the post-ovipositional period of egg storage, the intermediate pre-incubation period, and incubation period per se on chick embryogenesis and subsequent post-hatching growth and development; and c. effects of temperature manipulations during the pre-incubation and incubation periods on acquisition of thermotolerance and development of secondary sexual characteristics in broiler chickens.

  17. Morphogenesis and calcification of the statoconia in the chick (Gallus domesticus) embryo - Implications for future studies

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Igarashi, M.

    1985-01-01

    The morphogenesis of the statoconia in the chick, Gallus domesticus, injected with a carbon anhydrase inhibitor is studied. The preparation of the embryo specimens for analysis is described. The early, middle, and late stages of embryonic development are examined. The data reveal that acetozolamide inhibits statoconia formation in the middle stage of development and the calcification process follows statoconia formation. The spatial relationship between the development of type 1 and type 2 hair cells and the appearance and maturation of the statoconia is investigated.

  18. THE EFFECT OF TEMPERATURE ON POTASSIUM EQUILIBRIA IN CHICK EMBRYO MUSCLE

    PubMed Central

    Wesson, Laurence G.; Cohn, Waldo E.; Brues, Austin M.

    1949-01-01

    The effect of temperature upon the exchange rates between intra- and extracellular potassium in chick embryo muscle was determined by the use of radioactive potassium. The temperature coefficient of at least four-fifths of the cell potassium is large. At temperatures below 15°C., potassium is lost from the cell and is regained on warming. The results suggest the possibility that 20 per cent or less of the cell potassium may differ from the rest by being more rapidly exchangeable with the medium. PMID:18114563

  19. [Toxic and teratogenic effects of the ammonium salt of fosamine on the development of quail and chick embryos].

    PubMed

    Lutz-Ostertag, Y

    1983-01-01

    The effects of a commercial spray preparation of ammonium salt ppf fosamine (a defoliant) on quail and chick eggs have been studied. The results lead us to conclude that under the stated conditions the product has little embryotoxicity. However, it does have teratogenic effects on the steal and on the cervical, dorsal and posterior axial skeleton. The observed malformations are more severe and appear more frequently in quail than in chick embryos.

  20. Teratogenic effects of insulin: An experimental study on developing chick embryo

    PubMed Central

    Bokariya, Pradeep; Kothari, Ruchi; Gujar, Vijay K.; Shende, M. R.

    2015-01-01

    Objective: The objective was to observe the effect of insulin on chick embryos with reference to their growth and developmental defects. Materials and Methods: An experimental study was performed to assess any abnormal growth pattern caused by insulin. For this, two batches of 100 fertilized eggs were utilized. One batch of 50 was used as a control group and other as an experimental group. Insulin (2 IU) was injected on day 2 of incubation. Chicken eggs were dissected out on day 19 of incubation and were carefully observed for any congenital abnormalities. The embryos thus dissected out were subjected to measurement of crown-rump length (CRL), changes in weight of egg, volume of embryos were compared in two groups. The embryos were also examined for any congenital anomalies. Results: No major malformations were observed. Decrease in weight and CRLs was lower in the experimental group as compared to their control counterparts. Values for volume of the embryo were similar in two groups. Conclusion: No obvious teratogenic effects are observed with insulin in the dose use for the study. PMID:25878385

  1. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.

    PubMed

    Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P

    2015-01-01

    The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.

  2. Inactivated eastern equine encephalomyelitis vaccine propagated in rolling-bottle cultures of chick embryo cells.

    PubMed

    Cole, F E

    1971-11-01

    A method was developed for the production of Eastern equine encephalomyelitis vaccine from virus grown in rolling-bottle cultures (840 cm(2) growth area) of chick embryo cells. The PE-6 strain of virus was propagated in chick embryo cell roller cultures maintained on serum-free medium 199 containing 0.25% human serum albumin and antibiotics (MM). A multiplicity of inoculum of 0.005 yielded acceptable titers of virus at a convenient harvest time of 18 to 24 hr and reduced the carry-over of extraneous material from the virus seed. Growth studies in which 100, 200, or 300 ml of MM was used showed that use of 300 ml of MM offered two advantages: (i) cytopathic effects were less at the 18- to 24-hr harvest time, thereby decreasing cellular material in the final product, and (ii) total virus yield was not substantially reduced, thus permitting large-scale production of virus for further processing. Studies on formalin inactivation at 37 C indicated that the virus was inactivated by 0.05% formalin within 12 to 16 hr and with 0.1% formalin within 6 to 8 hr. Antigen extinction tests in hamsters revealed excellent potency (e.g., median-effective-dose values of 0.069 to 0.012 ml) for both fluid and freeze-dried products. The advantages of the roller-bottle technique in vaccine production are discussed.

  3. Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta.

    PubMed

    Kulyk, W M; Rodgers, B J; Greer, K; Kosher, R A

    1989-10-01

    This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.

  4. GAP-43 in non-neuronal cells of the embryonic chick limb: clues to function.

    PubMed

    Stocker, K M; Ciment, G; Baizer, L

    1992-01-01

    The expression of GAP-43 in developing and regenerating neurons has been well characterized, but the function of this membrane-bound phosphoprotein is still unclear. Although GAP-43 is considered to be neuron-specific, it is also expressed in various glial cells of the peripheral and central nervous systems and in at least two populations of mesenchymal cells in the developing chick limb. GAP-43 mRNA is expressed transiently in developing limbs, which contain axons of spinal cord and dorsal root ganglion neurons, but do not contain neuronal cell bodies. This expression is correlated temporally with the in-growth of neurites and axons to the limbs, but appears to be independent of nerves. In some regions of the limb, GAP-43 immunoreactivity co-localizes in cells that are also immunoreactive for meromyosin, a muscle-specific marker. In addition, GAP-43 mRNA and protein are particularly abundant in the interdigital mesenchyme that undergoes apoptosis, or programmed cell death. GAP-43 has been postulated to mediate rapid changes in cell shape and the extension of processes in neuronal growth cones and elongating axons. We suggest here that GAP-43 may serve a similar function in glial cells, in myoblasts fusing to form myotubes, and in apoptotic and phagocytic cells of the interdigital mesenchyme.

  5. Transient expression of GAP-43 in nonneuronal cells of the embryonic chick limb.

    PubMed

    Stocker, K M; Baizer, L; Ciment, G

    1993-01-01

    Growth-associated protein (GAP)-43 is highly expressed in neuronal growth cones during periods of axonal outgrowth in development and regeneration of the nervous system. Although GAP-43 is generally considered to be neuron-specific, it is also expressed in some glial cells of the peripheral and central nervous systems and in at least two populations of mesodermally-derived cells in the developing chick limb. GAP-43 mRNA is expressed transiently in developing limbs; although this expression is correlated temporally with the ingrowth of neurites and axons to the limbs, it appears to be independent of nerves. Immunoreactivity for GAP-43 colocalizes in some developing limb muscle and GAP-43 mRNA and protein are particularly abundant in the interdigital mesenchyme that undergoes programmed cell death. GAP-43 has been postulated to mediate rapid changes in cell shape in neurons and glial cells and may serve a similar function in myoblasts fusing to form myotubes and in apototic and phagocytic cells of the interdigital mesenchyme.

  6. Expression patterns of mRNAs for the gap junction proteins connexin43 and connexin42 suggest their involvement in chick limb morphogenesis and specification of the arterial vasculature.

    PubMed

    Dealy, C N; Beyer, E C; Kosher, R A

    1994-02-01

    Gap junctions which comprise a family of proteins called connexins have been implicated in the morphogenesis of the chick limb bud. We have examined the expression patterns of two members of the connexin family, connexin43 (Cx43) and connexin42 (Cx42), during the early development of the chick limb bud and embryo by in situ hybridization. Cx43 mRNA is expressed in high amounts in the apical ectodermal ridge (AER), which promotes the outgrowth of the mesodermal cells of the limb bud, and in the ectopic AER of the limb buds of polydactylous diplopodia-5 mutant embryos. In contrast, little Cx43 expression is detectable in nonridge limb ectoderm at early stages of limb development. These results suggest that Cx43 gap junctions may integrate the activity of the cells comprising the AER and compartmentalize them into a functionally distinct entity capable of directing limb outgrowth. In addition, Cx43 exhibits high expression in the posterior subridge mesoderm of the early limb bud that is growing out in response to the AER, but little expression in the anterior mesoderm. This graded distribution of Cx43 transcripts correlates with a functional gradient of gap junctional communication along the anteroposterior (AP) axis, and suggests that Cx43 gap junctions may be involved in pattern formation across the AP axis. At later stages of development, Cx43 is transiently expressed in high amounts in the precartilage condensations of the carpals and metacarpals, at a time when critical cell-cell interactions are occurring that trigger cartilage differentiation. In contrast, in the developing limb, Cx42 is expressed exclusively by the central artery. In the remainder of the chick embryo, Cx42 is expressed in high amounts by the vessels comprising the arterial vasculature, but is not expressed by the venous vasculature. Thus, Cx42 gap junctions may be involved in specification of the arterial vasculature of the limb and embryo. Cx42, but not Cx43, is expressed in the ventricle of

  7. A Submerged Filter Paper Sandwich for Long-term Ex Ovo Time-lapse Imaging of Early Chick Embryos

    PubMed Central

    Smit, Theodoor H.

    2016-01-01

    Due to its availability, low cost, flat geometry, and transparency, the ex ovo chick embryo has become a major vertebrate animal model for the study of morphogenetic events, such as gastrulation2, neurulation3-5, somitogenesis6, heart bending7,8, and brain formation9-13, during early embryogenesis. Key to understanding morphogenetic processes is to follow them dynamically by time-lapse imaging. The acquisition of time-lapse movies of chick embryogenesis ex ovo has been limited either to short time windows or to the need for an incubator to control temperature and humidity around the embryo14. Here, we present a new technique to culture chick embryos ex ovo for high-resolution time-lapse imaging using transmitted light microscopy. The submerged filter paper sandwich is a variant of the well-established filter paper carrier technique (EC-culture)1 and allows for the culturing of chick embryos without the need for a climate chamber. The embryo is sandwiched between two identical filter paper carriers and is kept fully submerged in a simple, temperature-controlled medium covered by a layer of light mineral oil. Starting from the primitive streak stage (Hamburger-Hamilton stage 5, HH5)15 up to at least the 28-somite stage (HH16)15, embryos can be cultured with either their ventral or dorsal side up. This allows the acquisition of time-lapse movies covering about 30 hr of embryonic development. Representative time-lapse frames and movies are shown. Embryos are compared morphologically to an embryo cultured in the standard EC-culture. The submerged filter paper sandwich provides a stable environment to study early dorsal and ventral morphogenetic processes. It also allows for live fluorescence imaging and micromanipulations, such as microsurgery, bead implantation, microinjection, gene silencing, and electroporation, and has a strong potential to be combined with immersion objectives for laser-based imaging (including light-sheet microscopy). PMID:28060338

  8. Isolation and separation of alpha and beta-tubulin from chick-embryo brain, muscle and skin.

    PubMed Central

    el-Hamalawi, A R

    1978-01-01

    Two kinds of tubulin, alpha and beta, have been described in microtubules from many different systems. In the present study a new method is described for isolating and separating these two kinds of tubulin from chick-embryo brain, muscle and skin. The isolated tubulins were characterized by polyacrylamide-gel disc electrophoresis in the presence of urea and sodium dodecyl sulphate. PMID:646795

  9. Cardiac and vascular disease prior to hatching in chick embryos incubated at high altitude.

    PubMed

    Salinas, C E; Blanco, C E; Villena, M; Camm, E J; Tuckett, J D; Weerakkody, R A; Kane, A D; Shelley, A M; Wooding, F B P; Quy, M; Giussani, D A

    2010-02-01

    The partial contributions of reductions in fetal nutrition and oxygenation to slow fetal growth and a developmental origin of cardiovascular disease remain unclear. By combining high altitude with the chick embryo model, we have previously isolated the direct effects of high-altitude hypoxia on growth. This study isolated the direct effects of high-altitude hypoxia on cardiovascular development. Fertilized eggs from sea-level or high-altitude hens were incubated at sea level or high altitude. Fertilized eggs from sea-level hens were also incubated at high altitude with oxygen supplementation. High altitude promoted embryonic growth restriction, cardiomegaly and aortic wall thickening, effects which could be prevented by incubating eggs from high-altitude hens at sea level or by incubating eggs from sea-level hens at high altitude with oxygen supplementation. Embryos from high-altitude hens showed reduced effects of altitude incubation on growth restriction but not on cardiovascular remodeling. The data show that: (1) high-altitude hypoxia promotes embryonic cardiac and vascular disease already evident prior to hatching and that this is associated with growth restriction; (2) the effects can be prevented by increased oxygenation; and (3) the effects are different in embryos from sea-level or high-altitude hens.

  10. FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Camacho, N. P.; Mendelsohn, R.; Doty, S. B.; Binderman, I.

    1992-01-01

    Chick limb bud mesenchymal cells differentiate into chondrocytes and form a cartilaginous matrix in culture. In this study, the mineral formed in different areas within cultures supplemented with 4 mM inorganic phosphate, or 2.5, 5.0, and 10 mM beta-glycerophosphate (beta GP), was characterized by Fourier-transform infrared (FT-IR) microscopy. The relative mineral-to-matrix ratios, and distribution of crystal sizes at specific locations throughout the matrix were measured from day 14 to day 30. The only mineral phase detected was a poorly crystalline apatite. Cultures receiving 4 mM inorganic phosphate had smaller crystals which were less randomly distributed around the cartilage nodules than those in the beta GP-treated cultures. beta GP-induced mineral consisted of larger, more perfect apatite crystals. In cultures receiving 5 or 10 mM beta GP, the relative mineral-to-matrix ratios (calculated from the integrated intensities of the phosphate and amide I bands, respectively) were higher than in the cultures with 4 mM inorganic phosphate or in the in vivo calcified chick cartilage.

  11. Analysis of cerebro-spinal fluid protein composition in early developmental stages in chick embryos.

    PubMed

    Gato, A; Martín, P; Alonso, M I; Martín, C; Pulgar, M A; Moro, J A

    2004-04-01

    Foetal cerebro-spinal fluid (CSF) has a very high protein concentration when compared to adult CSF, and in many species five major protein fractions have been described. However, the protein concentration and composition in CSF during early developmental stages remains largely unknown. Our results show that in the earliest stages (18 to 30 H.H.) of chick development there is a progressive increase in CSF protein concentration until foetal values are attained. In addition, by performing electrophoretic separation and high-sensitivity silver staining, we were able to identify a total of 21 different protein fractions in the chick embryo CSF. In accordance with the developmental pattern of their concentration, these can be classified as follows: A: high-concentration fractions which corresponded with the ones described in foetal CSF by other authors; B: low-concentration fractions which remained stable throughout the period studied; C: low-concentration fractions which show changes during this period. The evolution and molecular weight of the latter group suggest the possibility of an important biological role. Our data demonstrate that all the CSF protein fractions are present in embryonic serum; this could mean that the specific transport mechanisms in neuroepithelial cells described in the foetal period evolve in very early stages of development. In conclusion, this paper offers an accurate study of the protein composition of chick embryonic CSF, which will help the understanding of the influences on neuroepithelial stem cells during development and, as a result, the appropriate conditions for the in vitro study of embryonic/foetal nervous tissue cells.

  12. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  13. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos.

    PubMed

    Gato, Angel; Moro, J A; Alonso, M I; Bueno, D; De La Mano, A; Martín, C

    2005-05-01

    Early in development, the behavior of neuroepithelial cells is controlled by several factors, which act in a developmentally regulated manner. Diffusible factors are secreted locally by the neuroepithelium itself, although other nearby structures may also be involved. Evidence suggests a physiological role for the cerebrospinal fluid in the development of the brain. Here, using organotypic cultures of chick embryo neuroepithelial explants from the mesencephalon, we show that the neuroepithelium in vitro is not able to self-induce cell survival, replication, and neurogenesis. We also show that the embryonic cerebrospinal fluid (E-CSF) promotes neuroepithelial stem cell survival and induces proliferation and neurogenesis in mesencephalic explants. These data strongly suggest that E-CSF is involved in the regulation of neuroepithelial cells behavior, supporting the hypothesis that this fluid plays a key role during the early development of the central nervous system.

  14. Structure of the intra-chorionic blood sinus in the chick embryo.

    PubMed Central

    Narbaitz, R

    1977-01-01

    Portions of the chorio-allantoic membranes from 15 day old chick embryos were processed for electron microscopical examination. The analysis of both 1 micrometer thick sections stained with toluidine blue, and of thin sections stained with uranyl acetate and lead citrate, showed that the lumen of the intraepithelial vascular spaces in the chorion constitutes a single cavity extending over the whole membrane. The vascular arrangement can thus best be described as a single blood sinus, and not as a network of capillaries or sinusoids. The large lumen of the sinus is interrupted by cylindrical columns connecting its floor with its roof. Each column is enveloped in a layer of endothelium, a basal lamina intervening. The core of the column is formed by cytoplasm from two to five different cells ('villuscavity' cells, 'capillary-covering' cells or various combinations of both). Images Figs. 2-3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:591432

  15. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation.

    PubMed

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain.

  16. The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis

    PubMed Central

    Ribatti, Domenico

    2010-01-01

    Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists. The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article. PMID:27713265

  17. Regulation of rhythmic melatonin production in pineal cells of chick embryo by cyclic AMP.

    PubMed

    Macková, M; Lamosová, D; Zeman, M

    1998-05-01

    The pineal cells of chick embryos incubated in vitro exhibited a daily rhythm of melatonin synthesis under a 12:12 light:dark (LD) cycle at the embryonic days 16 and 19. In order to elucidate whether cyclic adenosine monophosphate (cAMP)--a component of the melatonin generating system--is already at work in the embryonic period, we measured the effects of forskolin and isobuthylmethylxantine (IBMX) on melatonin production, cAMP efflux and accumulation. Forskolin (after 10, 20, 30, 45, 60 and 90 min of administration) and IBMX (6 h), when applied during the light phase of LD cycle, stimulated melatonin production and cAMP efflux and accumulation during the embryonic period (at days 16 and 19 fo development). Our results suggest that the biochemical pathway involving cAMP, which controls melatonin production in the postnatal period, is developed before hatching and already on embryonic day 19 works in a way similar to that in post-hatched chicks. Differences in response to cAMP stimulation between 16- and 19-day-old pinealocytes seem to be mostly quantitative.

  18. High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo

    PubMed Central

    Wang, Xiao-Yu; Li, Shuai; Wang, Guang; Ma, Zheng-Lai; Chuai, Manli; Cao, Liu; Yang, Xuesong

    2015-01-01

    High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process. PMID:26671447

  19. Expression pattern of LINGO-1 in the developing nervous system of the chick embryo.

    PubMed

    Okafuji, Tatsuya; Tanaka, Hideaki

    2005-12-01

    We isolated a chick homologue of LINGO-1 (cLINGO-1), a novel component of the Nogo-66 receptor (NgR)/p75 neurotrophin receptor (NTR) signaling complex, and examined the expression of cLINGO-1 in the developing brain and spinal cord of the chick embryo by in situ hybridization and immunohistochemistry. cLINGO-1 was expressed broadly in the spinal cord, including the ventral portion of the ventricular zone, and motor neurons. cLINGO-1 was also expressed in the dorsal root ganglion and boundary cap cells at dorsal and ventral roots. In the early embryonic brain, cLINGO-1 was first expressed in the prosencephalon and the ventral mesencephalon, and later in the telencephalon, the rostral part of the mesencephalon and some parts of the hindbrain. cLINGO-1 was also expressed in the ventral part of the neural retina and trigeminal and facial nerves. We also found that cLINGO-1, cNgR1 and p75NTR were expressed in overlapped patterns in the spinal cord and the dorsal root ganglion, but that these genes were expressed in distinct patterns in the early embryonic brain.

  20. Exposure to Excess Phenobarbital Negatively Influences the Osteogenesis of Chick Embryos

    PubMed Central

    Yan, Yu; Cheng, Xin; Yang, Ren-Hao; Li, He; Chen, Jian-Long; Ma, Zheng-Lai; Wang, Guang; Chuai, Manli; Yang, Xuesong

    2016-01-01

    Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical setting. However, a long term of phenobarbital administration in pregnant women may produce side effects on embryonic skeletogenesis. In this study, we aim to investigate the mechanism by which phenobarbital treatment induces developmental defects in long bones. We first determined that phenobarbital treatment decreased chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos. Phenobarbital treatment also suppressed mineralization in both in vivo and in vitro long bone models. Next, we established that phenobarbital treatment delayed blood vessel invasion in a cartilage template, and this finding was supported by the down-regulation of vascular endothelial growth factor in the hypertrophic zone following phenobarbital treatment. Phenobarbital treatment inhibited tube formation and the migration of human umbilical vein endothelial cells. In addition, it impaired angiogenesis in chick yolk sac membrane model and chorioallantoic membrane model. In summary, phenobarbital exposure led to shortened lengths of long bones during embryogenesis, which might result from inhibiting mesenchyme differentiation, chondrocyte proliferation, and delaying mineralization by impairing vascular invasion. PMID:27746734

  1. Studies on insulin-like growth factor-I and insulin in chick limb morphogenesis.

    PubMed

    Dealy, C N; Kosher, R A

    1995-01-01

    The apical ectodermal ridge (AER) promotes the proliferation and directed outgrowth of the subridge mesodermal cells of the developing limb bud, while suppressing their differentiation. Insulin-like growth factor-I (IGF-I) and its receptor are expressed by the subridge mesodermal cells of the chick limb bud growing out in response to the AER, and specific insulin receptors are present in the limb bud during its outgrowth. To study the possible roles of IGF-I and insulin in limb outgrowth, we have examined their effects on the morphogenesis of posterior and anterior portions of the distal tip of stage 25 embryonic chick wing buds subjected to organ culture in serum-free medium in the presence or absence of the AER and limb ectoderm. The distal mesoderm of control posterior explants lacking an AER or all limb ectoderm ceases expressing IGF-I mRNA, exhibits little or no proliferation, fails to undergo outgrowth, and rapidly differentiates. Exogenous IGF-I and insulin promote the outgrowth and proliferation and suppress the differentiation of distal mesodermal cells in posterior explants lacking an AER or limb ectoderm, thus mimicking at least to some extent the outgrowth promoting and anti-differentiative effects normally elicited on the subridge mesoderm by the AER. Furthermore, IGF-I and insulin-treated posterior explants exhibit high IGF-I mRNA expression, indicating that IGF-I and insulin maintain the expression of endogenous IGF-I by the subridge mesoderm. We have also found IGF-I and insulin can affect the morphology and activity of the AER. When the posterior portion of the wing bud tip is cultured with the AER intact in control medium, on day 4-5 the AER flattens, ceases expressing high amounts of the AER-characteristic homeobox-containing gene Msx2, and concomitantly an elongated cartilaginous element differentiates in the subridge mesoderm. In contrast, in the presence of exogenous IGF-I or insulin the AER of such explants does not flatten, continues

  2. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo.

    PubMed

    O'Donovan, M J; Landmesser, L

    1987-10-01

    The development of hindlimb motor activity was studied in an isolated preparation of the chick spinal cord. The motor output from lumbosacral segments was characterized by recording the pattern of ventral root and muscle nerve discharge in 6-14-d-old embryos. In addition, the synaptic drive underlying motoneuron activity was monitored electrotonically from the ventral roots. Spontaneous motor activity consisted of recurring episodes of cyclical motoneuron discharge. During development, both the number of cycles in each episode and the intensity of discharge in each cycle progressively increased. Monophasic, positive ventral root potentials accompanied each cycle of motoneuron discharge. Prior to the innervation of hindlimb muscles at stage 26, ventral root discharge was barely detectable despite the presence of large ventral root potentials. Following hindlimb muscle innervation, each cycle of activity was initiated by a brief, intense discharge that coincided with the rising phase of the ventral root potential. In embryos older than stage 30, the initial discharge was followed, after a delay, by a more prolonged discharge. The duration of ventral root potentials was shortest in the stage 26 embryos, but was similar in embryos at stage 29 and older. The developmental changes in the coordination of antagonist activity were documented by recording the pattern of discharge in sartorius (flexor) and caudilioflexorius (extensor) muscle nerves between stage 30 and stage 36. At stage 30 both sets of motoneurons were coactivated during the brief discharge that initiated each cycle. By stage 31 a second discharge occurred in each cycle. The second discharge was delayed in flexor, but not in extensor, motoneurons, which led to an alternating pattern of activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. The expression pattern of the Distal-less homeobox-containing gene Dlx-5 in the developing chick limb bud suggests its involvement in apical ectodermal ridge activity, pattern formation, and cartilage differentiation.

    PubMed

    Ferrari, D; Sumoy, L; Gannon, J; Sun, H; Brown, A M; Upholt, W B; Kosher, R A

    1995-08-01

    Here we report the isolation from a chick limb bud cDNA library of a cDNA that contains the full coding sequence of chicken Dlx-5, a member of the Distal-less (Dlx) family of homeobox-containing genes that encode homeodomains highly similar to that of the Drosophila Distal-less gene, a gene that is required for limb development in the Drosophila embryo. The expression pattern of Dlx-5 in the developing chick limb bud suggests that it may be involved in several aspects of limb morphogenesis. Dlx-5 is expressed in the apical ectodermal ridge (AER) which directs the outgrowth and patterning of underlying limb mesoderm. During early limb development Dlx-5 is also expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the mid-proximal posterior margin that corresponds to the posterior necrotic zone. These mesodermal domains of Dlx-5 expression roughly correspond to the anterior and posterior boundaries of the progress zone, the group of highly proliferating undifferentiated mesodermal cells underneath the AER that will give rise to the skeletal elements of the limb and associated structures. The AER and anterior and posterior mesodermal domains of Dlx-5 expression are regions in which the homeobox-containing gene Msx-2 is also highly expressed, suggesting that Dlx-5 and Msx-2 might be involved in regulatory networks that control AER activity and demarcate the progress zone. In addition, Dlx-5 is expressed in high amounts by the differentiating cartilaginous skeletal elements of the limb, suggesting it may be involved in regulating the onset of limb cartilage differentiation.

  4. Restoration of Hypoxanthine Phosphoribosyl Transferase Activity in Mouse 1R Cells After Fusion with Chick-Embryo Fibroblasts

    PubMed Central

    Bakay, Bohdan; Croce, Carlo M.; Koprowski, Hilary; Nyhan, William L.

    1973-01-01

    Fusion of the 1R mouse cell, which lacks activity of hypoxanthine phosphoribosyl transferase (EC 2.4.2.8), with chick-embryo fibroblasts yielded progeny cells that survived in hypoxanthine-aminopterin-thymidine selective medium. This property and the failure of the progeny to survive in 8-azaguanine indicated that hypoxanthine phosphoribosyl transferase activity was present. Electrophoretic analysis revealed that the enzyme was of mouse, not chick, origin. These observations are consistent with the operation of a regulator gene responsible for the absence of hypoxanthine phosphoribosyl-transferase activity in the 1R cell and its presence in the progeny. Images PMID:4516198

  5. Anasarca and myopathy in ostrich chicks.

    PubMed

    Philbey, A W; Button, C; Gestier, A W; Munro, B E; Glastonbury, J R; Hindmarsh, M; Love, S C

    1991-07-01

    Twenty ostrich chicks that died at, or within, 1 week after hatching were examined from 7 farms with poor (43 to 75%) hatchability. All chicks had anasarca and 15 had mild, generalised, acute degenerative changes in the complexus and pelvic limb muscles. One had fibrinoid degeneration of arterioles. Biochemical examinations produced no evidence of deficiencies of selenium, vitamin A or vitamin E. The syndrome was related to high relative humidity during incubation. Malpositioning also was a cause of embryo mortality.

  6. Raphe of the posterior neural tube in the chick embryo: its closure and reopening as studied in living embryos with a high definition light microscope.

    PubMed

    van Straaten, H W; Jaskoll, T; Rousseau, A M; Terwindt-Rouwenhorst, E A; Greenberg, G; Shankar, K; Melnick, M

    1993-09-01

    Chick embryos cultured on a curved substratum show a transient enlargement of the posterior neuropore (PN), mimicking the temporary delay of PN closure as seen in the curly tail (ct) mouse mutant (van Straaten et al. [1993] Development 117:1163-1172). In the present study the PN enlargement in the chick embryo was investigated further with a high definition light microscope (HDmic), allowing high resolution viewing of living embryos in vitro. The temporary PN enlargement appeared due to considerable reopening of the raphe of the posterior neural tube, which was followed by reclosure after several hours. The raphe was subsequently studied in detail. It appeared very irregular, with small zones of apposed, open and fused neural folds. During closure, these raphe features shifted posteriorly. A distinct fusion sequence between surface epithelium and neuroepithelium was not seen. During experimental reopening of the raphe in vitro, small bridges temporarily arose, broke and disappeared quickly; they likely represented the first adhesion sites between the neural folds. More prominent adhesion sites partly detached, resulting in bridging filopodia-like connections; they probably represented the first anteroposterior locations of neural fold fusion. Our observations in the living chick embryo in vitro thus show that the caudal neural tube has an irregular raphe with few adhesion sites, which can be readily reopened. As a result of the irregularity, the PN does not close zipper-like, but button-like by forming multiple closure sites.

  7. Effect of cocaine, ethanol or nicotine on ornithine decarboxylase activity in early chick embryo brain.

    PubMed

    Beeker, K; Smith, C; Pennington, S

    1992-09-18

    Fetal drug exposure causes multiple deficits in the developing child. For both humans and animal models, the single most common drug-related problem is fetal growth suppression. This defect is associated with significant perinatal morbidity and mortality and may also be related to significant behavioral problems appearing later in life. Studies focussed on the molecular mechanism of fetal drug effects in placental models are complicated by multiple interactions of the drug with mother, placenta and fetus. Using early (76-168 h) chick embryos as a non-placental model, and three common drugs of abuse (nicotine, ethanol and cocaine) it was found that each drug suppressed the peak in fetal brain ornithine decarboxylase (ODC) activity that normally occurs at 120 h of development. For each drug, the decrease in ODC activity at 120 h was followed by a small but significant increase in ODC. Thus, although the drug-treated embryos were smaller in size, they appeared to be undergoing compensatory growth and, in fact, became equal in weight to the vehicle-treated animals, if allowed to hatch.

  8. Claudin-5 expression in the vasculature of the developing chick embryo.

    PubMed

    Collins, Michelle M; Baumholtz, Amanda I; Ryan, Aimee K

    2012-01-01

    The claudin family of proteins are integral components of tight junctions and are responsible for determining the ion specificity and permeability of paracellular transport within epithelial and endothelial cell layers. Studies in human, mouse, Xenopus, and zebrafish have shown that only a limited number of claudins are expressed in endothelial cells. Here, we report the expression pattern of Claudin-5 during chick development. Between HH stage 4 and 6 Claudin-5 expression was observed exclusively in extraembryonic tissue. Claudin-5 expression was not observed in the embryo until HH stage 8, coincident with the onset of embryonic vascularization. Claudin-5 expression was maintained in the developing vasculature in the embryonic and extraembryonic tissue throughout organogenesis (HH stage 19-35), including the vasculature of the ectoderm and of organs derived from the mesoderm and endoderm lineages. These data describe a conserved expression pattern for Claudin-5 in the endothelial tight junction barrier and is the first report of the onset of Claudin-5 expression in a vertebrate embryo.

  9. Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells.

    PubMed

    Stevenson, M; Boos, E; Herbert, C; Hale, A; Green, N; Lyons, M; Chandler, L; Ulbrich, K; van Rooijen, N; Mautner, V; Fisher, K; Seymour, L

    2006-02-01

    Non-human adenovirus vectors have attractive immunological properties for gene therapy but are frequently restricted by inefficient transduction of human target cells. Using chicken embryo lethal orphan (CELO) virus, we employed a nongenetic mechanism of polymer coating and retargeting with basic fibroblast growth factor (bFGF-pc-CELOluc), a strategy that permits efficient tropism modification of human adenovirus. bFGF-pc-CELOluc showed efficient uptake and transgene expression in chick embryo fibroblasts (CEF), and increased levels of binding and internalization in a variety of human cell lines. Transgene expression was also greater than unmodified CELOluc in PC-3 human prostate cells, although the specific activity (RLU per internalized viral genome) was decreased. In CEF, the specific activity of bFGF-pc-CELOluc was considerably higher than in the human prostate cell line PC-3. Retargeted virus was fully resistant to inhibition by human serum with known adenovirus-neutralizing activity in vitro, while in mice CELOluc was cleared less rapidly from the blood than Adluc following i.v. administration in the presence of adenovirus neutralizing serum. Polymer coating and retargeting with bFGF further reduced rates of clearance for both viruses, suggesting protection against both neutralizing and opsonizing factors. The data indicate that CELO virus may be retargeted to infect human cells via alternative, potentially disease-specific, receptors and resist the effects of pre-existing humoral immunity.

  10. The effects of ethanol on CNS development in the chick embryo.

    PubMed

    Giles, Seamus; Boehm, Peter; Brogan, Cathy; Bannigan, John

    2008-02-01

    Human and animal studies show that the central nervous system (CNS) is particularly vulnerable to developmental exposure to alcohol across all stages of development. New critical periods of ethanol sensitivity continue to be defined. The aim of this study was to further examine the stage-specific effects of ethanol on CNS development using a relatively simple programme of neuronal migration and differentiation, the chick embryo spinal cord, and treating at the immediate post-neurulation stage. Embryos (HH-stage 10-12) were explanted into shell-less culture and treated with ethanol (20 microl/40%) or saline (20 microl). At 6,12, 24 and 48 h post-treatment specimens were processed for resin histology. In addition, levels of cell death were analysed using Lysotracker Red, neural crest cell migration patterns were examined using HNK-1 staining and effects on DNA synthesis were evaluated on autoradiographs prepared 1h after exposure to 3H-TdR. This treatment protocol produced significant growth retardation in ethanol specimens examined at 48 h post-treatment. This effect was shown to involve increased levels of cell death, perturbation of DNA synthesis and an abnormal translocation and subsequent loss of cells into the neural tube lumen. No gross malformations were observed. We conclude that these results further highlight the stage-specific effects of ethanol on neurodevelopment.

  11. Characterization of concentration gradients of a morphogenetically active retinoid in the chick limb bud

    PubMed Central

    1987-01-01

    It has long been suggested that the generation of biological patterns depends in part on gradients of diffusible substances. In an attempt to bridge the gap between this largely theoretical concept and experimental embryology, we have examined the physiology of diffusion gradients in an actual embryonic field. In particular, we have generated in the chick wing bud concentration gradients of the morphogenetically active retinoid TTNPB, (E)-4-[2-(5,6,7,8-tetrahydro- 5,5,8,8-tetramethyl-2-naphthalenyl)-1-prope nyl] benzoic acid, a synthetic vitamin A compound. Upon local application of TTNPB the normal 234 digit pattern is duplicated in a way that correlates with the geometry of the underlying TTNPB gradient; low doses of TTNPB lead to a shallow gradient and an additional digit 2, whereas higher doses result in a steep, far-reaching gradient and patterns with additional digits 3 and 4. The experimentally measured TTNPB distribution along the anteroposterior axis, can be modeled by a local source and a dispersed sink. This model correctly predicts the site of specification of digit 2, and provides an empirical estimate of the diffusion coefficient (D) of retinoids in embryonic limb tissue. The numerical value of approximately 10(-7) cm2s-1 for D suggests that retinoids are not freely diffusible in the limb rudiment, but interact with the previously identified cellular retinoic acid binding protein. In addition, D affords an estimate of the time required to establish a diffusion gradient as 3 to 4 h. This time span is in a range compatible with the time scale of pattern specification in developing vertebrate limbs. Our studies support the view that diffusion of morphogenetic substances is a plausible mechanism of pattern formation in secondary embryonic fields. PMID:3667700

  12. The development of motor projection patterns in the chick hind limb.

    PubMed Central

    Landmesser, L

    1978-01-01

    1. Retrograde transport of horseradish peroxidase was used to map the initial projection patterns of lumbosacral motoneurones to the embryonic chick hind limb. 2. The stage 28 segmental projection pattern to each of the four primary muscle masses was characteristic and indistinguishable from the stage 36 projection pattern to the sum of the muscles derived from that mass. In addition, the adductor motoneurone pool was found to be similar in position (both rostro-caudal and mediolateral) at stages 29, 30, 32, 33 1/2 and 36. 3. Therefore axons from lumbosacral motoneurones project for the most part only to appropriate regions from early times shortly after they grow into the limb bud. Furthermore, the attainment of the segmental projection pattern occurs prior to the normal time of, and therefore without the aid of, cell death. This conclusion was supported by electrophysiological recordings made from muscle nerves. 4. A regionalization of the projection patterns within a single muscle mass could be shown both anatomically and physiologically prior to the cleavage of the mass into individual muscles and the projections were in a general way appropriate for the muscles derived from those regions. 5. Therefore the process of muscle cleavage does not in itself create the specific projection patterns observed, and motoneurone axons appear to grow to and to ramify and make synapses only within regions which correspond to their adult muscles. 6. Finally, the termination site of each motoneurone axon in the early limb was found to be tightly correlated in a somatotopic fashion with the position occupied by its soma in the cord. This suggests that some feature of the motoneurone related to its position may be of importance in achieving the specific projection patterns observed. Images Plate 1 PMID:731552

  13. Role of the chicken homeobox-containing genes GHox-4.6 and GHox-8 in the specification of positional identities during the development of normal and polydactylous chick limb buds.

    PubMed

    Coelho, C N; Upholt, W B; Kosher, R A

    1992-06-01

    During early stages of normal chick limb development, the homeobox-containing (HOX) gene GHox-4.6 is expressed throughout the posterior mesoderm of the wing bud from which most of the skeletal elements including the digits will develop, whereas GHox-8 is expressed in the anterior limb bud mesoderm which will not give rise to skeletal elements. In the present study, we have examined the expression of GHox-4.6 and GHox-8 in the wing buds of two polydactylous mutant chick embryos, diplopodia-5 and talpid2, from which supernumerary digits develop from anterior limb mesoderm, and have also examined the expression of these genes in response to polarizing zone grafts and retinoic acid-coated bead implants which induce the formation of supernumerary digits from anterior limb mesoderm. We have found that the formation of supernumerary digits from the anterior mesoderm in mutant and experimentally induced polydactylous limb buds is preceded by the ectopic expression of GHox-4.6 in the anterior mesoderm and the coincident suppression of GHox-8 expression in the anterior mesoderm. These observations suggest that the anterior mesoderm of the polydactylous limb buds is "posteriorized" and support the suggestion that GHox-8 and GHox-4.6, respectively, are involved in specifying the anterior non-skeletal and posterior digit-forming regions of the limb bud. Although the anterior mesodermal domain of GHox-8 expression is severely impaired in the mutant and experimentally induced polydactylous limb buds, this gene is expressed by the prolonged, thickened apical ectodermal ridges of the polydactylous limb buds that extend along the distal anterior as well as the distal posterior mesoderm.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Microgravity in the STS-29 space shuttle discovery affected the vestibular system of chick embryos

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D.; Jones, T.; Vellinger, J.; Deuser, M.; Hester, P.; Hullinger, R.

    1996-01-01

    Out of 32 embryos flown (16 @ E2 + 16 @ E9) for 5 days, 16 survived. All sixteen E2 were dead at landing. Eight were opened and eight were incubated at 1.0G. Autopsy showed that 4 E2 survived over 24 hours in space. Eight E14 hatched without anatomical malformations, and 8 E14 were fixed. The height of the macular epithelia was 31 mu m (mean) in control and 26 mu m in flight chicks. The cross-sectional area of macular nuclei of control was 17 mu m(2) for hair cells and 14 mu m(2) in supporting cells. In flight, cross-sectional area was 17 mu m(2) in hair cells and 15 mu m(2) in supporting cells (n=250). The shape factor of cartilage cells (1.0 = perfect circle) between control (mean = 0.70) and flight (mean = 0.72), and the area of cartilaginous cells between controls (mean = 9 mu m(2)) and flight (mean = 9 mu m(2)) did not differ (n=300). The nuclei of support cells were closer to the basement membrane in flight than in control chicks. The immunoreactivity of otoconia with anti keratan, fibronectin or chrondroitin sulfate was not different between flight and control ears. There were more afferent fibers inside the macular epithelia of flight (p<0.05) than control. Three of 8 flight animals had elevated vestibular thresholds (VT), with normal mean response amplitudes and latencies. Modified afferent innervation patterns requiring weeks to compensate are sufficient to elevate VT, and should be investigated further. Other reversible (sublethal) microgravity effects on sensory epithelia (vacuoles, swelling, etc) require quantification.

  15. Lethal and teratogenic effects of long-term low-intensity radio frequency radiation at 428 MHz on developing chick embryo

    SciTech Connect

    Saito, K.; Suzuki, K.; Motoyoshi, S. )

    1991-06-01

    Exposure of developing chick embryos to 428 MHz radio frequency (RF) radiation at a power density of 5.5 mW/cm2 for more than 20 days resulted in embryolethal and/or teratogenic effects and delayed hatching. These adverse biological effects were not due to any thermal effect of the RF radiation. The authors have demonstrated teratogenicity in the chick embryo as a result of protracted low-dose RF irradiation.

  16. Physical properties, lipid composition and enzyme activities of hepatic subcellular membranes from chick embryo after ethanol treatment

    SciTech Connect

    Sanchez-Amate, M.C.; Marco, C.; Segovia, J.L. )

    1992-01-01

    Exposure of chick embryos to ethanol resulted in significant alterations to the lipid composition of various different hepatic subcellular membranes. A marked decrease in cholesterol levels and an increase in the phospholipid content of microsomes and mitochondria was observed. Ethanol also affected the fatty acid profiles, mainly by decreasing the percentage of oleic acid in phosphatidylcholine and phosphatidylethanolamine in the mitochondria and phosphatidylethanolamine in the microsomes. In spite of these changes ethanol only induced alterations in the fluidity of the mitochondrial membranes, which showed a more rigid core, in contrast to the phospholipid-head region, which was not affected. In accordance with the changes observed in the physical state of the membrane, the enzymes involved in the microsomal electron-transport systems were not modified by ethanol, while cytochrome oxidase activity decreased by 50% compared to the activity in the mitochondria from control chick embryos.

  17. The effect of mitochondrial ATP-sensitive potassium channels on apoptosis of chick embryo cecal cells by Eimeria tenella.

    PubMed

    Yang, Sha-sha; Zheng, Ming-xue; Xu, Huan-cheng; Cui, Xiao-zhen; Zhang, Yan; Zhao, Wen-long; Bai, Rui

    2015-04-01

    The objective of this study was to investigate the effect of mitochondrial ATP-sensitive potassium (mitoKATP) channels on apoptosis induced by Eimeria tenella. At 24, 48, 72, 96 and 120 h after Eimeria tenella infection, TUNEL assays and translation of phosphatidyl serines to the host cell plasma membrane surface showed that diazoxide-treated chick embryo cecal cells underwent less apoptosis (P <0.05), while light microscopy showed that infection rates of treated cells were higher (P <0.01) than untreated cells. Caspase 9 and caspase 3 of infected cells were activated less (P <0.01) in diazoxide-treated cells than untreated cells. These results indicate that opening mitoKATP channels can protect chick embryo cecal cells from mitochondria-dependent apoptosis induced by Eimeria tenella by inhibiting activations of caspase 9 and caspase 3.

  18. Snail2 and Zeb2 repress P-cadherin to define embryonic territories in the chick embryo.

    PubMed

    Acloque, Hervé; Ocaña, Oscar H; Abad, Diana; Stern, Claudio D; Nieto, M Angela

    2017-02-15

    Snail and Zeb transcription factors induce epithelial-to-mesenchymal transition (EMT) in embryonic and adult tissues by direct repression of E-cadherin transcription. The repression of E-cadherin transcription by the EMT inducers Snail1 and Zeb2 plays a fundamental role in defining embryonic territories in the mouse, as E-cadherin needs to be downregulated in the primitive streak and in the epiblast, concomitant with the formation of mesendodermal precursors and the neural plate, respectively. Here, we show that in the chick embryo, E-cadherin is weakly expressed in the epiblast at pre-primitive streak stages where it is substituted for by P-cadherin We also show that Snail2 and Zeb2 repress P-cadherin transcription in the primitive streak and the neural plate, respectively. This indicates that E- and P-cadherin expression patterns evolved differently between chick and mouse. As such, the Snail1/E-cadherin axis described in the early mouse embryo corresponds to Snail2/P-cadherin in the chick, but both Snail factors and Zeb2 fulfil a similar role in chick and mouse in directly repressing ectodermal cadherin genes to contribute to the delamination of mesendodermal precursors at gastrulation and the proper specification of the neural ectoderm during neural induction.

  19. Pharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord.

    PubMed

    Sernagor, E; Chub, N; Ritter, A; O'Donovan, M J

    1995-11-01

    The isolated spinal cord of the chick embryo generates episodes of rhythmic bursting in which sartorius (hip flexor) and femorotibialis (knee extensor) motoneurons exhibit characteristic patterns of activity. At the beginning of each cycle both sets of motoneurons discharge synchronously. Following this brief synchronous activation sartorius motoneurons stop firing at the time of peak femorotibialis activity, producing a period of alternation between the two sets of motoneurons. Intracellular recording from motoneurons has suggested that the pause is mediated by a synaptically induced shunt conductance. However, the pharmacological basis for this shunt and the nature of the excitatory drive to motoneurons is unknown. To address these questions we have investigated the pharmacology of the rhythmic, synaptic drive to lumbosacral motoneurons using local and bath application of several excitatory and inhibitory antagonists, and documenting their effects on motor output in E10-E12 chick embryos. Local application of bicuculline or picrotoxin over sartorius motoneurons abolished the pause in firing recorded from the sartorius muscle nerve. As a consequence, the pattern of sartorius and femorotibialis activity was similar and the motoneurons were coactive. The pause in sartorius firing was shortened following local application of the glycine antagonist strychnine the nicotinic, cholinergic antagonists mecamylamine, and dihydro-beta-erythroidine and several excitatory amino acid antagonists. Application of the GABA uptake inhibitor nipecotic acid depressed the slow potentials and discharge recorded from the sartorius muscle nerve. These findings suggest that the pause is determined primarily by synaptic inputs acting at motoneuron GABAA receptors with contributions from glycinergic, cholinergic, and glutamatergic inputs. The actions of locally applied GABA onto spinal neurons are consistent with these findings because the neurotransmitter depolarizes spinal neurons and

  20. The development of sensorimotor synaptic connections in the lumbosacral cord of the chick embryo.

    PubMed

    Lee, M T; Koebbe, M J; O'Donovan, M J

    1988-07-01

    We have examined the development of synaptic connections between afferents and motoneurons in the lumbosacral spinal cord of the chick embryo between stages 28 and 39. The central projection of afferents was visualized following injection of dorsal root ganglia with HRP. Afferent fibers first entered the dorsal gray matter between stages 29 and 31. They grew in a ventrolateral direction, reaching motoneuron dendrites by stage 32. Quantitative analysis of axon numbers suggested that individual axons did not begin to branch extensively until they approached the lateral motor column at stage 36. Connectivity between afferents and motoneurons was assessed by stimulating dorsal roots or nerves supplying the femorotibialis muscle and recording the resulting motoneuron synaptic potentials intracellularly or from the cut ventral roots. At stages 37-39, low-intensity stimulation produced a short-latency positive potential that was followed at higher stimulus currents by slower positive potentials. All of these potentials were abolished in solutions that block chemical synaptic transmission (zero Ca2+/2 mM Mn2+). The early potential, which includes the monosynaptic EPSP produced by muscle afferents, persisted in the presence of the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovaleric acid (APV), but was largely eliminated by the more general excitatory amino acid antagonist, kynurenic acid. Therefore, in the chick, as in other species, a glutamate-like transmitter appears to be released at the synapses between muscle afferents and motoneurons. The APV-resistant potential was reduced in amplitude during bath application of the glycine and GABA antagonists, strychnine and picrotoxin, suggesting that it was composed of depolarizing inhibitory as well as excitatory components at these stages. The monosynaptic EPSP could be recorded in ventral roots as early as stages 32-33, when muscle afferents first grew into the vicinity of motoneuron dendrites. The EPSP in these young

  1. The lathyrogenic effect of isonicotinic acid hydrazide (INAH) on the chick embryo and its reversal by pyridoxal.

    PubMed

    LEVENE, C I

    1961-04-01

    When applied to the chorio-allantoic membrane of the chick embryo, isoniazid was shown to produce an increase in the fragility of the embryo and in the amount of collagen which was extractable from the bones with cold 1 M sodium chloride. The administration of pyridoxal reversed these phenomena almost completely. The effect of isoniazid differed from that of beta-aminopropionitrile in that the latter was of greater magnitude, and was not affected by pyridoxal; whereas beta-aminopropionitrile caused skeletal deformities, isoniazid even at 12 times the concentration produced no deformities. The aldehyde group of pyridoxal was shown to be necessary for its interaction with isoniazid.

  2. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb

    PubMed Central

    Popławski, Nikodem J.; Swat, Maciej; Gens, J. Scott; Glazier, James A.

    2007-01-01

    A central question in developmental biology is how cells interact to organize into tissues? In this paper, we study the role of mesenchyme-ectoderm interaction in the growing chick limb bud using Glazier and Graner's cellular Potts model, a grid-based stochastic framework designed to simulate cell interactions and movement. We simulate cellular mechanisms including cell adhesion, growth, and division and diffusion of morphogens, to show that differential adhesion between the cells, diffusion of growth factors through the extracellular matrix, and the elastic properties of the apical ectodermal ridge together can produce the proper shape of the limb bud. PMID:18167520

  3. Expression of alphaVbeta3 integrin in the chick embryo aortic endothelium.

    PubMed

    Corbel, Catherine

    2002-09-01

    The integrin chain alphaV, expressed in association with beta3, by cells of the megakaryocytic/thrombocytic and endothelial lineages is thought to play an important role in angiogenesis. alphaVbeta3 expression by endothelial cells is not constitutive but induced by various stimuli in avian and human models. Here the developmental pattern of alphaVbeta3 expression was analysed in the chick embryo by immunocytochemistry, using a specific monoclonal antibody. On day 2 of development alphaVbeta3 expression was restricted to rare cells in the blood stream, in the embryo proper and in the yolk sac blood islands. AlphaVbeta3 expression by endothelial cells became detectable on day 3 and was restricted to the dorsal aorta. Interestingly it was absent from the intra-aortic hemopoietic clusters (E3.5) which, as we have showed previously, express the alphaIIbbeta3 integrin and display progenitor potentialities. However the endothelium underlying intra-embryonic hemopoietic clusters expressed this integrin. In contrast E6-7 para-aortic hemopoietic foci contained numerous alphaVbeta3 positive cells. Both alphaVbeta3 and alphaIIbbeta3 were expressed in these latter hemopoietic sites, while alphaVbeta3 was still selectively expressed by the aortic endothelium until E6. Thereafter, at E7 the pulmonary artery also expressed it. Since alphaIIbbeta3 is expressed by avian and murine multilineage hemopoietic progenitors, we then studied the hemopoietic potentialities of alphaVbeta3/alphaIIbeta3 double positive cells from embryonic bone marrow differentiating in vitro in erythro-myeloid conditions. Thrombocytic, erythroid and myeloid progenitor potentialities were found within the cell population expressing both beta3 integrins.

  4. Exposure to 2,5-hexanedione can induce neural malformations in chick embryos.

    PubMed

    Cheng, Xin; Wang, Guang; Ma, Zheng-lai; Chen, Yun-yu; Fan, Jing-jing; Zhang, Zhao-long; Lee, Kenneth Ka Ho; Luo, Huan-min; Yang, Xuesong

    2012-10-01

    Worldwide, n-hexane is an organic solvent widely used in numerous industries such as chemical engineering, pharmaceutical and cosmetic industry. 2,5-Hexanedione (2,5-HD) is the main metabolite of n-hexane. It is now gradually recognized that chronic exposure to n-hexane could harm the health of people. Nevertheless, it is still unclear whether or not 2,5-HD is potentially teratogenic during pregnancies. In this study, we investigated the effects of 2,5-HD exposure on embryonic development in the chick embryo. We first determine the effect of 2,5-HD on neurodevelopment - specifically looking for neural tube defects in the forebrain, midbrain, and also for malformation in the eyes. We established that in the presence of 2,5-HD, the dorsal neural tubes were malformed during the closure of the neural folds. In addition, exposure to 2,5-HD could also inhibit neural differentiation as revealed by immunofluorescent staining for neurofilament (NF). We also demonstrated that the impaired neurodevelopment was attributed to negative effect of 2,5-HD on neurite development and positive effect on apoptosis in developing neurons. Specifically, we found 2,5-HD treatment resulted in fewer neurons and the neurites projecting from the neurons were significantly shorten when compared with control cultures. In addition, MTT and mitochondrial membrane potential (MMP) assays revealed neuron cell viability was reduced by exposure to 2,5-HD in a dose-dependent fashion. In sum, our results suggest that chronic exposure to 2,5-HD is harmful to the developing embryo, especially in the context of neurodevelopment.

  5. The mechanism of beta-glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures.

    PubMed

    Boskey, A L; Guidon, P; Doty, S B; Stiner, D; Leboy, P; Binderman, I

    1996-11-01

    Differentiating chick limb-bud mesenchymal cells plated in micromass culture form a cartilage matrix that can be mineralized in the presence of 4 mM inorganic phosphate (Pi), and 1 mM calcium. Previous studies showed that when beta-glycerophosphate (beta GP) is used in place of Pi, the mineral crystals formed are larger and differ in distribution. The present study shows that the difference in distribution is not associated with alterations in cell proliferation, protein synthesis, or with collagen, proteoglycan core protein, or alkaline phosphatase gene expression. Cultures with 2.5, 5, and 10 mM beta GP did show different levels of alkaline phosphatase activity, and in the presence of low (0.3 mM) Ca had different Pi contents (4, 6 and 9 mM, respectively), indicating that the increase in CaxP product may in part be responsible for the altered pattern of mineralization. However, cultures with beta GP in which alkaline phosphatase activity was inhibited with levamisole still had an altered mineral distribution as revealed by Fourier transform-infrared (FT-IR) microspectroscopy. The presence of a casein kinase II-like activity in the mineralizing cultures, the ability of specific inhibitors of this enzyme to block mineralization, and the known ability of beta GP to block phosphoprotein phosphatase activity suggests that altered patterns of matrix protein phosphorylation may influence mineral deposition in these cultures.

  6. Activity of protein kinase C during the differentiation of chick limb bud mesenchymal cells.

    PubMed

    Sonn, J K; Solursh, M

    1993-07-01

    To investigate the relationship between protein kinase C (PKC) and chondrogenesis, PKC activity was assayed in cultures of stage 23/24 chick limb bud mesenchymal cells under various conditions. PKC activities of cytosolic and particulate fractions were low in 1 day cultured cells. As chondrogenesis proceeds, cytosolic PKC activity increased more than twofold, while that of the particulate fraction increased only slightly. Three days' treatment of cultures with phorbol-12-myristate-13-acetate (PMA, 5 x 10(-8) M) inhibited chondrogenesis judged by the accumulation of Alcian blue bound to the extracellular matrix and depressed PKC activity in cytosolic fraction. When cells were grown for 3 days in control medium after 3 days' treatment with PMA, chondrogenesis resumed and PKC activity recovered to normal values. PKC activity in cultures plated at low density (5 x 10(6) cells/ml) where chondrogenesis is reduced was as low as that in 1 day cultured cells plated at high density (2 x 10(7) cells/ml) or that in PMA treated cells. On the other hand, staurosporine promoted chondrogenesis without affecting PKC activity. Furthermore, reversal of PMA's inhibitory effect on chondrogenesis by staurosporine was not accompanied by recovery of PKC activity. These data indicate that increases in PKC activity is closely related to chondrogenesis and that PMA inhibits chondrogenesis by depressing PKC. However, staurosporine's enhancing effect on chondrogenesis is not related to PKC activity.

  7. [Chemically induced ectropodia in the Lacerta viridis embryo and formation of styliform limbs in reptiles].

    PubMed

    Raynaud, A; Clergue-Gazeau, M

    1984-01-01

    Administered into the eggs of Lacerta virifis on days 10 and 11 of incubation (at 25 degrees C), Cytosine-arabinofuranoside induces ectropodia in embryos, with a high frequency, which may reach 66%. The resulting styliform limbs display a general structure similar to that of the limbs of several species of serpentiform Reptilia.

  8. RNA interference is ineffective as a routine method for gene silencing in chick embryos as monitored by fgf8 silencing

    PubMed Central

    2005-01-01

    The in vivo accessibility of the chick embryo makes it a favoured model system for experimental developmental biology. Although the range of available techniques now extends to miss-expression of genes through in ovo electroporation, it remains difficult to knock out individual gene expression. Recently, the possibility of silencing gene expression by RNAi in chick embryos has been reported. However, published studies show only discrete quantitative differences in the expression of the endogenous targeted genes and unclear morphological alterations. To elucidate whether the tools currently available are adequate to silence gene expression sufficiently to produce a clear and specific null-like mutant phenotype, we have performed several experiments with different molecules that trigger RNAi: dsRNA, siRNA, and shRNA produced from a plasmid coexpressing green fluorescent protein as an internal marker. Focussing on fgf8 expression in the developing isthmus, we show that no morphological defects are observed, and that fgf8 expression is neither silenced in embryos microinjected with dsRNA nor in embryos microinjected and electroporated with a pool of siRNAs. Moreover, fgf8 expression was not significantly silenced in most isthmic cells transformed with a plasmid producing engineered shRNAs to fgf8. We also show that siRNA molecules do not spread significantly from cell to cell as reported for invertebrates, suggesting the existence of molecular differences between different model systems that may explain the different responses to RNAi. Although our results are basically in agreement with previously reported studies, we suggest, in contrast to them, that with currently available tools and techniques the number of cells in which fgf8 gene expression is decreased, if any, is not sufficient to generate a detectable mutant phenotype, thus making RNAi useless as a routine method for functional gene analysis in chick embryos. PMID:15951844

  9. THE MATURATION OF WESTERN EQUINE ENCEPHALOMYELITIS VIRUS AND ITS RELEASE FROM CHICK EMBRYO CELLS IN SUSPENSION

    PubMed Central

    Rubin, Harry; Baluda, Marcel; Hotchin, John E.

    1955-01-01

    Experiments are presented in which the plaque assay technique was used to study the intracellular appearance and release of Western equine encephalomyelitis virus in suspensions of infected chick embryo fibroblasts. No intracellular virus could be found during the 1st hour after adsorption in spite of the fact that more than 1014 cells per ml. proved to be infected. This is taken to indicate that the infecting particle loses its infectivity upon entering a susceptible cell. The first progeny virus was detectable in the cells between 1 and 2 hours after infection, and it increased in amount exponentially during the following 3 hours. The released virus as measured in the supernatant fluid increased at the same rate as the intracellular virus but exceeded it in amount by a factor of about twenty at all times during the period of exponential increase. More than 100 particles were spontaneously released from each cell, by the end of the period of exponential increase, yet the maximum number of intracellular infective particles at any instant during this period was never more than an average of from 4 to 10 per cell. Calculations based on these findings indicate that, on the average, a virus particle is released from the cell within 1 minute after it gains the property of infectiousness. PMID:13233446

  10. Production of chick embryo extract for the cultivation of murine neural crest stem cells.

    PubMed

    Pajtler, Kristian; Bohrer, Anna; Maurer, Jochen; Schorle, Hubert; Schramm, Alexander; Eggert, Angelika; Schulte, Johannes Hubertus

    2010-11-27

    The neural crest arises from the neuro-ectoderm during embryogenesis and persists only temporarily. Early experiments already proofed pluripotent progenitor cells to be an integral part of the neural crest(1). Phenotypically, neural crest stem cells (NCSC) are defined by simultaneously expressing p75 (low-affine nerve growth factor receptor, LNGFR) and SOX10 during their migration from the neural crest(2,3,4,5). These progenitor cells can differentiate into smooth muscle cells, chromaffin cells, neurons and glial cells, as well as melanocytes, cartilage and bone(6,7,8,9). To cultivate NCSC in vitro, a special neural crest stem cell medium (NCSCM) is required(10). The most complex part of the NCSCM is the preparation of chick embryo extract (CEE) representing an essential source of growth factors for the NCSC as well as for other types of neural explants. Other NCSCM ingredients beside CEE are commercially available. Producing CCE using laboratory standard equipment it is of high importance to know about the challenging details as the isolation, maceration, centrifugation, and filtration processes. In this protocol we describe accurate techniques to produce a maximized amount of pure and high quality CEE.

  11. The impact of high-salt exposure on cardiovascular development in the early chick embryo.

    PubMed

    Wang, Guang; Zhang, Nuan; Wei, Yi-Fan; Jin, Yi-Mei; Zhang, Shi-Yao; Cheng, Xin; Ma, Zheng-Lai; Zhao, Shu-Zhu; Chen, You-Peng; Chuai, Manli; Hocher, Berthold; Yang, Xuesong

    2015-11-01

    In this study, we show that high-salt exposure dramatically increases chick mortality during embryo development. As embryonic mortality at early stages mainly results from defects in cardiovascular development, we focused on heart formation and angiogenesis. We found that high-salt exposure enhanced the risk of abnormal heart tube looping and blood congestion in the heart chamber. In the presence of high salt, both ventricular cell proliferation and apoptosis increased. The high osmolarity induced by high salt in the ventricular cardiomyocytes resulted in incomplete differentiation, which might be due to reduced expression of Nkx2.5 and GATA4. Blood vessel density and diameter were suppressed by exposure to high salt in both the yolk sac membrane (YSM) and chorioallantoic membrane models. In addition, high-salt-induced suppression of angiogenesis occurred even at the vasculogenesis stage, as blood island formation was also inhibited by high-salt exposure. At the same time, cell proliferation was repressed and cell apoptosis was enhanced by high-salt exposure in YSM tissue. Moreover, the reduction in expression of HIF2 and FGF2 genes might cause high-salt-suppressed angiogenesis. Interestingly, we show that high-salt exposure causes excess generation of reactive oxygen species (ROS) in the heart and YSM tissues, which could be partially rescued through the addition of antioxidants. In total, our study suggests that excess generation of ROS might play an important role in high-salt-induced defects in heart and angiogenesis.

  12. Localization and distribution of superoxide dismutase-1 in the neural tube morphogenesis of chick embryo.

    PubMed

    Dhage, Prajakta A; Kamble, Lekha K; Bhargava, Shobha Y

    2017-02-01

    Superoxide dismutase 1 (SOD- 1) is an antioxidant enzyme that regulates the levels of Reactive oxygen species (ROS) by catalyzing the conversion of superoxide radical into hydrogen peroxide (H2O2) and oxygen. ROS are known to play a significant role in various cellular processes, via redox modification of a variety of molecules that participate in signaling pathways involved in this processes. As the levels of ROS in cells are controlled by the levels of antioxidant enzymes, thus SOD-1 may be indirectly involved in regulating different cellular processes by maintaining the required levels of H2O2. Therefore, in the present study we have investigated the possible involvement of SOD- 1 in the neurulation during the development of chick embryo. During gastrulation, SOD- 1 immunoreactivity was observed throughout the ectoderm and cauda mesoderm areas, however, its presence during neurulation was restricted to certain areas of neural tube particularly in the dorsal neural tube where neural tube closure takes place. Assaying enzyme activity revealed a significant increase in the SOD activity during neurulation. Further, inhibition of SOD- 1 by Diethyldithiocarbamate (DDC) induced abnormalities in the development of the neural tube. SOD- 1 inhibition specifically affected the closure of neural tube in the anterior region. Thus, here we report the presence of SOD- 1 mainly in the ectoderm and tissues of ectodermal origin during gastrulation to neurulation which suggests that it may be involved in the regulating the cellular processes during neural tube morphogenesis.

  13. Limb development and evolution: a frog embryo with no apical ectodermal ridge (AER)

    PubMed Central

    RICHARDSON, MICHAEL K.; CARL, TIMOTHY F.; HANKEN, JAMES; ELINSON, RICHARD P.; COPE, CELIA; BAGLEY, PETER

    1998-01-01

    The treefrog Eleutherodactylus coqui is a direct developer — it has no tadpole stage. The limb buds develop earlier than in metamorphosing species (indirect developers, such as Xenopus laevis). Previous molecular studies suggest that at least some mechanisms of limb development in E. coqui are similar to those of other vertebrates and we wished to see how limb morphogenesis in this species compares with that in other vertebrates. We found that the hind limb buds are larger and more advanced than the forelimbs at all stages examined, thus differing from the typical amniote pattern. The limb buds were also small compared to those in the chick. Scanning and transmission electron microscopy showed that although the apical ectoderm is thickened, there was no apical ectodermal ridge (AER). In addition, the limb buds lacked the dorsoventral flattening seen in many amniotes. These findings could suggest a mechanical function for the AER in maintaining dorsoventral flattening, although not all data are consistent with this view. Removal of distal ectoderm from E. coqui hindlimb buds does not stop outgrowth, although it does produce anterior defects in the skeletal pattern. The defects are less severe when the excisions are performed earlier. These results contrast with the chick, in which AER excision leads to loss of distal structures. We suggest that an AER was present in the common ancestor of anurans and amniotes and has been lost in at least some direct developers including E. coqui. PMID:9688504

  14. Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo.

    PubMed

    Ciutat, D; Calderó, J; Oppenheim, R W; Esquerda, J E

    1996-06-15

    In the present work, we show that chick embryo Schwann cells die by apoptosis both during normal development and after axonal degeneration induced by neurotoxin treatment. Schwann cell apoptosis during development takes place during a period roughly coincidental with normally occurring motoneuron death. Administration of NMDA to chick embryos on embryonic day 7 induces extensive excitotoxic motoneuronal damage in the spinal cord without any apparent effects on neurons in the dorsal root ganglia (DRG). The death of Schwann cells in ventral nerve roots after NMDA treatment causes degenerative changes that display ultrastructural features of apoptosis and exhibit in situ detectable DNA fragmentation. By contrast, NMDA treatment does not increase the death of Schwann cells in dorsal nerve roots. In situ detection of DNA fragmentation in combination with the avian Schwann cell marker 1E8 antibody demonstrates that dying cells in ventral nerve roots are in the Schwann cell lineage. Administration of cycloheximide does not prevent the toxic effects of NMDA on motoneurons, but dramatically reduces the number of pyknotic Schwann cells and DNA fragmentation profiles in the ventral nerve roots. In ovo administration of various tissue extracts (muscle, brain, and spinal cord) from the chick embryo or of the motoneuron conditioned medium fails to prevent Schwann cell apoptosis in NMDA-treated embryos. Intramuscular administration of the snake toxin beta-bungarotoxin produces a massive death of both lateral motor column motoneurons and DRG neurons, resulting in a substantial increase in the number of pyknotic Schwann cells in both ventral and dorsal nerve roots. It is concluded that during development, axonal-derived trophic signals are involved in the regulation of Schwann cell survival in peripheral nerves.

  15. Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo.

    PubMed

    Chub, N; O'Donovan, M J

    2001-05-01

    Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [embryonic days 10 to 11 (E10-E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 +/- 1.2 mV, mean +/- SE), which dissipated as a slow (0.5-1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 +/- 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential (E(GABAa) = -29 +/- 3 mV) and allowed estimation of the physiological intracellular [Cl(-)] = 50 mM. In whole cell configuration (with physiological electrode [Cl(-)]), two distinct types of endogenous GABAergic currents (I(GABAa)) were found during the inter-episode interval. The first comprised TTX-resistant, asynchronous miniature postsynaptic currents (mPSCs), an indicator of quantal GABA release (up to 42% of total mPSCs). The second (tonic I(GABAa)) was complimentary to the slow membrane depolarization and may arise from persistent activation of extrasynaptic GABAa receptors. We estimate that approximately 10 postsynaptic channels are activated by a single quantum of GABA release during an mPSC and that about 30 extrasynaptic GABAa channels are required for generation of the tonic I(GABAa) in ventral horn neurons. We investigated the post-episode depression of I(GABAa) by local application of GABA or isoguvacine (100 microM, for 10-30 s) applied before and after an episode at holding potentials (V(hold)) -60 mV. The amplitude of the evoked I(GABA) was compared after clamping the cell

  16. Manipulations of PKA in chick limb development reveal roles in digit patterning including a positive role in Sonic Hedgehog signaling.

    PubMed

    Tiecke, Eva; Turner, Roisin; Sanz-Ezquerro, Juan Jose; Warner, Anne; Tickle, Cheryll

    2007-05-01

    Sonic Hedgehog (Shh) signaling by the polarizing region, at the posterior of the vertebrate limb bud, is pivotal in determining digit number and identity. Shh establishes a gradient of the bifunctional transcriptional effector, Gli3, with high levels of full-length activator (Gli3A) in the posterior bud, where digits form, and high levels of shorter repressor (Gli3R) in the anterior. Repressor formation depends on protein kinase A (PKA), but in Drosophila, PKA also plays a role in activator function. Increasing PKA levels in chick limb development using Forskolin had no effect on posterior polarizing activity but weak polarizing activity, based on ligand-independent Shh signaling, was induced in anterior limb bud cells resulting in extra digits. Manipulating PKA activity levels directly with a retrovirus expressing activated PKA induced extra digits similar to those induced by Forskolin treatment suggesting that PKA may have a previously unrecognized positive role in Shh signaling in vertebrate limbs. Expressing dominant negative PKA also induced extra, sometimes multiple digits, from anterior limb bud demonstrating the negative role in Shh signaling. PKA levels in the limb bud are high posteriorly and low anteriorly, suggesting that PKA activity may influence the outcome of Shh signaling in normal development.

  17. Ethanol- and/or Taurine-Induced Oxidative Stress in Chick Embryos

    PubMed Central

    Berning, Emily J.; Bernhardson, Noah; Coleman, Kelly; Farhat, Dina A.; Gushrowski, Courtney M.; Lanctot, Alison; Maddock, Benjamin H.; Michels, Kathryn G.; Mugge, Luke A.; Nass, Catherine M.; Yearsley, Sarah M.; Miller, Robert R.

    2013-01-01

    Because taurine alleviates ethanol- (EtOH-) induced lipid peroxidation and liver damage in rats, we asked whether exogenous taurine could alleviate EtOH-induced oxidative stress in chick embryos. Exogenous EtOH (1.5 mmol/Kg egg or 3 mmol/Kg egg), taurine (4 μmol/Kg egg), or EtOH and taurine (1.5 mmol EtOH and 4 μmol taurine/Kg egg or 3 mmol EtOH and 4 μmol taurine/Kg egg) were injected into fertile chicken eggs during the first three days of embryonic development (E0–2). At 11 days of development (midembryogenesis), serum taurine levels and brain caspase-3 activities, homocysteine (HoCys) levels, reduced glutathione (GSH) levels, membrane fatty acid composition, and lipid hydroperoxide (LPO) levels were measured. Early embryonic EtOH exposure caused increased brain apoptosis rates (caspase-3 activities); increased brain HoCys levels; increased oxidative-stress, as measured by decreased brain GSH levels; decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Although taurine is reported to be an antioxidant, exogenous taurine was embryopathic and caused increased apoptosis rates (caspase-3 activities); increased brain HoCys levels; increased oxidative-stress (decreased brain GSH levels); decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Combined EtOH and taurine treatments also caused increased apoptosis rates and oxidative stress. PMID:23606945

  18. Regulation of programmed cell death during neural induction in the chick embryo.

    PubMed

    Gibson, Anna; Robinson, Neil; Streit, Andrea; Sheng, Guojun; Stern, Claudio D

    2011-01-01

    To study early responses to neural inducing signals from the organizer (Hensen's node), a differential screen was performed in primitive streak stage chick embryos, comparing cells that had or had not been exposed to a node graft for 5 hours. Three of the genes isolated have been implicated in Programmed Cell Death (PCD): Defender Against Cell Death (Dad1), Polyubiquitin II (UbII) and Ferritin Heavy chain (fth1). We therefore explored the potential involvement of PCD in neural induction. Dad1, UbII and fth1 are expressed in partly overlapping domains during early neural plate development, along with the pro-apoptotic gene Cas9 and the death effector Cas3. Dad1 and UbII are induced by a node graft within 3 hours. TUNEL staining revealed that PCD is initially random, but both during normal development and following neural induction by a grafted node, it becomes concentrated at the border of the forming neural plate and anterior non-neural ectoderm and downregulated from the neural plate itself. PCD was observed in regions of Caspase expression that are free from Dad1, consistent with the known anti-apoptotic role of Dad1. However, gain- and loss-of-function of any of these genes had no detectable effect on cell identity or on neural plate development. This study reveals that early development of the neural plate is accompanied by induction of putative pro- and anti-apoptotic genes in distinct domains. We suggest that the neural plate is protected against apoptosis, confining cell death to its border and adjacent non-neural ectoderm.

  19. Coregulation of calcium channels and beta-adrenergic receptors in cultured chick embryo ventricular cells

    SciTech Connect

    Marsh, J.D. )

    1989-09-01

    To examine mechanisms whereby the abundance of functional Ca channels may be regulated in excitable tissue, Ca channel number was estimated by binding of the dihydropyridine (DHP) antagonist {sup 3}H (+)PN200-110 to monolayers of intact myocytes from chick embryo ventricle. Beta adrenergic receptor properties were studied in cultured myocytes using ({sup 3}H)CGP12177, an antagonist ligand. Physiological correlates for alterations in DHP binding site number included {sup 45}Ca uptake and contractile response to (+)BAYk 8644, a specific L-type Ca channel activator. All binding and physiological determinations were performed in similar intact cell preparations under identical conditions. 4-h exposure to 1 microM isoproterenol reduced cell surface beta-adrenergic receptor number from 44 +/- 3 to 17 +/- 2 fmol/mg (P less than 0.05); DHP binding sites declined in number from 113 +/- 25 to 73 +/- 30 fmol/mg (P less than 0.03). When protein kinase A was activated by a non-receptor-dependent mechanism, DHP binding declined similarly to 68% of control. Exposure to diltiazem, a Ca channel antagonist, for 18-24 h had no effect on number of DHP binding sites. After 4-h isoproterenol exposure, {sup 45}Ca uptake stimulated by BAYk 8644 declined from 3.3 +/- 0.2 nmol/mg to 2.9 +/- 0.3 nmol/mg (P less than 0.01) and BAYk 8644-stimulated increase in amplitude of contraction declined from 168 +/- 7 to 134 +/- 11% (P = 0.02). Thus, elevation of (cAMP) in myocytes is associated with a time-dependent decline in Ca channel abundance as estimated by DHP binding and a decline in physiological responses that are in part dependent on abundance of Ca channels. Binding of a directly acting Ca channel antagonist for 18-24 h does not modulate the number of DHP binding sites.

  20. Vertebrate limb development and possible clues to diversity in limb form.

    PubMed

    Tickle, Cheryll

    2002-04-01

    Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.

  1. Preparation of antibodies to chick-embryo galactosylhydroxylysyl glucosyltransferase and their use for an immunological characterization of the enzyme of collagen synthesis.

    PubMed

    Myllylä, R

    1981-04-14

    Antibodies were prepared against chick-embryo galactosylhydroxylysyl glucosyltransferase and further purified by immunoaffinity chromatography. The antibodies gave a single precipitation line of identity by double immunodiffusion against crude or pure chick-embryo glucosyltransferase. The ability of the antibody to precipitate the transferase was not altered by destroying the secondary structure of the enzyme. The antibody also inhibited the enzyme activity. The degree of inhibition was higher with denatured citrate-soluble rat skin collagen as the substrate than with gelatinized rat skin insoluble collagen or free galactosylhydroxylysine. The cross-reactivity of the glucosyltransferase between different species was low when studied by double immunodiffusion or inhibition kinetics. The antiserum showed no detectable cross-reactivity against other intracellular enzymes of collagen biosynthesis. A line of complete identity was found in double immunodiffusion between the transferases from whole chick embryos and chick embryo tendon, kidney and cartilage. Inhibition by the antiserum of the enzyme from chick embryo tissues synthesizing different collagen types was relatively similar. The data do not support the hypothesis that galactosylhydroxylysyl glucosyltransferase has isoenzymes with markedly different specific activities or immunological properties.

  2. ALTERATIONS IN STATE OF MOLECULAR AGGREGATION OF COLLAGEN INDUCED IN CHICK EMBRYOS BY β-AMINOPROPIONITRILE (LATHYRUS FACTOR)

    PubMed Central

    Levene, Charles I.; Gross, Jerome

    1959-01-01

    The lathyrogenic agents, β-aminopropionitrile and semicarbizide, when applied to the chorio-allantoic membrane of the chick embryo produced a dramatic increase in fragility of the embryo. This alteration was not associated with a change in the concentration of collagen, except in aorta, but was accompanied by a sharp increase in the amount of collagen extractible in cold 1 M NaCl from skin, bone, and aorta. Increase in fragility and extractible collagen began within 3 hours after introduction of the agent and rose steadily for at least 72 hours. Essentially no collagen could be extracted from tissues of normal chick embryos. Both fragility and amount of extractible collagen were dosage- and time-dependent. It is concluded that the extractible collagen in lathyrism consists of a large proportion of dissolved fibers previously insoluble and formed prior to administration of the agent. The data also suggest that the "lathyritic" collagen in vivo is not in molecular dispersion but in an aggregate or fibrillar form. It is dispersed by cooling. The extracted collagen could be reconstituted to typical striated fibrils in vitro and the molecule appeared to be normal in the gross, with regard to asymmetry ratio and intramolecular helical structure. The evidence at hand suggests that at least one of the defects induced by lathyrogenic agents is an interference with the normal intermolecular cross-linking within the collagen fibril. PMID:14416144

  3. Whole-cell patch clamp recordings from rhythmically active motoneurons in the isolated spinal cord of the chick embryo.

    PubMed

    Sernagor, E; O'Donovan, M J

    1991-07-22

    Whole-cell patch clamp recordings were obtained during motor activity from electrically identified motoneurons within the spinal cord of the chick embryo maintained in vitro. Most recordings were performed on E11-E13 motoneurons although it was also possible to record from younger cells (E7-E9). Voltage clamp recordings were used to characterize the synaptic currents expressed in femoro-tibialis (extensor) motoneurons during motor activity. These motoneurons exhibited rhythmic excitatory currents with reversal potentials near 0 mV. This powerful technique enables high resolution recordings from identified motoneurons in situ and allows investigation of the membrane and synaptic mechanisms involved in the development of embryonic motility.

  4. Stable, position-related responses to retinoic acid by chick limb-bud mesenchymal cells in serum-free cultures.

    PubMed

    Paulsen, D F; Solursh, M; Langille, R M; Pang, L; Chen, W D

    1994-03-01

    Retinoic acid (RA) has dramatic effects on limb-skeletal patterning in vivo and may well play a pivotal role in normal limb morphogenesis. RA's effects on the expression of pattern-related genes in the developing limb are probably mediated by cytoplasmic RA-binding proteins and nuclear RA-receptors. Little is known, however, about how RA modifies specific cellular behaviors required for skeletal morphogenesis. Earlier studies supported a role for regional differences in RA concentration in generating the region-specific cell behaviors that lead to pattern formation. The present study explores the possibility that position-related, cell-autonomous differences in the way limb mesenchymal cells respond to RA might have a role in generating pattern-related cell behavior. Mesenchymal cells from different proximodistal regions of stage 21-22 and 23-24 chick wing-buds were grown in chemically defined medium and exposed to 5 or 50 ng/ml of RA for 4 days in high-density microtiter cultures. The effects of RA on chondrogenesis in these cultures clearly differed depending on the limb region from which the cells were isolated. Regional differences in RA's effects on growth over 4 days in these cultures were less striking. The region-dependent responses of these cells to RA proved relatively stable in culture despite ongoing cytodifferentiation. This serum-free culture model will be useful in exploring the mechanisms underlying the region-dependent responsiveness of these cells to RA.

  5. Culture of domestic cat ovarian tissue in vitro and in the chick embryo chorioallantoic membrane.

    PubMed

    Vilela, J M V; Leonel, E C R; D'Oliveira, L; Paiva, R E G; Miranda-Vilela, A L; Amorim, C A; Pic-Taylor, A; Lucci, C M

    2016-10-15

    In vitro culture and transplantation procedures are essential protocols employed in the evaluation of ovarian follicle survival and development. Culture in the chorioallantoic membrane (CAM) of chick embryos is an intermediate method that provides important follicle development information and has not been tested for cat ovaries to date. The aim of this study was to investigate if in vitro and CAM culture could be used as short-term systems to study cat ovarian tissue development. The ovaries of eight cats were dissected into 3-mm(3) cubes, cultured in vitro and in CAM for up to 5 days, and stained with hematoxylin-eosin and Gomori trichrome. Cell proliferation was analyzed using anti-Ki67. Possible differences among groups were investigated by analysis of variance or the Kruskal-Wallis test followed by Bonferroni correction. The T-test or Wilcoxon test was used to verify differences between the CAM and IVC. Results revealed that 87.5% of all follicles were primordial during culture. The percentage of primordial follicles in the morphologically normal follicles (MNF) pool was always higher than 80%, with the exception of Day 3 of CAM culture, but the number of MNF reduced significantly from Day 0 (600 out of 777 follicles) to Day 5 in the CAM (91 out of 171) and IVC (296 out of 686). The number of primordial follicles in 1 mm(3) in Days 2, 3, and 5 in the CAM was significantly lower than that in the control (Day 0). No cellular proliferation was observed in culture. Vascularization occurred in the CAM culture, but with no association to follicular viability. In addition, both methods showed an increase in connective tissue during culture. Although no significant differences were observed in the percentage of MNF, there was a reduction in the total number of follicles, both for IVC and CAM-cultured ovarian tissue. Furthermore, anti-Ki67 did not stain any follicle after Day 0 in IVC or in CAM culture. Neither system was capable of promoting follicle growth and

  6. Organization of hindlimb muscle afferent projections to lumbosacral motoneurons in the chick embryo.

    PubMed

    Lee, M T; O'Donovan, M J

    1991-08-01

    We have examined the organization of muscle afferent projections to motoneurons in the lumbosacral spinal cord of chick embryos between stage 37, when muscle afferents first reach the motor nucleus, and stage 44, which is just before hatching. Connectivity between afferents and motoneurons was assessed by stimulating individual muscle nerves and recording the resulting motoneuron synaptic potentials intracellularly or electrotonically from other muscle nerves. Most of the recordings were made in the presence of DL-2-amino-5-phosphonovaleric acid (APV), picrotoxin, and strychnine to block long-latency excitatory and inhibitory pathways. Activation of muscle afferents evoked slow, positive potentials in muscle nerves but not in cutaneous nerves. These potentials were abolished in 0 mM Ca2+, 2mM Mn2+ solutions, indicating that they were generated by the action of chemical synapses. The muscle nerve recordings revealed a wide-spread pattern of excitatory connections between afferents and motoneurons innervating six different thigh muscles, which were not organized according to synergist-antagonist relationships. This pattern of connectivity was confirmed using intracellular recording from identified motoneurons, which allowed the latency of the responses to be determined. Short-latency potentials in motoneurons were produced by activation of homonymous afferents and the heteronymous afferents innervating the hip flexors sartorius and anterior iliotibialis. Stimulation of anterior iliotibialis afferents also resulted in some short-latency excitatory postsynaptic potentials (EPSPs) in motoneurons innervating the knee extensor femorotibialis, though other connections were of longer latency. Afferents from the adductor, a hip extensor, did not evoke short-latency EPSPs in any of these three types of motoneurons. Short-latency, but not long-latency EPSPs, persisted during repetitive stimulation at 5 Hz, suggesting that they were mediated monosynaptically. Long

  7. Increased intramuscular nerve branching and inhibition of programmed cell death of chick embryo motoneurons by immunoglobulins from patients with motoneuron disease.

    PubMed

    Hernández, Sara; Texidó, Laura; Calderó, Jordi; Ciutat, Dolors; Piedrafita, Lídia; Casanovas, Anna; Blasi, Joan; Solsona, Carles; Povedano, Mònica; Rojas, Ricardo; Illa, Isabel; Caress, James; Prevette, David; Oppenheim, Ronald W; Milligan, Carol; Esquerda, Josep E

    2010-12-15

    Massive programmed cell death (PCD) of developing chick embryo motoneurons (MNs) occurs in a well defined temporal and spatial sequence between embryonic day (E) 6 and E10. We have found that, when administered in ovo, either circulating immunoglobulins G (IgGs) or cerebrospinal fluid from patients with MN disease can rescue a significant number of chick embryo MNs from normally occurring PCD. An increase of branching of intramuscular nerves was also observed that may account for the rescuing effects of pathologic IgGs. Proteomic analysis and further analysis by ELISA indicated that these effects may be mediated by the interaction of circulating human immunoglobulins with proteins of the semaphorin family.

  8. Molecular basis of vertebrate limb patterning.

    PubMed

    Tickle, Cheryll

    2002-10-15

    Mechanisms of limb development are common to all higher vertebrates. The current understanding of how vertebrate limbs develop comes mainly from studies on chick embryos, which are classical models for experimental manipulation, and mouse embryos, which can be genetically manipulated. Work on chick and mouse embryos is often complementary and has direct implications for human limb development. Analysis has moved to the molecular level, which allows direct links to genetics. Even though genes involved in limb development have been discovered by basic scientists through different routes to that taken by clinical geneticists, many of the same genes have been identified. Thus, the fields of embryology and clinical medicine increasingly converge. The next challenge will be to go back to animal models to begin to dissect how particular gene mutations lead to specific limb phenotypes.

  9. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation.

    PubMed

    Smith, Emma L; Kanczler, Janos M; Oreffo, Richard O C

    2013-09-11

    Scientific research and progress, particularly in the drug discovery and regenerative medicine fields, is typically dependent on suitable animal models to develop new and improved clinical therapies for injuries and diseases. In vivo model systems are frequently utilised, but these models are expensive, highly complex and pose a number of ethical considerations leading to the development and use of a number of alternative ex vivo model systems. The ex vivo embryonic chick long bone and limb bud models have been utilised in the scientific research field as a model to understand skeletal development for over eighty years. The rapid development of avian skeletal tissues, coupled with the ease of experimental manipulation, availability of genome sequence and the presence of multiple cell and tissue types has seen such model systems gain significant research interest in the last few years in the tissue engineering field. The models have been explored both as systems for understanding the developmental bone niche and as potential testing tools for tissue engineering strategies for bone repair and regeneration. This review details the evolution of the chick limb organ culture system and presents recent innovative developments and emerging techniques and technologies applied to these models that are aiding our understanding of skeletal developmental and regenerative medicine research and application.

  10. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs

    PubMed Central

    KUE, Chin Siang; TAN, Kae Yi; LAM, May Lynn; LEE, Hong Boon

    2015-01-01

    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD50) in the CAM were measured and calculated for these drugs. The resultant ideal LD50 values were correlated to those reported in the literature using Pearson’s correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r2=0.42 − 0.68, P<0.005–0.05) between the ideal LD50 values obtained using the CAM model with LD50 values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs. PMID:25736707

  11. SOME OBSERVATIONS ON THE INTRACELLULAR LOCALIZATION OF THE VIRUS OF HERPES SIMPLEX IN THE CHICK EMBRYO LIVER

    PubMed Central

    Gray, Alan; Scott, T. F. McNair

    1954-01-01

    The growth cycle of the virus of herpes simplex in chick embryo liver has been shown to follow the same pattern as in the chorioallantoic membrane and the rabbit's corneal cells. However, there is considerable variability in the time taken for the yolk sac-inoculated virus to get from the yolk sac into the liver. A brief description has been given of various fractionation procedures employed for obtaining isolated nuclei. It has been shown that free virus is not selectively adsorbed to isolated nuclei. Evidence has been presented to show that in the herpes-infected chick embryo liver, large proportions of the total virus can at times be found associated with the nuclear fraction. The percentage of the total virus in the nuclear fraction varies inversely with the titer of virus in the whole liver, and the number of hours after inoculation of the virus; only a negligible amount (as compared with that in the total) being associated with the nuclear fraction when a period of over 12 hours has elapsed after reappearance of virus. Furthermore, demonstration of virus in the isolated nuclei following extraction with hypertonic NaCl provides additional evidence that this virus is intimately associated with the nuclei. PMID:13211908

  12. Paraxial left-sided nodal expression and the start of left-right patterning in the early chick embryo.

    PubMed

    Tsikolia, Nikoloz; Schröder, Silke; Schwartz, Peter; Viebahn, Christoph

    2012-12-01

    A common element during early left-right patterning of the vertebrate body is left-sided nodal expression in the early-somite stage lateral plate mesoderm. Leftward cell movements near the node of the gastrulating chick embryo recently offered a plausible mechanism for breaking the presomite-stage molecular symmetry in those vertebrates which lack rotating cilia on the notochord or equivalent tissues. However, the temporal and functional relationships between generation of the known morphological node asymmetry, onset of leftward cell movements and establishment of stable molecular asymmetry in the chick remain unresolved. This study uses high-resolution light microscopy and in situ gene expression analysis to show that intranodal cell rearrangement during the phase of counter-clockwise node torsion at stage 4+ is immediately followed by symmetry loss and rearrangement of shh and fgf8 expression in node epiblast between stages 5- and 5+. Surprisingly, left-sided nodal expression starts at stage 5-, too, but lies in the paraxial mesoderm next to the forming notochordal plate, and can be rendered symmetrical by minimal mechanical disturbance of distant tissue integrity at stage 4. The "premature" paraxial nodal expression together with morphological and molecular asymmetries in, and near, midline compartments occurring at defined substages of early gastrulation help to identify a new narrow time window for early steps in left-right patterning in the chick and support the concept of a causal relationship between a-still enigmatic-chiral (motor) protein, cell movements and incipient left-right asymmetry in the amniote embryo.

  13. Detailed expression profile of the six Glypicans and their modifying enzyme, Notum during chick limb and feather development.

    PubMed

    Saad, Kawakeb; Theis, Susanne; Otto, Anthony; Luke, Graham; Patel, Ketan

    2017-04-30

    The development of vertebrate appendages, especially the limb and feather buds are orchestrated by numerous secreted signalling molecules including Sonic Hedgehog, Bone Morphogenetic Proteins, Fibroblast Growth Factors and Wnts. These proteins coordinate the growth and patterning of ectodermal and mesenchymal cells. The influence of signalling molecules is affected over large distances by their concentration (morphogen activity) but also at local levels by the presence of proteins that either attenuate or promote their activity. Glypicans are cell surface molecules that regulate the activity of the major secreted signalling molecules expressed in the limb and feather bud. Here we investigated the expression of all Glypicans during chick limb and feather development. In addition we profiled the expression of Notum, an enzyme that regulates Glypican activity. We show that five of the six Glypicans and Notum are expressed in a dynamic manner during the development of limbs and feathers. We also investigated the expression of key Glypicans and show that they are controlled by signalling molecules highlighting the presence of feedback loops. Lastly we show that Glypicans and Notum are expressed in a tissue specific manner in adult chicken tissues. Our results strongly suggest that the Glypicans and Notum have many as yet undiscovered roles to play during the development of vertebrate appendages.

  14. The effects of thermal manipulations during embryogenesis of broiler chicks on growth of embryo and skeletal traits

    NASA Astrophysics Data System (ADS)

    Aygün, Ali; Narinç, Doǧan

    2016-04-01

    Incubation temperature is one of the important environmental factors that can induce epigenetic thermal adaptation of different physiological control systems. Thus, post hatch thermo tolerance ability of birds may be gained using these manipulations during different incubation periods. The current study was carried out to reveal the effects of temperature manipulations during early and late embryogenesis on weight of embryo and size of skeletal bilateral traits (face, wings, metatarsus, tibia, and femur) in broiler chicken embryos. One thousand commercial broiler eggs from 46 week old breeder flock were used in study. Treatments consisted of eggs incubated at 37.8°C and 55% relative humidity throughout (control; DG1), heated to 36.9°C and supplied 60% relative humidity for 6 hours daily from day 0 to 8 (DG2), heated to 36.9°C and supplied 60% relative humidity for 6 hours daily from day 10 to 18 (DG3), heated to 41°C and supplied 65% relative humidity for 3 hours daily from day 8 to 10 (DG4), and heated to 41°C and supplied 65% relative humidity for 3 hours daily from day 16 to 18 (DG5). Measurements of embryo weight and bilateral traits were obtained at 20 day of incubation and at hatch (at day 21). It was determined that the live weights of embryo and chick were affected significantly by treatment; DG3 group has shown higher mean values than the other treatment groups (P<0.05). There were differences in lengths of femur, tibia and metatarsus among treatment groups at hatch. Particularly, the high incubator temperatures at the second half of incubation accelerated growth of body and bone in embryos. These consequences of the treatments performed at different temperatures and times indicate that the different metabolic shifts realized by the embryos.

  15. Learning about Vertebrate Limb Development

    ERIC Educational Resources Information Center

    Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna

    2014-01-01

    We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…

  16. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development.

    PubMed

    Sheeba, Caroline J; Andrade, Raquel P; Palmeirim, Isabel

    2016-01-01

    Various ultradian rhythms ensure proper temporal regulations during embryo development. The embryo molecular clock, which was first identified in the presomitic mesoderm (PSM) underlying periodic somite formation, is one among them. Somites are the earliest manifestation of the segmented vertebrate body and they are formed with strict temporal precision. The tetrapod limb is also a segmented structure and the formation of limb bone elements have also been associated with a molecular clock, operating in the distal limb mesenchyme. In both the PSM and the distal limb mesenchyme, the molecular clock (MC) is influenced by FGF, SHH and RA, which are also the key regulators of the development of these tissues. While somitogenesis has been continuously scrutinized to understand the mechanisms of the MC, the limb bud has served as an outstanding paradigm to study how a cohort of undifferentiated cells is organized into functional 3D structures. The fact that both the trunk and limb development are shaped by the MC and by common signaling molecules has prompted the exciting possibility of establishing parallelisms between somitogenesis and limb development. Systematically correlating various parameters during trunk and limb development will help us to appreciate the common principles underlying segmented structure formation and allow the rise of new questions in order to fill the gaps in our present understanding. In this review we have established the parallelisms between somitogenesis and limb development at the level of gene expression patterns and their regulation. Finally, we have also discussed the most evident new avenues this exercise could open to the scientific community.

  17. Dual Labeling of Neural Crest Cells and Blood Vessels Within Chicken Embryos Using ChickGFP Neural Tube Grafting and Carbocyanine Dye DiI Injection

    PubMed Central

    Delalande, Jean-Marie; Thapar, Nikhil; Burns, Alan J.

    2015-01-01

    All developing organs need to be connected to both the nervous system (for sensory and motor control) as well as the vascular system (for gas exchange, fluid and nutrient supply). Consequently both the nervous and vascular systems develop alongside each other and share striking similarities in their branching architecture. Here we report embryonic manipulations that allow us to study the simultaneous development of neural crest-derived nervous tissue (in this case the enteric nervous system), and the vascular system. This is achieved by generating chicken chimeras via transplantation of discrete segments of the neural tube, and associated neural crest, combined with vascular DiI injection in the same embryo. Our method uses transgenic chickGFP embryos for intraspecies grafting, making the transplant technique more powerful than the classical quail-chick interspecies grafting protocol used with great effect since the 1970s. ChickGFP-chick intraspecies grafting facilitates imaging of transplanted cells and their projections in intact tissues, and eliminates any potential bias in cell development linked to species differences. This method takes full advantage of the ease of access of the avian embryo (compared with other vertebrate embryos) to study the co-development of the enteric nervous system and the vascular system. PMID:26065540

  18. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    SciTech Connect

    Thompson, Jennifer; Doi, Takashi; Power, Eoin; Balasubramanian, Ishwarya; Puri, Prem; Bannigan, John

    2010-03-15

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  19. Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kowalski, William J.; Teslovich, Nikola C.; Chen, Chia-Yuan; Keller, Bradley B.; Pekkan, Kerem

    2014-03-01

    Experimental and clinical data indicate that hemodynamic forces within the embryo provide critical biomechanical cues for cardiovascular morphogenesis, growth, and remodeling and that perturbed flow is a major etiology of congenital heart disease. However, embryonic flow-growth relationships are largely qualitative and poorly defined. In this work, we provide a quantitative analysis of in vivo flow and growth trends in the chick embryo using optical coherence tomography (OCT) to acquire simultaneous velocity and structural data of the right vitelline artery continuously over a ten hour period beginning at stage 16 (hour 54). We obtained 3D vessel volumes (15 μm lateral, 4.3 μm axial resolutions, 6 μm slice spacing) at 60 minute intervals, taking a B-scan time series totaling one cardiac cycle at each slice. Embryos were maintained at a constant 37°C and 60% humidity during the entire acquisition period through an inhouse built chamber. The 3D vessel lumen geometries were reconstructed manually to assess growth. Blood flow velocity was computed from the central B-scan using red blood cell particle image velocimetry. The use of extended OCT imaging as a non-invasive method for continuous and simultaneous flow and structural data can enhance our understanding of the biomechanical regulation of critical events in morphogenesis. Data acquired will be useful to validate predictive finite-element 3D growth models.

  20. The influence of the lower beak on the interorbital septum-prenasal process complex in the chick embryo.

    PubMed

    Wouterlood, F G; van Pelt, W

    1979-01-01

    The effect of removal of the lower beak on the development of the interorbital septumprenasal process (ISPP) complex was studied in chick embryos. In normal development the angle between the ventral contour of the interorbital septum and the long axis of the prenasal process increases. At the same time the angle between the ventral contour of the interorbital septum and the basal plate increases. After surgical removal of the prospective lower beak at stage 29, the position of the entire ISPP complex was altered in stage-38 embryos and the prenasal process showed elongation. In stage-38 embryos in which the prospective upper beak had been removed at stage 29, Meckel's cartilage was elongated. It is concluded that straightening of the angle between the ventral contour of the interorbital septum and the long axis of the prenasal process is not influenced by the lower beak, whereas the position of the entire ISPP complex and the size of the prenasal process are under the epigenetic influence of the lower beak. The position and size of Meckel's cartilage are under the epigenetic influence of the upper beak.

  1. Calcium homeostasis in mitochondrion-mediated apoptosis of chick embryo cecal epithelial cells induced by Eimeria tenella infection.

    PubMed

    Cui, Xiao-zhen; Zheng, Ming-xue; Zhang, Yan; Liu, Rui-li; Yang, Sha-sha; Li, Shan; Xu, Zhi-yong; Bai, Rui; Lv, Qiang-hua; Zhao, Wen-long

    2016-02-01

    In this study, the process of Eimeria tenella-induced apoptosis and the effect of calcium homeostasis were investigated in chick embryo cecal epithelial cells. In particular, we examined cytochrome c release into the cytoplasm, mitochondrial permeability transition pore (MPTP) opening, and changes in [Ca(2+)]c and apoptosis in host cells. Apoptosis, MPTP opening, cytochrome c release, and [Ca(2+)]c in host cells increased following infection. This trend was reversed by blocking the increase in [Ca(2+)]c using BAPTA/AM and EGTA (intra- and extracellular chelators of Ca(2+), respectively) and by applying heparin sodium and ryanodine (blockers of the inositol triphosphate and ryanodine receptors of the endoplasmic reticulum, respectively). These results indicate that [Ca(2+)]c plays a significant role in host cell mitochondrial apoptosis, which is induced via modulation of extracellular Ca(2+) levels and endoplasmic reticulum Ca(2+) channels. Thus, agents that restore Ca(2+) homeostasis may be useful for managing E. tenella infection in chickens.

  2. Effects of a Snake α-Neurotoxin on the Development of Innervated Skeletal Muscles in Chick Embryo

    PubMed Central

    Giacobini, G.; Filogamo, G.; Weber, M.; Boquet, P.; Changeux, J. P.

    1973-01-01

    The evolution of the cholinergic (nicotinic) receptor in chick muscles is monitored during embryonic development with a tritiated α-neurotoxin from Naja nigricollis and compared with the appearance of acetylcholinesterase. The specific activity of these two proteins reaches a maximum around the 12th day of incubation. By contrast, choline acetyltransferase reaches an early maximum of specific activity around the 7th day of development, and later continuously increases until hatching. Injection of α-toxin in the yolk sac at early stages of development causes an atrophy of skeletal and extrinsic ocular-muscles and of their innervation. In 16-day embryos treated by the α-toxin, the endplates revealed by the Koelle reaction are almost completely absent. The total content and specific activities of acetylcholinesterase and choline acetyltransferase in atrophic muscles are markedly reduced. Images PMID:4515929

  3. FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells.

    PubMed

    Martín, C; Bueno, D; Alonso, M I; Moro, J A; Callejo, S; Parada, C; Martín, P; Carnicero, E; Gato, A

    2006-09-15

    During early stages of brain development, neuroepithelial stem cells undergo intense proliferation as neurogenesis begins. Fibroblast growth factor 2 (FGF2) has been involved in the regulation of these processes, and although it has been suggested that they work in an autocrine-paracrine mode, there is no general agreement on this because the behavior of neuroepithelial cells is not self-sufficient in explants cultured in vitro. In this work, we show that during early stages of development in chick embryos there is another source of FGF2, besides that of the neuroepithelium, which affects the brain primordium, since the cerebrospinal fluid (E-CSF) contains several isoforms of this factor. We also demonstrate, both in vitro and in vivo, that the FGF2 from the E-CSF has an effect on the regulation of neuroepithelial cell behavior, including cell proliferation and neurogenesis. In order to clarify putative sources of FGF2 in embryonic tissues, we detected by in situ hybridization high levels of mRNA expression in notochord, mesonephros and hepatic primordia, and low levels in brain neuroectoderm, corroborated by semiquantitative PCR analysis. Furthermore, we show that the notochord segregates several FGF2 isoforms which modify the behavior of the neuroepithelial cells in vitro. In addition, we show that the FGF2 ligand is present in the embryonic serum; and, by means of labeled FGF2, we prove that this factor passes via the neuroepithelium from the embryonic serum to the E-CSF in vivo. Considering all these results, we propose that, in chick embryos, the behavior of brain neuroepithelial stem cells at the earliest stages of development is influenced by the action of the FGF2 contained within the E-CSF which could have an extraneural origin, thus suggesting a new and complementary way of regulating brain development.

  4. Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo

    PubMed Central

    Arai, Yoshiyasu; Mentis, George Z.; Wu, Jiang-young; O'Donovan, Michael J.

    2007-01-01

    Background The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. Methodology/Principal Findings The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. Conclusions/Significance These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical

  5. Neurotoxicological effects of nicotine on the embryonic development of cerebellar cortex of chick embryo during various stages of incubation.

    PubMed

    El-Beltagy, Abd El-Fattah B M; Abou-El-Naga, Amoura M; Sabry, Dalia M

    2015-10-01

    Long-acting nicotine is known to exert pathological effects on almost all tissues including the cerebellar cortex. The present work was designed to elucidate the effect of nicotine on the development of cerebellar cortex of chick embryo during incubation period. The fertilized eggs of hen (Gallus gallus domesticus) were injected into the air space by a single dose of long acting nicotine (1.6 mg/kg/egg) at the 4th day of incubation. The embryos were taken out of the eggs on days 8, 12 and 16 of incubation. The cerebellum of the control and treated embryos at above ages were processed for histopathological examination. The TEM were examined at 16th day of incubation. The results of the present study revealed that, exposure to long-acting nicotine markedly influence the histogenesis of cerebellar cortex of chick embryo during the incubation period. At 8th day of incubation, nicotine delayed the differentiation of the cerebellar analge; especially the external granular layer (EGL) and inner cortical layer (ICL). Furthermore, at 12th day of incubation, the cerebellar foliation was irregular and the Purkinje cells not recognized. By 16th day of incubation, the cerebellar foliations were irregular with interrupted cerebellar cortex and irregular arrangement of Purkinje cells. Immunohistochemical analysis for antibody P53 protein revealed that the cerebellar cortex in all stages of nicotine treated groups possessed a moderate to weak reaction for P53 protein however; this reaction was markedly stronger in the cerebellar cortex of control groups. Moreover, the flow cytometric analysis confirmed that the percentage of apoptosis in control group was significantly higher compared with that of nicotine treated group. At the TEM level, the cerebellar Purkinje cells of 16th day of treated groups showed multiple subcellular alterations in compared with those of the corresponding control group. Such changes represented by appearing of vacuolated mitochondria, cisternal

  6. The effect of in ovo ethanol exposure on retina and optic nerve in a chick embryo model system.

    PubMed

    Tufan, A Cevik; Abban, Gulcin; Akdogan, Ilgaz; Erdogan, Deniz; Ozogul, Candan

    2007-01-01

    Ocular anomalies seen in children with fetal alcohol syndrome (FAS) suggest that ocular structures are sensitive to alcohol exposure during their development. This study was designed to investigate the effect of in ovo ethanol (EtOH) exposure on retinal development and myelinization of optic nerve fibers at an ultra structural level in a chick embryo model system. Prior to incubation, fertilized chicken eggs were injected once with 100 microl of either 0.9% NaCl (vehicle control), or EtOH solutions at different doses (10, 30, or 50%, v:v in 0.9% NaCl) into their air sacs and incubated at 37.5 degrees C and saturation humidity. On day 20 embryos were analyzed in terms of their viability and growth and the optic cups including the optic nerves were dissected out. Specimens were processed for electron microscopy (EM). Results showed that, EtOH significantly decreased the viability of chick embryos (P < 0.045), and caused significant prenatal growth retardation (P < 0.004) in a dose-dependant manner. Light microscopy of semi thin sections revealed that prenatal exposure to EtOH resulted in both retinal degeneration and optic nerve hypoplasia (P < 0.001) in a dose-dependant manner. EM revealed that a dose-dependant decrease in the number of myelinated nerve fibers was profound in groups exposed to EtOH (P < 0.001). Furthermore, the myelin coats observed were thinner than those seen in control embryos. In groups exposed to EtOH myelin sheets were unorganized and contained vacuolar structures in between them. The tissue in between the cells and optic nerve fibers, on the other hand, lost its intact appearance with vacuolar and vesicular structures in between them. In addition, the optic nerve fibers contained granular accumulations in EtOH exposed groups. A dose dependent degeneration was also observed in retinas of EtOH exposed groups. The effect of EtOH was profound in pigment epithelium (PE), inner plexiform layer (IPL), and ganglion cell layer (GC). Mitochondrial

  7. Studies on the mechanism of retinoid-induced pattern duplications in the early chick limb bud: temporal and spatial aspects

    PubMed Central

    1985-01-01

    All-trans-retinoic acid causes striking digit pattern changes when it is continuously released from a bead implanted in the anterior margin of an early chick wing bud. In addition to the normal set of digits (234), extra digits form in a mirror-symmetrical arrangement, creating digit patterns such as a 432234. These retinoic acid-induced pattern duplications closely mimic those found after grafts of polarizing region cells to the same positions with regard to dose-response, timing, and positional effects. To elucidate the mechanism by which retinoic acid induces these pattern duplications, we have studied the temporal and spatial distribution of all-trans-retinoic acid and its potent analogue TTNPB in these limb buds. We find that the induction process is biphasic: there is an 8-h lag phase followed by a 6-h duplication phase, during which additional digits are irreversibly specified in the sequence digit 2, digit 3, digit 4. On average, formation of each digit seems to require between 1 and 2 h. The tissue concentrations, metabolic pattern, and spatial distribution of all- trans-retinoic acid and TTNPB in the limb rapidly reach a steady state, in which the continuous release of the retinoid is balanced by loss from metabolism and blood circulation. Pulse-chase experiments reveal that the half-time of clearance from the bud is 20 min for all-trans- retinoic acid and 80 min for TTNPB. Manipulations that change the experimentally induced steep concentration gradient of TTNPB suggest that a graded distribution of retinoid concentrations across the limb is required during the duplication phase to induce changes in the digit pattern. The extensive similarities between results obtained with retinoids and with polarizing region grafts raise the possibility that retinoic acid serves as a natural "morphogen" in the limb. PMID:4055899

  8. [Time-effect relationship between the positional microinjection of HCY-2 gene and the neural tube teratogenesis of chick embryos].

    PubMed

    Li, Y; Li, Z; Zhang, C; Chen, X

    1999-07-01

    The time-effect relationship between positional transferred novel gene(HCY-2) and neural tube teratogenesis, and their possible mechanisms were studied. An eukaryotic expressing vector which containing whole-length HCY-2 cDNA was microinjected into chick embryos in culture at days 0, 1 and 2 (approximately Hamburger-Hamilton stages 1, 6 and 12) mediated by lipofect AMINE reagent. The techniques of RT-PCR, immunohistochemical staining, scanning electron microscope(SEM) and transmission electron microscope (TEM) were used to investigate the expression and distribution of HCY-2 mRNA with its coding product and dysmorphogenesis of the neural tube at 96 h (approximately stage 22). Neural tube defects (NTDs) were discovered in every transferred gene group, only the day 1 embryos which positional site injected was the area pellucida of head, however, the rate of NTDs was the highest (35.3%). There was an obvious time-effect relationship. The phenotypes of NTD were encephalocele, anencephaly, spina bifida and microcephaly. The embryos with transferred gene could express HCY-2 mRNA and its coding product, and the HCY-2 protein mainly distributed in embryonic brain cells as compared to controls. It was found that HCY-2 gene could result in abnormal ultrastructure at the surface and inside of cells under SEM and TEM. It has been observed apoptosis at the sites with NTDs. It is concluded that HCY-2 gene may be a new genotoxic factor, which plays an important role in the mechanisms of neural tube teratogenesis during the early developing stage of embryos.

  9. Detection in chick embryo of fetoproteins not recognized by the dam's immune system and of soluble alloantigens. Presumptive teratogenic and abortogenic capacity of their specific IgY

    PubMed Central

    Rodríguez-Burgos, Antonio

    2003-01-01

    Background The aim of this work was to detect antigens, non-self to the dam, potentially present in chick embryo prior to organogenesis with a view to establishing the consequences of their neutralization on chick development. To this end, hens were immunized with the extract from embryos incubated for 53 h. Their eggs were either used to isolate immunoglobulins for dot and blot tests or incubated for variable lengths of time. Results Immunoblot tests, using adsorbed primary and secondary antibodies against paternal serum, revealed the presence of at least four antigens of 32, 34, 70 and 200 kDa that can be classified as soluble alloantigens. The same antibodies against chick embryo extracts (between 53 h and 9) showed at least five aged antigens of 34, 52, 90, 200 and 250 kDa, not detected in cock serum, that can thus be considered as soluble, foreign to the immunized hens and transitory antigens. The abnormalities observed included arrested development and fetal death, as well as minor functional damage in the few chicks that were born alive. The ratio of abnormal to normal embryos was 2.85 in the experimental group and 0.43 in the control group. With regard to congenital anomalies it must be said that of the 81 eggs incubated only four chicks were born alive, and of these, only one had a healthy birth and subsequent growth. The other three showed a transitory ataxia and one of them presented adult lumbar scoliosis and asymmetric pelvis. Conclusions The problem of recurrent spontaneous abortions is revisited in the light of these results. Some recent data suggest that soluble alloantigens may be candidates for a new etiological entity in recurrent spontaneous abortions. They can also be the cause of some congenital anomalies. The soluble, foreign, transitory antigens may have a similar effect although there is no supportive data in the literature. PMID:12831405

  10. Effects of maternal dietary manganese and incubation temperature on hatchability, antioxidant status, and expression of heat shock proteins in chick embryos.

    PubMed

    Zhu, Y W; Lu, L; Li, W X; Zhang, L Y; Ji, C; Lin, X; Liu, H C; Odle, J; Luo, X G

    2015-12-01

    To investigate whether supplementing manganese (Mn) to the maternal diet could reduce the deleterious effect of heat stress on the developing embryo, the hatchability, antioxidant status, and expression of heat shock proteins (HSP) were evaluated in chick embryos under normal and high incubation temperatures. A completely randomized design ( = 6) with 2 maternal dietary Mn treatments (unsupplemented control basal diet versus the basal diet + 120 mg Mn/kg as inorganic Mn) × 2 incubation temperatures (normal, 37.8°C, versus high, 39.0°C) was used. High incubation temperature did not affect ( > 0.19) hatchability and embryo mortality and development but did increase ( < 0.05) activities of heart manganese superoxide dismutase (MnSOD) and liver copper zinc superoxide dismutase and liver MnSOD mRNA and protein levels in embryos. High incubation temperature also decreased ( < 0.003) HSP70 protein level in the heart but had no effects ( > 0.07) in the liver of embryos. Maternal diet with Mn supplementation not only increased ( < 0.05) the hatchability and Mn content ( < 0.001) in the yolk and embryonic tissues and the activity of MnSOD in the heart ( < 0.004) as well as relative liver weight ( < 0.05) under normal incubation temperature but also decreased ( ≤ 0.05) embryo mortality and HSP90 mRNA level in the liver and heart of embryos. Furthermore, under high incubation temperature, maternal diet Mn supplementation increased ( < 0.002) MnSOD protein expression in the liver of embryos but had no effect ( > 0.43) under normal incubation temperature. These results indicated that high incubation temperature induced self-protective responses of chick embryos with a modification of antioxidant status and a depression of HSP70 protein level. Maternal dietary supplementation of Mn could improve the hatchability as well as antioxidant ability to protect against heat challenge in embryos during incubation.

  11. Proteoglycan synthesis in flat cell-free cultures of chick embryo retinal neurons and photoreceptors.

    PubMed

    Needham, L K; Adler, R; Hewitt, A T

    1988-04-01

    Extracellular matrix and cell surface proteoglycans are thought to play important roles in neural development and regeneration. Central nervous system proteoglycans have been isolated and characterized from rat and sheep brain and from chick neural retina. An experimental advantage offered by the latter tissue is that it is avascular and can be isolated free of connective tissue and pigment epithelium. Therefore, proteoglycans synthesized by this tissue are derived exclusively from neural cells. However, it has not yet been determined whether neurons and photoreceptors contribute to proteoglycan synthesis or whether these molecules are largely glial in origin. In the present study we have addressed this question using cultures of chick neural retinal cells free of flat, glial-like cells. Proteoglycans synthesized by cultures of retinal neurons, photoreceptors, and undifferentiated, process-free round cells from 8-day embryonic chick neural retina were metabolically labeled in vitro using [35S]sulfate and [3H]glucosamine as precursors. Radiolabeled proteoglycans accumulated in the medium, and could also be extracted from the cell layer by sequential treatments with Triton X-100 and with guanidine HCl. The proteoglycans were isolated by ion-exchange chromatography, and characterized by gel filtration chromatography and by susceptibility to degradation by enzymatic and chemical treatments. Overall, heparan sulfate proteoglycans were the predominant type of proteoglycan synthesized in vitro by the cultured neural retinal cells at this developmental stage. The medium and the Triton extract contained different proportions of both chondroitin sulfate and heparan sulfate proteoglycans, while heparan sulfate was the only proteoglycan recovered from the guanidine extract. These studies demonstrate that heparan sulfate and chondroitin sulfate proteoglycans are actively synthesized by cultures of neural retinal cells free of flat, glial-like cells.

  12. Correlation between mixed-function oxidase enzyme induction and aflatoxin B/sub 1/-induced unscheduled DNA synthesis in the chick embryo, in vivo

    SciTech Connect

    Hamilton, J.W.; Bloom, S.E.

    1984-01-01

    The unscheduled DNA synthesis (UDS) technique has been adapted for use in the chick embryo, in vivo, to determine the relationship between induction of the mixed-function oxidase (MFO) enzyme system and genetic damage from an indirect-acting mutagen-carcinogen. Embryos were injected at 6 days of incubation (DI) with either phenobarbital (PB), a specific inducer of P-450-associated enzyme activities, or 3,4,3',4'-tetrachlorobiphenyl (TCB), a specific inducer of P/sub 1/-450-associated enzyme activities. Aflatoxin B/sub 1/ (AFB1) was injected 24 hr later (7 DI), followed by a 5-hr continuous /sup 3/H-thymidine exposure. The livers were removed, prepared for autoradiography, and hepatocytes were scored for an increase in grains/nucleus, indicative of UDS. Aflatoxin B/sub 1/ caused a dose-related increase in UDS in all control and induction groups. Phenobarbital-induced embryos had an increased UDS response while TCB-induced embryos had a decreased UDS response, relative to noninduced embryos, for each dosage of AFB1. This suggests that the genotoxicity of an indirect-acting mutagen-carcinogen can be either increased or decreased, in vivo, depending on the inducer used. The chick embryo provides an excellent system for studying the effect of MFO induction on the genotoxicity of promutagen-carcinogens in a developing system.

  13. Effects of bromodeoxyuridine on DNA and cytoskeleton of primitive blood cells differentiating after exposure in a chick embryo in vivo

    NASA Astrophysics Data System (ADS)

    Novotna, Bozena; Linhartova, Irena; Viklicky, Vladimir

    1997-12-01

    Three-day-old chick embryos were exposed intra-amniotically to bromodeoxyuridine within the range of teratogenic doses. Using comet assay, a significant damage of DNA was demonstrated in blood cells 3 h after the treatment. While the damage seemed to be partially repaired within 12 h, new peak of DNA fragmentation detected on incubation day 4 implied an apoptotic elimination of impaired cells. More frequent occurrence of macrophages in blood samples from BrdU treated embryos supports this assumption. The differentiating blood cells, however, did not exhibit any remarkable injury of cytoskeleton biogenesis. Nevertheless, an improved experimental procedure revealed the existence of intermediate 'wreath' stage preceding the consolidation of tubulin bundles into marginal band of chicken erythroblasts already within the course of embryonic period. The more, even the mature cells of primitive erhthroid series retained the visible bundles of radial microtubules attached to MTOC. Actin labeling disclosed in many primitive erythroblasts the special lace arrangement of microfilaments growing from nucleus surface while the rest of cells exhibited only a diffuse staining through cytoplasm, concentrated sometimes in area of marginal band. Such distribution was characteristic for mature form of primitive and definitive erythrocytes. The expression of vimentin in erythroid cells was very weak and quite different from patterns of adult definitive erythrocytes. The labeling was noticed only around the nucleus till incubation day 10 when implication of fiber growth through cytoplasm was detected. Conventional hematological analysis performed on incubation day 10 revealed in blood of BrdU treated embryos the lower incidence of definitive erythrocytes in favor of immature forms resulting probably from death of cells in consequence of primary DNA damage. Such effect could be associated with development of myelodysplastic syndrome in later life.

  14. Rediscovering the chick embryo as a model to study retinal development

    PubMed Central

    2012-01-01

    The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system. PMID:22738172

  15. Stimulation of chick embryo cartilage sulfate and thymidine uptake: comparison of human serum, purified somatomedins, and other growth factors.

    PubMed

    Jennings, J; Buchanan, F; Freeman, D; Garland, J T

    1980-11-01

    We have compared the stimulation of sulfate and thymidine uptake into 10-day-old embryonic chick cartilage by normal human serum, partially purified somatomedins (Sm) A and B, homogeneous insulin-like growth factors (IGFs) I and II, and several other substances. With the exception of epidermal growth factor, all growth factors ((GFs) were assayed in the absence of other protein. Pelvic rudiments were preincubated in buffer for 6 h and then incubated for 24 h with the GF or serum, with labels added for the final 6 h. Human serum enhanced cartilage uptake of both thymidine and sulfate. There was a dose-dependent stimulation of thymidine uptake by Sm A or B (0.05--2 microgram/ml) and IGF I or II (0.5--20 ng/ml). Unlike serum, neither Sms nor IGFs increased SO4 uptake under these conditions. Bovine GH (10--500 ng/ml), albumin (100-1000 ng/ml), fibroblast GF (1--100 ng/ml), and epidermal GF (1--100 ng/ml) were inactive for both thymidine and sulfate. When a shorter incubation was used (7 h), Sm A enhanced SO4 uptake, and discrimination was increased by preincubation of the rudiments in buffer for 24 h. With this procedure, IGF I (0.5 ng/ml) was nearly equipotent to 5% serum. On a weight basis, IGF I was more active than either Sm A or IGF II. The data suggest that assay conditions are crucial for demonstration of Sm activity. Appropriate conditions may be different for isolated GF than for a complex medium such as serum. The results further suggest that with certain protocols, the responsiveness of chick embryo cartilage is qualitatively similar to that of hypophysectomized rat cartilage.

  16. Nerve growth factor regulates axial rotation during early stages of chick embryo development.

    PubMed

    Manca, Annalisa; Capsoni, Simona; Di Luzio, Anna; Vignone, Domenico; Malerba, Francesca; Paoletti, Francesca; Brandi, Rossella; Arisi, Ivan; Cattaneo, Antonino; Levi-Montalcini, Rita

    2012-02-07

    Nerve growth factor (NGF) was discovered because of its neurotrophic actions on sympathetic and sensory neurons in the developing chicken embryo. NGF was subsequently found to influence and regulate the function of many neuronal and non neuronal cells in adult organisms. Little is known, however, about the possible actions of NGF during early embryonic stages. However, mRNAs encoding for NGF and its receptors TrkA and p75(NTR) are expressed at very early stages of avian embryo development, before the nervous system is formed. The question, therefore, arises as to what might be the functions of NGF in early chicken embryo development, before its well-established actions on the developing sympathetic and sensory neurons. To investigate possible roles of NGF in the earliest stages of development, stage HH 11-12 chicken embryos were injected with an anti-NGF antibody (mAb αD11) that binds mature NGF with high affinity. Treatment with anti-NGF, but not with a control antibody, led to a dose-dependent inversion of the direction of axial rotation. This effect of altered rotation after anti NGF injection was associated with an increased cell death in somites. Concurrently, a microarray mRNA expression analysis revealed that NGF neutralization affects the expression of genes linked to the regulation of development or cell proliferation. These results reveal a role for NGF in early chicken embryo development and, in particular, in the regulation of somite survival and axial rotation, a crucial developmental process linked to left-right asymmetry specification.

  17. Cell death during the development of the truncus and conus of the chick embryo heart.

    PubMed Central

    Hurle, J M; Ojeda, J L

    1979-01-01

    The presence of cell death in the walls of the truncus and conus of the developing chick heart was investigated by a variety of light and electron microscopic techniques. Necrotic areas were observed in the myocardial layer of the truncus and conus and within the mesenchymal cells of the truncoconal ridges and aortopulmonary septum. These necrotic zones appeared first at Stage 25-26 and reached their maximum extent at Stages 29-32 undergoing later progressive disappearance. The morphological changes of the degenerating cells detectable under both transmission and scanning electron microscopy are also reported. The possible role of cell death in the morphogenesis of the truncus and conus is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:500497

  18. In vivo silencing of aquaporin-1 by RNA interference inhibits angiogenesis in the chick embryo chorioallantoic membrane assay.

    PubMed

    Camerino, G M; Nicchia, G P; Dinardo, M M; Ribatti, D; Svelto, M; Frigeri, A

    2006-10-30

    Aquaporin-1 (AQP1) is a water channel protein mainly expressed in endothelial and epithelial cells of many tissues, including the vasculature where it serves to increase cell membrane water permeability. Previous studies in active multiple myeloma patients and in AQP1 KO mice indicated an involvement of AQP1 in physiological and tumor angiogenesis. To understand the physiological role of AQP1 in angiogenesis, we used a 21-nucleotide small interfering RNA duplexes (siRNA) to knockdown AQP1 in the chick embryo chorioallantoic membrane (CAM), a commonly used in vivo assay to study both angiogenic and angiostatic molecules. Chicken AQP1 sequence was identified and utilized to synthesize a siRNA directed to the AQP1 sequence. We then tested the efficiency of the siRNA in vitro, using an AQP1 transfected cell line. The level of AQP1 protein reduction obtained using siRNA was 98 % and 92 % after 1 and 2 day transfection respectively. RNA interference experiments were then performed in vivo by using the CAM assay. Results showed that after 4 days of treatment, AQP1 siRNA was able to strongly inhibit angiogenesis. This is the first study showing the in vivo use of RNA interference technique in the CAM assay. Our results strongly support the hypothesis that AQP1 could have a key role in physiological and pathological angiogenesis.

  19. Heat-shock response in cultured chick embryo chondrocytes. Osteonectin is a secreted heat-shock protein.

    PubMed

    Neri, M; Descalzi-Cancedda, F; Cancedda, R

    1992-04-15

    We investigated the induction of specific protein expression by heat shock in dedifferentiated and hypertrophic chick embryo chondrocytes in a culture system that allows 'in vitro' differentiation of cartilage cells [Castagnola, P., Moro, G., Descalzi-Cancedda, F. and Cancedda, R. (1986) J. Cell. Biol. 102, 2310-2317]. As control, we used cultures of embryonic fibroblasts from the whole body and from the skin. In the cell lysates of all cultures we identified four major heat-shock proteins (HSP), with a molecular size corresponding to HSP families previously described (HSP 90, HSP 70, HSP 47 and HSP 26). Some of these proteins were constantly induced when the temperature was raised, others were expressed in a more variable manner. Differences also existed in the relative amount of the HSP synthesized by the four cultures. When we specifically investigated HSP species released into the culture medium, we observed a 43-45 kDa protein constantly expressed and secreted in large amount by the cells. On the basis of its biochemical characteristic and its precipitation by specific antibodies, this protein has been identified as osteonectin (SPARC, BM-40).

  20. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates.

    PubMed

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo

    2016-05-01

    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values.

  1. A 'chemotactic dipole' mechanism for large-scale vortex motion during primitive streak formation in the chick embryo.

    PubMed

    Sandersius, S A; Chuai, M; Weijer, C J; Newman, T J

    2011-08-01

    Primitive streak formation in the chick embryo involves significant coordinated cell movement lateral to the streak, in addition to the posterior-anterior movement of cells in the streak proper. Cells lateral to the streak are observed to undergo 'polonaise movements', i.e. two large counter-rotating vortices, reminiscent of eddies in a fluid. In this paper, we propose a mechanism for these movement patterns which relies on chemotactic signals emitted by a dipolar configuration of cells in the posterior region of the epiblast. The 'chemotactic dipole' consists of adjacent regions of cells emitting chemo-attractants and chemo-repellents. We motivate this idea using a mathematical analogy between chemotaxis and electrostatics, and test this idea using large-scale computer simulations. We implement active cell response to both neighboring mechanical interactions and chemotactic gradients using the Subcellular Element Model. Simulations show the emergence of large-scale vortices of cell movement. The length and time scales of vortex formation are in reasonable agreement with experimental data. We also provide quantitative estimates for the robustness of the chemotaxis dipole mechanism, which indicate that the mechanism has an error tolerance of about 10% to variation in chemotactic parameters, assuming that only 1% of the cell population is involved in emitting signals. This tolerance increases for larger populations of cells emitting signals.

  2. Mechanisms of GABA- and glycine-induced increases of cytosolic Ca2+ concentrations in chick embryo ciliary ganglion cells.

    PubMed

    Sorimachi, M; Rhee, J S; Shimura, M; Akaike, N

    1997-08-01

    We used fura-2 microfluorometry and the gramicidin-perforated patch clamp technique in an attempt to clarify the mechanisms underlying the GABA- and glycine-induced increases in the cytosolic Ca2+ concentration ([Ca]in) in acutely isolated chick embryo ciliary ganglion neurons. GABA, glycine, and isoguvacine, but not baclofen, increased [Ca]in in a dose- and a Ca2+-dependent manner. The GABA-induced [Ca]in increase was inhibited by bicuculline and picrotoxin, and potentiated by pentobarbital, flunitrazepam, and alphaxalone, whereas the glycine-induced [Ca]in increase was inhibited by strychnine but not by bicuculline or picrotoxin. L- and N-type Ca2+ channel blockers inhibited the GABA- and glycine-induced [Ca]in increases, whereas Bay K-8644 potentiated these responses. These responses were also substantially potentiated by blockers of various K+ channels and by lowering the external Cl- concentrations. The high KCI- and nicotine-induced [Ca]in increases were substantially reduced during continuous stimulation with either 2 microM GABA or 1 mM glycine. Electrophysiological studies indicated that the reversal potential of the GABA-induced current exhibited a more depolarized value than the resting membrane potential in 17 of the 25 cells examined. Taken together, these results suggest that both GABA and glycine depolarize the membrane potentials by increasing Cl- conductance via respective receptors and thus increase the Ca2+ influxes through L- and N-type voltage-dependent Ca2+ channels.

  3. In vitro methods for the analysis of motor function in the developing spinal cord of the chick embryo.

    PubMed

    O'Donovan, M J

    1987-10-01

    The isolated spinal cord of the chick embryo spontaneously generates episodes of motor activity in vitro that can be recorded from muscle nerves and ventral roots. In vitro systems provide stable conditions for intra- and extra-cellular recordings and enable pharmacological and ionic manipulations of the neuronal environment. Studies of motor activity generated by isolated spinal cord have revealed the existence of co-ordinated motor output from early in development, in which antagonist motoneurons alternate in their activity and synergists are co-active. Intra-cellular recordings from single neurons and electronic recordings from muscle nerves have provided insight into the mechanism of flexor and extensor alternation. These studies have revealed that flexor and extensor motoneurons receive a similar de-polarization during each cycle of motor activity, but that the two classes of motoneuron process the de-polarization differently. Flexors fire late in each cycle whereas extensors fire early, which leads to a pattern of alternation. The cellular mechanisms responsible for the differences in the firing behavior of flexor and extensor motoneurons are currently being investigated using techniques that are only possible using the in vitro preparation.

  4. Comparison of embryo physiological parameters during incubation, chick quality, and growth performance of three lines of broiler breeders differing in genetic composition and growth rate.

    PubMed

    Tona, K; Onagbesan, O M; Jego, Y; Kamers, B; Decuypere, E; Bruggeman, V

    2004-03-01

    In broiler breeder management, stringent feed restriction is practiced to reduce body size in order to improve egg production and meet broiler production demand, but this practice has raised welfare issues. The potential for the dwarfing (dw) gene to reduce feed intake and body size of breeders under ad libitum feeding or less stringent restriction while maintaining improved egg production has been reported. In this study, we compared embryo physiology, quality of chicks, and performance of broilers from eggs of dwarf breeders with those from a standard broiler breeder. Hatching eggs from 3 commercial lines of broiler breeders were compared for incubation parameters, 1-d-old chick weight, chick quality, and broiler growth to 41 d of age. The lines included a standard heavy (S) line, an experimental (E) line, and a label-type (L) line. The E and L line breeders carry the sex-linked dw gene and are being used to assess the potential for dw to reduce feed intake or lower feed restriction and improve reproductive performance in heavy female broiler parent stock. Two separate experiments were conducted. All female parent stocks were mated to Cornish males, and fertile eggs were collected. In the first experiment, eggs were incubated for 21 d under standard conditions to determine, during final stages of incubation, corticosterone and thyroid hormone levels (triiodothyronine, T3; thyroxine, T4) in embryos and hatchlings, CO2 partial pressure (pCO2), and O2 partial pressure (pO2) in air cells, heat production by eggs and 1-d-old weights. In the second experiment, eggs were incubated for 21 d to compare chick quality, chick weights at 1 d of age, and broiler growth to 7 and 41 d. Average egg weights were higher for the S and L lines than the E line, but weight loss during incubation was lowest for the E line. Plasma T3 and T3/T4 ratio was similar between lines at IP, but corticosterone was higher in the S line. At hatch, T3/T4 ratio was higher in the S line compared with

  5. Glycosidases during chick embryo lung development and their colocalization with proteoglycans and growth factors.

    PubMed

    Stabellini, G; Calvitti, M; Baroni, T; Marinucci, L; Calastrini, C; Carinci, P; Becchetti, E

    2002-01-01

    During development, the epithelial component of the lung goes through a complex orderly process of branching, following strict patterns of space and time. Proteoglycans, glycosaminoglycans and growth factors are fundamental components of the extracellular matrix and perform a key role in differentiative processes. The embryonic chick lung shows a specific glycosaminoglycan composition at different levels of branching and at different embryonic stages. Proteoglycan and glycosaminoglycan accumulation is the result of secretion, absorption and degradation processes. In this pathway, enzymes, such as glycosidases, growth factors and cytokines are involved. We examined the behaviour of glycosidases, such as beta-hexosaminidases (beta-N-acetyl-D-glucosaminidase, beta-N-acetyl-D-galactosaminidase), beta-glucuronidase and beta-galactosidase, during the development of the lung bud. Our data show that the activity of the enzymes is closely linked to the processes of epithelial proliferation, bronchial tubule lengthening and infiltration of the surrounding mesenchyme. The glycosaminoglycans colocalize with transforming growth factor beta2 and interleukin-1 in the basement membrane and in the mesenchymal areas where the epithelium grows, and are complementary to the presence of the glycosidases. In conclusion, the activity of these glycosidases is spatially and temporally programmed and favors the release of the factors and the events which they influence.

  6. Gene signatures in wound tissue as evidenced by molecular profiling in the chick embryo model

    PubMed Central

    2010-01-01

    Background Modern functional genomic approaches may help to better understand the molecular events involved in tissue morphogenesis and to identify molecular signatures and pathways. We have recently applied transcriptomic profiling to evidence molecular signatures in the development of the normal chicken chorioallantoic membrane (CAM) and in tumor engrafted on the CAM. We have now extended our studies by performing a transcriptome analysis in the "wound model" of the chicken CAM, which is another relevant model of tissue morphogenesis. Results To induce granulation tissue (GT) formation, we performed wounding of the chicken CAM and compared gene expression to normal CAM at the same stage of development. Matched control samples from the same individual were used. We observed a total of 282 genes up-regulated and 44 genes down-regulated assuming a false-discovery rate at 5% and a fold change > 2. Furthermore, bioinformatics analysis lead to the identification of several categories that are associated to organismal injury, tissue morphology, cellular movement, inflammatory disease, development and immune system. Endothelial cell data filtering leads to the identification of several new genes with an endothelial cell signature. Conclusions The chick chorioallantoic wound model allows the identification of gene signatures and pathways involved in GT formation and neoangiogenesis. This may constitute a fertile ground for further studies. PMID:20840761

  7. A descriptive study to provide evidence of the teratogenic and cellular effects of sibutramine and ephedrine on cardiac- and liver-tissue of chick embryos.

    PubMed

    Oberholzer, Hester Magdalena; Van Der Schoor, Ciska; Taute, Helena; Bester, Megan Jean

    2015-08-01

    Exposure to drugs during pregnancy is a major concern, as some teratogenic compounds can influence normal foetal development. Although the use of drugs during pregnancy should generally be avoided, exposure of the developing foetus to teratogens may occur unknowingly since these compounds may be hidden in products that are being marketed as "all natural." The aim of the current study was to investigate the possible teratogenic and cellular effects of sibutramine-a serotonin-norepinephrine reuptake inhibitor used in the treatment of obesity-on the heart and liver tissue of chick embryos. Ephedrine was used as a positive control. The chick embryo model was chosen because it has been used in studying developmental and experimental biology and teratology with great success. The embryos were exposed to three different concentrations of sibutramine and ephedrine respectively. The results obtained revealed that both compounds exhibited embryotoxicity when compared to the control groups. Liver and heart tissue of the exposed embryos was severely affected by these compounds in a dose-related manner. Morphology similar to that of muscle dystrophy was observed in the heart, where the muscle tissue was infiltrated by adipose and connective tissue. Severe liver steatosis was also noted. A more in-depth investigation into the molecular pathways involved might provide more information on the exact mechanism of toxicity of these products influencing embryonic development.

  8. Patterns of cell movement in early organ primordia of the chick embryo.

    PubMed

    Hilfer, S R; Marrero, L; Sheffield, J B

    1990-08-01

    Purse-string constriction of the cytoskeleton at cell poles is generally accepted as the causal mechanism for invagination during early stages of organ formation. However, it is known that other cell movements, including intercalation, play a role in the organotypic shape changes that occur during gastrulation and neurulation. Such cell movements have not been investigated in pouching and branching epithelial primordia. There is reason to suspect that cells within these organ primordia might exchange their neighbors for others, that is, intercalate or translocate, at sites of sharp folding such as borders with the surrounding epithelial sheet or where a bend occurs within the primordium. The greatest difficulty in identifying these movements has been the need to use intact embryos so that the processes are not distorted. This study explores the possibility of using time-lapse video recording to identify cell movement at these locations. Three organ primordia were tested: otic and thyroid placodes, which had not been tested previously, and neural plate as a control, where movements of this sort have been documented. Embryos or parts containing the primordia were immobilized and cell apices visualized with Hoffman modulation contrast optics. Recordings to an optical memory disc recorder were transferred to a microcomputer for image analysis. The viewing procedure allows reasonably clear visualization of cell apices, and image analysis permits tracking of a number of adjacent cell apices over an extended time period. Several types of movement were found to occur within cell sheets, and the relative abundance of each type depends on the specific primordium. In the neural plate, some cells move many cell diameters from their neighbors. In the other two primordia, most cells show limited shifts in position relative to their neighbors except at regions where folds are formed. In other regions, adjacent cells move as a unit. Knowledge of the movements which occur in any

  9. Grafting of Beads into Developing Chicken Embryo Limbs to Identify Signal Transduction Pathways Affecting Gene Expression.

    PubMed

    Mohammed, Rabeea H; Sweetman, Dylan

    2016-01-17

    Using chicken embryos it is possible to test directly the effects of either growth factors or specific inhibitors of signaling pathways on gene expression and activation of signal transduction pathways. This technique allows the delivery of signaling molecules at precisely defined developmental stages for specific times. After this embryos can be harvested and gene expression examined, for example by in situ hybridization, or activation of signal transduction pathways observed with immunostaining. In this video heparin beads soaked in FGF18 or AG 1-X2 beads soaked in U0126, a MEK inhibitor, are grafted into the limb bud in ovo. This shows that FGF18 induces expression of MyoD and ERK phosphorylation and both endogenous and FGF18 induced MyoD expression is inhibited by U0126. Beads soaked in a retinoic acid antagonist can potentiate premature MyoD induction by FGF18. This approach can be used with a wide range of different growth factors and inhibitors and is easily adapted to other tissues in the developing embryo.

  10. Focal adhesion kinase as a mechanotransducer during rapid brain growth of the chick embryo.

    PubMed

    Desmond, Mary E; Knepper, Janice E; DiBenedetto, Angela J; Malaugh, Elizabeth; Callejo, Sagrario; Carretero, Raquel; Alonso, Maria-Isabel; Gato, Angel

    2014-01-01

    Expansion of the hollow fluid-filled embryonic brain occurs by an increase in intraluminal pressure created by accumulation of cerebrospinal fluid (CSF). Experiments have shown a direct correlation between cavity pressure and cell proliferation within the neuroepithelium. These findings lead us to ask how mechanistically this might come about. Are there perhaps molecules on the luminal surface of the embryonic neuroepithelium, such as focal adhesion kinases (FAKs) known to respond to tension in other epithelial cells? Immunodetection using antibodies to total FAK and p-FAK was performed with subsequent confocal analysis of the pattern of their activation under normal intraluminal pressure and induced chronic pressure. Western analysis was also done to look at the amount of FAK expression, as well as its activation under these same conditions. Using immunolocalization, we have shown that FAK is present and activated on both apical and basolateral surfaces and within the cytoplasm of the neuroepithelial cells. This pattern changed profoundly when the neuroepithelium was under pressure. By Western blot, we have shown that FAK was upregulated and activated in the neuroepithelium of the embryos just after the neural tube becomes a closed pressurized system, with phosphorylation detected on the luminal instead of the basal surface, along with an increase in cell proliferation. Chronic hyper-pressure does not induce an increase in phosphorylation of FAK. In conclusion, here we show that neuroepithelial cells respond to intraluminal pressure via FAK phosphorylation on the luminal surface.

  11. Effect of Mobile Phone Radiation on Cardiovascular Development of Chick Embryo.

    PubMed

    Ye, W; Wang, F; Zhang, W; Fang, N; Zhao, W; Wang, J

    2016-06-01

    The biological effects on cardiovascular development of chicken embryos were examined after radiation exposure using mobile phone (900 MHz; specific absorption rate˜1.07 W/kg) intermittently 3 h per day during incubation. Samples were selected by morphological and histological methods. The results showed the rate of embryonic mortality and cardiac deformity increased significantly in exposed group (P < 0.05). No any histological pathological changes were observed on Day 5-7 (D5-D7) of incubation. A higher distribution of lipid droplets was unexpectedly present in myocardial tissue from the exposure groups on D10-D13. Soon afterwards, myofilament disruption, atrioventricular valve focal necrosis, mitochondria vacuolization and atrial natriuretic peptide (ANP) decrease appeared on D15-D21 of incubation. Comet assay data showed the haemocyte mean tail in the exposed group was significantly larger than that of the control (P < 0.01). The arterial vascular wall of exposed group was thicker (P < 0.05) than that of the control on D13, which was reversed to normal in later stages. Our findings suggest that long-term exposure of MPR may induce myocardium pathological changes, DNA damage and increased mortality; however, there was little effect on vascular development.

  12. Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity.

    PubMed

    Chub, Nikolai; Mentis, George Z; O'donovan, Michael J

    2006-01-01

    Intracellular Cl(-) ([Cl(-)](in)) homeostasis is thought to be an important regulator of spontaneous activity in the spinal cord of the chick embryo. We investigated this idea by visualizing the variations of [Cl(-)](in) in motoneurons retrogradely labeled with the Cl-sensitive dye 6-methoxy-N-ethylquinolinium iodide (MEQ) applied to cut muscle nerves in the isolated E10-E12 spinal cord. This labeling procedure obviated the need for synthesizing the reduced, cell-permeable dihydro-MEQ (DiH-MEQ). The specificity of motoneuron labeling was confirmed using retrograde co-labeling with Texas Red Dextran and immunocytochemistry for choline acetyltransferase (ChAT). In MEQ-labeled motoneurons, the GABA(A) receptor agonist isoguvacine (100 muM) increased somatic and dendritic fluorescence by 7.4 and 16.7%, respectively. The time course of this fluorescence change mirrored that of the depolarization recorded from the axons of the labeled motoneurons. Blockade of the inward Na(+)/K(-)/2Cl(-) co-transporter (NKCC1) with bumetanide (20 microM) or with a low-Na(+) bath solution (12 mM), increased MEQ fluorescence by 5.3 and 11.4%, respectively, consistent with a decrease of [Cl(-)](in). After spontaneous episodes of activity, MEQ fluorescence increased and then declined to the pre-episode level during the interepisode interval. The largest fluorescence changes occurred over motoneuron dendrites (19.7%) with significantly smaller changes (5.2%) over somata. Collectively, these results show that retrogradely loaded MEQ can be used to detect [Cl(-)](in) in motoneurons, that the bumetanide-sensitive NKCC1 co-transporter is at least partially responsible for the elevated [Cl(-)](in) of developing motoneurons, and that dendritic [Cl(-)](in) decreases during spontaneous episodes and recovers during the inter-episode interval, presumably due to the action of NKCC1.

  13. Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo.

    PubMed

    Ho, S; O'Donovan, M J

    1993-04-01

    We have examined the regionalization and coordination of rhythm-generating networks in the isolated spinal cord of the chick embryo between embryonic days 9 and 13, by recording the pattern of rhythmic activity recorded from muscle nerves and ventral roots following a variety of lesions. We found that the capacity for rhythmic activity is distributed along the rostrocaudal axis of the cord but can be expressed in a single, isolated segment. Specializations within the lumbosacral cord were investigated by isolating particular regions and recording their motor output. The rostral part of the lumbosacral cord generates more cycles than the caudal part, and this difference becomes more pronounced with development. In the unlesioned cord, motoneuron activity is synchronized along the rostrocaudal axis. Lesion experiments revealed that the synchronization of motoneuron activity and the synaptic drive to caudal motoneurons is mediated in part by propriospinal pathways traveling in the ventrolateral white matter tracts and by synaptic interactions within the gray matter. The dorsal fiber tracts may also be involved but their effects appear to be weak. Lesions in dorsal-ventral and mediolateral planes were used to localize regions critical for rhythmogenesis and for the alternation of flexor and extensor motoneurons. Rhythmic activity with alternation persisted in spinal cords in which the dorsal and medial half had been removed. Severe medial or dorsal lesions, resulting in a thin strip of lateral or ventral gray matter, altered the phasing of motoneuron activity from alternating to synchronous without effects on cycle timing. These results suggest that the critical neural components for alternation are located close to and dorsomedial to the lateral motor column, and that the capacity for rhythmogenesis is distributed widely throughout the ventral gray matter and is not localized to specific nuclei.

  14. The antiangiogenic effects of polyisoprenylated cysteinyl amide inhibitors in HUVEC, chick embryo and zebrafish is dependent on the polyisoprenyl moiety

    PubMed Central

    Nkembo, Augustine T.; Ntantie, Elizabeth; Salako, Olufisayo O.; Amissah, Felix; Poku, Rosemary A.; Latinwo, Lekan M.; Lamango, Nazarius S.

    2016-01-01

    Angiogenesis is essential for solid tumor growth, therapeutic resistance and metastasis, the latest accounting for 90% of cancer deaths. Although angiogenesis is essential for the malignant transformations in solid tumors and therefore is an attractive target, few drugs are available that block tumor angiogenesis. The focus has been to block signaling by receptor tyrosine kinases (RTKs), such as for vascular endothelial growth factor (VEGF), whose activation abrogate apoptosis and promote angiogenesis. The polyisoprenylated cysteinyl amide inhibitors (PCAIs) were designed to modulate aberrant polyisoprenylated small G-proteins such as mutant Ras whose constitutive activation promotes RTKs signaling. Since polyisoprenylation is essential for protein-protein interactions and functions of G-proteins, we hypothesized that the PCAIs would disrupt the monomeric G-protein signaling thereby effectively inhibiting angiogenesis. In this study we determined the effects of PCAIs on human umbilical vein endothelial cells (HUVEC) tube formation, cell viability, cell migration and invasion as well as in vivo using the chick chorioallantoic membrane (CAM) and zebrafish models. At sub- to low micromolar concentrations, the PCAIs inhibit the native and VEGF-stimulated cell migration and invasion as well as tube formation and angiogenesis in CAM and zebrafish embryos. The concentrations that block the angiogenic processes were lower than those that induce cell death. Since angiogenesis is essential for tumor growth but otherwise limited to wound healing, feeding fat cells and uterine wall repair in adults, it is conceivable that these compounds can be developed into safer therapeutics for cancers and retinal neovascularization that leads to loss of vision. PMID:27626690

  15. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    SciTech Connect

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  16. Distinct patterns of human medulloblastoma dissemination in the developing chick embryo nervous system.

    PubMed

    Cage, Tene A; Louie, Jonathan D; Liu, Sharon R; Alvarez-Buylla, Arturo; Gupta, Nalin; Hyer, Jeanette

    2012-04-01

    Medulloblastoma (MB) is the most common malignant primary brain tumor in children. Aggressive tumors that disseminate along the leptomeninges carry extremely poor prognoses. Mechanisms that predict dissemination are poorly understood. Our objective was to develop a reliable and reproducible model to study MB dissemination. We have created a chicken-human xenograft to study features of MB with leptomeningeal dissemination. Human MB cell lines (D283, Daoy), primary human MB cells (SF8113), and primary genetic mouse model (Math1cre:SmoM2 flox/flox) MB cells were either transfected to express green fluorescent protein (GFP) or were labeled with a membrane permeable green fluorescent probe. Cells were then injected as aggregates or implanted as pellets into the developing chicken brain immediately after neural tube closure at embryonic day 2 (E2). Most embryos were harvested three days after implantation (E5) though some were harvested up to E15. The developing brain was analyzed via whole mount fluorescent imaging and tissue section immunohistochemistry. Human and mouse MBs survived in the developing chicken central nervous system (CNS). They exhibited distinct patterns of incorporation and dissemination into the CNS that were consistent with observed phenotypes of the corresponding human patient or mouse host. Specifically, metastatic D283 cells disseminated along the leptomeninges whereas Daoy, primary mouse MB, and primary human MB cells did not. This work supports an avian-human xenograft as a successful model to study patterns of MB dissemination. Our model provides a basis for manipulating cell signaling mechanisms to understand critical targets involved in MB dissemination.

  17. Regional development of alpha-methyl-D-glucoside transport in the small intestine of chick embryos and newly-hatched chicks.

    PubMed

    Esteban, S; Moreno, M; Mestre, I; Planas, J M; Tur, J A

    1991-12-01

    A regional study of the intestinal hexose transport shows the role played by duodenum, jejunum and ileum during the chick perinatal development. From at least two days before hatching the three regions of small intestine accumulate alpha-Méthyl-D-Glucose (alpha-MG) by mediated transport mechanisms, and phloridzin inhibit about 90% of the uptakes. This ability reaches the maximal level at 1 day after hatch in the three regions. Before hatching the jejunum shows higher transport levels than the observed values in the duodenum and ileum, but the three regions show similar values at 1 day after hatch. In the following days, the alpha-MG transport ability is strongly reduced in the duodenum, slightly reduced in the jejunum and maintained in the ileum until at least 7 day-old chicks.

  18. The relationship between gene expression of cationic and neutral amino acid transporters in the small intestine of chick embryos and chick breed, development, sex, and egg amino acid concentration.

    PubMed

    Zeng, P L; Li, X G; Wang, X Q; Zhang, D X; Shu, G; Luo, Q B

    2011-11-01

    This study was conducted to investigate the gene expression of cationic and neutral amino acid (AA) transporters in the small intestine of chick embryos with different genetic backgrounds [Wenshi Yellow-Feathered chick (WYFC) and White Recessive Rock chick (WRRC)]. The study also investigated the correlation between the abundance of AA transporter mRNA and the AA content of fertilized eggs. Intestinal samples were collected on embryonic d 9, 12, 14, 17, and 19 and the day of hatch. The results showed that, before incubation, the AA content of WRRC eggs was lower (P < 0.05) than the AA content of WYFC eggs. In WYFC, the mRNA abundance of CAT-1 [solute carrier (SLC) family 7 member 1], CAT-4 (SLC family 7 member 4), rBAT (SLC family 3 member 1), y(+)LAT-1 (SLC family 7 member 7), y(+)LAT-2 (SLC family 7 member 6), LAT-4 (SLC family 43 member 2), and SNAT-2 (SLC family 38 member 2), as detected by real-time reverse transcriptase PCR, was greater (P < 0.05) than the mRNA abundance detected in the WRRC samples. The mRNA abundance of all measured AA transporters was affected (P < 0.05) by embryonic age. Sex had the largest effect (P < 0.05) on the mRNA expression of CAT-1, CAT-4, y(+)LAT-2, and LAT-4 in WYFC and on CAT-4 and B(0)AT-1 (SLC family 6 member 19) mRNA expression in WRRC. In WYFC, only CAT-1 mRNA expression was negatively correlated (r = -0.68 to -0.84, P < 0.05) with all AA content. However, few correlations were detected between AA content and the mRNA expression of multiple transporters in WRRC. These findings provide a comprehensive profile of the temporal and spatial mRNA expression of AA transporters in the small intestine of chick embryos. Few correlations were detected between the AA content of the eggs and mRNA expression of specific AA transporters in the small intestine.

  19. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    SciTech Connect

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F. )

    1989-11-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of (125I)insulin and (125I)IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of (125I)insulin and (125I) IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both (125I)insulin and (125I)IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain.

  20. Motor activity in the isolated spinal cord of the chick embryo: synaptic drive and firing pattern of single motoneurons.

    PubMed

    O'Donovan, M J

    1989-03-01

    The cellular mechanisms underlying embryonic motility were investigated using intracellular recording from motoneurons and electrotonic recording from muscle nerves during motor activity generated by an isolated spinal cord preparation of 12- to 15-d-old chick embryos. DC-coupled recordings from sartorius (a flexor) and femorotibialis (an extensor) muscle nerves revealed that both sets of motoneurons were depolarized at the same time in each cycle even when the motoneurons fired out of phase. Sartorius motoneurons fired briefly on the rising phase of the depolarization and then stopped firing before discharging a second burst of spikes as the depolarization decayed. By contrast, femorotibialis motoneurons fired at the peak of their depolarization, which was coincident with the interruption in sartorius activity. Intracellular recordings from antidromically identified motoneurons confirmed that flexor and extensor motoneurons were depolarized at the same time during each cycle of activity. The discharge of femorotibialis motoneurons, and others presumed to be extensors, followed changes in membrane potential so that maximal firing occurred during peak depolarization. The relationship between discharge and membrane potential was different in sartorius motoneurons (and in others presumed to be flexors) because they fired briefly on the rising phase of the depolarization and then stopped firing during peak depolarization. In some of these cells firing resumed as the membrane potential decayed back to rest. Intracellular injection of depolarizing current into sartorius motoneurons during motor activity reversed the direction of the membrane potential change from depolarizing to hyperpolarizing during the pause in sartorius discharge. In addition, the discharge evoked by the depolarizing current was blocked during the reversed part of the synaptic potential revealing its inhibitory nature. The occurrence of the IPSP was accompanied by a large reduction in motoneuronal

  1. Generation of pattern and form in the developing limb.

    PubMed

    Towers, Matthew; Tickle, Cheryll

    2009-01-01

    The developing limb is a major model for pattern formation in vertebrate embryos. Many of the seminal discoveries of the mechanisms involved in patterning have been made using chick embryos because of the ease of manipulating their developing limbs. More recently, the molecular basis of limb pattern formation has been increasingly uncovered and now, with the availability of genomic resources, the genetic approaches available are even more powerful. Nevertheless, since the limb is ultimately built of cells, gene action must ultimately be translated into cell behaviour and a major challenge will be to integrate genetics with molecular and cellular biology. In this review, we will first outline the stages in limb development, the major interacting signalling pathways that pattern the limb and the molecules involved. We will describe fate maps of the developing limb, and discuss what is known about cellular activities including proliferation, death, adhesiveness, communication and migration during the patterning process. Finally we will explore how these cell activities produce form.

  2. Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS) in colonial fish-eating birds: similarity to chick-edema disease.

    PubMed

    Gilbertson, M; Kubiak, T; Ludwig, J; Fox, G

    1991-08-01

    Several species of colonial fish-eating birds nesting in the Great Lakes basin, including herring gulls, common terns and double-crested cormorants, have exhibited chronic impairment of reproduction. In addition to eggshell thinning caused by high levels of DDT and metabolites, the reproductive impairment is characterized by high embryonic and chick mortality, edema, growth retardation, and deformities, hence the name Great Lakes embryo mortality, edema, and deformities syndrome (GLEMEDS). The hypothesis has been advanced that GLEMEDS in colonial fish-eating birds resembles chick-edema disease of poultry and has been caused by exposure to chick-edema active compounds that have a common mode of action through the cytochrome P-448 system. Detailed evidence has been collected from the following three groups of studies on herring gulls in the lower Great Lakes during the early 1970s; Forster's terns in Green Bay, Wisconsin in 1983; and double-crested cormorants and Caspian terns in various locations in the upper Great Lakes from 1986 onwards. It has proved difficult to establish not only the onset of the disease in the various species at various locations but also the period in which chick-edema active compounds were released. Anecdotal evidence suggested that serious egg mortality in Lake Ontario herring gulls first occurred in 1966, through the signs of chick-edema disease were not looked for until 1974. Only indirect evidence is available on the date of the release of one of the presumed causal agents, 2,3,7,8-tetrachlorodibenzo-p-dioxin, but highest levels may have occurred in the early to mid 1960s. More reliable data show that the onset of the improvement of reproduction of Lake Ontario herring gulls coincided with the declines in organochlorine compounds and particularly 2,3,7,8-TCDD and PCB. Similarly, information on the onset of the disease and exposures in the Forster's tern and double-crested cormorants in Green Bay is uncertain but bird banders did not

  3. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  4. Homocysteine-induced changes in cell proliferation and differentiation in the chick embryo spinal cord: implications for mechanisms of neural tube defects (NTD).

    PubMed

    Kobus-Bianchini, Karoline; Bourckhardt, Gilian Fernando; Ammar, Dib; Nazari, Evelise Maria; Müller, Yara Maria Rauh

    2017-02-24

    Maternal hyperhomocysteinemia during pregnancy is associated with increased risk of NTD in the offspring. Our study investigated the effects of homocysteine (Hcy) on proliferation and neuronal differentiation of the spinal cord cells in a chick embryo model. Embryos were treated with 20μmol D-L Hcy/50μL saline solution at embryonic day 2 (E2) and analyzed at embryonic days 4 (E4) and 6 (E6). Control embryos received exclusively 50μL saline solution. We performed immunolocalization and flow cytometry analyses using antibodies anti-phosphohistone H3 (pH3), anti-proliferating cell nuclear antigen (PCNA), anti-β-tubulin III and anti-p53. Our results revealed that Hcy interferes in the proliferation of the neural cells, and that this effect is age-dependent and differed between Hcy-treated embryos with and without NTD. Also, Hcy induced a decrease of neuronal differentiation in the spinal cord at both embryonic ages. These findings contribute to clarifying the cellular bases of NTD genesis, under experimental hiperhomocysteinemia.

  5. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development.

    PubMed

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-05-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development.

  6. The effect on the intestines of continuous release of methylene blue from a drug delivery system: an experimental study in a chick embryo gastroschisis model.

    PubMed

    Denli, Ozgür; Barlas, Meral; Bingol-Kologlu, Meltem; Yagmurlu, Aydin; Ozdamar, Sükrü; Hasçiçek, Canan; Cedden, Fatih

    2004-08-01

    Increased small bowel nitric oxide synthase (NOS) activity has been suspected as a cause of postnatal intestinal dysmotility in gastroschisis. The effect of continuous delivery of methylene blue loaded polymer (MBLP) hydroxy-propyl methyl cellulose-ethyl cellulose (HPEC-MC) and daily injection of methylene blue (MB) on the intestinal damage (ID) was evaluated using a chick embryo gastroschisis model. Fourteen-day-old fertilized chick eggs were divided into five groups. In the control (C) group, no intervention was performed. In the sham (S) group, the allantoic and amniotic membranes were opened to create a common cavity that resembles the amniotic cavity in human. In the gastroschisis only (GO) group, a defect in the abdominal wall of the embryo was made, and intestinal loops were exteriorized following connection of amniotic and allantoic cavities. In the gastroschisis plus methylene blue (G+MB) group, gastroschisis was created and MB administered into the amnioallantoic cavity (AAC) by daily injections for 5 days. In the gastroschisis plus methylene blue loaded polymer (G+MBLP) group, MBLP was placed into AAC after gastroschisis was created. At the end of the 19th day of incubation, intestinal morphological changes were investigated macroscopically and microscopically. Although the survival rates were decreased in the chick embryos with creation of gastroschisis compared with C and S groups ( p<0.001), the survival rates were increased in G+MBLP group (76.92%) when compared with the GO group (41%) ( p<0.001). Because of multiple intervention of embryos, higher mortality was observed in the G-MB group (75.61%). Macroscopic and microscopic scores of ID and mean intestinal wall thickness were significantly higher in the GO group when compared with C, S, G+MB, and G+MBLP groups ( p<0.001). The mean score of intestinal ganglia morphology was significantly increased and the total number of ganglion cells was significantly decreased in the GO group when compared with C

  7. Ultrastructural characterization of normal and abnormal chondrogenesis in micromass rat embryo limb bud cell cultures.

    PubMed

    Renault, J Y; Caillaud, J M; Chevalier, J

    1995-02-01

    Inhibition of chondrogenesis in limb bud cell micromass cultures has been proposed as a short-term teratogen detection test. Validation studies were performed by testing large series of reference compounds and comparing their teratogenic potential with their ability to inhibit chondrogenesis; however, there are few reports describing the histological and ultrastructural changes associated with inhibition of chondrogenesis in vitro. The objective of this study was to provide a qualitative description of the histological and ultrastructural alterations induced by three chondrogenesis inhibitors: retinoic acid (RA) and 6-aminonicotinamide (6AN), two teratogens, and doxylamine succinate (DS), a nonteratogen compound. In addition, in order to have a basis for the interpretation of the morphological alterations induced by the test compounds, the histological and ultrastructural changes which occur during the time course of chondrogenesis in control cultures were described and compared with those in rat embryo limb buds. We found that RA at 0.5 micrograms/ml led to a marked decrease in the number and size of cartilaginous foci; most cells lacked morphological signs of differentiation but their ability to proliferate was unaffected. At concentrations of 2 micrograms/ml and more, 6AN delayed cell proliferation, reduced staining of the extracellular matrix, and induced the formation of endoplasmic cisternae. DS at 50 micrograms/ml affected both differentiation and proliferation; pigment deposits were observed in chondrocytes, suggesting phospholipid metabolism disorders. In conclusion, this study showed that inhibition of chondrogenesis in this simple cell culture system can be associated with different types of histological and ultrastructural alterations. Examination of these alterations can provide useful information about the teratogenic potential of tested compounds and their mechanism of action.

  8. Elastin exhibits a distinctive temporal and spatial pattern of distribution in the developing chick limb in association with the establishment of the cartilaginous skeleton.

    PubMed

    Hurle, J M; Corson, G; Daniels, K; Reiter, R S; Sakai, L Y; Solursh, M

    1994-09-01

    In this work we have analyzed the presence of elastic components in the extracellular matrices of the developing chick leg bud. The distributions of elastin and fibrillin were studied immunohistochemically in whole-mount preparations using confocal laser microscopy. The association of these constituents of the elastic matrix with other components of the extracellular matrix was also studied, using several additional antibodies. Our results reveal the transient presence of an elastin-rich scaffold of extracellular matrix fibrillar material in association with the establishment of the cartilaginous skeleton of the leg bud. The scaffold consisted of elastin-positive fibers extending from the ectodermal surface of the limb to the central cartilage-forming regions and between adjacent cartilages. Fibrillin immunolabeling was negative in this fibrillar scaffold while other components of the extracellular matrix including: tenascin, laminin and collagens type I, type III and type VI; appeared codistributed with elastin in some regions of the scaffold. Progressive changes in the spatial pattern of distribution of the elastin-positive scaffold were detected in explant cultures in which one expects a modification in the mechanical stresses of the tissues related to growth. A scaffold of elastin comparable to that found in vivo was also observed in high-density micromass cultures of isolated limb mesodermal cells. In this case the elastic fibers are observed filling the spaces located between the cartilaginous nodules. The fibers become reoriented and attach to the ectodermal basal surface when an ectodermal fragment is located at the top of the growing micromass. Our results suggest that the formation of the cartilaginous skeleton of the limb involves the segregation of the undifferentiated limb mesenchyme into chondrogenic and elastogenic cell lineages. Further, a role for the elastic fiber scaffold in coordinating the size and the spatial location of the cartilaginous

  9. Saunders's framework for understanding limb development as a platform for investigating limb evolution.

    PubMed

    Young, John J; Tabin, Clifford J

    2016-11-11

    John W. Saunders, Jr. made seminal discoveries unveiling how chick embryos develop their limbs. He discovered the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the domains of interdigital cell death within the developing limb and determined their function through experimental analysis. These discoveries provided the basis for subsequent molecular understanding of how vertebrate limbs are induced, patterned, and differentiated. These mechanisms are strongly conserved among the vast diversity of tetrapod limbs suggesting that relatively minor changes and tweaks to the molecular cascades are responsible for the diversity observed in nature. Analysis of the pathway systems first identified by Saunders in the context of animals displaying limb reduction show how alterations in these pathways have resulted in multiple mechanisms of limb and digit loss. Other classes of modification to these same patterning systems are seen at the root of other, novel limb morphological alterations and elaborations.

  10. Glyceraldehyde 3-phosphate dehydrogenase protein and mRNA are both differentially expressed in adult chickens but not chick embryos.

    PubMed Central

    Milner, R J; Brow, M D; Cleveland, D W; Shinnick, T M; Sutcliffe, J G

    1983-01-01

    We have determined the 679 nucleotide sequence of a cDNA clone which, by hybridization-translation experiments, corresponds to a 36K chick brain protein. Our studies provide a partial amino acid sequence for this protein, identifying it as chicken glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Antisera raised against purified chicken GAPDH reacted with a 36K protein present in chick brain extracts and estimated to be the fourth most prevalent protein, as determined by either Coomassie Blue staining or by in vitro translation of chick brain mRNA. The amounts of GAPDH mRNA in chick brain, liver and muscle and adult chicken brain are similar, whereas the relative amount of adult chicken muscle GPDH mRNA is greatly elevated and that of adult liver lowered. The GAPDH protein levels showed a similar variation between tissues, suggesting that the levels of GAPDH protein are largely regulated by the amount of available GAPDH mRNA. The chicken GAPDH clone does not hybridize to rat mRNA, even though GAPDH is one of the most evolutionarily conserved proteins, indicating that selection pressures are heavier at the primary protein sequence level than at the nucleic acid sequence level for this gene, a situation contrasting to that of the tubulins. Images PMID:6687938

  11. Control of glycolysis in cultured chick embryo hepatocytes. Fructose 2,6-bisphosphate content and phosphofructokinase-1 activity are stimulated by insulin and epidermal growth factor.

    PubMed Central

    Hamer, M J; Dickson, A J

    1990-01-01

    Chick embryo hepatocytes were maintained in monolayer culture in a serum-free chemically defined medium for periods of up to 2 days. Over this time period, insulin provoked selective increases (up to 5-fold) in factors relevant to the control of glycolysis: the activities of phosphofructokinase-1 (PFK-1), phosphofructokinase-2 (PFK-2) and hexokinase isoenzymes and the content of fructose 2,6-bisphosphate (F26BP). Half-maximal effects of insulin on pFK-1 activity were in the physiological range (0.1 nM). Changes in enzyme activities and F26BP content in response to insulin were correlated with stimulation of glycolytic flux as estimated by radioisotopic flux. These data are discussed in relation to known changes which occur in hepatic glycolytic activity and PFK-1 activity in the intact chick around hatching. The effects of insulin on F26BP content, PFK-1 activity and glycolytic flux were mimicked by epidermal growth factor (EGF). In contrast, phorbol esters produced minimal actions on any of the above parameters. Our data indicate that protein kinase C is not involved in the actions of insulin or EGF in control of F26BP content or PFK-1 activity. This work indicates that the related tyrosyl kinase receptors of insulin and EGF may provoke identical responses within hepatocytes, but through the utilization of different transduction systems which merge to common control points. Images Fig. 1 PMID:2143894

  12. Effects of male and female sex steroids on the development of normal and the transient Froriep's dorsal root ganglia of the chick embryo.

    PubMed

    Liu, Jiali; Chen, Dawei; Goldstein, Ronald S; Cui, Sheng

    2005-03-22

    Sex steroids can influence developmental processes and support the survival of neurons in the embryonic central nervous system. Recent studies have shown that estrogen receptors are also expressed in the peripheral nervous system, in the dorsal root ganglia (DRG) of chick embryos. However, no studies have examined the effects of sex steroids on development of embryonic DRG. In the present study, 0.2 microg, 1.0 microg, 5.0 microg 10 microg, 20 microg, 25 microg, and 40 microg doses of testosterone or estradiol were delivered to chick embryos at Hamburger and Hamilton stage 18 (E3). The actions of these doses of sex steroids on the development of the C5DRG (fifth cervical ganglion, a "normal" DRG) and C2DRG (a transient ganglion known as a "Froriep's DRG") were then evaluated by quantifying ganglionic volumes, cell number, proliferation, and apoptosis after 1 day of growth to stage 23. We found that both testosterone and estradiol promoted proliferation of cells in both normal DRG and the Froriep's ganglia. By contrast, estradiol significantly increased the number of apoptotic cells, while testosterone strongly inhibited apoptosis. These actions of sex steroids on DRG development were dose-dependent, and C5DRG and C2DRG showed different sensitivities to the applied sex steroids. In addition, the present results demonstrated that specific ER and AR inhibitors (tamoxifen and flutamide) did not influence the effects of 5 microg E2 and 5 microg T on C2 and C5DRG significantly. These results demonstrate that male and female sex steroids can modulate DRG development through an epigenetic mechanism, as had been shown for the central nervous system.

  13. Locally released retinoic acid leads to facial clefts in the chick embryo but does not alter the expression of receptors for fibroblast growth factor.

    PubMed

    Richman, J M; Delgado, J L

    1995-01-01

    Systemic administration of retinoic acid (RA) affects the growth of the upper beak of chick embryos; however, the mechanism for generating a cleft upper beak is not known. In the present study, we wished to elucidate the molecular basis of the retinoid-induced lip clefting. In order to ensure that facial prominences were locally exposed to levels of retinoid known to affect gene expression, we implanted beads soaked in different concentrations of RA in the right nasal pit or in the centre of the frontonasal mass. Beads soaked in 5 mg/ml RA placed in the right nasal pit caused full clefting of the upper beak with a deviation of the midline toward the right side of the face. The asymmetry was principally due to a decrease in size or total elimination of the right lateral nasal prominence. RA-soaked beads placed in the centre of the frontonasal mass created full bilateral clefts that were more symmetrical than those produced by beads in the nasal pit. Lower concentrations of retinoic acid produced less severe facial abnormalities. Control experiments show that the implanted bead itself has no effect on growth or fusion of the facial prominences. The specific effects of retinoids on facial growth may be due to a localized decrease in responsiveness to growth factors. Gene expression patterns for two fibroblast growth factor receptors (Cek-2, Cek-3, [chicken embryo kinase]) in normal and RA-treated embryos were examined by in situ hybridization. In normal embryos, Cek-2 and Cek-3 transcripts are expressed at very high levels in the mesenchyme directly adjacent to the eye. Cek-3 is additionally expressed in the centre of the frontonasal mass. The application of beads to the right nasal pit did not change the level of expression or distribution of transcripts for Cek-2 or Cek-3. This data suggests that retinoic acid may be affecting other aspects of the FGF receptor-ligand interaction.

  14. Effects of DDT and permethrin on neurite growth in cultured neurons of chick embryo brain and Lymnaea stagnalis.

    PubMed

    Ferguson, C A; Audesirk, G

    1990-01-01

    The pesticides permethrin and 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT), dissolved in either ethanol (EtOH) or dimethylsulphoxide (DMSO), were studied to determine their effect on neurite growth from cultured neurons of Lymnaea stagnalis and embryonic chicks. Both of these toxins decreased the percentage of neurons growing neurites, mean neurite length, and number of neurites/cell in a dose-dependent manner. DMSO increased the toxicity of permethrin and DDT in L. stagnalis neurons. EtOH was not used as a solvent with the embryonic chick cultures. Pre-existing neurites of L. stagnalis neurons exposed to permethrin regressed in a dose- and time-dependent manner. These two toxins may affect neurite outgrowth through interference with intracellular calcium regulation.

  15. Development of bone in chick embryos from Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources.

    PubMed

    Favero, A; Vieira, S L; Angel, C R; Bos-Mikich, A; Lothhammer, N; Taschetto, D; Cruz, R F A; Ward, T L

    2013-02-01

    Sources of Zn, Mn, and Cu (IZMC) as sulfates or as amino acid complexes (OZMC) were used to supplement Cobb 500 breeder hen diets. Experimental treatments consisted of diets supplemented with 1) 100, 100, and 10 mg/kg of Zn, Mn, and Cu, respectively, from IZMC (control); 2) 60, 60, and 3 mg/kg of Zn, Mn, and Cu, respectively, from IZMC plus 40, 40, and 7 mg/kg of Zn, Mn, and Cu, respectively, from OZMC (ISO); and 3) a diet with 100, 100, and 10 mg/kg of Zn, Mn, and Cu, respectively, from IZMC as in control plus 40, 40, and 7 mg/kg of supplemental Zn, Mn, and Cu from OZMC (on top). Ten replications of 20 females and 2 males were used per treatment. Eggs from breeders at 30, 40, 50 and 60 wk of age were incubated, and 5 embryos per replicate were collected at 10 (E10), 14 (E14), and 18 (E18) d of incubation. Midshaft width and calcification were measured for left tibia and femur stained with Alcian Blue and Alizarin Red S. At hatch, the left tibia of 5 chicks per replicate was sampled for histological evaluation of the diaphysis and distal epiphysis. Feeding the ISO treatment compared with the control diet increased the Zn (P < 0.05) but not Mn and Cu content of the yolk and albumen blend. At E14, the ISO and on-top treatments had a trend to increase tibia calcification at the rates of 1.6 and 1%, respectively (P < 0.1). The E18 ISO and on-top treatments had 2% thicker tibia compared with the control, regardless of hen age (P < 0.05). Also, at E18, calcification of tibia and femur was higher from hens fed the on-top treatment (P < 0.05). The chicks from the ISO and on-top groups had increased tibia moment of inertia (P < 0.01) at day of hatch. Broiler breeder hens consuming OZMC associated with IZMC produced embryos and hatching chicks with improvements in selected bone mineralization parameters.

  16. The chronic infusion of nicotine into the developing chick embryo does not alter the density of (-)-[3H]nicotine-binding sites or vestibular function

    NASA Technical Reports Server (NTRS)

    Roll, R. L.; Jones, T. A.; Benowitz, N. L.; Morley, B. J.

    1993-01-01

    (-)-Nicotine (1.2 mg/day) or saline was infused into chick embryos (Gallus domesticus) for 10 days beginning 12 h beyond the eight day of incubation (E8 + 12 h). Twelve h beyond the eighteenth day of incubation (E18 + 12 h), the eggs were opened to access the embryos and subcutaneous skull electrodes placed. Short latency vestibular response thresholds and input/output functions were determined to assess neurophysiological consequences of chronic nicotine administration. Samples of serum and extraembryonic (amniotic and albumen) fluid were analyzed by gas chromatography-mass spectrometry to determine the levels of nicotine and its major metabolite, cotinine. The brains were removed and divided into diencephalon and mesencephalon and the density of (-)-[3H]nicotine binding sites in each brain area was measured. Nicotine and cotinine were found in the serum and extraembryonic fluid, but nicotinic receptors were not up-regulated in the brains of animals infused with nicotine in comparison to controls. Vestibular response thresholds also did not differ between nicotine-treated and control animals.

  17. Effect of exposure to radio frequency radiation emitted by cell phone on the developing dorsal root ganglion of chick embryo: a light microscopic study.

    PubMed

    Ingole, I V; Ghosh, S K

    2012-12-01

    With an ever increasing number of cell phone users since late twentieth [corrected] century, magnitude of the problem of exposure to radiation emitted by cell phone is self evident. Extensive research had been devoted to incriminate or absolve it as a health hazard. Radiofrequency radiation emitted by cell phone had been stated to be a potent carcinogen, cytotoxic, genotoxic, mutagenic and neurobehavioral teratogen. Its effect on the brain had been a subject of extensive research evidently due to its proximity to the user's brain. While considering the biological effects of radiofrequency radiation, its intensity, frequency and the duration of exposure are important determinants. Nevertheless the results of these different studies have not been unequivocal. Considering the contradictory reports, the present work was undertaken to study the effect of such an exposure on the developing neural tissue of chick embryo. The processes of cell division and differentiation are fundamental to the development of any living being and are a sensitive index of any insult sustained at this stage. Neurons of dorsal root ganglion were selected for the present study as these ganglia were fully differentiated as early as fourth day of embryonic life. By varying duration of exposure, the embryos were exposed to different doses of radiation, sacrificed at different periods of incubation and subjected to histological processing. On light microscopic study it was observed that developing neurons of dorsal root ganglion suffered a damage which was dose dependent and persisted in spite of giving the exposure-free period between two exposures.

  18. Characterization of the homeobox-containing gene GH6 identifies novel regions of homeobox gene expression in the developing chick embryo.

    PubMed

    Stadler, H S; Solursh, M

    1994-01-01

    Homeobox genes are a major group of genes involved in regulating, embryogenesis. Here we describe the identification of GH6, a novel chicken homeobox-containing gene and its spatial and temporal expression pattern in the developing chick embryo. Identity comparisons of the GH6 homeodomain suggest that it is closely related to the human homeobox gene H6, with 93% amino acid conservation. Temporally, GH6 expression is highest between embryonic stages 23 and 26; however, some expression is also detectable as early as stage 13. In situ hybridization of stage 23 embryos indicates that GH6 expression occurs at high levels in discrete craniofacial regions including the second branchial arch, the neural retina, the lens epithelium, the optic nerve, and the infundibulum. GH6 expression was also seen in the developing ventricular myocardium, representing the first report of homeobox gene expression in the developing ventricle. GH6 is also expressed in sensory spinal and cranial ganglia, suggesting that GH6 plays several roles not only in the development of craniofacial structures such as the eye and ear, but also in formation of functionally defined ganglia and myocardial structures.

  19. Effects of selenium sources and levels on reproductive performance and selenium retention in broiler breeder, egg, developing embryo, and 1-day-old chick.

    PubMed

    Yuan, Dong; Zhan, XiuAn; Wang, YongXia

    2011-12-01

    An 8-week experiment was conducted using 540 48-week-old Lingnan Yellow broiler breeders to evaluate the effect of the sources and levels of selenium (Se) on reproduction and Se retention. After receiving basal diet for 8 weeks, breeders were randomly assigned to six dietary treatments and fed corn-soy-based diets supplemented with 0.15 or 0.30 mg/kg of Se from sodium selenite (SS) or from Se-enriched yeast (SY) or from selenomethionine (SM). The Se concentration of basal diet was 0.04 mg/kg of Se. With the increase of dietary Se level, hatchability decreased (P < 0.05), but the Se concentrations were elevated in liver, kidney, pancreas, and breast muscle of breeders, yolk and albumen, liver and breast muscle of developing embryos, and tissues (liver, kidney, pancreas, and breast muscle) of 1-day-old chicks (P < 0.01). Irrespective of the Se level, the Se concentrations in liver, kidney, pancreas, and breast muscle were greater (P < 0.01) in breeders fed SY or SM compared with breeders fed SS, and kidney from breeders fed SM had greater Se concentration than that from breeders fed SY (P < 0.01). Yolk and albumen from SM treatments also had the greatest Se concentrations (P < 0.01). The embryonic liver and breast muscle from SM treatments had higher (P < 0.01) Se concentrations than those of SS treatments. The Se concentrations in liver, kidney, and breast muscle of 1-day-old chicks were greater (P < 0.01) in SY or SM treatments compared with SS treatments, and there was a more significant increase in Se concentrations in kidney and breast muscle of 1-day-old chicks from SM treatments than those from SY treatments (P < 0.01). The results suggest that the Se retention efficiency of SM is higher than that of SY, which, in turn, is higher than that of SS for broiler breeders and their offspring.

  20. SDOCT Doppler velocimetry for investigating the morphological influences on blood flow in the developing chick embryo heart

    NASA Astrophysics Data System (ADS)

    Davis, Anjul M.; Rothenberg, Florence G.; Law, Tzuo H.; Taber, Larry A.; Izatt, Joseph A.

    2007-02-01

    The onset of congenital heart disease (CHD) is believed to occur at very early stages of development. Investigations in the initiation and development of CHD has been hampered by the inability to image early stage heart structure and function, in vivo. Imaging small animals using optical coherence tomography (OCT) has filled a niche between the limited penetration depth of confocal microscopy and insufficient resolution from ultrasound. Previous demonstrations of chick heart imaging using OCT have entailed excision of, or arresting the heart to prevent motion artifacts. In this summary, we introduce SDOCT Doppler velocimetry as an enhancement of Doppler OCT for in vivo measurement of localized temporal blood flow dynamics. With this technique, dynamic velocity waveforms were measured in the outflow tract of the heart tube. These flow dynamics correlate to a finite element model of pulsatile flow and may lead to a further understanding of morphological influences on early heart development.

  1. Regional variations in the extent and timing of motoneuron cell death in the lumbosacral spinal cord of the chick embryo.

    PubMed

    Williams, C; Wohlenberg, G; O'Donovan, M J

    1987-08-01

    We have examined the distribution of motoneurons in different segments of the chick lumbosacral spinal cord before and after the period of motoneuron cell death. The extent of cell death was found to be greatest at the boundaries of the lumbosacral cord where over 60% of the motoneurons died and least in the central region where only 30% died. After cell death at stage 40 the number of motoneurons in each segment was linearly correlated with segment length, suggesting that growth of the segment and motoneuron numbers may be regulated by a common factor. The time of completion of motoneuron cell death exhibited a rostrocaudal gradient along the lumbar cord. Cell death was complete in the anterior segments by stage 35 but not until stage 38 in the caudal 4 segments. The regional variations in the extent and timing of motoneuron cell death suggest that the relative importance of the factors mediating cell death vary in different regions of the lumbar cord.

  2. Development of the arterial pattern in the upper limb of staged human embryos: normal development and anatomic variations

    PubMed Central

    RODRÍGUEZ-NIEDENFÜHR, M.; BURTON, G. J.; DEU, J.; SAÑUDO, J. R.

    2001-01-01

    A total of 112 human embryos (224 upper limbs) between stages 12 and 23 of development were examined. It was observed that formation of the arterial system in the upper limb takes place as a dual process. An initial capillary plexus appears from the dorsal aorta during stage 12 and develops at the same rate as the limb. At stage 13, the capillary plexus begins a maturation process involving the enlargement and differentiation of selected parts. This remodelling process starts in the aorta and continues in a proximal to distal sequence. By stage 15 the differentiation has reached the subclavian and axillary arteries, by stage 17 it has reached the brachial artery as far as the elbow, by stage 18 it has reached the forearm arteries except for the distal part of the radial, and finally by stage 21 the whole arterial pattern is present in its definitive morphology. This differentiation process parallels the development of the skeletal system chronologically. A number of arterial variations were observed, and classified as follows: superficial brachial (7.7%), accessory brachial (0.6%), brachioradial (14%), superficial brachioulnar (4.7%), superficial brachioulnoradial (0.7%), palmar pattern of the median (18.7%) and superficial brachiomedian (0.7%) arteries. They were observed in embryos belonging to stages 17–23 and were not related to a specific stage of development. Statistical comparison with the rates of variations reported in adults did not show significant differences. It is suggested that the variations arise through the persistence, enlargement and differentiation of parts of the initial network which would normally remain as capillaries or even regress. PMID:11693301

  3. Early developmental 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure decreases chick embryo heart chronotropic response to isoproterenol but not to agents affecting signals downstream of the beta-adrenergic receptor.

    PubMed

    Sommer, Rebecca J; Hume, Adam J; Ciak, Jessica M; Vannostrand, John J; Friggens, Megan; Walker, Mary K

    2005-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes cardiovascular toxicity in laboratory animals, including alteration in several processes in which beta-adrenergic receptor (beta-AR) signaling plays important roles. Thus, our laboratory investigated the effects of TCDD on beta-AR expression and signal transduction. Fertile chicken eggs were injected with vehicle (corn oil), 0.24 or 0.3 pmol TCDD/g egg on incubation day 0 (D0) or D5. On D10, heart function was assessed by ECG in ovo. Exposure to TCDD increased the incidence of arrhythmias and decreased the positive chronotropic responsiveness of the heart to isoproterenol. The reduced beta-AR responsiveness was, in part, independent of any overt morphological changes in the heart as chick embryos exposed to TCDD on D5 displayed an intermediate responsiveness to beta-AR agonist in the absence of the dilated cardiomyopathy observed in chick embryos exposed to TCDD on D0. TCDD did not decrease the chronotropic response of the heart to agents that stimulate signals downstream of the beta-AR. In fact, TCDD-exposed embryos were more sensitive than controls to forskolin, increasing heart rates (HR) 21.8 +/- 3.5 beats per min (bpm) above baseline versus control values at 6.3 +/- 2.7 bpm above baseline. TCDD exposure also augmented the negative chronotropic response of the heart to verapamil, decreasing HR -23.2 +/- 7.4 bpm relative to baseline versus control embryos at -12.7 +/- 5.9 bpm below baseline. Finally, the mean cardiac beta1-AR mRNA expression in D10 embryos was not significantly altered by exposure to TCDD on D0. These findings establish that a functional end point of the developing chick heart is sensitive to TCDD exposure and that the TCDD-induced reduction in beta-AR responsiveness may result from alterations in signal transduction upstream of adenylyl cyclase.

  4. Disappearance of afferent and efferent nerve terminals in the inner ear of the chick embryo after chronic treatment with beta-bungarotoxin

    PubMed Central

    1977-01-01

    Beta-Bungarotoxin(beta-BT) was applied to chick embryos at 3-day intervals beginning on the 4th day of incubation to see the effect of chronically and massively applied beta-BT, and to investigate the hair cell-nerve relationship in the developing inner ear by electron microscopy. On the 10th day of incubation, nerve terminals had achieved contact with differentiating hair cells, but the acoustico-vestibular ganglion cells of treated animals were decreased in number to one-third of those of the control. By the 14th day, most of the ganglion cells degenerated and disappeared, and only a few nerve terminals were seen in the neuroepithelium. At this time, most of the hair cells lacked synaptic contacts with nerve terminals; but their presynaptic specialization remained intact and they showed evidence of continuing differentiation. On the 17th day, the acoustico-vestibular ganglion cells were completely absent. All the hair cells were devoid of afferent and efferent innervation but were fully differentiated on the 21st day. Beta-BT was found to have a similar destructive effect on cultured spinal ganglion cells. The present study shows that beta-BT kills acoustico-vestibular and spinal nerve cells when applied chronically and massively during development. Furthermore, the differentiation of hair cells proceeds normally, and their presynaptic specializations are maintained when nerve terminals are absent during later developmental stages. PMID:856835

  5. Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick embryos for in ovo Magnetic Resonance Imaging free of motion artifacts

    PubMed Central

    Waschkies, Conny; Nicholls, Flora; Buschmann, Johanna

    2015-01-01

    Non-invasive assessment of the perfusion capacity of tissue engineered constructs grown on the chorioallantoic membrane by MRI is often hampered by motion artifacts. Therefore, we examined the suitability of three anesthetic regimes for sufficient sedation of the chick embryo. Medetomidine at a dosage of 0.3 mg/kg, was compared to thiopental at 100 mg/kg and ketamine/midazolam at 50 mg/kg and 1 mg/kg, respectively. These soluble anesthetics were applied by dropping a total volume of 0.3 mL onto the surface of the CAM. Motion was videotaped through the window of the eggshell and scored semi-quantitatively. Medetomidine performed best in terms of reduced motion; onset of anesthesia occurred within 10 minutes and for the following 30 minutes, allowing proper in vivo MRI measurements. The other regimen were not sedating deep enough (ketamine/midazolam) and not long enough (thiopental). In sum, medetomidine allows proper sedation for MRI assessment of the perfusion capacity in a tissue engineered construct placed on the CAM. PMID:26493765

  6. Derivation of feline vaccine-associated fibrosarcoma cell line and its growth on chick embryo chorioallantoic membrane - a new in vivo model for veterinary oncological studies.

    PubMed

    Zabielska, K; Lechowski, R; Król, M; Pawłowski, K M; Motyl, T; Dolka, I; Zbikowski, A

    2012-12-01

    Feline vaccine associated fibrosarcomas are the second most common skin tumor in cats. Methods of treatment are: surgery, chemotherapy and radiotherapy. Nevertheless, the usage of cytostatics in feline vaccine associated sarcoma therapy is limited due to their adverse side effects, high toxicity and low biodistribution after i.v. injection. Therefore, much research on new therapeutic drugs is being conducted. In human medicine, the chick embryo chorioallantoic membrane (CAM) model is used as a cheap and easy to perform assay to assess new drug effectiveness in cancer treatment. Various human cell lines have different tumors growth on CAM. In veterinary medicine such model has not been described yet. In the present article derivation of feline vaccine associated fibrosarcoma cell line and its growth on CAM is described. The cell line and the tumor grown were confirmed by histopathological and immunohistochemical examination. As far as we believe, this is the first attempt to create such model, which may be used for further in vivo studies in veterinary oncology.

  7. Doxorubicin Conjugated to Glutathione Stabilized Gold Nanoparticles (Au-GSH-Dox) as an Effective Therapeutic Agent for Feline Injection-Site Sarcomas-Chick Embryo Chorioallantoic Membrane Study.

    PubMed

    Zabielska-Koczywąs, Katarzyna; Dolka, Izabella; Król, Magdalena; Żbikowski, Artur; Lewandowski, Wiktor; Mieczkowski, Józef; Wójcik, Michał; Lechowski, Roman

    2017-02-08

    Feline injection-site sarcomas are malignant skin tumours with a high local recurrence rate, ranging from 14% to 28%. The treatment of feline injection-site sarcomas includes radical surgery, radiotherapy and/or chemotherapy. In our previous study it has been demonstrated that doxorubicin conjugated to glutathione-stabilized gold nanoparticles (Au-GSH-Dox) has higher cytotoxic effects than free doxorubicin for feline fibrosarcoma cell lines with high glycoprotein P activity (FFS1, FFS3). The aim of the present study was to assess the effectiveness of intratumoural injection of Au-GSH-Dox on the growth of tumours from the FFS1 and FFS3 cell lines on chick embryo chorioallantoic membrane. This model has been utilized both in human and veterinary medicine for preclinical oncological studies. The influence of intratumoural injections of Au-GSH-Dox, glutathione-stabilized gold nanoparticles and doxorubicin alone on the Ki-67 proliferation marker was also checked. We demonstrated that the volume ratio of tumours from the FFS1 and FFS3 cell lines was significantly (p < 0.01) decreased after a single intratumoural injection of Au-GSH-Dox, which confirms the positive results of in vitro studies and indicates that Au-GSH-Dox may be a potent new therapeutic agent for feline injection-site sarcomas.

  8. FGF19-FGFR4 signaling elaborates lens induction with the FGF8-L-Maf cascade in the chick embryo.

    PubMed

    Kurose, Hitomi; Okamoto, Mayumi; Shimizu, Miyuki; Bito, Takaaki; Marcelle, Cristophe; Noji, Sumihare; Ohuchi, Hideyo

    2005-05-01

    The fibroblast growth factor (FGF) family is known to be involved in vertebrate eye development. However, distinct roles of individual FGF members during eye development remain largely elusive. Here, we show a detailed expression pattern of Fgf19 in chick lens development. Fgf19 expression initiated in the forebrain, and then became restricted to the distal portion of the optic vesicle abutting the future lens placode, where FGF receptor 4 (Fgfr4), a receptor for FGF19, was expressed. Fgf8, a positive regulator for L-Maf, was expressed in a portion of the optic vesicle. To examine the role of FGF19 signaling during early eye development, Fgf19 was misexpressed near the presumptive lens ectoderm; however, no alteration in the expression of lens marker genes was observed. Conversely, a secreted form of FGFR4 was misexpressed to inhibit an FGF19 signal, resulting in the induction of L-Maf expression. To further define the relationship between L-Maf and Fgf19, L-Maf misexpression was performed, resulting in ectopic induction of Fgf19 expression by Hamburger and Hamilton's stage 12/13. Furthermore, misexpression of Fgf8 induced Fgf19 expression in addition to L-Maf. These results suggest that FGF19-FGFR4 signaling plays a role in early lens development in collaboration with FGF8 signaling and L-Maf transcriptional system.

  9. Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo.

    PubMed

    Chub, N; O'Donovan, M J

    1998-01-01

    We studied the regulation of spontaneous activity in the embryonic (day 10-11) chick spinal cord. After bath application of either an excitatory amino acid (AP-5 or CNQX) and a nicotinic cholinergic (DHbetaE or mecamylamine) antagonist, or glycine and GABA receptor (bicuculline, 2-hydroxysaclofen, and strychnine) antagonists, spontaneous activity was blocked for a period (30-90 min) but then reappeared in the presence of the drugs. The efficacy of the antagonists was assessed by their continued ability to block spinal reflex pathways during the reappearance of spontaneous activity. Spontaneous activity ceased over the 4-5 hour monitoring period when both sets of antagonists were applied together. After application of glycine and GABA receptor antagonists, the frequency of occurrence of spontaneous episodes slowed and became highly variable. By contrast, during glutamatergic and nicotinic cholinergic blockade, the frequency of occurrence of spontaneous episodes initially slowed and then recovered to stabilize near the predrug level of activity. Whole-cell recordings made from ventral spinal neurons revealed that this recovery was accompanied by an increase in the amplitude of spontaneously occurring synaptic events. We also measured changes in the apparent equilibrium potential of the rhythmic, synaptic drive of ventral spinal neurons using voltage or discontinuous current clamp. After excitatory blockade, the apparent equilibrium potential of the rhythmic synaptic drive shifted approximately 10 mV more negative to approximately -30 mV. In the presence of bicuculline, the apparent equilibrium potential of the synaptic drive shifted toward the glutamate equilibrium potential. Considered with other evidence, these findings suggest that spontaneous rhythmic output is a general property of developing spinal networks, and that GABA and glycinergic networks alter their function to compensate for the blockade of excitatory transmission.

  10. Application of Impermeable Barriers Combined with Candidate Factor Soaked Beads to Study Inductive Signals in the Chick.

    PubMed

    Wilde, Susan; Logan, Malcolm P

    2016-11-17

    The chick embryo provides a superb vertebrate model that can be used to dissect developmental questions in a direct way. Its accessibility and robustness following surgical intervention are key experimental strengths. Mica plates were the first barriers used to prevent chick limb bud initiation(1). Protocols that use aluminum foil as an impermeable barrier to wing bud or leg bud induction and or initiation are described. We combine this technique with bead placement lateral to the barrier to exogenously supply candidate endogenous factors that have been blocked by the barrier. The results are analyzed using in situ hybridization of subsequent gene expression. Our main focus is on the role of retinoic acid signaling in the induction and later initiation of the chick embryo fore and hindlimb. We use BMS 493 (an inverse agonist of retinoic acid receptors (RAR)) soaked beads implanted in the lateral plate mesoderm (LPM) to mimic the effect of a barrier placed between the somites (a source of retinoic acid (RA)) and the LPM from which limb buds grow. Modified versions of these protocols could also be used to address other questions on the origin and timing of inductive cues. Provided the region of the chick embryo is accessible at the relevant developmental stage, a barrier could be placed between the two tissues and consequent changes in development studied. Examples may be found in the developing brain, axis extension and in organ development, such as liver or kidney induction.

  11. Application of Impermeable Barriers Combined with Candidate Factor Soaked Beads to Study Inductive Signals in the Chick

    PubMed Central

    Wilde, Susan; Logan, Malcolm P.

    2016-01-01

    The chick embryo provides a superb vertebrate model that can be used to dissect developmental questions in a direct way. Its accessibility and robustness following surgical intervention are key experimental strengths. Mica plates were the first barriers used to prevent chick limb bud initiation1. Protocols that use aluminum foil as an impermeable barrier to wing bud or leg bud induction and or initiation are described. We combine this technique with bead placement lateral to the barrier to exogenously supply candidate endogenous factors that have been blocked by the barrier. The results are analyzed using in situ hybridization of subsequent gene expression. Our main focus is on the role of retinoic acid signaling in the induction and later initiation of the chick embryo fore and hindlimb. We use BMS 493 (an inverse agonist of retinoic acid receptors (RAR)) soaked beads implanted in the lateral plate mesoderm (LPM) to mimic the effect of a barrier placed between the somites (a source of retinoic acid (RA)) and the LPM from which limb buds grow. Modified versions of these protocols could also be used to address other questions on the origin and timing of inductive cues. Provided the region of the chick embryo is accessible at the relevant developmental stage, a barrier could be placed between the two tissues and consequent changes in development studied. Examples may be found in the developing brain, axis extension and in organ development, such as liver or kidney induction. PMID:27911385

  12. [Ultrastructural characteristics of several constituants of limb buds in the embryos of the slowworm (Anguis fragilis L.) and the green lizard (Lacerta viridis Laur.)].

    PubMed

    Raynaud, A; Adrian, M

    1975-06-09

    Ultrastructural characteristics of the cells of the apical crest, of the mesoblast and of the ventral processes of somites, in the anlage of the anterior limb buds of embryos of the slow-worm (Anguis fragilis) and of the green lizard (Lacerta viridis) are described at early stages of the development. Differences between the two species studied are brought to light.

  13. Simulating Limb Formation in the U.S. EPA Virtual Embryo - Risk Assessment Project

    EPA Science Inventory

    The U.S. EPA’s Virtual Embryo project (v-Embryo™) is a computer model simulation of morphogenesis that integrates cell and molecular level data from mechanistic and in vitro assays with knowledge about normal development processes to assess in silico the effects of chemicals on d...

  14. Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures.

    PubMed

    Zhu, Yongwen; Liao, Xiudong; Lu, Lin; Li, Wenxiang; Zhang, Liyang; Ji, Cheng; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2017-02-03

    The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.

  15. Permeation properties of a Ca(2+)-blockable monovalent cation channel in the ectoderm of the chick embryo: pore size and multioccupancy probed with organic cations and Ca2+

    PubMed Central

    1995-01-01

    A Ca(2+)-blockable monovalent cation channel is present in the apical membrane of the ectoderm of the gastrulating chick embryo. We used the patch clamp technique to study several single-channel permeation properties of this channel. In symmetrical conditions without Ca2+, the Na+ current carried by the channel rectifies inwardly. The channel has an apparent dissociation constant for extracellular Na+ of 115 mM at 0 mV and a low density of negative surface charge (-0.03 e/nm2) at its extracellular entrance. The minimal pore diameter is approximately 5.8 A, as calculated from the relative permeabilities of 10 small organic cations. Extracellular application of six large organic cations decreased the inward Na+ current in a voltage-dependent manner, which strongly suggests an intrachannel block. The presence of at least two ion binding sites inside the pore is inferred from the Na+ dependence of the block by the organic cations. This hypothesis is strengthened by the fact that the extracellular Ca2+ block is also modified by the Na+ concentration. In particular, the rise of the unblocking rate with increased Na+ concentrations clearly suggests the presence of an interaction between Ca2+ and Na+ inside the channel. A low probability of double occupancy at physiological ionic conditions is implied from the absence of an anomalous mole fraction effect with mixtures of extracellular Li+ and K+. Finally, the absence of inward current at very strong hyperpolarizations and in the presence of 10 mM extracellular Ca2+ demonstrates the absence of significant Ca2+ current through this channel. It is argued that this embryonic epithelial Ca(2+)-blockable monovalent cation channel is related to both L-type Ca2+ channel and cyclic nucleotide-gated channels. PMID:8537814

  16. Pre-exposure prophylaxis against rabies in children: safety of purified chick embryo cell rabies vaccine (Vaxirab N) when administered by intradermal route.

    PubMed

    Ravish, Haradanahalli S; Srikanth, Jayanthi; Ashwath Narayana, Doddabele Hanumanthaiah; Annadani, Rachana; Vijayashankar, Veena; Undi, Malatesh

    2013-09-01

    Animal bites in humans are a public health problem. Children are the most frequently exposed, representing 50% of human exposures in canine rabies infected areas. Pre-exposure vaccination using cell culture vaccines is a safe and effective method of preventing rabies among children in these highly endemic regions. The development of immunological memory after pre exposure vaccination has established long lasting immunity against rabies in humans. The present study assessed the safety of Purified Chick Embryo cell Rabies Vaccine (Vaxirab N) administered as a three-dose intradermal pre-exposure regimen on days 0, 7, and 21 in healthy volunteered children of 5-10 y age group from an urban poor locality in Bangalore, India. One hundred fifty three apparently healthy children of both sexes between 5 and 10 y of age were enrolled in the study and 123 (80.4%) completed all three doses. A total of 405 doses of intradermal vaccine was administered, among which 25 adverse reactions were reported from 17 children. The adverse reactions were pain at the injection site 15 (3.7%), redness 2 (0.5%), itching at the site of injection 1 (0.2%), fatigue 1 (0.2%), fever 3 (0.7%), myalgia 2 (0.5%) and allergy 1 (0.2%). All reactions subsided without any complication. In conclusion, pre exposure vaccination against rabies is a useful tool for protecting children living in highly endemic regions and Vaxirab N has proved to be safe and well tolerated by intradermal route among children.

  17. Antibody response of patients after postexposure rabies vaccination with small intradermal doses of purified chick embryo cell vaccine or purified Vero cell rabies vaccine.

    PubMed Central

    Briggs, D. J.; Banzhoff, A.; Nicolay, U.; Sirikwin, S.; Dumavibhat, B.; Tongswas, S.; Wasi, C.

    2000-01-01

    Although the introduction of tissue culture vaccines for rabies has dramatically improved the immunogenicity and safety of rabies vaccines, they are often prohibitively expensive for developing countries. To examine whether smaller doses of these vaccines could be used, we tested the safety and immunogenicity of purified chick embryo cell vaccine (PCECV) on 211 patients in Thailand with World Health Organization (WHO) category II and III exposures to rabies. The patients presented at two Thai hospitals and were randomized into three groups. Patients in Group 1 received 0.1 ml PCECV intradermally at two sites on days 0, 3, 7, and at one site on days 30 and 90. Group 2 was treated similarly, except that purified Vero cell rabies vaccine (PVRV) was used instead of PCECV. Group 3 received 1.0 ml PCECV intramuscularly on days 0, 3, 7, 14, 30 and 90. After 0, 3, 7, 14, 30 and 90 days serum was collected from the subjects and the geometric mean titres (GMTs) of rabies virus neutralizing antibody determined. After 14 days the GMT of 59 patients vaccinated intradermally with PCECV was equivalent to that of patients who received PVRV. Adverse reactions were more frequent in patients who received vaccines intradermally, indicating the reactions were associated with the route of injection, rather than the vaccine per se. We conclude that PCECV is a safe and highly immunogenic vaccine for postexposure rabies vaccination when administered intradermally in 0.1-ml doses using the two-site method ("2,2,2,0,1,1") recommended by WHO. PMID:10859864

  18. Evaluating the abnormal ossification in tibiotarsi of developing chick embryos exposed to 1.0ppm doses of platinum group metals by spectroscopic techniques.

    PubMed

    Stahler, Adam C; Monahan, Jennifer L; Dagher, Jessica M; Baker, Joshua D; Markopoulos, Marjorie M; Iragena, Diane B; NeJame, Britney M; Slaughter, Robert; Felker, Daniel; Burggraf, Larry W; Isaac, Leon A C; Grossie, David; Gagnon, Zofia E; Sizemore, Ioana E Pavel

    2013-04-01

    Platinum group metals (PGMs), i.e., palladium (Pd), platinum (Pt) and rhodium (Rh), are found at pollutant levels in the environment and are known to accumulate in plant and animal tissues. However, little is known about PGM toxicity. Our previous studies showed that chick embryos exposed to PGM concentrations of 1mL of 5.0ppm (LD50) and higher exhibited severe skeletal deformities. This work hypothesized that 1.0ppm doses of PGMs will negatively impact the mineralization process in tibiotarsi. One milliliter of 1.0ppm of Pd(II), Pt(IV), Rh(III) aqueous salt solutions and a PGM-mixture were injected into the air sac on the 7th and 14th day of incubation. Control groups with no-injection and vehicle injections were included. On the 20th day, embryos were sacrificed to analyze the PGM effects on tibiotarsi using four spectroscopic techniques. 1) Micro-Raman imaging: Hyperspectral Raman data were collected on paraffin embedded cross-sections of tibiotarsi, and processed using in-house-written MATLAB codes. Micro-Raman univariate images that were created from the ν1(PO4(3-)) integrated areas revealed anomalous mineral inclusions within the bone marrow for the PGM-mixture treatment. The age of the mineral crystals (ν(CO3(2-))/ν1(PO4(3-))) was statistically lower for all treatments when compared to controls (p≤0.05). 2) FAAS: The percent calcium content of the chemically digested tibiotarsi in the Pd and Pt groups changed by ~45% with respect to the no-injection control (16.1±0.2%). 3) Micro-XRF imaging: Abnormal calcium and phosphorus inclusions were found within the inner longitudinal sections of tibiotarsi for the PGM-mixture treatment. A clear increase in the mineral content was observed for the outer sections of the Pd treatment. 4) ICP-OES: PGM concentrations in tibiotarsi were undetectable (<5ppb). The spectroscopic techniques gave corroborating results, confirmed the hypothesis, and explained the observed pathological (skeletal developmental abnormalities

  19. An oxygenated metabolite of benzo[a]pyrene increases hepatic β-oxidation of fatty acids in chick embryos.

    PubMed

    Westman, Ola; Larsson, Maria; Venizelos, Nikolaos; Hollert, Henner; Engwall, Magnus

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogens to humans and ecotoxicological effects have been shown in several studies. However, PAHs can also be oxidized into more water soluble-oxygenated metabolites (Oxy-PAHs). The first purpose of the present project was to (1) assess the effects of a mixture containing three parent PAHs: anthracene, benz[a]anthracene, and benzo[a]pyrene versus a mixture of their oxygenated metabolites, namely: anthracene-9,10-dione, benz[a]anthracene-7,12-dione, and 9,10-dihydrobenzo[a]pyrene-7-(8H)-one on the hepatic fatty acid β-oxidation in chicken embryos (Gallus gallus domesticus) exposed in ovo. The second and also main purpose of the project was to (2) assess the effects of the parent PAHs versus their oxy-PAHs analogues when injected individually, followed by (3) additional testing of the individual oxy-PAHs. The hepatic β-oxidation was measured using a tritium release assay with [9,10-(3)H]-palmitic acid (16:0) as substrate. The result from the first part (1) showed reduced hepatic β-oxidation after exposure in ovo to a mixture of three PAHs, however, increased after exposure to the mixture of three oxy-PAHs compared to control. The result from the second part (2) and also the follow-up experiment (3) showed that 9,10-dihydrobenzo[a]pyrene-7-(8H)-one was the causative oxy-PAH. The implication of this finding on the risk assessment of PAH metabolite exposure in avian wildlife remains to be determined. To the best of our knowledge, no similar studies have been reported.

  20. L-type calcium channels may regulate neurite initiation in cultured chick embryo brain neurons and N1E-115 neuroblastoma cells.

    PubMed

    Audesirk, G; Audesirk, T; Ferguson, C; Lomme, M; Shugarts, D; Rosack, J; Caracciolo, P; Gisi, T; Nichols, P

    1990-08-01

    The intracellular free Ca2+ concentration, [Ca2+]i, plays an important role in regulating neurite growth in cultured neurons. Insofar as [Ca2+]i is partly a function of Ca2+ influx through voltage-sensitive calcium channels (VSCC), Ca2+ entry through VSCC should influence neurite growth. Vertebrate neurons may possess several types of VSCC. The most frequently described VSCC types are usually designated L, T and N. In most preparations, these VSCC types respond differently to certain pharmacological agents, including Cd2+, Ni2+, the dihydropyridines nifedipine and BAY K8644, and the aminoglycoside antibiotics. We used these agents to study the role of Ca2+ influx in regulating neurite initiation and length in cultures of chick embryo brain neurons and N1E-115 mouse neuroblastoma cells. In chick neurons, nifedipine and Cd2+ (less than 50 microM), which have been reported to inhibit L-type channels, reduced neurite initiation, but not mean neurite length. Ni2+ (less than 100 microM), reported to inhibit T-type channels, had no effect on either initiation or length. Low concentrations of most aminoglycosides (less than 300 microM), reported to inhibit N-type channels, had no effect on neurite initiation, but high concentrations of streptomycin (great than 300 microM), reported to inhibit both L- and N-type channels, reduced neurite initiation. BAY K8644, which enhances current flow through L-type channels, had no effect except at high concentration (50 microM), which inhibited initiation. N1E-115 neuroblastoma cells have been reported to contain L-type and T-type channels, but thus far no channel similar to the N-type has been described. In cultured N1E-115 cells, nifedipine (5 microM), Cd2+ (5 microM), and streptomycin (200 microM) reduced neurite initiation, while nickel (50 microM) and neomycin (100 microM) did not affect initiation. None of these agents altered neurite length. In N1E-115 cells, whole-cell voltage clamp recordings showed that nifedipine and Cd2

  1. Harvesting clues from genome wide transcriptome analysis for exploring thalidomide mediated anomalies in eye development of chick embryo: Nitric oxide rectifies the thalidomide mediated anomalies by swinging back the system to normal transcriptome pattern.

    PubMed

    Kumar, Pavitra; Kasiviswanathan, Dharanibalan; Sundaresan, Lakshmikirupa; Kathirvel, Priyadarshan; Veeriah, Vimal; Dutta, Priya; Sankaranarayanan, Kavitha; Gupta, Ravi; Chatterjee, Suvro

    2016-02-01

    Thalidomide, the notorious teratogen is known to cause various developmental abnormalities, among which a range of eye deformations are very common. From the clinical point of view, it is necessary to pinpoint the mechanisms of teratogens that tune the gene expression. However, to our knowledge, the molecular basis of eye deformities under thalidomide treatmenthas not been reported so far. Present study focuses on the possible mechanism by which thalidomide affects eye development and the role of Nitric Oxide in recovering thalidomide-mediated anomalies of eye development using chick embryo and zebrafish models with transcriptome analysis. Transcriptome analysis showed that 403 genes were up-regulated and 223 genes were down-regulated significantly in thalidomide pre-treated embryos. 8% of the significantly modulated genes have been implicated in eye development including Pax6, OTX2, Dkk1 and Shh. A wide range of biological process and molecular function was affected by thalidomide exposure. Biological Processes including structural constituent of eye lens and Molecular functions such as visual perception and retinal metabolic process formed strong annotation clustersindicating the adverse effects of thalidomide on eye development and function. Here, we have discussed the whole embryo transcriptome with the expression of PAX6, SOX2, and CRYAAgenes from developing eyes. Our experimental data showing structural and functional aspects includingeye size, lens transparency and optic nerve activity and bioinformatics analyses of transcriptome suggest that NO could partially protect thalidomide treated embryos from its devastating effects on eye development and function.

  2. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine

    PubMed Central

    Mundy, Christina; Yasuda, Tadashi; Kinumatsu, Takashi; Yamaguchi, Yu; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Pacifici, Maurizio

    2011-01-01

    Heparan sulfate proteoglycans (HSPGs) regulate a number of major developmental processes, but their roles in synovial joint formation remain unknown. Here we created conditional mouse embryo mutants lacking Ext1 in developing joints by mating Ext1f/f and Gdf5-Cre mice. Ext1 encodes a subunit of the Ext1/Ext2 Golgi-associated protein complex responsible for heparan sulfate (HS) synthesis. The proximal limb joints did form in the Gdf5-Cre;Ext1f/f mutants, but contained an uneven articulating superficial zone that expressed very low lubricin levels. The underlying cartilaginous epiphysis was deranged as well and displayed random patterns of cell proliferation and matrillin-1 and collagen IIA expression, indicative of an aberrant phenotypic definition of the epiphysis itself. Digit joints were even more affected, lacked a distinct mesenchymal interzone and were often fused likely as a result of local abnormal BMP and hedgehog activity and signaling. Interestingly, overall growth and lengthening of long bones were also delayed in the mutants. To test whether Ext1 function is needed for joint formation at other sites, we examined the spine. Indeed, entire intervertebral discs, normally composed by nucleus pulposus surrounded by the annulus fibrosus, were often missing in Gdf5-Cre;Ext1f/f mice. When disc remnants were present, they displayed aberrant organization and defective joint marker expression. Similar intervertebral joint defects and fusions occurred in Col2-Cre;β-cateninf/f mutants. The study provides novel evidence that local Ext1 expression and HS production are needed to maintain the phenotype and function of joint-forming cells and coordinate local signaling by BMP, hedgehog and Wnt/β-catenin pathways. The data indicate also that defects in joint formation reverberate on, and delay, overall long bone growth. PMID:21185280

  3. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...

  4. [Demonstration, by means of electron microscopy, of the penetration of somitic cells into the mesoblast of the limb buds of reptile embryos (Anguis fragilis, Lacerta viridis)].

    PubMed

    Raynaud, A; Adrian, M

    1975-01-01

    An electron microscopic study of the components of anterior limb buds of the slow-worm (Anguis fragilis) and of the green lizard (Lacerta viridis) (embryos of Anguis whose allantoic bud reach 0,7 to 4 mm of length; embryos of Lacerta 2 to 7 days old) provides data on the cytological characteristics of the components of the limb bud at these early stages. 1. The cells of the distal extremity of the somitic processes extending in the limb bud of Anguis and Lacerta, are elongated cells with ovoid nuclei containing large nucleolus; they possess mitochondria always thin and with dense matrix; they are rich in lipid droplets; they possess cilia; they are devoid of myofilaments; endoplasmic reticulum, free ribosomes and polyribosomes are abundant. Golgi networks display signs of activity. These characteristics are also observed in the cells of the "dermatome" layer of the dermo-myotome; and so, it appears probable that the cells of the "dermatome". Furthermore, in Anguis embryos, the cells of the distal extremities of the somitic processes possess numerous lysosomes and a certain number of cells among them, degenerate early. 2. The somatopleural mesoblastic cells of the limb bud of Anguis and Lacerta embryos keep the characters of the cells of the mesodermic layer of lateral plate from which they originate; they have rounded nuclei, cilia, and their mitochondria are always larger and more transparent to electrons, than the ones of cells of the somitic processes and of cells of the epiblastic apical crest. Golgi networks are well developped, endoplasmic reticulum is abundant, lipid droplets are rare. 3. The processes of somites which extend in the dorsal part of the limb bud of Anguis embryos are cords of cells with thin lumina; at the stage of the allantoic bud of 0,6 to 0,8 mm long, the distal extremity of these processes dislocate in group of cells which afterwards dissociate, releasing individual somitic cells which are integrated among the mesoblastic somatopleural

  5. Significance of chick quality score in broiler production.

    PubMed

    van de Ven, L J F; van Wagenberg, A V; Uitdehaag, K A; Groot Koerkamp, P W G; Kemp, B; van den Brand, H

    2012-10-01

    The quality of day old chicks is crucial for profitable broiler production, but a difficult trait to define. In research, both qualitative and quantitative measures are used with variable predictive value for subsequent performance. In hatchery practice, chick quality is judged on a binomial scale, as chicks are divided into first grade (Q1-saleable) and second grade (Q2) chicks right after hatch. Incidences and reasons for classifying chicks as Q2, and potential of these chicks for survival and post-hatch performance have hardly been investigated, but may provide information for flock performance. We conducted an experiment to investigate (1) the quality of a broiler flock and the relation with post-hatch flock performance based on a qualitative score (Pasgar©score) of Q1 chicks and based on the incidence of Q2 chicks and (2) the reasons for classifying chicks as Q2, and the potential of these chicks for survival and post-hatch growth. The performance was followed of Q1 and Q2 chicks obtained from two breeder flocks that hatched in two different hatching systems (a traditional hatcher or a combined hatching and brooding system, named Patio). Eggs were incubated until embryo day 18, when they were transferred to one of the two hatching systems. At embryo day 21/post-hatch day 0, all chicks from the hatcher (including Q2 chicks) were brought to Patio, where the hatchery manager marked the Q2 chicks from both flocks and hatching systems and registered apparent reasons for classifying these chicks as Q2. Chick quality was assessed of 100 Q1 chicks from each flock and hatching system. Weights of all chicks were determined at days 0, 7, 21 and 42. There were no correlations between mean Pasgar©score and post-hatch growth or mortality, and suboptimal navel quality was the only quality trait associated with lower post-hatch growth. Growth was clearly affected by breeder flock and hatching system, which could not be linked to mean Pasgar©score or incidence of Q2 chicks

  6. Sonic Hedgehog Signaling in Limb Development

    PubMed Central

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554

  7. Sonic Hedgehog Signaling in Limb Development.

    PubMed

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.

  8. A growth-promoting influence from the mesonephros during limb outgrowth.

    PubMed

    Geduspan, J S; Solursh, M

    1992-05-01

    It has been suggested that the mesonephros has a role in normal limb development. This hypothesis was directly tested by removing the mesonephros adjacent to the presumptive limb region of stage 12-18 chick embryos using microsurgery or laser ablation. The experimental manipulation resulted in reduced limb outgrowth on the operated side. The poor limb outgrowth was correlated with either the lack of or the presence of a rudimentary mesonephros on the operated side. Furthermore, the presence of nephric tissue in limb bud organ culture enhanced growth and morphological differentiation of cartilage formed in culture. In vivo, the influence of the mesonephros resulted in significantly higher cell proliferation in the adjoining medial half of the limb mesoderm compared with the lateral half. The removal of the mesonephros adjoining the prospective limb region reduced the number of dividing cells in the medial mesoderm. The higher proliferation in the medial limb mesoderm is significant to limb outgrowth since grafting experiments showed that most of the cells that form the limb are derived from the medial mesoderm. The results suggest that the influence from the mesonephros may provide some signal for limb outgrowth.

  9. Ectoderm from various regions of the developing chick limb bud differentially regulates the expression of the chicken homeobox-containing genes GHox-7 and GHox-8 by limb mesenchymal cells.

    PubMed

    Coelho, C N; Upholt, W B; Kosher, R A

    1993-03-01

    The apical ectodermal ridge expresses high amounts of the homeobox gene GHox-8 when placed upon dissociated limb mesenchymal cells in culture and induces high expression of GHox-7, but only low expression of GHox-8, in the underlying mesenchymal cells. Ectoderm from the proximal anterior border of the limb induces high expression of both GHox-7 and GHox-8, while ectoderm from the proximal posterior border does not induce expression of either gene. Thus, ectoderm in various regions of the limb bud has distinct regulatory activities and may be involved in controlling the regionally specific expression of GHox-7 and GHox-8 in the mesoderm.

  10. Use of pHluorin to assess the dynamics of axon guidance receptors in cell culture and in the chick embryo.

    PubMed

    Delloye-Bourgeois, Céline; Jacquier, Arnaud; Falk, Julien; Castellani, Valérie

    2014-01-12

    During development, axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest.

  11. Use of pHluorin to Assess the Dynamics of Axon Guidance Receptors in Cell Culture and in the Chick Embryo

    PubMed Central

    Falk, Julien; Castellani, Valérie

    2014-01-01

    During development,axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest. PMID:24458135

  12. Electroporation of Embryonic Chick Eyes

    PubMed Central

    Luz-Madrigal, Agustín; Grajales-Esquivel, Erika; Del Rio-Tsonis, Katia

    2016-01-01

    The chick embryo has prevailed as one of the major models to study developmental biology, cell biology and regeneration. From all the anatomical features of the chick embryo, the eye is one of the most studied. In the chick embryo, the eye develops between 26 and 33 h after incubation (Stages 8–9, Hamburger and Hamilton, 1951). It originates from the posterior region of the forebrain, called the diencephalon. However, the vertebrate eye includes tissues from different origins including surface ectoderm (lens and cornea), anterior neural plate (retina, iris, ciliary body and retinal pigmented epithelium) and neural crest/head mesoderm (stroma of the iris and of the ciliary body as well as choroid, sclera and part of the cornea). After gastrulation, a single eye field originates from the anterior neural plate and is characterized by the expression of eye field transcriptional factors (EFTFs) that orchestrate the program for eye development. Later in development, the eye field separates in two and the optic vesicles form. After several inductive interactions with the lens placode, the optic cup forms. At Stages 14–15, the outer layer of the optic cup becomes the retinal pigmented epithelium (RPE) while the inner layer forms the neuroepithelium that eventually differentiates into the retina. One main advantage of the chick embryo, is the possibility to perform experiments to over-express or to down-regulate gene expression in a place and time specific manner to explore gene function and regulation. The aim of this protocol is to describe the electroporation techniques at Stages 8–12 (anterior neural fold and optic vesicle stages) and Stages 19–26 (eye cup, RPE and neuroepithelium). We provide a full description of the equipment, materials and electrode set up as well as a detailed description of the highly reproducible protocol including some representative results. This protocol has been adapted from our previous publications Luz-Madrigal et al. (2014) and Zhu

  13. Cellular contribution of the different regions of the somatopleure to the developing limb.

    PubMed

    Geduspan, J S; Solursh, M

    1992-11-01

    Regionalization of the presumptive limb region was examined before and at the onset of limb development by means of a variety of transplantation experiments between quail and chick embryos in ovo. The results demonstrate a two-step process, the first of which is the designation of the region of the somatopleure that would become part of the limb, followed by specification of dorsal and ventral regions of the limb. The medial half of the somatic mesoderm is the region which gives rise to the limb with only a smaller cellular contribution from the lateral half of the somatic mesoderm. The cellular contribution of the medial region of the somatopleure appeared to determine the type of limb formed (i.e., wing or leg). The second process relates to changes in the ability of the somatic ectoderm to undergo extensive lateral displacement with development. Starting at stage 14, the medial and lateral somatic ectoderms maintain their position after transplantation, in contrast to earlier stage limb or flank ectoderms which undergo extensive lateral displacement with development. The positional determination of the dorsal and ventral properties of the medial and lateral ectoderms of the prospective limb region and their distal displacement during limb outgrowth may be important morphogenetic events in limb development.

  14. FGF-stimulated outgrowth and proliferation of limb mesoderm is dependent on syndecan-3.

    PubMed

    Dealy, C N; Seghatoleslami, M R; Ferrari, D; Kosher, R A

    1997-04-15

    The outgrowth of the mesoderm of the developing limb bud in response to the apical ectodermal ridge (AER) is mediated at least in part by members of the FGF family. Recent studies have indicated that FGFs need to interact with heparan sulfate proteoglycans in order to bind to and activate their specific cell surface receptors. Syndecan-3 is an integral membrane heparan sulfate proteoglycan that is highly expressed by the distal mesodermal cells of the chick limb bud that are undergoing proliferation and outgrowth in response to the AER. Here we report that maintenance of high-level syndecan-3 expression by the subridge mesoderm of the chick limb bud is directly or indirectly dependent on the AER, since its expression is severely impaired in the distal mesoderm of the limb buds of limbless and wingless mutant embryos which lack functional AERs capable of directing the outgrowth of limb mesoderm. We have also found that exogenous FGF-2 maintains a domain of high-level syndecan-3 expression in the outgrowing mesodermal cells of explants of the posterior mesoderm of normal limb buds cultured in the absence of the AER and in the outgrowing subapical mesoderm of explants of limbless mutant limb buds which lack a functional AER. These results suggest that the domain of high-level syndecan-3 expression in the subridge mesoderm of normal limb buds is maintained by FGFs produced by the AER. Finally, we report that polyclonal antibodies against a syndecan-3 fusion protein inhibit the ability of FGF-2 to promote the proliferation and outgrowth of the posterior subridge mesoderm of limb buds cultured in the absence of the AER. These results suggest that syndecan-3 plays an essential role in limb outgrowth by mediating the interaction of FGFs produced by the AER with the underlying mesoderm of the limb bud.

  15. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes.

    PubMed

    Solursh, M; Jensen, K L; Reiter, R S; Schmid, T M; Linsenmayer, T F

    1986-09-01

    We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences

  16. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    PubMed

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induced P-450 mediated arachidonic acid (AA) metabolism in chick embryo liver (CEL) occurs in parenchymal cells (PC) rather than in non-parenchymal cells (NPC)

    SciTech Connect

    Paroli, L.; Rifkind, A.B. )

    1992-02-26

    TCDD induces cytochrome P-450 mediated AA metabolism in CEL and changes the dominant metabolite(s) from {omega}-OH AA to AA epoxygenase products (EETs and EET-diols). PC and NPC from CEL were separated by differential centrifugation and characterized by morphology, immunohistochemistry and P-450 mediated xenobiotic metabolism; purities were >95%. PC and NPC, from 16 day old chick embryos treated for 5 days with TCDD or vehicle alone, were cultured for 48 hr, homogenized and incubated with ({sup 14}C)-AA {plus minus} NADPH. AA products were resolved by reverse phase HPLC. The major product in control PC, {omega}-OH AA was not significantly affected by TCDD. All of the AA metabolism was NADPH dependent. Control and TCDD treated PC had the same metabolite patterns as whole liver microsomes. Neither control nor TCDD treated NPC generated P-450 AA metabolites. Also co-culturing NPC with PC did not affect AA metabolism of either cell type. The findings indicate that TCDD-induced changes in AA metabolism are retained in culture and that hepatocytes rather than NPC effect P-450 mediated AA metabolism in both control and TCDD-induced CEL.

  18. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing αvβ3 integrin in chick embryo and nude mouse models

    PubMed Central

    Tome, Yasunori; Kimura, Hiroaki; Sugimoto, Naotoshi; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Bouvet, Michael; Hoffman, Robert M.

    2016-01-01

    Echistatin, a cyclic RGD peptide, which is an antagonist of αvβ3 integrin (disintegrin), inhibited human osteosarcoma in the chick chorioallontoic membrane (CAM) model and tumor growth and pulmonary metastases in a nude mouse orthotopic model. A high-metastatic variant of human osteosarcoma, 143B-LM4, overexpressing αvβ3 integrin was used. Tumor angiogenesis by high-metastatic variant 143B-LM4 cells in the CAM was significantly inhibited by echistatin (P<0.05) as was overall growth. A doxorubicin (DOX)-echistatin combination inhibited orthotopic tumor growth compared to untreated control (P<0.01) or DOX alone (P<0.05) in nude mice. Tumor-bearing mice treated with the DOX-echistatin combination survived longer than those treated with DOX alone or control PBS (P<0.01 and P<0.01, respectively). Echistatin also inhibited experimental lung metastasis of 143B-LM4 cells in nude mice. These results suggest that DOX in combination with a disintegrin has potential to treat osteosarcoma and that αvβ3 integrin may be a target for osteosarcoma. PMID:27894082

  19. Comparative study on the immunogenicity and safety of a purified chick embryo cell rabies vaccine (PCECV) administered according to two different simulated post exposure intramuscular regimens (Zagreb versus Essen)

    PubMed Central

    Mahendra, BJ; Narayana, DH Ashwath; Agarkhedkar, Sharad; Ravish, HS; Harish, BR; Agarkhedkar, Shalaka; Madhusudana, SN; Belludi, Ashwin; Ahmed, Khaleel; Jonnalagedda, Rekha; Vakil, Hoshang; Bhusal, Chiranjiwi; Arora, Ashwani Kumar

    2015-01-01

    Despite availability of effective rabies vaccines, India has the highest global mortality rate for rabies. Low socio-economic communities are most affected due to lack of awareness of the disease and poor compliance to post-exposure prophylactic regimens. Currently, the only approved intramuscular regimen for post-exposure prophylaxis (PEP) against rabies in India is the Essen regimen, which consists of 5 injections administered over 5 separate days in a period of one month. The high number of doses and clinical visits, however, are major reasons for non-compliance, and thus a shorter regimen would be beneficial. In a simulated PEP trial in healthy, adult subjects, this study evaluated whether purified chick embryo cell vaccine (PCECV), administered according to the WHO-recommended 4-dose/3 visit Zagreb vaccination regimen is of equal immunogenicity and safety as the standard Essen regimen in Indian subjects. Two hundred and 50 healthy adults were enrolled and randomized into a Zagreb or Essen group, each receiving PCECV according to their respective regimen. Blood samples were collected on Days 0, 7, 14 and 42 and analyzed using the rapid fluorescent focus inhibition test (RFFIT). By Day 14, all subjects across both groups attained rabies virus neutralizing antibody (RVNA) concentrations of ≥ 0.5IU/ml. The Zagreb regimen was then demonstrated to be immunologically non-inferior to the Essen regimen by Day 14, which was the primary endpoint of the study. No safety issues were noted and the occurrence of adverse events was similar in both groups (17% and 15%, respectively). NCT01365494. CTRI No.: CTRI/2011/07/001857 PMID:25692792

  20. cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo.

    PubMed

    Dragon, Stefanie; Offenhäuser, Nina; Baumann, Rosemarie

    2002-04-01

    During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schöning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Götz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Götz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5-fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that c

  1. Tgfβ2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos

    PubMed Central

    2010-01-01

    Background Transforming growth factor β proteins (Tgfβs) are secreted cytokines with well-defined functions in the differentiation of the musculoskeletal system of the developing limb. Here we have studied in chicken embryos, whether these cytokines are implicated in the development of the embryonic limb bud at stages preceding tissue differentiation. Results Immunohistochemical detection of phosphorylated Smad2 and Smad3 indicates that signaling by this pathway is active in the undifferentiated mesoderm and AER. Gene expression analysis shows that transcripts of tgfβ2 and tgfβ3 but not tgfβ1 are abundant in the growing undifferentiated limb mesoderm. Transcripts of tgfβ2 are also found in the AER, which is the signaling center responsible for limb outgrowth. Furthermore, we show that Latent Tgfβ Binding protein 1 (LTBP1), which is a key extracellular modulator of Tgfβ ligand bioavailability, is coexpressed with Tgfβs in the early limb bud. Administration of exogenous Tgfβs to limb buds growing in explant cultures provides evidence of these cytokines playing a role in the regulation of mesodermal limb proliferation. In addition, analysis of gene regulation in these experiments revealed that Tgfβ signaling has no effect on the expression of master genes of musculoskeletal tissue differentiation but negatively regulates the expression of the BMP-antagonist Gremlin. Conclusion We propose the occurrence of an interplay between Tgfβ and BMP signaling functionally associated with the regulation of early limb outgrowth by modulating limb mesenchymal cell proliferation. PMID:20565961

  2. Transformation of the glucocorticoid receptor in the cell-free cytosol of the neural retina of the chick embryo: changes in the size and charge of the receptor complex during transformation suggest a multistage process.

    PubMed

    Ben-Or, S; Chrambach, A

    1988-01-01

    The physicochemical properties of the glucocorticoid receptors (GR), and the molecular changes induced during their transformation in the cell-free cytosol of the neural retina of the chick embryo, were investigated. The surface charge of the various size forms of the GR complex was determined on gel filtration and/or glycerol density gradient-isolated GR, by electrofocusing under nondenaturing conditions. The nontransformed molybdate-stabilized GR in hypotonic buffer (containing PMSF) appears as a 350 kilodalton (kDa) complex (Rs = 8.6 nm, S = 9.5), with an apparent pI value (pI') of 4.4 +/- 0.1. The GRs in heat or salt-activated cytosols appear as a 90 kDa hormone-receptor complex (Rs = 5.6 +/- 0.2, S = 3.9 +/- 0.1), which is resolved as a major peak with a pI' value of 6.2 +/- 0.1 and a minor peak with a pI' value of 5.4. The transformation of the 350 kDa oligomer to the 90 kDa monomer occurs in three stages. Two distinct dissociation steps were induced by 0.4 M KCl: (a) the dissociation of the 350 kDa complex to a 170 kDa complex (Rs = 7.8 +/- 0.2, S = 5.1 +/- 0.2), exhibiting a pI' value of 5.6 +/- 0.2, induced by salt and not inhibited by molybdate; and (b) the dissociation of the 170 kDa complex to the 102 kDa complex (Rs = 5.6 +/- 0.2, S = 4.4), also exhibiting a pI' value of 5.6 +/- 0.2, which is blocked by molybdate. The third step, the transition of the 102 kDa complex to the activated (nuclear-like), 90 kDa form, is dependent on cytosolic factors. It is induced in the isotonic milieu by physiological temperatures, and in the cold by exposing the crude cytosol to 0.4 M KCl. The nature of this cytosolic processing step is unknown. It occurs in the presence of PMSF, which presumably inhibits proteolytic GR degradation in the cytosol of the neural retina. Activated GR complexes tend to aggregate. Molybdate inhibits activation-induced GR-aggregation.

  3. Retroviral Vector-Mediated Gene Transfer into the Chick Optic Vesicle by In Ovo Electroporation

    NASA Astrophysics Data System (ADS)

    Sakuta, Hiraki; Suzuki, Ryoko; Noda, Masaharu

    The chick embryo offers many advantages for developmental studies over other vertebrate embryos as it allows easy access for in ovo surgical manipulations, such as tissue transplantation and the implantation of cultured cells or chemically treated beads for the local release of humoral factors. In particular, owing to its external position in the embryo, the chick eye is a popular model for studying the patterning mechanism of the central nervous system (CNS). This patterning has a crucial role in shaping functional organization because it is the basis of the specific wiring in the CNS. Genetic analysis is not easy in the chick, as compared with the mouse for which transgene introduction or gene targeting techniques have been well established. However, because methods for the expression of exogenous genes and for gene silencing in the chick embryo have been recently developed, the functional analysis of genes has become possible in combination with classical techniques of developmental biology and neurobiology.

  4. Embryotoxic effects of crude oil in mallard ducks and chicks

    USGS Publications Warehouse

    Hoffman, D.J.

    1978-01-01

    Recent studies in this laboratory have revealed that surface applications of microliter amounts of some crude and fuel oils that coat less than 10% of the egg surface reduce hatching considerably in different avian species. Applications of paraffin compounds that coat equal areas of the egg surface do not reduce hatching suggesting that toxicity is due to causes other than asphyxia. In the present study, 1?10 :l of South Louisiana crude oil, an API reference oil, were applied to the surface of fertile mallard (Anas platyrhynchos) and chicken (Gallus gallus) eggs. Early embryolethality was greater in mallard embryos than in chick embryos, but later embryolethality that coincided with the time of rapid outgrowth of the chorioallantoic membrane was more prevalent in chick embryos. The overall incidence of embryolethality was similar in both species. Retardation of growth as reflected by embryonic body weight, crown-rump length, beak length, and general appearance was more pronounced in chick than mallard embryos. Teratogenic defects were more frequent in chick embryos, and incomplete or abnormal ossification of the skull was the most common. External application of equivalent amounts of a mixture of paraffin compounds present in crude oil had virtually no embryotoxic effects in either species, suggesting that other components including aromatic hydrocarbons and organometallics may cause the embryotoxicity.

  5. IGF-I and insulin in the acquisition of limb-forming ability by the embryonic lateral plate.

    PubMed

    Dealy, C N; Kosher, R A

    1996-07-10

    Acquisition of limb-forming ability by discrete regions of the lateral plate of the chick embryo is dependent on a medial-lateral inductive signaling cascade moving sequentially from the area of Hensen's node to the somitic mesoderm, the intermediate mesoderm, and then to the prospective limb-forming regions of the lateral plate. IGF-I and insulin are expressed by medial tissues as they are influencing the prospective limb-forming regions of the lateral plate. Here we report that IGF-I and insulin, but not FGF-2 or FGF-4, induce the formation of limb bud-like structures in vitro from prospective limb regions before they have acquired the ability to form limbs independent of medial tissues, and also induce the formation of limb bud-like structures from the prospective flank. The limb bud-like structures induced by IGF-I and insulin possess a thickened cap of ectoderm along their distal tips that resembles the apical ectodermal ridge (AER) and this thickened distal apical ectoderm expresses the AER-characteristic homeobox-containing gene Msx-2. Like in normal limb buds, a population of highly proliferating cells which express the homeobox-containing gene Msx-1 are localized in the mesoderm directly subjacent to the thickened AER-like structures induced by IGF-I and insulin. However, the limb bud-like structures induced by IGF-I and insulin do not express sonic hedgehog, which encodes a secreted signaling molecule that has been implicated in regulating the anteroposterior patterning of the developing limb bud. IGF-I- and insulin-treated prospective limb explants give rise to rudimentary limbs containing identifiable skeletal elements when grafted into the coelom or to somites of host embryos. Overall, these results suggest that IGF-I and insulin may be endogenous signals produced by medial tissues that are involved in conferring limb-forming ability to the lateral plate and may promote the initial outgrowth of limb buds and possibly induce the AER. However, other

  6. Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominences and limb buds.

    PubMed

    Shen, H; Wilke, T; Ashique, A M; Narvey, M; Zerucha, T; Savino, E; Williams, T; Richman, J M

    1997-08-15

    Embryonic facial development in chick embryos involves a sequential activation of genes that control differential growth and patterning of the beak. In the present study we isolate one such gene, the transcription factor, AP-2, that is known to be expressed in the face of mouse embryos. The protein sequence of chick AP-2alpha is 94% homologous to human and mouse AP-2. Wholemount in situ hybridization with a probe for chick AP-2 identifies expression from primitive streak stages up to stage 28. The most striking expression patterns in the head are during neural crest cell migration when AP-2 transcripts follow closely the tracts previously mapped for neural crest cells. Later, expression in the facial mesenchyme is strongest in the frontonasal mass and lateral nasal prominences and is downregulated in the maxillary and mandibular prominences. Once limb buds are visible, high expression is seen in the distal mesenchyme but not in the apical ectodermal ridge. The expression patterns of AP-2 in stage 20 embryos suggested that the gene may be important in "budding out" of facial prominences and limb buds. We implanted beads soaked in retinoic acid in the right nasal pit of stage 20 embryos resulting in a specific inhibition of outgrowth of the frontonasal mass and lateral nasal prominences. AP-2 expression was completely down-regulated in the lateral nasal within 8 hr of bead application. In addition, the normal up-regulation of AP-2 in the frontonasal mass did not occur following retinoic-acid treatment. There was an increase in programmed cell death around the right nasal pit that accompanied the down-regulation of AP-2. Prominences whose morphogenesis were not affected by retinoic acid did not have altered expression patterns. We removed the apical ectodermal ridge in stage 20 limb buds and found that AP-2 expression was partially downregulated 4 hr following ridge removal and completely downregulated 8 hr following stripping. Application of an FGF-4 soaked bead to

  7. How is digit identity determined during limb development?

    PubMed

    Suzuki, Takayuki

    2013-01-01

    Digit identity has been studied using the chick embryo as a model system for more than 40 years. Using this model system, several milestone findings have been reported, such as the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), the Shh gene, and the theory of morphogen and positional information. These experimental results and models provided context for understanding pattern formation in developmental biology. The focus of this review is on the determination of digit identity during limb development. First, the history of studies on digit identity determination is described, followed by descriptions of the molecular mechanisms and current models for determination of digit identity. Finally, future questions and remarkable points will be discussed.

  8. Modeling Chick to Assess Diabetes Pathogenesis and Treatment

    PubMed Central

    Datar, Savita P.; Bhonde, Ramesh R.

    2011-01-01

    Animal models have been used extensively in diabetes research. Studies on animal models have contributed to the discovery and purification of insulin, development of new therapeutic approaches, and progress in fundamental and clinical research. However, conventional rodent and large animal mammalian models face ethical, practical, or technical limitations. Therefore, it would be beneficial developing an alternative model for diabetes research which would overcome these limitations. Amongst other vertebrates, birds are phylogenically closer to mammals, and amongst birds, the chick has been used as one of the favored models in developmental biology, toxicology, cancer research, immunology, and drug testing. Chicken eggs are readily available, have a short incubation period and easily accessible embryos. Based on these inimitable advantages, the present review article aims to discuss the suitability of the chick as a model system to study specific aspects of diabetes. The review focuses on the application of i) chick pancreatic islets for screening of antidiabetic agents and for islet banking, (ii) shell-less chick embryo culture as a model to study hyperglycemia-induced malformations observed in mammalian embryos, and (iii) chick chorioallantoic membrane (CAM) to examine glucose-induced endothelial damage leading to inhibition of angiogenesis. PMID:22189547

  9. Hyaluronan in limb morphogenesis.

    PubMed

    Li, Yingcui; Toole, Bryan P; Dealy, Caroline N; Kosher, Robert A

    2007-05-15

    Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.

  10. Analysis of upper beak defects in chicken embryos following with retinoic acid.

    PubMed

    Tamarin, A; Crawley, A; Lee, J; Tickle, C

    1984-12-01

    Implanting inert carriers soaked in retinoic acid into the anterior margin of the developing limb of chicken embryos leads to orofacial malformations as well as affecting pattern formation in the limb. Using anion-exchange beads as carriers, and soaking solutions of 1-10 mg/ml retinoic acid, almost 100% of the embryos have malformations of the face. The effects on the treated limbs range from symmetrical patterns of duplicated digits (maximum number of digits being four) to truncations in which no digits were formed at all. Typically, in the malformed faces the upper beak is completely absent, no nostrils are present and the front of the face forms a scalloped rim of tissue above the mouth. By reference to normal beak development, the seven bulges of tissue that make up the rim can be identified as derivatives of the masses of tissue that normally would fuse to form the upper beak. The roof of the mouth consists of three bulges of tissue flanked by widely separated palatal shelves. The defect can thus be classified as severe bilateral clefting of the primary palate. By examining the morphology of the faces of treated embryos, the origin of the defect can be traced to failure of the frontonasal mass to enlarge. Thus, the oronasal fissures are very wide and fusion across them to form the primary palate cannot occur. The way in which retinoic acid brings about the defect is discussed in relation to possible mechanisms involved in the production of cleft palate. The parallel is noted between the associated effects of retinoic acid on beak and limb morphogenesis and the chick mutation cpp, that also affects both face and limbs.

  11. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development.

  12. Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix

    PubMed Central

    Díaz-Mendoza, M J; Lorda-Diez, C I; Montero, J A; García-Porrero, J A; Hurlé, J M

    2013-01-01

    Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process. PMID:24030152

  13. Effect of gestational ethanol exposure on long-term memory formation in newborn chicks.

    PubMed

    Rao, Venugopal; Chaudhuri, Joydeep D

    2007-09-01

    Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by craniofacial malformations, and physical and mental retardation. It is significant that even children with history of gestational ethanol exposure but relatively unaffected overall IQ performance, often exhibit learning difficulties and behavioral problems, suggestive of impaired memory formation. Hence, the specific aim of this study was to examine memory formation in chicks exposed to ethanol during early gestation toward the understanding of neurobehavioral disturbances in FAS. Chicks were exposed to alcohol on gestational days 1-3 by injection of ethanol into the airspace of freshly fertilized eggs. The effects of prenatal ethanol on physical growth and development, and memory formation were studied. The one-trial passive avoidance learning paradigm in 1-day-old chicks was used to study memory formation in these chicks. It was observed that chick embryos exposed to 10% ethanol on gestational days 1-3 had significant reduction in all body parameters when compared with appropriate controls. Further, ethanol-exposed chick embryos had significantly impaired (P<.05) long-term memory (LTM) formation after training, though short-term or intermediate-term memory formation was unimpaired. Thus, the findings of the current study demonstrate the detrimental effects of ethanol exposure during early pregnancy on developing chick embryos in general and on memory formation in particular. Hence, it is suggested that impairment in LTM could be a fundamental mechanism for learning disorders and neurobehavioral abnormalities observed in FAS.

  14. Effects of early and delayed visual experience on intersensory development in bobwhite quail chicks.

    PubMed

    Banker, H; Lickliter, R

    1993-04-01

    The relative impact of early versus delayed visual experience on intersensory development was studied by manipulating the timing of visual experience of bobwhite quail (Colinus virginianus) embryos and hatchlings. Previous studies with quail chicks have revealed that: (1) Socially reared chicks require only maternal auditory cues to direct their social preferences in the first 2 days following hatching; (2) by 3 days following hatching chicks require both auditory and visual maternal cues to direct their social preferences; (3) chicks which have received unusually early visual experience as embryos require both auditory and visual cues by 24 hr following hatching, indicating an accelerated pattern of the emergence of intersensory functioning; and (4) chicks reared under conditions of attenuated social and visual experience continue to rely on maternal auditory cues alone at 4 days following hatching, indicating a decelerated pattern of early intersensory functioning. In the present study, quail chicks that received both early visual experience as embryos and delayed visual experience as hatchlings exhibited a pattern of both auditory and visual responsiveness like that seen in normally reared chicks. These results indicate that, at least under the present experimental conditions, the influence of early and delayed visual experience on perinatal perceptual development appears to be relatively comparable in effect.

  15. Integrating toxicity risk in bird eggs and chicks: Using chick down feathers to estimate mercury concentrations in eggs

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2009-01-01

    The concentration of mercury (Hg) in eggs that causes reduced hatching success is regarded as a critical end point for Hg toxicity in birds. However, incorporating effects of in ovo mercury exposure on chick health and survival could improve risk assessment. We developed equations to predict Hg in eggs using Hg in chick down feathers, and vice versa, by assessing the relationship between Hg in feathers (0.5−32.4 μg g−1 fw) and eggs (0.04−2.79 μg g−1 fww) for three waterbird species in San Francisco Bay, CA. Feather Hg sampled from embryos of pipping eggs was highly correlated with fresh whole-egg Hg (n = 94, r2 = 0.96). Additionally, using an egg microsampling technique, albumen Hg was correlated with feather Hg sampled from chicks in the same nest (n = 28, r2 = 0.79). Down feather Hg in recaptured chicks (≤10 days old) was correlated with down feather Hg at hatching (≤3 days old; n = 88, r2 = 0.74). Our results demonstrate the utility of using down feathers of chicks ≤10 days of age to nonlethally predict Hg in eggs and thus provide the ability to develop exposure thresholds for eggs that incorporate in ovo Hg’s effects on both egg hatchability and subsequent chick mortality.

  16. Diverse range of fixed positional deformities and bone growth restraint provoked by flaccid paralysis in embryonic chicks

    PubMed Central

    Lamb, Katherine J; Lewthwaite, Jo C; Lin, Jean-Pierre; Simon, Dominic; Kavanagh, Emma; Wheeler-Jones, Caroline P D; Pitsillides, Andrew A

    2003-01-01

    Pancuronium bromide (PB) is used in neonates and pregnant women to induce limp, flaccid paralysis in order to allow mechanical ventilation during intensive care. Such non-depolarizing neuromuscular blocking drugs are administered to 0.1% of all human births in the UK. In this study, we examined PB effects on skeletal development in chick embryos. PB treatment produced skeletal deformities associated with significant reduction in longitudinal growth of all appendicular elements. This was associated with greater cartilage to bone ratios, indicating a preferential reduction in osteogenesis. PB also increased the incidence of knee joint flexion and tibiotarsal joint hyperextension. In addition to limb, spinal and craniofacial deformities, flaccid immobility appears to convert the normal geometric pattern of weight gain to a simple arithmetic accretion. This novel study highlights the potentially harmful effects of pharmacologically induced flaccid immobility on chick embryonic skeletal development. Whilst in ovo avian development clearly differs from human, our findings may have implications for the fetus, premature and term neonate receiving such non-depolarizing neuromuscular blocking drugs. PMID:14632633

  17. Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis

    PubMed Central

    Yeo, Chaebeom; Park, Hyun-cheol; Lee, Kijoon; Song, Cheol

    2015-01-01

    Determining the survival rate of avian embryos during incubation is essential for cost-saving in the poultry industry. A multi-channel diffuse speckle contrast analysis (DSCA) system, comprising four optical fiber channels, is proposed to achieve noninvasive in vivo measurements of deep tissue flow. The system was able to monitor chick embryo vital signs over the entire incubation period. Moreover, it proved useful in distinguishing between chick embryos in healthy and weakened conditions. PMID:26819820

  18. Accelerated maturation of limb mesenchyme by the BrachypodH mouse mutation.

    PubMed

    Owens, E M; Solursh, M

    1983-01-01

    Mesenchyme cell populations prepared from proximal and distal halves of stage 20 mouse forelimb buds are shown to behave under in vitro micromass culture conditions like analogous cell populations obtained from chick embryo limb buds. While the distal cells are spontaneously chondrogenic, the proximal cells make aggregates which are only potentially chondrogenic after treatment with dibutyryl cyclic AMP. In addition, stage 20 mouse whole limb bud cells homozygous for the brachypodismH (bpH) mutation are shown to behave similarly to 'normal' proximal cells. Both make fewer aggregates and nodules and both have faster aggregation rates (determined as the rate of disappearance of single cells over time) in rotation cultures than 'normal' distal or whole limb bud cells. These results support the hypothesis that the bpH mutation specifically decreases the proportion of spontaneously chondrogenic mesenchyme cells (that is, distal-like cells) present at certain developmental stages in the limb bud, resulting in a prematurely high proportion of proximal-like cells.

  19. Teen Chick Lit

    ERIC Educational Resources Information Center

    Meloni, Christine

    2006-01-01

    For young teen girls, reading has become hot again. With their appealing covers, witty heroines and humorous plots, teen chick lit books are bringing girls out of the malls and into local libraries and bookstores in search of the next must-have title. These fun books are about boys, friendship, family, fitting in, and growing up. What makes the…

  20. Yolk hormones influence in ovo chemosensory learning, growth, and feeding behavior in domestic chicks.

    PubMed

    Bertin, Aline; Meurisse, Maryse; Arnould, Cécile; Leterrier, Christine; Constantin, Paul; Cornilleau, Fabien; Vaudin, Pascal; Burlot, Thierry; Delaveau, Joel; Rat, Christophe; Calandreau, Ludovic

    2016-03-01

    In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors.

  1. Processes involved in retinoic acid production of small embryonic palatal shelves and limb defects.

    PubMed

    Abbott, B D; Hill, L G; Birnbaum, L S

    1990-03-01

    All-trans-retinoic acid (RA) is teratogenic to the embryonic mouse, producing malformations in many developing systems, including the limb bud and palate. High incidences of limb defects and cleft palate are induced at doses which are not maternally toxic and do not increase resorptions. Exposure to RA on gestational day (GD) 10 results in small palatal shelves, which fail to make contact on GD 14. The formation of small shelves could be a consequence of increased cell death, reduced proliferation, a combination of these effects, or some other effect such as inhibition of extracellular matrix production. After exposure to 100 mg RA/kg on GD 10, proliferation in mesenchymal cells of the palatal shelves was not reduced from GD 12 to GD 14 and the levels of cell death in control and treated shelves did not differ when observed by light and electron microscopy. The present study examines the effects of RA on cell death and proliferation from GDs 10-12 and compares the effects in palatal shelves and limb buds. Embryonic mice were exposed to RA suspended in corn oil (100 mg/kg on GD 10), a dose that was teratogenic but not maternally toxic or embryolethal. Embryos were collected at 4, 12, 24, 36, or 48 hr postexposure, and tissues which form the palate or limb were dissected from the embryos, stained by a modified Feulgen procedure, and whole mounted on slides. Mitotic index (MI) and percentage dead cells were determined for mesenchymal cells of the first visceral arch, maxillary process, or palatal shelf (depending on stage of development) and forelimb buds. In the palatal tissues from GD 10 to GD 12, RA did not significantly alter MI and percentage dead cells was significantly increased only at 4 hr postexposure. Some whole embryos were prepared for scanning electron microscopy (SEM). At 48 hr (GD 12) a reduction in the size of the shelves was not apparent on SEM. In the limb buds, RA did not increase percentage dead cells, but MI was significantly decreased. A

  2. Loss of J chain during primary immune responses in chicks.

    PubMed

    Moriya, O; Ichikawa, Y

    1984-12-01

    J chain positive cells (JPC) were studied by direct immunofluorescence in embryonic and newly hatched chicks. The results indicated a decrease in the amounts of JPC in the embryonic spleen and bursa of Fabricius after in ovo antigenic stimulation with sheep erythrocytes (SRBC) compared with that of unstimulated lymphocytes. The level of thymic JPC in the control chicks and those subjected to antigenic stimulation was always about the same. Partial re-expression of the J chain in splenic lymphocytes was detected in newly hatched, antibody producing chicks, while the percentage of JPC in non-antibody producing chicks did not recover to the control level. Further evidence obtained indicated that the JPC decreases did not depend on the antigen dosage. After antigenic stimulation, J chain re-expression in cells of embryos and newly hatched non-antibody producing chicks was found to be essentially the same. These findings imply that the re-expression of J chain molecules is associated with immunoglobulin production. Furthermore, it seems plausible that the non-re-expression of the J chain occurred at the time of immunological unresponsiveness.

  3. Chick tooth induction revisited.

    PubMed

    Cai, Jinglei; Cho, Sung-Won; Ishiyama, Mikio; Mikami, Masato; Hosoya, Akihiro; Kozawa, Yukishige; Ohshima, Hayato; Jung, Han-Sung

    2009-07-15

    Teeth have been missing from Aves for almost 100 million years. However, it is believed that the avian oral epithelium retains the molecular signaling required to induce odontogenesis, and this has been widely examined using heterospecific recombinations with mouse dental mesenchyme. It has also been argued that teeth can form from the avian oral epithelium owing to contamination of the mouse mesenchyme with mouse dental epithelial cells. To investigate the possibility of tooth formation from chick oral epithelium and the characteristics of possible chick enamel, we applied LacZ transgenic mice during heterospecific recombination and examined the further tooth formation. Transmission electron microscopy was used to identify the two tissues during development after heterospecific recombination. No mixing was detected between chick oral epithelium and mouse dental mesenchyme after 2 days, and secretory ameloblasts with Tomes' processes were observed after 1 week. Teeth were formed after 3 weeks with a single cusp pattern, possibly determined by epithelial factors, which is similar to that of the avian tooth in the late Jurassic period. These recombinant teeth were smaller than mouse molars, whereas perfect structures of both ameloblasts and enamel showed histological characteristics similar to those of mice. Together these observations consistent with previous report that odontogenesis is initially directed by species-specific mesenchymal signals interplaying with common epithelial signals.

  4. Cadmium teratogenesis in the chick: period of vulnerability using the early chick culture method, and prevention by divalent cations.

    PubMed

    Cullinane, Jennifer; Bannigan, John; Thompson, Jennifer

    2009-11-01

    Cadmium (Cd) is teratogenic in chick embryos following treatment in ovo or in shell-less culture. We investigated the ability of other divalent cations (Mn, Ni, Se, Mg and Ca) to influence the effects of Cd. As the proposed mechanism of protection of these ions is prevention of Cd influx by blocking or competing for Ca channels, we also assessed verapamil, a Ca-channel blocker. We used a new, completely ex ovo method, explanting the embryos onto an agar-albumen substrate (0.6% agar diluted 1:1 with thin albumen) to which test substances were added. Following 48-96 h incubation, chicks were explanted onto medium containing 7.5 microM Cd acetate or equimolar sodium acetate. Morphology and somite numbers were assessed at explantation, and again following 24h incubation on the culture media. In addition, 60-h embryos were explanted onto media containing various concentrations of the aforementioned agents, alone or in combination with 7.5 microM Cd. Chicks were vulnerable to Cd teratogenesis between Hamburger-Hamilton stages 13 and 18. Co-treatment with Se, Mn and Ni prevented malformation at 2x, 50 x and 100 x the molar dose of Cd, respectively. Ca, Mg and verapamil failed to protect. These results indicate that some, but not all, divalent cations protect against Cd malformation, but the mechanism of rescue remains unresolved.

  5. Intermediate frequency magnetic field and chick embryotoxicity.

    PubMed

    Nishimura, Izumi; Tanaka, Keiko; Negishi, Tadashi

    2013-09-01

    Intermediate frequency magnetic fields (MFs) have widely been used in industrial machines and home appliances, such as induction heating cookers, although toxicity studies to evaluate the potential health risks of such fields are insufficient. In induction heating cookers, the MF source (i.e. hobs), is located near the abdominal position of a person cooking. Hence, developmental effects on the fetus may be a concern in case the person is a pregnant woman. Fertile White Leghorn eggs (60/group) were either exposed to 20 kHz, 1.1 mT(rms) or 60 kHz, 0.11 mT(rms) sinusoidal MFs for 19 days during embryogenesis. The same number of eggs served as a control group. In addition, a sham-sham experiment was conducted to validate the equality between exposure and control facilities. After exposure, embryos were examined for mortality rate and stage. Live embryos were evaluated for developmental stage and gross and skeletal anomalies. Length of upper beak and leg digits was also measured. Examinations were conducted in a blinded fashion to ensure quality assurance; experiments were triplicated for each frequency to confirm the outcome reproducibility. Mortality rate and stage, incidence of malformed embryos, and developmental variables in live embryos were found to be similar between the MF-exposed and corresponding control group. Incidence of gross anomalies such as mandibular edema and skeletal anomalies such as coccyx defects were low across the experiments, and no significant group differences were noted. In conclusion, exposure to 20 kHz or 60 kHz MF did not produce any significant teratogenic developmental effects in chick embryos.

  6. Recent advances in the study of limb development: the emergence and function of the apical ectodermal ridge.

    PubMed

    Rodriguez-Leon, Joaquin; Tomas, Ana Raquel; Johnson, Austin; Kawakami, Yasuhiko

    2013-01-01

    Vertebrate extremities develop from limb buds, which emerge as paired protrusions in the lateral plate mesoderm. Forelimb buds are located anteriorly and hindlimb buds are positioned posteriorly. The morphogenesis of the limb requires coordinated actions of several organizing centers, among which the apical ectodermal ridge (AER) plays crucial roles in limb development. Recent studies have shown how the life of the AER (induction, maturation, maintenance and regression) is regulated. This regulation includes cell type- and process- specific roles of previously identified molecules, such as fibroblast growth factors (FGFs), Wnts and bone morphogenetic proteins (BMPs). The studies have also revealed several new players, such as Arid3b, R-Spondin 2 and Flrt3. These advances have enhanced the understanding of how the AER is regulated from its emergence to its regression. Progress has also been made in understanding AER function in relation to processes critical for limb development: proximal-distal patterning, anterior-posterior patterning, chondrogenesis and apoptosis. By focusing on two major model systems, chick and mouse embryos, we will review recent advances in combination with relevant previous studies in the development and function of the AER.

  7. Otic Lesions and Congenital Hypothyroidism in the Developing Chick*

    PubMed Central

    Bargman, Gerald J.; Gardner, Lytt I.

    1967-01-01

    In an effort to elucidate the relation, if any, between thyroid abnormality and congenital deafness in Pendred's syndrome, an experiment was designed to study the effects of hypothyroidism on middle and inner ear hearing structures, including the auditory nerve and its central projection, in developing chick embryos. Propylthiouracil (PTU), 2 mg, was injected into the albumin of fertile chick eggs on the 10th incubation day. Single doses of L-thyroxine (range 1-100μg) were inoculated in a similar manner, either alone or with PTU. Control inocula included sterile saline or water. After hatching, each chick was examined for obvious malformations. The thyroid glands, middle and inner ear mechanisms, auditory nerve, and brainstem were studied grossly and with different histologic staining techniques. When compared to controls, chicks exposed to PTU on their 10th incubation day exhibited: increased mortality, delayed hatching, reduced size, incomplete yolk sac absorption, and death within 5 days unless exogenous thyroid hormone was provided in the first 24-48 hr after hatching. Specific, consistent, morphologic alterations were observed in their thyroid glands as well as in the sensory hair cells of the acoustic papilla and cells of the spiral ganglion of the cochlea. Our data also indicate that if 50-75 μg of L-thyroxine is given simultaneously with (or as long as 120 hr after) the PTU injection on the 10th incubation day, one cannot detect the gross defects, marked thyroid lesions, or abnormal histology in cells of the cochlea and its ganglion. A relationship between embryonic thyroid gland function and the hearing mechanism of the chick embryo is suggested. Images PMID:6070327

  8. Fibroblast growth factor receptor levels decrease during chick embryogenesis

    PubMed Central

    1990-01-01

    Two putative receptors for fibroblast growth factor (FGF) of approximately 150 and 200 kD were identified in membrane preparations from chick embryos. Specific binding (femtomoles/milligram) of 125I- aFGF to whole chick embryonic membranes was relatively constant from day 2 to 7, then decreased fivefold between days 7 and 13. Day-19 chick embryos retained 125I-aFGF binding at low levels to brain, eye, and liver tissues but not to skeletal muscle or cardiac tissues. The 200-kD FGF receptor began to decline between day 4.5 and 7 and was barely detectable by day 9, whereas the 150-kD FGF receptor began to decline by day 7 but was still detectable in day-9 embryonic membranes. It is not known whether the two FGF-binding proteins represent altered forms of one polypeptide, but it is clear that their levels undergo differential changes during development. Because endogenous chick FGF may remain bound to FGF receptor in membrane preparations, membranes were treated with acidic (pH 4.0) buffers to release bound FGF; such treatment did not affect 125I-aFGF binding and moderately increased the number of binding sites in day-7 and -19 embryos. Consequently, the observed loss of high affinity 125I-aFGF binding sites and FGF-binding polypeptides most likely represents a loss of FGF receptor protein. These experiments provide in vivo evidence to support the hypothesis that regulation of FGF receptor levels may function as a mechanism for controlling FGF-dependent processes during embryonic development. PMID:2153684

  9. The effect of lesions in the neural crest on the formation of synaptic connexions in the embryonic chick spinal cord

    PubMed Central

    Eide, Anne-Lill; Jansen, Jan K. S.; Ribchester, Richard R.

    1982-01-01

    1. The pattern of synaptic activity in lateral gastrocnemius (l.g.) motoneurones in the lumbar spinal cord of chick embryos (Stage 44-45, 19-21 d of incubation) has been examined using intracellular recording. In the motoneurones of normal chick embryos, stimulation of different peripheral, sciatic nerve branches gave rise to characteristic synaptic responses. Stimulation of the lateral gastrocnemius nerve caused a monosynaptic e.p.s.p. which was graded by the intensity of nerve stimulation. Stimulation of synergistic muscle afferents also caused a brief latency e.p.s.p., followed by longer latency excitatory and inhibitory synaptic potentials. Stimulation of antagonistic muscle afferents or cutaneous afferents gave rise to longer latency inhibitory and excitatory synaptic potentials respectively. 2. The synaptic activity of l.g. motoneurones was also recorded in embryos in which short segments of the lumbar neural crest had been destroyed by microcautery at 3 d of incubation (Stage 18). The embryos developed without sensory ganglia and dorsal roots in the corresponding region. 3. At 19-21 d of incubation, the amplitude of the l.g. e.p.s.p. of l.g. motoneurones in deafferented segments was on the average only a half to a third of the amplitude seen in motoneurones of intact spinal segments. However, both the l.g. and synergist e.p.s.p.s were larger than those seen in acutely deafferented segments of normal embryos. 4. In spite of the weak monosynaptic input from l.g. and synergistic afferents, the pattern of synaptic activity evoked by antagonistic muscle afferent or cutaneous afferent stimulation was not different from normal. This was even the case for gastrocnemius motoneurones in which no early e.p.s.p. could be evoked by stimulating the l.g. or synergistic muscle nerves. 5. No muscle spindles could be seen in sections of l.g. muscles from embryos with extensive lesions of the lumbosacral neural crest. Incomplete lesions of l.g. segments reduced the number of

  10. Perinatal development of circadian melatonin production in domestic chicks.

    PubMed

    Zeman, M; Gwinner, E; Herichová, I; Lamosová, D; Kost'ál, L

    1999-01-01

    In contrast to the situation in mammals, in which circadian melatonin production by the pineal gland does not begin until some time after birth, the development of pineal gland rhythmicity is an embryonic event in the precocial domestic fowl. A distinct melatonin rhythm was found in 19-d-old chick embryos maintained under light:dark (LD) 16:8. No significant variation in melatonin levels was detected in embryos exposed to LD 8:16. The melatonin rhythm in the pineal gland and plasma of chick embryos incubated for 18 d in LD 12:12 persisted for 2 d in constant darkness indicating that melatonin production is under circadian control at least from the end of embryonic life. A 1-d exposure to a LD cycle during the first postembryonic day was sufficient to entrain the melatonin rhythm, and previous embryonic exposure to either LD or constant darkness (DD) neither modified this rapid synchronization nor did it affect the melatonin pattern during the two subsequent days in DD. It is suggested that, in contrast to the situation in mammals, the avian embryo has evolved its own early circadian melatonin-producing system because, as a consequence of its extrauterine development, it cannot use the system of its mother.

  11. Immunogenicity and safety of purified chick-embryo cell rabies vaccine under Zagreb 2-1-1 or 5-dose Essen regimen in Chinese children 6 to 17 years old and adults over 50 years: A randomized open-label study

    PubMed Central

    Li, RongCheng; Li, YanPing; Wen, ShuQing; Wen, HuiChun; Nong, Yi; Mo, Zhaojun; Xie, Fang; Pellegrini, Michele

    2015-01-01

    The aim of this Phase IIIb, open-label, randomized study was to demonstrate the non-inferiority of immune responses and to assess the safety of a purified chick-embryo cell rabies vaccine (PCECV) in healthy Chinese children (6 to 17 years) and older adults (≥51 years) following 2 alternative intramuscular (IM) simulated post-exposure prophylaxis (PEP) regimens: 4-dose Zagreb or 5-dose Essen regimen. Serum samples were collected prior to vaccination on Days 1 and 15 and on day 43 to assess immune response by rabies virus neutralizing antibody (RVNA) concentrations. Solicited adverse events (AEs) were recorded for up to 7 days following each vaccine dose, and unsolicited AEs throughout the entire study period. PCECV vaccination induced a strong immune response at Day 15, and the non-inferiority in immune response of the Zagreb vs. the Essen regimen was demonstrated in children and older adults. At Day 15,100% of children (N = 224), and 99% of subjects ≥51 years of age (N = 376) developed adequate RVNA concentrations (≥0.5 IU/mL); at Day 43 all subjects achieved RVNA concentrations ≥0.5 IU/mL, for both PEP regimens. The well-known tolerability and safety profile of the PCECV was again observed in this study following either Zagreb or Essen regimens. Rabies PEP vaccination with PCECV following a Zagreb regimen induced immune responses non-inferior to those of the Essen regimen, and had a similar safety and tolerability profile to the Essen regimen in Chinese children, adolescents, and adults over 51 years. ClinicalTrials.gov identifier: NCT01680016. PMID:25692350

  12. Immunogenicity and safety of purified chick-embryo cell rabies vaccine under Zagreb 2-1-1 or 5-dose Essen regimen in Chinese children 6 to 17 years old and adults over 50 years: a randomized open-label study.

    PubMed

    Li, RongCheng; Li, YanPing; Wen, ShuQing; Wen, HuiChun; Nong, Yi; Mo, Zhaojun; Xie, Fang; Pellegrini, Michele

    2015-01-01

    The aim of this Phase IIIb, open-label, randomized study was to demonstrate the non-inferiority of immune responses and to assess the safety of a purified chick-embryo cell rabies vaccine (PCECV) in healthy Chinese children (6 to 17 years) and older adults (≥51 years) following 2 alternative intramuscular (IM) simulated post-exposure prophylaxis (PEP) regimens: 4-dose Zagreb or 5-dose Essen regimen. Serum samples were collected prior to vaccination on Days 1 and 15 and on day 43 to assess immune response by rabies virus neutralizing antibody (RVNA) concentrations. Solicited adverse events (AEs) were recorded for up to 7 days following each vaccine dose, and unsolicited AEs throughout the entire study period. PCECV vaccination induced a strong immune response at Day 15, and the non-inferiority in immune response of the Zagreb vs. the Essen regimen was demonstrated in children and older adults. At Day 15,100% of children (N = 224), and 99% of subjects ≥51 years of age (N = 376) developed adequate RVNA concentrations (≥0.5 IU/mL); at Day 43 all subjects achieved RVNA concentrations ≥0.5 IU/mL, for both PEP regimens. The well-known tolerability and safety profile of the PCECV was again observed in this study following either Zagreb or Essen regimens. Rabies PEP vaccination with PCECV following a Zagreb regimen induced immune responses non-inferior to those of the Essen regimen, and had a similar safety and tolerability profile to the Essen regimen in Chinese children, adolescents, and adults over 51 years. ClinicalTrials.gov identifier: NCT01680016.

  13. Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography.

    PubMed

    Kim, Jun Sup; Min, Jouha; Recknagel, Andrew K; Riccio, Mark; Butcher, Jonathan T

    2011-01-01

    Embryonic development is a remarkably complex and rapidly evolving morphogenetic process. Although many of the early patterning events have been well described, understanding the anatomical changes at later stages where clinically relevant malformations are more likely to be survivable has been limited by the lack of quantitative 3D imaging tools. Microcomputed tomography (Micro-CT) has emerged as a powerful tool for embryonic imaging, but a quantitative analysis of organ and tissue growth has not been conducted. In this study, we present a simple method for acquiring highly detailed, quantitative 3D datasets of embryonic chicks with Micro-CT. Embryos between 4 and 12 days (HH23 and HH40) were labeled with osmium tetroxide (OT), which revealed highly detailed soft tissue anatomy when scanned at 25 μm resolution. We demonstrate tissue boundary and inter-tissue contrast fidelity in virtual 2D sections are quantitatively and qualitatively similar to those of histological sections. We then establish mathematical relationships for the volumetric growth of heart, limb, eye, and brain during this period of development. We show that some organs exhibit constant exponential growth (eye and heart), whereas others contained multiple phases of growth (forebrain and limb). Furthermore, we show that cardiac myocardial volumetric growth differs in a time and chamber specific manner. These results demonstrate Micro-CT is a powerful technique for quantitative imaging of embryonic growth. The data presented here establish baselines from which to compare the effects of genetic or experimental perturbations. Quantifying subtle differences in morphogenesis is increasingly important as research focuses on localized and conditional effects.

  14. The activation patterns of embryonic chick motoneurones projecting to inappropriate muscles.

    PubMed Central

    Landmesser, L T; O'Donovan, M J

    1984-01-01

    Chick lumbosacral motoneurones were caused to innervate foreign muscles by surgically rotating or shifting the limb bud about the anterior-posterior axis in stage 17-18 embryos. The activation pattern of such wrongly projecting motoneurones was assessed at stages 35-38 by recording electromyographic activity from muscles in an isolated spinal cord/hind limb preparation. Muscle activity was classed as flexor- or extensor-like according to the characteristics of the patterned sequence of bursts elicited by a single shock to the thoracic cord. Wrongly projecting motoneurones did not have their activation pattern altered to one appropriate for the muscle innervated; therefore in some cases a particular muscle was activated with a pattern similar to its original one, and in other cases in an opposite manner. Mixed flexor-extensor-like activation of a single muscle was, however, rare. The identity of motoneurones projecting to a muscle was determined by their cord location following retrograde labelling with horseradish peroxidase. This allowed us to conclude that motoneurones could develop their normal pattern of activation even when projecting to foreign muscles. It is concluded that the cord circuits (presumably composed of local interneurones responsible for the activation of motoneurones in the isolated cord preparation are not altered by retrograde influences from the muscle. Wrongly projecting motoneurones, which were maintained throughout the normal cell death period, were activated during spontaneous embryonic movements, and in many cases were found to have a behaviourally inappropriate activation pattern. These observations are discussed in relation to proposed mechanisms by which developmental errors in connectivity are corrected. Images Fig. 1 PMID:6707957

  15. The activation patterns of embryonic chick motoneurones projecting to inappropriate muscles.

    PubMed

    Landmesser, L T; O'Donovan, M J

    1984-02-01

    Chick lumbosacral motoneurones were caused to innervate foreign muscles by surgically rotating or shifting the limb bud about the anterior-posterior axis in stage 17-18 embryos. The activation pattern of such wrongly projecting motoneurones was assessed at stages 35-38 by recording electromyographic activity from muscles in an isolated spinal cord/hind limb preparation. Muscle activity was classed as flexor- or extensor-like according to the characteristics of the patterned sequence of bursts elicited by a single shock to the thoracic cord. Wrongly projecting motoneurones did not have their activation pattern altered to one appropriate for the muscle innervated; therefore in some cases a particular muscle was activated with a pattern similar to its original one, and in other cases in an opposite manner. Mixed flexor-extensor-like activation of a single muscle was, however, rare. The identity of motoneurones projecting to a muscle was determined by their cord location following retrograde labelling with horseradish peroxidase. This allowed us to conclude that motoneurones could develop their normal pattern of activation even when projecting to foreign muscles. It is concluded that the cord circuits (presumably composed of local interneurones responsible for the activation of motoneurones in the isolated cord preparation are not altered by retrograde influences from the muscle. Wrongly projecting motoneurones, which were maintained throughout the normal cell death period, were activated during spontaneous embryonic movements, and in many cases were found to have a behaviourally inappropriate activation pattern. These observations are discussed in relation to proposed mechanisms by which developmental errors in connectivity are corrected.

  16. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    PubMed

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.

  17. Identification and localization of a novel zinc finger gene in developing chick skin and feather buds.

    PubMed

    Padanilam, B J; Solursh, M

    1996-03-07

    We have cloned and sequenced a cDNA encoding a novel zinc finger protein (Fzf-1) containing two tandem repeats of zinc finger motifs of the C2H2 type. The cDNA is 3.0 Kb long and has an open reading frame which codes for a protein of 789 amino acids. The expression pattern of the zinc finger gene was studied in chick embryonic skin and feathers by in situ hybridization. The expression of the gene is found to be temporally and spatially regulated. In stage 38 chick embryos, the transcripts are localized to the epidermis but in 10-day-old embryos, the signal is localized to the forming dermis. In 12-day-old chick, the transcripts are localized to the mesenchymal region of the elongated feather buds. Reverse transcription followed by Polymerase Chain Reaction (RT-PCR) did not detect the transcripts in any other tissues.

  18. Artificially Increased Yolk Hormone Levels and Neophobia in Domestic Chicks

    PubMed Central

    Bertin, Aline; Arnould, Cécile; Moussu, Chantal; Meurisse, Maryse; Constantin, Paul; Leterrier, Christine; Calandreau, Ludovic

    2015-01-01

    In birds there is compelling evidence that the development and expression of behavior is affected by maternal factors, particularly via variation in yolk hormone concentrations of maternal origin. In the present study we tested whether variation in yolk hormone levels lead to variation in the expression of neophobia in young domestic chicks. Understanding how the prenatal environment could predispose chicks to express fear-related behaviors is essential in order to propose preventive actions and improve animal welfare. We simulated the consequences of a maternal stress by experimentally enhancing yolk progesterone, testosterone and estradiol concentrations in hen eggs prior to incubation. The chicks from these hormone-treated eggs (H) and from sham embryos (C) that received the vehicle-only were exposed to novel food, novel object and novel environment tests. H chicks approached a novel object significantly faster and were significantly more active in a novel environment than controls, suggesting less fearfulness. Conversely, no effect of the treatment was found in food neophobia tests. Our study highlights a developmental influence of yolk hormones on a specific aspect of neophobia. The results suggest that increased yolk hormone levels modulate specifically the probability of exploring novel environments or novel objects in the environment. PMID:26633522

  19. Draxin, an axon guidance protein, affects chick trunk neural crest migration.

    PubMed

    Su, Yuhong; Naser, Iftekhar B; Islam, Shahidul M; Zhang, Sanbing; Ahmed, Giasuddin; Chen, Sandy; Shinmyo, Yohei; Kawakami, Minoru; Yamamura, Ken-ichi; Tanaka, Hideaki

    2009-12-01

    The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.

  20. Artificial Limbs

    MedlinePlus

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which is ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as before.

  1. Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus).

    PubMed

    Rugani, Rosa; Rosa Salva, Orsola; Regolin, Lucia; Vallortigara, Giorgio

    2015-09-01

    Few light-points on the joints of a moving animal give the impression of biological motion (BM). Day-old chicks prefer BM to non-BM, suggesting a conserved predisposition to attend to moving animals. In humans and other mammals a network of regions, primarily in the right hemisphere, provides the neural substrate for BM perception. However, this has not been investigated in avians. In birds the information from each eye is mainly feeding to the contralateral hemisphere. To study brain asymmetry, we recorded the eye spontaneously used by chicks to inspect a BM stimulus. We also investigated the effect of lateralization following light exposure of the embryos. In Experiment 1, highly lateralized chicks aligned with the apparent direction of motion only when they were exposed to a BM-stimulus moving rightward first, monitoring it with the left-eye-system. In Experiment 2 weakly lateralized chicks did not show any behavioral asymmetry. Moreover, they counter aligned with the apparent direction of motion. Brain lateralization affects chicks behavior while processing and approaching a BM stimulus. Highly lateralized chicks aligned their body with the apparent direction of the BM, a behavior akin to a following response, monitoring the stimulus preferentially with their left eye. This suggests a right hemisphere dominance in BM processing. Weakly lateralized chicks counter-aligned with the apparent direction of the BM, facing it during interaction, and monitored it equally with both eyes. Environmental factors (light stimulation) seem to affect the development of lateralization, and consequently social behavior.

  2. Chicks like consonant music.

    PubMed

    Chiandetti, Cinzia; Vallortigara, Giorgio

    2011-10-01

    The question of whether preference for consonance is rooted in acoustic properties important to the auditory system or is acquired through enculturation has not yet been resolved. Two-month-old infants prefer consonant over dissonant intervals, but it is possible that this preference is rapidly acquired through exposure to music soon after birth or in utero. Controlled-rearing studies with animals can help shed light on this question because such studies allow researchers to distinguish between biological predispositions and learned preferences. In the research reported here, we found that newly hatched domestic chicks show a spontaneous preference for a visual imprinting object associated with consonant sound intervals over an identical object associated with dissonant sound intervals. We propose that preference for harmonic relationships between frequency components may be related to the prominence of harmonic spectra in biological sounds in natural environments.

  3. Proteome analysis of chick embryonic cerebrospinal fluid.

    PubMed

    Parada, Carolina; Gato, Angel; Aparicio, Mariano; Bueno, David

    2006-01-01

    During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases.

  4. Intestinal disaccharidase activities in the chick

    PubMed Central

    Siddons, R. C.

    1969-01-01

    1. Disaccharidase activities of the small and large intestines of the chick were studied. 2. Homogenates of the small intestine readily hydrolysed maltose, sucrose and palatinose (6-O-α-d-glucopyranosyl-d-fructose), hydrolysed lactose slowly and did not hydrolyse trehalose and cellobiose. 3. Within the small intestine the disaccharidases were located mainly in the intestinal wall; the activity in the contents accounted for less than 5% of the total activity. 4. The disaccharidases were non-uniformly distributed along the small intestine, the activities being greatest in the middle section. 5. The disaccharidase activities increased with age between 1 and 43 days. 6. Homogenates of the large intestine and contents readily hydrolysed maltose, sucrose, palatinose and lactose and hydrolysed cellobiose and trehalose slowly. 7. The large-intestinal disaccharidases were located mainly in the contents. 8. Similar Km and pH optimum values were found for the maltase, sucrase and palatinase activities of the large and small intestines. 9. The lactase activity of the large intestine was markedly affected by diet and had different Km and pH values from the small intestinal lactase. 10. Low activities of intestinal disaccharidase were found in 12-day-old embryos and marked increases in the intestinal disaccharidases of the developing embryo occurred 2–3 days before hatching. PMID:5774506

  5. Actin and myosin isoforms in aneural and malformed chick hearts.

    PubMed

    Kirby, M L; Shimizu, N; Gagnon, J; Toyofuku, T; Kennedy, J; Conrad, D C; Zak, R

    1990-09-01

    Although it is generally accepted that actin and myosin isoforms adapt to their functional requirements, the sequence of expression of these proteins in hearts developing abnormally is unknown. In the chick embryo it is possible to change various aspects of heart development without direct manipulation of the cardiovascular system, by removing various regions of the neural crest from early embryos. The neural crest provides both neural (sympathetic and parasympathetic) and ectomesenchymal components to the heart, and selective removal of various areas results in embryos with sympathetically aneural hearts, or persistent truncus arteriosus with or without parasympathetic denervation. Myosin isoform expression was studied in each of these types of hearts using an array of myosin antibodies specific for atrium, ventricle or the conduction system. Myosin expression in experimental hearts was found to follow the normal pattern of development using these antibodies. Actin expression was studied using cDNA probes for the 3' untranslated region of actin mRNA of the alpha-skeletal, alpha-cardiac and beta-actin isoforms. Using slot-blot hybridization analysis, the pattern of actin expression in atrium and ventricle was followed throughout the period of incubation in normal hearts. The pattern of actin expression was found to be abnormal in hearts which were sympathetically aneural and those which had persistent truncus arteriosus combined with parasympathetic denervation. ATPase activity was increased only in atria of hearts with persistent truncus arteriosus. It appears from these experiments that actin isoform expression is influenced in the chick heart by autonomic innervation.

  6. From the Cover: Exposing Imidacloprid Interferes With Neurogenesis Through Impacting on Chick Neural Tube Cell Survival.

    PubMed

    Liu, Meng; Wang, Guang; Zhang, Shi-Yao; Zhong, Shan; Qi, Guo-Long; Wang, Chao-Jie; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong

    2016-09-01

    As a neonicotinoid pesticide, imidacloprid is widely used to control insects in agriculture and fleas on domestic animals. However, it is not known whether imidacloprid exposure negatively affects neurogenesis during embryonic development. In this study, using a chick embryo model, we investigated the effects of imidacloprid exposure on neurogenesis at the earliest stage and during late-stage embryo development. Exposing HH0 chick embryos to imidacloprid in EC culture caused neural tube defects (NTDs) and neuronal differentiation dysplasia as determined by NF/Tuj1 labeling. Furthermore, we found that F-actin accumulation on the apical side of the neural tube was suppressed by exposure to imidacloprid, and the expression of BMP4 and Shh on the dorsal and ventral sides of the neural tubes, respectively, were also reduced, which in turn affects the dorsolateral hinge points during bending of the neural plate. In addition, exposure to imidacloprid reduced cell proliferation and increased cell apoptosis, as determined by pHIS3 labeling and TUNEL staining, respectively, also contributing to the malformation. We obtained similar results in late-stage embryos exposed to imidacloprid. Finally, a bioinformatics analysis was employed to determine which genes identified in this study were involved in NTDs. The experimental evidence and bioinformatics analysis suggested that imidacloprid exposure during chick embryo development could increase the risk of NTDs and neural dysplasia.

  7. Zika Virus Induced Mortality and Microcephaly in Chicken Embryos.

    PubMed

    Goodfellow, Forrest T; Tesla, Blanka; Simchick, Gregory; Zhao, Qun; Hodge, Thomas; Brindley, Melinda A; Stice, Steven L

    2016-11-15

    The explosive spread of the Zika virus (ZIKV) through South and Central America has been linked to an increase in congenital birth defects, specifically microcephaly. Representative rodent models for investigating infections include direct central nervous system (CNS) injections late in pregnancy and transplacental transmission in immunodeficient mice. Microcephaly in humans may be the result of infection occurring early in pregnancy, therefore recapitulating that the human course of ZIKV infection should include normal embryo exposed to ZIKV during the first trimester. In ovo development of the chicken embryo closely mirrors human fetal neurodevelopment and, as a comparative model, could provide key insights into both temporal and pathophysiological effects of ZIKV. Chick embryos were directly infected early and throughout incubation with ZIKV isolated from a Mexican mosquito in January 2016. High doses of virus caused embryonic lethality. In a subset of lower dosed embryos, replicating ZIKV was present in various organs, including the CNS, throughout development. Surviving ZIKV-infected embryos presented a microcephaly-like phenotype. Chick embryos were longitudinally monitored by magnetic resonance imaging that documented CNS structural malformations, including enlarged ventricles (30% increase) and stunted cortical growth (decreased telencephalon by 18%, brain stem by 32%, and total brain volume by 18%), on both embryonic day 15 (E15) and E20 of development. ZIKV-induced microcephaly was observed with inoculations of as few as 2-20 viral particles. The chick embryo model presented ZIKV embryonic lethal effects and progressive CNS damage similar to microcephaly.

  8. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles

    PubMed Central

    Bradley, Nina S.; Ryu, Young U.; Yeseta, Marie C.

    2014-01-01

    Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching. PMID:24265423

  9. Development of otoconia in the embryonic chick (Gallus domesticus)

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Igarashi, M.

    1985-01-01

    In the chick (Gallus domesticus) embryo, otoconium formation started first over the macula sacculi around the 4th day of incubation, and a day later over the macula utriculi. It was determined that each otoconium formed as a result of the segmentation of the immature otolithic membrane, and that the calcium responsible for otoconium calcification was incorporated into the organic matrix of each otoconium in the form of small electron-dense granules (20-150 nm in. diameter). The presence of calcium in these granules was confirmed by histochemical staining with osmic-potassium pyroantimonate, by EDTA chelation, and by X-ray micronanalysis under the electron microscope.

  10. Monocular sleep in male domestic chicks.

    PubMed

    Mascetti, Gian Gastone; Bobbo, Daniela; Rugger, Marina; Vallortigara, Giorgio

    2004-08-31

    Behavioural sleep during the first 2 weeks after hatching was studied in male chicks reared with an imprinting object (I-chicks) and in social isolation (NI-chicks). Time spent in sleeping with both eyes closed (binocular sleep) decreased gradually with age in both I-chicks and in NI-chicks whilst the number of episodes of binocular sleep decreased with age in NI-chicks but not in I-chicks. The pattern of monocular sleep (only one eye closed) of both I-chicks and NI-chicks showed no significant bias towards predominant left- or right-eye closure during the first week. During the second week, I-chicks showed a tendency towards more pronounced left-eye closure with a peak on day 10, whilst NI-chicks showed a tendency for more pronounced right-eye closure with peaks on days 9 and 11. In a different group of chicks, changing the colour of the imprinting object on day 8 produced a shift towards right-eye closure. In contrast, the removal of the imprinting object on day 8 did not cause any change in the pattern of monocular sleep. Differences with respect to sleeping patterns previously observed in females chicks are discussed.

  11. Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos.

    PubMed

    Neves, Hélia; Dupin, Elisabeth; Parreira, Leonor; Le Douarin, Nicole M

    2012-01-15

    Epithelial-mesenchymal interactions are crucial for the development of the endoderm of the pharyngeal pouches into the epithelia of thymus and parathyroid glands. Here we investigated the dynamics of epithelial-mesenchymal interactions that take place at the earliest stages of thymic and parathyroid organogenesis using the quail-chick model together with a co-culture system capable of reproducing these early events in vitro. The presumptive territories of thymus and parathyroid epithelia were identified in three-dimensionally preserved pharyngeal endoderm of embryonic day 4.5 chick embryos on the basis of the expression of Foxn1 and Gcm2, respectively: the thymic rudiment is located in the dorsal domain of the third and fourth pouches, while the parathyroid rudiment occupies a more medial/anterior pouch domain. Using in vitro quail-chick tissue associations combined with in ovo transplantations, we show that the somatopleural but not the limb bud mesenchyme, can mimic the role of neural crest-derived pharyngeal mesenchyme to sustain development of these glands up to terminal differentiation. Furthermore, mesenchymal-derived Bmp4 appears to be essential to promote early stages of endoderm development during a short window of time, irrespective of the mesenchymal source. In vivo studies using the quail-chick system and implantation of growth factor soaked-beads further showed that expression of Bmp4 by the mesenchyme is necessary during a 24 h-period of time. After this period however, Bmp4 is no longer required and another signalling factor produced by the mesenchyme, Fgf10, influences later differentiation of the pouch endoderm. These results show that morphological development and cell differentiation of thymus and parathyroid epithelia require a succession of signals emanating from the associated mesenchyme, among which Bmp4 plays a pivotal role for triggering thymic epithelium specification.

  12. Limb Loss

    MedlinePlus

    ... limb. Learning how to use it takes time. Physical therapy can help you adapt. Recovery from the loss of a limb can be hard. Sadness, anger, and frustration are common. If you are having a tough time, talk to your doctor. Treatment with medicine or counseling can help.

  13. Prenatal imaging of distal limb abnormalities using OCT in mice

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Syed, Saba H.; Dickinson, Mary E.; Overbeek, Paul; Larin, Kirill V.

    2012-01-01

    Congenital abnormalities of the limbs are common birth defects. These include missing or extra fingers or toes, abnormal limb length, and abnormalities in patterning of bones, cartilage or muscles. Optical Coherence Tomography (OCT) is a 3-D imaging modality, which can produce high-resolution (~8 μm) images of developing embryos with an imaging depth of a few millimeters. Here we demonstrate the capability of OCT to perform 3D imaging of limb development in normal embryos and a mouse model with congenital abnormalities. Our results suggest that OCT is a promising tool to analyze embryonic limb development in mammalian models of congenital defects.

  14. Tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras.

    PubMed

    Karagenç, Levent; Sandikci, Mustafa

    2010-01-01

    The objective of the current study was to determine the tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. Quail-chick chimeras were constructed by transferring dissociated cells from the area opaca of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in embryonic as well as extra-embryonic tissues of the recipient embryo were examined using the QCPN monoclonal antibody after 6 days of incubation in serial sections taken at 100-mum intervals. Data gathered in the present study demonstrated that, when introduced into the subgerminal cavity of a recipient embryo, cells of the area opaca are able to populate not only extra-embryonic structures such as the amnion and the yolk sac, but also various embryonic tissues derived from the ectoderm and less frequently the mesoderm. Ectodermal chimerism was confined mainly to the head region and was observed in tissues derived from the neural ectoderm and the surface ectoderm, including the optic cup, diencephalon and lens. Although the possibility of random incorporation of transplanted cells into these embryonic structures cannot be excluded, these results would suggest that area opaca, a peripheral ring of cells in the avian embryo destined to form the extra-embryonic ectoderm and endoderm of the yolk sac, might harbor cells that have the potential to give rise to various cell types in the recipient chick embryo, including those derived from the surface ectoderm and neural ectoderm.

  15. Activation of mammalian target of rapamycin signaling in skeletal muscle of neonatal chicks: effects of dietary leucine and age.

    PubMed

    Deng, Huiling; Zheng, Aijuan; Liu, Guohua; Chang, Wenhuan; Zhang, Shu; Cai, Huiyi

    2014-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is necessary for cellular protein synthesis regulation. Leucine was reported to stimulate muscle protein synthesis in mammalian embryos and neonates, but in higher animals (chickens) the effect of dietary leucine on mTOR signaling is unknown. Thus, we investigated the effects of dietary leucine and age on mRNA expression and phosphorylation of mTOR as well as its downstream targets, ribosomal protein S6 kinase (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in chick pectoral muscles. One hundred eighty newly hatched male chicks were randomly assigned to 1 of 3 dietary leucine treatment groups (1.43, 1.73, and 2.03% leucine) for 14 d, respectively. Each treatment group consisted of 6 cages with 10 chicks each. On d 3, 7, and 14, plasma insulin and leucine were measured and target gene expression and phosphorylation was assessed. Dietary leucine influenced plasma leucine but not insulin, and plasma leucine and insulin declined with chick age. The mTOR, S6K1, and 4E-BP1 mRNA expression and phosphorylation within chick pectoral muscles were upregulated with increased dietary leucine but downregulated with increased chick age. Thus, high dietary leucine activates target of rapamycin signaling pathways in skeletal muscle of neonatal chicks to stimulate muscle protein synthesis, and this pathway is attenuated with aging.

  16. Immunization of broiler chicks by in ovo injection of infective stages of Eimeria.

    PubMed

    Weber, F H; Genteman, K C; LeMay, M A; Lewis, D O; Evans, N A

    2004-03-01

    Immunization of chickens by in ovo injection of infective stages of 5 species of Eimeria was investigated. Fertile Hubbard x Petersen broiler chicken eggs were injected through the air cell on d 18 of incubation with oocysts of E. acervulina, E. maxima, E. mitis, E. praecox, or E. brunetti. Injected doses of all species ranged from 1 x 10(2) to 1 x 10(6) sporulated oocysts per egg. Chicks receiving oocysts in ovo shed oocysts posthatch. After 2 wk in wire-floored cages, birds were given a challenge infection with the homologous Eimeria species. Chicks immunized by in ovo injection of oocysts had significantly reduced lesion scores, improved weight gain, or reduced oocyst output compared with their nonimmunized counterparts. In additional studies, eggs were injected with 1 x 10(5) sporozoites of E. tenella, E. maxima, or E. acervulina per egg. Sporozoites of E. acervulina were not infective for chick embryos when administered in phosphate-buffered saline, but if sporozoites were suspended in tissue culture medium when injected in ovo, hatched chicks shed oocysts with peak output occurring 3 to 4 d posthatch. Sporozoites of E. maxima and E. tenella were infective for 18-d-old embryos regardless of the vehicle. The results demonstrate that immunization of broiler chickens against several species of coccidia by in ovo injection of oocysts is feasible. The infectivity of sporozoites for 18-d-old chick embryos varied depending on the species of Eimeria and the vehicle in which the sporozoites were suspended prior to injection.

  17. The avian embryo responding to microgravity of space flight

    NASA Technical Reports Server (NTRS)

    Hullinger, Ronald L.

    1993-01-01

    Of all the many potential and real microenvironmental influences, only gravity would appear to have remained relatively constant and ubiquitous for developing organisms. Histo- and organogenesis as well as differential growth of the embryo and fetus may have evolved with a constant environmental factor of gravity. Chick embryos of 2-day and 9-day stages of incubation were flown in an incubator on the Space Shuttle during a 9-day mission. Significant differences in embryo response to this microgravity environment were observed. This paper offers an analysis and suggests mechanisms which may contribute to these results.

  18. The endocrine interface of environmental and egg factors affecting chick quality.

    PubMed

    Decuypere, E; Bruggeman, V

    2007-05-01

    Day-old chicks are the endproduct of the hatchery industry and form important starting material for the broiler farms. The major objective is to obtain a high hatchability of marketable chicks and a low spread of hatch. For the farmers, these chicks have to perform well, which is translated in high viability, high growth rate, high breast meat yield, and low feed conversion. A good-quality 1-d-old chick is hence a crucial hinge between the hatchery and the broiler farm. Moreover, maximal hatchability is not always synonymous with maximal posthatch viability and growth potential of the chick. Quantitative and qualitative scoring of chick quality is assessed. We will briefly discuss some recently developed scoring systems, which will convert differences in qualitative parameters into a quantitative score. Preincubation factors such as egg storage duration and age of broiler breeders, as well as incubation conditions, affect day-old chick quality and subsequent broiler performance. Heat production and metabolism, hormonal balances of thyroid hormones and corticosterone, and gas exchange (O(2), CO(2)) are of fundamental importance for embryonic development and survival during incubation. Results from our studies indicated that embryos with higher pCO(2) levels in the air cell and higher triiodothyronine-thyroxine ratios at internal pipping or in the newly hatched chicks had higher hatchability, chick quality, and posthatch chick growth until 7 d of age. Incubation factors such as temperature, turning conditions, or gaseous environment also affect development, change concentrations of hormones related to metabolism and growth of the embryo, and in this way affect 1-d-old chick quality. Moreover, the spread of the hatch process is affected by incubation conditions as well as by the aforementioned preincubation factors. Depending on the spread of the hatching curve together with the place in the sequence of hatching (early or late) and in interaction with quality of the

  19. Zinc bioavailability in the chick

    SciTech Connect

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic /sup 65/Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%.

  20. Immunolocalization of myosin Va in the developing nervous system of embryonic chicks.

    PubMed

    Azevedo, Alexandre; Lunardi, Laurelúcia O; Larson, Roy E

    2004-08-01

    Myosins are molecular motors associated with the actin cytoskeleton that participate in the mechanisms of cellular motility. During the development of the nervous system, migration of nerve cells to specific sites, extension of growth cones, and axonal transport are dramatic manifestations of cellular motility. We demonstrate, via immunoblots, the expression of myosin Va during early stages of embryonic development in chicks, extending from the blastocyst period to the beginning of the fetal period. The expression of myosin Va in specific regions and cellular structures of the nervous system during these early stages was determined by immunocytochemistry using a polyclonal antibody. Whole mounts of chick embryos at 24-30-h stages showed intense immunoreactivity of the neural tube in formation along its full extent. Cross-sections at these stages of development showed strong labeling in neuroepithelial cells at the basal and apical regions of the neural tube wall. Embryos at more advanced periods of development (48 h and 72 h) showed distinctive immunolabeling of neuroepithelial cells, neuroblasts and their cytoplasmic extensions in the mantle layer of the stratified neural tube wall, and neuroblasts and their cytoplasmic extensions in the internal wall of the optic cup, as well as a striking labeling of cells in the apparent nuclei of cranial nerves and budding fibers. These immunolocalization studies indicate temporal and site-specific expression of myosin Va during chick embryo development, suggesting that myosin Va expression is related to recruitment for specific cellular tasks.

  1. The formation of premuscle masses during chick wing bud development.

    PubMed

    Schramm, C; Solursh, M

    1990-01-01

    The skeletal musculature of chick limb buds is derived from somitic cells that migrate into the somatopleure of the future limb regions. These cells become organized into the earliest muscle primordia, the dorsal and ventral premuscle masses, prior to myogenic differentiation. Therefore, skeletal-muscle specific markers cannot be used to observe myogenic cells during the process of premuscle mass formation. In this study, an alternative marking method was used to determine the specific stages during which this process occurs. Quail somite strips were fluorescently labeled and implanted into chick hosts. Paraffin sections of the resulting chimeric wing buds were stained with the monoclonal antibody QH1 in order to identify graft-derived endothelium. Non-endothelial graft-derived cells present in the wing mesenchyme were assumed to be myogenic. At Hamburger and Hamilton stage 20, myogenic cells were distributed throughout the central region of the limb, including the future dorsal and ventral premuscle mass regions and the prechondrogenic core region. By stage 21, the myogenic cells were present at greater density in dorsal and ventral regions than in the core. By stage 23, nearly all myogenic cells were located in the dorsal and ventral premuscle masses. Therefore, the two premuscle masses become established by stage 21 and premuscle mass formation is not complete until stage 23 or later. Premuscle mass formation occurs concurrently with early chondrogenic events, as observed with the marker peanut agglutinin. To facilitate the investigation of possible underlying mechanisms of premuscle mass formation, the micromass culture system was evaluated, to determine whether or not it can serve as an accurate in vitro model system. The initially randomly distributed myogenic cells were observed to segregate from prechondrogenic regions prior to myogenic differentiation. This is similar to myogenic patterning in vivo.

  2. Manipulating claudin expression in avian embryos.

    PubMed

    Collins, Michelle M; Ryan, Aimee K

    2011-01-01

    Since the discovery of Claudin-1 and -2 by Tsukita and colleagues in the late 1990s [Furuse et al. J Cell Biol 141:1539-50,1998], claudin family members have been found to have critical roles in maintaining the integrity of epithelial and endothelial tight junctions [Furuse and Moriwaki Ann N Y Acad Sci 1165:58-61, 2009; Morita et al. Proc Natl Acad Sci USA 96:511-6, 1999; Tsukita and Furuse Ann N Y Acad Sci 915:129-35, 2000; Turksen and Troy J Cell Sci 117:2435-47, 2004]. The properties of distinct claudin family members in tight junction permeability and specificity have been extensively studied in vitro using cell culture models. In vivo, claudin family members are dynamically regulated during embryogenesis and alterations in their expression patterns can have detrimental effects on the formation and physiological function of the tissues in which they are expressed. The chick embryo provides an excellent system to dissect the roles of specific family members in vivo and to explore the effects of modulating claudin expression during the epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions that are associated with tissue morphogenesis and differentiation. We are using the chick embryo to understand the roles of the claudin family of tight junction proteins during gastrulation and left-right patterning during embryogenesis. Here, we describe methodologies for manipulating claudin gene expression in specific target tissues during chick embryogenesis.

  3. The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration.

    PubMed

    Kumar, Anoop; Delgado, Jean-Paul; Gates, Phillip B; Neville, Graham; Forge, Andrew; Brockes, Jeremy P

    2011-08-16

    The removal of the neural tube in salamander embryos allows the development of nerve-free aneurogenic limbs. Limb regeneration is normally nerve-dependent, but the aneurogenic limb regenerates without nerves and becomes nerve-dependent after innervation. The molecular basis for these tissue interactions is unclear. Anterior Gradient (AG) protein, previously shown to rescue regeneration of denervated limbs and to act as a growth factor for cultured limb blastemal cells, is expressed throughout the larval limb epidermis and is down-regulated by innervation. In an aneurogenic limb, the level of AG protein remains high in the epidermis throughout development and regeneration, but decreases after innervation following transplantation to a normal host. Aneurogenic epidermis also shows a fivefold difference in secretory gland cells, which express AG protein. The persistently high expression of AG in the epithelial cells of an aneurogenic limb ensures that regeneration is independent of the nerve. These findings provide an explanation for this classical problem, and identify regulation of the epidermal niche by innervation as a distinctive developmental mechanism that initiates the nerve dependence of limb regeneration. The absence of this regulation during anuran limb development might suggest that it evolved in relation to limb regeneration.

  4. Experimental toxoplasmosis in broiler chicks.

    PubMed

    Kaneto, C N; Costa, A J; Paulillo, A C; Moraes, F R; Murakami, T O; Meireles, M V

    1997-05-01

    To evaluate chicken toxoplasmosis both as an economic and a public health subject, 84 broiler chicks of a commercial strain, 30 days old, were distributed into seven groups of 12 birds (three replications of four chicks) experimentally infected with three developing T. gondii stages of the P strain as follows: tachyzoites, intravenous (two groups: 5.0 x 10(5) and 5.0 x 10(6)), cysts, per os (two groups: 1.0 x 10(2) and 1.0 x 10(3)) and oocysts, per os (three groups: 5.0 x 10(2), 5.0 x 10(3) and 5.0 x 10(4)). Twelve chicks received only a placebo (control group). During the next 30 days the following parameters were estimated: productivity (weight gain and feed conversion), clinical signs, including rectal temperature and parasitemia (bioassay). No clinical signs suggesting toxoplasmosis were seen and no statistical differences on productivity standards were found in comparison between inoculated and control chicks. However, fowls inoculated with tachyzoites and oocysts occasionally showed hyperthermia. Some haematological changes were detected in fowls inoculated with T. gondii. Anatomo-histopathological changes were not observed. From 14 parasitemias detected, 35.7% appeared on the 5th day after inoculation and 57.1% of them resulted from oocysts inoculation. After 30-35 days all birds were slaughtered: fragments from 12 organs or tissues from each of them were subjected to artificial peptic digestion and after that injected into T. gondii antibody-free mice (IIFR). T. gondii was detected in brain (12), pancreas (five), spleen (five), retina (five), kidney (two), heart (four), proventriculus (three), liver (two), intestine (two), lung (one), and skeletal muscle (one). Similar to observations with parasitemia, from 42 T. gondii isolations, 59.5% came from chicks which had received oocysts. It can thus be inferred that the developing form, expelled by cats, is the most important for T. gondii chicken infection and that brain is the most infected organ in birds

  5. RETINOID SIGNALING IS INVOLVED IN GOVERNING THE WAITING PERIOD FOR AXONS IN CHICK HINDLIMB

    PubMed Central

    Wang, Guoying; Scott, Sheryl A.

    2008-01-01

    During embryonic development in chick, axons pause in a plexus region for approximately one day prior to invading the limb. We have previously shown that this “waiting period” is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumboscaral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb. PMID:18602384

  6. RNA Interference in Chicken Embryos

    NASA Astrophysics Data System (ADS)

    van Hateren, Nick J.; Jones, Rachel S.; Wilson, Stuart A.

    The chicken has played an important role in biological discoveries since the 17th century (Stern, 2005). Many investigations into vertebrate development have utilized the chicken due to the accessibility of the chick embryo and its ease of manipulation (Brown et al., 2003). However, the lack of genetic resources has often handicapped these studies and so the chick is frequently overlooked as a model organism for the analysis of vertebrate gene function in favor of mice or zebrafish. In the past six years this situation has altered dramatically with the generation of over half a million expressed sequence tags and >20,000 fully sequenced chicken cDNAs (Boardman et al. 2002; Caldwell et al., 2005; Hubbard et al., 2005) together with a 6X coverage genome sequence (Hillier et al., 2004). These resources have created a comprehensive catalogue of chicken genes with readily accessible cDNA and EST resources available via ARK-GENOMICS (www.ark-genomics.org) for the functional analysis of vertebrate gene function.

  7. Autonomy of tendon development in the embryonic chick wing.

    PubMed

    Kieny, M; Chevallier, A

    1979-01-01

    The aim of this study performed in the embryonic chick wing is to test the ability of the tendons to form and develop in the absence of the muscle bellies. The experiments were performed on 2-day chick embryos by destroying a portion of the somitic mesoderm by local X-irradiation. The irradiated part included the wing somite level 15-20 and extended three somites (or presumptive somites) in front and two to six presumptive somites in the rear of the wing somite levels. The wings of the operated side were examined histologically 3-8 days after the X-irradiation. The radio-destruction of the somitic mesoderm totally inhibited or severely impaired the development of the forearm muscles. But, despite the absence of the flexor and extensor muscles the differentiation of the distal manus tendons could be observed. This differentiation occurred at the same time and in the same positions as in controls. However, these tendons were transient structures. They disappeared within three days after their individuation. Two mechanisms that progressed in proximo-distal direction were involved in their resorption: cellular dislocation and cell death. We conclude that tendons start to develop autonomously from the muscle bulks, but for their maintenance and further development they require connexion to a muscle belly.

  8. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis.

    PubMed

    Suda, Natsuno; Itoh, Takehiko; Nakato, Ryuichiro; Shirakawa, Daisuke; Bando, Masashige; Katou, Yuki; Kataoka, Kohsuke; Shirahige, Katsuhiko; Tickle, Cheryll; Tanaka, Mikiko

    2014-07-01

    Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73.

  9. Vanadium reduces mortality in phosphorus deficient chicks

    SciTech Connect

    Hill, C.H. )

    1991-03-15

    Since the vanadate anion is similar in structure to the phosphate ion, and since vanadate has been shown to interfere with phosphate metabolism both in vitro and in vivo, experiments were conducted to determine the effect of dietary vanadate (V) on chicks fed phosphorus (P) deficient diets. In these studies, broiler chicks of both sexes were fed the experimental diets from the day of hatching for 19 days. The diets were based on soybean meal and corn, supplemented with methionine, manganese, and vitamins to supply the chick's requirements. Calcium (Ca) and P levels were manipulated by use of feed grade dicalcium phosphate and limestone. V was added as ammonium metavanadate. Serum Ca and P were determined on representative chicks in each group. Increasing Ca levels increased serum Ca and decreased serum P. V increased serum P levels in the chicks receiving 0.2% P but not in those receiving 0.1% P.

  10. Characterization of hatch-size and growth rates of captive and wild-reared brown kiwi (Apteryx mantelli) chicks.

    PubMed

    Prier, Erica A; Gartrell, Brett D; Potter, Murray A; Lopez-Villalobos, Nicolas; McLennan, John

    2013-01-01

    Avian growth rate patterns represent a trade off between a tissue's functional maturity and its capacity for growth. At the time of hatch, the brown kiwi (Apteryx mantelli) limb has a high level of maturity in order for the chick to be able to kick its way out of the shell and walk and forage independently from an early age. Growth curves of limb segments, bill length and bodyweight are presented for captive-reared, BNZ Operation Nest Egg™ chicks over a period of 3 months from the point of hatch. Some parameters were slightly larger in the females than in males at time of hatch, including the bill length. Growth in bodyweight began to slow earlier in males than in females. Regressions of limb and bill measurements over time showed linear patterns of growth instead of a sigmoidal curve as seen in other birds, probably due to the short period of observation. Bodyweight and bill length were then compared to these morphometrics in a wild population of kiwi. Captive-reared chicks were found to hatch with shorter bills and to increase in bodyweight at a faster rate than the wild birds. Rapid weight gain has been implicated in developmental limb deformities in other precocial and long-legged birds and should be avoided in captive kiwi.

  11. Tsukushi expression is dependent on Notch signaling and oscillated in the presomitic mesoderm during chick somitogenesis.

    PubMed

    Acharjee, Uzzal Kumar; Gejima, Ryu; Felemban Athary Abdulhaleem, M; Riyadh, M Asrafuzzaman; Tanaka, Hideaki; Ohta, Kunimasa

    2015-09-25

    During somitogenesis, segmentation of the body axis occurs by epithelial somites budding off from the rostral end of the unsegmented presomitic mesoderm (PSM), and its molecular regulation is achieved by a molecular oscillator and signaling molecules. Tsukushi (TSK) is a unique secreted protein and involved in diverse biological cascades in vertebrate embryos by modulating several signaling pathways at the extracellular region. However, the involvement of TSK in somitogenesis remains unknown. In this study, we investigated the detailed expression patterns of TSK at different developmental stages of a chick embryo. Chick-TSK (C-TSK) is expressed in the PSM and shows an oscillation pattern with three phases. The oscillation pattern of C-TSK in the PSM is similar to that of c-Notch1 and c-hairy1, but not to c-Delta1. Our in vitro data showed that Notch signaling is necessary for the normal expression of C-TSK and that expression of C-TSK is an intrinsic property of the anterior PSM. These data suggest that TSK plays a role in chick somitogenesis.

  12. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation

    PubMed Central

    Layer, Paul G.; Frohns, Florian

    2016-01-01

    Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system. PMID:27163610

  13. Connexin43 gap junction protein plays an essential role in morphogenesis of the embryonic chick face.

    PubMed

    McGonnell, I M; Green, C R; Tickle, C; Becker, D L

    2001-11-01

    Normal outgrowth and fusion of facial primordia during vertebrate development require interaction of diverse tissues and co-ordination of many different signalling pathways. Gap junction channels, made up of subunits consisting of connexin proteins, facilitate communication between cells and are implicated in embryonic development. Here we describe the distribution of connexin43 and connexin32 gap junction proteins in the developing chick face. To test the function of connexin43 protein, we applied antisense oligodeoxynucleotides that specifically reduced levels of connexin43 protein in cells of early chick facial primordia. This resulted in stunting of primordia outgrowth and led to facial defects. Furthermore, cell proliferation in regions of facial primordia that normally express high levels of connexin43 protein was reduced and this was associated with lower levels of Msx-1 expression. Facial defects arise when retinoic acid is applied to the face of chick embryos at later stages. This treatment also resulted in significant reduction in connexin43 protein, while connexin32 protein expression was unaffected. Taken together, these results indicate that connexin43 plays an essential role during early morphogenesis and subsequent outgrowth of the developing chick face.

  14. Growth patterns of Hawaiian Stilt chicks

    USGS Publications Warehouse

    Reed, J.M.; Gray, E.M.; Lewis, D.; Oring, L.W.; Coleman, R.; Burr, T.; Luscomb, P.

    1999-01-01

    We studied chick growth and plumage patterns in the endangered Hawaiian Stilt (Himantopus mexicanus knudseni). Body mass of captive chicks closely fit a Gompertz growth curve, revealing a growth coefficient (K) of 0.065 day-1 and point of inflection (T) of 17 days. When chicks fledged about 28 days after hatching, they weighed only 60% of adult body mass; at 42 d, birds still were only 75% of adult mass; culmen, tarsus, and wing chord at fledging also were less than adult size. This trend of continued growth to adult size after fledging is typical for most shorebirds. After hatching, captive chicks grew more rapidly than wild chicks, probably because of an unlimited food supply. We found no evidence for adverse effects of weather on the growth of wild chicks. As with other shorebirds, the tarsus started relatively long, with culmen and then wing chord growing more rapidly in later development. Tarsal and wing chord growth were sigmoidal, whereas culmen growth was linear. We describe plumage characteristics of weekly age classes of chicks to help researchers age birds in the wild.

  15. Generation of aneurogenic larvae by parabiosis of salamander embryos.

    PubMed

    Kumar, Anoop; Delgado, Jean Paul

    2015-01-01

    Limb regeneration of salamanders is nerve dependent, and the removal of the nerves in early stages of limb regeneration severely curtails the proliferation of the blastemal cells and growth of the regenerate. The removal of the neural tube from a developing salamander embryo results in an aneurogenic larva and the aneurogenic limb (ANL) develops independently without innervation. Paradoxically, the limb in an ANL is capable of regeneration in a nerve-independent manner. Here, we describe a detailed method for the generation of ANL in the spotted salamander, Ambystoma maculatum, for regeneration studies.

  16. The Sonic hedgehog gradient in the developing limb.

    PubMed

    Tickle, Cheryll; Barker, Heather

    2013-01-01

    A gradient of Sonic hedgehog (Shh) plays a major role in specifying the antero-posterior pattern of structures that develop in the distal part of the vertebrate limb, in particular, the antero-posterior pattern of the digits. Classical embryological experiments identified the polarizing region (or zone of polarizing activity, ZPA), a signaling region at the posterior margin of the early chick wing bud and, consistent with a model in which production of a diffusible morphogen specifies antero-posterior positional information, polarizing region signaling was shown to be dose dependent and long range. It is now well established that the vertebrate hedgehog gene, Sonic hedgehog (Shh), which encodes a secreted protein, is expressed in the polarizing region of the chick wing and that Shh signaling has the same characteristics as polarizing region signaling. Shh expression at the posterior of the early limb bud and the mechanism of Shh signal transduction are conserved among vertebrates including mammals. However, it is unlikely that a simple Shh gradient is responsible for digit pattern formation in mammalian limbs and there is still little understanding of how positional information specified by Shh signaling is encoded and translated into digit anatomy. Alterations in Shh signaling underlie some congenital limb abnormalities and also changes in timing and extent of Shh signaling appear to be related to the evolution of morphological diversity of vertebrate limbs.

  17. Deciphering skeletal patterning: clues from the limb.

    PubMed

    Mariani, Francesca V; Martin, Gail R

    2003-05-15

    Even young children can distinguish a Tyrannosaurus rex from a Brontosaurus by observing differences in bone size, shape, number and arrangement, that is, skeletal pattern. But despite our extensive knowledge about cartilage and bone formation per se, it is still largely a mystery how skeletal pattern is established. Much of what we do know has been learned from studying limb development in chicken and mouse embryos. Based on the data from such studies, models for how limb skeletal pattern is established have been proposed and continue to be hotly debated.

  18. A novel, nonsurgical method for the treatment of tibiotarsal rotation in houbara bustard (Chlamydotis macqueenii) chicks.

    PubMed

    Stiévenart, Corinne

    2008-03-01

    Rotational limb deformity due to tibiotarsal rotation can affect captive-bred houbara bustard chicks (Chlamydotis macqueenii) from an early age. If not completely corrected, the affected birds can neither be released into the wild nor used in captive-breeding projects. A nonsurgical orthopedic method was developed to correct this deformity before growth is completed. The method consists of hobbling digits III and the distal part of the tarsometatarsus of each leg with a self-adhesive conforming bandage that keeps digits III parallel with enough freedom of movement to allow walking. The tibiotarsal bones are left free. This treatment was successful when it was implemented for 20 days on 10-day-old houbara bustard chicks presenting with 60 degrees to 90 degrees unilateral tibiotarsal rotation. Implementing the same corrective method at an older age was not successful. This cheap, accessible, and noninvasive technique may be applicable to other avian species.

  19. Effect of gestational ethanol exposure on parvalbumin and calretinin expressing hippocampal neurons in a chick model of fetal alcohol syndrome.

    PubMed

    Marshall, Audrey G; McCarthy, Molly M; Brishnehan, Kirk M; Rao, Venugopal; Batia, Lyn M; Gupta, Madhul; Das, Srijit; Mitra, Nilesh K; Chaudhuri, Joydeep D

    2009-03-01

    Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by physical deformities and learning and memory deficits. The chick hippocampus, whose functions are controlled by interneurons expressing calcium-binding proteins parvalbumin (PV) and calretinin (CR), is involved in learning and memory mechanisms. Effects on growth and development and hippocampal morphology were studied in chick embryos exposed to 5% and 10% ethanol volume/volume (vol/vol) for 2 or 8 days of gestation. There was a significant dose-dependent reduction (P<.05) in body weight and mean number per section of PV and CR expressing hippocampal neurons in ethanol-exposed chicks, without alterations in neuronal nuclear size or hippocampal volume, compared appropriate controls. Moreover, when chicks exposed to 5% ethanol for 2 and 8 days of gestation were compared, no significant differences were found in body parameters or neuronal counts. Similarly, exposure to 10% ethanol did not induce any significant changes in chicks exposed for 2 or 8 gestational days. Thus, these results suggest that gestational ethanol exposure induces a reduction in the mean number per section of PV and CR expressing hippocampal neurons, and could be a possible mechanism responsible for learning and memory disorders in FAS.

  20. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis.

    PubMed

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-03-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7(+) somite development and directly increased HNK-1(+) neural crest cell (NCC) migration and TuJ-1(+) neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.

  1. Interactions between endothelin-1 and atrial natriuretic peptide influence cultured chick cardiac myocyte contractility.

    PubMed

    Bézie, Y; Mesnard, L; Longrois, D; Samson, F; Perret, C; Mercadier, J J; Laurent, S

    1996-09-12

    We have previously shown that rat atrial natriuretic peptide (ANP) reduces the contractility of cultured, spontaneously beating chick embryo ventricular cells, an effect opposite to that of endothelin-1. Endothelin-1 has been described as a secretagogue for natriuretic peptides in vitro and in vivo. Natriuretic peptides can inhibit endothelin-1 secretion from cultured endothelial cells, suggesting a negative feedback mechanism between endothelial cells and cardiomyocytes. The aim of this study was to determine whether ANP attenuated the endothelin-1-induced increase in myocyte contractility. Using a video-microscopy system we studied the contractility of isolated cultured chick ventricular myocytes in response to endothelin-1, chicken natriuretic peptide (ChNP), and both. We also used Northern blot analysis to study the time course of ChNP expression in response to endothelin-1. Endothelin-1 (10(-8) M) increased chick cardiomyocyte contractility by 20-25% between 5 and 15 min (P < 0.05). Although ChNP (3 x 10(-7) M) did not significantly change the amplitude of contraction in basal conditions, it prevented the endothelin-1-induced increase in contractility (P < 0.05) when perfused prior to endothelin-1, and reversed it when perfused 5 min after endothelin-1 exposure (P < 0.05). Endothelin-1 significantly increased the accumulation of ChNP mRNA in chick ventricular myocytes as early as the 30 min after exposure (P < 0.05), with a maximal effect after 2 h of stimulation (P < 0.01); no effect was observed after 4 h. These data support an interaction between endothelin-1 and natriuretic peptides as autocrine/paracrine factors regulating the contractile function of chick cardiac myocytes, as well as their antagonistic effects on cardiac cell contractility. The early and transient expression of ChNP mRNA in response to endothelin-1 may be involved in this interaction.

  2. A new oxidative stress model, 2,2-azobis(2-amidinopropane) dihydrochloride induces cardiovascular damages in chicken embryo.

    PubMed

    He, Rong-Rong; Li, Yan; Li, Xiao-Di; Yi, Ruo-Nan; Wang, Xiao-Yu; Tsoi, Bun; Lee, Kenneth Ka Ho; Abe, Keiichi; Yang, Xuesong; Kurihara, Hiroshi

    2013-01-01

    It is now well established that the developing embryo is very sensitive to oxidative stress, which is a contributing factor to pregnancy-related disorders. However, little is known about the effects of reactive oxygen species (ROS) on the embryonic cardiovascular system due to a lack of appropriate ROS control method in the placenta. In this study, a small molecule called 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH), a free radicals generator, was used to study the effects of oxidative stress on the cardiovascular system during chick embryo development. When nine-day-old (stage HH 35) chick embryos were treated with different concentrations of AAPH inside the air chamber, it was established that the LD50 value for AAPH was 10 µmol/egg. At this concentration, AAPH was found to significantly reduce the density of blood vessel plexus that was developed in the chorioallantoic membrane (CAM) of HH 35 chick embryos. Impacts of AAPH on younger embryos were also examined and discovered that it inhibited the development of vascular plexus on yolk sac in HH 18 embryos. AAPH also dramatically repressed the development of blood islands in HH 3+ embryos. These results implied that AAPH-induced oxidative stress could impair the whole developmental processes associated with vasculogenesis and angiogenesis. Furthermore, we observed heart enlargement in the HH 40 embryo following AAPH treatment, where the left ventricle and interventricular septum were found to be thickened in a dose-dependent manner due to myocardiac cell hypertrophy. In conclusion, oxidative stress, induced by AAPH, could lead to damage of the cardiovascular system in the developing chick embryo. The current study also provided a new developmental model, as an alternative for animal and cell models, for testing small molecules and drugs that have anti-oxidative activities.

  3. Initiation of proximal-distal patterning in the vertebrate limb by signals and growth.

    PubMed

    Cooper, Kimberly L; Hu, Jimmy Kuang-Hsien; ten Berge, Derk; Fernandez-Teran, Marian; Ros, Maria A; Tabin, Clifford J

    2011-05-27

    Two broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence. In addition, the system we have developed, combining in vitro and in vivo culture, opens the door to a new level of analysis of patterning mechanisms in the limb.

  4. Avian maternal response to chick distress

    PubMed Central

    Edgar, J. L.; Lowe, J. C.; Paul, E. S.; Nicol, C. J.

    2011-01-01

    The extent to which an animal is affected by the pain or distress of a conspecific will depend on its capacity for empathy. Empathy most probably evolved to facilitate parental care, so the current study assessed whether birds responded to an aversive stimulus directed at their chicks. Domestic hens were exposed to two replicates of the following conditions in a counterbalanced order: control (C; hen and chicks undisturbed), air puff to chicks (APC; air puff directed at chicks at 30 s intervals), air puff to hen (APH; air puff directed at hen at 30 s intervals) and control with noise (CN; noise of air puff at 30 s intervals). During each test, the hens' behaviour and physiology were measured throughout a 10 min pre-treatment and a 10 min treatment period. Hens responded to APH and APC treatments with increased alertness, decreased preening behaviour and a reduction in eye temperature. No such changes occurred during any control period. Increased heart rate and maternal vocalization occurred exclusively during the APC treatment, even though chicks produced few distress vocalizations. The pronounced and specific reaction observed indicates that adult female birds possess at least one of the essential underpinning attributes of empathy. PMID:21389025

  5. Enhancement of vertebrate cardiogenesis by a lectin from perivitelline fluid of horseshoe crab embryo.

    PubMed

    Ghaskadbi, S; Patwardhan, V; Chakraborthy, M; Agrawal, S; Verma, M K; Chatterjee, A; Lenka, N; Parab, P B

    2008-10-01

    Cardiac myocytes are the first cells to differentiate during the development of a vertebrate embryo. A wide variety of molecules take part in various steps in this process. While exploring biologically active molecules from marine sources, we found that a constituent of perivitelline fluid from embryos of the Indian horseshoe crab can enhance growth and differentiation of chick embryonic heart. We have purified the factor and identified the cardiac promoting molecule to be a novel lectin. We show that this molecule influences cardiac development by increasing the number of cells constituting the heart and by modulating the expression of several cardiac development regulatory genes in chick embryos. Using mouse embryonic stem cells we show that the cardiac myocyte-enhancing capacity of this molecule extends to mammals and its effects can be blocked using methylated sugars. This molecule may prove to be an important tool in the study of cardiomyocyte differentiation.

  6. Horizontal transmission of Campylobacter jejuni amongst broiler chicks: experimental studies.

    PubMed Central

    Shanker, S.; Lee, A.; Sorrell, T. C.

    1990-01-01

    Horizontal transmission of Campylobacter jejuni was investigated in campylobacter-free broiler chicks. One hundred and twenty chicks housed individually, were provided with water containing 10(2)-10(9) c.f.u./ml C. jejuni. Colonization was rapid [47 of 73 (64%) positive cloacal cultures within 3 days and 65 of 73 (89%) within 7 days], dependent on C. jejuni strain and inoculum size but independent of chick age. Groups of 5-24 chicks in isolators were exposed to C. jejuni-contaminated water or colonized seeder chicks. Transmission occurred in 2-7 days concurrent with a gradual increase of C. jejuni in litter, water and feed. Environmental samples were culture-negative within 3 days following removal of colonized chicks. Treatment of 1-day-old chicks with adult caecal microbiota did not affect colonization. Treated and control chicks were all C. jejuni-positive within 3 days of seeder challenge. PMID:2307180

  7. Changes in yolk sac membrane absorptive area and fat digestion during chick embryonic development.

    PubMed

    Yadgary, L; Kedar, O; Adepeju, O; Uni, Z

    2013-06-01

    The capacity of yolk sac (YS) utilization by the chick embryo may be affected by structural changes in the YS membrane (YSM) and by the mechanisms within its cells for digestion, absorption, and transfer of nutrients. Two experiments were conducted to examine structural and digestive changes in the YS of the broiler chick embryo; weights of embryo, YS, and YSM, as well as the total area of the YSM and the absorptive area of the YSM, were measured between embryonic day (E) 5 and E21. In addition, fat content, lipase activity, and bile acid concentration in the YSM and YS contents (YSC) were measured between E11 and E21. Results showed that YSM weight increased from 0.19 g on E5 to 6.46 g on E15, and decreased by 3.74 g between E17 and E21. The absorptive YSM area increased from 536 mm² on E5 (51% of total YSM area) to 6,370 mm² (86% of total area) on E17, and decreased to 4,439 mm(2) on E21 (85% of total area). The smaller YSM area between E17 and E21 did not decrease the rate of YS fat utilization, which could suggest that YSM mechanisms for fat absorption, digestion, and secretion increased during that period. Total YSM lipase activity relative to fat content (units per g of YSM fat) increased from approximately 1,000 units on E15 to 1,500 units on E21. The detection of lipase in the YSM lends support to the hypothesis that YS lipids are hydrolyzed in the lipolysosomes of the YSM. The current study also confirmed for the first time that bile acids are present in the YS, with levels that ranged from 0.61 to 1.06 µmol/g in the YSM, and may suggest that bile is synthesized in the YSM of the chick embryo. Results of the current study contribute to our understanding of the developmental changes that affect YS functionality and could give insight into the coordination between the embryo's demands and YSM morphological, absorptive, digestive, and secretive changes.

  8. Mortality of Mississippi Sandhill Crane chicks

    USGS Publications Warehouse

    Olsen, G.H.

    2004-01-01

    Mississippi sandhill cranes (Grus canadensis pulla) are a highly endangered species that live in the wild in 1 county in Mississippi. As part of a large effort to restore these endangered cranes, we are conducting a project to look at the causes of mortality in crane chicks on the Mississippi Sandhill Crane National Wildlife Refuge in Gautier, MS, USA. This includes surgically implanting miniature radio transmitters in crane chicks to gather data on mortality. This article describes some of the practical difficulties in conducting this type of project in a savannah and swamp location along the Gulf Coast of the USA.

  9. Hypoxia during embryonic development increases energy metabolism in normoxic juvenile chicks.

    PubMed

    Amaral-Silva, Lara do; Scarpellini, Carolina da S; Toro-Velasquez, Paula Andrea; Fernandes, Marcia H M R; Gargaglioni, Luciane H; Bícego, Kênia C

    2017-03-07

    Environmental changes during perinatal development can affect the postnatal life. In this sense, chicken embryos that experience low levels of O2 over a specific phase of incubation can have their tissue growth reduced and the ventilatory response to hypoxia blunted, at least until hatching. Additionally, exposure to low level of O2 after birth reduces the thermogenesis as well. In the present study, we tested the hypothesis that hypoxia over the third week of incubation affects the thermoregulation of juvenile chicks at an age when thermogenesis is already expected to be well-developed. To this end, we measured body temperature (Tb) and oxygen consumption (V̇02) under acute hypoxia or different ambient temperatures (Ta) of 1 and 10day-old chicks that have been exposed to 21% O2 for entire incubation (Nx) or to 15% O2 in the last week of incubation (Hx). We also assessed the thermal preference under normoxia or acute hypoxia of the older chicks from both incubation groups in a thermocline. Hypoxia over incubation reduced growth but did not affect the cold-induced thermogenesis in hatchlings. Regarding the juvenile Hx, present data indicate a catch up growth with higher resting V̇02, a thermal preference for warmer Tas and a possible higher thermal conductance. In conclusion, our results show that hypoxia over the third week of incubation can affect the thermoregulation at least until 10days after hatch in chickens.

  10. Influence of air composition during egg storage on egg characteristics, embryonic development, hatchability, and chick quality.

    PubMed

    Reijrink, I A M; van Duijvendijk, L A G; Meijerhof, R; Kemp, B; van den Brand, H

    2010-09-01

    Egg storage beyond 7 d is associated with an increase in incubation duration and a decrease in hatchability and chick quality. Negative effects of prolonged egg storage may be caused by changes in the embryo, by changes in egg characteristics, or by both. An adjustment in storage air composition may reduce negative effects of prolonged egg storage because it may prevent changes in the embryo and in egg characteristics. An experiment was conducted to investigate the effects of high CO(2) concentrations or a low O(2) concentration in the storage air on egg characteristics, embryonic development, hatchability, and chick quality. Eggs were stored for 14 d in 4 different storage air compositions: normal air (control; 20.9% O(2), 0.05% CO(2), 78.1% N(2)), 0.74% CO(2) treatment (20.8% O(2), 0.74% CO(2), 77.5% N(2)), 1.5% CO(2) treatment (20.6% O(2), 1.5% CO(2), 77.0% N(2))(,) or 3.0% O(2) treatment (3.0% O(2), 0.04% CO(2), 96.0% N(2)). The storage temperature was 16 degrees C and the RH was 75%. Results showed that the change in albumen pH and albumen height between oviposition and the end of storage was less in the 0.74 and 1.5% CO(2) treatments than in the control and 3.0% O(2) treatments (P < 0.001 and P < 0.001, respectively). None of the treatments affected the stage of embryonic development on d 4 of incubation, hatchability, or chick quality on the day of hatch in terms of BW, chick length, and yolk-free body mass. Although high CO(2) concentrations in the storage air had a positive effect on albumen height and albumen pH, it is concluded that the storage air compositions, studied in the current study, do not affect embryonic development, hatchability, or chick quality when eggs are stored for 14 d at a storage temperature of 16 degrees C.

  11. Embryotoxic effects of chlorobutanol in cultured mouse embryos.

    PubMed

    Smoak, I W

    1993-03-01

    Chlorobutanol (CB) is a commonly used preservative which is added to numerous pharmaceutical preparations, and it is the active ingredient in certain oral sedatives and topical anesthetics. Chlorobutanol has demonstrated adverse effects in adult tissues, but CB has not been previously investigated for its effect on the developing whole embryo. The method of whole-embryo culture was used in this study to expose mouse embryos during two stages of organogenesis to CB at final concentrations of 0 (control), 10, 25, 50, 100, and 200 micrograms/ml. Embryos were evaluated for heart rate (HR), malformations, and somite number, and embryos and visceral yolk sacs (VYSs) were assayed for total protein content as a measure of overall growth. Neurulating (3-6 somite) embryos were malformed and growth retarded by exposure to CB concentrations > or = 25 micrograms/ml, with decreased VYS growth at > or = 50 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Early limb-bud stage (20-25 somite) embryos were malformed at CB concentrations > or = 50 micrograms/ml and growth retarded at > or = 100 micrograms/ml, with decreased VYS growth at 200 micrograms/ml and decreased HR at > or = 100 micrograms/ml CB. Thus, CB produces dysmorphogenesis in mouse embryos in vitro, and neurulating embryos are somewhat less sensitive than early limb-bud stage embryos. The concentrations of CB that interfere with normal embryonic development are within the range of human blood levels measured following multiple doses of CB. Preparations containing CB should be used with caution during pregnancy, particularly when repeated dosing may allow accumulation of CB to potentially embryotoxic levels.

  12. Gap junctional communication during limb cartilage differentiation.

    PubMed

    Coelho, C N; Kosher, R A

    1991-03-01

    The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.

  13. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  14. Critical Limb Ischemia (CLI)

    MedlinePlus

    ... High blood pressure Family history of vascular disease Warning Signs You may have critical limb ischemia if ... blood flow to the limb. Other treatments include laser atherectomy, where small bits of plaque are vaporized ...

  15. Embryos, microscopes, and society.

    PubMed

    Maienschein, Jane

    2016-06-01

    Embryos have different meanings for different people and in different contexts. Seen under the microscope, the biological embryo starts out as one cell and then becomes a bunch of cells. Gradually these divide and differentiate to make up the embryo, which in humans becomes a fetus at eight weeks, and then eventually a baby. At least, that happens in those cases that carry through normally and successfully. Yet a popular public perception imagines the embryo as already a little person in the very earliest stages of development, as if it were predictably to become an adult. In actuality, cells can combine, pull apart, and recombine in a variety of ways and still produce embryos, whereas most embryos never develop into adults at all. Biological embryos and popular imaginations of embryos diverge. This paper looks at some of the historical reasons for and social implications of that divergence.

  16. Distinct spatiotemporal expression of ISM1 during mouse and chick development

    PubMed Central

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain–hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species. PMID:24675886

  17. [Involvement of tissue interaction between cranial neural crest cells, their pathways lateral to the midbrain hindbrain border and the buccopharyngeal membrane in Meckel's cartilage formation in avian embryos].

    PubMed

    Imai, Hajime

    2012-03-01

    Cranial neural crest cells migrate to the craniofacial primordia and differentiate into skeletal tissues of the jaw such as Meckel's cartilage. It has not been clearly demonstrated how neural crest cells are committed to differentiate into these tissues. In this study, the conditions that are required for the formation of Meckel's cartilage were investigated. In situ hybridization in chick embryos indicated that Fgf8 and Shh involved in the pattern formation of limb cartilages were expressed in the neural tube of the midbrain-hindbrain border, the buccopharyngeal membrane and the oro-proximal site of the 1st branchial arch (oro-proximal BA1). Cell-tracing with DiI confirmed that the neural crest cells derived from both the posterior midbrain and rhombomere 1 migrated to the buccopharyngeal membrane, which subsequently forms oro-proximal BA1, by passing through the mesenchyme lateral to the midbrain-hindbrain boundary. Based on the above results, we carried out two types of ectopic transplantation experiments by chick-quail chimera The graft of oro-proximal BA1, the complex of epithelium and mesenchyme, formed a Meckel's cartilage-like structure in a self-differentiation manner, whereas neither epithelium only nor mesenchyme formed any elongated cartilage. The ectopic transplant of the buccopharyngeal membrane into the mesenchyme lateral to the neural tube of the mid-hindbrain border in which neural crest cells were migrating formed a Meckel's cartilage-like structure. These results suggest that the cranial neural crest cells derived from the mid-hindbrain region are committed to the cell fate during migration, and receive further signaling to differentiate into Meckel's cartilage in their destination.

  18. Chondroitin sulphate proteoglycan and embryonic brain enlargement in the chick.

    PubMed

    Gato, A; Moro, J A; Alonso, M I; Pastor, J F; Represa, J J; Barbosa, E

    1993-07-01

    Previous studies of the early development of the neural tube have shown the existence of an intraneural fluid, which causes a positive pressure inside this primordium, and seems to play a key role in the early development of the central nervous system. In the present study we investigated the composition and synthesis of this intraneural fluid. By using a sequential method, which includes fixation with glutaraldehyde plus cetylpyridinium chloride, opening the neural cavity after critical point drying and scanning electron microscopy analysis, we found a water-soluble extracellular matrix that filled up the brain vesicles of chick embryos at the earliest stages of the neural tube. An ultrastructural study of the neural epithelium during these stages revealed the existence of a secretion process in the neural cells toward the apical side, the future neural cavity. An immunocytochemical study to assess the nature of the secreted material has shown that the intraneural matrix contains chondroitin sulphate proteoglycan, which appeared homogeneously distributed throughout the neural cavity. Our findings demonstrate that the intraneural liquid is a fluid of complex composition and includes chondroitin sulphate proteoglycan as an osmotically active molecule. This suggests a morphogenetic role for the proteoglycan during early brain enlargement. The neural ectoderm is a polarized epithelium from early developmental stages and secretes the intraneural matrix.

  19. Intramyocardial pressure measurements in the stage 18 embryonic chick heart.

    PubMed

    Chabert, Steren; Taber, Larry A

    2002-04-01

    Intramyocardial pressure (IMP) and ventricular pressure (VP) were measured in the trabeculating heart of the stage 18 chick embryo (3 days of incubation). Pressure was measured at several locations across the ventricle using a fluid-filled servo-null system. Maximum systolic and minimum diastolic IMP tended to be greater in the dorsal wall than in the ventral wall, but transmural distributions of peak active (maximum minus minimum) IMP were similar in both walls. Peak active IMP near midwall was similar to peak active VP, but peak active IMP in the subepicardial and subendocardial layers was four to five times larger. These results suggest that the passive stiffness of the dorsal wall is greater than that of the ventral wall and that during contraction the inner and outer layers of both walls generate more contractile force and/or become less permeable to flow than the middle part of the wall. Measured pressures likely correspond to regional variations in wall stress that may influence morphogenesis and function in the embryonic heart.

  20. A physiological study of chick myotubes grown in tissue culture

    PubMed Central

    Harris, J. B.; Marshall, M. W.; Wilson, P.

    1973-01-01

    1. A study has been made of some passive and active membrane properties of myotubes of different ages obtained in culture from explants of chick embryo thigh muscle. 2. After 3 days in vitro the mean values for the myotube resting membrane potential and input resistance were - 63·8 mV and 1·30 MΩ respectively. By 13 days these values had fallen to - 51·0 mV and 0·80 MΩ. 3. Current/voltage relations were measured in the presence of tetrodotoxin. The relations were linear for membrane potentials between - 120 and - 35 mV. Further depolarization usually resulted in a delayed increase in conductance which inactivated with time. 4. All myotubes tested using anodal break excitation were capable of generating action potentials. Action potentials were blocked by tetrodotoxin, saxitoxin and procaine. 5. All myotubes were sensitive to iontophoretically applied ACh. The potential change produced by ACh reversed polarity at a membrane potential between 0 and + 10 mV. The depolarization produced by ACh was unaffected by anticholinesterases. 6. The ACh response was blocked by cobra neurotoxin, D-tubocurarine and atropine. 7. The electrical properties of the myotubes appear to resemble those of normal adult twitch-type skeletal muscle fibres. 8. The pharmacological properties of the myotube cholinergic receptor have been compared with those of the neuromuscular junction and the denervated muscle fibre membrane. ImagesPlate 1Plate 2 PMID:4735059

  1. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  2. Molecular cloning and functional characterization of chick lens fiber connexin 45.6.

    PubMed Central

    Jiang, J X; White, T W; Goodenough, D A; Paul, D L

    1994-01-01

    The avian lens is an ideal system to study gap junctional intercellular communication in development and homeostasis. The lens is experimentally more accessible in the developing chick embryo than in other organisms, and chick lens cells differentiate well in primary cultures. However, only two members of the connexin gene family have been identified in the avian lens, whereas three are known in the mammalian system. We report here the molecular cloning and characterization of the third lens connexin, chick connexin45.6 (ChCx45.6), a protein with a predicted molecular mass of 45.6 kDa. ChCx45.6 was encoded by a single copy gene and was expressed specifically in the lens. There were two mRNA species of 6.4 kilobase (kb) and 9.4 kb in length. ChCx45.6 was a functional connexin protein, because expression in Xenopus oocyte pairs resulted in the development of high levels of conductance with a characteristic voltage sensitivity. Antisera were raised against ChCx45.6 and chick connexin56 (ChCx56), another avian lens-specific connexin, permitting the examination of the distribution of both proteins. Immunofluorescence localization showed that both ChCx45.6 and ChCx56 were abundant in lens fibers. Treatment of lens membranes with alkaline phosphatase resulted in electrophoretic mobility shifts, demonstrating that both ChCx45.6 and ChCx56 were phosphoproteins in vivo. Images PMID:8049527

  3. Production of somatic chimera chicks by injection of bone marrow cells into recipient blastoderms.

    PubMed

    Heo, Young Tae; Lee, Sung Ho; Kim, Teoan; Kim, Nam Hyung; Lee, Hoon Taek

    2012-01-01

    Several types of cells, including blastoderm cells, primordial germ cells, and embryonic germ cells were injected into early-stage recipient embryos to produce chimera avians and to gain insights into cell development. However, a limited number of studies of avian adult stem cells have also been conducted. This study is, to the best of our knowledge, the first to evaluate chicken bone marrow cells' (chBMC) ability to differentiate into multiple cell lineages and capability to generate chimera chicks. We induced random differentiation of chBMCs in vitro and injected immunologically selected pluripotent cells in chBMCs into the blastoderms of recipient eggs. The multipotency of BMCs from the barred Plymouth rock (BPR) was confirmed via AP staining, RT-PCR, immunocytochemistry, and FACS using specific markers, such as Oct-4 and SSEA-1, 3 and 4. Isolated chBMCs were found to be able to induce in vitro differentiation to multiple cell lineages. Approximately 5,000 chBMCs were injected into the blastoderms of white leghorn (WL) recipients and proved able to contribute to the generation of somatic chimera chicks with a frequency of 2.7% (2 of 73). Confirmation of chimerism in hatched chicks was achieved via PCR analysis using D-loop-specific primers of BPR and WL. Our study demonstrated the successful production of chimera chicks using chBMC. Therefore, we propose that the use of adult chBMCs may constitute a new possible approach to the production of chimera poultry, and may provide helpful studies in avian developmental biology.

  4. The role of Hox genes during vertebrate limb development.

    PubMed

    Zakany, Jozsef; Duboule, Denis

    2007-08-01

    The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed.

  5. Inhibition of Shh signalling in the chick wing gives insights into digit patterning and evolution

    PubMed Central

    2016-01-01

    In an influential model of pattern formation, a gradient of Sonic hedgehog (Shh) signalling in the chick wing bud specifies cells with three antero-posterior positional values, which give rise to three morphologically different digits by a self-organizing mechanism with Turing-like properties. However, as four of the five digits of the mouse limb are morphologically similar in terms of phalangeal pattern, it has been suggested that self-organization alone could be sufficient. Here, we show that inhibition of Shh signalling at a specific stage of chick wing development results in a pattern of four digits, three of which can have the same number of phalanges. These patterning changes are dependent on a posterior extension of the apical ectodermal ridge, and this also allows the additional digit to arise from the Shh-producing cells of the polarizing region – an ability lost in ancestral theropod dinosaurs. Our analyses reveal that, if the specification of antero-posterior positional values is curtailed, self-organization can then produce several digits with the same number of phalanges. We present a model that may give important insights into how the number of digits and phalanges has diverged during the evolution of avian and mammalian limbs. PMID:27702785

  6. Arginine requirement of starting broiler chicks.

    PubMed

    Cuca, M; Jensen, L S

    1990-08-01

    Three experiments were conducted to estimate the arginine requirement of male broiler chicks from 0 to 3 wk of age. The experiments were conducted in battery brooders with wires floors, and the birds received water and feed ad libitum. In the first experiment, chicks were fed a diet based on corn, soybean meal, casein, and corn-gluten meal containing 3,200 kcal ME per kg and either 20 or 23% crude protein. Regression analysis indicated an arginine requirement of 1.22% for maximum growth rate and feed efficiency with the 20% protein diet. For chicks fed the 23% protein diet, neither growth rate nor feed efficiency was significantly different among the diets containing arginine ranging from 1.13 to 1.43%. In the second experiment, a basal diet was used containing 17.5% casein and 22.5% protein with arginine ranging from 1.03 to 1.43%. An arginine requirement of 1.18% for maximum body weight gain was estimated by regression analysis, but no significant response to arginine above the basal level was observed for feed efficiency. Performance of chicks fed the basal diet was somewhat reduced because of a difficulty with adherence of feed to the beaks. In a third experiment, three basal diets containing 21, 22, or 23% protein were formulated from practical ingredients without use of casein. The requirement for maximum growth rate and feed efficiency was estimated to be 1.24 to 1.28% for the three diets. The results of these investigations indicate that the arginine requirement for starting chicks suggested by the National Research Council in 1984 of 1.44% in diets containing 3,200 kcal ME per kg is too high for practical diets. The data presented here support an arginine requirement of 1.25%.

  7. The adrenocortical response of tufted puffin chicks to nutritional deficits

    USGS Publications Warehouse

    Kitaysky, A.S.; Romano, Marc D.; Piatt, J.F.; Wingfield, J.C.; Kikuchi, M.

    2005-01-01

    In several seabirds, nutritional state of a nest-bound chick is negatively correlated with the activity of its hypothalamus-pituitary-adrenal (HPA) axis. Increased corticosterone (cort) secretion has been shown to facilitate changes in behavior that allow hungry chicks to obtain more food from parents. However, if parents are not willing/able to buffer their young from temporary food shortages, increased cort secretion could be detrimental to undernourished chicks. In a system where parents are insensitive to chick demands, low benefits and high costs of activation of the HPA-axis in hungry chicks should lead to a disassociation of the nutritional state of the young and the activity of its HPA-axis. We tested this novel hypothesis for the tufted puffin (Fratercula cirrhata), a seabird with intermittent provisioning of a nest-bound semi-precocial chick. We examined the HPA-axis activity of captive chicks exposed to the following: (1) a short-term (24 h) food deprivation; and (2) an array of prolonged (3 weeks) restrictions in feeding regimens. We found that in response to a short-term food deprivation chicks decreased baseline levels of cort and thyroid hormones. In response to prolonged restrictions, food-limited chicks exhibited signs of nutritional deficit: they had lower body mass, endogenous lipid reserves, and thyroid hormone titers compared to chicks fed ad libitum. However, baseline and maximum acute stress-induced levels of cort were also lower in food-restricted chicks compared to those of chicks fed ad libitum. These results support a major prediction of the study hypothesis that puffin chicks suppress HPA-axis activity in response to short- and long-term nutritional deficits. This physiological adaptation may allow a chick to extend its development in the nest, while eluding detrimental effects of chronic cort elevation. 

  8. A review of limb defects in a large fetus collection.

    PubMed Central

    Stephens, T D; Shepard, T H

    1983-01-01

    Although a considerable number of papers have been published dealing with the frequency and variety of genetic and nongenetic limb defects in newborns and to a lesser extent among embryos, little has been published about the range of limb defects among spontaneously aborted middle and late-term fetuses. This study reports on 133 limb defects from the Central Laboratory for Human Embryology (CLHE), Seattle, Washington. These constitute 34.1% of the total defective specimens in the collection and 5.4% of the total collection population. It is proposed that 30% of the limb defects described indicate a definite recurrence risk, 27% do not indicate recurrence, and the recurrence risk for 43% is unknown. The most interesting findings from this study include the observation that reduction defects affect predominantly the preaxial side of the upper limb and that addition defects (polydactyly) affect predominantly the postaxial side of the lower limb. The observation in relation to reduction defects agrees with U.S. newborn studies. The observation in relation to polydactyly is exactly opposite the studies of Latin American newborns and Japanese embryos. PMID:6305190

  9. Early maternal, genetic and environmental components of antioxidant protection, morphology and immunity of yellow-legged gull (Larus michahellis) chicks.

    PubMed

    Rubolini, D; Romano, M; Bonisoli Alquati, A; Saino, N

    2006-09-01

    Maternal effects mediated by egg quality are important sources of offspring phenotypic variation and can influence the course of evolutionary processes. Mothers allocate to the eggs diverse antioxidants that protect the embryo from oxidative stress. In the yellow-legged gull (Larus michahellis), yolk antioxidant capacity varied markedly among clutches and declined considerably with egg laying date. Analysis of bioptic yolk samples from clutches that were subsequently partially cross-fostered revealed a positive effect of yolk antioxidant capacity on embryonic development and chick growth, but not on immunity and begging behaviour, while controlling for parentage and common environment effects. Chick plasma antioxidant capacity varied according to rearing environment, after statistically partitioning out maternal influences mediated by egg quality. Thus, the results of this study indicate that egg antioxidants are important mediators of maternal effects also in wild bird populations, especially during the critical early post-hatching phase.

  10. Efficacy of using radio transmitters to monitor least tern chicks

    USGS Publications Warehouse

    Whittier, Joanna B.; Leslie, David M.

    2005-01-01

    Little is known about Least Tern (Sterna antillarum) chicks from the time they leave the nest until fledging because they are highly mobile and cryptically colored. We evaluated the efficacy of using radiotelemetry to monitor Interior Least Tern (S. a. athalassos) chicks at Salt Plains National Wildlife Refuge, Oklahoma. In 1999, we attached radio transmitters to 26 Least Tern chicks and tracked them for 2-17 days. No adults abandoned their chicks after transmitters were attached. Transmitters did not appear to alter growth rates of transmittered chicks (P = 0.36) or prevent feather growth, although dermal irritation was observed on one chick. However, without frequent reattachment, transmitters generally did not remain on chicks <1 week old for more than 2 days because of feather growth and transmitter removal, presumably by adult terns. Although the presence of transmitters did not adversely affect Least Tern chicks, future assessments should investigate nonintrusive methods to improve retention of transmitters on young chicks and reduce the number of times that chicks need to be handled.

  11. Matrix Gla Protein expression pattern in the early avian embryo.

    PubMed

    Correia, Elizabeth; Conceição, Natércia; Cancela, M Leonor; Belo, José A

    2016-01-01

    MGP (Matrix Gla Protein) is an extracellular matrix vitamin K dependent protein previously identified as a physiological inhibitor of calcification and shown to be well conserved among vertebrates during evolution. MGP is involved in other mechanisms such as TGF-β and BMP activity, and a proposed modulator of cell-matrix interactions. MGP is expressed early in vertebrate development although its role has not been clarified. Previous work in the chicken embryo found MGP localization predominantly in the aorta and aortic valve base, but no data is available earlier in development. Here we examined MGP expression pattern using whole-mount in situ hybridization and histological sectioning during the initial stages of chick development. MGP was first detected at HH10 in the head and in the forming dorsal aorta. At the moment of the onset of blood circulation, MGP was expressed additionally in the venous plexus which will remodel into the vitelline arteries. By E2.25, it is clear that the vitelline arteries are MGP positive. MGP expression progresses centrifugally throughout the area vasculosa of the yolk sac. Between stages HH17 and HH19 MGP is seen in the dorsal aorta, heart, notochord, nephric duct, roof plate, vitelline arteries and in the yolk sac, beneath main arterial branches and in the vicinity of several vessels and venules. MGP expression persists in these areas at least until E4.5. These data suggest that MGP expression could be associated with cell migration and differentiation and to the onset of angiogenesis in the developing chick embryo. This data has biomedical relevance by pointing to the potential use of chick embryo explants to study molecules involved in artery calcification.

  12. Differentiation of Lens Tissue from the Progeny of Chick Retinal Pigment Cells Cultured In Vitro: A Demonstration of a Switch of Cell Types in Clonal Cell Culture

    PubMed Central

    Eguchi, Goro; Okada, T. S.

    1973-01-01

    Clonal cell lines isolated from the pigmented retina of 8.5-day chick embryos initially retained the capacity to form pigment. After several passages, however, many cells lost pigment granules and differentiated into lens-like structures. The lens-specific nature of the structures formed in cultures originally derived from retinal pigment cells was established by both ultrastructural and immunological studies. Images PMID:4576021

  13. Coordinate expression of IGF-I and its receptor during limb outgrowth.

    PubMed

    Geduspan, J S; Padanilam, B J; Solursh, M

    1992-09-01

    The morphogenetic mechanisms involved in shaping the embyro are largely unknown. Previous studies from this laboratory suggest that the mesonephros promotes limb outgrowth in ovo in the chicken embryo and might be involved in early limb morphogenesis, since damage to the mesonephros results in truncated limbs. In limb bud organ cultures, the presence of the mesonephros promotes cartilage formation. This effect can be reproduced by exogenous IGF-I or prevented by blocking antibody to IGF-I. In order to examine the hypothesis that mesonephros-derived IGF-I is involved in the early morphogenesis of the limb, we examined the spatial and temporal expression of IGF-I and type I receptor for IGF by in situ hybridization at stages when the onset of limb development occurs. The results show that neither transcript is detected at stage 13, prior to the appearance of the limb bud; but both transcripts are detected in the mesonephros at stage 14, an early stage in limb outgrowth. The hybridization signal in the mesonephros for both transcripts increases with development and signal was codistributed as well. At stage 18 the level of receptor transcripts detected in the flank relative to the limb decreased. Thus, the temporal and spatial patterns of expression of IGF-I and its receptor are consistent with their involvement in the initiation of limb outgrowth and support the model that localized expression of a growth factor and its receptor can be involved in shaping the embryo.

  14. Comparisons of insulin related parameters in commercial-type chicks: Evidence for insulin resistance in broiler chicks.

    PubMed

    Shiraishi, Jun-Ichi; Yanagita, Kouichi; Fukumori, Rika; Sugino, Toshihisa; Fujita, Masanori; Kawakami, Shin-Ichi; McMurtry, John P; Bungo, Takashi

    2011-05-03

    The aim of this study is to elucidate whether insulin acts differentially within the central nervous system (CNS) of two types of commercial chicks to control ingestive behavior. Male layer and broiler chicks (4-day-old) were intracerebroventricularly (ICV) injected with saline or insulin under satiated and starved conditions. Feed intake was measured at 30, 60 and 120 min after treatment. Secondly, blood and hypothalamus were collected from both chick types under ad libitum feeding and fasting for 24 h. Plasma insulin concentration was measured by time-resolved fluoro-immunoassay. Hypothalamic insulin receptor mRNA expression levels were measured by quantitative RT-PCR. The ICV injection of insulin significantly inhibited feed consumption in layer chicks when compared with saline (P<0.05), but not broiler chicks (P>0.1). Plasma insulin concentration of both chick types significantly decreased following 24 h of fasting, while insulin concentrations in the broiler chicks were significantly higher compared to the layers fed under ad libitum conditions. Hypothalamic insulin receptor mRNA expression levels were significantly lower (P<0.05) in broiler chicks than in layer ones under ad libitum feeding. Feed deprivation significantly decreased insulin receptor mRNA levels in layer chicks (P<0.01), but not in broiler chicks (P>0.1). Moreover, plasma insulin concentrations correlated negatively with hypothalamic insulin receptor protein expression in the two types of chicks fed ad libitum (P<0.05). These results suggest that insulin resistance exists in the CNS of broiler chicks, possibly due to persistent hyperinsulinemia, which results in a down-regulation of CNS insulin receptor expression compared to that in layer chicks.

  15. HINTW, a W-chromosome HINT gene in chick, is expressed ubiquitously and is a robust female cell marker applicable in intraspecific chimera studies.

    PubMed

    Nagai, Hiroki; Sezaki, Maiko; Bertocchini, Federica; Fukuda, Kimiko; Sheng, Guojun

    2014-05-01

    Grafting and transplantation experiments in embryology require proper distinction between host and donor tissues. For the avian model this has traditionally been achieved by using two closely related species (e.g., chick and quail) followed by species-specific antibody staining. Here, we show that an in situ hybridization probe against the HINTW gene is a robust and reliable marker for female-derived chicken cells. At all pre-circulation stages tested, all cells in female embryos, independently confirmed by PCR analysis, were strongly positive for HINTW, whereas all male embryos were negative. This probe is broadly applicable in intra-specific chick/chick chimera studies, and as a proof of principle, we utilized this probe to detect female cells in three experimental settings: (1) to mark female donor cells in a node transplantation assay; (2) to distinguish female cells in male/female twins generated by the Cornish pasty culture; and (3) to detect female half of the embryo in artificially generated bilateral gynandromorphs. A rapid, PCR based pre-screening step increases the efficiency of obtaining desired donor/host sex combination from 25% to 100%. For most avian chimera studies, this female-specific in situ probe is a low cost alternative to the commonly used QCPN antibody and to ubiquitous-GFP chicken strains which are not widely available to the research community.

  16. Developmental imaging: the avian embryo hatches to the challenge.

    PubMed

    Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca

    2013-06-01

    The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair.

  17. Dioxin contamination and growth and development in great blue heron embryos

    SciTech Connect

    Hart, L.E.; Cheng, K.M.; Whitehead, P.E.; Shah, R.M.; Lewis, R.J.; Ruschkowski, S.R.; Blair, R.W.; Bennett, D.C.; Bandiera, S.M.; Norstrom, R.J. )

    1991-03-01

    A great blue heron colony located near a pulp mill in British Columbia failed to fledge young in 1987, with a concurrent sharp increase in polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) levels in their eggs. In 1988 we tested the hypothesis that the PCDD and PCDF contamination caused reproductive failure by increasing mortality of the heron embryos in ovo. Pairs of great blue heron eggs were collected from three British Columbia colonies with low, intermediate, and high levels of dioxin contamination: Nicomekl, Vancouver, and Crofton, respectively. One egg of each pair was incubated under laboratory conditions at the University of British Columbia (UBC) while the other egg was analyzed for PCDDs and PCDFs. All incubated eggs were fertile. All eggs from the Nicomekl colony hatched, while 13 of 14 eggs from Vancouver and 12 of 13 eggs from Crofton hatched. Subcutaneous edema was observed in 4 of 12 chicks from Crofton and 2 of 13 chicks from Vancouver. No edema was seen in the chicks from Nicomekl. There was a small, but significant, negative regression of plasma calcium concentration, yolk-free body weight, tibia length, wet, dry, and ash weight, beak length, and kidney and stomach weight of the hatched chicks on the tetrachlorodibenzo-p-dioxin (TCDD) level of the paired eggs. Fewer down follicles were present on the heads of TCDD-contaminated chicks. Hence while dioxins did not cause mortality of the heron embryos in ovo, the depression of growth and the presence of edema are suggestive that dioxins at the levels found in the environment have an adverse effect on the development of great blue heron embryos.

  18. Nicotinic acetylcholine receptor from chick optic lobe.

    PubMed Central

    Norman, R I; Mehraban, F; Barnard, E A; Dolly, J O

    1982-01-01

    An alpha-bungarotoxin-sensitive nicotinic cholinergic receptor from chick optic lobe has been completely purified. Its standard sedimentation coefficient is 9.1 S. The value near 12 S reported for the related component from other brain regions can be reproduced when the initial extraction is by Triton X-100 (rather than Lubrol PX), but other protein is then complexed with it. A single subunit of apparent molecular weight 54,000 is detected, and this subunit is specifically labeled by bromo-[3H]acetylcholine, but only after disulfide reduction. The same size subunit likewise is labeled in the protein (purified similarly) from the rest of the chick brain which can also bind alpha-bungarotoxin and nicotinic ligands. Immunological crossreactivity is demonstrated between both of these proteins with an antiserum to pure acetylcholine receptor from skeletal muscle. The acetylcholine receptor from chick optic lobe and the alpha-bungarotoxin-binding protein from the rest of the brain appear similar or identical by a series of criteria and are related to (but with differences from) peripheral acetylcholine receptors. Images PMID:6175967

  19. Influence of egg storage time and preincubation warming profile on embryonic development, hatchability, and chick quality.

    PubMed

    Reijrink, I A M; Berghmans, D; Meijerhof, R; Kemp, B; van den Brand, H

    2010-06-01

    When eggs are stored beyond 7 d, hatchability and chick quality decrease. The cause of the negative effects of prolonged egg storage is not clear. The negative effects may be caused by a decrease in embryo viability due to an increase in cell death. The optimal time and curve of preincubation warming (the preincubation warming profile) may be different for eggs stored over short and long periods of time because embryo viability is dependent on egg storage time. The aim of this study was to investigate whether preincubation warming profiles affect embryonic development, hatchability, and chick quality when eggs are stored for a short or prolonged time. Two experiments were conducted. In both experiments, a 2x2 completely randomized design was used with 2 storage times (4 and 14 d at 17 degrees C in experiment I and 4 and 13 d at 19 degrees C in experiment II) and 2 preincubation warming profiles (within 4 or 24 h from storage temperature to 37.8 degrees C). In experiment I, results suggested that the effect of preincubation warming profile on hatchability was dependent on storage time. However, because a low number of eggs were used in this experiment, these differences were not significant. In experiment II, the interaction between storage time and preincubation warming profile was observed for embryonic mortality during the first 2 d of incubation and hatchability (P=0.006 and P=0.01, respectively). When storage time was 13 d, embryonic mortality during the first 2 d of incubation decreased by 4.4% and hatchability increased by 5.7% when the 24-h preincubation warming profile was used instead of the 4-h preincubation warming profile. However, no effect of preincubation warming profile was observed when storage time was 4 d. In both experiments, chick quality decreased when storage time increased but was not affected by preincubation warming profile. We concluded that a slow preincubation warming profile is beneficial for hatchability when storage time is prolonged

  20. Experimental colonization of broiler chicks with Campylobacter jejuni.

    PubMed Central

    Shanker, S.; Lee, A.; Sorrell, T. C.

    1988-01-01

    Minimal colonization inocula for two broiler strains of Campylobacter jejuni were determined in broiler chicks aged 2-3 days and 2 weeks. Individually housed chicks were exposed to a single oral or cloacal challenge. Diarrhoeal symptoms were absent in all 380 chicks included in the study. Chick susceptibility to the two C. jejuni strains varied. Colonization was effected by less than 10(2)-10(4) colony forming units (c.f.u.) via cloacal challenge and 10(4)-10(6) c.f.u. via the oral route. Colonization inocula for 2- to 3-day and 2-week-old chicks were similar. Treatment of 1-day-old chicks with fresh adult caecal flora or an anaerobic broth culture of adult caecal flora did not inhibit colonization after challenge with low-dose C. jejuni. Susceptible chicks were colonized rapidly. C. jejuni was detected in 167 of 189 (88%) colonized chicks within 3 days of challenge and persisted during the 2-week monitoring period. Our data suggest that colonization of broiler chicks with C. jejuni is effected more easily by the cloacal than the oral route and is independent of age. PMID:3338504

  1. Oxygenated drinking water enhances immune activity in broiler chicks and increases survivability against Salmonella Gallinarum in experimentally infected broiler chicks.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo

    2012-03-01

    It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.

  2. Potentiality and human embryos.

    PubMed

    Lizza, John P

    2007-09-01

    Consideration of the potentiality of human embryos to develop characteristics of personhood, such as intellect and will, has figured prominently in arguments against abortion and the use of human embryos for research. In particular, such consideration was the basis for the call of the US President's Council on Bioethics for a moratorium on stem cell research on human embryos. In this paper, I critique the concept of potentiality invoked by the Council and offer an alternative account. In contrast to the Council's view that an embryo's potentiality is determined by definition and is not affected by external conditions that may prevent certain possibilities from ever being realized, I propose an empirically grounded account of potentiality that involves an assessment of the physical and decisional conditions that may restrict an embryo's possibilities. In my view, some human embryos lack the potentiality to become a person that other human embryos have. Assuming for the sake of argument that the potential to become a person gives a being special moral status, it follows that some human embryos lack this status. This argument is then used to support Gene Outka's suggestion that it is morally permissible to experiment on 'spare' frozen embryos that are destined to be destroyed.

  3. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development.

    PubMed

    Lee, Christopher T; Li, Luoping; Takamoto, Norio; Martin, James F; Demayo, Francesco J; Tsai, Ming-Jer; Tsai, Sophia Y

    2004-12-01

    The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs.

  4. Comparison between broilers and layers for growth and protein use by embryos.

    PubMed

    Ohta, Y; Yoshida, T; Tsushima, N

    2004-05-01

    Three experiments were conducted to compare the growth and protein utilization of embryo between broilers and layers. In experiments 1 and 2, the average weight of eggs was the same for broilers and layers. Nothing or an amino acid (AA) solution was injected into the eggs of broilers at d 7 of incubation, and the plasma AA concentration of newly hatched chicks was determined in broilers in experiment 1. In experiment 2, the same treatments as experiment 1 were used on layer breeder eggs. Plasma Tau, Thr, and Lys concentrations of hatched chicks increased when AA solution was injected in broilers breeder eggs (P < 0.05) but not in layers (P > 0.05). The AA ratio to Lys was reduced by AA injection in broilers but not in layers. In experiment 3, weights of embryos and egg were recorded, and CP contents were analyzed over time during incubation (d 0, 7, 14, and 19 of incubation) in broilers and layers using eggs of the same weight. There were no differences in the weights and CP contents of embryos and eggs from broilers and layers. On d 14 and 19 of incubation, weights and CP contents of embryo were higher in broilers than layers (P < 0.05). These results suggested that the egg protein content might be adequate for hatching but insufficient for maximum growth of embryos from broilers.

  5. Measuring embryo metabolism to predict embryo quality.

    PubMed

    Thompson, Jeremy G; Brown, Hannah M; Sutton-McDowall, Melanie L

    2016-01-01

    Measuring the metabolism of early embryos has the potential to be used as a prospective marker for post-transfer development, either alone or in conjunction with other embryo quality assessment tools. This is necessary to maximise the opportunity of couples to have a healthy child from assisted reproduction technology (ART) and for livestock breeders to efficiently improve the genetics of their animals. Nevertheless, although many promising candidate substrates (e.g. glucose uptake) and methods (e.g. metabolomics using different spectroscopic techniques) have been promoted as viability markers, none has yet been widely used clinically or in livestock production. Herein we review the major techniques that have been reported; these are divided into indirect techniques, where measurements are made from the embryo's immediate microenvironment, or direct techniques that measure intracellular metabolic activity. Both have strengths and weaknesses, the latter ruling out some from contention for use in human ART, but not necessarily for use in livestock embryo assessment. We also introduce a new method, namely multi- (or hyper-) spectral analysis, which measures naturally occurring autofluorescence. Several metabolically important molecules have fluorescent properties, which we are pursuing in conjunction with improved image analysis as a viable embryo quality assessment methodology.

  6. Effects of subcutaneous transmitter implants on behavior, growth, energetics, and survival of common loon chicks

    USGS Publications Warehouse

    Kenow, K.P.; Meyer, M.W.; Fournier, F.; Karasov, W.H.; Elfessi, A.; Gutreuter, S.

    2003-01-01

    High rates of Common Loon (Gavia immer) chick mortality have been documented in Wisconsin, especially on acidic lakes, but causes and timing of chick mortality are poorly understood. We modified and evaluated a subcutaneous transmitter implant technique for Common Loon chicks using wild and captive reared chicks. Results indicated that behavior, growth, energy expenditure, and survival did not differ significantly between chicks marked with miniature transmitters (mass 0.76 g, representing <0.8% of body mass at hatching) and unmarked chicks.

  7. An intrinsic timer specifies distal structures of the vertebrate limb.

    PubMed

    Saiz-Lopez, Patricia; Chinnaiya, Kavitha; Campa, Victor M; Delgado, Irene; Ros, Maria A; Towers, Matthew

    2015-09-18

    How the positional values along the proximo-distal axis (stylopod-zeugopod-autopod) of the limb are specified is intensely debated. Early work suggested that cells intrinsically change their proximo-distal positional values by measuring time. Recently, however, it is suggested that instructive extrinsic signals from the trunk and apical ectodermal ridge specify the stylopod and zeugopod/autopod, respectively. Here, we show that the zeugopod and autopod are specified by an intrinsic timing mechanism. By grafting green fluorescent protein-expressing cells from early to late chick wing buds, we demonstrate that distal mesenchyme cells intrinsically time Hoxa13 expression, cell cycle parameters and the duration of the overlying apical ectodermal ridge. In addition, we reveal that cell affinities intrinsically change in the distal mesenchyme, which we suggest results in a gradient of positional values along the proximo-distal axis. We propose a complete model in which a switch from extrinsic signalling to intrinsic timing patterns the vertebrate limb.

  8. Amniotic fluid stem cells increase embryo survival following injury.

    PubMed

    Prasongchean, Weerapong; Bagni, Marinella; Calzarossa, Cinzia; De Coppi, Paolo; Ferretti, Patrizia

    2012-03-20

    Although amniotic fluid cells can differentiate into several mesenchymal lineages and have been proposed as a valuable therapeutic cell source, their ability to undergo terminal neuronal differentiation remains a cause of controversy. The aim of this study was to investigate the neuronal differentiation ability of the c-Kit-positive population from GFP-transgenic rat amniotic fluid, amniotic fluid stem (AFS) cells, and to assess how they affected injury response in avian embryos. AFS cells were found to express several neural stem/progenitor cell markers. However, no overt neuronal differentiation was apparent after either treatment with small molecules known to stimulate neuronal differentiation, attempts to differentiate AFS cell-derived embryoid body-like structures, or grafting AFS cells into environments known to support neuronal differentiation (organotypic rat hippocampal cultures, embryonic chick nervous system). Nonetheless, AFS cells significantly reduced hemorrhage and increased survival when grafted at the site of an extensive thoracic crush injury in E2.5 chick embryos. Increased embryo survival was induced neither by desmopressin treatment, which also reduced hemorrhage, nor by grafting other mesenchymal or neural cells, indicating a specific effect of AFS cells. This was found to be mediated by soluble factors in a transwell coculture model. Altogether, this study shows that AFS cells reduce tissue damage and increase survival in injured embryos, providing a potentially valuable tool as therapeutic agents for tissue repair, particularly prenatal/perinatal repair of defects diagnosed during gestation, but this effect is mediated via paracrine mechanisms rather than the ability of AFS cells to fully differentiate into neuronal cells.

  9. MATURATION OF FIRING PATTERN IN CHICK VESTIBULAR NUCLEUS NEURONS

    PubMed Central

    SHAO, M.; HIRSCH, J. C.; PEUSNER, K. D.

    2007-01-01

    The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when < 20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on

  10. Maturation of firing pattern in chick vestibular nucleus neurons.

    PubMed

    Shao, M; Hirsch, J C; Peusner, K D

    2006-08-25

    The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on

  11. Chlormequat chloride retards rat embryo growth in vitro.

    PubMed

    Xiagedeer, Bayindala; Wu, Shuang; Liu, Yingjuan; Hao, Weidong

    2016-08-01

    Chlormequat chloride is the most widely used plant growth regulator in agriculture to promote sturdier growth of grain crops by avoidance of lodging. Therefore, human exposure to chlormequat chloride is very common, but its developmental toxicity has not been studied. Thus, we investigated the developmental toxicity of chlormequat chloride by applying rat whole embryo culture (WEC) model, limb bud micromass culture and 3T3 fibroblast cytotoxicity test. Chlormequat chloride at 150μg/ml (0.93mM) retarded the rat embryo growth without causing significant morphological malformations and at 500μg/ml (3.1mM) caused both retardation and morphological malformation of the embryos. However, the proliferation and differentiation of limb bud cells were not affected by chlormequat chloride at as high as up to 1000μg/ml (6.2mM) applied. This concentration of chlormequat chloride did not affect the cell viability as examined by 3T3 fibroblast cytotoxicity test either, suggesting that cellular toxicity may not play a role in chlormequat induced inhibition of rat embryo growth. Collectively, our results demonstrated that chlormequat chloride may affect embryo growth and development without inhibiting cell viability.

  12. LIMB Demonstration Project Extension

    SciTech Connect

    Not Available

    1988-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  13. LIMB Demonstration Project Extension

    SciTech Connect

    Not Available

    1988-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  14. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development.

    PubMed

    Solursh, M; Reiter, R S; Jensen, K L; Kato, M; Bernfield, M

    1990-07-01

    Syndecan is an integral membrane proteoglycan that contains both heparan sulfate and chondroitin sulfate chains and that links the cytoskeleton to interstitial extracellular matrix components, including collagen and fibronectin. Immunohistochemistry with a monoclonal antibody directed to the core protein of the syndecan ectodomain has been used to analyze the distribution of this proteoglycan in the developing mouse limb bud and in high-density cultures of limb mesenchyme cells. By Day 9 of gestation when the limb buds are just apparent, syndecan is detected on cells throughout the limb region, including both ectodermal and mesenchymal components. This distribution does not change as the limb bud elongates along its proximodistal axis, except for its reduction in the apical ectodermal ridge. By Day 11, the intensity of immunofluorescence in the central core decreases relative to other regions. By Day 13 immunostaining is lost in the regions destined for chondrogenesis and myogenesis but persists in the limb ectoderm and peripheral and distal mesenchyme. In the limb mesenchyme cell cultures, syndecan is initially undetected, but is found throughout the culture by 24 hr. With further culture the antigen becomes reduced in chondrogenic foci and in association with myogenic cells. When chick limb ectoderm is placed on the high-density cultures, immunoreactivity in the mouse mesenchyme is enhanced suggesting that epithelial-mesenchymal interactions modulate syndecan expression in the limb bud. Based on analysis of 35S-labeled syndecan from the cultures, syndecan from limb mesenchyme cells contains more glycosaminoglycan chains and is larger in size than the previously described polymorphic forms of syndecan from various epithelia. The high affinity of syndecan for components of the extracellular matrix and its distribution in the early limb bud are consistent with a role in maintaining the morphologic integrity of the limb bud during the period of initiation and rapid

  15. Assessing Thermal Comfort of Broiler Chicks During Brooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper management of the thermal environment during brooding is essential to performance in broilers. Brooding programs used in the broiler industry are prescriptive, but little information exists about thermal comfort in chicks. Identifying thermal conditions that chicks prefer would allow for be...

  16. Gamma irradiation treatment of cereal grains for chick diets

    SciTech Connect

    Campbell, G.L.; Classen, H.L.; Ballance, G.M.

    1986-04-01

    Wheat (W), triticale (T), hulled barley (HB), hull-less barley (HLB), hulled oats (HO), and hull-less oats (HLO) were gamma irradiated (/sup 60/Co) at 0, 3, 6 and 9 Mrad to study the effect of irradiation on the nutritional value of cereal grains for chicks. A significant curvilinear relationship between radiation dose and 3-wk body weight of chicks fed irradiated cereals was noted for T, HB, HLB, HO and HLO. Chicks fed W or T showed no effect or lower body weight, respectively, while body weights of chicks fed barley or oat samples were higher with irradiation. The improvement tended to be maximal at the 6 Mrad level. Irradiation significantly improved the gain-to-feed ratio for chicks fed either HO or HLO. Apparent fat retention and tibia ash were higher in chicks fed irradiated HLO than in those fed untreated HLO. In a second experiment chick body weight, apparent amino acid and fat retention, tibia ash, and gain-to-feed ratios were lower in chicks fed autoclaved (121 degrees C for 20 min) barley than in those fed untreated barley. Irradiation (6 Mrad) subsequent to autoclaving barley samples eliminated these effects. Irradiation appears to benefit cereals containing soluble or mucilagenous fiber types as typified by beta-glucan of barley and oats. These fibers appear prone to irradiation-induced depolymerization, as suggested by increased beta-glucan solubility and reduced extract viscosity for irradiated barley and oat samples.

  17. Integration of human model neurons (NT2) into embryonic chick nervous system.

    PubMed

    Podrygajlo, Grzegorz; Wiegreffe, Christoph; Scaal, Martin; Bicker, Gerd

    2010-02-01

    Postmitotic neurons were generated from the human NT2 teratocarcinoma cell line in a novel cell aggregate differentiation procedure. Approximately a third of the differentiated neurons expressed cell markers related to cholinergic neurotransmission. To examine whether this human cell model system can be directed toward a motoneuronal fate, postmitotic neurons were co-cultured with mouse myotubes. Outgrowing neuronal processes established close contact with the myotubes and formed neuromuscular junction-like structures that bound alpha-bungarotoxin. To determine how grafted precursor cells and neurons respond to embryonic nerve tissue, NT2 cells at different stages of neural development were injected into chick embryo neural tube and brain. Grafted NT2 neurons populated both parts of the nervous system, sometimes migrating away from the site of injection. The neural tube appeared to be more permissive for neurite extensions than the brain. Moreover, extending neurites of spinal grafts were approaching the ventral roots, thus resembling motoneuronal projections.

  18. Xenotransplantation of embryonic stem cell-derived motor neurons into the developing chick spinal cord.

    PubMed

    Wichterle, Hynek; Peljto, Mirza; Nedelec, Stephane

    2009-01-01

    A growing number of specific cell types have been successfully derived from embryonic stem cells (ES cells), including a variety of neural cells. In vitro generated cells need to be extensively characterized to establish functional equivalency with their in vivo counterparts. The ultimate test for the ability of ES cell-derived neurons to functionally integrate into neural networks is transplantation into the developing central nervous system, a challenging technique limited by the poor accessibility of mammalian embryos. Here we describe xenotransplantation of mouse embryonic stem cell-derived motor neurons into the developing chick neural tube as an alternative for testing the ability of in vitro generated neurons to survive, integrate, extend axons, and form appropriate synaptic contacts with functionally relevant targets in vivo. Similar methods can be adapted to study functionality of other mammalian cells, including derivatives of human ES cells.

  19. Somitic origin of limb muscle satellite and side population cells

    PubMed Central

    Schienda, Jaclyn; Engleka, Kurt A.; Jun, Susan; Hansen, Mark S.; Epstein, Jonathan A.; Tabin, Clifford J.; Kunkel, Louis M.; Kardon, Gabrielle

    2006-01-01

    Repair of mature skeletal muscle is mediated by adult muscle progenitors. Satellite cells have long been recognized as playing a major role in muscle repair, whereas side population (SP) cells have more recently been identified as contributing to this process. The developmental source of these two progenitor populations has been considerably debated. We explicitly tested and quantified the contribution of embryonic somitic cells to these progenitor populations. Chick somitic cells were labeled by using replication-defective retroviruses or quail/chick chimeras, and mouse cells were labeled by crossing somite-specific, Pax3-derived Cre driver lines with a Cre-dependent reporter line. We show that the majority of, if not all, limb muscle satellite cells arise from cells expressing Pax3 specifically in the hypaxial somite and their migratory derivatives. We also find that a significant number of, but not all, limb muscle SP cells are derived from the hypaxial somite. Notably, the heterogeneity in the developmental origin of SP cells is reflected in their functional heterogeneity; somitically derived SP cells are intrinsically more myogenic than nonsomitically derived ones. Thus, we show that the somites, which supply embryonic and fetal myoblasts, are also an important source of highly myogenic adult muscle progenitors. PMID:16418263

  20. FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies

    PubMed Central

    Moura, Rute S.; Coutinho-Borges, José P.; Pacheco, Ana P.; daMota, Paulo O.; Correia-Pinto, Jorge

    2011-01-01

    Background Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth and validate the avian embryo as a good model for pulmonary studies, namely to explore the FGF pathway as a therapeutic target. PMID:21412430

  1. In vitro chick pre-cardiac explant tissue differentiation during spaceflight on SpaceHab-02

    NASA Technical Reports Server (NTRS)

    van Twest, J. S.; Paulsen, A.; Spooner, B. S.

    1995-01-01

    Chick precardiac tissue explants were cultured on the 8-day mission of STS-60, space shuttle Discovery. Development of in vitro cultures of precardiac chick tissue from embryo stages 5 though 8 (H-H) were initiated during orbit and were terminated after approximately fifteen hours of 37 degree C culture. Transmission electron microscopy and tritiated thymidine studies were performed postflight. No significant differences in cell proliferation were observed between flight and ground controls. Electron-microscopic studies revealed stage 8 explants were capable of differentiation during flight in a pattern which matched ground control tissues. As anticipated, stage 7 explant tissues had differentiated to a lesser extent compared to stage 8 tissues. Interestingly, stage 7 precardiac explant flight tissue differentiation was less than ground control tissue. This difference in differentiation between flight and ground cultures was enhanced in stage 6 tissues, as high levels of myofibril organization were only seen in ground controls. Other cellular components such as Golgi apparatus, junctional complexes, and mitochondria were present and appeared normal and healthy.

  2. Halogenated flame retardants during egg formation and chicken embryo development: maternal transfer, possible biotransformation, and tissue distribution.

    PubMed

    Zheng, Xiao-Bo; Luo, Xiao-Jun; Zeng, Yan-Hong; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2014-08-01

    Hen muscle, eggs, and newborn chick tissues (muscle and liver) were collected from an electronic waste recycling site in southern China. The authors examined the maternal transfer, potential metabolism, and tissue distribution of several halogenated flame retardants (HFRs) during egg formation and chicken embryo development. The pollutant composition changes significantly from hen muscle to eggs and from eggs to tissues of newborn chicks. Higher-halogenated chemicals, such as octa- to deca-polybrominated diphenyl ether (PBDE) congeners, deca-polybrominated biphenyl (PBB209), and dechlorane plus (DP), are less readily transferred to eggs compared with lower-halogenated chemicals. During embryo development, PBDEs are the most likely to be metabolized, whereas decabromodiphenyl ethane (DBDPE) is the least. The authors also observed selective maternal transfer of anti-DP and stereoselective metabolism of syn-DP during chicken embryo development. During tissue development, liver has greater affinity than the muscle for chemcials with a high log octanol-water partition coefficient, with the exception of DBDPE. The differences in metabolism potential of different chemicals in chicken embryos cause pollutant composition alterations. Halogenated flame retardant from maternal transfer and tissue distribution also exhibited chemical specificity, especially for DBDPE. Levels of DBDPE were elevated along with the full process from hen muscle to eggs and from eggs to chick tissues. More attention should be paid to the selective accumulation and biotransformation of HFRs in the early development stage of birds.

  3. Antagonism between retinoic acid and fibroblast growth factor signaling during limb development.

    PubMed

    Cunningham, Thomas J; Zhao, Xianling; Sandell, Lisa L; Evans, Sylvia M; Trainor, Paul A; Duester, Gregg

    2013-05-30

    The vitamin A metabolite retinoic acid (RA) provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits), avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF) signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, using genetic and pharmacological approaches, we demonstrate that limb proximodistal patterning is not RA dependent, thus indicating that RA-FGF antagonism does not occur along the proximodistal axis of the limb. Instead, our studies show that RA-FGF antagonism acts prior to limb budding along the anteroposterior axis of the trunk lateral plate mesoderm to provide a patterning cue that guides formation of the forelimb field. These findings reconcile disparate ideas regarding RA-FGF antagonism and provide insight into how endogenous RA programs the early embryo.

  4. Attenuated sensing of SHH by Ptch1 underlies evolution of bovine limbs.

    PubMed

    Lopez-Rios, Javier; Duchesne, Amandine; Speziale, Dario; Andrey, Guillaume; Peterson, Kevin A; Germann, Philipp; Unal, Erkan; Liu, Jing; Floriot, Sandrine; Barbey, Sarah; Gallard, Yves; Müller-Gerbl, Magdalena; Courtney, Andrew D; Klopp, Christophe; Rodriguez, Sabrina; Ivanek, Robert; Beisel, Christian; Wicking, Carol; Iber, Dagmar; Robert, Benoit; McMahon, Andrew P; Duboule, Denis; Zeller, Rolf

    2014-07-03

    The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.

  5. Experimental reproduction of severe hypoglycemia and spiking mortality syndrome using field-derived and embryo-passaged preparations.

    PubMed

    Davis, J F; Castro, A E; de la Torre, J C; Barnes, H J; Doman, J T; Metz, M; Lu, H; Yuen, S; Dunn, P A; Teng, M N

    1996-01-01

    The clinical signs, enteritis, weight depression, and hypoglycemia of spiking mortality syndrome were experimentally reproduced in broiler breeders and broiler chicks. Inocula included 1) virus-like particles from intestines of chicks with spiking mortality syndrome that had been banded in a discontinuous Renograffin gradient, 2) homogenized darkling beetles collected from litter of farms where spiking mortality syndrome had occurred repeatedly, and 3) homogenized embryos which had been inoculated with the Renograffin-banded material. Arkansas variant infectious bronchitis virus and arenavirus-like particles were identified in the inocula. Serology on samples from surviving chicks suggested the presence of an avian encephalomyelitis virus in one of the inocula. One-day-old (n = 172) and 2.5-day-old (n = 30) chicks were inoculated orally, and some were also injected intraperitoneally or subcutaneously, with 0.5 ml of the inocula. Twelve to fourteen days postinoculation, chicks were fasted for 4-6 hours, then briefly stressed with a cool water spray. Within 1.5 hours, inoculated chicks began dying with severe hypoglycemia and clinical signs of spiking mortality syndrome. Body weights were significantly depressed. Uninoculated controls (n = 130) from the same hatches, also fasted and stressed, were unaffected clinically and were not hypoglycemic. One group (n = 52) of inoculated chicks exposed to a controlled lighting program was unaffected clinically, had significantly higher mean plasma glucose levels, and had significantly less body weight depression than chicks exposed to continuous lighting. We concluded that exposure to controlled amounts of light/darkness can ameliorate much of the hypoglycemia, mortality, and runting-stunting associated with spiking mortality syndrome of chickens. The significance of the viruses and virus-like particles detected in the inocula is currently under investigation.

  6. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry.

    PubMed

    Nam, Kweon-Ho; Kim, Juho; Ra, Gicheol; Lee, Chong Hyun; Paeng, Dong-Guk

    2015-01-01

    Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM) allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with the spectral

  7. Single Cell Imaging of the Chick Retina with Adaptive Optics

    PubMed Central

    Headington, Kenneth; Choi, Stacey S.; Nickla, Debora; Doble, Nathan

    2012-01-01

    Purpose The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. Methods The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on 2 six-week-old White Leghorn chicks (Gallus gallus domesticus) – labeled chick A and chick B. Multiple, adjacent images, each with a 2.5° field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. Results In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36° nasal-12° superior retina from the pecten tip for chick A and 40° nasal-12° superior retina for chick B were 21,714±543 and 26,105±653 cones/mm2 respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980±524 to 25,148±629 cones/mm2. Conclusion In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research. PMID:21950701

  8. Earth Limb Radiance Transformation.

    DTIC Science & Technology

    1981-03-02

    AD-A097 523 AEROSPACE CORP EL SEGUNDO CA CHEMISTRY AND PHYSICS LAB F/G 4/1 EARTH LIMB RADIANCE TRANSFORMATION (U) MAR AI S 4 YOUNG F0701-80 -C-0081... Earth Limb Radiance Trafisformation Prepared by S. J. YOUNG Chemistr and Physics Laboratory Laboratory Operations The Aerospace Corporation S.El...ITLEK (and Subtitle) TYPE OF REPORT & P53100 COVERED Earth Limb Radiance Transformation. ( Interim ./ / /TR-OJ081(697j7-g4)-l-- i7.Step hen J. Young

  9. Out on a Limb: Investigating the Anatomy of Tree Limbs

    ERIC Educational Resources Information Center

    Shaw, Edward L.

    2008-01-01

    The author presents several upper elementary science activities involving tree limbs that were collected after severe weather conditions. The activities involved 3rd-grade students arranging tree limb pieces in the correct order from the trunk to the tip of the limb, measuring the pieces, determining the age of a tree limb by its rings,…

  10. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development.

    PubMed

    Lourens, A; van den Brand, H; Meijerhof, R; Kemp, B

    2005-06-01

    An experiment was conducted to study the effects of different eggshell temperature (EST) profiles during incubation on embryo mortality, hatchability, and embryo development. Furthermore, chicks from different EST profiles were reared under low and high housing temperatures to investigate subsequent posthatch growth and rectal temperature. Two batches of eggs were used in this experiment. Hatching eggs were subjected to 36.7 or 37.8 degrees C EST during the first week, to 37.8 degrees C EST during the second week, and to 37.8 or 38.9 degrees C EST during the third week of incubation. Posthatch housing temperature decreased from 35 degrees C at d 1 to 30 degrees C at d 7 (high) or decreased from 30 degrees C at d 1 to 25 degrees C at d 7 (low). The difference between machine temperature and EST (DT) was used to illustrate the effect of EST on heat production during incubation. DT differed per batch, and was smallest when eggs were incubated at 36.7 degrees C instead of 37.8 degrees C during wk 1. High EST during wk 3 of incubation (38.9 degrees C instead of 37.8 degrees C) reduced DT only in batch 2. Embryo development was most retarded in eggs incubated at 36.7 degrees C EST compared with at 37.8 degrees C during the first week of incubation. However, highest hatchability and embryo development were always found when EST was maintained at 37.8 degrees C constantly throughout incubation. Chicks that hatched from eggs incubated at low EST during wk 1 of incubation had lower rectal temperature after hatching, especially under low housing temperatures, and this effect lasted until 7 d posthatch in batch 1. The highest rectal temperatures were always found in chicks incubated at 37.8 degrees C EST constantly throughout incubation. Eggs and chicks from different batches require different environmental conditions for optimal embryo development, hatchability, and posthatch growth. Rearing temperature and incubation conditions affect the ability of young chicks to maintain

  11. Twist1 activity thresholds define multiple functions in limb development.

    PubMed

    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson C; Costantini, Frank; Behringer, Richard R; Laufer, Ed

    2010-11-01

    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1(-/-) embryos die at midgestation. However, studies on early limb buds found that Twist1(-/-) mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity.

  12. Twist1 activity thresholds define multiple functions in limb development

    PubMed Central

    Krawchuk, Dayana; Weiner, Shoshana J.; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed

    2010-01-01

    Summary The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in the anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity. PMID:20732316

  13. Phantom limb pain

    MedlinePlus

    ... Philadelphia, PA: Elsevier; 2015:chap 54. Nikolajsen L, Springer JS, Haroutiunian S. Phantom limb pain. In: Benzon HT, ... medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- ...

  14. Limb regeneration: a new development?

    PubMed

    Nacu, Eugen; Tanaka, Elly M

    2011-01-01

    Salamander limb regeneration is a classical model of tissue morphogenesis and patterning. Through recent advances in cell labeling and molecular analysis, a more precise, mechanistic understanding of this process has started to emerge. Long-standing questions include to what extent limb regeneration recapitulates the events observed in mammalian limb development and to what extent are adult- or salamander- specific aspects deployed. Historically, researchers studying limb development and limb regeneration have proposed different models of pattern formation. Here we discuss recent data on limb regeneration and limb development to argue that although patterning mechanisms are likely to be similar, cell plasticity and signaling from nerves play regeneration-specific roles.

  15. Effects of LED lighting during incubation on layer and broiler hatchability, chick quality, stress susceptibility and post-hatch growth.

    PubMed

    Huth, Jesse C; Archer, Gregory S

    2015-12-01

    Providing light during incubation has been shown to affect hatchability, but the use of LED lights has not been evaluated. This experiment evaluated the effects of LED lighting during embryogenesis on White Leghorn and commercial broiler eggs. To determine this, two experiments were conducted, the first using White Leghorn eggs (N=3456) and the second using commercial broiler eggs (N=3456) where eggs were incubated 12 h of light and 12 h of darkness (LED) or complete darkness (DARK); the light level was 250 lux. Hatchability, embryo mortality, and chick quality were measured in both studies, and a subset of one of the broiler egg trials were grown out to investigate fear and stress parameters. There was no effect (P>0.05) on hatchability of layer eggs; however, there was a difference (P=0.02) observed in chick quality, with the LED group having more chicks (75.34%) with no defects than the DARK group (56.53%). Broiler eggs exposed to LED light showed an increase in hatchability (90.12%, P=0.03) and an increase in no-defect chick percentage (86.12%, P=0.04) at hatch compared to the DARK chicks (85.76% and 69.43%, respectively). Differences were observed between treatments during the 14 d grow-out. The LED birds had lower (P<0.05) physical asymmetry (0.90±0.05 mm) and heterophil/lymphocyte ratios (0.279±0.021), indicating that they were less susceptible to stress than the DARK birds (1.16±0.07 mm and 0.347±0.021, respectively). There was no difference (P>0.05) observed between treatments in growth, FCR, or fear measures at 14 d. These results indicate that providing LED light during incubation can improve chick quality in both white layer and broiler eggs; however, it only appears to improve hatchability in broilers, which could be related to shell pigmentation. It was also demonstrated that providing LED light during incubation can reduce the stress susceptibility of broilers post-hatch. Utilizing light during incubation may be useful tool for the poultry

  16. l-Leucine acts as a potential agent in reducing body temperature at hatching and affords thermotolerance in broiler chicks.

    PubMed

    Han, Guofeng; Yang, Hui; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Ikeda, Hiromi; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2017-02-01

    Thermal manipulation (TM) of incubation temperature causes metabolic alterations and contributes to improving thermotolerance in chicks post hatching. However, there has been no report on amino acid metabolism during TM and the part it plays in thermotolerance. In this study, we therefore first analyzed free amino acid concentrations in the embryonic brain and liver during TM (38.6°C, 6h/d during embryonic day (ED) 10 to ED 18). It was found that leucine (Leu), phenylalanine and lysine were significantly decreased in the embryonic brain and liver. We then chose l-Leu and other branched-chain amino acids (l-isoleucine (L-Ile) and l-valine (l-Val)) for in ovo injection on ED 7 to reveal their roles in thermoregulation, growth, food intake and thermotolerance in chicks. It was found that in ovo injection of l-Leu, but not of l-Ileu or l-Val, caused a significant decline in body temperature at hatching and increased food intake and body weight gain in broiler chicks. Interestingly, in ovo injection of l-Leu resulted in the acquisition of thermotolerance under high ambient temperature (35±1°C for 180min) in comparison with the control thermoneutral temperature (28±1°C for 180min). These results indicate that the free amino acid concentrations during embryogenesis were altered by TM. l-Leu administration in eggs caused a reduction in body temperature at hatching, and afforded thermotolerance in heat-exposed young chicks, further suggesting that l-Leu may be one of the key metabolic factors involved in controlling body temperature in embryos, as well as in producing thermotolerance after hatching.

  17. Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction.

    PubMed

    Wright, Tracy J; Ladher, Raj; McWhirter, John; Murre, Cornelis; Schoenwolf, Gary C; Mansour, Suzanne L

    2004-05-01

    The inner ear develops from an ectodermal placode that is specified by inductive signals from the adjacent neurectoderm and underlying mesoderm. In chick, fibroblast growth factor (Fgf)-19 is expressed in mesoderm underlying the presumptive otic placode, and human FGF19 induces expression of otic markers in a tissue explant containing neural plate and surface ectoderm. We show here that mouse Fgf15 is the sequence homolog of chick and human Fgf19/FGF19. In addition, we show that FGF15, like FGF19, is sufficient to induce expression of otic markers in a chick explant assay, suggesting that these FGFs are orthologs. Mouse embryos lacking Fgf15, however, do not have otic abnormalities at E9.5-E10.5, suggesting that Fgf15 is not uniquely required for otic induction or early patterning of the otocyst. To compare FGF15 and FGF19 signaling components and assess where signals potentially redundant with FGF15 might function, we determined the expression patterns of Fgf15 and Fgf19. Unlike Fgf19, Fgf15 is not expressed in mesoderm underlying the presumptive otic placode, but is expressed in the adjacent neurectoderm. Fgfr4, which encodes the likely receptor for both FGF19 and FGF15, is expressed in the neurectoderm of both species, and is also expressed in the mesoderm only in chick. These results suggest the hypotheses that during otic induction, FGF19 signals in either an autocrine fashion to the mesoderm or a paracrine fashion to the neurectoderm, whereas FGF15 signals in an autocrine fashion to the neurectoderm. Thus, the FGFs that signal to the neurectoderm are the best potential candidates for redundancy with FGF15 during mouse otic development.

  18. [Characteristics of morphogenesis of the Japanese quail embryos during microgravity

    NASA Technical Reports Server (NTRS)

    Dadasheva, O. A.; Gur'eva, T. S.; Sychev, V. N.; Jehns, G.; Jahns, G. (Principal Investigator)

    1998-01-01

    Experiments performed in the period of 1995-1996 cooperatively with US investigators within the MIR/SHUTTLE and MIR/NASA space science projects continued exploration of avian embryogenesis in microgravity. Evaluation of Japanese quail embryos incubated in spaceflight microgravity showed that for the most part they were normally developed and compliant with duration of incubation. One of the major morphometric characteristics of embryo are its mass and size. Comparative analysis of body mass values in the space and laboratory and synchronous control groups pointed to a slight retardation. Body length of space embryos mimicked their mass curve. Data on the dynamics of mass and length of Japanese quail embryos support the well-known theory according to which growth and formation are distinguished by equifinality. No differences were revealed by the investigations of individual parts of embryonic bodies in the space and control groups. However, this finding was true only with regard to the embryos that had no developmental abnormalities. A part of embryos had defective eyes (microphtalmia), limbs (twisted fingers), and beaks.

  19. Mass stranding of wedge-tailed shearwater chicks in Hawaii

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    1999-01-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  20. Mass stranding of wedge-tailed shearwater chicks in Hawaii.

    PubMed

    Work, T M; Rameyer, R A

    1999-07-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  1. Interaction of human and chick DNA repair functions in UV-irradiated xeroderma pigmentosum-chick erythrocyte heterokaryons

    SciTech Connect

    Bootsma, D.; Keijzer, W.; Vander Veer, E.; Rainald, G.; De Weerd-Kastelein, E.A.

    1982-01-01

    Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2-4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C). Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5-8 days. In nuceli of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.

  2. Analysis of cCx39 expression pattern during chick development.

    PubMed

    Nicotra, Annalisa; Cicirata, Federico; Martinez, Salvador

    2004-02-20

    The present study reports the expression pattern of connexin39 (cCx39) in chick embryos at different stages of central nervous system development. We examined the expression between HH17 and HH40 developmental stages of chicken embryos by in situ hybridization (ISH) technique. Connexin39 was first expressed at HH17. It stained neuroepithelial cells in the optic (OV) and telencephalic (TEL) vesicles, plus in the superficial mesenchyme of the two rostral branchial arches (maxilar and mandibular). These cells probably originated from the neural crest. This expression pattern changed drastically between stages HH17 and HH23, while it showed relatively little modifications from HH23 to HH29. At these times, connexin39 was expressed in three regions: the telencephalic vesicle, the diencephalon and the isthmus. At later stages, HH35 and HH40, connexin39 was mainly expressed in the ventricular epithelium and three cell layers of the stratum griseum and fibrosum superficialis (SGFS) in the optic tectum, as well as in granular and nuclear cells in the cerebellum. In conclusion, the expression pattern of connexin39 in embryonic nervous system is dynamic. This pattern is different from, and in some aspects complementary to, those showed by other connexins during brain development.

  3. Elucidation of target muscle and detailed development of dorsal motor neurons in chick embryo spinal cord.

    PubMed

    Kobayashi, Nobumi; Homma, Shunsaku; Okada, Tomoaki; Masuda, Tomoyuki; Sato, Noboru; Nishiyama, Keiji; Sakuma, Chie; Shimada, Takako; Yaginuma, Hiroyuki

    2013-09-01

    The avian cervical spinal cord includes motoneurons (MNs) that send their axons through the dorsal roots. They have been called dorsal motoneurons (dMNs) and assumed to correspond to MNs of the accessory nerve that innervate the cucullaris muscle (SAN-MNs). However, their target muscles have not been elucidated to date. The present study sought to determine the targets and the specific combination of transcription factors expressed by dMNs and SAN-MNs and to describe the detailed development of dMNs. Experiments with tracing techniques confirmed that axons of dMNs innervated the cucullaris muscle. Retrogradely labeled dMNs were distributed in the ventral horn of C3 and more caudal segments. In most cases, some dMNs were also observed in the C2 segment. It was also demonstrated that SAN-MNs existed in the ventral horn of the C1-2 segments and the adjacent caudal hindbrain. Both SAN-MNs and dMNs expressed Isl1 but did not express Isl2, MNR2, or Lhx3. Rather, these MNs expressed Phox2b, a marker for branchial motoneurons (brMNs), although the intensity of expression was weaker. Dorsal MNs and SAN-MNs were derived from the Nkx2.2-positive precursor domain and migrated dorsally. Dorsal MNs remain in the ventral domain of the neural tube, unlike brMNs in the brainstem. These results indicate that dMNs and SAN-MNs belong to a common MN population innervating the cucullaris muscle and also suggest that they are similar to brMNs of the brainstem, although there are differences in Phox2b expression and in the final location of each population. J. Comp. Neurol. 521: 2987-3002, 2013. © 2013 Wiley Periodicals, Inc.

  4. The role of oxygen in prenatal growth: studies in the chick embryo

    PubMed Central

    Giussani, Dino A; Salinas, Carlos E; Villena, Mercedes; Blanco, Carlos E

    2007-01-01

    The compelling evidence linking small size at birth with later cardiovascular disease has renewed and amplified scientific and clinical interests into the determinants of fetal growth. It is accepted that genes and nutrition control fetal growth; however, prior to this study, it had been impossible to isolate the effect of increases and decreases in fetal oxygenation on the regulation of prenatal growth. We investigated the role of oxygen in the control of fetal growth in the chicken because in contrast to mammals, the effects on the fetus of changes in oxygenation could be isolated, by assessing them directly without alteration to the maternal or placental physiology or maternal nutrition during development. The data show that incubation at high altitude of fertilized eggs laid by sea level hens markedly restricted fetal growth. Incubation at high altitude of fertilized eggs laid by high altitude hens also restricted fetal growth, but to a lesser extent compared to eggs laid by sea level hens. By contrast, incubation at sea level of fertilized eggs laid by high altitude hens not only restored, but enhanced, fetal growth relative to sea level controls. Incubation at high altitude of sea level eggs with oxygen supplementation completely prevented the high altitude-induced fetal growth restriction. Thus, fetal oxygenation, independent of maternal nutrition during development, has a predominant role in the control of fetal growth. Further, prolonged high altitude residence confers protection against the deleterious effects of hypoxia on fetal growth. PMID:17962335

  5. Chondroitin sulphate proteoglycan is involved in lens vesicle morphogenesis in chick embryos.

    PubMed

    Gato, A; Martin, C; Alonso, M I; Martinez-Alvarez, C; Moro, J A

    2001-10-01

    Proteoglycans have been implicated in the invagination and formation of various embryonal cavitied primordia. In this paper the expression of chondroitin sulphate proteoglycan (CSPG) is analysed in the lens primordium during lens vesicle formation, and demonstrate that this proteoglycan has a specific distribution pattern with regard to invagination and fusion processes in the transformation of placode into lens vesicle. More specifically, CSPG was detected in: (1) the apical surface of lens epithelial cells, where early CSPG expression was observed in the whole of the lens placode whilst in the vesicle phase it was restricted to the posterior epithelium; (2) intense CSPG expression in the basal lamina, which remained constant for the entire period under study; (3) CSPG expression in the intercellular spaces of the lens primordium epithelium, which increased during the invagination of the primordium and which at the vesicle stage was more evident in the posterior epithelium; and (4) CSPG expression on the edges of the lens placode both prior to and during fusion. Treatment with beta- D -xyloside causes significant CSPG depletion in the lens primordium together with severe alterations in the invagination and fusion of the lens vesicle; this leads to the formation of lens primordia which in some cases remain practically flat or show partial invagination defects or fusion disruption. Similar results were obtained by enzyme digestion with chondroitinase AC but not with type II heparinase, which indicates that alterations induced by beta- D -xyloside were due to interference in CSPG synthesis. The findings demonstrate that CSPG is a common component of the lens primordium at the earliest developmental stages during which it undergoes specific modifications. It also includes experimental evidence to show that 'in vivo' CSPG plays an important role in the invagination and fusion processes of the lens primordium.

  6. Identification of the endothelin-1 receptor in the chick heart

    SciTech Connect

    Miyazaki, H.; Kondoh, M.; Watanabe, H.; Hayashi, T.; Murakami, K.; Takahashi, M.; Yanagisawa, M.; Kimura, S.; Goto, K.; Masaki, T.

    1989-01-01

    This study suggests that binding sites for endothelin-1 (ET-1) are distinct from those for dihydropyridine (DHP)-sensitive, voltage-dependent Ca2+ channels and that ET-1 has its own specific receptors in chick cardiac membranes.

  7. Tribasic copper chloride toxicosis in commercial broiler chicks.

    PubMed

    Malinak, Chad M; Hofacre, Charles C; Collett, Stephen R; Shivaprasad, H L; Williams, Susan M; Sellers, Holly S; Myers, Elise; Wang, Yun-Ting; França, Monique

    2014-12-01

    Two broiler chicken houses containing 17,500 chicks each experienced an extreme elevation in chick mortality beginning on day 3 after placement. Clinical signs observed upon farm visit included numerous small chicks for their age; depressed, lethargic, and comatose chicks; and chicks huddling near feed pans and under heaters. Necropsied chicks were markedly pale and had atrophy of the thymus and bursa, swollen and edematous proventriculus, erosions in the koilin and in the proventricular-ventricular junction, pale kidneys, and yellowish to brownish-orange liver often with linear pale areas. The chicks had watery blood and hematocrits measured from 9.5% to 18%. Chicken infectious anemia was initially suspected based on the clinical signs and gross lesions. Histopathology revealed multifocal acute hepatic degeneration and necrosis with golden-brown pigment in the cytoplasm of hepatocytes and Kupffer cells, moderate to severe koilin degeneration and fragmentation, multifocal mild to moderate proventricular necrosis, mild to moderate necrosis and loss of enterocytes, blunting of small intestinal villi, lymphoid depletion in the thymus and bursa, erythrophagocytosis in the liver and spleen, and acute renal tubular degeneration and necrosis. Special stains revealed mild to abundant accumulation of copper pigment in the cytoplasm of hepatocytes and iron pigment in the cytoplasm of Kupffer cells. Feed analysis revealed 2140 to 2393 parts per million of copper in the starter ration, and heavy metal analysis detected markedly elevated copper levels in formalin-fixed samples of the liver. Excessive amounts of tribasic copper chloride in the starter ration caused copper toxicosis in these chicks. Similar clinical signs and lesions were reproduced when the suspect feed was used in an experimental pen trial.

  8. Limb salvage surgery

    PubMed Central

    Kadam, Dinesh

    2013-01-01

    The threat of lower limb loss is seen commonly in severe crush injury, cancer ablation, diabetes, peripheral vascular disease and neuropathy. The primary goal of limb salvage is to restore and maintain stability and ambulation. Reconstructive strategies differ in each condition such as: Meticulous debridement and early coverage in trauma, replacing lost functional units in cancer ablation, improving vascularity in ischaemic leg and providing stable walking surface for trophic ulcer. The decision to salvage the critically injured limb is multifactorial and should be individualised along with laid down definitive indications. Early cover remains the standard of care, delayed wound coverage not necessarily affect the final outcome. Limb salvage is more cost-effective than amputations in a long run. Limb salvage is the choice of procedure over amputation in 95% of limb sarcoma without affecting the survival. Compound flaps with different tissue components, skeletal reconstruction; tendon transfer/reconstruction helps to restore function. Adjuvant radiation alters tissue characters and calls for modification in reconstructive plan. Neuropathic ulcers are wide and deep often complicated by osteomyelitis. Free flap reconstruction aids in faster healing and provides superior surface for offloading. Diabetic wounds are primarily due to neuropathy and leads to six-fold increase in ulcerations. Control of infections, aggressive debridement and vascular cover are the mainstay of management. Endovascular procedures are gaining importance and have reduced extent of surgery and increased amputation free survival period. Though the standard approach remains utilising best option in the reconstruction ladder, the recent trend shows running down the ladder of reconstruction with newer reliable local flaps and negative wound pressure therapy. PMID:24501463

  9. [Limb edema and lymphoscintigraphy].

    PubMed

    Bourgeois, P; Munck, D; Belgrado, J P; Leduc, O; Leduc, A

    2003-02-01

    Lymphoscintigraphic investigations represent techniques of nuclear medicine very contributive for the management and treatment of the limb edemas, either primary or secundary. Their principle is presented and methodologies proposed in the literature are reviewed. Their diagnostic contributions are detailed. The sensitivities and specificities of several protocols of investigation are reported. Some limitations of these examinations are analyzed and discussed. Clinical indications for their use are proposed and their interest with regard to the various treatments that can be applied to these limb edemas is discussed.

  10. JKTLD: Limb darkening coefficients

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2015-11-01

    JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.

  11. Peripheral Insulin Doesn't Alter Appetite of Broiler Chicks.

    PubMed

    Liu, Lei; Xu, Shaohua; Wang, Xiaojuan; Jiao, Hongchao; Lin, Hai

    2016-09-01

    An experiment was conducted to investigate the effect of peripheral insulin treatment on appetite in chicks. Six-d-age chicks with ad libitum feeding or fasting for 3 h before injection received a subcutaneous injection of 0, 1, 3, 5, 10, or 20 IU of insulin or vehicle (saline). The results showed peripheral insulin treatment (1 to 20 IU) did not alter significantly the feed intake in chicks under either ad libitum feeding or fasting conditions within 4 h (p>0.05). Compared with the control, plasma glucose concentration was significantly decreased after insulin treatment of 3, 5, 10, and 20 IU for 4 h in chicks with ad libitum feeding (p<0.05). In fasted chicks, 10 and 20 IU insulin treatments significantly decreased the plasma glucose level for 4 h (p<0.05). Peripheral insulin treatment of 10 IU for 2 or 4 h did not significantly affect the hypothalamic genes expression of neuropeptide Y, proopiomelanocortin, corticotropin-releasing factor and insulin receptors (p>0.05). All results suggest peripheral administration of insulin has no effect on appetite in chicks.

  12. Ethics for embryos

    PubMed Central

    Parker, C

    2007-01-01

    This paper responds to DW Brock's technically strong case for the use of human embryonic stem cells in medical research. His main issue in this context is the question of whether it is moral to destroy viable human embryos. He offers a number of reasons to support his view that it is moral to destroy them, but his use of conceptual arguments is not adequate to secure his position. The purpose and scope of this paper is wholly concerned with his arguments rather than with the conclusion that it is justifiable to destroy human embryos. The author proceeds through his variety of arguments and offers reasons for rejecting them. The author concludes that Brock has not shown that it is moral to destroy viable human embryos. PMID:17906062

  13. No evidence of temperature-dependent sex determination or sex-biased embryo mortality in the chicken.

    PubMed

    Collins, K E; Jordan, B J; McLendon, B L; Navara, K J; Beckstead, R B; Wilson, J L

    2013-12-01

    Skewing the sex ratio at hatch in commercial poultry would be economically beneficial to the poultry industry. The existence of temperature-dependent sex determination is uncertain in birds. This experiment investigated if incubation temperatures skew sex ratios of commercial broilers. Three incubators were each set at a hot (38.3°C), standard (37.5°C), or cool (36.7°C) single-stage incubation temperature one time over 3 trials to eliminate incubator effect as a Latin square design. Sex ratios of hatched chicks and dead embryos were monitored. In one trial, embryo weights were evaluated. The percentages of male hatched chicks did not differ based on incubation temperature (P = 0.4486; 49.5% in the hot treatment, 51.4% at standard temperature, and 49.8% in the cool treatment). The percent hatch of eggs set was lower in the hot treatment (83.6%) than the standard (93.5%) and cool (91.6%) treatments (P < 0.0001) with greater late embryonic mortality in the hot treatment (P < 0.0001); however, the sex ratio of dead embryos did not differ among treatments (P = 0.9863). Pooled data of embryo mortality found no sex-biased embryo mortality with a female/male sex ratio of 1.22:1 (χ(2) = 1.27; P = 0.2596). Embryos from the hot treatment were heavier than those from the standard treatment by d 14 of incubation and were heavier than the embryos from the cool treatment by d 9 of incubation (P < 0.0001). These data indicate that incubation temperature affects embryonic mortality and embryonic growth rate, but it does not affect the sex ratio of broiler chickens. Additionally, no evidence was found for sex-biased embryo mortality in commercial broilers even at the incubation temperatures of this study.

  14. Teratogenic efects of injected methylmercury on avian embryos

    USGS Publications Warehouse

    Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.; Kondrad, Shannon L.; Erwin, Carol A.

    2011-01-01

    Controlled laboratory studies with game farm mallards (Anas platyrhynchos) and chickens (Gallus gallus) have demonstrated that methylmercury can cause teratogenic effects in birds, but studies with wild species of birds are lacking. To address this need, doses of methylmercury chloride were injected into the eggs of 25 species of birds, and the dead embryos and hatched chicks were examined for external deformities. When data for controls were summed across all 25 species tested and across all types of deformities, 24 individuals out of a total of 1,533 (a rate of 1.57%) exhibited at least one deformity. In contrast, when data for all of the mercury treatments and all 25 species were summed, 188 deformed individuals out of a total of 2,292 (8.20%) were found. Some deformities, such as lordosis and scoliosis (twisting of the spine), misshapen heads, shortening or twisting of the neck, and deformities of the wings, were seldom observed in controls but occurred in much greater frequency in Hg-treated individuals. Only 0.59% of individual control dead embryos and hatchlings exhibited multiple deformities versus 3.18% for Hg-dosed dead embryos and hatchlings. Methylmercury seems to have a widespread teratogenic potential across many species of birds.

  15. West nile virus in American white pelican chicks: transmission, immunity, and survival

    USGS Publications Warehouse

    Sovada, Marsha A.; Pietz, Pamela J.; Hofmeister, Erik K.; Bartos, Alisa J.

    2013-01-01

    West Nile virus (WNV) causes significant mortality of American White Pelican chicks at northern plains colonies. We tested oropharyngeal/cloacal swabs from moribund chicks for shed WNV. Such shedding could enable chick-to-chick transmission and help explain why WNV spreads rapidly in colonies. WNV was detected on swabs from 11% of chicks in 2006 and 52% of chicks in 2007; however, viral titers were low. Before onset of WNV mortality, we tested blood from < 3-week-old chicks for antibodies to WNV; 5% of chicks were seropositive, suggesting passive transfer of maternal antibodies. Among near-fledged chicks, 41% tested positive for anti-WNV antibodies, indicating that they survived infection. Among years and colonies, cumulative incidence of WNV in chicks varied from 28% to 81%, whereas the proportion of chicks surviving WNV (i.e., seropositive) was 64–75%. Our data revealed that WNV kills chicks that likely would fledge in the absence of WNV, that infection of chicks is pervasive, and that significant numbers of chicks survive infection.

  16. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  17. Researchers Create Artificial Mouse 'Embryo'

    MedlinePlus

    ... news/fullstory_163881.html Researchers Create Artificial Mouse 'Embryo' Experiment used two types of gene-modified stem ... they've created a kind of artificial mouse embryo using stem cells, which can be coaxed to ...

  18. Artificial limb connection

    NASA Technical Reports Server (NTRS)

    Owens, L. J.

    1974-01-01

    Connection simplifies and eases donning and removing artificial limb; eliminates harnesses and clamps; and reduces skin pressures by allowing bone to carry all tensile and part of compressive loads between prosthesis and stump. Because connection is modular, it is easily modified to suit individual needs.

  19. Localization of HstI transcripts to the apical ectodermal ridge in the mouse embryo.

    PubMed

    Suzuki, H R; Sakamoto, H; Yoshida, T; Sugimura, T; Terada, M; Solursh, M

    1992-03-01

    The HstI gene is a transforming gene, coding for a protein of the fibroblast growth factor family (Sakamoto et al., 1986). Previous RNA hybridization studies with the mouse homolog demonstrated the presence of a 3.0-kb transcript in Day 11 and 14 mouse embryos. Here we detect a 3.0-kb transcript in the limb and body of the dissected Day 11 mouse embryo. PCR amplification using HstI-specific primers also showed comparable results. In order to localize the HstI transcripts during development, corresponding HstI cDNA was isolated, and an HstI-specific region was used as a probe for in situ hybridization analysis. Serial sections of embryos from Day 8 (early-somite stages) through Days 9, 10, 11, and 12 of gestation were examined. With the antisense probe, a signal was detected in the Day 11 and 12 embryo, where it was localized to the apical ectodermal ridge (AER) of the limb bud. This structure is well known for its role in promoting the distal outgrowth of the developing limb bud. Signal was detected in both fore- and hindlimbs during the period of rapid distal growth. This restricted localization suggests a role for HstI in normal embryogenesis, including outgrowth of the limb bud.

  20. The mRNA expression of amino acid transporters, aminopeptidase N, and the di- and tri- peptide transporter PepT1 in the embryo of the domesticated chicken (Gallus gallus) shows developmental regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mRNA expression profile for ten amino acid transporters (AAT), the di-and tri- peptide transporter (Pept1), and aminopeptidase N (APN) during chick embryogenesis was determined. Fertilized eggs were sampled at days 9, 11, 15, 17, 19, and 20, post fertilization. Three to four embryos were sampl...

  1. Different regulation of limb development by p63 transcript variants

    PubMed Central

    Kawata, Manabu; Taniguchi, Yuki; Mori, Daisuke; Yano, Fumiko; Ohba, Shinsuke; Chung, Ung-il; Shimogori, Tomomi; Mills, Alea A.; Tanaka, Sakae

    2017-01-01

    The apical ectodermal ridge (AER), located at the distal end of each limb bud, is a key signaling center which controls outgrowth and patterning of the proximal-distal axis of the limb through secretion of various molecules. Fibroblast growth factors (FGFs), particularly Fgf8 and Fgf4, are representative molecules produced by AER cells, and essential to maintain the AER and cell proliferation in the underlying mesenchyme, meanwhile Jag2-Notch pathway negatively regulates the AER and limb development. p63, a transcription factor of the p53 family, is expressed in the AER and indispensable for limb formation. However, the underlying mechanisms and specific roles of p63 variants are unknown. Here, we quantified the expression of p63 variants in mouse limbs from embryonic day (E) 10.5 to E12.5, and found that ΔNp63γ was strongly expressed in limbs at all stages, while TAp63γ expression was rapidly increased in the later stages. Fluorescence-activated cell sorting analysis of limb bud cells from reporter mouse embryos at E11.5 revealed that all variants were abundantly expressed in AER cells, and their expression was very low in mesenchymal cells. We then generated AER-specific p63 knockout mice by mating mice with a null and a flox allele of p63, and Msx2-Cre mice (Msx2-Cre;p63Δ/fl). Msx2-Cre;p63Δ/fl neonates showed limb malformation that was more obvious in distal elements. Expression of various AER-related genes was decreased in Msx2-Cre;p63Δ/fl limb buds and embryoid bodies formed by p63-knockdown induced pluripotent stem cells. Promoter analyses and chromatin immunoprecipitation assays demonstrated Fgf8 and Fgf4 as transcriptional targets of ΔNp63γ, and Jag2 as that of TAp63γ. Furthermore, TAp63γ overexpression exacerbated the phenotype of Msx2-Cre;p63Δ/fl mice. These data indicate that ΔNp63 and TAp63 control limb development through transcriptional regulation of different target molecules with different roles in the AER. Our findings contribute to

  2. The Virtual Embryo Project

    EPA Science Inventory

    The v-Embryo™ is a far reaching new research program at the US EPA to develop a working computer model of a mammalian embryo that can be used to better understand the prenatal risks posed by environmental chemicals and to eventually predict a chemical’s potential developmental to...

  3. Ethanol neuronotoxicity in the embryonic chick brain in ovo and in culture: interaction of the neural cell adhesion molecule (NCAM).

    PubMed

    Kentroti, S; Rahman, H; Grove, J; Vernadakis, A

    1995-12-01

    The present study was undertaken to investigate the involvement of NCAM in the neuroteratogenic effects of ethanol demonstrated by us and others. In the first experiment we examined the effect of in-ovo ethanol exposure on expression of NCAM in various regions of the embryonic CNS throughout development. Chick embryos received ethanol (10 mg/50 microliters/day) or saline (control) at days 1-3 of development (E1-E3), were sacrificed at various embryonic ages and whole brain (WB), cerebral hemispheres (CH) and cerebellum (CE) processed for SDS-polyacrylamide gel electrophoresis. The normal developmental profile of NCAM in the chick brain exhibited the same dynamics as previously reported by others. When compared to age-matched control brains, an increase was observed in expression of high molecular weight forms of NCAM in cerebral hemispheres between E8 and E10. These bands represented highly sialated (> 180 kDa) forms of NCAM. In fact, the NCAM hand from ethanol-treated embryos at E8 migrated at a higher molecular weight than did its control counterpart, indicating an increase in sialic acid content. In contrast, no clear change was observed in NCAM expression in cerebellum from E10 through E20 as a result of ethanol exposure. In the second experiment, we examined the involvement of NCAM in the alterations in neuronal growth patterns observed in ethanol-exposed cultures. Neuroblast-enriched cultures derived from three-day-old whole chick embryos (E3WE) were maintained on poly-L-lysine pre-coated Petri dishes in DMEM+5% fetal bovine serum with or without 50 mM ethanol. Cultures were fixed at 3, 6 or 9 DIV and co-stained for NCAM and neurofilament (160 kDa). E3WE cultures exhibited intense NCAM immunoreactivity at 3 and 6 DIV decreasing by 9 DIV.NCAM positive structures included all neuronal perikarya, neuritic processes and growth cones. Addition of 50 mM ethanol to the medium resulted in profound alterations in growth patterns of developing neurons which continued

  4. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality

    PubMed Central

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming. PMID:26894831

  5. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    PubMed

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  6. Lysyl oxidase activity and elastin/glycosaminoglycan interactions in growing chick and rat aortas

    PubMed Central

    1987-01-01

    Hydrophobic tropoelastin molecules aggregate in vitro in physiological conditions and form fibers very similar to natural ones (Bressan, G. M., I. Pasquali Ronchetti, C. Fornieri, F. Mattioli, I. Castellani, and D. Volpin, 1986, J. Ultrastruct. Molec. Struct. Res., 94:209-216). Similar hydrophobic interactions might be operative in in vivo fibrogenesis. Data are presented suggesting that matrix glycosaminoglycans (GAGs) prevent spontaneous tropoelastin aggregation in vivo, at least up to the deamination of lysine residues on tropoelastin by matrix lysyl oxidase. Lysyl oxidase inhibitors beta- aminopropionitrile, aminoacetonitrile, semicarbazide, and isonicotinic acid hydrazide were given to newborn chicks, to chick embryos, and to newborn rats, and the ultrastructural alterations of the aortic elastic fibers were analyzed and compared with the extent of the enzyme inhibition. When inhibition was greater than 65% all chemicals induced alterations of elastic fibers in the form of lateral aggregates of elastin, which were always permeated by cytochemically and immunologically recognizable GAGs. The number and size of the abnormal elastin/GAGs aggregates were proportional to the extent of lysyl oxidase inhibition. The phenomenon was independent of the animal species. All data suggest that, upon inhibition of lysyl oxidase, matrix GAGs remain among elastin molecules during fibrogenesis by binding to positively charged amino groups on elastin. Newly synthesized and secreted tropoelastin has the highest number of free epsilon amino groups, and, therefore, the highest capability of binding to GAGs. These polyanions, by virtue of their great hydration and dispersing power, could prevent random spontaneous aggregation of hydrophobic tropoelastin in the extracellular space. PMID:2888772

  7. Regulation of chick early B-cell factor-1 gene expression in feather development.

    PubMed

    El-Magd, Mohammed Abu; Sayed-Ahmed, Ahmed; Awad, Ashraf; Shukry, Mustafa

    2014-05-01

    The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.

  8. Early cardiac development: a view from stem cells to embryos

    PubMed Central

    Van Vliet, Patrick; Wu, Sean M.; Zaffran, Stéphane; Pucéat, Michel

    2012-01-01

    From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology. PMID:22893679

  9. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.

  10. Effects of species and cellular activity of oviductal epithelial cells on their dialogue with co-cultured mouse embryos.

    PubMed

    Tan, Xiu-Wen; Ma, Suo-Feng; Yu, Jian-Ning; Zhang, Xia; Lan, Guo-Cheng; Liu, Xin-Yong; Han, Zheng-Bin; Tan, Jing-He

    2007-01-01

    An efficient co-culture system, especially with oviductal or uterine epithelial cells, is important not only for the production of high quality embryos, but also for the study of the molecular dialogue between embryos and their maternal environment. Although mouse embryos have been co-cultured successfully with oviductal epithelial cells (OECs) from several species, studies on the effects of species and functionality of OECs are few. Reports concerning the necessity of direct contact between the embryo and OECs and about the culture of mouse embryos in medium conditioned with heterologous OECs have been controversial. In this study, pronuclear embryos from Kunming mice, characterized by an obvious two-cell block in vitro, were co-cultured with mouse, goat, and chick OECs. The functionality of OECs was determined by analyzing the cell cycle, apoptosis, the numbers of mitochondria and cilia, and the ability both to support embryonic development and to remove hypoxanthine from the culture medium. The necessity of direct contact between OECs and embryos was studied by repeated renewal of culture medium with fresh conditioned medium, the culture of embryos in plastic wells connected by tunnels to wells with OEC monolayers, and the co-culture of embryos separated from OECs by a filter. Both goat and chick OECs supported mouse embryonic development, but their embryotrophic lifespan was shorter than that of the mouse OECs. Whereas media conditioned with mouse OECs supported mouse embryonic development satisfactorily, medium conditioned with goat OECs supported little development. Immediate dialogue between heterologous OECs and embryos was essential for efficient co-culture, whereas direct contact between the two cell types was not; neither dialogue nor contact was needed between isologous OECs and embryos. Embryotrophic activity and the ability to remove hypoxanthine from conditioned medium declined with time after confluence and number of passages of OECs, mainly because

  11. Anemia induced by high zinc intake in chicks: Mechanisms

    SciTech Connect

    Pimentel, J.L.; Greger, J.L.; Cook, M.E. )

    1991-03-15

    The mechanisms by which excess Zn induced anemia in chickens was assessed in 8 studies in which chicks were randomly assigned to a 2 {times} 2 factorial arrangement of treatments with 60 or 2,000 {mu}g Zn and 10 or 250 {mu}g Cu/g diet. Less Fe-59 appeared in the plasma 1 hour after a labeled meal when chicks were fed excess Zn in 1 of 2 studies but less Fe-59 appeared in livers of chicks fed excess Zn in both studies. The decrease of Fe-59 uptake into tissues paralleled a decrease in Fe concentrations in livers and tibiotarsi. These differences in tissue Fe did not reflect differences in Fe excretion because excretion and incorporation into tissues of injected Fe-59 was not affected by high Zn intake. Although excess Zn decreased tissue Cu concentrations, excess Zn, per se, did not affect cytosolic superoxide dismutase activity, the in vivo t 1/2 of erythrocytes, or erythrocyte hemolysis in vitro. The decrease in body weight of chicks fed excess Zn indicated that protein synthesis and/or degradation could be affected. Increased incorporation of C-14 tyrosine into liver and bone marrow of chicks fed excess Zn suggested increased protoporphyrin synthesis or metallothionein synthesis. These results indicated that decreased Fe absorption was the primary mechanism by which excess Zn induced anemia.

  12. Colour preferences and colour vision in poultry chicks.

    PubMed

    Ham, A D; Osorio, D

    2007-08-22

    The dramatic colours of biological communication signals raise questions about how animals perceive suprathreshold colour differences, and there are long-standing questions about colour preferences and colour categorization by non-human species. This study investigates preferences of foraging poultry chicks (Gallus gallus) as they peck at coloured objects. Work on colour recognition often deals with responses to monochromatic lights and how animals divide the spectrum. We used complementary colours, where the intermediate is grey, and related the chicks' choices to three models of the factors that may affect the attractiveness. Two models assume that attractiveness is determined by a metric based on the colour discrimination threshold either (i) by chromatic contrast against the background or (ii) relative to an internal standard. An alternative third model is that categorization is important. We tested newly hatched and 9-day-old chicks with four pairs of (avian) complementary colours, which were orange, blue, red and green for humans. Chromatic contrast was more relevant to newly hatched chicks than to 9-day-old birds, but in neither case could contrast alone account for preferences; especially for orange over blue. For older chicks, there is evidence for categorization of complementary colours, with a boundary at grey.

  13. Causes of mortality of albatross chicks at Midway Atoll

    USGS Publications Warehouse

    Sileo, L.; Sievert, P.R.; Samuel, M.D.

    1990-01-01

    As part of an investigation of the effect of plastic ingestion on seabirds in Hawaii, we necropsied the carcasses of 137 Laysan albatross (Diomedea immutabilis) chicks from Midway Atoll in the Pacific Ocean during the summer of 1987. Selected tissues were collected for microbiological, parasitological, toxicological or histopathological examinations. Dehydration was the most common cause of death. Lead poisoning, trauma, emaciation (starvation) and trombidiosis were other causes of death; nonfatal nocardiosis and avian pox also were present. There was no evidence that ingested plastic caused mechanical lesions or mortality in 1987, but most of the chicks had considerably less plastic in them than chicks from earlier years. Human activity (lead poisoning and vehicular trauma) caused mortality at Midway Atoll and represented additive mortality for pre-fledgling albatrosses.

  14. Memantine improves observational learning in day-old chicks.

    PubMed

    Barber, Teresa A; Kimbrough, Tiffany N

    2015-06-01

    Evidence of observational learning (social learning) is present in many species. One such task is the one-trial taste-avoidance task, in which Actor chicks peck a bead coated with an aversant substance. Observer chicks learn to avoid beads that are similar in appearance to the one presented to the Actors. It has been firmly established that active learning of the one-trial taste-avoidance task is dependent on a constrained level of glutamate receptor activation. The current study examined the effects of memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, on the learning by Observers. Memantine produced an inverted U-shaped dose-dependent response curve; 1.0 mmol/l memantine produced significant improvement. These results demonstrate that memantine influences memory formation for observational learning in the day-old chick and support the hypothesis that memantine can improve memories by altering levels of glutamate during memory formation.

  15. Proximal to distal patterning during limb development and regeneration: a review of converging disciplines.

    PubMed

    Mariani, Francesca V

    2010-05-01

    Regeneration of lost structures typically involves distinct events: wound healing at the damaged site, the accumulation of cells that will be used as future building blocks and, finally, the initiation of molecular signaling pathways that dictate the form and pattern of the regenerated structures. Amphibians and urodeles in particular, have long been known to have exceptional regenerative properties. For many years, these animals have been the model of choice for understanding limb regeneration, a complex process that involves reconstructing skin, muscle, bone, connective tissue and nerves into a functional 3D structure. It appears that this process of rebuilding an adult limb has many similarities with how the limb forms in the first place--for example, in the embryo, all the components of the limb need to be formed and this requires signaling mechanisms to specify the final pattern. Thus, both limb formation and limb regeneration are likely to employ the same molecular pathways. Given the available tools of molecular biology and genetics, this is an exciting time for both fields to share findings and make significant progress in understanding more about the events that dictate embryonic limb pattern and control limb regeneration. This article focuses particularly on what is known about the molecular control of patterning along the proximal-distal axis.

  16. Green Light-emitting Diodes Light Stimuli during Incubation Enhances Posthatch Growth without Disrupting Normal Eye Development of Broiler Embryos and Hatchlings.

    PubMed

    Zhang, L; Zhu, X D; Wang, X F; Li, J L; Gao, F; Zhou, G H

    2016-11-01

    Monochromatic green light-emitting diodes (LED) light stimuli influences the posthatch growth performance of chicks. This study was undertaken with the following objectives: i) to examine whether the green LED light stimuli induces an overheating effect by determining weight loss rate of fertile eggs during incubation period; ii) to look for the development of eyes and other primary organs at different ages of embryos and newly hatched chicks. Arbor Acres fertile broiler eggs (n = 480) were randomly assigned to 3 incubation groups and exposed to continuous white light, green light, or a dark environment (control) from the first day to 19 d of incubation. The light sourced from LED lamps with the intensity of 30 lx at eggshell level. The results showed that either green or white light stimuli during incubation did not significantly affect the weight loss rate of fertile eggs, hatching time, hatchability, chick embryo, or body weight (BW), the weight percentage of heart, liver, and eyes, as well as obvious systematic abnormalities in eye weight, side-to-side, back-to-front, or corneal diameter from 15 d of embryogenesis to 6 d of posthatch (p>0.05). Compared with the dark condition, green light stimuli during incubation tended to increase feed intake (p = 0.080), improved the BW gain of chicks during 0 to 6 day posthatch (p<0.05), and increased the percentage of pectoral muscle to the BW on 3- and 6-day-old chicks. In addition, embryos or chicks in green light had lower weight percentage of yolk retention on 19 d of embryogenesis and 1 d of posthatch in comparison to those in dark or white group (p<0.05). These results suggest that providing 30 lx green LED light stimuli during incubation has no detrimental effect on the development of eyes, heart and liver of embryos and hatchlings, but does have potential benefits in terms of enhancement of the chick growth during the early posthatch stages. In addition, the fertile broiler eggs stimulated with 30 lx green LED

  17. The effect of ethanol exposure on extraembryonic vascular development in the chick area vasculosa.

    PubMed

    Tufan, A Cevik; Satiroglu-Tufan, N Lale

    2003-01-01

    The effect of ethanol (EtOH) exposure on extraembryonic vascular development was examined using the chick embryo area vasculosa (AV) in shell-less culture. Embryos were placed in cultures at Hamburger Hamilton (HH) stage 11/12 and a single dose of EtOH (10, 30 or 50%) was applied to the center of the blastodisc. Untreated/sodium-chloride-treated controls showed normal embryonic growth and well-developed extraembryonic vessels at 24/48 h of treatment. At doses of 30 and 50%, the mortality rate was significantly increased, and survivors demonstrated significant growth retardation and inhibition of normal vascular development in a dose-dependent manner. Immunostaining for vascular endothelial growth factor (VEGF) showed that mesenchymal cells continued to differentiate into angioblasts to form blood islands, but their assembly into primitive vessels was perturbed in a dose-dependent manner. Northern blot analyses of basic fibroblast growth factor, VEGF, Flt-1 and Flk-1 mRNA expression supported these findings and showed a dose-dependent decrease in EtOH-treated cultures compared to controls. Co-treatment with alpha-tocopherol (0.05 M) or all-trans-retinoic acid (10(-8) M) significantly decreased the mortality rate and improved both embryonic growth and extraembryonic vascular development in the cultures. On the other hand, almost all embryos treated with 10% EtOH survived the first 48 h after treatment. However, the complexity of the vascular tree measured as the relative vasculogenesis index, the surface area of the AV and the mRNA expression of vasculogenic molecules were increased during the first 24 h. This acute effect disappeared 48 h after treatment and the vascular tree continued to develop parallel to the controls. No significant growth retardation was observed in this group. These results suggest that, in terms of extraembryonic vascular development, an early, single, low-dose EtOH exposure may have an acute, short-term positive effect, whereas moderate- or

  18. Carbonic anhydrases in chick extra-embryonic structures: a role for CA in bicarbonate reabsorption through the chorioallantoic membrane.

    PubMed

    Gabrielli, M Gabriella

    2004-06-01

    The villus cavity cells, a specific cell type of the chick chorioallantoic membrane, express both cytosolic carbonic anhydrase in their cytoplasm and HCO3(-)/Cl(-) anion exchangers at their basolateral membranes. By immunohistochemical analysis, we show here that villus cavity cells specifically react with antibodies directed against the membrane-associated form of carbonic anhydrase, CAIV. Staining is restricted to the apical cell membranes, characteristically invaginated toward the shell membrane, as well as to endothelia of blood vessels present in the mesodermal layer. The occurrence of a membrane-associated CA form at the apical pole of villus cavity cells, when definitively confirmed, would be fairly consistent with the role proposed for these cells in bicarbonate reabsorption from the eggshell so to prevent metabolic acidosis in the embryo during development.

  19. Ensoulment and IVF embryos.

    PubMed Central

    Shea, M C

    1987-01-01

    This paper examines the metaphysical question of 'ensoulment' in relation to the theory, put forward in an earlier paper, that human life begins when the newly formed body organs and systems of the embryo begin to function as an organised whole, at which stage there is evidence of a change of nature. Although Roman Catholic theology teaches that a human being is a union of physical body and spiritual soul, it is incorrect to interpret this in a dualistic sense. The meaning of 'soul' is considered and the conclusion reached that although both in the religious context and apart from it abortion is difficult to justify at any stage after conception, it does not follow that the use of 'spare' In Vitro Fertilisation (IVF) embryos should be rejected. If 'ensoulment' does not occur until the new organism functions as a whole then a decision not to make use of IVF embryos for medical purposes would be a heavy responsibility and not a 'safe' way out. PMID:3612702

  20. Detailed analysis of the δ-crystallin mRNA-expressing region in early development of the chick pituitary gland.

    PubMed

    Inoue, Makiko; Shiina, Tomoya; Aizawa, Sayaka; Sakata, Ichiro; Takagi, Hiroyasu; Sakai, Takafumi

    2012-06-01

    Although δ-crystallin (δ-crys), also known as lens protein, is transiently expressed in Rathke's pouch (RP) of the chick embryo, detailed temporal and spatial expression patterns have been obscure. In this study, to understand the relationship between the δ-crys mRNA-expressing region and RP formation, we examined the embryonic expression pattern of δ-crys mRNA in the primordium of the adenohypophysis. δ-crys mRNA expression was initially found at stage 15 anterior to the foregut and posterior to the invaginated oral ectoderm. After RP formation, the δ-crys mRNA was expressed in the post-ventral region of RP and the anterior region of RP. δ-crys mRNA expression was then restricted to the cephalic lobe of the pituitary gland. From stage 20, the δ-crys and alpha-glycoprotein subunit (αGSU) mRNA-expressing regions were almost completely overlapping. The αGSU mRNA-expressing region is thought to be the primordium of the pars tuberalis, and these regions were overlapped with the Lhx3 mRNA-expressing region. The intensity of δ-crys mRNA expression gradually decreased with development and completely disappeared by stage 34. These results suggest that the embryonic chick pituitary gland consists of two different regions labeled with δ-crys and Lhx3.

  1. Cloning and developmental expression analysis of chick Hira (Chira), a candidate gene for DiGeorge syndrome.

    PubMed

    Roberts, C; Daw, S C; Halford, S; Scambler, P J

    1997-02-01

    Deletions within human chromosome 22q11 cause a wide variety of birth defects including the DiGeorge syndrome and velo-cardio-facial (Shprintzen) syndrome. Despite the positional cloning of several genes from the critical region, it is still not possible to state whether the phenotype is secondary to haploinsufficiency of one or more than one gene. In embryological studies phenocopies of these abnormalities are produced by a variety of actions which disrupt the contribution made by the cranial and cardiac neural crest to development. The TUPLE1/HIRA gene is related to WD40 domain transcriptional regulators and maps within the DiGeorge critical region. We have cloned the chick homologue of HIRA and conducted in situ expression analysis in early chick embryos. Hira is expressed in the developing neural plate, the neural tube, neural crest and the mesenchyme of the head and branchial arch structures. HIRA may therefore have a role in the haploinsufficiency syndromes caused by deletion of 22q11.

  2. Identification of spontaneous mutations within the long-range limb-specific Sonic Hedgehog enhancer (ZRS) that alter Sonic Hedgehog expression in the chicken limb mutants oligozeugodactly and Silkie Breed

    PubMed Central

    Maas, Sarah A.; Suzuki, Takayuki; Fallon, John F.

    2011-01-01

    The evolutionarily conserved, non-coding ~800 base-pair zone of polarizing activity (ZPA) regulatory sequence (ZRS) controls Shh expression in the posterior limb. We report that the chicken mutant oligozeugodactly (ozd), which lacks limb Shh expression, has a large deletion within the ZRS. Furthermore, the preaxial polydactylous, Silkie Breed chicken, which develops ectopic anterior limb Shh expression, has a single base-pair change within the ZRS. Using an in vivo reporter assay to examine enhancer function in the chick limb, we demonstrate that the wild-type ZRS drives β-galactosidase reporter expression in the ZPA of both wild-type and ozd limbs. The Silkie ZRS drives β-galactosidase in both posterior and anterior Shh domains in wild-type limb buds. These results support the hypothesis that the ZRS integrates positive and negative prepatterned regulatory inputs in the chicken model system and demonstrate the utility of the chicken limb as an efficient genetic system for gene regulatory studies. PMID:21509895

  3. Morphometrics of corneal growth in chicks raised in constant light.

    PubMed

    Wahl, Christina; Li, Tong; Choden, Tsering; Howland, Howard

    2009-03-01

    In this study we wish to augment our understanding of the effect of environment on corneal growth and morphology. To understand how corneal development of chicks raised in constant light differs from that of 'normal' eyes exposed to cyclic periods of light and dark, white Leghorn chicks were raised under either constant light (approximately 700 lux at cage top) or in 12 h light/12 h dark conditions for up to 12 weeks after hatching. To determine whether corneal expansion is uniform, some birds from each group received corneal tattoos for periodic photographic assessment. By 16 days of age, constant light corneas weighed less than light/dark regimen corneas [7.39 +/- 0.35 mg (SE) vs. 8.47 mg +/- 0.26 mg SE wet weight, P < or = 0.05], and corresponding differences were seen in corneal dry weights. Spatial expansion of the corneal surface was uniform in both groups, but the rate of expansion was slower in constant light chicks [0.0327 +/- 0.009 (SE) vs. 0.144 +/- 0.018 (SE) mm(2) day(-1) for normal chicks, P < or = 0.001]. At 1 day of age, there were 422 +/- 12.5 (SE) stromal cells 0.01 mm(-2) in the central cornea and 393 +/- 21.5 (SE) stromal cells 0.01 mm(-2 )peripherally. Although this difference is not statistically significant, the cell densities in the central cornea were always larger than those of the peripheral cornea in all eight measurements over a 10.5-week period, and this difference is significant (P < or = 0.008, binomial test). Light/dark regimen birds show no such consistent difference in cell densities between central and peripheral corneas. Thus, the density distribution of corneal stromal cells of chicks grown in constant light differs from that of normal chicks. Taken together, all these observations suggest that diurnal cycles of light and darkness are necessary for normal corneal growth.

  4. Neuropeptide Y effect on food intake in broiler and layer chicks.

    PubMed

    Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi; Ikura, Atsushi; Nakayama, Yoko; Hasegawa, Shin

    2011-08-01

    Broiler chicks eat more food than layer chicks. In this study, we examined the involvement of orexigenic peptide neuropeptide Y (NPY) in the difference in food intake between broiler and layer chicks (Gallus gallus). First, we compared the hypothalamic mRNA levels of NPY and its receptors (Y1 and Y5 receptors) between these strains at 1, 2, 4, and 8 days of age. Daily food intake was significantly higher in broiler chicks than layer chicks after 2 days of age. However, the hypothalamic NPY mRNA level was significantly lower in broiler chicks than layer chicks except at 8 days of age. In addition, the mRNA levels of NPY receptors were also significantly lower in broiler chicks than layer chicks at 2 and 4 days of age (Y1 receptor) or 2 days of age (Y5 receptor). These results suggest that the differences in the expressions of hypothalamic NPY and its receptors do not cause the increase in food intake in broiler chicks. To compare the orexigenic effect of NPY between broiler and layer chicks, we next examined the effects of central administration of NPY on food intake in these strains. In both strains, central administration of NPY significantly increased food intake at 2, 4 and 8 days of age. All our findings demonstrated that the increase in food intake in broiler chicks is not accompanied with the over-expression of NPY or its receptor.

  5. Effect of delayed feed access on production and blood parameters of layer-type chicks.

    PubMed

    Gaglo-Disse, Adjovi; Tona, Kokou; Aliou, Sakibou; Debonne, Marian; Aklikokou, Kodjo; Gbeassor, Messanvi; Decuypere, Eddy

    2010-06-01

    A total of 684 Hisex Brown day-old chicks were studied. The chicks were randomly assigned into three groups as follows: (1) chicks with immediate feed access; (2) chicks with 48 h delay in feed access, and (3) chicks with 72 h delay in feed access. For each group, chicks were assigned into 4 replications of 57 birds each. Prior to feed access, the chicks were weighed. Samples of chicks were used to weigh yolk sac at 1, 3 and 7 days and to collect blood at 1, 3, 7, 14 and 56 days. Also, reared chicks were weighed weekly. The results indicated that chick weights decreased during the holding period. Yolk sac utilisation was similar between groups, while morbidity and mortality increased linearly with the duration of delay in feed access. At 56 days, chicks having delayed access to feed were lighter than those without delay in feed access. Serum concentration of glucose up to 14 days and of total protein and triglycerides until 56 days decreased with the increasing duration of delay in feed access. It can be concluded that delayed feed access is detrimental to the juvenile performance of layer-type chicks and has a negative age-related effect on the serum concentrations of glucose, triglycerides and total protein.

  6. The content of dityrosine in chick and rabbit aorta proteins.

    PubMed

    Malaník, V; Ledvina, M

    1979-01-01

    The possible presence of dityrosine in elastin derived by two different methods and in structural glycoproteins from aortas of 1 day old chicks, adult rabbits and fetal rabbits was determined by a sensitive spectrofluorimetric procedure. Only chick tissues were found to contain dityrosine, 0.3 residues/100,000 total amino acid residues in aortic elastin and 12-15 residues/100,000 residues in the structural glycoproteins. No dityrosine could be detected in any of the fetal or mature rabbit tissues. However, related fluorescent compounds with different excitation-emission maxima and different elution times were obtained by ion exchange chromatography of structural glycoproteins partially hydrolyzed under alkaline conditions.

  7. Disparate Igf1 expression and growth in the fore- and hind limbs of a marsupial mammal (Monodelphis domestica).

    PubMed

    Sears, Karen E; Patel, Ankit; Hübler, Merla; Cao, Xiaoyi; Vandeberg, John L; Zhong, Sheng

    2012-06-01

    Proper regulation of growth is essential to all stages of life, from development of the egg into an embryo to the maintenance of normal cell cycle progression in adults. However, despite growth's importance to basic biology and health, little is known about how mammalian growth is regulated. In this study, we investigated the molecular basis of the highly disparate growth of opossum fore- and hind limbs in utero. We first used a novel, opossum-specific microarray to identify several growth-related genes that are differentially expressed in opossum fore- and hind limbs of comparable developmental stages. These genes included Igf1. Given Igf1's role in the growth of other systems, we further investigated the role of Igf1 in opossum limb growth. Supporting the microarray results, RT-PCR indicated that Igf1 levels are approximately two times higher in opossum fore- than hind limbs. Consistent with this, while Igf1 transcripts were readily detectable in opossum forelimbs using whole-mount in situ hybridization, they were not detectable in opossum hind limbs. Furthermore, opossum limbs treated with exogenous Igf1 protein experienced significantly greater cellular proliferation and growth than control limbs in vitro. Taken together, results suggest that the differential expression of Igf1 in developing opossum limbs contributes to their divergent rate of growth, and the unique limb phenotype of opossum newborns. This study establishes the opossum limb as a new mammalian model system for study of organ growth.

  8. Morphological, Molecular, and Hormonal Basis of Limb Regeneration across Pancrustacea.

    PubMed

    Das, Sunetra

    2015-11-01

    Regeneration is a developmental process that allows an organism to re-grow a lost body part. Historically, the most studied aspect of limb regeneration across Pancrustacea is its morphological basis and its dependence on successful molting. Although there are distinct morphological differences in regeneration processes between insects and crustaceans, in both groups the phenomenon is initiated via formation of a blastema, followed by proliferation, dedifferentiation, and redifferentiation of blastemal cells to generate a functional limb. In recent years, with the availability of sequence data and tools to manipulate gene expression, the emphasis of this field has shifted toward the genetic basis of limb regeneration. Among insects this focus is on genes that are known to be required during the development of legs in embryos. RNA interference-mediated functional studies conducted during regeneration of imaginal discs of Drosophila melanogaster, and nymphal legs of Gryllus bimaculatus reveal that several conserved pathways and transcription factors (Wingless, Decapentaplegic, Hedgehog, Dachshund) are required for successful regeneration. In contrast to studies on the regeneration of insects' limbs, work on crustaceans has focused on the hormonal basis of the re-growth of limbs. Regeneration in decapods, like Uca pugilator and Gecarcinus lateralis, occurs in discrete phases of growth in tandem with the stages of the molt cycle. Recent studies have shown that ecdysteroid hormone signaling is necessary for blastemal proliferation. Although the current research emphases of limb regeneration in insect and crustacean are fairly distinct, the results generated by functional studies of a wide array of regeneration genes will be beneficial for generating testable regeneration models.

  9. GATA6 Is a Crucial Regulator of Shh in the Limb Bud

    PubMed Central

    Kozhemyakina, Elena; Ionescu, Andreia; Lassar, Andrew B.

    2014-01-01

    In the limb bud, patterning along the anterior-posterior (A-P) axis is controlled by Sonic Hedgehog (Shh), a signaling molecule secreted by the “Zone of Polarizing Activity”, an organizer tissue located in the posterior margin of the limb bud. We have found that the transcription factors GATA4 and GATA6, which are key regulators of cell identity, are expressed in an anterior to posterior gradient in the early limb bud, raising the possibility that GATA transcription factors may play an additional role in patterning this tissue. While both GATA4 and GATA6 are expressed in an A-P gradient in the forelimb buds, the hindlimb buds principally express GATA6 in an A-P gradient. Thus, to specifically examine the role of GATA6 in limb patterning we generated Prx1-Cre; GATA6fl/fl mice, which conditionally delete GATA6 from their developing limb buds. We found that these animals display ectopic expression of both Shh and its transcriptional targets specifically in the anterior mesenchyme of the hindlimb buds. Loss of GATA6 in the developing limbs results in the formation of preaxial polydactyly in the hindlimbs. Conversely, forced expression of GATA6 throughout the limb bud represses expression of Shh and results in hypomorphic limbs. We have found that GATA6 can bind to chromatin (isolated from limb buds) encoding either Shh or Gli1 regulatory elements that drive expression of these genes in this tissue, and demonstrated that GATA6 works synergistically with FOG co-factors to repress expression of luciferase reporters driven by these sequences. Most significantly, we have found that conditional loss of Shh in limb buds lacking GATA6 prevents development of hindlimb polydactyly in these compound mutant embryos, indicating that GATA6 expression in the anterior region of the limb bud blocks hindlimb polydactyly by repressing ectopic expression of Shh. PMID:24415953

  10. Identification of genes downstream of the Shh signalling in the developing chick wing and syn-expressed with Hoxd13 using microarray and 3D computational analysis.

    PubMed

    Bangs, Fiona; Welten, Monique; Davey, Megan G; Fisher, Malcolm; Yin, Yili; Downie, Helen; Paton, Bob; Baldock, Richard; Burt, David W; Tickle, Cheryll

    2010-01-01

    Sonic hedgehog (Shh) signalling by the polarizing region at the posterior margin of the chick wing bud is pivotal in patterning the digits but apart from a few key downstream genes, such as Hoxd13, which is expressed in the posterior region of the wing that gives rise to the digits, the genes that mediate the response to Shh signalling are not known. To find genes that are co-expressed with Hoxd13 in the posterior of chick wing buds and regulated in the same way, we used microarrays to compare gene expression between anterior and posterior thirds of wing buds from normal chick embryos and from polydactylous talpid³ mutant chick embryos, which have defective Shh signalling due to lack of primary cilia. We identified 1070 differentially expressed gene transcripts, which were then clustered. Two clusters contained genes predominantly expressed in posterior thirds of normal wing buds; in one cluster, genes including Hoxd13, were expressed at high levels in anterior and posterior thirds in talpid³ wing buds, in the other cluster, genes including Ptc1, were expressed at low levels in anterior and posterior thirds in talpid³ wing buds. Expression patterns of genes in these two clusters were validated in normal and talpid³ mutant wing buds by in situ hybridisation and demonstrated to be responsive to application of Shh. Expression of several genes in the Hoxd13 cluster was also shown to be responsive to manipulation of protein kinase A (PKA) activity, thus demonstrating regulation by Gli repression. Genes in the Hoxd13 cluster were then sub-clustered by computational comparison of 3D expression patterns in normal wing buds to produce syn-expression groups. Hoxd13 and Sall1 are syn-expressed in the posterior region of early chick wing buds together with 6 novel genes which are likely to be functionally related and represent secondary targets of Shh signalling. Other groups of syn-expressed genes were also identified, including a group of genes involved in

  11. Limb lengthening in achondroplasia

    PubMed Central

    Chilbule, Sanjay K; Dutt, Vivek; Madhuri, Vrisha

    2016-01-01

    Background: Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Materials and Methods: Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Results: Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3rd percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. Conclusion: Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration. PMID

  12. Lipotyphla limb myology comparison.

    PubMed

    Neveu, Pauline; Gasc, Jean-Pierre

    2002-05-01

    Fore- and hindlimb muscles were dissected in four species of Lipotyphla: the western European hedgehog Erinaceus europaeus (Erinaceidae, Erinaceinae); the moonrat Echinosorex gymnura (Erinaceidae, Hylomyinae or Galericinae); the tailless tenrec Tenrec ecaudatus (Tenrecidae, Tenrecinae); and the common European white-toothed shrew Crocidura russula (Soricidae, Soricinae). This work completely reviews the limb musculature of these walking mammals. Twelve myological characters were evaluated in order to disclose phylogenetic relationships. The cladogram obtained supported previous ones based on cranial and dental characters. This study shows that myological characters are valuable in phylogenetic analyses.

  13. Gender determination of avian embryo

    DOEpatents

    Daum, Keith A.; Atkinson, David A.

    2002-01-01

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  14. Electrothermal branding for embryo labeling.

    PubMed

    Wang, L; Beebe, D J; Williams, A R; Easley, K D

    1997-11-01

    A novel embryo labeling technique based on electrothermal branding is developed. Two types of micro branding irons are fabricated and tested. One utilizes 25 microns tungsten wire as the heating element. The other utilizes surface micromachining techniques to fabricate polysilicon branding irons. The thermal behavior of the branding irons and the heat distributions in the embryos are analytically modeled. Micron-scale labels on unfertilized bovine embryos are achieved.

  15. [Effects of cytosine-arabinofuranoside on the development of reptilian embryos (Lacerta viridis, Laur. and Anguis fragilis, L.)].

    PubMed

    Raynaud, A

    1982-01-01

    Administered into the yolk sac of eggs of Lacerta viridis as a single dose of 17 to 40 micrograms, cytosine-arabinoside (Ara-C) was compatible with survival of the embryo, from the sixth day of incubation, for at least 20 to 25 days. The LD50 was 40 to 50 micrograms per egg. Doses of 20 to 40 micrograms of Ara-C introduced in the yolk sac of eggs of the slow-worm (Anguis fragilis) cultured in vitro, at stages of the allantoid bud of 0,5 mm to 2,5 mm long, killed the embryo in 4 to 8 days (possibly due to alterations of capillary blood vessels of allantois and area vasculosa). In the two species, these doses caused cytotoxic effects on embryonic proliferating tissues, growth inhibition and a variety of developmental defects. In young embryos of Anguis fragilis, similar doses of 20 to 40 micrograms of Ara-C caused, in 2 to 4 days, death of many cells in the anlagen of growing organs: neural tube, sensory organs, bronchi, mesoderm of the limb bud, subcutaneous mesenchyme, anlage of dorsal skeletal structures, etc.; followed by growth inhibition and malformations. On the other hand, in the limb bud, the apical ridge was less retrogressed than in control embryos; the limb buds showed slightly better development in treated embryos than in controls, but, Ara-C induced severe damage in their mesoderm. In all embryos of Lacerta viridis, treated at the stage of 6 days or of 10 days of incubation by doses of 20 to 40 micrograms of Ara-C and killed 15 to 35 days later, there was a general reduction of size and of weight and external and internal malformations, more or less severe, were present: modifications of the form of the head, shortening of the lower jaw, labial clefts, microphthalmia, micromelia and other limbs defects, developmental defects of the tail. In some embryos, the only external defects observed were missing fingers and toes; in three of these embryos, the same digits were missing in the four limbs. Modifications of limb morphogenesis induced by Ara-C are

  16. Haemoproteus balearicae and other blood parasites of free-ranging Florida sandhill crane chicks

    USGS Publications Warehouse

    Dusek, R.J.; Spalding, M.G.; Forrester, Donald J.; Greiner, E.C.

    2004-01-01

    We obtained blood smears from 114 Florida sandhill crane (Grus canadensis pratensis) chicks in Osceola and Lake Counties, Florida, USA, during 1998-2000. Leucocytozoon grusi was observed in 11 (10%) chicks; Haemoproteus antigonis was observed in eight (7%) chicks; and three (3%) chicks were infected with Haemoproteus balearicae. One chick infected with H. balearicae suffered from severe anemia (packed cell volume=13%) and was later found moribund. At necropsy this bird also had severe anemia and damage to the heart possibly due to hypoxia. This is the first report of H. balearicae in free-ranging North American cranes. ?? Wildlife Disease Association 2004.

  17. Twist2 contributes to termination of limb bud outgrowth and patterning through direct regulation of Grem1.

    PubMed

    Wade, Christine; Brinas, Inigo; Welfare, Megan; Wicking, Carol; Farlie, Peter G

    2012-10-01

    Twist1 has been demonstrated to play critical roles in the early development of neural crest and mesodermally derived tissues including the limb. Twist2 has been less well characterised but its relatively late onset of expression suggests specific roles in the development of a number of organs. Expression of Twist2 within the developing limbs begins after formation of the limb bud and persists within the peripheral mesenchyme until digital rays condense. We have used RCAS-mediated overexpression in chick to investigate the function of Twist2 in limb development. Viral misexpression following injection into the lateral plate mesoderm results in a spectrum of hypoplastic limb phenotypes. These include generalized shortening of the entire limb, fusion of the autopod skeletal elements, loss of individual digits or distal truncation resulting in complete loss of the autopod. These phenotypes appear to result from a premature termination of limb outgrowth and manifest as defective growth in both the proximal-distal and anterior-posterior axes. In situ hybridisation analysis demonstrates that many components of the Shh/Grem1/Fgf regulatory loop that controls early limb growth and patterning are downregulated by Twist2 overexpression. Grem1 has a complementary expression pattern to Twist2 within the limb primordia and co-expression of both Grem1 and Twist2 results in a rescue of the Twist2 overexpression phenotype. We demonstrate that Twist proteins directly repress Grem1 expression via a regulatory element downstream of the open reading frame. These data indicate that Twist2 regulates early limb morphogenesis through a role in terminating the Shh/Grem1/Fgf autoregulatory loop.

  18. Automated Segmentation and Object Classification of CT Images: Application to In Vivo Molecular Imaging of Avian Embryos

    PubMed Central

    Schmidt, Jana; Zimmermann, Johannes; Saluz, Hans Peter

    2013-01-01

    Background. Although chick embryogenesis has been studied extensively, there has been growing interest in the investigation of skeletogenesis. In addition to improved poultry he