Science.gov

Sample records for chief launches pr

  1. Chief executives. Staying afloat.

    PubMed

    Spurgeon, P; Clark, J; Smith, C

    2001-09-27

    A study of chief executives identified the ability to prioritize, clear vision, resilence, and willingness to take decisions as key factors in success. Some wanted more active involvement from the regional director. Chief executives could be subject to 360-degree assessment. More work is needed to establish the compatibility of chief executives and chairs.

  2. Engineer Equipment Chief.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by engineer equipment chiefs. Addressed in the five individual units of the course are the following topics: construction management (planning, scheduling, and supervision);…

  3. Great Indian Chiefs.

    ERIC Educational Resources Information Center

    Pastron, Allen

    Brief biographies and pen and ink portraits of over 40 chiefs and other distinguised American Indians comprise this book. Each page contains a full page portrait and a biography that notes tribal affiliation, important dates, geographical location, major accomplishments, and dealings with other tribes, white settlers, and the United States or…

  4. The Chief Diversity Officer

    ERIC Educational Resources Information Center

    Williams, Damon; Wade-Golden, Katrina

    2007-01-01

    Numerous institutions are moving toward the chief diversity officer model of leading and managing diversity in higher education. These officers carry formal administrative titles and ranks that range from vice president for institutional diversity to associate vice chancellor for diversity and climate and dean of diversity and academic engagement.…

  5. Division Chief Meeting, April, 1929

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Caption: 'LMAL division chiefs confer with the engineer-in-charge in April 1929. Left to right: E.A. Myers, Personnel Division; Edward R. Sharp, Property and Clerical Division; Thomas Carroll, Flight Test Division; Henry J.E. Reid, engineer in chief; Carlton Kemper, Power Plants Division; Elton Miller, aerodynamics division.'

  6. The chief strategy officer.

    PubMed

    Breene, R Timothy S; Nunes, Paul F; Shill, Walter E

    2007-10-01

    They're nominally and ultimately responsible for strategy, but today's CEOs have less and less time to devote to it. As a result, CEOs are appointing "chief strategy officers"--executives specifically tasked with creating, communicating, executing, and sustaining a company's strategic initiatives. In this article, three authors from Accenture share the results of their research on this emerging organizational role. The typical CSO or top strategy executive is not a pure strategist, conducting long-range planning in relative isolation. Most CSOs consider themselves doers first, with the mandate, credentials, and desire to act as well as advise. They are seasoned executives with a strong strategy orientation who have usually worn many operations hats before taking on the role. Strategy executives are charged with three critical jobs that together form the very definition of strategy execution. First, they must clarify the company's strategy for themselves and for every business unit and function, ensuring that all employees understand the details of the strategic plan and how their work connects to corporate goals. Second, CSOs must drive immediate change. The focus of the job almost always quickly evolves from creating shared alignment around a vision to riding herd on the ensuing change effort. Finally, a CSO must drive decision making that sustains organizational change. He or she must be that person who, in the CEO's stead, can walk into any office and test whether the decisions being made are aligned with the strategy and are creating the desired results. When decisions below the executive suite aren't being made in accordance with strategy, much of the CSO's job involves learning why and quickly determining whether to stay the course or change tack.

  7. Launch vehicle

    NASA Astrophysics Data System (ADS)

    Rutledge, William S.

    1994-06-01

    Concentrated efforts by NASA and the DOD to begin development of a new large launch vehicle have been under way for over a decade. Options include the National Launch System, Advanced Launch System, a heavy lift vehicle, a Shuttle-derived vehicle, a Titan-derived vehicle, Single stage To Orbit, NASP and Spacelifter, to name a few. All initially promised low operations costs achieved at development costs in the $5 billion - $10 billion range. However, none has obtained approval for development, primarily because it became apparent that these cost goals could not realistically be met.

  8. NPP Launch

    NASA Video Gallery

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  9. Launch vehicles

    NASA Astrophysics Data System (ADS)

    Moss, J. B.

    The basic principles which determine launcher design and hence constrain the spacecraft payload are determined. Some key features of the principal launcher alternatives in Europe and the U.S., namely, the unmanned, expendable Ariane and the manned, substantially reusable, Space Shuttle, are outlined. The equations of motion of the rocket are specialized to the vertical plane, parallel and normal to the flight direction, and to the motion of the center of mass and the pitch rotation. A typical Ariane 2 flight profile for transfer into GTO is illustrated. Some representative mission requirements for spacecraft launches are reviewed. Launch vehicle burnout velocities for spacecraft emplacement are given. Geostationary orbit emplacement, orbital mission performance, and configuration interactions are discussed.

  10. Mister Chief Justice. A Study Guide.

    ERIC Educational Resources Information Center

    Kuehl, John W.

    Intended to accompany the film "Mister Chief Justice," this study guide introduces the life of John Marshall and early U.S. history through a fictional account of a dinner party at the home of the chief justice in March, 1801. The guide presents the historical characters who attended the dinner, including John Marshall, Mary Willis…

  11. "Chiefs for Change" Elbows into Policy Fight

    ERIC Educational Resources Information Center

    McNeil, Michele

    2012-01-01

    Amid the cacophony of special interests fighting to be heard in statehouses and on Capitol Hill, a cadre of current and former chief state school officers is elbowing its way into the nation's education debate at a time when states are taking more control of K-12 education. A little more than a year old, Chiefs for Change is an invitation-only…

  12. Venture Class Launch Services

    NASA Technical Reports Server (NTRS)

    Wiese, Mark

    2016-01-01

    Provide an introduction to the Launch Services Program, and specifically the strategic initiative that drove the Venture Class Launch Services contracts. Provide information from the VCLS request for proposals, as well as the Agency's CubeSat Launch Initiative.

  13. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  14. Towers for Earth Launch

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    This report lists some characteristics of a hypothetical 15 kilometer tower for launching spacecraft, the advantages of launching from high altitude, and some equations pertaining to launch from a 15 kilometer tower.

  15. EDITORIAL: New Editor-in-Chief for Nanotechnology New Editor-in-Chief for Nanotechnology

    NASA Astrophysics Data System (ADS)

    Couzin, Nina

    2009-01-01

    Nanotechnology is proud to announce the appointment of Professor Mark Reed, Yale University, as the new Editor-in-Chief from January 2009. Mark Reed holds the Harold Hodgkinson Chair of Engineering and Applied Science at Yale University. He has made significant contributions in the areas of quantum dots, electronic transport in nanoscale and mesoscopic systems, artificially structured materials and devices, and molecular electronics. Professor Reed has been associated with the journal as an Editorial Board member for a number of years and we are delighted that he has agreed to take on the scientific leadership of the journal in its 20th year. We also take the opportunity to thank Professor Mark Welland, Cambridge University, for his work as Editor-in-Chief since 2001, and for presiding over the re-launch and remarkable growth of the journal since then. Nanotechnology is unique in that it was the first peer-reviewed journal in the area of nanoscience, the first issue appearing in 1990. Since then it has established a distinguished publication record and has become a leading journal covering all aspects of nanoscale science and technology, as well as specializing in in-depth, comprehensive articles not seen in letter format journals. Published weekly and featuring subject sections, the journal is truly multidisciplinary in nature and is an excellent medium to quickly deliver your research results to readers worldwide. Nanotechnology is proud to be offering some of the fastest publication times around (less than three months on average from receipt to online publication). We offer free online access to all published papers for 30 days, ensuring that anyone with access to the internet will be able to read your paper. We were also the first journal to give our authors the opportunity to communicate their research to a wider audience through nanotechweb.org and other IOP websites. See the journal's homepage at www.iop.org/Journals/nano for more details. We are looking

  16. Chief Knowledge Officers? Perceptions, Pitfalls, & Potential.

    ERIC Educational Resources Information Center

    Corcoran, Mary; Jones, Rebecca

    1997-01-01

    Argues that few librarians possess the needed competencies to fill the role of "chief knowledge officer" or "knowledge executive." Outlines executive competencies required: communications, leadership, experience, financial management, customer focus, entrepreneurial insight, and information technology grounding; examines gaps…

  17. 12 CFR 1710.17 - Certification of disclosures by chief executive officer and chief financial officer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CORPORATE GOVERNANCE Corporate Practices and Procedures § 1710.17 Certification of disclosures by chief executive officer...

  18. 12 CFR 1710.17 - Certification of disclosures by chief executive officer and chief financial officer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CORPORATE GOVERNANCE Corporate Practices and Procedures § 1710.17 Certification of disclosures by chief executive officer...

  19. 12 CFR 1710.17 - Certification of disclosures by chief executive officer and chief financial officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... HOUSING ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CORPORATE GOVERNANCE Corporate Practices and Procedures § 1710.17 Certification of disclosures by chief...

  20. 12 CFR 1710.17 - Certification of disclosures by chief executive officer and chief financial officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CORPORATE GOVERNANCE Corporate Practices and Procedures § 1710.17 Certification of disclosures by chief executive officer...

  1. 12 CFR 1710.17 - Certification of disclosures by chief executive officer and chief financial officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CORPORATE GOVERNANCE Corporate Practices and Procedures § 1710.17 Certification of disclosures by chief executive officer...

  2. 5 CFR 2421.10 - Chief Administrative Law Judge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Chief Administrative Law Judge. 2421.10 Section 2421.10 Administrative Personnel FEDERAL LABOR RELATIONS AUTHORITY, GENERAL COUNSEL OF THE FEDERAL... § 2421.10 Chief Administrative Law Judge. Chief Administrative Law Judge means the Chief...

  3. 29 CFR 457.18 - Chief Administrative Law Judge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Chief Administrative Law Judge. 457.18 Section 457.18 Labor... GENERAL Meaning of Terms as Used in This Chapter § 457.18 Chief Administrative Law Judge. Chief Administrative Law Judge means the Chief Administrative Law Judge, U.S. Department of Labor, Washington, DC 20210....

  4. 22 CFR 1421.9 - Chief Administrative Law Judge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Chief Administrative Law Judge. 1421.9 Section... OF TERMS AS USED IN THIS SUBCHAPTER § 1421.9 Chief Administrative Law Judge. Chief Administrative Law Judge means the Chief Administrative Law Judge of the Authority....

  5. 47 CFR 54.704 - The Administrator's Chief Executive Officer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.704 The Administrator's Chief Executive Officer. (a) Chief Executive Officer's functions. (1) The Chief Executive Officer shall have management... 47 Telecommunication 3 2013-10-01 2013-10-01 false The Administrator's Chief Executive Officer....

  6. 47 CFR 54.704 - The Administrator's Chief Executive Officer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES (CONTINUED) UNIVERSAL SERVICE Administration § 54.704 The Administrator's Chief Executive Officer. (a) Chief Executive Officer's functions. (1) The Chief Executive Officer shall have management... 47 Telecommunication 3 2012-10-01 2012-10-01 false The Administrator's Chief Executive Officer....

  7. 17 CFR 200.22 - The Chief Accountant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false The Chief Accountant. 200.22... § 200.22 The Chief Accountant. The Chief Accountant of the Commission is the principal adviser to the... administration of the federal securities laws. The Chief Accountant oversees the accounting profession's...

  8. 17 CFR 200.22 - The Chief Accountant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false The Chief Accountant. 200.22... § 200.22 The Chief Accountant. The Chief Accountant of the Commission is the principal adviser to the... administration of the federal securities laws. The Chief Accountant oversees the accounting profession's...

  9. An Investigation of Chief Administrator Turnover in International Schools

    ERIC Educational Resources Information Center

    Benson, John

    2011-01-01

    This article explores chief administrator turnover in international schools. Quantitative and qualitative data from the 83 chief administrators who participated in the study suggests that the average tenure of an international school chief administrator is 3.7 years and that the main reason chief administrators leave international schools is…

  10. 29 CFR 457.18 - Chief Administrative Law Judge.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 2 2014-07-01 2014-07-01 false Chief Administrative Law Judge. 457.18 Section 457.18 Labor... GENERAL Meaning of Terms as Used in This Chapter § 457.18 Chief Administrative Law Judge. Chief Administrative Law Judge means the Chief Administrative Law Judge, U.S. Department of Labor, Washington, DC 20210....

  11. 5 CFR 2421.10 - Chief Administrative Law Judge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Chief Administrative Law Judge. 2421.10... § 2421.10 Chief Administrative Law Judge. Chief Administrative Law Judge means the Chief Administrative Law Judge of the Authority....

  12. 22 CFR 1421.9 - Chief Administrative Law Judge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Chief Administrative Law Judge. 1421.9 Section... OF TERMS AS USED IN THIS SUBCHAPTER § 1421.9 Chief Administrative Law Judge. Chief Administrative Law Judge means the Chief Administrative Law Judge of the Authority....

  13. 32 CFR 1800.43 - Determination(s) by Office Chief(s).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Determination(s) by Office Chief(s). 1800.43 Section 1800.43 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC ACCESS TO NACIC RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) NACIC Action...

  14. 32 CFR 1800.43 - Determination(s) by Office Chief(s).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Determination(s) by Office Chief(s). 1800.43 Section 1800.43 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC ACCESS TO NACIC RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) NACIC Action...

  15. 32 CFR 1800.43 - Determination(s) by Office Chief(s).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Determination(s) by Office Chief(s). 1800.43 Section 1800.43 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC ACCESS TO NACIC RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) NACIC Action...

  16. 32 CFR 1800.43 - Determination(s) by Office Chief(s).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Determination(s) by Office Chief(s). 1800.43 Section 1800.43 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC ACCESS TO NACIC RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) NACIC Action...

  17. 32 CFR 1800.43 - Determination(s) by Office Chief(s).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Determination(s) by Office Chief(s). 1800.43 Section 1800.43 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC ACCESS TO NACIC RECORDS UNDER THE FREEDOM OF INFORMATION ACT (FOIA) NACIC Action...

  18. 48. Quincy, MA, BO37, Launch Area, Underground Missile Storage Structure, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Quincy, MA, BO-37, Launch Area, Underground Missile Storage Structure, interior detail of water and hydraulic pumps VIEW WEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  19. Kashlev Named First Deputy Chief, GRCBL | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer Editor’s note: The text for this article was adapted from an e-mail announcement to the Center for Cancer Research community from Robert Wiltrout, Ph.D., on September 8, 2014. Robert Wiltrout, Ph.D., director, NCI Center for Cancer Research (CCR), recently announced the appointment of Mikhail Kashlev, Ph.D., to deputy chief of the Gene Regulation and Chromosome Biology Laboratory (GRCBL). The first deputy chief to be named in the GRCBL, Kashlev joins Jeff Strathern, Ph.D., GRCBL chief, in leading the laboratory in an active research environment that focuses on chromosome dynamics (recombination, chromosome segregation, and transposable elements) and regulation (transcription, silencing, and cell cycle control).

  20. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  1. IRIS Launch Animation

    NASA Video Gallery

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  2. Shuttle Era: Launch Directors

    NASA Video Gallery

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  3. Space Launch System Animation

    NASA Video Gallery

    NASA is ready to move forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration be...

  4. About EPA's Acting Chief of Staff

    EPA Pesticide Factsheets

    Matt Fritz is the Chief of Staff at EPA. His responsibilities include serving as a key advisor to Administrator Gina McCarthy, managing the day-to-day operations of the agency and developing strategic initiatives to guide programmatic activities.

  5. My third year as chief of staff.

    PubMed

    Wooten, Marc D

    2007-01-01

    Passing a Joint Commission survey, dealing with a sexual harassment complaint and writing a performance pay plan are just a few of the issues that a chief of staff in the VA wrestled with during his third year on the job.

  6. Salary Levels for Chief Financial Aid Administrators.

    ERIC Educational Resources Information Center

    Redd, Kenneth E.

    2002-01-01

    The Survey of Undergraduate Financial Aid Policies, Practices, and Procedures gathered information on median annual salary levels for chief financial aid administrators in 1999-2000. Among detailed findings, the survey concluded that men still have higher salaries than women. (EV)

  7. Salary Levels for Chief Financial Aid Administrators.

    ERIC Educational Resources Information Center

    Redd, Kenneth E.

    2002-01-01

    Provides information on the median annual salary levels for chief financial aid administrators in 1999-2000 based on results from the Survey of Undergraduate Financial Aid Policies, Practices, and Procedures. Findings indicate that men still have higher salaries than women. (EV)

  8. Chief Executive Compensation and Benefits Survey, 1993.

    ERIC Educational Resources Information Center

    College and Univ. Personnel Association, Washington, DC.

    This report provides data on salaries, benefits, and perquisites commonly included in total compensation packages available to higher education chief executives, along with data on employment policies and practices, based on a survey of 1,012 institutions. An executive summary presents findings, observations, and historical trends. Data are then…

  9. Waiver Given for New York Schools Chief

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2010-01-01

    The author reports on a promise to name a chief academic officer as second in charge of the New York City schools which paved the way for Cathleen P. Black to succeed Joel I. Klein as the district's next chancellor. The compromise plan, announced amid intensifying debate over her selection by Mayor Michael R. Bloomberg, won a state waiver…

  10. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  11. NASA's Launch Propulsion Systems Technology Roadmap

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  12. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  13. 30. Launch Area, Generator Building, interior view showing diesel fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Launch Area, Generator Building, interior view showing diesel fuel tank, fuel pump (foreground) and fuel lines leading to power-generating units (removed) VIEW NORTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  14. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  15. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  16. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  17. Coleadership Among Chief Residents: Exploration of Experiences Across Specialties

    PubMed Central

    Pettit, Jeffrey E.

    2015-01-01

    Background Many departments have multiple chief residents. How these coleaders relate to each other could affect their performance, the residency program, and the department. Objective This article reports on how co-chiefs work together during the chief year, and what may allow them to be more effective coleaders. Methods A phenomenological research design was used to investigate experiences of outgoing chief residents from 13 specialties at the University of Iowa Hospitals and Clinics over a 2-year period from 2012 through 2013. Thematic analysis of semistructured interviews was conducted to investigate commonalities and recommendations. Results Face-to-face interviews with 19 chief residents from 13 different specialties identified experiences that helped co-chiefs work effectively with each other in orienting new co-chiefs, setting goals and expectations, making decisions, managing interpersonal conflict, leadership styles, communicating, working with program directors, and providing evaluations and feedback. Although the interviewed chief residents received guidance on how to be an effective chief resident, none had been given advice on how to effectively work with a co-chief, and 26% (5 of 19) of the respondents reported having an ineffective working relationship with their co-chief. Conclusions Chief residents often colead in carrying out their multiple functions. To successfully function in a multichief environment, chief residents may benefit from a formal co-orientation in which they discuss goals and expectations, agree on a decision-making process, understand each other's leadership style, and receive feedback on their efficacy as leaders. PMID:26221435

  18. Toward vocabulary control for chief complaint.

    PubMed

    Haas, Stephanie W; Travers, Debbie; Tintinalli, Judith E; Pollock, Daniel; Waller, Anna; Barthell, Edward; Burt, Catharine; Chapman, Wendy; Coonan, Kevin; Kamens, Donald; McClay, James

    2008-05-01

    The chief complaint (CC) is the data element that documents the patient's reason for visiting the emergency department (ED). The need for a CC vocabulary has been acknowledged at national meetings and in multiple publications, but to our knowledge no groups have specifically focused on the requirements and development plans for a CC vocabulary. The national consensus meeting "Towards Vocabulary Control for Chief Complaint" was convened to identify the potential uses for ED CC and to develop the framework for CC vocabulary control. The 10-point consensus recommendations for action were 1) begin to develop a controlled vocabulary for CC, 2) obtain funding, 3) establish an infrastructure, 4) work with standards organizations, 5) address CC vocabulary characteristics for all user communities, 6) create a collection of CC for research, 7) identify the best candidate vocabulary for ED CCs, 8) conduct vocabulary validation studies, 9) establish beta test sites, and 10) plan publicity and marketing for the vocabulary.

  19. 28 CFR 0.117 - Office of Chief Immigration Judge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Office of Chief Immigration Judge. 0.117... Executive Office for Immigration Review § 0.117 Office of Chief Immigration Judge. The Chief Immigration Judge shall provide general supervision to the Immigration Judges in performance of their duties...

  20. 28 CFR 0.117 - Office of Chief Immigration Judge.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Office of Chief Immigration Judge. 0.117... Executive Office for Immigration Review § 0.117 Office of Chief Immigration Judge. The Chief Immigration Judge shall provide general supervision to the Immigration Judges in performance of their duties...

  1. 28 CFR 0.117 - Office of Chief Immigration Judge.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Office of Chief Immigration Judge. 0.117... Executive Office for Immigration Review § 0.117 Office of Chief Immigration Judge. The Chief Immigration Judge shall provide general supervision to the Immigration Judges in performance of their duties...

  2. 28 CFR 0.117 - Office of Chief Immigration Judge.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Office of Chief Immigration Judge. 0.117... Executive Office for Immigration Review § 0.117 Office of Chief Immigration Judge. The Chief Immigration Judge shall provide general supervision to the Immigration Judges in performance of their duties...

  3. 28 CFR 0.117 - Office of Chief Immigration Judge.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Office of Chief Immigration Judge. 0.117... Executive Office for Immigration Review § 0.117 Office of Chief Immigration Judge. The Chief Immigration Judge shall provide general supervision to the Immigration Judges in performance of their duties...

  4. Judicial Management: The Achievements of Chief Justice William Howard Taft.

    ERIC Educational Resources Information Center

    Post, Robert

    1998-01-01

    Illuminates the importance of Chief Justice William Howard Taft in creating the modern administrative role of the Chief Justice of the United States. Specifically, the article examines the Act of 14 September 1922 that Taft championed in Congress to give the Chief Justice better tools for managing the judiciary. (DSK)

  5. 78 FR 4138 - Chief of Engineers Environmental Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Department of the Army; Corps of Engineers Chief of Engineers Environmental Advisory Board; Meeting AGENCY... forthcoming meeting. Name of Committee: Chief of Engineers Environmental Advisory Board (EAB). Date: February..., AZ 85003-21178. Agenda: The Board will advise the Chief of Engineers on environmental...

  6. 76 FR 2805 - Delegation of Authority to the Chief Accountant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... COMMISSION 17 CFR Part 200 Delegation of Authority to the Chief Accountant AGENCY: Securities and Exchange... delegate authority to the Chief Accountant with respect to proposed rule changes of the Public Company... PCAOB. In addition, the Commission is amending its rules to delegate authority to the Chief...

  7. STS-113 Commander Jim Wetherbee in White Room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - In the White Room on Launch Pad 39A, STS-113 Commander Jim Wetherbee is helped with his launch and entry suit before entering Space Shuttle Endeavour. Closeout Crew members helping are (left) Rick Welty, United Space Alliance Vehicle Closeout chief, and (right) Danny Wyatt, NASA Quality Assurance specialist. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 23 at 7:50 p.m. EST.

  8. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  9. GPM: Waiting for Launch

    NASA Video Gallery

    The Global Precipitation Measurement mission's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, ...

  10. Expedition 28 Launch

    NASA Video Gallery

    Three new Expedition 28 flight engineers -- NASA astronaut Mike Fossum, Russian cosmonaut Sergei Volkov and Japan Aerospace Exploration Agency astronaut Satoshi Furukawa -- launch from the Baikonur...

  11. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  12. Saturn IB Launch

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Saturn IB launch vehicle lifting off from Launch Complex 39B at 9:01 a.m. EST. The Skylab 4 astronauts Gerald P. Carr, Dr. Edward G. Gibson, and William R. Pogue, were onboard for the third and final mission to the orbiting space station.

  13. Saturn IB Launch Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart provides a launch summary of the Saturn IB launch vehicle as of 1973. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's 'building block' approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  14. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  15. Using Chief Complaints for Syndromic Surveillance: A Review of Chief Complaint Based Classifiers in North America

    PubMed Central

    Conway, Mike; Dowling, John N.; Chapman, Wendy W.

    2013-01-01

    A major goal of Natural Language Processing in the public health informatics domain is the automatic extraction and encoding of data stored in free text patient records. This extracted data can then be utilized by computerized systems to perform syndromic surveillance. In particular, the chief complaint — a short string that describes a patient’s symptoms — has come to be a vital resource for syndromic surveillance in the North American context due to its near ubiquity. This paper reviews fifteen systems in North America — at the city, county, state and federal level — that use chief complaints for syndromic surveillance. PMID:23602781

  16. GRANITE CHIEF WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    The Granite Chief Wilderness study area encompasses 57 sq mi near the crest of the Sierra Nevada 6 mi west of Tahoe City, California. Geologic, geochemical, and mines and prospect studies were carried out to assess the mineral-resource potential of the area. On the basis of the mineral-resource survey, it is concluded that the area has little promise for the occurrence of precious or base metals, oil, gas, coal, or geothermal resources. Sand, gravel, and glacial till suitable for construction materials occur in the area, but inaccessability and remoteness from available markets preclude their being shown on the map as a potential resource.

  17. The medical librarian as chief information officer.

    PubMed Central

    Greer, M C

    1998-01-01

    The position of chief information officer (CIO) is gaining popularity, especially in the health care field. The results of an informal electronic and telephone survey indicate that few medical librarians have made a career move to CIO even though this might seem like a logical step. This paper examines the qualities required of an effective information management executive, the role CIOs play within organizations, and the career advancement strategies for librarians interested in becoming CIOs. Questionnaire responses are reported from three medical librarians who have made the transition to CIO-type positions, and a case study illustrates the responsibilities of CIOs in health care organizations. PMID:9549017

  18. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. EDITORIAL: Greetings from the new Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Garcia, Ephrahim

    2008-02-01

    I am Professor Ephrahim Garcia, an Associate Professor at Sibley School of Mechanical and Aerospace Engineering at Cornell University in Ithaca, New York. I have been at Cornell University since 2002, spent four years as a Program Manager at the Defense Advanced Research Project Agency from 1998-2002, and before that seven years at the Department of Mechanical Engineering at Vanderbilt University in Nashville, Tennessee. I have served on the Editorial Advisory Board of Smart Materials and Structures (SMS) for the last six years. It is a humbling thing to be asked to take up the post of Editor-in-Chief in a field with so many talented researchers. I would like to say a heartfelt thanks to the members of the Editorial Board and IOP Publishing for their confidence in me. Most importantly, I would like to thank Professor Vijay Varadan of the University of Arkansas and Professor Richard Claus of Virginia Polytechnic Institute and State University for their efforts in launching the journal 16 years ago. They have been stewards, promoters and, especially Vijay, key to the operation and function of SMS for all these years, and our research community is indebted to them. Professors Varadan and Claus have dedicated their careers to the area of smart materials and structures and we are very grateful for their leadership, mentoring and contribution. SMS is a thriving journal offering papers on all technical areas concerned with smart materials, systems and structures from the micro- and nanoscale to the macroscale. The journal is undergoing some major changes, including the recent transferal of papers to IOP Publishing's peer-review management system. With this new system authors can expect fast publication times of around 4 or 5 months from submission, and excellent author service. In this world of ever changing technology, the Editorial Board and I aim to reduce the time to publication for researchers in this exciting area of science and engineering. I am in the process of

  20. 33. Launch Control Center, close view of launch key inserted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Launch Control Center, close view of launch key inserted in the launch panel. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  1. Launch of Juno!

    NASA Video Gallery

    An Atlas V rocket lofted the Juno spacecraft toward Jupiter from Space Launch Complex-41. The 4-ton Juno spacecraft will take five years to reach Jupiter on a mission to study its structure and dec...

  2. IRVE 3 Launch

    NASA Video Gallery

    The Inflatable Reentry Vehicle Experiment, or IRVE-3, launched on July 23, 2012, from NASA's Wallops Flight Facility. The purpose of the IRVE-3 test was to show that a space capsule can use an infl...

  3. Hi-C Launch

    NASA Video Gallery

    The High resolution Coronal Imager (Hi-C) was launched on a NASA Black Brant IX two-stage rocket from White Sands Missile Range in New Mexico July 11, 2012. The experiment reached a maximum velocit...

  4. GPM Launch Coverage

    NASA Video Gallery

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory aboard, launched from the Tanegashima Space Center in Japan o...

  5. NASA Now: Glory Launch

    NASA Video Gallery

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  6. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  7. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  8. First Accessible Boat Launch

    EPA Pesticide Factsheets

    This is a story about how the Northwest Indiana urban waters partnership location supported the process to create and open the first handicap accessible canoe and kayak launch in the state of Indiana.

  9. Experiences with Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The presentation "NASA Experience with Launch Vehicles" is a compilation of Mr. Dumbacher's career experiences with the Space Shuttle Program, the Delta - Clipper Experimental flight test project, the X-33 demonstrator project, and recent experiences with the Orbital Spaceplane Program agd the current NASA effort on Exploration Launch Systems. Mr. Dumbacher will discuss his personal experiences and provide lessons learned from each program. The accounts provided by Mr. Dumbacher are his own and do not necessarily represent the official NASA position.

  10. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Passing through some of the trailer clouds of an overcast sky which temporarily postponed its launch, the Space Shuttle Discovery heads for its 19th Earth orbital flight. Several kilometers away, astronaut John H. Casper, Jr., who took this picture, was piloting the Shuttle Training Aircraft (STA) from which the launch and landing area weather was being monitored. Onboard Discovery were astronauts Richard N. Richards, L. Blaine Hammond, Jr., Mark C. Lee, Carl J. Meade, Susan J. Helms, and Jerry M. Linenger.

  11. Launch Vehicle Communications

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    As the National Aeronautics and Space Administration's (NASA) planning for updated launch vehicle operations progresses, there is a need to consider improved methods. This study considers the use of phased array antennas mounted on launch vehicles and transmitting data to either NASA's Tracking and Data Relay Satellite System (TDRSS) satellites or to the commercial Iridium, Intelsat, or Inmarsat communications satellites. Different data rate requirements are analyzed to determine size and weight of resulting antennas.

  12. Electromagnetic Launch to Space

    NASA Astrophysics Data System (ADS)

    McNab, I. R.

    Many advances in electromagnetic (EM) propulsion technology have occurred in recent years. Linear motor technology for low-velocity and high-mass applications is being developed for naval catapults. Such technology could serve as the basis for a first-stage booster launch--as suggested by the US National Aeronautics and Space Administration (NASA) in the Maglifter concept. Using railguns, laboratory experiments have demonstrated launch velocities of 2-3 km/s and muzzle energies > 8 MJ. The extension of this technology to the muzzle velocities ( 7500 m/s) and energies ( 10 GJ) needed for the direct launch of payloads into orbit is very challenging but may not be impossible. For launch to orbit, even long launchers (> 1000 m) would need to operate at accelerations > 1000 G to reach the required velocities, so it would only be possible to launch rugged payloads, such as fuel, water, and materiel. Interest is being shown in such concepts by US, European, Russian, and Chinese researchers. An intermediate step proposed in France could be to launch payloads to sounding rocket altitudes for ionospheric research.

  13. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  14. Canadian Space Launch: Exploiting Northern Latitudes For Efficient Space Launch

    DTIC Science & Technology

    2015-04-01

    launch. As such, it should be advantageous to move farther away from the equator. Plane changes which alter the orbital inclination of a...a plane change will not be as efficient as others. Launches Between the Equator and 45 o Launches for orbital inclinations which are less than the...highly inclined orbits (HIOs). Compared to launches which take place from facilities at lower latitudes, it is more efficient to launch HIOs from

  15. 11 CFR 9428.6 - Chief state election official.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Chief state election official. 9428.6 Section 9428.6 Federal Elections ELECTION ASSISTANCE COMMISSION NATIONAL VOTER REGISTRATION ACT (42 U.S.C. 1973gg-1 et seq.) National Mail Voter Registration Form § 9428.6 Chief state election official. (a)...

  16. 11 CFR 9428.6 - Chief state election official.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false Chief state election official. 9428.6 Section 9428.6 Federal Elections ELECTION ASSISTANCE COMMISSION NATIONAL VOTER REGISTRATION ACT (42 U.S.C. 1973gg-1 et seq.) National Mail Voter Registration Form § 9428.6 Chief state election official. (a)...

  17. 11 CFR 9428.6 - Chief state election official.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 11 Federal Elections 1 2013-01-01 2012-01-01 true Chief state election official. 9428.6 Section 9428.6 Federal Elections ELECTION ASSISTANCE COMMISSION NATIONAL VOTER REGISTRATION ACT (42 U.S.C. 1973gg-1 et seq.) National Mail Voter Registration Form § 9428.6 Chief state election official. (a)...

  18. 11 CFR 9428.6 - Chief state election official.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 11 Federal Elections 1 2012-01-01 2012-01-01 false Chief state election official. 9428.6 Section 9428.6 Federal Elections ELECTION ASSISTANCE COMMISSION NATIONAL VOTER REGISTRATION ACT (42 U.S.C. 1973gg-1 et seq.) National Mail Voter Registration Form § 9428.6 Chief state election official. (a)...

  19. 11 CFR 9428.6 - Chief state election official.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Chief state election official. 9428.6 Section 9428.6 Federal Elections ELECTION ASSISTANCE COMMISSION NATIONAL VOTER REGISTRATION ACT (42 U.S.C. 1973gg-1 et seq.) National Mail Voter Registration Form § 9428.6 Chief state election official. (a)...

  20. 77 FR 46428 - Chief of Engineers Environmental Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Department of the Army; Corps of Engineers Chief of Engineers Environmental Advisory Board; Meeting AGENCY... forthcoming meeting. Name of Committee: Chief of Engineers Environmental Advisory Board (EAB). Date: August 28... environmental policy, identification and resolution of environmental issues and missions, and...

  1. Select Higher Education Chief Diversity Officers: Roles, Realities, and Reflections

    ERIC Educational Resources Information Center

    Pittard, Lesley-Anne

    2010-01-01

    This naturalistic inquiry sought to obtain the "essence" of select administrative chief diversity officers (CDOs), by exploring their participant profiles, organizational realities, and career reflections. Participants self-identified as their institution's senior most chief executive, were poised executively, and charged to facilitate an…

  2. 2016 National Profile of Higher Education Chief Business Officers

    ERIC Educational Resources Information Center

    National Association of College and University Business Officers, 2016

    2016-01-01

    The "2016 National Profile of Higher Education Chief Business Officers" is a triennial report that tracks changes in the demographic characteristics, job duties, and plans for career transitions and retirements of business office chief executives at colleges and universities in 2010, 2013, and 2016. The 2016 study also provides a…

  3. 7 CFR 2.61 - Chief, Natural Resources Conservation Service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Chief, Natural Resources Conservation Service. 2.61... for Natural Resources and Environment § 2.61 Chief, Natural Resources Conservation Service. (a... in § 2.20(b)(1), the following delegations of authority are made by the Under Secretary for...

  4. 7 CFR 2.61 - Chief, Natural Resources Conservation Service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Chief, Natural Resources Conservation Service. 2.61... for Natural Resources and Environment § 2.61 Chief, Natural Resources Conservation Service. (a... in § 2.20(b)(1), the following delegations of authority are made by the Under Secretary for...

  5. 7 CFR 2.61 - Chief, Natural Resources Conservation Service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Chief, Natural Resources Conservation Service. 2.61... for Natural Resources and Environment § 2.61 Chief, Natural Resources Conservation Service. (a... in § 2.20(b)(1), the following delegations of authority are made by the Under Secretary for...

  6. 7 CFR 2.61 - Chief, Natural Resources Conservation Service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Chief, Natural Resources Conservation Service. 2.61... for Natural Resources and Environment § 2.61 Chief, Natural Resources Conservation Service. (a... in § 2.20(b)(1), the following delegations of authority are made by the Under Secretary for...

  7. 7 CFR 2.61 - Chief, Natural Resources Conservation Service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Chief, Natural Resources Conservation Service. 2.61... for Natural Resources and Environment § 2.61 Chief, Natural Resources Conservation Service. (a... in § 2.20(b)(1), the following delegations of authority are made by the Under Secretary for...

  8. 46 CFR 2.20-40 - Chief engineer's reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Chief engineer's reports. 2.20-40 Section 2.20-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL INSPECTIONS Reports and Forms § 2.20-40 Chief engineer's reports. (a) Repairs to boilers and pressure...

  9. 32 CFR 700.333 - The Chief of Naval Research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Naval Research, the Office of Naval Technology and assigned shore activities. (b) The Office of Naval... 32 National Defense 5 2012-07-01 2012-07-01 false The Chief of Naval Research. 700.333 Section 700... The Office of the Secretary of the Navy/the Staff Assistants § 700.333 The Chief of Naval Research....

  10. 32 CFR 700.333 - The Chief of Naval Research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Naval Research, the Office of Naval Technology and assigned shore activities. (b) The Office of Naval... 32 National Defense 5 2011-07-01 2011-07-01 false The Chief of Naval Research. 700.333 Section 700... The Office of the Secretary of the Navy/the Staff Assistants § 700.333 The Chief of Naval Research....

  11. 14 CFR 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Chief Information Officer. 1212.703 Section 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA...

  12. 14 CFR § 1212.703 - NASA Chief Information Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA Chief Information Officer. § 1212.703 Section § 1212.703 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.703 NASA Chief Information Officer. (a) The NASA...

  13. 14 CFR 141.36 - Assistant chief instructor qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of § 61.57 of this chapter; (3) Pass a knowledge test on— (i) Teaching methods; (ii) Applicable... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Assistant chief instructor qualifications... Facilities Requirements § 141.36 Assistant chief instructor qualifications. (a) To be eligible...

  14. March 2017 Letters to the Editor-in-Chief.

    PubMed

    2017-03-01

    Letters to the Editor-in-Chief of JOSPT as follows: "Regarding 'Unraveling the Complexity of Low Back Pain'" with Authors' Response "Beall's List Has Vanished: What Next?" with Editor-in-Chief Response J Orthop Sports Phys Ther 2017;47(3):219-223. doi:10.2519/jospt.2017.0202.

  15. STS-56 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The second try works like a charm as the Space Shuttle Discovery lifts off from Launch Pad 39B on Mission STS-56 at 1:29:00 a.m., EDT, April 8. First attempt to launch Discovery on its 16th space voyage was halted at T-11 seconds on April 6. Aboard for the second Space Shuttle mission of 1993 are a crew of five and the Atmospheric Laboratory for Applications and Science 2 (ATLAS 2), the second in a series of missions to study the sun's energy output and Earth's middle atmosphere chemical makeup, and how these factors affect levels of ozone.

  16. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With a crew of six NASA astronauts aboard, the Space Shuttle Discovery heads for its nineteenth Earth-orbital mission. Launch was delayed because of weather, but all systems were 'go,' and the spacecraft left the launch pad at 6:23 p.m. (EDT) on September 9, 1994. Onboard were astronauts Richard N. Richards, L. Blaine Hammond, Carl J. Meade, Mark C. Lee, Susan J. Helms, and Jerry M. Linenger (051-2); Making a bright reflection in nearby marsh waters, the Space Shuttle Discovery heads for its 19th mission in earth orbit (053).

  17. Launch of Vanguard

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Launch of a three-stage Vanguard (SLV-7) from Cape Canaveral, Florida, September 18, 1959. Designated Vanguard III, the 100-pound satellite was used to study the magnetic field and radiation belt. In September 1955, the Department of Defense recommended and authorized the new program, known as Project Vanguard, to launch Vanguard booster to carry an upper atmosphere research satellite in orbit. The Vanguard vehicles were used in conjunction with later booster vehicle such as the Thor and Atlas, and the technique of gimbaled (movable) engines for directional control was adapted to other rockets.

  18. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  19. NLS Advanced Development - Launch operations

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.

    1992-01-01

    Attention is given to Autonomous Launch Operations (ALO), one of a number of the USAF's National Launch System (NLS) Launch Operations projects whose aim is to research, develop and apply new technologies and more efficient approaches toward launch operations. The goal of the ALO project is to develop generic control and monitor software for launch operation subsystems. The result is enhanced reliability of system design, and reduced software development and retention of expert knowledge throughout the life-cycle of the system.

  20. The Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Piland, William M.; Talay, Theodore A.; Stone, Howard W.

    1990-01-01

    NASA has begun to study candidate vehicles for manned access to space in support of the Space Station or other future missions requiring on-demand transportation of people to and from earth orbit. One such system, which would be used to complement the present Shuttle or an upgraded version, is the Personnel Launch System (PLS), which is envisioned as a reusable priority vehicle to place people and small payloads into orbit using an experimental launch vehicle. The design of the PLS is based on a Space Station crew changeout requirement whereby eight passengers and two crew members are flown to the station and a like number are returned within a 72 hour mission duration. Experimental and computational aerothermodynamic heating studies have been conducted using a new two-color thermographic technique that involved coating the model with a phosphor that radiates at varying color intensities as a function of temperature when illuminated with UV light. A full-scale model, the HL-20, has been produced and will be used for man-machine research. Three launch vehicle concepts are being considered, a Titan IV, the Advanced Launch System, and a Shuttle equipped with liquid rocket boosters.

  1. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  2. Cassini launch contingency effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  3. 1. Photocopy of photograph showing unidentified launch area with personnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of photograph showing unidentified launch area with personnel door, decontamination shower and Ajax missiles from photo archives at U. S. Institute for Military History, Carlisle Barracks, Carlisle, PA, no date - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  4. 7. Photocopy of photograph showing four Ajax missiles in launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of photograph showing four Ajax missiles in launch position from ARADCOM Argus pg. 14, from Institute for Military History, Carlisle Barracks, Carlisle, PA, October 1, 1963 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  5. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  6. 32. Launch Control Center, commander's console. Note launch key at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Launch Control Center, commander's console. Note launch key at right. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  7. STS-121 Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Space Shuttle Discovery and its seven-member crew launched at 2:38 p.m. (EDT) to begin the two-day journey to the International Space Station (ISS) on the historic Return to Flight STS-121 mission. The shuttle made history as it was the first human-occupying spacecraft to launch on Independence Day. During its 12-day mission, this utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  8. Launch of Zoological Letters.

    PubMed

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  9. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  10. Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  11. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  12. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  13. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 25. Corridor between the Launch Control Center and the Launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Corridor between the Launch Control Center and the Launch Control Equipment Room, view from Launch Control Center. Thalheimer - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  15. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  16. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  17. 4. View from chief clerk's office into clerk room. Vault ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View from chief clerk's office into clerk room. Vault at center in background. View to south. - Duluth & Iron Range Rail Road Company Shops, Office, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  18. Office of the Chief Financial Officer Annual Report 2009

    SciTech Connect

    Fernandez, Jeffrey

    2009-12-15

    Presented is the 2009 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office.

  19. 14 CFR 141.35 - Chief instructor qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... gliders, balloons, or airships, the chief instructor must meet the applicable requirements in paragraphs..., balloons or airships is only required to have 40 percent of the hours required in paragraphs (b) and (d)...

  20. 14 CFR 141.35 - Chief instructor qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gliders, balloons, or airships, the chief instructor must meet the applicable requirements in paragraphs..., balloons or airships is only required to have 40 percent of the hours required in paragraphs (b) and (d)...

  1. 14 CFR 141.35 - Chief instructor qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... gliders, balloons, or airships, the chief instructor must meet the applicable requirements in paragraphs..., balloons or airships is only required to have 40 percent of the hours required in paragraphs (b) and (d)...

  2. 14 CFR 141.35 - Chief instructor qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gliders, balloons, or airships, the chief instructor must meet the applicable requirements in paragraphs..., balloons or airships is only required to have 40 percent of the hours required in paragraphs (b) and (d)...

  3. 14 CFR 141.35 - Chief instructor qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... gliders, balloons, or airships, the chief instructor must meet the applicable requirements in paragraphs..., balloons or airships is only required to have 40 percent of the hours required in paragraphs (b) and (d)...

  4. 32 CFR 552.37 - Acquisition by Chief of Engineers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction schedules or occupancy dates do not allow the Chief of Engineers sufficient time to conduct normal... which constitute rights-of-way for roads, railroads, and utility lines necessary to the...

  5. Interior, second floor, northeast corner, office of chief of optometry, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, second floor, northeast corner, office of chief of optometry, looking south. - Fitzsimons General Hospital, Administration Building, Southeast Corner of West McAfee Avenue & South Eighth Street, Aurora, Adams County, CO

  6. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  7. 76 FR 67472 - Order of Succession for the Office of the Chief Information Officer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Cyber Security and Privacy, Office of the Chief Information Officer, Department of Housing and Urban... Operations; (3) Deputy Chief Information Officer, for Cyber Security and Privacy; (4) Deputy...

  8. Launch summary for 1978 - 1982

    NASA Astrophysics Data System (ADS)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  9. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  10. 46. Quincy, MA, BO37, Launch Area, Underground Missile Storage Structure, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Quincy, MA, BO-37, Launch Area, Underground Missile Storage Structure, interior view of elevator system with overhead doors in open position and hydraulic shaft in left foreground VIEW WEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  11. STS-115 Launch

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Space Shuttle Atlantis and its six-member crew launched at 11:15 a.m. (EDT) on September 9, 2006 to begin the two-day journey to the International Space Station (ISS) on the STS-115 mission. During the 11-day mission, the STS-115 crew of six, along with station crews and ground teams, resumed construction of the ISS with the installation of a girder-like structure, known as the P3/P4 truss. The 35,000-pound piece includes a set of giant solar arrays, batteries and associated electronics. The arrays eventually will double the power capability of the Station.

  12. Apollo 13 Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The third marned lunar landing mission, Apollo 13 (SA-508), with three astronauts: Mission commander James A. Lovell Jr., Lunar Module pilot Fred W. Haise Jr., and Command Module pilot John L. Swigert Jr., lifted off from the Kennedy Space Center launch complex 39A on April 11, 1970. The mission was aborted after 56 hours of flight, 205,000 miles from Earth, when an oxygen tank in the service module exploded. The Command Module, Odyssey, carrying the three astronauts, safely splashed down in the Pacific Ocean at 1:08 p.m. EST, April 17, 1970.

  13. STS-39 Launch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The crew included seven astronauts: Michael L. Coats, commander; L. Blaine Hammond, pilot; Guion S. Buford, Jr., mission specialist 1; Gregory J. Harbaugh, mission specialist 2; Richard J. Hieb, mission specialist 3; Donald R. McMonagle, mission specialist 4; and Charles L. Veach, mission specialist 5. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  14. René Marcelle (December 30, 1931-December 18, 2011), the first editor-in-chief of Photosynthesis Research.

    PubMed

    Govindjee; Marcelle, Dominique

    2016-07-01

    This tribute honors the first editor-in-chief of Photosynthesis Research, René Marcelle the Belgian plant physiologist who, with publishers in The Netherlands, launched the journal in 1980. Here, we present a glimpse of René Marcelle's early life, his education and research, as well as his editorial work for the journal and other conferences in plant physiology. He worked on control of photosynthesis, both the biological and environmental aspects, as well as on crassulacean acid metabolism. He is best remembered as a kind-hearted and humane editor.

  15. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  16. New Product Launching Ideas

    NASA Astrophysics Data System (ADS)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  17. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  18. EDITORIAL: Incoming Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Lidström, Suzanne

    2012-04-01

    , in his hands, the expansion continued and the transition to electronic production took place. In 2005, an agreement was signed with IOP Publishing and the bustling production work of the in-house team moved abroad to Bristol, leaving just the Editor-in-Chief to man the ship at the Royal Swedish Academy of Sciences. In 2011, however, as Roger prepared to step down, submissions had reached astounding levels as is evident from figure 1: that year, almost 1500 manuscripts were received by Physica Scripta, now acknowledged to be amongst the fastest growing journals in IOP Publishing, when measured in these terms. The year on year increase stands at 20% and, once again, of the extensive range of topics covered, condensed matter physics had been identified as the subject area in most need of attention because the burden of reviewing had become too great for one editor to oversee alone. Thus, when I joined Physica Scripta in January of this year, securing new External Editors for this field was perceived to be the most urgent task. It is, therefore, with the greatest of pleasure that I am able to announce the arrival of two new editors for this section: Professors David Keen and Tapio Rantala. Physica Scripta statistics Figure 1. The annual submissions made to Physica Scripta in recent years have rocketed and the rejection rate (given as a percentage) has increased rapidly. The modest increase in the number of articles accepted (shaded in blue) reflects a deliberate policy to augment the scientific quality. Professor Rantala has been selected by the Finnish Physical Society to replace Professor Matti Manninen, who is stepping down as the Finnish representative on the journal's Editorial Board. Professor Rantala is a prominent theorist and has been engaged in active research in a number of fields. In his early work, he was interested in surface science and molecular physics, however his expertise is predominantly in the domain of solid or materials physics related to

  19. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  20. Launch vehicle selection model

    NASA Technical Reports Server (NTRS)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  1. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  2. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  3. STS-92 Discovery Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from across the waters of Banana Creek, clouds of smoke and steam are illuminated by the flames from Space Shuttle Discovery'''s perfect on-time launch at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  4. STS-120 Launch

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction, The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, and moved and deployed the P6 solar arrays to their permanent position.

  5. STS-120 Launch

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli, and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction. The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, and moved and deployed the P6 solar arrays to their permanent position.

  6. STS-120 Launch

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction. The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, moved and deployed the P6 solar arrays to their permanent position.

  7. STS-112 Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space Shuttle Orbiter Atlantis hurdles toward space from Launch Pad 39B at Kennedy Space Center in Florida for the STS-112 mission. Liftoff occurred at 3:46pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.

  8. Payload Launch Lock Mechanism

    NASA Technical Reports Server (NTRS)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  9. Personnel Launch System definition

    NASA Astrophysics Data System (ADS)

    Piland, William M.; Talay, Theodore A.; Stone, Howard W.

    1990-10-01

    A lifting-body Personnel Launch System (PLS) is defined for assured manned access to space for future U.S. space missions. The reusable craft described is configured for reliable and safe operations, maintainability, affordability, and improved operability, and could reduce life-cycle costs associated with placing personnel into orbit. Flight simulations show the PLS to be a very flyable vehicle with very little control and propellant expenditure required during entry. The attention to crew safety has resulted in the design of a system that provides protection for the crew throughout the mission profile. However, a new operations philosophy for manned space vehicles must be adopted to fully achieve low-cost, manned earth-to-orbit transportation.

  10. Personnel Launch System definition

    NASA Technical Reports Server (NTRS)

    Piland, William M.; Talay, Theodore A.; Stone, Howard W.

    1990-01-01

    A lifting-body Personnel Launch System (PLS) is defined for assured manned access to space for future U.S. space missions. The reusable craft described is configured for reliable and safe operations, maintainability, affordability, and improved operability, and could reduce life-cycle costs associated with placing personnel into orbit. Flight simulations show the PLS to be a very flyable vehicle with very little control and propellant expenditure required during entry. The attention to crew safety has resulted in the design of a system that provides protection for the crew throughout the mission profile. However, a new operations philosophy for manned space vehicles must be adopted to fully achieve low-cost, manned earth-to-orbit transportation.

  11. 10 CFR 1.31 - Office of the Chief Financial Officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Office of the Chief Financial Officer. 1.31 Section 1.31 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Chief Financial Officer § 1.31 Office of the Chief Financial Officer. The Office of the Chief Financial...

  12. 76 FR 69031 - Order of Succession for the Office of the Chief Human Capital Officer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Succession for the Office of the Chief Human Capital Officer AGENCY: Office of the Chief Human Capital Officer, HUD. ACTION: Notice of order of succession. SUMMARY: In this notice, the Chief Human Capital... Office of the Chief Human Capital Officer. DATES: Effective Date: October 20, 2011. FOR...

  13. Launch area theodolite system

    NASA Astrophysics Data System (ADS)

    Bradley, Lester M.; Corriveau, John P.; Tindal, Nan E.

    1991-08-01

    White Sands Missile Range has developed a Launch Area Theodolite (LAT) optical tracking system that provides improved Time-Space-Position-Information (TSPI) for the new class of hyper-velocity missiles being developed by the Army. The LAT system consists of a high- performance optical tracking mount equipped with an 8-12 micrometers Forward Looking Infrared (FLIR) sensor, a newly designed full-frame pin-registered 35-mm film camera, and an auto- focused 50-in. focal length lens. The FLIR has been integrated with the WSMR in-house developed statistical based automatic video tracker to yield a powerful system for the automatic tracking of missiles from a short standoff distance. The LAT has been designed to replace large fixed-camera arrays for test programs on short-range anti-tank missiles. New tracking techniques have been developed to deal with angular tracking rates that exceed one radian in both velocity and acceleration. Special techniques have been developed to shock the tracking mount at the missile launch to match the target motion. An adaptive servo control technique allows a Type III servo to be used to compensate for the high angular accelerations that are generated by the placement of the LAT mounts along the missile flight path. An automated mode selection adjustment is employed as the missile passes a point perpendicular to the tracking mount to compensate for the requirement to rapidly decelerate the tracking mount and keep the target in the field-of-view of the data camera. This paper covers the design concept for a network of eight LAT mounts, the techniques of automatic video tracking using a FLIR sensor, and the architecture of the servo control algorithms that have allowed the LAT system to produce results to a degree never before achieved at White Sands Missile Range.

  14. EDITORIAL: Incoming Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Webb, Steve

    2006-01-01

    editor signals change and in turn this induces in some people expectation, hope of improvement and maybe radical revolution. Others cower and hope for stability, continuation of the same and as little outward sign of change as possible. So I should like to signal that I hope to satisfy both camps. The Editor-in-Chief is primarily a guardian of the journal and should change nothing that does not need changing. Maintaining a standard at the same level is a valuable achievement in itself. This is no different from taking on any other leadership role such as in a team or department. One has to lead by consensus and with respect for the position. Conversely there are things I would like to see improved (otherwise I should not have been hired) and I commit to attempting these but in a spirit of cooperation with the Board, the publisher (IOP), IPEM and the readership. Any other approach would be doomed anyway. So, what would I like to see changed? Dare I say anything too strongly upfront? Like Alun six years ago I would like there to be more debate via correspondence but this depends on the readers to do more writing along these lines. Personally I feel PMB, like many journals, has developed to the point where most readers sadly can understand only a small fraction of its contents. I have talked to older readers who said they regularly used to read all or half of the journal. Now many of us can manage only the papers in our specialty. Yet this is somewhat inevitable as medical physics has progressed from a fledgling science to the vast activity it is today, topics have become deeply complicated and we cannot and should not reverse the clock. To address this, I would like to see authors provide some form of `intelligible lay-scientific summary' of their paper as a condition of its publication. I think readers would then enjoy reading all, not just some, of these and maybe become attracted to other areas than the ones in which they currently work. I would like to see the

  15. The Eighth Stage of Information Management: Information Resources Management (IRM) vs. Knowledge Management (KM), and the Chief Information Officer (CIO) vs. the Chief Knowledge Officer (CKO).

    ERIC Educational Resources Information Center

    Chen, Rui

    1998-01-01

    Describes the characteristics of the transfer point of information management to knowledge management (KM), what information resources management (IRM) does, and compares information and knowledge management and the roles of chief information officer (CIO) and chief knowledge officer (CKO). (PEN)

  16. Advanced small launch vehicle study

    NASA Technical Reports Server (NTRS)

    Reins, G. E.; Alvis, J. F.

    1972-01-01

    A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.

  17. STS-113 Mission Specialist John Herrington in White Room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A, STS-113 Mission Specialist John Herrington is helped with his launch and entry suit by Rick Welty, United Space Alliance Vehicle Closeout chief. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 23 at 7:50 p.m. EST.

  18. Expedition 6 flight engineer Nikolai Budarin in White Room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A, Expedition 6 flight engineer Nikolai Budarin is helped with his launch and entry suit before entering Space Shuttle Endeavour. Closeout Crew members helping are (left) Rene Arriens, United Space Alliance mechanical technician, (right) Danny Wyatt, NASA Quality Assurance specialist, and (background) Rick Welty, United Space Alliance Vehicle Closeout chief. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 23 at 7:50 p.m. EST.

  19. STS-113 M.S. Michael Lopez-Alegriain White Room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A, STS-113 Mission Specialist Michael Lopez-Alegria is helped with his launch and entry suit before entering Space Shuttle Endeavour. Closeout Crew members helping are (from left) Rick Welty, United Space Alliance Vehicle Closeout chief, Bobby Wright, USA mechanical technician, and Danny Wyatt, NASA Quality Assurance specialist. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 23 at 7:50 p.m. EST.

  20. Peer Review of Launch Environments

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  1. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  2. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  3. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.

  4. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch schedule. 415.121 Section 415.121... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document...

  5. 14 CFR 415.121 - Launch schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch schedule. 415.121 Section 415.121... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document...

  6. Rocket Launch Trajectory Simulations Mechanism

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul E.; Hauss, Sharon; Voska, N. (Technical Monitor)

    2002-01-01

    The design and development of a Trajectory Simulation Mechanism (TSM) for the Launch Systems Testbed (LST) is outlined. In addition to being one-of-a-kind facility in the world, TSM serves as a platform to study the interaction of rocket launch-induced environments and subsequent dynamic effects on the equipment and structures in the close vicinity of the launch pad. For the first time, researchers and academicians alike will be able to perform tests in a laboratory environment and assess the impact of vibroacoustic behavior of structures in a moving rocket scenario on ground equipment, launch vehicle, and its valuable payload or spacecraft.

  7. The Titan Space Launch System

    NASA Astrophysics Data System (ADS)

    Keeley, J. T.

    1981-04-01

    The Titan III Space Launch Vehicle (SLV) System providing reliable fast response booster capability is discussed. Early Titans, including Titans I and II and the Gemini launch vehicle are described, and the elements of the Titan III, including the upper stages, payload fairings, and launch facilities are presented. The liquid boost module for STS performance augmentation and the Titan 34D SLV System are also discussed. The Titan III SLV System demonstrates excellent versatility while maintaining a high reliability record during thirteen years of operational flights, and provides optional use of solid thrust augmentation and launch sites on both Coasts.

  8. Retirement of J. Gary Eden as Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Jagadish, Chennupati; Jelinkova, Helena; Fainman, Yeshaiahu; Dawson, Martin; Ermers, Ysabel

    2016-01-01

    After nine years of dedicated service as Editor-in-Chief of Progress in Quantum Electronics (PQE), J. Gary Eden has retired at the end of December 2015. During his term as the Editor-in-Chief, PQE has grown significantly in size and quality and he has given generously of his time in advising authors, referees, editors, and the journal staff. Gary is an exceptional scientist and a generous individual who has given so much to the community. He is always very positive in every situation, and has created positive environment and supported people with utmost enthusiasm.

  9. Launch Support Video Site

    NASA Technical Reports Server (NTRS)

    OFarrell, Zachary L.

    2013-01-01

    The goal of this project is to create a website that displays video, countdown clock, and event times to customers during launches, without needing to be connected to the internal operations network. The requirements of this project are to also minimize the delay in the clock and events to be less than two seconds. The two parts of this are the webpage, which will display the data and videos to the user, and a server to send clock and event data to the webpage. The webpage is written in HTML with CSS and JavaScript. The JavaScript is responsible for connecting to the server, receiving new clock data, and updating the webpage. JavaScript is used for this because it can send custom HTTP requests from the webpage, and provides the ability to update parts of the webpage without having to refresh the entire page. The server application will act as a relay between the operations network, and the open internet. On the operations network side, the application receives multicast packets that contain countdown clock and events data. It will then parse the data into current countdown times and events, and create a packet with that information that can be sent to webpages. The other part will accept HTTP requests from the webpage, and respond to them with current data. The server is written in C# with some C++ files used to define the structure of data packets. The videos for the webpage will be shown in an embedded player from UStream.

  10. Launch Vehicle Dynamics Demonstrator Model

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov

  11. Commercial expendable launch vehicle liability

    NASA Astrophysics Data System (ADS)

    Hearings before a subcommittee of the House Committee on Commerce, Science, and Transportation are presented. Cost and availability of insurance for commercial launch providers was discussed. The contribution of the domestic launch industry to the Space Program is examined. All written testimony and submittals for the record are also included.

  12. EDITORIAL: Outgoing Editor-in-Chief Outgoing Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Hauptmann, Peter

    2012-01-01

    I started in 2002 as Editor-in-Chief of a well established journal—MST (Measurement Science and Technology). It was a time when modern means of communication offered new opportunities for the scientific community—for all scientists and engineers whether at universities, in industry or at other institutions—to access better quality information in a shorter time. This development helped us to be more efficient in our daily scientific work and to anticipate new trends faster than before. A flood of information was created by different search engines. A few online journals or journals published in emerging countries with a similar profile to MST appeared on the market. MST had to provide new answers in response to these developments. In 2002 I postulated two requirements to the journal. Firstly, the publisher has to be up to date. My impression over the years has been that IOPP is excellently organized. That has made it easier for the board members and all our reviewers to concentrate on the scientific aspects of our input to the journal. During all my visits to Bristol or my contacts with the IOPP staff I always met very professional and enthusiastic staff members. They have not only supported and encouraged the ideas and initiatives of the Editorial Board members, but they have also worked hard on establishing one of the most effective journal operations in the field of measurement science and technology. Many authors are well aware of this. Thus I am able to declare that the first requirement for a successful journal has been met. Secondly, the scientific level has to be high and the journal should attract readers from all over the world. This task was the responsibility of the Editorial Board members and of myself. Our strategy was on the one hand to ensure continuity in MST but on the other hand to be open to new trends and developments. Examples of these new aspects of the journal are fields like micro- and nanometrology, measurement techniques for

  13. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  14. No Launch Before Its Time

    NASA Technical Reports Server (NTRS)

    Townsend, Bill

    2004-01-01

    Aura is an Earth-observing satellite developed to help us study the quality of the air we breathe. It will look at the state of the ozone and the atmospheric composition in regards to the Earth's changing climate. I headed to California on July 5, 2004. The plan was that the satellite would launch on the tenth, but we had a few problems getting it off. This was the fifty-ninth launch of my career, and it was also a little different than most of my previous launches. Most of the time it's weather that postpones a launch; there aren't usually that many technical issues this late in the game. This time. however, we had several problems, equally split between the launch vehicle and the spacecraft. I remember a member of the crew asking me, 'Is this normal?' And in my experience, it wasn't.

  15. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  16. Annual Report 2008 -- Office of the Chief Financial Officer (OCFO)

    SciTech Connect

    Fernandez, Jeffrey

    2008-12-22

    It is with great pleasure that I present to you the 2008 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office. Also included are some financial comparisons with other DOE Laboratories and a glossary of commonly used acronyms.

  17. Reclaiming the Educational Role of Chief Admission Officers.

    ERIC Educational Resources Information Center

    McDonough, Patricia; Robertson, Larry

    1995-01-01

    Describes changes that have occurred in high schools, colleges, and the entrepreneurial admission sector. Relates the evolution of the admission officer's job since the early 1960s and the profession's rapid growth. Details the hybrid role of marketer and educator for chief admissions officers, and issues a call for professional standards. (RJM)

  18. The Temporal Logic of the Tower Chief System

    NASA Technical Reports Server (NTRS)

    Hazelton, Lyman R., Jr.

    1990-01-01

    The purpose is to describe the logic used in the reasoning scheme employed in the Tower Chief system, a runway configuration management system. First, a review of classical logic is given. Defensible logics, truth maintenance, default logic, temporally dependent propositions, and resource allocation and planning are discussed.

  19. NASA Chief Scientist Sharnon Lucid at STS-107 outreach event

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Chief Scientist Shannon Lucid, a former astronaut, introduces Northern Virginia students to the research that will be conducted on the STS-107 mission. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  20. 17 CFR 200.17 - Chief Management Analyst.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Organizational structures and delegations of authority; (d) Management information systems and concepts; and (e... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Chief Management Analyst. 200...; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Organization and Program Management General...

  1. 17 CFR 200.17 - Chief Management Analyst.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Organizational structures and delegations of authority; (d) Management information systems and concepts; and (e... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Chief Management Analyst. 200...; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Organization and Program Management General...

  2. Chief Diversity Officers and the Wonderful World of Academe

    ERIC Educational Resources Information Center

    Harvey, William B.

    2014-01-01

    The chief diversity officer (CDO) position is new in the realm of higher education administration. Charged with helping their institutions become more diverse and inclusive, the people who occupy these positions face a variety of challenges as they attempt to modify change-resistant institutional cultures. Still, the emergence of the CDO position…

  3. Chief Joseph Dam, Columbia River, Washington, Community Impact Reports,

    DTIC Science & Technology

    1980-05-01

    induced populition. Bachelor wsorkers and geograpical bacheltors io\\ ing Ii to tile area Acrc considered ito represent an equivalent population increase...AREA 1974-1977 CHIEF JOSEPH DAM ADDITIONAL UNITS Average Daily Traffic Volume* Leg of Inter- Percent Increase Segment of Highway section 1974 1975 1976

  4. 32 CFR 1803.33 - Determination by NACIC Office Chiefs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Determination by NACIC Office Chiefs. 1803.33 Section 1803.33 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC REQUESTS FOR MANDATORY DECLASSIFICATION REVIEW OF CLASSIFIED INFORMATION PURSUANT...

  5. 32 CFR 1803.33 - Determination by NACIC Office Chiefs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Determination by NACIC Office Chiefs. 1803.33 Section 1803.33 National Defense Other Regulations Relating to National Defense NATIONAL COUNTERINTELLIGENCE CENTER PUBLIC REQUESTS FOR MANDATORY DECLASSIFICATION REVIEW OF CLASSIFIED INFORMATION PURSUANT...

  6. Leader of State Chiefs' Group to Step down in August

    ERIC Educational Resources Information Center

    Hoff, David J.

    2006-01-01

    The top executive of the Council of Chief State School Officers (CCSSO) has announced that he will leave his post in 2006 at the end of the summer, giving the group time to plan a lobbying strategy for the reauthorization of the No Child Left Behind Act with a new director. G. Thomas Houlihan, the CCSSO's executive director since 2001, said that…

  7. Wanted: Schools Chiefs for Big-Name Districts

    ERIC Educational Resources Information Center

    Zubrzycki, Jaclyn

    2013-01-01

    Districts across the country, including some of the nation's largest, are facing a spate of superintendent vacancies. Schools chiefs or interim superintendents will be leaving this year or next in at least 17 well-known districts, including Baltimore, Maryland; Boston, Massachusetts; Clark County, Nevada; Indianapolis, Indiana; and Wake County,…

  8. Hail to the Chief: A Survivor's Guide to Presidential Egos

    ERIC Educational Resources Information Center

    Riehl, Richard J.

    2010-01-01

    The author once was a student in a graduate seminar taught by the president of the university where he was a mid-level administrator. The course focused on what it takes to be the chief executive of a university. The university president was the only one of the ten presidents under whom the author served who embraced the role of a college…

  9. The right stuff nurses who become chief executives.

    PubMed

    Moore, Alison

    2016-09-07

    When Helen Greatorex took up her new job as chief executive of Kent and Medway NHS and Social Care Partnership Trust, one of her first acts was to concentrate on out-of-area placements for mental health patients. At the time - early June - the trust had 76 patients in beds outside the area, costing £1million a month.

  10. 7 CFR 2.60 - Chief, Forest Service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Natural Resources... Natural Resources and Environment to the Chief of the Forest Service: (1) Provide national leadership in... limited to recreation, range, timber, minerals, watershed, wildlife and fish; natural scenic,...

  11. 7 CFR 2.60 - Chief, Forest Service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Natural Resources... Natural Resources and Environment to the Chief of the Forest Service: (1) Provide national leadership in... limited to recreation, range, timber, minerals, watershed, wildlife and fish; natural scenic,...

  12. 7 CFR 2.60 - Chief, Forest Service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Natural Resources... Natural Resources and Environment to the Chief of the Forest Service: (1) Provide national leadership in... limited to recreation, range, timber, minerals, watershed, wildlife and fish; natural scenic,...

  13. 7 CFR 2.60 - Chief, Forest Service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Natural Resources... Natural Resources and Environment to the Chief of the Forest Service: (1) Provide national leadership in... limited to recreation, range, timber, minerals, watershed, wildlife and fish; natural scenic,...

  14. Chief of Naval Air Training Resource Planning System (RPS).

    ERIC Educational Resources Information Center

    Hodak, Gary W.; And Others

    The Resource Planning System (RPS) provides the Chief of Naval Air Training (CNATRA) with the capability to determine the resources required to produce a specified number of Naval Aviators and Naval Flight Officers (NAs/NFOs) quickly and efficiently. The training of NAs and NFOs is extremely time consuming and complex. It requires extensive…

  15. Governors Face Political Hurdles in Seeking Power to Appoint Chiefs

    ERIC Educational Resources Information Center

    McNeil, Michele

    2008-01-01

    Convinced of the connection between the quality of their schools and the future of their states--not to mention their own political reputations--some governors are seeking a bigger role in shaping education policy by grabbing for more control over their state schools chiefs. Governors note that they are responsible for managing state budgets, of…

  16. 32 CFR 700.334 - The Chief of Information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....334 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Secretary of the Navy...) The Chief of Information is the direct representative of the Secretary of the Navy in all...

  17. College Chief Executive Officers' Contracts, Salaries, and Compensation.

    ERIC Educational Resources Information Center

    Parnell, Dale; Rivera, Margaret

    Designed as a resource for the development of an employment contract between a community college board of trustees and its chief executive officer (CEO), this "idea book" addresses diverse contractual concerns, such as liability and due process, and discusses the benefits of the contract for both the board and CEO. Drawing on comparative…

  18. The Managerial Roles of Community College Chief Academic Officers.

    ERIC Educational Resources Information Center

    Anderson, Philip Wayne

    This study utilized Mintzberg's taxonomy of managerial roles to examine the roles performed by community college chief academic officers (CAOs). Mintzberg's taxonomy defines managerial roles as a set of behaviors and identifies 10 distinct roles: (1) figurehead; (2) leader; (3) liaison; (4) monitor; (5) disseminator; (6) spokesperson; (7)…

  19. 22 CFR 501.7 - Appointment as Chief of Mission.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Appointment as Chief of Mission. 501.7 Section 501.7 Foreign Relations BROADCASTING BOARD OF GOVERNORS APPOINTMENT OF FOREIGN SERVICE OFFICERS § 501... career members. On the basis of recommendations made by the Director of Broadcasting Board of...

  20. The Role of the Chief Administrator in Development.

    ERIC Educational Resources Information Center

    Gnirk, Lloyd A.

    Catholic education is a ministry of the Catholic Church and a primary means of evangelization. The ministry of development, an integral part of Catholic education, is basically one of developing people and helping them to grow. The chief administrator is pivotal in this ministry and is responsible for quality Catholic education, sound business…

  1. Emotional Intelligence and Selection to Administrative Chief Residency

    ERIC Educational Resources Information Center

    Kilpatrick, Charlie C.; Doyle, Peter D.; Reichman, Eric F.; Chohan, Lubna; Uthman, Margaret O.; Orejuela, Francisco J.

    2012-01-01

    Objective: The authors sought to determine whether emotional intelligence, as measured by the BarOn Emotional Quotient Inventory (EQ-i), is associated with selection to administrative chief resident. Method: Authors invited senior-year residents at the University of Texas Health Science Center at Houston to participate in an observational…

  2. New Concepts for the Administrative Training of Psychiatric Chief Residents

    ERIC Educational Resources Information Center

    Griffith, Ezra; And Others

    1978-01-01

    In 1976 a new organizational structure was established in the Lincoln Psychiatric Residency Program of the Albert Einstein College of Medicine in which the chief resident was given responsibility for the residents in all years of training. Problems and benefits of this broad area of control are addressed. (LBH)

  3. 18 CFR 154.308 - Representation of chief accounting officer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Representation of chief accounting officer. 154.308 Section 154.308 Conservation of Power and Water Resources FEDERAL ENERGY... purport to reflect the books of the company do, in fact, set forth the results shown by such books....

  4. 18 CFR 154.308 - Representation of chief accounting officer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Representation of chief accounting officer. 154.308 Section 154.308 Conservation of Power and Water Resources FEDERAL ENERGY... purport to reflect the books of the company do, in fact, set forth the results shown by such books....

  5. 17 CFR 200.17 - Chief Management Analyst.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... utilization; (c) Organizational structures and delegations of authority; (d) Management information systems...; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Organization and Program Management General Organization... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Chief Management Analyst....

  6. 17 CFR 200.17 - Chief Management Analyst.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... utilization; (c) Organizational structures and delegations of authority; (d) Management information systems...; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Organization and Program Management General Organization... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Chief Management Analyst....

  7. 17 CFR 200.17 - Chief Management Analyst.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... utilization; (c) Organizational structures and delegations of authority; (d) Management information systems...; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Organization and Program Management General Organization... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Chief Management Analyst....

  8. 17 CFR 49.22 - Chief compliance officer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... registered swap data repository's management and members of the board of directors; (3) Establishing and...) Establishing and following appropriate procedures for the handling, management response, remediation, retesting... certification by the chief compliance officer that, to the best of his or her knowledge and reasonable...

  9. BP chief scientist nominated for senior energy role

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2014-01-01

    The Obama administration has nominated BP's chief scientist Ellen Williams to be director of the Advanced Research Projects Agency-Energy (ARPA-E), which was created in 2007 to fund "high-risk, high-reward" research into novel energy technologies that are too early for investment by the private sector.

  10. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. STS-51 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Shuttle Discovery takes off from Launch Pad 39B at the Kennedy Space Center, Florida, to begin Mission STS-51 on 12 September 1993. The 57th shuttle mission began at 7:45 a.m. EDT, and lasted 9 days, 20 hours, 11 minutes, 11 seconds, while traveling a total distance of 4,106,411 miles. The Advanced Communications Technology Satellite (ACTS) was one of the projects deployed. This satellite serves as a test bed for advanced experimental communications satellite concepts and technology. Another payload on this mission was the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) telescope mounted on the Shuttle Pallet Satellite (SPAS) payload carrier. ORFEUS was designed to investigate very hot and very cold matter in the universe. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into

  12. Launch Order, Launch Separation, and Loiter in the Constellation 1 1/2-Launch Solution

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Cates, Grant; Cirillo, William

    2009-01-01

    The NASA Constellation Program (CxP) is developing a two-element Earth-to-Orbit launch system to enable human exploration of the Moon. The first element, Ares I, is a human-rated system that consists of a first stage based on the Space Shuttle Program's solid rocket booster (SRB) and an upper stage that consists of a four-crew Orion capsule, a service module, and a Launch Escape System. The second element, Ares V, is a Saturn V-plus category launch system that consists of the core stage with a cluster of six RS-68B engines and augmented with two 5.5-segment SRBs, a Saturn-derived J-2X engine powering an Earth Departure Stage (EDS), and the lunar-lander vehicle payload, Altair. Initial plans called for the Ares V to be launched first, followed the next day by the Ares I. After the EDS performs the final portion of ascent and subsequent orbit circularization, the Orion spacecraft then performs a rendezvous and docks with the EDS and its Altair payload. Following checkout, the integrated stack loiters in low Earth orbit (LEO) until the appropriate Trans-Lunar Injection (TLI) window opportunity opens, at which time the EDS propels the integrated Orion Altair to the Moon. Successful completion of this 1 1/2-launch solution carries risks related to both the orbital lifetime of the assets and the probability of achieving the launch of the second vehicle within the orbital lifetime of the first. These risks, which are significant in terms of overall system design choices and probability of mission success, dictated a thorough reevaluation of the launch strategy, including the order of vehicle launch and the planned time period between launches. The goal of the effort described in this paper was to select a launch strategy that would result in the greatest possible expected system performance, while accounting for launch risks and the cost of increased orbital lifetime. Discrete Event Simulation (DES) model of the launch strategies was created to determine the probability

  13. EDITORIAL: Farewell from the outgoing Editor-in-Chief Farewell from the outgoing Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Rost, Jan Michael

    2011-01-01

    I am very pleased to announce that Professor Paul Corkum will be taking on the position of Editor-in-Chief at Journal of Physics B: Atomic, Molecular and Optical Physics (J. Phys. B) from the beginning of January 2011. During my term as Editor-in-Chief atomic, molecular and optical science has continued to change rapidly: we have seen ultracold physics widening its original emphasis on Bose-Einstein condensates to the entanglement of light and matter in the most general sense towards a science of information. At the same time attosecond science and interaction of matter with short x-ray pulses develops rapidly. I am very happy that J. Phys. B with Paul Corkum as Editor-in-Chief will play a central role in publishing exciting results from this field. I would like to thank the publishing team at J. Phys. B for their fantastic job, in particular for the quality of the refereeing system the team has been able to maintain while at the same time bringing down the publication times considerably. I thank them all for the help and support they have given me in the role of Editor-in-Chief and wish them the very best for the future. Last and certainly not least I would like to thank you, the authors, referees and readers, for the support of J. Phys. B.

  14. STS Derived Exploration Launch Operations

    NASA Technical Reports Server (NTRS)

    Best, Joel; Sorge, L.; Siders, J.; Sias, Dave

    2004-01-01

    A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.

  15. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  16. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  17. Nanosatellite Launch Adapter System (NLAS)

    NASA Technical Reports Server (NTRS)

    Yost, Bruce D.; Hines, John W.; Agasid, Elwood F.; Buckley, Steven J.

    2010-01-01

    The utility of small spacecraft based on the University cubesat standard is becoming evident as more and more agencies and organizations are launching or planning to include nanosatellites in their mission portfolios. Cubesats are typically launched as secondary spacecraft in enclosed, containerized deployers such as the CalPoly Poly Picosat Orbital Deployer (P-POD) system. The P-POD allows for ease of integration and significantly reduces the risk exposure to the primary spacecraft and mission. NASA/ARC and the Operationally Responsive Space office are collaborating to develop a Nanosatellite Launch Adapter System (NLAS), which can accommodate multiple cubesat or cubesat-derived spacecraft on a single launch vehicle. NLAS is composed of the adapter structure, P-POD or similar spacecraft dispensers, and a sequencer/deployer system. This paper describes the NLAS system and it s future capabilities, and also provides status on the system s development and potential first use in space.

  18. Genomic Data Commons launches - TCGA

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  19. Launch Abort System Pathfinder Arrival

    NASA Video Gallery

    The Orion Launch Abort System, or LAS, pathfinder returned home to NASA Langley on Oct. 18 on its way to NASA's Kennedy Space Center. The hardware was built at Langley and was used in preparation f...

  20. Lighting the Sky: ATREX Launches

    NASA Video Gallery

    NASA successfully launched five suborbital sounding rockets early March 27, 2012 from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was ...

  1. STS-135 Fused Launch Video

    NASA Video Gallery

    Imaging experts funded by the Space Shuttle Program and located at NASA's Ames Research Center prepared this video of the STS-135 launch by merging images taken by a set of six cameras capturing fi...

  2. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  3. Re-entry Experiment Launch

    NASA Video Gallery

    On August 10, 2009, NASA successfully launched the Inflatable Re-entry Vehicle Experiment (IRVE) and proved that spacecraft can use inflatable heat shields to reduce speed and provide protection du...

  4. Space Launch System: Future Frontier

    NASA Video Gallery

    Featuring NASA Marshall’s Foundations of Influence, Relationships, Success & Teamwork (FIRST) employees and student interns, "Future Frontier" discusses the new Space Launch System (SLS) heavy-li...

  5. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  6. Robonaut 2 Readied for Launch

    NASA Video Gallery

    Robonaut 2 is being prepared for its history making launch to the International Space Station on STS-133. The robot, known as R2, will be the first humanoid machine to work in orbit. With a upper t...

  7. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  8. New Horizons Launch Contingency Effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  9. Saturn IB AS-202 Launch

    NASA Technical Reports Server (NTRS)

    1966-01-01

    AS-202, the second Saturn IB launch vehicle developed by the Marshall Space Flight Center, lifts off from Cape Canaveral, Florida, August 25, 1966. Primary mission objectives included the confirmation of projected launch loads, demonstration of spacecraft component separation, and verification of heat shield adequacy at high reentry rates. In all, nine Saturn IB flights were made, ending with the Apollo-Soyuz Test Project (ASTP) in July 1975.

  10. Evolved Expendable Launch Vehicle (EELV)

    DTIC Science & Technology

    2013-12-01

    for the Orbital Sciences Corporation Antares, and Space Exploration Technologies Corporation ( SpaceX ) Falcon Heavy Statements of Intent. The New...The Space and Missile Systems Center Launch Systems Directorate (SMC/LR) and SpaceX tailored NECG requirements for the Falcon 9 version 1.1 and...preparation for the upcoming Phase 1A competitive launch service awards, two early integration studies will be performed for the SpaceX Falcon 9 v1.1

  11. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. Vertical Launch System Loadout Planner

    DTIC Science & Technology

    2015-03-01

    Submarine Rocket (ASROC): Ship -launched rocket used in ASW.  RIM-174 SM6: Advanced version of a ship -launched SM2 missile capable of over-the...Operational planners strive to fmd ways to load missiles on Vertical Latmch System (VLS) ships to meet mission requit·ements in theit· AI·ea of...Responsibility (AOR). Requirements are variable: there are missions requiting specific types of missiles; each ship may have distinct capability or capacity to

  13. NROL-41 Go for Launch

    DTIC Science & Technology

    2013-06-01

    57  Figure 34.  Cryogenic Tanking Prior to Launch ...............................................................58  Figure 35.  NROL-41...Tower rolls away from the launch vehicle, when cryogenic tanking operations begin, and when the vehicle is about to proceed into the final two...Tower Roll As the figure shows, there are many technicians still working near the vehicle up until the vehicle is ready to begin cryogenic tanking . Due

  14. STS-53 Launch and Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.

  15. Infrasound Detection of Rocket Launches

    DTIC Science & Technology

    2000-09-01

    were examined for 14 VAFB launches in 1999 at SGAR (680 km) and DLIAR (1300 km). Detections were seen for a Titan IVB launched 5/22/99 and a Delta II...size. Upper atmospheric wind conditions should have been favorable for several of the detections, however noise levels were often high at SGAR and...phase velocities are consistent with stratospheric propagation and nominal infrasound travel times to SGAR (2340 s) and DLIAR (4440 s). The signals were

  16. Launch of STS-63 Discovery

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A 35mm camera was used to expose this close-up image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.

  17. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  18. EDITORIAL: Incoming Editor-in-Chief Incoming Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Birch, David

    2012-01-01

    It is a pleasure and an honour for me to be taking over as Editor-in-Chief of Measurement Science and Technology. MST is well known across research communities worldwide as a leading journal in which to publish new techniques and instrumentation. It has gained this enviable position largely because of the excellent guidance of its Editorial Board and dedicated staff at Institute of Physics Publishing over many years. I want to highlight in particular the contribution of the outgoing Editor Peter Hauptmann, and other Editors before him, in making the journal truly international. We thank Peter immensely for all his hard work in leading the journal, having exceptionally served two terms, each of five years. I come into the post of Editor at a very interesting and challenging time for research. The global recession is leading to cuts in research funding in many countries, researchers and their outputs are coming under closer scrutiny than ever before, and more is being expected of them. Journals play a critical role in monitoring and maintaining research standards, but we should be careful not to assume that journal Impact Factor is the sole measure of research quality. Although expediency may sometimes demand it, Impact Factor, as practitioners know, is subject dependent. One of the great things about science and technology for me is its level playing field. The key point is still innovation no matter where the work is done or where it is published. MST has a long pedigree of being the natural home of the highest quality papers from leading researchers wishing to report novel instrumentation and techniques. 2013 will mark the 90th anniversary of MST and we look forward to celebrating in style its sustained success. I recall with pride the first paper I published in Journal of Physics E: Scientific Instruments (as MST was previously titled) back in 1977. The paper reported the design and application of an early fluorescence lifetime spectrometer that I had constructed

  19. Editors-in-Chief of Medical Journals: Are They Experts, Authorities, Both, or Neither?

    ERIC Educational Resources Information Center

    Zsindely, Sandor; Schubert, Andras

    1989-01-01

    Uses citation analysis to study the professional status and influence of the editors-in-chief of 769 medical journals. Finds that these editors-in-chief are, at least in their own specialties, not necessarily experts but authorities. (SR)

  20. 32 CFR 13.3 - Office of the Chief Defense Counsel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... resources assigned to the Office of the Chief Defense Counsel and facilitating the proper representation of... accordance therewith. Furthermore, the Chief Defense Counsel shall regulate the conduct of Detailed...

  1. 76 FR 34745 - Delegation of Authority to the Chief Operating Officer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... employee performance management; executive resources; human capital field support; human capital policy... supervisory authority for the following offices: the Chief Information Officer ] (CIO); the Chief Human... administrative resources, security and emergency planning, grants management and oversight, executive...

  2. 46 CFR 97.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is...

  3. 46 CFR 97.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is...

  4. 46 CFR 97.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is...

  5. Care and Feeding of the Chief Academic Officer

    ERIC Educational Resources Information Center

    Holyer, Robert

    2010-01-01

    There is an adage common among deans and provosts: The board is concerned with the care and feeding of the president; the faculty is concerned with the care and feeding of the faculty. The implication--and why it brings a knowing smile to any chief academic officer's face--is that no one seems concerned with the care and feeding of the CAO. Small…

  6. Succession planning: perspectives of chief executive officers in US hospitals.

    PubMed

    Collins, Sandra K

    2009-01-01

    A study was conducted to explore the perceptions of chief executive officers in US hospitals regarding the origins of leadership and how they felt about internally developed successors versus externally recruited successors. Furthermore, the study examined how this group of executives utilizes the succession planning process, what factors impact successor identification, what positions are applicable for succession planning activities, and who is ultimately held responsible for leadership continuity within the hospital industry.

  7. Commanding in Chief, Strategic Leader Relationships in the Civil War

    DTIC Science & Technology

    2012-03-12

    the Commander in Chief maintains the authority to appoint senior military leaders to positions of high command and responsibility. The Commander...Theater.17 8 Buttressing Lincoln’s confidence in McClellan was strong political support for the general from high -ranking government officials...into a cohesive army. Lincoln viewed the Confederate Army as the Confederacy’s center of gravity and charged McClellan with the task of crushing that

  8. The chief nurse executive role in large healthcare systems.

    PubMed

    Englebright, Jane; Perlin, Jonathan

    2008-01-01

    Community hospitals are most frequently led by nonclinicians. Although some may have employed physician leaders, most often clinical leadership is provided by a chief nurse executive (CNE) or chief nursing officer. Clinical leadership of community hospital and health systems may similarly be provided by a system-level nursing executive or, often, by a council of facility CNEs. The increasingly competitive healthcare environment in which value-based purchasing of healthcare and pay-for-performance programs demand improved clinical performance for financial success has led to reconsideration of whether a council model can provide either the leadership or adequate attention to clinical (and operational) improvement. In turn, community hospitals and health systems look to CNE or chief nursing officer roles at the highest level of the organization as resources that are able to segue between the clinical and operational domains, translating clinical performance demands into operating strategies and tactics. This article explores CNE characteristics required for success in these increasingly responsible and visible roles.

  9. EDITORIAL: Farewell from the outgoing Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Burnett, Keith

    2005-01-01

    I am very pleased to announce that Professor Jan-Michael Rost will be taking on the position of Editor-in-Chief at Journal of Physics B: Atomic, Molecular and Optical Physics (J. Phys. B) from the beginning of January 2005. As Editor-in-Chief I have seen the journal respond to the rapid and exciting developments in atomic, molecular and optical physics of recent years. There will, I am sure, be a great deal of new and important science in our field in the years ahead. I am also sure that Jan-Michael will do a fantastic job in guiding the journal through these times. The publishing team at J. Phys. B is a superbly responsive and effective one that does a great job in publishing the science we do. I want to thank them all for the help and support they have given me in the role of Editor-in-Chief and wish them the very best for the future. Last and certainly not least I would like to thank you, the authors, referees and readers, for making J. Phys. B such a great journal to have been a part of.

  10. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  11. STS-88 Mission Specialist Jerry Ross in O&C building before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Operations and Checkout Building, STS-88 Mission Specialist Jerry L. Ross (right) takes part in a complete suit check before launch. Standing with him is Owen Bertrand, chief of the Vehicle Integration Test office at Johnson Space Center. This is Bertrand's last launch before retiring in January. Mission STS-88 is expected to launch at 3:56 a.m. EST with the six-member crew aboard Space Shuttle Endeavour on Dec. 3. Endeavour carries the Unity connecting module, which the crew will be mating with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. The mission is expected to last 11 days, 19 hours and 49 minutes, landing at 10:17 p.m. EST on Dec. 14.

  12. Lawyers in Corporate Chief Executive Positions: A Historical Analysis of Careers.

    ERIC Educational Resources Information Center

    Priest, T. B.; Rothman, Robert A.

    1985-01-01

    The backgrounds and careers of lawyer-corporate chief executive officers in each of three historical populations of corporate chief executive officers are examined. Data indicate that the backgrounds of lawyer-chief executives frequently include attendance at prestigious undergraduate educational institutions and law schools and initial positions…

  13. 49 CFR 1.48 - Office of the Chief Information Officer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... POWERS AND DUTIES Office of the Secretary Ost Officials § 1.48 Office of the Chief Information Officer. The Chief Information Officer (CIO) is the principal information technology (IT), cyber security... 49 Transportation 1 2013-10-01 2013-10-01 false Office of the Chief Information Officer....

  14. 10 CFR 1.39 - Office of the Chief Human Capital Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Office of the Chief Human Capital Officer. 1.39 Section 1... Headquarters Staff Offices § 1.39 Office of the Chief Human Capital Officer. The Office of the Chief Human... effective organization, utilization, and development of the agency's human resources; (b) Provides...

  15. 76 FR 69030 - Delegation of Authority for the Office of the Chief Human Capital Officer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Human Capital Officer; Notices #0;#0;Federal Register / Vol. 76 , No. 215 / Monday, November 7, 2011...] Delegation of Authority for the Office of the Chief Human Capital Officer AGENCY: Office of the Secretary... all authority under the Chief Human Capital Officers Act of 2002 to the Chief Human Capital...

  16. 49 CFR 1.33 - Assistant Secretary for Budget and Programs and Chief Financial Officer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Chief Financial Officer. 1.33 Section 1.33 Transportation Office of the Secretary of Transportation... Secretary for Budget and Programs and Chief Financial Officer. (a) The Assistant Secretary for Budget and Programs is the principal budget and financial advisor to the Secretary and serves as Chief...

  17. 46 CFR 97.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is...

  18. Office of the Chief Financial Officer Annual Report 2007

    SciTech Connect

    Fernandez, Jeffrey

    2007-12-18

    2007 was a year of progress and challenges for the Office of the Chief Financial Officer (OCFO). I believe that with the addition of a new Controller, the OCFO senior management team is stronger than ever. With the new Controller on board, the senior management team spent two intensive days updating our strategic plan for the next five years ending in 2012, while making sure that we continue to execute on our existing strategic initiatives. In 2007 the Budget Office, teaming with Human Resources, worked diligently with our colleagues on campus to reengineer the Multi-Location Appointment (MLA) process, making it easier for our Principal Investigators (PIs) to work simultaneously between the Laboratory and UC campuses. The hiring of a point-of-contact in Human Resources to administer the program will also make the process flow smoother. In order to increase our financial flexibility, the OCFO worked with the Department of Energy (DOE) to win approval to reduce the burden rates on research and development (R&D) subcontracts and Intra-University Transfers (IUT). The Budget Office also performed a 'return on investment' (ROI) analysis to secure UCRP funding for a much needed vocational rehabilitation counselor. This new counselor now works with employees who are on medical leave to ensure that they can return to work in a more timely fashion, or if not able to return, usher them through the various options available to them. Under the direction of the new Controller, PriceWaterhouse Coopers (PWC) performed their annual audit of the Laboratory's financial data and reported positive results. In partnership with the Financial Policy and Training Office, the Controller's Office also helped to launch self-assessments of some of our financial processes, including timekeeping and resource adjustments. These self assessments were conducted to promote efficiencies and mitigate risk. In some cases they provided assurance that our practices are sound, and in others highlighted

  19. ESA to launch six scientific satellites

    NASA Astrophysics Data System (ADS)

    1995-09-01

    Cluster launch campaign is proceeding on schedule for the planned launch date of 17 January 1996. At the same time, final acceptance tests are being carried out on the new Ariane 5 launch vehicle components. Note to TV editors: Video indexes describing in detail the ISO, SOHO and Cluster missions will be available on request from ESA PR as from 15 September 1995.

  20. Apollo 11 Facts Project [Pre-Launch Activities and Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The crewmembers of Apollo 11, Commander Neil A. Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin, Jr., are seen during various stages of preparation for the launch of Apollo 11, including suitup, breakfast, and boarding the spacecraft. They are also seen during mission training, including preparation for extravehicular activity on the surface of the Moon. The launch of Apollo 11 is shown. The ground support crew is also seen as they wait for the spacecraft to approach the Moon.

  1. STS-120 on Launch Pad

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A photographer used a fisheye lens attached to an electronic still camera to record a series of photos of the Space Shuttle Discovery at the launch pad while the STS-120 crew was at Kennedy Space Center for the Terminal Countdown Demonstration Test in October 2007. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007. The crew included Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). Major objectives included the installation of the P6 solar array of the port truss and delivery and installment of Harmony, the Italian-built U.S. Node 2 on the International Space Station (ISS).

  2. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  3. Evolved Expendable Launch Vehicle (EELV)

    DTIC Science & Technology

    2015-12-15

    potential NSS mission processing timelines. SpaceX is now eligible for an award of specified NSS missions to include the GPS III-2 launch service... SpaceX has also evolved their Falcon 9v1.1 configuration into the Falcon 9 Upgrade. To update the certification baseline, SpaceX and AF built Joint Work...9 v1.1 commercial launch experienced an in-flight mishap resulting in loss of vehicle on June 28, 2015. An official investigation was led by a SpaceX

  4. Personnel Launch System (PLS) study

    NASA Technical Reports Server (NTRS)

    Ehrlich, Carl F., Jr.

    1991-01-01

    NASA is currently studying a personnel launch system (PLS) approach to help satisfy the crew rotation requirements for the Space Station Freedom. Several concepts from low L/D capsules to lifting body vehicles are being examined in a series of studies as a potential augmentation to the Space Shuttle launch system. Rockwell International Corporation, under contract to NASA, analyzed a lifting body concept to determine whether the lifting body class of vehicles is appropriate for the PLS function. The results of the study are given.

  5. Reusable Reentry Satellite (RRS): Launch tradeoff study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A goal of the Phase B study is to define the launch system interfaces for the reusable reentry satellite (RRS) program. The focus of the launch tradeoff study, documented in this report, is to determine which expendable launch vehicles (ELV's) are best suited for the RRS application by understanding the impact of all viable launch systems on RRS design and operation.

  6. Intelsat communications satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1983-01-01

    To be placed into a highly elliptical transfer orbit by the Atlas Centaur (AC-61) launch vehicle, the INTELSAT V-F satellite has 12,000 voice circuits and 2 color television channels and incorporates a maritime communication system for ship to shore communications. The stages of the launch vehicle and the launch operations are described. A table shows the launch sequence.

  7. 46 CFR 199.120 - Launching stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Launching stations. 199.120 Section 199.120 Shipping... LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.120 Launching stations. (a) Each launching station must be positioned to ensure safe launching with clearance from...

  8. 46 CFR 199.120 - Launching stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Launching stations. 199.120 Section 199.120 Shipping... LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.120 Launching stations. (a) Each launching station must be positioned to ensure safe launching with clearance from...

  9. 46 CFR 133.120 - Launching stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Launching stations. 133.120 Section 133.120 Shipping... Requirements for All OSVs § 133.120 Launching stations. (a) Each launching station must be positioned to ensure safe launching with clearance from— (1) The propeller; and (2) The steeply overhanging portions of...

  10. 46 CFR 133.120 - Launching stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Launching stations. 133.120 Section 133.120 Shipping... Requirements for All OSVs § 133.120 Launching stations. (a) Each launching station must be positioned to ensure safe launching with clearance from— (1) The propeller; and (2) The steeply overhanging portions of...

  11. Pegasus air-launched space booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.; Mosier, Marty R.

    The launching of small satellites with the mother- aircraft-launched Pegasus booster yields substantial cost improvements over ground launching and enhances operational flexibility, since it allows launches to be conducted into any orbital inclination. The Pegasus launch vehicle is a three-stage solid-rocket-propelled system with delta-winged first stage. The major components of airborne support equipment, located on the mother aircraft, encompass a launch panel operator console, an electronic pallet, and a pylon adapter. Alternatives to the currently employed B-52 launch platform aircraft have been identified for future use. Attention is given to the dynamic, thermal, and acoustic environments experienced by the payload.

  12. Launch site integration of Liquid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Scott, Leland P.; Dickinson, William J.

    1989-01-01

    The impacts of introducing Liquid Rocket Boosters (LRB) into the STS/KSC launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Pre-launch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated.

  13. Crew Chief CAD System Interface Guide (Version 2 - SI)

    DTIC Science & Technology

    1990-03-01

    display type (INTEGER). UNITS - Defines the drawing units per inch (REAL). VUMAT (3,3) - A 3x3 array containing the view matrix (REAL). IBGINI - Debug...UNITS to 2.54; for milli- meters, set UNITS to 25.4. VUMAT (3,3) - A 3x3 array containing the view matrix which describes ths orientation of the user’s...model (If +he view matrix is not available in your system, set Display Type [NUMDSP=l] to wire frame and ignore the setting VUMAT .) CREW CHIEF assumes

  14. A Review of Chief Information Officer' Main Skills

    NASA Astrophysics Data System (ADS)

    Portela, Luis; Carvalho, Roberto; Varajão, João; Magalhães, Luis

    Information Systems are transforming our lives. Their social and economic impact means opportunities and challenges for people, organizations and governments. Being decisive for competitiveness, they are more and more taken in account by companies, which look at them in order to find a way of improving the business. In this context, the CIO (Chief Information Officer) has a central role, and needs to perform several tasks to ensure that information systems under his supervision are efficient. To be competent in his job, the CIO needs several skills. In this paper, the CIO's main skills are identified and discussed.

  15. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  16. Space Shuttle Launch: STS-129

    NASA Video Gallery

    STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

  17. STS-1 Pre-Launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A timed exposure of the Space Shuttle, STS-1, at Launch Pad A, Complex 39, turns the space vehicle and support facilities into a night- time fantasy of light. Structures to the left of the Shuttle are the fixed and the rotating service structure.

  18. VEGA, a small launch vehicle

    NASA Astrophysics Data System (ADS)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  19. Nighttime Launch at NASA Wallops

    NASA Video Gallery

    A U.S. Air Force Minotaur 1 rocket carrying the Department of Defense Operationally Responsive Space office’s ORS-1 satellite was successfully launched at 11:09 p.m. EDT, June 29, 2011, from NASA...

  20. Healthy Border 2020 Embassy Launch

    Cancer.gov

    The U.S.-Mexico Border Health Commission launched the Healthy Border 2020 at the Mexican Embassy in the United States on June 24, 2015. This new initiative aims to strengthening what was accomplished on the previous plan of action entitled Healthy Border 2010.

  1. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  2. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... specific updates. 417.17 Section 417.17 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... Conditions § 417.17 Launch reporting requirements and launch specific updates. (a) General. A launch operator must satisfy the launch reporting requirements and launch specific updates required by this section...

  3. Training Chief Scientists for the Ocean Research of Tomorrow

    NASA Astrophysics Data System (ADS)

    Reimers, C. E.; Alberts, J.

    2012-12-01

    The UNOLS Early Career Chief Scientist Training Program is designed to instruct participants in all of the "cradle to grave" phases of expeditionary oceanography, from the initial proposal, to science and cruise logistics planning, to cruise execution and post-cruise reporting. During the past 2-years, with support from NSF, the program has sponsored three participant-led multi-disciplinary cruises on UNOLS vessels together with pre-cruise informational short courses. Two Senior Scientists and two Marine Technicians work with 14 participants per cruise to accomplish well-scrutinized science plans led by two participant co-chief scientists. Participants are chosen from a pool of applicants based on their passion for oceanography, their desire to take on cruise leadership, the quality and feasibility of a research project they bring to the cruise, and long-term research aims. To date the participants have come from 28 different academic institutions and have included graduate students, post-docs, research scientists, teaching faculty and a center director. Hallmarks of the program lauded by the participants include insight into cruise leadership and ship operations not provided by any other means; new appreciation for other marine science disciplines and sampling techniques; the establishment of collaborations and newly inspired science questions based on shared data; and understanding of what UNOLS is and how UNOLS staff and marine technicians can assist with future seagoing projects.; Multi-coring on R/V Wecoma during September 2011 training cruise (photo P. Suprenand) ; Science party W1109C

  4. Dynamic Tow Maneuver Orbital Launch Technique

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  5. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  6. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight

  7. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  8. Russian Soyuz Moves to Launch Pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  9. Aqua 10 Years After Launch

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2013-01-01

    A little over ten years ago, in the early morning hours of May 4, 2002, crowds of spectators stood anxiously watching as the Delta II rocket carrying NASA's Aqua spacecraft lifted off from its launch pad at Vandenberg Air Force Base in California at 2:55 a.m. The rocket quickly went through a low-lying cloud cover, after which the main portion of the rocket fell to the waters below and the rockets second stage proceeded to carry Aqua south across the Pacific, onward over Antarctica, and north to Africa, where the spacecraft separated from the rocket 59.5 minutes after launch. Then, 12.5 minutes later, the solar array unfurled over Europe, and Aqua was on its way in the first of what by now have become over 50,000 successful orbits of the Earth.

  10. Minuteman 2 launched small satellite

    NASA Technical Reports Server (NTRS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; Mcmillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-01-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  11. Minuteman 2 launched small satellite

    NASA Astrophysics Data System (ADS)

    Chan, Sunny; Hinders, Kriss; Martin, Trent; McMillian, Shandy; Sharp, Brad; Vajdos, Greg

    1994-05-01

    The goal of LEOSat Industries' Spring 1994 project was to design a small satellite that has a strong technology demonstration or scientific justification and incorporates a high level of student involvement. The satellite is to be launched into low earth orbit by the converted Minuteman 2 satellite launcher designed by Minotaur Designs, Inc. in 1993. The launch vehicle shroud was modified to a height of 90 inches, a diameter of 48 inches at the bottom and 35 inches at the top for a total volume of 85 cubic feet. The maximum allowable mass of the payload is about 1100 lb., depending on the launch site, orbit altitude, and inclination. The satellite designed by LEOSat Industries is TerraSat, a remote-sensing satellite that will provide information for use in space-based earth studies. It will consist of infrared and ultraviolet/visible sensors similar to the SDI-developed sensors being tested on Clementine. The sensors will be mounted on the Defense Systems, Inc. Standard Satellite-1 spacecraft bus. LEOSat has planned for two satellites orbiting the Earth with trajectories similar to that of LANDSAT 5. The semi-major axis is 7080 kilometers, the eccentricity is 0, and the inclination is 98.2 degrees. The estimated mass of TerraSat is 145 kilograms and the estimated volume is 1.8 cubic meters. The estimated cost of TerraSat is $13.7 million. The projected length of time from assembly of the sensors to launch of the spacecraft is 13 months.

  12. Saturn IB Launch Vehicle - Cutaway

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This 1968 cutaway drawing illustrates the Saturn IB launch vehicle with its two booster stages, the S-IB and S-IVB. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's 'building block' approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar mission.

  13. Saturn IB Launch Vehicle Cutaway

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This undated cutaway drawing illustrates the Saturn IB launch vehicle with its two booster stages, the S-IB and S-IVB. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's 'building block' approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  14. SMART-1 launch date confirmed

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The 'launch window' will be 8:02 p.m. to 8:21 p.m. on Saturday, 27 September, local time in Kourou, French Guiana, and 1:02 a.m. to 1:21 a.m. on Sunday, 28 September, CEST. The SMART-1 spacecraft is now on board its Ariane 5 launcher inside the Final Assembly Building (BAF) at the Kourou spaceport in French Guiana.

  15. Inflatable Launch and Recovery System

    DTIC Science & Technology

    2014-07-31

    and air line connections. Inflatable arch shaped tubes and spacer fabric form the ramp structure from which the tow body can be launched and...also includes power electronics and software controllers. [0015] Multiple, inflatable, arch shaped tubes and spacer fabric form the ramp structure...this manner maintain their shapes when inflated. The panel 36 can be fabricated of woven spacer fabrics, also known as drop stitch fabrics. Such

  16. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  17. Launch Options for the Future

    DTIC Science & Technology

    1988-01-01

    before 2010 and explores the costs of meet- ing different demand levels for launching humans and spacecraft to orbit. It also discusses the importance...programs: Deploy the Space Station by the mid-90s while maintain- ing an aggressive NASA science program: Send humans to Mars or es- tablish a base on...program goals, they must be made in a highly uncertain environ- ment. A decision to deploy SDI, or to send humans to Mars, would call for space

  18. National Security Space Launch Report

    DTIC Science & Technology

    2006-01-01

    Company Clayton Mowry, President, Arianespace Inc., North American—“Launch Solutions” Elon Musk , CEO and CTO, Space Exploration Technologies (SpaceX...Core Booster powered by the Russian-built RD-180 engine; it began oper- ations in August 2002 and has completed eight successful flights with no...failures. Boeing’s Delta IV family is built around a Common Booster Core powered by the Pratt & Whitney Rocketdyne RS-68 engine; it began operations in

  19. Voice command weapons launching system

    NASA Astrophysics Data System (ADS)

    Brown, H. E.

    1984-09-01

    This abstract discloses a voice-controlled weapons launching system for use by a pilot of an aircraft against a plurality of simultaneously appearing (i.e., existing) targets, such as two or more aggressor aircraft (or tanks, or the like) attacking more aggressor aircraft. The system includes, in combination, a voice controlled input device linked to and controlling a computer; apparatus (such as a television camera, receiver, and display), linked to and actuated by the computer by a voice command from the pilot, for acquiring and displaying an image of the multi-target area; a laser, linked to and actuated by the computer by a voice command from the pilot to point to (and to lock on to) any one of the plurality of targets, with the laser emitting a beam toward the designated (i.e., selected) target; and a plurality of laser beam-rider missiles, with a different missile being launched toward and attacking each different designated target by riding the laser beam to that target. Unlike the prior art, the system allows the pilot to use his hands full-time to fly and to control the aircraft, while also permitting him to launch each different missile in rapid sequence by giving a two-word spoken command after he has visually selected each target of the plurality of targets, thereby making it possible for the pilot of a single defender aircraft to prevail against the plurality of simultaneously attacking aircraft, or tanks, or the like.

  20. 29 CFR 793.9 - “Chief engineer.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âChief engineer.â 793.9 Section 793.9 Labor Regulations... Exemption § 793.9 “Chief engineer.” A chief engineer is an employee who primarily supervises the operation maintenance and repair of all electronic equipment in the studio and at the transmitter and is licensed by...

  1. 29 CFR 793.9 - “Chief engineer.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false âChief engineer.â 793.9 Section 793.9 Labor Regulations... Exemption § 793.9 “Chief engineer.” A chief engineer is an employee who primarily supervises the operation maintenance and repair of all electronic equipment in the studio and at the transmitter and is licensed by...

  2. 29 CFR 793.9 - “Chief engineer.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false âChief engineer.â 793.9 Section 793.9 Labor Regulations... Exemption § 793.9 “Chief engineer.” A chief engineer is an employee who primarily supervises the operation maintenance and repair of all electronic equipment in the studio and at the transmitter and is licensed by...

  3. 29 CFR 793.9 - “Chief engineer.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false âChief engineer.â 793.9 Section 793.9 Labor Regulations... Exemption § 793.9 “Chief engineer.” A chief engineer is an employee who primarily supervises the operation maintenance and repair of all electronic equipment in the studio and at the transmitter and is licensed by...

  4. 29 CFR 793.9 - “Chief engineer.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false âChief engineer.â 793.9 Section 793.9 Labor Regulations... Exemption § 793.9 “Chief engineer.” A chief engineer is an employee who primarily supervises the operation maintenance and repair of all electronic equipment in the studio and at the transmitter and is licensed by...

  5. Office of the Chief Financial Officer 2012 Annual Report

    SciTech Connect

    Williams, Kim

    2013-01-31

    Fiscal Year 2012 was a year of progress and change in the Office of the Chief Financial Officer (OCFO) organization. The notable accomplishments outlined below strengthened the quality of the OCFO’s stewardship and services in support of the scientific mission of Lawrence Berkeley National Laboratory (LBNL). Three strategies were key to this progress: organizational transformation aligned with our goals; process redesign and effective use of technology to improve efficiency, and innovative solutions to meet new challenges. Over the next year we will continue to apply these strategies to further enhance our contributions to the Lab’s scientific mission. What follows is the budget, funding and costs for the office for FY 2012.

  6. Computerized physician order entry from a chief information officer perspective.

    PubMed

    Cotter, Carole M

    2004-12-01

    Designing and implementing a computerized physician order entry system in the critical care units of a large urban hospital system is an enormous undertaking. With their significant potential to improve health care and significantly reduce errors, the time for computerized physician order entry or physician order management systems is past due. Careful integrated planning is the key to success, requiring multidisciplinary teams at all levels of clinical and administrative management to work together. Articulated from the viewpoint of the Chief Information Officer of Lifespan, a not-for-profit hospital system in Rhode Island, the vision and strategy preceding the information technology plan, understanding the system's current state, the gap analysis between current and future state, and finally, building and implementing the information technology plan are described.

  7. Evaluation of a chief complaint pre-processor for biosurveillance.

    PubMed

    Travers, Debbie; Wu, Shiying; Scholer, Matthew; Westlake, Matt; Waller, Anna; McCalla, Anne-Lyne

    2007-10-11

    Emergency Department (ED) chief complaint (CC) data are key components of syndromic surveillance systems. However, it is difficult to use CC data because they are not standardized and contain varying semantic and lexical forms for the same concept. The purpose of this project was to revise a previously-developed text processor for pre-processing CC data specifically for syndromic surveillance and then evaluate it for acute respiratory illness surveillance to support decisions by public health epidemiologists. We evaluated the text processor accuracy and used the results to customize it for respiratory surveillance. We sampled 3,699 ED records from a population-based public health surveillance system. We found equal sensitivity, specificity, and positive and negative predictive value of syndrome queries of data processed through the text processor compared to a standard keyword method on raw, unprocessed data.

  8. NASA Crew Launch Vehicle Overview

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The US. Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration s (NASA) strategic goals and objectives. These include: 1) Flying the Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human spaceflight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. Following the confirmation of the new NASA Administrator in April 2005, the Agency commissioned a team of aerospace subject matter experts from government and industry to perform the Exploration Systems Architecture Study (ESAS), which provided in-depth information for selecting the follow-on launch vehicle designs to enable these goals, The ESAS team analyzed a number of potential launch systems, with a focus on: (1) a human-rated launch vehicle for crew transport and (2) a heavy lift launch vehicle (HLLV) to carry cargo. After several months of intense study utilizing technical performance, budget, and schedule objectives, the results showed that the optimum architecture to meet the challenge of safe, reliable crew transport is a two-stage variant of the Space Shuttle propulsion system - utilizing the reusable Solid Rocket Booster (SRB) as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit. The CEV that this new Crew Launch Vehicle (CLV) lofts into space

  9. Launch Services, a Proven Model

    NASA Astrophysics Data System (ADS)

    Trafton, W. C.; Simpson, J.

    2002-01-01

    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch

  10. Effectivity of atmospheric electricity on launch availability

    NASA Technical Reports Server (NTRS)

    Ernst, John A.

    1991-01-01

    Thunderstorm days at KSC; percentage of frequency of thunderstorms (1957-1989); effect of lightning advisory on ground operations; Shuttle launch history; Shuttle launch weather history; applied meteorology unit; and goals/operational benefits. This presentation is represented by viewgraphs.

  11. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  12. NASA's Space Launch System: Powering Forward

    NASA Video Gallery

    One year ago, NASA announced a new capability for America's space program: a heavy-lift rocket to launch humans farther into space than ever before. See how far the Space Launch System has come in ...

  13. STS-104 Pre-Launch Press Conference

    NASA Technical Reports Server (NTRS)

    2001-01-01

    George Diller, NASA Public Affairs, introduces Jim Halsell, Shuttle Program Launch Integration Manager, Dave King, NASA Director of Shuttle Processing, Michael Hawes, Deputy Associate Administrator for ISS, and John Weems, Launch Weather Officer, in this STS-104 press conference. An overview is given of the launch and mission activities, International Space Station activities during the mission, and the weather forecast for the launch. The men then answer questions from the press.

  14. From the desk of the Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    2014-10-01

    Launching a new journal is never an easy endeavor. With the publication of this issue of the Life Sciences in Space Research, our new Journal has gotten off to an excellent start with thirty scholarly articles published since its inception and a steady stream of submissions. At the 40th COSPAR assembly held at the picturesque campus of Moscow State University in early August, Elsevier sponsored an inaugural event to promote the launching of the journal, an event that was well attended if one were to use how fast the food platter disappeared as a yardstick. In addition, at the recent Radiation Research Society meeting in Las Vegas in the U.S., Elsevier had an exhibition booth (picture), which was visited by many of the NASA and ESA funded scientists attending the meeting.

  15. STS-105 Post-Launch Press Conference

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Malone, NASA Public Affairs, introduces Jim Halsell, Shuttle Program Launch Integration Manager, and Mike Leinbach, Shuttle Launch Director, who give an overview of the successful launch of the STS-105 Discovery Orbiter. The men then answer questions from the press.

  16. X-33 Launch - Computer generated graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This 45-second computer-generated launch sequence begins with a view of the X-33 launch facility located near Haystack Butte on the test range at Edwards AFB, California.The X-33 vehicle is then (hypothetically) raised into position, fueled, and launched, making its roll maneuver and then proceeding on its flightpath.

  17. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Startled by the thunderous roar of the Space Shuttle Discovery's engines as it lifts off, several birds hurriedly leave the Launch Pad 39A area for a more peaceful site. Liftoff time for STS-91, the 91st Shuttle launch and last Shuttle-Mir mission, was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  18. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Startled by the thunderous roar of the Space Shuttle Discovery'''s engines as it lifts off, a bird hurriedly leaves the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.

  19. Lightning interaction with launch facilities

    NASA Astrophysics Data System (ADS)

    Mata, C. T.; Rakov, V. A.

    2009-12-01

    Lightning is a major threat to launch facilities. In 2008 and 2009 there have been a significant number of strikes within 5 nautical miles of Launch Complexes 39A and 39B at the Kennedy Space Center. On several occasions, the Shuttle Space Vehicle (SSV) was at the pad. Fortunately, no accidents or damage to the flight hardware occurred, but these events resulted in many launch delays, one launch scrub, and many hours of retesting. For complex structures, such as launch facilities, the design of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some “unprotected” or “exposed” areas. In order to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for a large number of years using a long term ground flash density that corresponds to the geographical region where the structures being analyzed are located or will be installed. The output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution. This tool was used in designing the lightning protection system of Launch Complex 39B at the Kennedy Space Center, FL, for NASA’s Constellation program. The tool allowed the designers to select the position of the towers and to design the catenary wire system to minimize the probability of direct strikes to the spacecraft and associated ground support equipment. This tool can be used to evaluate

  20. 14 CFR 417.129 - Safety at end of launch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety at end of launch. 417.129 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.129 Safety at end of launch. A launch operator must ensure for any proposed launch that for all launch vehicle...

  1. 14 CFR 417.129 - Safety at end of launch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety at end of launch. 417.129 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.129 Safety at end of launch. A launch operator must ensure for any proposed launch that for all launch vehicle...

  2. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post...

  3. 14 CFR 417.25 - Post launch report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post...

  4. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  5. Saturn IB, AS-201 Launch

    NASA Technical Reports Server (NTRS)

    1966-01-01

    AS-201, the first Saturn IB launch vehicle developed by the Marshall Space Flight Center (MSFC), lifts off from Cape Canaveral, Florida, February 26, 1966. This was the first flight of the S-IB and S-IVB stages, including the first flight test of the liquid-hydrogen/liquid oxygen-propelled J-2 engine in the S-IVB stage. During the thirty-seven minute flight, the vehicle reached an altitude of 303 miles and traveled 5,264 miles downrange. In all, nine Saturn IB flights were made, ending with the Apollo Soyuz Test Project (ASTP) in July 1975.

  6. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  7. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  8. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  9. Launch system development in the Pacific Rim

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    Several Western Pacific Rim nations are beginning to challenge the domination of the United States, Europe, and the former Soviet Union in the international market for commercial launch sevices. This paper examines the current development of launch systems in China, Japan, and Australia. China began commercial launch services with their Long March-3 in April 1990, and is making enhancements to vehicles in this family. Japan is developing the H-2 rocket which will be marketed on a commercial basis. In Australia, British Aerospace Ltd. is leading a team conducting a project definition study for an Australian Launch Vehicle, aimed at launching the new generation of satellites into low Earth orbit.

  10. New approaches to launch vehicle system development

    NASA Astrophysics Data System (ADS)

    Abbott, A. D.; Matzenauer, J. O.

    1990-02-01

    DOD and NASA seek launch capabilities that are more dependable and flexible in operation and which increase vehicle cargo lift capabilities. The Advanced Launch System (ALS) has been developing new approaches to system design and operation which promise increased operational capabilities at reduced costs. The joint ALS program is addressing these goals of reduced launch costs, efficient and flexible launch operations, and enhanced industrial productivity. The new approaches to space launch capability, development, and operation established by the ALS program are summarized. Modular, simplified designs reduce complexity, labor, and costs. Total quality management principles are being applied to build in quality from inception, match system capabilities to user needs, and achieve new economies.

  11. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  12. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the debris dispersion radius of the largest launch vehicle type and weight class proposed for the... largest distance provided by table 2 for the type and weight class of any launch vehicle proposed for the... Requirements for Obtaining a License § 420.21 Launch site location review—launch site boundary. (a)...

  13. 14 CFR 420.21 - Launch site location review-launch site boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review-launch site boundary. 420.21 Section 420.21 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... travels given a worst-case launch vehicle failure in the launch area. An applicant must clearly...

  14. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  15. The competitive effects of launch vehicle technology

    NASA Astrophysics Data System (ADS)

    Dupnick, Edwin; Hopkins, Charles

    1996-03-01

    We performed a study to evaluate the economics of advanced technology incorporation in selected expendable launch vehicles, the Ariane, the Atlas, and the Delta. The competitive merits of these launch vehicles were assessed against a reference mission—the delivery of a telecommunications satellite to geostationary orbit. We provide estimates of the cost of the launch services for the competing missions; the GE PRICE models were used to provide cost estimates for the three launch vehicles. Using publicly available data, a comparison of cost with price for the launch was utilized to examine the issue of potential profit earned and/or subsidization of the cost. Other factors such as the location of the launch site, transportation costs, exchange rates, the availability of financing at competitive rates and communication problems was also considered in evaluating the competitive launch vehicle systems.

  16. The Chief Diversity Officer: An Examination of CDO Models and Strategies

    ERIC Educational Resources Information Center

    Stanley, Christine A.

    2014-01-01

    Herein, C. A. Stanley comments on R. A. Leon's "Journal of Diversity in Higher Education" article, "The Chief Diversity Officer: An Examination of CDO Models and Strategies" that focuses on the role of the chief diversity officer (CDO) in higher education. Stanley, in her position as Vice President and Associate Provost…

  17. 8 CFR 1003.9 - Office of the Chief Immigration Judge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Office of the Chief Immigration Judge. 1003.9 Section 1003.9 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE GENERAL PROVISIONS EXECUTIVE OFFICE FOR IMMIGRATION REVIEW Office of the Chief Immigration...

  18. 8 CFR 1003.9 - Office of the Chief Immigration Judge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Office of the Chief Immigration Judge. 1003.9 Section 1003.9 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE GENERAL PROVISIONS EXECUTIVE OFFICE FOR IMMIGRATION REVIEW Office of the Chief Immigration...

  19. 8 CFR 1003.9 - Office of the Chief Immigration Judge.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Office of the Chief Immigration Judge. 1003.9 Section 1003.9 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE GENERAL PROVISIONS EXECUTIVE OFFICE FOR IMMIGRATION REVIEW Office of the Chief Immigration...

  20. 8 CFR 1003.9 - Office of the Chief Immigration Judge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Office of the Chief Immigration Judge. 1003.9 Section 1003.9 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE GENERAL PROVISIONS EXECUTIVE OFFICE FOR IMMIGRATION REVIEW Office of the Chief Immigration...

  1. 8 CFR 1003.9 - Office of the Chief Immigration Judge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Office of the Chief Immigration Judge. 1003.9 Section 1003.9 Aliens and Nationality EXECUTIVE OFFICE FOR IMMIGRATION REVIEW, DEPARTMENT OF JUSTICE GENERAL PROVISIONS EXECUTIVE OFFICE FOR IMMIGRATION REVIEW Office of the Chief Immigration...

  2. 12 CFR 7.2012 - President as director; chief executive officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false President as director; chief executive officer... ACTIVITIES AND OPERATIONS Corporate Practices § 7.2012 President as director; chief executive officer. Pursuant to 12 U.S.C. 76, the president of a national bank must be a member of the board of directors,...

  3. 17 CFR 200.30-10 - Delegation of authority to Chief Administrative Law Judge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Chief Administrative Law Judge. 200.30-10 Section 200.30-10 Commodity and Securities Exchanges... Administrative Law Judge. Pursuant to the provisions of Pub. L. 87-592, 76 Stat. 394 (15 U.S.C. 78d-1), the... functions to the Chief Administrative Law Judge or to such administrative law judge or administrative...

  4. 49 CFR 800.28 - Delegation to the Chief Financial Officer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Delegation to the Chief Financial Officer. 800.28 Section 800.28 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Chief Financial Officer the authority to settle claims for money damages of $2,500 or less against...

  5. 6 CFR 7.10 - Authority of the Chief Security Officer, Office of Security.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Officer, Office of Security. (a) The DHS Chief Security Officer (hereafter “Chief Security Officer”) is..., and, except as specifically provided elsewhere in this part, is authorized to administer the DHS... Security Officer shall, among other actions: (1) Oversee and administer the DHS's program established...

  6. Confronting the Quiet Crisis: How Chief State School Officers Are Advancing Quality Early Childhood Opportunities

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2012

    2012-01-01

    In 2009, the Council of Chief State School Officers (CCSSO) adopted a new policy statement on early childhood education. Based on the work of a task force of 13 chiefs, "A Quiet Crisis: The Urgent Need to Build Early Childhood Systems and Quality Programs for Children Birth to Age Five" presents a compelling argument for why public…

  7. 49 CFR 604.34 - Chief Counsel decisions and appointment of a PO.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Chief Counsel decisions and appointment of a PO... Presiding Official (PO) § 604.34 Chief Counsel decisions and appointment of a PO. (a) After receiving a... decision based on the pleadings filed to date; (2) Appoint a PO to review the matter; or (3) Dismiss...

  8. 3 CFR - Designation of Officers of the Millennium Challenge Corporation To Act as Chief Executive Officer...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Corporation To Act as Chief Executive Officer of the Millennium Challenge Corporation Presidential Documents... Challenge Corporation To Act as Chief Executive Officer of the Millennium Challenge Corporation Memorandum... Vacancies Reform Act of 1998, as amended, 5 U.S.C. 3345 et seq. (the “Act”), it is hereby ordered...

  9. 18 CFR 375.304 - Delegations to the Chief Administrative Law Judge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Delegations to the Chief Administrative Law Judge. 375.304 Section 375.304 Conservation of Power and Water Resources... Delegations § 375.304 Delegations to the Chief Administrative Law Judge. (a) The Commission authorizes...

  10. 78 FR 46239 - Designations of Chief Acquisition Officer and Senior Procurement Executive

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Executive will perform all of the duties and functions of the Chief Acquisition Officer. 2. The authority of... includes the authority to redelegate the duties and functions of the Senior Procurement Executive. Section... Officer and Senior Procurement Executive and Delegation of Procurement Authority and Chief...

  11. 21 CFR 5.1105 - Chief Counsel, Food and Drug Administration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Chief Counsel, Food and Drug Administration. 5.1105 Section 5.1105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ORGANIZATION Organization § 5.1105 Chief Counsel, Food and Drug Administration. The...

  12. The Self-Perceived Leadership Styles of Chief State School Officers and Models of Educational Governance

    ERIC Educational Resources Information Center

    Wiggins, Lori A.

    2013-01-01

    This study examined the leadership styles of the chief state school officers of the United States and the District of Columbia. The entire population of 51 chief state school officers was surveyed and a response rate of 60% was obtained. The study examined the relationship between the leadership style, select demographic variables, and the…

  13. 17 CFR 200.30-11 - Delegation of authority to the Chief Accountant.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Chief Accountant. 200.30-11 Section 200.30-11 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... General Organization § 200.30-11 Delegation of authority to the Chief Accountant. Pursuant to the... Accountant of the Commission, to be performed by him or her or under his or her direction by such person...

  14. 46 CFR 196.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that...

  15. 46 CFR 78.55-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Master and chief engineer responsible. 78.55-1 Section... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure...

  16. The Role of the Chief Student Affairs Officer in Promoting the Jesuit Mission of the University

    ERIC Educational Resources Information Center

    Reiter, Lisa Rose

    2012-01-01

    "The Role of the Chief Student Affairs Officer in Promoting the Jesuit Mission of the University" is a qualitative comparative case study of three lay (non-cleric, non-Jesuit) chief student affairs officers employed in three U.S. Jesuit higher educational institutions. As the number of Jesuits decreases, a significant question is how the…

  17. The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist

    SciTech Connect

    Goldenring, James R.; Nam, Ki Taek; Mills, Jason C.

    2011-11-15

    The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.

  18. The origin of pre-neoplastic metaplasia in the stomach: chief cells emerge from the Mist.

    PubMed

    Goldenring, James R; Nam, Ki Taek; Mills, Jason C

    2011-11-15

    The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.

  19. Enhancing Teamwork Between Chief Residents and Residency Program Directors: Description and Outcomes of an Experiential Workshop

    PubMed Central

    McPhillips, Heather A.; Frohna, John G.; Murad, M. Hassan; Batra, Maneesh; Panda, Mukta; Miller, Marsha A.; Brigham, Timothy P.; Doughty, Robert A.

    2011-01-01

    Background An effective working relationship between chief residents and residency program directors is critical to a residency program's success. Despite the importance of this relationship, few studies have explored the characteristics of an effective program director-chief resident partnership or how to facilitate collaboration between the 2 roles, which collectively are important to program quality and resident satisfaction. We describe the development and impact of a novel workshop that paired program directors with their incoming chief residents to facilitate improved partnerships. Methods The Accreditation Council for Graduate Medical Education sponsored a full-day workshop for residency program directors and their incoming chief residents. Sessions focused on increased understanding of personality styles, using experiential learning, and open communication between chief residents and program directors, related to feedback and expectations of each other. Participants completed an anonymous survey immediately after the workshop and again 8 months later to assess its long-term impact. Results Participants found the workshop to be a valuable experience, with comments revealing common themes. Program directors and chief residents expect each other to act as a role model for the residents, be approachable and available, and to be transparent and fair in their decision-making processes; both groups wanted feedback on performance and clear expectations from each other for roles and responsibilities; and both groups identified the need to be innovative and supportive of changes in the program. Respondents to the follow-up survey reported that workshop participation improved their relationships with their co-chiefs and program directors. Conclusion Participation in this experiential workshop improved the working relationships between chief residents and program directors. The themes that were identified can be used to foster communication between incoming chief

  20. Hospital chief executive officer perspective on professional development activities.

    PubMed

    Khaliq, Amir A; Walston, Stephen L

    2010-01-01

    A study was undertaken to develop understanding of hospital chief executive officers' (CEOs') perspectives concerning importance and impact of professional development activities in US hospitals. It was also intended to reveal CEO preferences for various modalities of professional development including membership in professional societies, attainment of credentials, and coaching by mentors. A mail survey of 582 hospital CEOs made use of a pilot-tested questionnaire with 30 close ended multipart questions. Results showed that most CEOs assigned a high level of importance to professional development and favored conferences, seminars, and networking opportunities, but low priority assigned to online activities such as webinars. They reported lending support to senior managers for participation in these activities by providing financial resources and by allowing time off to engage in these activities. The respondents indicated that the importance of various modalities of professional development has either increased or remained high over the recent 5 years. Conclusions suggest that verifiable quantitative data are needed for understanding of the frequency of participation and resource commitment of health care organizations toward the professional development of CEOs and senior managers. The results of this perceptual study reveal a high level of importance accorded to various forms of professional development activities by the participating CEOs.

  1. An Analysis of the Correlation between Alopecia and Chief Complaints

    PubMed Central

    Lee, Sang Wook; Jang, Yoon Hee

    2011-01-01

    Objectives In this study, we measured the extent of ten levels of classified symptoms by 300 (male and female) patients visiting the hair loss clinics of "S" hospitals in Gangbuk and Gangnam between January 2009 and June 2011 by analyzing the patients' chief complaints. Methods The method of measurement was based on a symptom questionnaire possessing 51 categories. Through the statistical analysis of data mining techniques, decision trees, and logistic regression, we derived a logistic regression model and decision tree model that improved both the response rate and significant hair loss-related characteristics of the questionnaire. Results The results of this study indicate that dry hair, seborrheic scalps and skin, tobacco and/or coffee addiction, anxiety, nausea, indigestion, and facial flushing correlate to hair loss. Conclusions We anticipate that the subjective symptoms of hair loss can provide a foundation for preventing secondary diseases and provide clinical data information during the period of treatment. This can contribute to the improvement of patient satisfaction after customized treatment. PMID:22259727

  2. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  3. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. high-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated in to increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31 % increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  4. High Altitude Launch for a Practical SSTO

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2 percent of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20 percent increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2 percent of gross lift-off weight, this corresponds to 31 percent increase in payload (for 5-kilometer launch altitude) to 122 percent additional payload (for 25-kilometer launch altitude).

  5. EDITORIAL: A word from the new Editor-in-Chief A word from the new Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Mostowski, Jan

    2011-01-01

    TIn the autumn of 2010 I became the Editor-in Chief of European Journal of Physics (EJP). EJP is a place for teachers, instructors and professors to exchange their views on teaching physics at university level and share their experience. It is general opinion that no good research is possible without connection with good, high-quality teaching, at the university level in particular. Therefore excellence in physics teaching is important to the physics community. European Journal of Physics is proud of its contribution to achieving this goal. As Editor-in-Chief, I will continue to work to this general objective of the journal. We will publish articles on specific topics in physics, stressing originality of presentation and suitability for use in students'laboratories, lectures and physics teaching in general. We will also publish more pedagogical papers presenting the achievements of particular teaching methods. In addition, we will continue to publish special sections on particular areas of physics, as well as the annual special section on physics competitions. European Journal of Physics is in good shape. Due to the work of the previous editors and the publisher, the readership is high and growing steadily, and many excellent papers are being submitted and published. I hope that this positive trend for the journal will continue, and I will do my best to keep to this high standard. A few words about myself. I work in the Institute of Physics in Warsaw, Poland. My main research interests are in theoretical quantum optics and I have published about 80 research papers on this topic. For many years I was involved in teaching physics at university and in high school. I am a co-author of a textbook on physics for high-school students and of a problem book in quantum mechanics. For the last ten years, I have been involved in the International Physics Olympiad and over the last few years I have been a member of the Editorial Board of European Journal of Physics.

  6. Redstone Missile on Launch Pad

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  7. EDITORIAL: Farewell from the outgoing Editor-in-Chief Farewell from the outgoing Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Molenkamp, Laurens W.

    2011-12-01

    At the end of 2011 I will retire as Editor-in-Chief of Semiconductor Science and Technology, and I am very pleased to announce that the job will be taken over by Professor Kornelius Nielsch. In the ten years I have held this position, I have seen many new topics entering the journal: spintronics, organic semiconductors, and Dirac fermion physics, to name just a few. The journal has also witnessed a strong internationalization of the authorship, with an especially strong increase in contributions from the Far East—a growth that is likely to continue in the coming years. I am certain that Kornelius will do an excellent job in guiding the journal through the developments of the coming decade. I would like to thank the publishing team of SST, or rather the three consecutive teams I witnessed during my tenure at the journal, for the help and support they have given me. The people at IOP Publishing are doing a great job in running the journal, and have made it possible to considerably reduce the time to publication for our submissions. I much enjoyed the collaboration with the other members of the Editorial Board; our annual meetings have always been a source of inspiration. Last, but certainly not least, I would like to thank you, the scientific community, authors, referees and readers, for your continuing support of the journal.

  8. Launch of Jupiter-C/Explorer 1

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. After the Vanguard rocket exploded on the pad in December 1957, the ability to orbit a satellite became a matter of national prestige. On January 31, 1958, slightly more than four weeks after the launch of Sputnik.The ABMA (Army Ballistic Missile Agency) in Redstone Arsenal, Huntsville, Alabama, in cooperation with the Jet Propulsion Laboratory, launched a Jupiter from Cape Canaveral, Florida. The rocket consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  9. Launch, Jupiter-C, Explorer 1

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. After the Vanguard rocket exploded on the pad in December 1957, the ability to orbit a satellite became a matter of national prestige. On January 31, 1958, slightly more than four weeks after the launch of Sputnik.The ABMA (Army Ballistic Missile Agency) in Redstone Arsenal, Huntsville, Alabama, in cooperation with the Jet Propulsion Laboratory, launched a Jupiter from Cape Canaveral, Florida. The rocket consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  10. Trends in the commercial launch services industry

    NASA Astrophysics Data System (ADS)

    Haase, Ethan E.

    2001-02-01

    The market for space launch services has undergone significant development in the last two decades and is poised to change even further. With the introduction of new players in the market, and the development of new vehicles by existing providers, competition has increased. At the same time, customer payloads have been changing as satellites grow in size and capability. Amidst these changes, launch delays have become a concern in the industry, and launch service providers have developed different solutions to avoid delays and satisfy customer needs. This analysis discusses these trends in the launch services market and their drivers. Focus is given to the market for medium, intermediate, and heavy launch services which generally includes launches of GEO communication satellites, large government payloads, and NGSO constellations. .

  11. Space Stations using the Skylon Launch System

    NASA Astrophysics Data System (ADS)

    Hempsell, M.

    After the International Space Station is decommissioned in 2020 or soon after, Skylon will be an operating launch system and it is the obvious means to launch any successor in orbit infrastructure. The study looked at establishing 14 stations of 7 different types located from Low Earth Orbit to the Moon's surface with common elements all launched by Skylon. The key reason for the study was to validate Skylon could launch such an infrastructure, but the study's secondary objectives were to contribute to consideration of what should replace the ISS, and explore a ``multiple small station'' architecture. It was found that the total acquisition costs for LEO stations could be below 1 billion (2010) while for stations beyond LEO total acquisition costs were found to be between 3 and £5 billion. No technical constraints on the Skylon launch system were found that would prevent it launching all 14 stations in under 5 years.

  12. Environmental effects of Shuttle launch and landing

    NASA Technical Reports Server (NTRS)

    Potter, A. E.

    1983-01-01

    The areas of concern were the toxic exhaust cloud produced by Shuttle launch, the effect of launch operations on the total ecology, and the sonic boom produced by Orbiter re-entry. Wet acidic dust fell from the exhaust cloud for about ten minutes after launch. The fallout was not entirely unexpected, but the intensity and duration was larger than anticipated. The fallout material is not considered a significant health hazard. Previously announced in STAR as N82-15729

  13. ISS Service Module Pre-Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Various shots show Discovery at the launch pad during the final 30-minute countdown. The prelaunch conditions are described and information is given on the upcoming launch and the orbiter's docking with the International Space Station (ISS). A brief collage of rollout and launch footage of STS-92 Endeavour commemorates the 100th Space Shuttle mission and the 100th anniversary of the Philadelphia Orchestra (also seen). The music of '2001: A Space Odyssey) is played by the orchestra.

  14. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch plans. 415.119 Section 415.119... From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must contain the plans required by § 417.111 of this chapter, except for the countdown plan of § 417.111(l)...

  15. 14 CFR 415.119 - Launch plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch plans. 415.119 Section 415.119... From a Non-Federal Launch Site § 415.119 Launch plans. An applicant's safety review document must contain the plans required by § 417.111 of this chapter, except for the countdown plan of § 417.111(l)...

  16. EDITORIAL: Greetings from the new Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.

    2004-04-01

    On 1 January, 2004, I assumed the position of Editor-in-Chief of Journal of Physics D: Applied Physics. I will start by saying that I will do my best to justify the confidence of the journal management and publishing staff in my abilities. I was fortunate to have been able to work, as an Editorial Board member, with my predecessor, the previous Editor-in-Chief, Professor Allister Ferguson. Allister has provided a high degree of intellectual stewardship for the journal in the last five years. He has made the job appear a worthy challenge for me. I therefore take this opportunity to thank Allister on behalf of the Editorial Board and publishing staff of the journal. Several other factors contributed to my decision to accept this position. The first is the group of people who actually go about the business of publishing. The Senior Publisher, Nicola Gulley (and her predecessor Sophy Le Masurier); the Managing Editor, Jill Membrey; the Publishing Administrators, Nina Blakesley and Sarah Towell; the Production Editor, Katie Gerrard and their office staff form an amazing group and have managed to make the operation of the journal incredibly efficient. An index of this is the speed with which incoming manuscripts are processed. The average time between the receipt of a manuscript and its web publication, if accepted, is 130 days. This is three to five times shorter than for most other journals. A factor that contributes to this success is a responsive pool of referees that the publishing staff have as a valuable resource. Ultimately, the standard bearers of any journal are the referees. Therefore, a grateful `thank you' is due from all of us at J. Phys. D to all our referees, who diligently perform this honourable task. The Associate Editors of the journal, Professors Lawler, Margaritondo and O'Grady, also provide immense scientific leadership. They help in defining new directions for the journal and in the publishing process. Last, but not least, a remarkable asset of

  17. 14 CFR 417.13 - Agreement with Federal launch range.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Agreement with Federal launch range. 417.13... Agreement with Federal launch range. Before conducting a licensed launch from a Federal launch range, a launch operator must— (a) Enter into an agreement with a Federal launch range to provide access to...

  18. 14 CFR 417.13 - Agreement with Federal launch range.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Agreement with Federal launch range. 417.13... Agreement with Federal launch range. Before conducting a licensed launch from a Federal launch range, a launch operator must— (a) Enter into an agreement with a Federal launch range to provide access to...

  19. 14 CFR 417.13 - Agreement with Federal launch range.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Agreement with Federal launch range. 417.13... Agreement with Federal launch range. Before conducting a licensed launch from a Federal launch range, a launch operator must— (a) Enter into an agreement with a Federal launch range to provide access to...

  20. 14 CFR 415.3 - Types of launch licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Types of launch licenses. 415.3 Section 415... OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.3 Types of launch licenses. (a) Launch-specific license. A launch-specific license authorizes a licensee to conduct one or more launches,...

  1. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety at end of launch. 415.133 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.133 Safety at end of launch. An applicant...

  2. 14 CFR 415.133 - Safety at end of launch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety at end of launch. 415.133 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.133 Safety at end of launch. An applicant...

  3. 14 CFR 415.111 - Launch operator organization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch operator organization. 415.111..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.111 Launch operator organization. An...

  4. 14 CFR 415.111 - Launch operator organization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch operator organization. 415.111..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.111 Launch operator organization. An...

  5. 14 CFR 417.9 - Launch site responsibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch site responsibility. 417.9 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.9 Launch site responsibility. (a) A launch operator must ensure that launch processing at a launch site in...

  6. 14 CFR 415.113 - Launch personnel certification program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch personnel certification program. 415... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.113 Launch personnel certification program....

  7. 14 CFR 415.113 - Launch personnel certification program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch personnel certification program. 415... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.113 Launch personnel certification program....

  8. 14 CFR 415.3 - Types of launch licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Types of launch licenses. 415.3 Section 415... OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.3 Types of launch licenses. (a) Launch-specific license. A launch-specific license authorizes a licensee to conduct one or more launches,...

  9. 14 CFR 417.9 - Launch site responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site responsibility. 417.9 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.9 Launch site responsibility. (a) A launch operator must ensure that launch processing at a launch site in...

  10. Launch processing system concept to reality

    NASA Technical Reports Server (NTRS)

    Bailey, W. W.

    1985-01-01

    The Launch Processing System represents Kennedy Space Center's role in providing a major integrated hardware and software system for the test, checkout and launch of a new space vehicle. Past programs considered the active flight vehicle to ground interfaces as part of the flight systems and therefore the related ground system was provided by the Development Center. The major steps taken to transform the Launch Processing System from a concept to reality with the successful launches of the Shuttle Programs Space Transportation System are addressed.

  11. CD-XA Reusable Launch Vehicle (RLV)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is the McDornell Douglas CD-XA Reusable Launch Vehicle (RLV) concept. The Delta Clipper-Experimental (DC-X) was originally developed by McDonnell Douglas for the DOD. The DC-XA is a single-stage-to-orbit, vertical takeoff/vertical landing, launch vehicle concept, whose development is geared to significantly reduce launch cost and provided a test bed for NASA Reusable Launch Vehicle (RLV) technology as the Delta Clipper-Experimental Advanced (DC-XA). The program was discontinued in 2003.

  12. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  13. The Delta Launch Vehicle Model 2914 Series

    NASA Technical Reports Server (NTRS)

    Gunn, C. R.

    1973-01-01

    The newest Delta launch vehicle configuration, Model 2914 is described for potential users together with recent flight results. A functional description of the vehicle, its performance, flight profile, flight environment, injection accuracy, spacecraft integration requirements, user organizational interfaces, launch operations, costs and reimbursable users payment plan are provided. The versatile, relatively low cost Delta has a flight demonstrated reliability record of 92 percent that has been established in 96 launches over twelve years while concurrently undergoing ten major upratings to keep pace with the ever increasing performance and reliability requirements of its users. At least 40 more launches are scheduled over the next three years from the Eastern and Western Test Ranges.

  14. Ten-year space launch technology plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is the response to the National Space Policy Directive-4 (NSPD-4), signed by the President on 10 Jul. 1991. Directive NSPD-4 calls upon the Department of Defense (DoD), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) to coordinate national space launch technology efforts and to jointly prepare a 10-year space launch technology plan. The nation's future in space rests on the strength of its national launch technology program. This plan documents our current launch technology efforts, plans for future initiatives in this arena, and the overarching philosophy that links these activities into an integrated national technology program.

  15. The Early Retirement of Gen Ronald R. Fogleman, Chief of Staff, United States Air Force

    DTIC Science & Technology

    2001-01-01

    The Early Retirement of Gen Ronald R. Fogleman, Chief of Staff, United States Air Force *EDITED by DR. RICHARD H. KOHN Editorial Abstract: Air...Force chief of staff Gen Ronald Fogleman’s early retirement in 1997 has caused great speculation. Was this a “resignation in protest”? Here for the...COVERED 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE The Early Retirement of Gen Ronald R. Fogleman, Chief of Staff, United States Air Force 5a

  16. 46 CFR 11.510 - Service requirements for chief engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Service requirements for chief engineer of steam and/or... Officer § 11.510 Service requirements for chief engineer of steam and/or motor vessels. The minimum service required to qualify an applicant for endorsement as chief engineer of steam and/or motor...

  17. 46 CFR 11.510 - Service requirements for chief engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Service requirements for chief engineer of steam and/or... Officer § 11.510 Service requirements for chief engineer of steam and/or motor vessels. The minimum service required to qualify an applicant for endorsement as chief engineer of steam and/or motor...

  18. 46 CFR 11.510 - Service requirements for chief engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for chief engineer of steam and/or... Officer § 11.510 Service requirements for chief engineer of steam and/or motor vessels. The minimum service required to qualify an applicant for endorsement as chief engineer of steam and/or motor...

  19. 46 CFR 11.510 - Service requirements for chief engineer of steam and/or motor vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for chief engineer of steam and/or... Officer § 11.510 Service requirements for chief engineer of steam and/or motor vessels. The minimum service required to qualify an applicant for endorsement as chief engineer of steam and/or motor...

  20. Occupational Education, Vocational Education, Career Education--The Issues and Alternatives for Chief State School Officers: Dialogues with Chief State School Officers. Report of a National Invitational Conference for Chief State School Officers.

    ERIC Educational Resources Information Center

    Shook, Mollie W., Ed.; King, Sue J., Ed.

    Collected in the document are eight presentations which were made before a national invitational conference of Chief State School officers at Pinehurst, North Carolina, in April, 1974, taken directly from tapes of the conference. In his introduction, "The Quest for Unity and Understanding," John K. Coster enumerates conference goals: (1)…

  1. Launch pad lightning protection effectiveness

    NASA Technical Reports Server (NTRS)

    Stahmann, James R.

    1991-01-01

    Using the striking distance theory that lightning leaders will strike the nearest grounded point on their last jump to earth corresponding to the striking distance, the probability of striking a point on a structure in the presence of other points can be estimated. The lightning strokes are divided into deciles having an average peak current and striking distance. The striking distances are used as radii from the points to generate windows of approach through which the leader must pass to reach a designated point. The projections of the windows on a horizontal plane as they are rotated through all possible angles of approach define an area that can be multiplied by the decile stroke density to arrive at the probability of strokes with the window average striking distance. The sum of all decile probabilities gives the cumulative probability for all strokes. The techniques can be applied to NASA-Kennedy launch pad structures to estimate the lightning protection effectiveness for the crane, gaseous oxygen vent arm, and other points. Streamers from sharp points on the structure provide protection for surfaces having large radii of curvature. The effects of nearby structures can also be estimated.

  2. Crew Launch Vehicle Upper Stage

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Cook, J. R.

    2006-01-01

    The Agency s Crew Launch Vehicle (CLV) will be the first human rated space transportation system developed in the United States since the Space Shuttle. The CLV will utilize existing Shuttle heritage hardware and systems combined with a "clean sheet design" for the Upper Stage. The Upper Stage element will be designed and developed by a team of NASA engineers managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The team will design the Upper Stage based on the Exploration Systems Architecture Study (ESAS) Team s point of departure conceptual design as illustrated in the figure below. This concept is a self-supporting cylindrical structure, approximately 1 15 feet long and 216 inches in diameter. While this "clean-sheet" upper stage design inherently carries more risk than utilizing a modified design, the approach also has many advantages. This paper will discuss the advantages and disadvantages of pursuing a "clean-sheet" design for the new CLV Upper Stage as well as describe in detail the overall design of the Upper Stage and its integration into NASA s CLV.

  3. Launch of Russian reactor postponed

    SciTech Connect

    Not Available

    1993-02-05

    Astronomers and weapons scientists seemed heated on a collision course a few months ago over the military's plans to send a Russian nuclear reactor into space. But an agreement reached in late January has prevented a pile-up, at least for 6 months. The astronomers, led by Donald Lamb of the University of Chicago, were objecting to plans by the Strategic Defense Initiative Office (SDIO) to launch Topaz 2, an experimental Russian nuclear reactor, arguing that rogue particles from it might ruin sensitive gamma ray experiments. The reactor is designed to propel itself in space with a jet of xenon ions. One worry was that leaking gamma rays and positrons, which can travel in the earth's magnetic field and pop up in the darndest places, might cause false signals in gamma ray monitors (Science, 18 December 1992, p. 1878). The worry has abated now that SDI officials will postpone choosing a rocket and mission altitutde for Topaz 2 for 6 months, while experts study how its emissions at various altitudes might affect instruments aboard the Gamma Ray Observatory and other satellites. In effect, the SDIO has agreed to an environmental impact study for space, following an unusual meeting organized by former Russian space official Roald Sagdeev at the University of Maryland on 19 January. There the Russian designers of Topaz 2, its new owners at the SDIO, and critics in the astronomy community achieved common ground: that more study was needed.

  4. EDITORIAL: Greetings from the new Editor-in-Chief Greetings from the new Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Nielsch, Kornelius

    2012-01-01

    On 1 January 2012 I will be assuming the position of Editor-in-Chief of the journal Semiconductor Science and Technology (SST). I am flattered by the confidence expressed in my ability to carry out this challenging job and I will try hard to justify this confidence. The previous Editor-in-Chief, Laurens Molenkamp, University of Würzburg, Germany, has worked tirelessly for the last ten years and has done an excellent job for the journal. Everyone at the journal is profoundly grateful for his leadership and for his achievements In 2012 several new members will join the Editorial Board: Professor Deli Wang (University of California, San Diego) with considerable expertise in semiconductor nanowires, Professor Saskia Fischer (Humboldt University, Berlin, Germany) with a background in semiconductor quantum devices, and Professor Erwin Kessels (Eindhoven University of Technology, Netherlands) with extensive experience in plasma processing of thin films and gate oxides. In particular, I want to express my gratitude to Professor Israel Bar-Joseph (Weizmann Institute of Science, Israel) and Professor Maria Tamargo (The City College of New York, USA), who will leave next year and who have vigorously served the Editorial Board for years. The journal has recently introduced a fast-track option for manuscripts. This option is a high-quality, high-profile outlet for new and important research across all areas of semiconductor research. Authors can expect to receive referee reports in less than 20 days from submission. Once accepted, you can expect the articles to be online within two or three weeks from acceptance and to be published in print in less than a month. Furthermore, all fast-track communications published in 2011 will be free to read for ten years. More detailed information on fast-track publication can be found on the following webpage: http://iopscience.iop.org/0268-1242/page/Fast track communications It is encouraging to see that since the journal introduced pre

  5. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  6. STS-106 Post Launch Press Conference

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Bruce Buckingham, NASA Public Affairs, introduces Bill Gerstenmaier, Shuttle Program Integration Manager, and Mike Leimbach, Kennedy Space Center Launch Director, who give an overview of the successful countdown and launch of STS-106 Atlantis. They then answer questions from the press.

  7. Launch operations manpower yesterday, today and tomorrow

    NASA Technical Reports Server (NTRS)

    Ojalehto, George

    1991-01-01

    The manpower to accomplish spacecraft launch operations was analyzed. It seems that the ratio of personnel to launches was much higher in the beginning of the space program than in later years. The analysis was performed to see why the operational efficiency was better then than now and how that efficiency can be reattained.

  8. Saturn V - Design Considerations and Launch Issues

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Understand some of the design considerations that went into creating the Saturn V launch vehicle; b) Gain an appreciation for some of the manufacturing issues concerning the Saturn V; and c) Review three major problems that affected Saturn V launches.

  9. Launching into the Podcast/Vodcast Universe

    ERIC Educational Resources Information Center

    Sampson, Jo Ann

    2006-01-01

    In the fall of 2005, the Orange County Library System (OCLS), located in the Orlando metropolitan area of Florida, launched a mission to explore podcasting. This article, written in the form of a "captain's log," prepares the reader for their own journey into the universe of successfully launching podcasts and a vodcast (video podcast).…

  10. Flexibility options for National Launch System

    NASA Astrophysics Data System (ADS)

    Sauvageau, Donald R.; Brinton, Douglas H.; Allen, Brian D.

    1992-07-01

    Solid rocket boosters can provide flexible, cost-effective solutions for the National Launch System (NLS). The USAF and NASA are developing the National Launch System to satisfy their future launch requirements. This system must incorporate low-cost, reliable elements, such as boosters, in order to achieve its goal. Currently the NLS consists of three baseline vehicles: the 20K, the 1.5 Stage (50K), and the heavy lift launch vehicle (140K). This paper shows how strap-on boosters can significantly improve the payload range capability and flexibility of the three baseline NLS vehicles, and at the same time reduce the cost for delivered payload to orbit. Using solid rocket boosters the payload flexibility of the 20K vehicle expands to 43,000 lbm, and the 1.5 Stage vehicle grows from 50,000 to 117,000 lbm. Payload delivery costs are reduced through using smaller launch vehicles to orbit intermediate payloads rather than off-loading larger launch vehicles. These attributes are required if the NLS is to achieve its goals of significantly reducing the cost of delivered payload to orbit, satisfying currently identified USAF and NASA payloads, anticipating future payload launch capabilities, and offering a launch vehicle approach that is competitive in a worldwide commercial market.

  11. Pigeons' Discrimination of Michotte's Launching Effect

    ERIC Educational Resources Information Center

    Young, Michael E.; Beckmann, Joshua S.; Wasserman, Edward A.

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal,…

  12. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 35mm camera was used to record the image, which includes much of the base of the launch site as well as the launch itself.

  13. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 70mm camera was used to record the image. Note the vegetation and the reflection of the launch in the water across from the launch pad.

  14. Launch of STS-67 Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995. In this view the fence line near the launch pad is evident in the foreground.

  15. Space Launch Flight Termination System initial development

    NASA Astrophysics Data System (ADS)

    Ratkevich, B.; Brierley, S.; Lupia, D.; Leiker, T.

    This paper describes the studies, capabilities and challenges in initial development of a new digital encrypted termination system for space launch vehicles. This system is called the Space Launch Flight Termination System (SLFTS). Development of SLFTS is required to address an obsolescence issue and to improve the security of flight termination systems presently in use on the nation's space launch vehicles. SLFTS development was implemented in a four phase approach with the goal of producing a high secure, cost effective flight termination system for United Launch Alliance (ULA) and the United States Air Force (USAF) Evolved Expendable Launch Vehicle (EELV). These detailed study phases developed the requirements, design and implementation approach for a new high secure flight termination system. Studies led to a cost effective approach to replace the High Alphabet Command Receiver Decoders (HA-CRD) presently used on the EELV (Delta-IV & Atlas-V), with a common SLFTS unit. SLFTS is the next generation flight termination system for space launch vehicles, providing an assured high secure command destruct system for launch vehicles in flight. The unique capabilities and challenges to develop this technology for space launch use will be addressed in this paper in detail. This paper summarizes the current development status, design and capabilities of SLFTS for EELV.

  16. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... energy to reach any populated area in any direction from the launch point; or (2) A launch operator demonstrates through the licensing process that the launch will be conducted using a wind weighting safety system that meets the requirements of paragraph (c) of this section. (c) Wind weighting safety system....

  17. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Flight termination system qualification test reports. For the launch of a launch vehicle flown with a flight safety system, a launch operator must file all flight termination system qualification test... available to the FAA upon request. (5) Flight termination system acceptance and age surveillance test...

  18. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Flight termination system qualification test reports. For the launch of a launch vehicle flown with a flight safety system, a launch operator must file all flight termination system qualification test... available to the FAA upon request. (5) Flight termination system acceptance and age surveillance test...

  19. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Flight termination system qualification test reports. For the launch of a launch vehicle flown with a flight safety system, a launch operator must file all flight termination system qualification test... available to the FAA upon request. (5) Flight termination system acceptance and age surveillance test...

  20. 14 CFR 417.17 - Launch reporting requirements and launch specific updates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Flight termination system qualification test reports. For the launch of a launch vehicle flown with a flight safety system, a launch operator must file all flight termination system qualification test... available to the FAA upon request. (5) Flight termination system acceptance and age surveillance test...

  1. 14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... energy to reach any populated area in any direction from the launch point; or (2) A launch operator... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the...

  2. 14 CFR 420.30 - Launch site location review for permitted launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review for permitted... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.30 Launch site location review...

  3. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch site location review for unproven... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for...

  4. 14 CFR 420.30 - Launch site location review for permitted launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch site location review for permitted launch vehicles. 420.30 Section 420.30 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE...

  5. 14 CFR 420.29 - Launch site location review for unproven launch vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch site location review for unproven launch vehicles. 420.29 Section 420.29 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE...

  6. 76 FR 43825 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Federal Aviation Administration 14 CFR Part 417 RIN 2120-AJ84 Launch Safety: Lightning Criteria for Expendable Launch Vehicles AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Direct final rule... flight of an expendable launch vehicle through or near an electrified environment in or near a...

  7. NASA’s Chief Scientist Discusses NASA’s Current and Future Science Missions

    NASA Video Gallery

    On June 2, 2016, NASA’s Office of the Chief Technologist hosted the Showcase of Innovation Challenges in Washington to present and discuss ideas for innovation across the agency, the government, in...

  8. Upper Blackstone Water Pollution Abatement District Chief Operator Recognized for Outstanding Service

    EPA Pesticide Factsheets

    Joseph Nowak, a resident of Ware Mass. and Chief Operator of the Upper Blackstone Water Pollution Abatement District (District) in Milbury, Mass., was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  9. 32 CFR 700.403 - Statutory authority and responsibility of the Chief of Naval Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND... President, the Secretary of Defense or the Secretary of the Navy. (c) The Chief of Naval Operations...

  10. The Challenge of Chief Student Affairs Officers: Planning for the Future.

    ERIC Educational Resources Information Center

    Gold, James A.; And Others

    1993-01-01

    In the future, chief student affairs officers should assume a leadership role by making realistic strategic institutional advancement plans, discovering potential donors and involving them on campus, coordinating an information system, and providing staff development. (Author)

  11. CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician

    NASA Technical Reports Server (NTRS)

    Aume, Nilss M.

    1990-01-01

    Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.

  12. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    EPA Pesticide Factsheets

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  13. 77 FR 63835 - Office of the Chief Information Officer; Submission for OMB Review; Temporary Contractor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... ADMINISTRATION Office of the Chief Information Officer; Submission for OMB Review; Temporary Contractor... information collection requirement regarding temporary contractor information worksheet. A notice was... for temporary contractors as a result of the American Recovery and Reinvestment Act of 2009...

  14. 78 FR 46240 - Delegation of Procurement Authority and Chief Acquisition Officer Functions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... performance of those programs on the basis of applicable performance measurements, and advising the Chief.... Promoting a high-performing, ethical, and dynamic supplier base by: (1) Ensuring the timely completion...

  15. 29 CFR 793.11 - Combination announcer, news editor and chief engineer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... editor and chief engineer. The 13(b)(9) exemption, as was made clear during the debate on the amendment... television stations. It is known at the time of such debate that these stations employ only a small number...

  16. Massachusetts Maritime Academy Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    EPA Pesticide Factsheets

    A resident of Fairhaven, Daniel Freitas, the Chief Operator of the Massachusetts Maritime Academy Wastewater Treatment Plant, was recently honored with a 2015 Regional WWTP Operator of the Year Excellence Award by the US EPA's New England regional office

  17. 76 FR 17658 - National Forum for State and Territorial Chief Executives (National Forum) Program Cooperative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration National Forum for State and Territorial Chief Executives (National Forum) Program Cooperative Agreement AGENCY: Health Resources and...

  18. 46 CFR 78.55-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure...

  19. 46 CFR 196.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall... steam pressure is not carried in excess of that allowed by the certificate of inspection and to...

  20. 46 CFR 78.55-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure...

  1. 46 CFR 78.55-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure...

  2. 46 CFR 78.55-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure...

  3. 46 CFR 196.45-1 - Master and chief engineer responsible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall... steam pressure is not carried in excess of that allowed by the certificate of inspection and to...

  4. The Chief Student Affairs Officer and the President: Revisiting an Old Issue.

    ERIC Educational Resources Information Center

    Shay, John E, Jr.

    1984-01-01

    Examines the distinction between the roles of the college president and the chief student affairs officer. Demonstrates how the student affairs officer can support the president in obtaining resources and in other functions. (JAC)

  5. Program Computes Sound Pressures at Rocket Launches

    NASA Technical Reports Server (NTRS)

    Ogg, Gary; Heyman, Roy; White, Michael; Edquist, Karl

    2005-01-01

    Launch Vehicle External Sound Pressure is a computer program that predicts the ignition overpressure and the acoustic pressure on the surfaces and in the vicinity of a rocket and launch pad during launch. The program generates a graphical user interface (GUI) that gathers input data from the user. These data include the critical dimensions of the rocket and of any launch-pad structures that may act as acoustic reflectors, the size and shape of the exhaust duct or flame deflector, and geometrical and operational parameters of the rocket engine. For the ignition-overpressure calculations, histories of the chamber pressure and mass flow rate also are required. Once the GUI has gathered the input data, it feeds them to ignition-overpressure and launch-acoustics routines, which are based on several approximate mathematical models of distributed sources, transmission, and reflection of acoustic waves. The output of the program includes ignition overpressures and acoustic pressures at specified locations.

  6. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  7. On obtaining lunar mission launch opportunities

    NASA Technical Reports Server (NTRS)

    Swartwood, H., Jr.

    1972-01-01

    A general procedure for predicting launch opportunities for the RAE-B lunar orbiter mission is presented. It is shown that knowledge of the earth-moon distance and lunar phase and declination are sufficient to determine launch periods consistent with present mission constraints and to approximately predict launch, transfer, and arrival parameters such as park orbit coast time, the possiblity of shadows in all phases of the mission, arrival energy, and the amount of sunlit orbit time in the lunar orbit. Constraints on RAE-B include bounds on the spin axis-sun angle in the translunar trajectory, an upper limit on the arrival energy, and a minimum time for sunlight duration in lunar orbits are being considered for the mission. Comparisons are made of relevant parameters for the two cases. The general features of launch, transfer, and arrival parameters are discussed and are shown to be a function of lunar declination, flight time, and launch azimuth.

  8. Students Participate in Rocket Launch Project

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, Randolph High School students are assembling their rocket in preparation for launch.

  9. Launching the Future... Constellation Program at KSC

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2010-01-01

    With the Constellation Program, NASA is entering a new age of space exploration that will take us back to the Moon, to Mars, and beyond, and NASA is developing the new technology and vehicles to take us there. At the forefront are the Orion spacecraft and the Ares I launch vehicle. As NASA's gateway to space, Kennedy Space Center (KSC) will process and launch the new vehicles. This will require new systems and extensive changes to existing infrastructure. KSC is designing a new mobile launcher, a new launch control system, and new ground support equipment; modifying the Vehicle Assembly Building, one of the launch pads, and other facilities; and launching the Ares I-X flight test. It is an exciting and challenging time to be an engineer at KSC.

  10. Biosurveillance evaluation of SNOMED CT's terminology (BEST Trial): coverage of chief complaints.

    PubMed

    Elkin, Peter L; Brown, Steven H; Balas, Andrew; Temesgen, Zelalem; Wahner-Roedler, Dietlind; Froehling, David; Liebow, Mark; Trusko, Brett; Rosenbloom, S Trent; Poland, Greg

    2008-01-01

    The current United States Health Information Technology Standards Panel's interoperability specification for biosurveillance relies heavily on chief complaint data for tracking rates of cases compatible with a case definition for diseases of interest (e.g. Avian Flu). We looked at SNOMED CT to determine how well this large general medical ontology could represent data held in chief complaints. In this experiment we took 50,000 records (Comprehensive Examinations or Limited Examinations from primary care areas at the Mayo Clinic) from December 2003 through February 2005 (Influenza Season). Of these records, 36,097 had non-null Chief Complaints. We randomly selected 1,035 non-null Chief Complaints and two Board-certified internists (one Infectious Diseases specialist and one general internist) reviewed the mappings of the 1,035 chief complaints. Where the reviewers disagreed, a third internist adjudicated. SNOMED CT had a sensitivity of 98.7% for matching clinical terms found in the chief complaint section of the clinical record. The positive predictive value was 97.4%, the negative predictive value was 89.5%, the specificity was 81.0%, the positive likelihood ratio was 5.181 and the negative likelihood ratio was 0.016. We conclude that SNOMED CT and natural language parsing engines can well represent the clinical content of chief complaint fields. Future research should focus on how well the information contained in the chief complaints can be relied upon to provide the basis of a national strategy for biosurveillance. The authors recommend that efforts be made to examine the entire clinical record to determine the level of improvement in the accuracy of biosurveillance that can be achieved if we were to incorporate the entire clinical record into our biosurveillance strategy.

  11. Isolated guinea pig gastric chief cells express tumour necrosis factor receptors coupled with the sphingomyelin pathway.

    PubMed Central

    Fiorucci, S; Santucci, L; Migliorati, G; Riccardi, C; Amorosi, A; Mancini, A; Roberti, R; Morelli, A

    1996-01-01

    The tumour necrosis factor alpha (TNF), has been implicated in the pathogenesis of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy and Helicobacter pylori induced gastritis. Both conditions are characterised by high plasma pepsinogen concentrations, which are thought to reflect an increased rate of enzyme release by the pepsinogen secreting (chief) cells. The mechanisms responsible for this cell dysfunction are unknown. This study investigates whether chief cells express TNF receptors and, if so, whether their activation results in cell death. Immunohistochemical studies conducted with monoclonal antibodies (mAbs) directed against two TNF receptor associated proteins of 55 kDa (TNF-R1) and 75 kDa (TNF-R2) showed that TNF binding sites were expressed in approximately 100% gastric chief cells. Western blot analysis of whole chief cell lysates probed with the TNF-R1 and TNF-R2 mAbs gave two distinct bands of 55 and 75 kDa in the immunoprecipitate. Incubating chief cells with TNF caused concentration and time dependent cell death, which was prevented by pretreating the cells with anti-TNF receptor mAbs. Exposing the cells to TNF reduced sphingomyelin content by 25%. Sphingomyelinase (10(-6) to 10(-2) IU/ml) mimicked the effect of TNF in that it provoked a concentration and time dependent reduction in chief cell viability and increased pepsinogen release. In conclusion, gastric chief cells express two TNF receptors partially linked to the sphingomyelin pathway. TNF induced chief cell dysfunction might be responsible for the high plasma pepsinogen concentrations seen in patients with NSAID gastropathy or H pylori induced gastritis. Images Figure 1 Figure 2 PMID:8801194

  12. Recommended Screening Practices for Launch Collision Aviodance

    NASA Technical Reports Server (NTRS)

    Beaver, Brian A.; Hametz, Mark E.; Ollivierre, Jarmaine C.; Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    The objective of this document is to assess the value of launch collision avoidance (COLA) practices and provide recommendations regarding its implementation for NASA robotic missions. The scope of this effort is limited to launch COLA screens against catalog objects that are either spacecraft or debris. No modifications to manned safety COLA practices are considered in this effort. An assessment of the value of launch COLA can be broken down into two fundamental questions: 1) Does collision during launch represent a significant risk to either the payload being launched or the space environment? 2) Can launch collision mitigation be performed in a manner that provides meaningful risk reduction at an acceptable level of operational impact? While it has been possible to piece together partial answers to these questions for some time, the first attempt to comprehensively address them is documented in reference (a), Launch COLA Operations: an Examination of Data Products, Procedures, and Thresholds, Revision A. This report is the product of an extensive study that addressed fundamental technical questions surrounding launch collision avoidance analysis and practice. The results provided in reference (a) will be cited throughout this document as these two questions are addressed. The premise of this assessment is that in order to conclude that launch COLA is a value-added activity, the answer to both of these questions must be affirmative. A "no" answer to either of these questions points toward the conclusion that launch COLA provides little or no risk mitigation benefit. The remainder of this assessment will focus on addressing these two questions.

  13. PR-PR: Cross-Platform Laboratory Automation System

    SciTech Connect

    Linshiz, G; Stawski, N; Goyal, G; Bi, CH; Poust, S; Sharma, M; Mutalik, V; Keasling, JD; Hillson, NJ

    2014-08-01

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  14. Problems of design and development of advanced superheavy launch vehicles

    NASA Astrophysics Data System (ADS)

    Daniluk, A. Yu.; Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2016-12-01

    The article analyzes problems of design and development of advanced superheavy launch vehicles. Mass and energy characteristics and design layout of launch vehicles are substantiated. Delivery methods of bulky superheavy launch vehicle components to the spacecraft launch site are discussed. Methods of reduction of financial and technical risks of development and operation of superheavy launch vehicles are analyzed. The problem of environmental impacts of superheavy launch vehicle launches is posed.

  15. Characterization of cholecystokinin receptors on guinea pig gastric chief cell membranes

    SciTech Connect

    Matozaki, T.; Sakamoto, C.; Nagao, M.; Nishisaki, H.; Konda, Y.; Nakano, O.; Matsuda, K.; Wada, K.; Suzuki, T.; Kasuga, M. )

    1991-02-14

    The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of {sup 125}I-CCK-octapeptide (CCK8). At 30{degrees}C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors.

  16. Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.

  17. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  18. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    NASA Technical Reports Server (NTRS)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  19. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    NASA Technical Reports Server (NTRS)

    Novack, Steven D.; Rogers, Jim; Al Hassan, Mohammad; Hark, Frank

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk, and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results, and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods, such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty, are rendered obsolete, since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods. This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper describes how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  20. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  1. EDITORIAL: Greetings from the new Editor-in-Chief Greetings from the new Editor-in-Chief

    NASA Astrophysics Data System (ADS)

    Gardner, Jason S.

    2012-01-01

    As I begin my tenure as Editor-in-Chief of Journal of Physics: Condensed Matter (JPCM), I look upon this opportunity as both an honour and a real challenge. The journal is in great shape thanks to the work of my predecessors, Marshall Stoneham and David Ferry. The journal's solid reputation is based largely on the work these gentlemen have done over the past decade. The other main reason for the success of JPCM is the amazing staff in Bristol; keep up the good work, please. When discussing the journal with scientists from all corners of the globe, one thing is always mentioned—JPCM is a very reliable journal with well-written, high-quality papers, and a fast but rigorous peer-review process that provides fair, detailed and constructive referee reports for the benefit of authors. This is due almost entirely to our great authors and referees; we rely on them every day—thank you. As the new Editor-in-Chief I hope to continue to improve still further the journal's status in condensed matter science. As mentioned above, our reputation is excellent, but the reality is that we live in a world of bibliometrics and rankings. Over the past few years JPCM has been repositioned as a journal at the forefront of condensed matter physics, and the impact of the journal should increase further as a result of continued emphasis on commissioning in cutting-edge areas identified by the Editorial Board and the journal team. In addition to regular papers, JPCM has a number of other content streams that authors and readers can benefit from. Fast track communications (FTCs) offer exceptionally fast publication for work of the highest impact and urgency. By their select nature, FTCs benefit from personal treatment by the Editorial Board and the average receipt-to-first-decision time is just 11 days (the average receipt-to-publication time is just 45 days). Topical reviews in JPCM make the journal one of the most authoritative sources of review content for condensed matter physics

  2. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  3. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. STS-99 Post-Launch Press Conference

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage shows the participants in the Post-Launch Press Conference disclosing the status of the STS-99 flight. The panelists consist of Bill Gerstenmaier, Acting Manager of Launch Integration and Dave King, Director of Shuttle Operations at KSC (Kennedy Space Center). Joel Wells, of NASA's Public Affairs Office, introduces each panelist as they discuss the mapping to the Earth, and improve safety of the shuttle. The panelists also answer questions from the audience about the countdown. Also shown are various shots of the Shuttle on the launch pad.

  5. STS-99 / Endeavour: Launch Postponement Press Conference

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage shows Ron Dittemore, the Shuttle Program Manager from Johnson Space Center (JSC), participating in a Launch Postponement Press Conference disclosing the status of the STS-99 flight. He addresses the weather condition which caused the postponement and the erroneous response from one of the Master Events Controllers (MEC). The moderator of this conference is Bruce Buckingham from NASA's Public Affairs Office. Ron answers questions from the audience about the MEC responsible for sending commands for launch, and the implications that it might have on the launch schedule.

  6. Viking Mars launch set for August 11

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1975-01-01

    The 1975-1976 Viking Mars Mission is described in detail, from launch phase through landing and communications relay phase. The mission's scientific goals are outlined and the various Martian investigations are discussed. These investigations include: geological photomapping and seismology; high-resolution, stereoscopic horizon scanning; water vapor and thermal mapping; entry science; meteorology; atmospheric composition and atmospheric density; and, search for biological products. The configurations of the Titan 3/Centaur combined launch vehicles, the Viking orbiters, and the Viking landers are described; their subsystems and performance characteristics are discussed. Preflight operations, launch window, mission control, and the deep space tracking network are also presented.

  7. Launch system design for access to space

    NASA Technical Reports Server (NTRS)

    Barnes, Corbin

    1994-01-01

    Here, a hybrid launch system is developed. The hybrid launch system combines the lower operating cost advantage of an non-man-rated SSTO (Single Stage to Orbit) MLV (Medium Launch Vehicle) with the crew survivability advantage of a ballistic escape pod. Ultimately, it was found that a non-man-made MLV is configured the same as a man-rated MLV and offers no significant savings in operational cost. However, addition of the proposed escape system would increase the crew survivability rate of the SSTO while incurring only a small cost per pound payload penalty.

  8. STS-82 Crack on Mobile Launch Platform

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After leaving the Vehicle Assembly Building, the Space Shuttle Discovery makes its slow -- up to 1 mile per hour -- trek along the Crawlerway to Launch Pad 39A in preparation for the STS-82 mission. The Shuttle is assembled on a Mobile Launch Platform (MLP), seen in this view taken from above, and the entire assemblage is carried out to the launch pad on the Crawler Transporter, which is underneath the MLP. A seven-member crew will perform the second servicing of the orbiting Hubble Space Telescope (HST) during the 10-day STS-82 mission, which is targeted for a Feb. 11 liftoff.

  9. 14 CFR 417.105 - Launch personnel qualifications and certification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch personnel qualifications and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.105 Launch personnel qualifications and certification. (a) General. A launch operator must employ a...

  10. 14 CFR 415.39 - Safety at end of launch.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety at end of launch. 415.39 Section 415... OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch From a Federal Launch Range § 415.39 Safety at end of launch. To obtain safety approval, an applicant must...

  11. 14 CFR 415.39 - Safety at end of launch.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety at end of launch. 415.39 Section 415... OF TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch From a Federal Launch Range § 415.39 Safety at end of launch. To obtain safety approval, an applicant must...

  12. 14 CFR 417.13 - Agreement with Federal launch range.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Agreement with Federal launch range. 417.13..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.13 Agreement with Federal launch range. Before conducting a licensed launch from a Federal launch range,...

  13. 14 CFR 415.13 - Transfer of a launch license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transfer of a launch license. 415.13..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.13 Transfer of a launch license. (a) Only the FAA may transfer a launch license. (b) An applicant for transfer of a launch license shall...

  14. 14 CFR 415.13 - Transfer of a launch license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transfer of a launch license. 415.13..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.13 Transfer of a launch license. (a) Only the FAA may transfer a launch license. (b) An applicant for transfer of a launch license shall...

  15. 14 CFR 417.13 - Agreement with Federal launch range.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Agreement with Federal launch range. 417.13..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.13 Agreement with Federal launch range. Before conducting a licensed launch from a Federal launch range,...

  16. 14 CFR 417.105 - Launch personnel qualifications and certification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Launch personnel qualifications and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.105 Launch personnel qualifications and certification. (a) General. A launch operator must employ a...

  17. STS-134 Launch Composite Video Comparison

    NASA Video Gallery

    A side-by-side comparison video shows a one-camera view of the STS-134 launch (left) with the six-camera composited view (right). Imaging experts funded by the Space Shuttle Program and located at ...

  18. Expedition 31 Crew Trains for Launch

    NASA Video Gallery

    The Expedition 31 crew - astronaut Joe Acaba and cosmonauts Gennady Padalka and Sergei Revin -- trains at Star City, Russia, for its upcoming launch to the International Space Station. Their backup...

  19. Aerial view of Launch Complex 39

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this aerial view looking south can be seen Launch Complex (LC) 39 area, where assembly, checkout and launch of the Space Shuttle Orbiter and its External Tank and twin Solid Rocket Boosters take place. Central to the complex is the tallest building at the center, the Vehicle Assembly Building (VAB). To the immediate left, from top to bottom, are the Orbiter Processing Facility (OPF) High Bay 3 and new engine shop (north side), OPF Modular Office Building, Thermal Protection System Facility, and a crawler-transporter (to its left). In front of the VAB are OPF 1 and OPF 2. At right is the Processing Control Center. West of OPF 3 is the Mobile Launch Platform. In the upper left corner is Launch Pad B; at the far right is the turn basin, with the Press Site located just below it to the right.

  20. STS-114: Discovery Launch Readiness Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This press conference, attended by representatives from the national, Florida, and aerospace media, addresses launch, weather, and safety issues related to Space Shuttle Discovery prior to its launch on the STS-114 Return to Flight mission. The Master of Ceremonies is George Diller from NASA Public Affairs, and the panelists are: Space Shuttle Program Manager Bill Parsons, ISS Program Manager (JSC) Bill Gerstenmaier, Space Shuttle Deputy Program Manager Wayne Hale, Director of Shuttle Processing Mike Wetmore, ISS Program Manager (JAXA) Dr. Kuniaki Shiraki, and Launch Weather Officer (USAF) Mindy Chavez. Questions included the following topics: predicted weather conditions at launch, contingency rescue plans, countdown procedures, and risk management, as well as implications of the Return to Flight for the International Space Station (ISS).