Sample records for children consuming cassava

  1. Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake.

    PubMed

    Gegios, Alison; Amthor, Rachel; Maziya-Dixon, Busie; Egesi, Chedozie; Mallowa, Sally; Nungo, Rhoda; Gichuki, Simon; Mbanaso, Ada; Manary, Mark J

    2010-03-01

    Cassava contains little zinc, iron, and beta-carotene, yet it is the primary staple crop of over 250 million Africans. This study used a 24-hour dietary recall to test the hypothesis that among healthy children aged 2-5 years in Nigeria and Kenya, cassava's contribution to the childrens' daily diets is inversely related to intakes of zinc, iron, and vitamin A. Dietary and demographic data and anthropometric measurements were collected from 449 Kenyan and 793 Nigerian children. Among Kenyan children 89% derived at least 25% of their dietary energy from cassava, while among the Nigerian children 31% derived at least 25% of energy from cassava. Spearman's correlation coefficient between the fraction of dietary energy obtained from cassava and vitamin A intake was r = -0.15, P < 0.0001, zinc intake was r = -0.11, P < 0.0001 and iron intake was r = -0.36, P < 0.0001. In Kenya, 59% of children consumed adequate vitamin A, 22% iron, and 31% zinc. In Nigeria, 17% of children had adequate intake of vitamin A, 57% iron, and 41% zinc. Consumption of cassava is a risk factor for inadequate vitamin A, zinc and/or iron intake.

  2. Combination of cassava flour cyanide and urinary thiocyanate measurements of school children in Mozambique.

    PubMed

    Paula Cardoso, A; Ernesto, Mario; Nicala, Domingos; Mirione, Estevao; Chavane, Leonardo; N'zwalo, Hipolito; Chikumba, Sergio; Cliff, Julie; Paulo Mabota, A; Rezaul Haque, M; Howard Bradbury, J

    2004-05-01

    The maximum daily cassava flour intake of children may be calculated from determination of the total cyanide content of cassava flour and urinary thiocyanate levels of school children in samples collected at the same time and place. Four sites, two with and two without recent konzo cases, were chosen for study. In two sites with recent konzo cases, 84% and 93% of school children consumed cassava the previous day, and the calculated maximum daily consumption of cassava was over 700 g. In two sites without recent konzo cases, about 50% of school children consumed cassava the previous day and the calculated daily consumption of cassava flour was less than 150 g. By measurements of cyanide in flour and urinary thiocyanate we are therefore able to distinguish between communities whose diet is almost totally reliant on cassava, and who are therefore susceptible to konzo, and those who have a broader diet and are free from konzo. In another calculation it is shown that 4-23% of the essential S-containing amino acids in the cassava flour consumed by children is used up to detoxify and flour cyanide to thiocyanate. This depletion of methionine and cystine may leads to protein deficiency and may contribute to onset of konzo.

  3. Biofortified Cassava with Pro-Vitamin A Is Sensory and Culturally Acceptable for Consumption by Primary School Children in Kenya

    PubMed Central

    Talsma, Elise F.; Melse-Boonstra, Alida; de Kok, Brenda P. H.; Mbera, Gloria N. K.; Mwangi, Alice M.; Brouwer, Inge D.

    2013-01-01

    Background Biofortification of cassava with pro-vitamin A can potentially reduce vitamin A deficiency in low-income countries. However, little is known about consumer acceptance of this deep yellow variety of cassava compared to the commonly available white varieties. We aimed to determine the sensory and cultural acceptability of the consumption of pro-vitamin A rich cassava in order to identify key factors predicting the intention to consume pro-vitamin A rich cassava by families with school-aged children in Eastern Kenya. Methods Sensory acceptability was measured by replicated discrimination tests and paired preference tests among 30 children (7–12 yr) and 30 caretakers (18–45 yr) in three primary schools. Cultural acceptability was assessed with a questionnaire based on the combined model of The Theory of Planned Behavior and The Health Belief Model in one primary school among 140 caretakers of children aged 6 to 12 years. Correlations and multivariate analyses were used to determine associations between summed scores for model constructs. Results Caretakers and children perceived a significant difference in taste between white and pro-vitamin A rich cassava. Both preferred pro-vitamin A rich cassava over white cassava because of its soft texture, sweet taste and attractive color. Knowledge about pro-vitamin A rich cassava and it's relation to health (‘Knowledge’ ((β = 0.29, P = <.01)) was a strong predictor of ‘Health behavior identity’. Worries related to bitter taste and color (‘Perceived barriers 1’ (β = −0.21, P = .02)), the belief of the caretaker about having control to prepare cassava (‘Control beliefs’ (β = 0.18, P = .02)) and activities like information sessions about pro-vitamin A rich cassava and recommendations from health workers (‘Cues to action’(β = 0.51, P = <.01)) were the best predictors of intention to consume pro-vitamin A rich cassava. Conclusions Pro-vitamin A rich cassava is

  4. Cassava Intake and Vitamin A Status among Women and Preschool Children in Akwa-Ibom, Nigeria

    PubMed Central

    De Moura, Fabiana F.; Moursi, Mourad; Lubowa, Abdelrahman; Ha, Barbara; Boy, Erick; Oguntona, Babatunde; Sanusi, Rasaki A.; Maziya-Dixon, Busie

    2015-01-01

    Background As part of the HarvestPlus provitamin A-biofortified cassava program in Nigeria we conducted a survey to determine the cassava intake and prevalence of vitamin A deficiency among children 6-59 months and women of childbearing age in the state of Akwa Ibom. Methods A cluster-randomized cross-sectional survey was conducted in 2011 in Akwa Ibom, Nigeria. The usual food and nutrient intakes were estimated using a multi-pass 24-hour recall with repeated recall on a subsample. Blood samples of children and women were collected to analyze for serum retinol, serum ferritin, and acute phase proteins as indicators of infection. Vitamin A deficiency was defined as serum retinol <0.70 μmol/L adjusted for infection. Results A total of 587 households of a mother-child dyad participated in the dietary intake assessment. Cassava was very widely consumed in Akwa Ibom, mainly as gari or foofoo. Daily cassava consumption frequency was 92% and 95% among children and women, respectively. Mean (±SD) cassava intake (expressed as raw fresh weight) was 348 ± 317 grams/day among children and 940 ± 777 grams/day among women. Intakes of most micronutrients appeared to be adequate with the exception of calcium. Median vitamin A intake was very high both for children (1038 μg RAE/day) and women (2441 μg RAE/day). Red palm oil and dark green leafy vegetables were the main sources of vitamin A in the diet, with red palm oil alone contributing almost 60% of vitamin A intake in women and children. Prevalence of vitamin A deficiency ranged from moderate (16.9 %) among children to virtually non-existent (3.4 %) among women. Conclusion Consumption of cassava and vitamin A intake was high among women and children in Akwa Ibom with a prevalence of vitamin A deficiency ranging from moderate in children to non-existent among women. The provitamin A biofortified cassava and other vitamin A interventions should focus dissemination in states where red palm oil is not widely consumed. PMID

  5. Cassava traits and end-user preference: Relating traits to consumer liking, sensory perception, and genetics.

    PubMed

    Bechoff, Aurélie; Tomlins, Keith; Fliedel, Geneviève; Becerra Lopez-Lavalle, Luis Augusto; Westby, Andrew; Hershey, Clair; Dufour, Dominique

    2018-03-04

    Breeding efforts have focused on improving agronomic traits of the cassava plant however little research has been done to enhance the crop palatability. This review investigates the links between cassava traits and end-user preference in relation with sensory characteristics. The main trait is starch and its composition related to the textural properties of the food. Pectin degradation during cooking resulted in increased mealiness. Nutritional components such as carotenoids made the cassava yellow but also altered sweetness and softness; however, yellow cassava was more appreciated by consumers than traditional (white) varieties. Components formed during processing such as organic acids gave fermented cassava products an acidic taste that was appreciated but the fermented smell was not always liked. Anti-nutritional compounds such as cyanogenic glucosides were mostly related to bitter taste. Post-harvest Physiological Deterioration (PPD) affected the overall sensory characteristics and acceptability. Genes responsible for some of these traits were also investigated. Diversity in cassava food products can provide a challenge to identifying acceptance criteria. Socio-economic factors such as gender may also be critical. This review leads to questions in relation to the adaptation of cassava breeding to meet consumer needs and preference in order to maximize income, health and food security.

  6. Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial.

    PubMed

    Talsma, Elise F; Brouwer, Inge D; Verhoef, Hans; Mbera, Gloria N K; Mwangi, Alice M; Demir, Ayşe Y; Maziya-Dixon, Busie; Boy, Erick; Zimmermann, Michael B; Melse-Boonstra, Alida

    2016-01-01

    Whereas conventional white cassava roots are devoid of provitamin A, biofortified yellow varieties are naturally rich in β-carotene, the primary provitamin A carotenoid. We assessed the effect of consuming yellow cassava on serum retinol concentration in Kenyan schoolchildren with marginal vitamin A status. We randomly allocated 342 children aged 5-13 y to receive daily, 6 d/wk, for 18.5 wk 1) white cassava and placebo supplement (control group), 2) provitamin A-rich cassava (mean content: 1460 μg β-carotene/d) and placebo supplement (yellow cassava group), and 3) white cassava and β-carotene supplement (1053 μg/d; β-carotene supplement group). The primary outcome was serum retinol concentration; prespecified secondary outcomes were hemoglobin concentration and serum concentrations of β-carotene, retinol-binding protein, and prealbumin. Groups were compared by using ANCOVA, adjusting for inflammation, baseline serum concentrations of retinol and β-carotene, and stratified design. The baseline prevalence of serum retinol concentration <0.7 μmol/L and inflammation was 27% and 24%, respectively. For children in the control, yellow cassava, and β-carotene supplement groups, the mean daily intake of cassava was 378, 371, and 378 g, respectively, and the total daily supply of provitamin A and vitamin A from diet and supplements was equivalent to 22, 220, and 175 μg retinol, respectively. Both yellow cassava and β-carotene supplementation increased serum retinol concentration by 0.04 μmol/L (95% CI: 0.00, 0.07 μmol/L); correspondingly, serum β-carotene concentration increased by 524% (448%, 608%) and 166% (134%, 202%). We found no effect on hemoglobin concentration or serum concentrations of retinol-binding protein and prealbumin. In our study population, consumption of yellow cassava led to modest gains in serum retinol concentration and a large increase in β-carotene concentration. It can be an efficacious, new approach to improve vitamin A status. This

  7. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.

    PubMed

    Hernández, T; Lundquist, P; Oliveira, L; Pérez Cristiá, R; Rodriguez, E; Rosling, H

    1995-01-01

    We studied if consumption of boiled fresh roots from sweet cassava varieties grown in Cuba resulted in exposure to cyanogenic glycosides and their final breakdown product, cyanide. When adult, nonsmoking subjects consumed 1-4 kg cassava over 2 days, their urinary levels of the main cyanide metabolite, thiocyanate, only increased from a mean +/- SEM of 12 +/- 2 to 22 +/- 2 mumol/l, indicating a negligible cyanide exposure. Their mean urinary linamarin, the main cyanogenic glucoside in cassava, increased from 2 +/- 1 to 68 +/- 16 mumol/l. In a second experiment 5 subjects consumed one meal of 0.5 kg boiled cassava that contained 105 mumol linamarin and 8 mumol hydrogen cyanide (HCN). Quantitative urine collections prior to and after intake showed that 28% of linamarin was excreted during the following 24 hours, whereas a modest increase of urinary thiocyanate (SCN) only corresponded to the small amount of free HCN ingested. These results indicate that the dominant cyanogen in boiled cassava is glycosides that pass through the human body without causing cyanide exposure. It remains to be studied whether humans occasionally possess intestinal or tissue beta-glucosidases that can hydrolyse cyanogenic glycosides from cassava.

  8. Assessment of cassava toxicity in patients with tropical chronic pancreatitis.

    PubMed

    Girish, Banavara Narasimhamurthy; Rajesh, Gopalakrishna; Vaidyanathan, Kannan; Balakrishnan, Vallath

    2011-01-01

    There have been conflicting reports on the role of cassava ingestion in tropical pancreatitis (TCP). In this study we aimed to estimate cyanogens detoxifying enzyme rhodanese, thiocyanate and sulfur containing amino acids in cassava consumer as well as cassava non-consumer TCP patients and healthy controls and compare the same. Eighty-six TCP patients and 90 healthy controls were recruited. Serum rhodanese, thiocyanate, plasma amino acids, urinary inorganic sulfate/creatinine were measured. There was significant reduction in serum rhodanese activity in both cassava consumer- and non-consumer TCP patients as compared to controls but no significant difference between cassava consumer- and non-consumer TCP patients was observed. Serum thiocyanate was significantly lower in cassava consumer TCP patients as compared to cassava consumer controls but not significantly different from cassava non-consumer TCP patients. Plasma methionine, cysteine and urinary inorganic sulfate / creatinine ratio was significantly lower in both cassava consumer and non-consumer TCP patients as compared to controls but were comparable among cassava consumers and non-consumers. Significant reduction in rhodanese activity with concomitant decrease in sulfur containing amino acids and antioxidants such as glutathione suggests that TCP patients are at higher risk of defective detoxification of cyanogens. However there was no difference between cassava consumers and non-consumers. Low levels of sulfur amino acids may contribute to the development of pancreatitis.

  9. Sensorial evolution of cassava flour (Manihot esculenta crantz) added to protein concentrate cassava leaves

    PubMed Central

    Lima, Elaine C S; Feijo, Márcia B S; Freitas, Maria C J; dos Santos, Edna R; Sabaa-Srur, Armando U O; Moura, Luciana S M

    2013-01-01

    Cassava is regarded as the nutritional base of populations in developing countries, and flour, product made of cassava, is the most consumed in the world. The cassava leaves are very rich in vegetable proteins, but a big amount is lost in processing the crop. The objective of this study was to do a sensory evaluation of cassava flour to which a protein concentrate obtained from cassava leaves (CPML) was added. The CPML was obtained from cassava leaves by isoelectric precipitation and added to cassava paste for preparation of flour in three parts 2.5, 5, and 10%. The acceptance test was done by 93 consumers of flour, using hedonic scale of 7 points to evaluate characteristics like color, scent, flavor, bitterness, texture, and overall score. By the method of quantitative descriptive analysis (QDA), eight trained tasters evaluated the following characteristics: whitish color, greenish color, cassava flavor, bitter flavor, characteristic flavor, lumpiness, raw texture, leaf scent, and cassava scent. The acceptability test indicated that flour cassava with 2.5 was preferred. Whitish color, greenish color, cassava flavor, bitter flavor, salty flavor, characteristic flavor, lumpiness texture, raw texture, and the smell of the leaves and cassava flour were the main descriptors defined for flour cassava with CPML has better characteristics. PMID:24804041

  10. Consumer’s market analysis of products based on cassava

    NASA Astrophysics Data System (ADS)

    Unteawati, Bina; Fitriani; Fatih, Cholid

    2018-03-01

    Cassava product has the important role for enhancing household's income in rural. Cassava as raw material food is plentiful as local food in Lampung. Cassava product is one of strategic value addition activities. Value additional activities are a key to create income source enrichment in rural. The household was product cassava as a snack or additional food. Their product cassava was operated in small-scale, traditional, and discontinuous production. They have been lacked in technology, capital, and market access. Measurement the sustainability of their business is important. The market has driven the business globally. This research aims to (1) describe the cassava demand to locally product cassava in rural and (2) analysis the consumer's perception of cassava product. Research take placed in Lampung Province, involved Bandar Lampung and Metro City, Pringsewu, Pesawaran, Central Lampung, and East Lampung district. It is held in February until April 2017. Data were analyzed by descriptive statistic and multidimensional scaling. Based on the analysis conclude that (1) the demand of product cassava from rural was massive in volume and regularity with the enormous transaction. This fact is very important to role business cycles. Consumers demand continuously will lead the production of cassava product sustain. Producers of product cassava will consume fresh cassava for the farmer. Consumption of fresh cassava for home industry regularly in rural will develop balancing in fresh cassava price in the farming gate (2) The consumer's perception on cassava product in the different market showed that they prefer much to consume cassava chips as cassava product products than other. Next are crackers, opak, and tiwul rice. Urban consumers prefer product products as snacks (chips, crumbs, and opak), with consumption frequency of 2-5 times per week and volume of 1-3 kg purchases. Consumers in rural were more frequent with daily consumption frequency. Multidimensional scaling

  11. Cassava processing, consumption, and cyanide toxicity.

    PubMed

    Adewusi, S R; Akindahunsi, A A

    1994-09-01

    The frequency of cassava consumption was investigated among three groups of people representing students from traditional and nontraditional cassava-consuming environments and cassava processors. Of these, 64% of the students at Obafemi Awolowo University, Ile-Ife, 38% of those at the Federal University of Technology, Akure, and 44% of the cassava processors consumed cassava products at least once a day, while 4, 35, and 28% of the groups, respectively, were moderate consumers (4-6 times a week). The serum thiocyanate level of the processors was significantly higher (0.57 mg/dl) than those of the students (0.38 mg/dl), but there was no significant difference in the urinary thiocyanate level of the three groups. Analysis of cassava and its intermediate and final products for free cyanide, acetone cyanohydrin, and intact glucosides during the production of such cassava products as gari, fufu, and lafun revealed that while the finished products might be safe for human consumption, the workers were probably exposed at different stages of processing to nondietary sources of cyanide.

  12. The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming.

    PubMed

    Talsma, Elise F; Borgonjen-van den Berg, Karin J; Melse-Boonstra, Alida; Mayer, Eva V; Verhoef, Hans; Demir, Ayşe Y; Ferguson, Elaine L; Kok, Frans J; Brouwer, Inge D

    2018-02-01

    Introduction of biofortified cassava as school lunch can increase vitamin A intake, but may increase risk of other deficiencies due to poor nutrient profile of cassava. We assessed the potential effect of introducing a yellow cassava-based school lunch combined with additional food-based recommendations (FBR) on vitamin A and overall nutrient adequacy using Optifood (linear programming tool). Cross-sectional study to assess dietary intakes (24 h recall) and derive model parameters (list of foods consumed, median serving sizes, food and food (sub)group frequency distributions, food cost). Three scenarios were modelled, namely daily diet including: (i) no school lunch; (ii) standard 5d school lunch with maize/beans; and (iii) 5d school lunch with yellow cassava. Each scenario and scenario 3 with additional FBR were assessed on overall nutrient adequacy using recommended nutrient intakes (RNI). Eastern Kenya. Primary-school children (n 150) aged 7-9 years. Best food pattern of yellow cassava-based lunch scenario achieved 100 % RNI for six nutrients compared with no lunch (three nutrients) or standard lunch (five nutrients) scenario. FBR with yellow cassava and including small dried fish improved nutrient adequacy, but could not ensure adequate intake of fat (52 % of average requirement), riboflavin (50 % RNI), folate (59 % RNI) and vitamin A (49 % RNI). Introduction of yellow cassava-based school lunch complemented with FBR potentially improved vitamin A adequacy, but alternative interventions are needed to ensure dietary adequacy. Optifood is useful to assess potential contribution of a biofortified crop to nutrient adequacy and to develop additional FBR to address remaining nutrient gaps.

  13. Cassava as a food.

    PubMed

    Okezie, B O; Kosikowski, F V

    1982-01-01

    This review has attempted to examine information pertaining to the role of cassava (Manihot esculenta) as a major food source for a large part of the world population, particularly the countries of South America, Africa, and Asia, where it is primarily a major source of energy for 300 to 500 million people. Its cultivation, usually on small farms with little technology, is estimated to cover on an annual basis about 11 million hectares providing about 105 million tons, more than half of which is consumed by humans. The importance of cassava as an energy source can be seen by its growing demand in the European economic community countries where it forms up to 60% of the balanced diets for swine. Cassava is one of the crops that converts the greatest amount of solar energy into soluble carbohydrates per unit of area, thus 1 kg of moisture-free cassava meal may yield up to about 3750 kcal which would mean that a yearly production of 15 tons of cassava meal per hectare would yield some 56 million kcal. The major limitations of cassava as food appear to be its poor protein content and quality and the rapid post harvest deterioration of its roots which usually prevents their storage in the fresh state for more than a few days. However, in addition to its use for culinary purposes, cassava finds application in industrial products such as an adhesive for laundry purposes, for manufacturing paper, alcohol, butanol, dextrin, adhesive tape, textile sizing, and glue.

  14. Acid whey powder modification of gari from cassava

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okezie, B.O.; Kosikowski, F.V.

    1981-01-01

    Gari, a staple food consumed in Nigeria, is made from peeled and ground cassava tubers. The ground material is pressed with a stone slab for 2-4 days to remove moisture, and the partially fermented product is then baked over an open fire. Since gari mainly contributes energy to the diet, attempts were made to develop a more nutritious product without altering organoleptic and textural properties. In laboratory tests, ground cassava was fermented in stainless steel cheese vats for 4 days (to produce gari flavour) and then partially dehydrated by pressing in cheese cloth. A reduction in HCN content from 6.2more » to 3.4 mg/100 g resulted. Various combinations of spray-dried acid whey, soya protein and freeze-dried Candida tropicalis were added to the fermented cassava, which was then pressure-cooked for 10 minutes at 121 degrees Celcius, dried and ground in a hammer mill. Product (i), made with gari fortified with 15% soya concentrate and 5% dried acid whey, was as acceptable as traditional gari and had a protein score of 75.8 vs. 9.91 for traditional gari. Product (ii), gari fortified with 20% yeast and 10% dried acid whey, had significantly lower scores for flavour and texture than traditional gari and the protein score was only 29.45. Supplementing gari with relatively inexpensive whey concentrates appears to be a means of overcoming protein energy malnutrition in children.« less

  15. Effect of Cassava on motor co-ordination and neurotransmitter level in the albino rat.

    PubMed

    Mathangi, D C; Mohan, V; Namasivayam, A

    1999-01-01

    The root of Cassava, a tropical plant, is consumed in the tropics and has been attributed as the cause for various tropical neuropathies. This study aims to discover the neurotoxic effects of chronic cassava consumption of Indian origin and the effect of malnutrition. The assessment is based on the motor co-ordination and brain neurotransmitters in rats. Cassava consumption reduced the motor co-ordination, but the changes in neurotransmitter levels due to cassava consumption (except for 5HT in corpus striatum) was identical with malnutrition-induced changes, indicating that the toxicity of chronic cassava consumption (of Indian origin) is mainly due to the associated protein calorie malnutrition (PCM).

  16. Chemical safety of cassava products in regions adopting cassava production and processing--experience from Southern Africa.

    PubMed

    Nyirenda, D B; Chiwona-Karltun, L; Chitundu, M; Haggblade, S; Brimer, L

    2011-03-01

    The cassava belt area in Southern Africa is experiencing an unforeseen surge in cassava production, processing and consumption. Little documentation exists on the effects of this surge on processing procedures, the prevailing levels of cyanogenic glucosides of products consumed and the levels of products commercially available on the market. Risk assessments disclose that effects harmful to the developing central nervous system (CNS) may be observed at a lower exposure than previously anticipated. We interviewed farmers in Zambia and Malawi about their cultivars, processing procedures and perceptions concerning cassava and chemical food safety. Chips, mixed biscuits and flour, procured from households and markets in three regions of Zambia (Luapula-North, Western and Southern) as well as products from the Northern, Central and Southern regions of Malawi, were analyzed for total cyanogenic potential (CNp). Processed products from Luapula showed a low CNp, <10 mg HCN equiv./kg air dried weight, while samples from Mongu, Western Province, exhibited high levels of CNp, varying from 50 to 290 mg HCN equiv./kg. Even the lowest level is five times higher than the recommended safety level of 10mg/kg decided on for cassava flour. Our results call for concerted efforts in promoting gender oriented processing technologies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The contribution of moulds and yeasts to the fermentation of 'agbelima' cassava dough.

    PubMed

    Amoa-Awua, W K; Frisvad, J C; Sefa-Dedeh, S; Jakobsen, M

    1997-09-01

    Agbelima, a fermented cassava meal widely consumed in Ghana, Togo and Benin, is produced by fermenting grated cassava with one of several types of traditional cassava dough inoculum. During fermentation a smooth textured sour dough is produced, the toxicity of cassava is reduced and there is a build up of volatile aroma compounds. Four types of inocula were included in the present investigation. In one type moulds were found to form a dominant part of the microbiota, the species present being Penicillium sclerotiorum, P. citrinum, P. nodulum, Geotrichum candidum and a basidiomycete. All these moulds were found to possess cellulase activity which was responsible for the hydrolysis of cassava tuber cellulose during fermentation leading to a breakdown of the coarse texture of cassava dough. The yeasts Candida krusei, C. tropicalis and Zygosaccharomyces spp. were present in high numbers in the four types of inocula including the moudly inoculum. The yeasts C. tropicalis and some strains of Zygosaccharomyces, all of which possessed cellulase activity, were also found to contribute to the modification of cassava texture during fermentation. All yeasts and moulds exhibited linamarase activity and were therefore capable of breaking down the cyanogenic glucosides present in cassava.

  18. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    NASA Astrophysics Data System (ADS)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  19. Long-term ingestion of cassava (tapioca) does not produce diabetes or pancreatitis in the rat model.

    PubMed

    Mathangi, D C; Deepa, R; Mohan, V; Govindarajan, M; Namasivayam, A

    2000-06-01

    Cassava (tapioca, manihot) is consumed as a staple food in some developing countries. The intake of cassava has been linked to several diseases including fibrocalculous pancreatic diabetes (tropical calcific pancreatitis). There are few long-term studies on the effect of cassava ingestion on the pancreas in animal models. This article reports on the long-term (up to 1 yr) effects of cassava in the rat model. We found that cassava did not produce diabetes in the rat even after a year of cassava feeding. There were transient changes in serum insulin and lipase levels, but the significance of these findings are not clear. There was no histopathological evidence of either acute or chronic pancreatitis, but there were changes of toxic hepatitis in the liver. In conclusion, chronic cassava ingestion up to a year does not lead to either diabetes or chronic pancreatitis in the rat model.

  20. Electrical and absorption properties of fresh cassava tubers and cassava starch

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  1. Konzo and continuing cyanide intoxication from cassava in Mozambique.

    PubMed

    Cliff, J; Muquingue, H; Nhassico, D; Nzwalo, H; Bradbury, J H

    2011-03-01

    In Mozambique, epidemics of the cassava-associated paralytic disease, konzo, have been reported in association with drought or war: over 1100 cases in 1981, over 600 cases in 1992-1993, and over 100 cases in 2005. Smaller epidemics and sporadic cases have also been reported. Large epidemics have occurred at times of agricultural crisis, during the cassava harvest, when the population has been dependent on a diet of insufficiently processed bitter cassava. Konzo mostly affects women of child-bearing age and children over 2 years of age. When measured, serum or urinary thiocyanate concentrations, indicative of cyanide poisoning, have been high in konzo patients during epidemics and in succeeding years. Monitoring of urinary thiocyanate concentrations in schoolchildren in konzo areas has shown persistently high concentrations at the time of the cassava harvest. Inorganic sulphate concentrations have been low during and soon after epidemics. Programmes to prevent konzo have focused on distributing less toxic varieties of cassava and disseminating new processing methods, such as grating and the flour wetting method. Attention should be given to the wider question of agricultural development and food security in the regions of Africa where dependence on bitter cassava results in chronic cyanide intoxication and persistent and emerging konzo. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Mantakassa: an epidemic of spastic paraparesis associated with chronic cyanide intoxication in a cassava staple area of Mozambique. 2. Nutritional factors and hydrocyanic acid content of cassava products*

    PubMed Central

    1984-01-01

    An outbreak of spastic paraparesis which mostly affected women and children occurred in a northern province of Mozambique in 1981. The epidemic was related to chronic cyanide intoxication associated with a diet consisting almost exclusively of cassava. A prolonged drought in the area had exhausted all food resources except cassava, especially the bitter varieties. A nutritional, toxicological and botanical investigation was carried out in two of the five districts affected. The main findings were that cyanide levels were unusually high in the cassava plant as a consequence of the drought with daily intakes estimated at 15-31.5 mg HCN. Detoxification of the bitter varieties by sun-drying was inadequate because of the general food shortage, and metabolic detoxification was probably reduced owing to the absence of sulfur-containing amino acids in the diet. The raw and dried uncooked cassava was eaten mostly by women and children. The nutritional status of the population, however, was not very poor and symptoms of advanced under-nutrition were rarely seen. PMID:6088100

  3. Occurrence of Regulated Mycotoxins and Other Microbial Metabolites in Dried Cassava Products from Nigeria.

    PubMed

    Abass, Adebayo B; Awoyale, Wasiu; Sulyok, Michael; Alamu, Emmanuel O

    2017-06-29

    Dried cassava products are perceived as one of the potential sources of mycotoxin ingestion in human foods. Processing either contributes to the reduction of toxins or further exposes products to contamination by microorganisms that release metabolic toxins into the products. Thus, the prevalence of microbial metabolites in 373 processed cassava products was investigated in Nigeria. With the use of liquid chromatography tandem-mass spectrometry (LC-MS/MS) for the constituent analysis, a few major mycotoxins (aflatoxin B₁ and G₁, fumonisin B₁ and B₂, and zearalenone) regulated in food crops by the Commission of the European Union were found at concentrations which are toxicologically acceptable in many other crops. Some bioactive compounds were detected at low concentrations in the cassava products. Therefore, the exposure of cassava consumers in Nigeria to regulated mycotoxins was estimated to be minimal. The results provide useful information regarding the probable safety of cassava products in Nigeria.

  4. A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films

    NASA Astrophysics Data System (ADS)

    Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.

    Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.

  5. A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption.

    PubMed

    Mombo, S; Dumat, C; Shahid, M; Schreck, E

    2017-02-01

    Due to its high adaptability, cassava (Manihot esculenta Crantz) is one of the world's most cultivated and consumed plants after maize and rice. However, there are relatively few scientific studies on this important crop. The objective of this review was therefore to summarize and discuss the available information on cassava cropping in order to promote sustainable practices in terms of production and consumption. Cassava cultivation has been expanding recently at the global scale and is widely consumed in most regions of South America, Africa, and Asia. However, it is also characterized by the presence in its roots of potentially toxic hydrocyanic acid. Furthermore, cassava can also absorb pollutants as it is currently cultivated near roads or factories and generally without consideration for potential sources of soil, water, or atmospheric pollution. Careful washing, peeling, and adequate preparation before eating are therefore crucial steps for reducing human exposure to both environmental pollutants and natural hydrocyanic acid. At present, there is not enough precise data available on this staple food crop. To improve our knowledge on the nutritive benefits versus health risks associated with cassava consumption, further research is necessary to compare cassava cultivars and precisely study the influence of preparation methods.

  6. Occurrence of Regulated Mycotoxins and Other Microbial Metabolites in Dried Cassava Products from Nigeria

    PubMed Central

    Abass, Adebayo B.; Awoyale, Wasiu; Alamu, Emmanuel O.

    2017-01-01

    Dried cassava products are perceived as one of the potential sources of mycotoxin ingestion in human foods. Processing either contributes to the reduction of toxins or further exposes products to contamination by microorganisms that release metabolic toxins into the products. Thus, the prevalence of microbial metabolites in 373 processed cassava products was investigated in Nigeria. With the use of liquid chromatography tandem-mass spectrometry (LC-MS/MS) for the constituent analysis, a few major mycotoxins (aflatoxin B1 and G1, fumonisin B1 and B2, and zearalenone) regulated in food crops by the Commission of the European Union were found at concentrations which are toxicologically acceptable in many other crops. Some bioactive compounds were detected at low concentrations in the cassava products. Therefore, the exposure of cassava consumers in Nigeria to regulated mycotoxins was estimated to be minimal. The results provide useful information regarding the probable safety of cassava products in Nigeria. PMID:28661436

  7. Mantakassa: an epidemic of spastic paraparesis associated with chronic cyanide intoxication in a cassava staple area of Mozambique. 2. Nutritional factors and hydrocyanic acid content of cassava products. Ministry of Health, Mozambique.

    PubMed

    1984-01-01

    An outbreak of spastic paraparesis which mostly affected women and children occurred in a northern province of Mozambique in 1981. The epidemic was related to chronic cyanide intoxication associated with a diet consisting almost exclusively of cassava. A prolonged drought in the area had exhausted all food resources except cassava, especially the bitter varieties. A nutritional, toxicological and botanical investigation was carried out in two of the five districts affected. The main findings were that cyanide levels were unusually high in the cassava plant as a consequence of the drought with daily intakes estimated at 15-31.5 mg HCN. Detoxification of the bitter varieties by sun-drying was inadequate because of the general food shortage, and metabolic detoxification was probably reduced owing to the absence of sulfur-containing amino acids in the diet. The raw and dried uncooked cassava was eaten mostly by women and children. The nutritional status of the population, however, was not very poor and symptoms of advanced under-nutrition were rarely seen.

  8. The Dangers of Cassava (Tapioca) Consumption

    PubMed Central

    Hall, Michael J

    1987-01-01

    Cassava (Tapioca) is a worldwide staple food consumed by over 800 million people. It contains cyanide which may lead to acute toxicity or chronically may be an aetiological factor in tropical nutritional amblyopia, tropical neuropathy, endemic goitre, cretinism and tropical diabetes. It may also have carcinogenic potential. However, despite nutritional limitations it has many advantages as a crop to the subsistence farmer and would be difficult to replace. PMID:28906749

  9. How to use local resources to fight malnutrition in Madagascar? A study combining a survey and a consumer test.

    PubMed

    Ramaroson Rakotosamimanana, Vonimihaingo; Valentin, Dominique; Arvisenet, Gaëlle

    2015-12-01

    This study aimed to understand consumers' habits and belief structures concerning local food products and to develop a new snack as a way to fight against children malnutrition in Madagascar. A large variety of natural food resources grow in Madagascar, like Moringa oleifera (MO) which leaves are rich in nutrients but not consumed. First, a survey conducted in four areas of Madagascar revealed that MO leaves are known for their health benefits but infrequently consumed, probably because of their low satiating power and strong odor. In the studied areas, different levels of consumption were observed, which may be linked to varying levels of familiarity with MO by the local populations, this in turn resulting from different situations regarding geographical and historical availability. In contrary, resources such as cassava are perceived as having negative effects on health but are widely consumed because they are cheap, liked by children and satiating. The second step in the study aimed to propose products that could increase MO consumption without completely changing food practices. The acceptability of snacks associating cassava roots and MO was evaluated by means of hedonic tests performed by children. Between the snacks tested, the preferred snack contained the highest quantity of MO and was sweetened. There was no effect of area on the acceptance of the formulated snacks. This work is an evaluation of the potential of MO in the diet of malnourished population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.

    PubMed

    Rivadeneyra-Domínguez, Eduardo; Vázquez-Luna, Alma; Rodríguez-Landa, Juan Francisco; Díaz-Sobac, Rafael

    2013-09-01

    Cassava (Manihot esculenta Crantz) is a plant widely used for food consumption in different processed products in rural areas of Africa, Asia, and Latin America. Cassava is a good source of carbohydrates and micronutrients. However, if it is not adequately processed or the consumer has nutritional deficiencies, then its cyanogenic glycoside (i.e., linamarin and lotaustralin) content makes it potentially neurotoxic. In the present study, the neurotoxic effects of different concentrations of linamarin (0.075, 0.15, 0.22, and 0.30 mg/kg) contained in cassava juice were evaluated in the open field and swim tests to identify locomotor alterations in adult male Wistar rats. The linamarin concentration in cassava juice was determined by high-performance liquid chromatography, and the juice was administered intraesophageally for 28 days. The results suggested that the consumption of linamarin in cassava juice increased the number of crossings and rearings in the open field test and caused behavioral deficiency, reflected by lateral swimming, in the swim test on days 21 and 28 of treatment. These alterations are possibly related to neuronal damage caused by linamarin in cassava juice in structures of the central nervous system involved in motor processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Emergence of a Latent Indian Cassava Mosaic Virus from Cassava Which Recovered from Infection by a Non-Persistent Sri Lankan Cassava Mosaic Virus

    PubMed Central

    Karthikeyan, Chockalingam; Patil, Basavaprabhu L.; Borah, Basanta K.; Resmi, Thulasi R.; Turco, Silvia; Pooggin, Mikhail M.; Hohn, Thomas; Veluthambi, Karuppannan

    2016-01-01

    The major threat for cassava cultivation on the Indian subcontinent is cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses which are bipartite begomoviruses with DNA A and DNA B components. Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) cause CMD in India. Two isolates of SLCMV infected the cassava cultivar Sengutchi in the fields near Malappuram and Thiruvananthapuram cities of Kerala State, India. The Malappuram isolate was persistent when maintained in the Madurai Kamaraj University (MKU, Madurai, Tamil Nadu, India) greenhouse, whereas the Thiruvananthapuram isolate did not persist. The recovered cassava plants with the non-persistent SLCMV, which were maintained vegetative in quarantine in the University of Basel (Basel, Switzerland) greenhouse, displayed re-emergence of CMD after a six-month period. Interestingly, these plants did not carry SLCMV but carried ICMV. It is interpreted that the field-collected, SLCMV-infected cassava plants were co-infected with low levels of ICMV. The loss of SLCMV in recovered cassava plants, under greenhouse conditions, then facilitated the re-emergence of ICMV. The partial dimer clones of the persistent and non-persistent isolates of SLCMV and the re-emerged isolate of ICMV were infective in Nicotiana benthamiana upon agroinoculation. Studies on pseudo-recombination between SLCMV and ICMV in N. benthamiana provided evidence for trans-replication of ICMV DNA B by SLCMV DNA A. PMID:27690084

  12. The teratogenic effects of dietary Cassava on the pregnant albino rat: a preliminary report.

    PubMed

    Singh, J D

    1981-12-01

    Cassava is a tuberous root of a shrublike plant cultivated in tropical rain forests as a staple food in South Eastern Nigeria. Reports are on record showing correlation between cassava intake and occurrence of various types of neuropathies (Money, '59; Monekosso and Wilson, '66; Osuntokun et al., '68,'69). About 0.1-2 mg of cyanide/100 gm is released from Cassava by action of hydrolase (Paula and Rangel, '46). It has been suspected by several local clinicians as a cause of congenital anomalies if consumed in excess during pregnancy. However, it remains a controversial problem and precise scientific data is lacking. This study was conducted on albino rats by giving them milled cassava powder as 50% and 80% of their diet during the first 5 days of pregnancy. Fetuses collected on day 20 from the group receiving cassava as 80% of the diet showed a low incidence of limb defects, open eye, microcephaly, and growth retardation in the rat. Interpretation of this data for the human should be made with caution.

  13. Children as Consumers: Advertising and Marketing

    ERIC Educational Resources Information Center

    Calvert, Sandra L.

    2008-01-01

    Marketing and advertising support the U.S. economy by promoting the sale of goods and services to consumers, both adults and children. Sandra Calvert addresses product marketing to children and shows that although marketers have targeted children for decades, two recent trends have increased their interest in child consumers. First, both the…

  14. The effect of cassava and corn flour utilization on the physicochemical characteristics of cassava leaves snack

    NASA Astrophysics Data System (ADS)

    Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.

    2018-01-01

    Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.

  15. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    PubMed

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  16. Cyanogenesis in Cassava1

    PubMed Central

    White, Wanda L.B.; Arias-Garzon, Diana I.; McMahon, Jennifer M.; Sayre, Richard T.

    1998-01-01

    In the cyanogenic crop cassava (Manihot esculenta, Crantz), the final step in cyanide production is the conversion of acetone cyanohydrin, the deglycosylation product of linamarin, to cyanide plus acetone. This process occurs spontaneously at pH greater than 5.0 or enzymatically and is catalyzed by hydroxynitrile lyase (HNL). Recently, it has been demonstrated that acetone cyanohydrin is present in poorly processed cassava root food products. Since it has generally been assumed that HNL is present in all cassava tissues, we reinvestigated the enzymatic properties and tissue-specific distribution of HNL in cassava. We report the development of a rapid two-step purification protocol for cassava HNL, which yields an enzyme that is catalytically more efficient than previously reported (Hughes, J., Carvalho, F., and Hughes, M. [1994] Arch Biochem Biophys 311: 496–502). Analyses of the distribution of HNL activity and protein indicate that the accumulation of acetone cyanohydrin in roots is due to the absence of HNL, not to inhibition of the enzyme. Furthermore, the absence of HNL in roots and stems is associated with very low steady-state HNL transcript levels. It is proposed that the lack of HNL in cassava roots accounts for the high acetone cyanohydrin levels in poorly processed cassava food products. PMID:9536038

  17. Feeding response of subterranean termites Coptotermes curvignathus and Coptotermes gestroi (Blattodea: Rhinotermitidae) to baits supplemented with sugars, amino acids, and cassava.

    PubMed

    Castillo, Venite Pesigan; Sajap, Ahmad Said; Sahri, Mohd Hamami

    2013-08-01

    Feeding responses of subterranean termites Coptotermes curvignathus (Holmgren) and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae) to bait matrices supplemented with various sugars, amino acids, and cassava were evaluated both in the laboratory and field. The results indicated that the two termite species consumed significantly different amount of filter papers that had been treated with various types and concentrations of sugars and amino acids. Based on consumption and survival data, filter papers with 3% glucose and 3% xylose were among the most consumed by C. curvignathus and C. gestroi, respectively. Both termite species consumed more of the filter papers treated with 3% casein than filter papers treated with L-alanine. Both species had a comparable survival rate compared with those in the controls. Results from laboratory and field trials on bait prototypes indicated that C. gestroi consumed more bait prototypes containing cellulose, 3% xylose, 3% casein, and cassava, whereas C curvignathus consumed more bait prototype containing cellulose, 3% glucose, and cassava, than on pure crystalline cellulose baits. Thus, with an improved and cost-effective bait formulation, a much wider control of subterranean termite colonies could be achieved.

  18. Cassava brown streak disease: historical timeline, current knowledge and future prospects

    PubMed Central

    Tomlinson, Katie R.; Bailey, Andy M.; Alicai, Titus; Seal, Sue

    2017-01-01

    Summary Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re‐emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re‐emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936–2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security. PMID:28887856

  19. [Fuel ethanol production from cassava feedstock].

    PubMed

    Huang, Ribo; Chen, Dong; Wang, Qingyan; Shen, Naikun; Wei, Yutuo; Du, Liqin

    2010-07-01

    The regions suitable for growing cassava include five provinces in Southern China, with Guangxi alone accounting for over 65% of the total cassava production in the country. In this article, the state-of-the-art development of fuel ethanol production from cassava in China is illustrated by the construction of the cassava fuel ethanol plant with its annual production capacity of 200 000 metric tons. And in the meantime, problems and challenges encountered in the development of China's cassava fuel ethanol are highlighted and the strategies to address them are proposed.

  20. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    NASA Astrophysics Data System (ADS)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  1. Experimental study of bioethanol production using mixed cassava and durian seed

    NASA Astrophysics Data System (ADS)

    Seer, Q. H.; Nandong, J.; Shanon, T.

    2017-06-01

    The production of biofuels using conventional fermentation feedstocks, such as sugar-and starch-based agricultural crops will in the long-term lead to a serious competition with human-animal food consumption. To avoid this competition, it is important to explore various alternative feedstocks especially those from inedible waste materials. Potentially, fruit wastes such as damaged fruits, peels and seeds represent alternative cheap feedstocks for biofuel production. In this work, an experimental study was conducted on ethanol production using mixed cassava and durian seeds through fermentation by Saccharomyces cerevisiae yeast. The effects of pH, temperature and ratio of hydrolyzed cassava to durian seeds on the ethanol yield, substrate consumption and product formation rates were analyzed in the study. In flask-scale fermentation using the mixed cassava-durian seeds, it was found that the highest ethanol yield of 45.9 and a final ethanol concentration of 24.92 g/L were achieved at pH 5.0, temperature 35°C and 50:50 volume ratio of hydrolyzed cassava to durian seeds for a batch period of 48 hours. Additionally, the ethanol, glucose and biomass concentration profiles in a lab-scale bioreactor were examined for the fermentation using the proposed materials under the flask-scale optimum conditions. The ethanol yield of 35.7 and a final ethanol concentration of 14.61 g/L were obtained over a period of 46 hours where the glucose was almost fully consumed. It is worth noting that both pH and temperature have significant impacts on the fermentation process using the mixed cassava-durian seeds.

  2. Health effects of cassava consumption in south Ethiopia.

    PubMed

    Abuye, C; Kelbessa, U; Wolde-Gebriel, S

    1998-03-01

    Health problems associated with cassava consumption was studied in three villages (Kodowono, Lotte and Woidewashe) of Gamo-Gofa, South Ethiopia. Total goitre rate (% TGR) increased with increasing rate of cassava consumption while, urinary iodine excretion (UIE) was found to be in the normal value range for the three villages. In both males and females incidence of goitre after the introduction of cassava to Kodowono village was significantly higher than before introduction of cassava (p < 0.001). This may indicate that the high rate of goitre is attributed to the frequency of cassava consumption. Of 450 individuals interviewed for health problems associated with cassava meal consumption, 50% reported that they were suffering from epigastric burning pain and dizziness while 38.7% reported abdominal distention and vomiting. Vomiting was relatively higher in the age group 20 years and below than it was in those above 20 years of age. These problems may be attributed to cassava consumption because, cassava contains cyanide which results in intoxication when poorly processed cassava meal is taken. Goitre prevalence and health problems attributed to cassava consumption therefore, necessitate an intervention programme to control iodine deficiency disorders (IDD), develop appropriate processing techniques to eliminate cassava toxicity and educate villagers on how to prepare safer meals from cassava.

  3. Cassava brown streak disease: historical timeline, current knowledge and future prospects.

    PubMed

    Tomlinson, Katie R; Bailey, Andy M; Alicai, Titus; Seal, Sue; Foster, Gary D

    2018-05-01

    Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re-emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re-emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936-2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security. © 2017 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  4. Cassava diet--a cause for mucopolysaccharidosis?

    PubMed

    Sreeja, V G; Leelamma, S

    2002-01-01

    Studies were carried out to determine the changes in glycosaminnoglycan (GAG) metabolism in rats fed cassava with varying cyanoglucoside levels and two levels of protein. Results indicated that there was an enhancement in the level of total and individual GAG with a corresponding reduction in the activity of enzymes involved in the degradation of glycosaminoglycan. These changes were significant for rats given a cassava diet (raw and boiled cassava) and low protein. The changes in total and individual GAG and the decrease in the activity of degrading enzymes was more for high cyanide (raw cassava) groups compared with other groups showing that consumption of untreated cassava is an additive factor for the promotion of mucopolysaccharidosis.

  5. Cassava virus diseases: biology, epidemiology, and management.

    PubMed

    Legg, James P; Lava Kumar, P; Makeshkumar, T; Tripathi, Leena; Ferguson, Morag; Kanju, Edward; Ntawuruhunga, Pheneas; Cuellar, Wilmer

    2015-01-01

    Cassava (Manihot esculenta Crantz.) is the most important vegetatively propagated food staple in Africa and a prominent industrial crop in Latin America and Asia. Its vegetative propagation through stem cuttings has many advantages, but deleteriously it means that pathogens are passed from one generation to the next and can easily accumulate, threatening cassava production. Cassava-growing continents are characterized by specific suites of viruses that affect cassava and pose particular threats. Of major concern, causing large and increasing economic impact in Africa and Asia are the cassava mosaic geminiviruses that cause cassava mosaic disease in Africa and Asia and cassava brown streak viruses causing cassava brown streak disease in Africa. Latin America, the center of origin and domestication of the crop, hosts a diverse set of virus species, of which the most economically important give rise to cassava frog skin disease syndrome. Here, we review current knowledge on the biology, epidemiology, and control of the most economically important groups of viruses in relation to both farming and cultural practices. Components of virus control strategies examined include: diagnostics and surveillance, prevention and control of infection using phytosanitation, and control of disease through the breeding and promotion of varieties that inhibit virus replication and/or movement. We highlight areas that need further research attention and conclude by examining the likely future global outlook for virus disease management in cassava. © 2015 Elsevier Inc. All rights reserved.

  6. Reducing cassava toxicity by heap-fermentation in Uganda.

    PubMed

    Essers, A J; Ebong, C; van der Grift, R M; Nout, M J; Otim-Nape, W; Rosling, H

    1995-05-01

    Processing of cassava roots by the Alur tribe in Uganda includes a stage of solid substrate fermentation in heaps. Changes in cyanogen levels during the process, microflora involved, and protein levels, amino acid patterns and mycotoxin contamination of the final products were studied. Processing was monitored at six rural households and repeated at laboratory site, comparing it to sun-drying. Flour samples from rural households were analysed for residual cyanogens, mutagenicity, cytotoxicity and aflatoxins. Mean (+/- SD) total cyanogen levels in flours collected at rural households were 20.3 (+/- 16.8) mg CN equivalents kg-1 dry weight in 1990 (n = 23) and 65.7 (+/- 56.7) in 1992 (n = 21). Mean (+/- SD) levels of cyanohydrins plus HCN were 9.1 (+/- 8.7) in the 1992 flours. Total cyanogen levels in the village monitored batches were reduced considerably by heap-fermentation from 436.3 (+/- 140.7) to 20.4 (+/- 14.0) mg CN equivalents kg-1 dry weight cassava. Residual cyanogen levels were positively correlated with particle size of the resulting crumbs. Heap-fermentation was significantly more effective in reducing cyanogen levels than sun-drying alone, but did not always result in innocuous levels of of cyanogens. Dominant mycelial growth was from the fungi Neurospora sitophila, Geotrichum candidum and Rhizopus oryzae. No mutagenicity, cytotoxicity nor aflatoxins could be detected in the flours. Protein quantity and quality were not significantly reduced. Cassava gel viscosity pattern was modified to the consumers' preference by this method. As the removal of cyanogens was more efficient and we found no new obvious health risk, heap-fermentation can be regarded as an improvement compared to sun-drying alone in areas where cassava varieties with higher cyanogen levels prevail, but we recommend optimisation of the process for ensuring still safer products.

  7. Consumption study and identification of methyl salicylate in spicy cassava chips

    NASA Astrophysics Data System (ADS)

    Nirjana, Marlene; Anggadiredja, Kusnandar; Damayanti, Sophi

    2015-09-01

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students' pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam's addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive control

  8. The BioCassava Plus program: Biofortification of cassava for sub-Saharan Africa

    USDA-ARS?s Scientific Manuscript database

    More than 250 million Africans rely on the starchy root crop cassava (Manihot esculenta) as their staple source of calories. A typical cassava-based diet, however, provides less than 30% of the minimum daily requirement for protein and only 10-20% of that for iron, zinc, and vitamin A. The BioCassav...

  9. Cassava; African perspective on space agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  10. Children as consumers: advertising and marketing.

    PubMed

    Calvert, Sandra L

    2008-01-01

    Marketing and advertising support the U.S. economy by promoting the sale of goods and services to consumers, both adults and children. Sandra Calvert addresses product marketing to children and shows that although marketers have targeted children for decades, two recent trends have increased their interest in child consumers. First, both the discretionary income of children and their power to influence parent purchases have increased over time. Second, as the enormous increase in the number of available television channels has led to smaller audiences for each channel, digital interactive technologies have simultaneously opened new routes to narrow cast to children, thereby creating a growing media space just for children and children's products. Calvert explains that paid advertising to children primarily involves television spots that feature toys and food products, most of which are high in fat and sugar and low in nutritional value. Newer marketing approaches have led to online advertising and to so-called stealth marketing techniques, such as embedding products in the program content in films, online, and in video games. All these marketing strategies, says Calvert, make children younger than eight especially vulnerable because they lack the cognitive skills to understand the persuasive intent of television and online advertisements. The new stealth techniques can also undermine the consumer defenses even of older children and adolescents. Calvert explains that government regulations implemented by the Federal Communications Commission and the Federal Trade Commission provide some protection for children from advertising and marketing practices. Regulators exert more control over content on scarce television airwaves that belong to the public than over content on the more open online spaces. Overall, Calvert concludes, children live and grow up in a highly sophisticated marketing environment that influences their preferences and behaviors.

  11. Cassava For Space Diet

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Njemanze, Philip; Nweke, Felix; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    Space agriculture is an advanced life support enginnering concept based on biological and ecological system ot drive the materials recycle loop and create pleasant life environment on distant planetary bodies. Choice of space diet is one of primary decision required ot be made at designing space agriculture. We propose cassava, Manihot esculenta and, for one major composition of space food materials, and evaluate its value and feasibility of farming and processing it for space diet. Criteria to select space crop species could be stated as follows. 1) Fill th enutritional requirements. There is no perfect food material to meet this requirements without making a combination with others. A set of food materials which are adopted inthe space recipe shall fit to the nutritional requirement. 2) Space food is not just for maintaining physiological activities of human, but an element of human culture. We shall consider joy of dining in space life. In this context, space foos or recipe should be accepted by future astronauts. Food culture is diverse in the world, and has close relatioship to each cultural background. Cassava root tuber is a material to supply mainly energy in the form of carbohydrate, same as cereals and other tuber crops. Cassava leaf is rich in protein high as 5.1 percents about ten times higher content than its tuber. In the food culture in Africa, cassava is a major component. Cassava root tuber in most of its strain contains cyanide, it should be removed during preparation for cooking. However certain strain are less in this cyanogenic compound, and genetically modified cassava can also aboid this problem safely.

  12. [A rare cause of optic neuropathy: Cassava].

    PubMed

    Zeboulon, P; Vignal-Clermont, C; Baudouin, C; Labbé, A

    2016-06-01

    Cassava root is a staple food for almost 500 million people worldwide. Excessive consumption of it is a rare cause of optic neuropathy. Ten patients diagnosed with cassava root related optic neuropathy were included in this retrospective study. Diagnostic criteria were a bilateral optic neuropathy preceded by significant cassava root consumption. Differential diagnoses were excluded through a neuro-ophthalmic examination, blood tests and a brain MRI. All patients had visual field examination and OCT retinal nerve fiber layer (RNFL) analysis as well as an evaluation of their cassava consumption. All patients had a bilateral optic nerve head atrophy or pallor predominantly located into the temporal sector. Visual field defects consisted of a central or cecocentral scotoma for all patients. RNFL showed lower values only in the temporal sector. Mean duration of cassava consumption prior to the appearance of visual symptoms was 22.7±11.2 years with a mean of 2.57±0.53 cassava-based meals per week. Cassava related optic neuropathy is possibly due to its high cyanide content and enabled by a specific amino-acid deficiency. Cassava root chronic consumption is a rare, underappreciated cause of optic neuropathy and its exact mechanism is still uncertain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Children: Special Consumers but Not Special Treatment.

    ERIC Educational Resources Information Center

    Doran, Lee Anne; Dolan, Elizabeth M.

    1989-01-01

    Reviews several child-related consumer protection issues subject to industry short-sightedness and regulatory manipulation. Indicates that although it may be unrealistic to believe that child-related consumer protection should receive priority, children do merit special consideration as consumers. (JOW)

  14. A survey of total hydrocyanic acid content in ready-to-eat cassava-based chips obtained in the Australian market in 2008.

    PubMed

    Miles, David; Jansson, Edward; Mai, My Chi; Azer, Mounir; Day, Peter; Shadbolt, Craig; Stitt, Victoria; Kiermeier, Andreas; Szabo, Elizabeth

    2011-06-01

    Cassava (Manihot esculenta Crantz) is a widely consumed food in the tropics that naturally contains cyanogenic glycosides (cyanogens, mainly composed of linamarin, acetone cyanohydrin, and hydrocyanic acid). If cassava is not adequately processed to reduce the level of cyanogens prior to consumption, these compounds can lead to the formation of hydrocyanic acid in the gut. Exposure to hydrocyanic acid can cause symptoms ranging from vomiting and abdominal pain to coma and death. In 2008, a survey of ready-to-eat (RTE) cassava-based snack foods was undertaken to determine levels of cyanogens measured as total hydrocyanic acid. This survey was undertaken in response to the New South Wales Food Authority being alerted to the detection of elevated levels of cyanogens in an RTE cassava-based snack food. This survey took 374 samples of RTE cassava chips available in the Australian marketplace. Significant variation in the levels of total hydrocyanic acid were observed in the 317 samples testing positive for cyanogens, with levels ranging from 13 to 165 mg of HCN equivalents per kg (mean value, 64.2 mg of HCN eq/kg for positive samples). The results from this survey serve as a timely warning for manufacturers of RTE cassava chips and other cassava-based snack foods to ensure there is tight control over the levels of cyanogens in the cassava ingredient. Evidence from this survey contributed to an amendment to the Australia New Zealand Food Standards Code, which now prescribes a maximum level for hydrocyanic acid in RTE cassava chips of 10 mg of HCN eq/kg, which aligns with the Codex Alimentarius Commission international standard for edible cassava flour.

  15. Iron and protein biofortification of cassava: lessons learned.

    PubMed

    Leyva-Guerrero, Elisa; Narayanan, Narayanan N; Ihemere, Uzoma; Sayre, Richard T

    2012-04-01

    Over two hundred and fifty million Africans rely on the starchy root crop cassava (Manihot esculenta) as their primary source of calories. Cassava roots, however, have the lowest protein:energy ratio of all the world's major staple crops. Furthermore, a typical cassava-based diet provides less than 10-20% of the required amounts of iron, zinc, vitamin A and vitamin E. The BioCassava Plus program employed modern biotechnologies to improve the health of Africans through development and delivery of novel cassava germplasm with increased nutrient levels. Here we describe the development of molecular strategies and their outcomes to meet minimum daily allowances for protein and iron in cassava based diets. We demonstrate that cyanogens play a central role in cassava nitrogen metabolism and that strategies employed to increase root protein levels result in reduced cyanogen levels in roots. We also demonstrate that enhancing root iron uptake has an impact on the expression of genes that regulate iron homeostasis in multiple tissues. These observations demonstrate the complex metabolic interactions involved in enhancing targeted nutrient levels in plants and identify potential new strategies for further enhancing nutrient levels in cassava. Published by Elsevier Ltd.

  16. Cassava as an energy source: a selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, C.

    1980-01-01

    This selected bibliography includes 250 articles on cassava as a potential energy source. Factors included are things which influence cassava growth; such as weeding, fertilizer, diseases and genetic selection, as well as the conversion of cassava to ethanol. (DP)

  17. Capitalizing on Children's Spirituality: Parental Anxiety, Children as Consumers, and the Marketing of Spirituality

    ERIC Educational Resources Information Center

    Mercer, Joyce Ann

    2006-01-01

    Children's spirituality has become a significant for-profit enterprise in North American consumer culture. This article explores the marketing of children's spirituality as an aspect of the larger construction of children as consumers in the context of late globalized capitalism. Playing off of parental anxieties over the need to avail their…

  18. Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight.

    PubMed

    Li, Xiaolin; Liu, Wen; Li, Bing; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao

    2018-03-01

    Gibberellin (GA) is an essential plant hormone in plant growth and development as well as various stress responses. DELLA proteins are important repressors of GA signal pathway. GA and DELLA have been extensively investigated in several model plants. However, the in vivo roles of GA and DELLA in cassava, one of the most important crops and energy crops in the tropical area, are unknown. In this study, systematic genome-wide analysis identified 4 MeDELLAs in cassava, as evidenced by the evolutionary tree, gene structures and motifs analyses. Gene expression analysis found that 4 MeDELLAs were commonly regulated by flg22 and Xanthomonas axonopodis pv manihotis (Xam). Through overexpression in Nicotiana benthamiana, we found that 4 MeDELLAs conferred improved disease resistance against cassava bacterial blight. Through virus-induced gene silencing (VIGS) in cassava, we found that MeDELLA-silenced plants exhibited decreased disease resistance, with less callose deposition and lower transcript levels of defense-related genes. This is the first study identifying MeDELLAs as positive regulators of disease resistance against cassava bacterial blight. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Unveiling the Micronome of Cassava (Manihot esculenta Crantz)

    PubMed Central

    2016-01-01

    MicroRNAs (miRNAs) are an important class of endogenous non-coding single-stranded small RNAs (21–24 nt in length), which serve as post-transcriptional negative regulators of gene expression in plants. Despite the economic importance of Manihot esculenta Crantz (cassava) only 153 putative cassava miRNAs (from multiple germplasm) are available to date in miRBase (Version 21), and identification of a number of miRNAs from the cassava EST database have been limited to comparisons with Arabidopsis. In this study, mature sequences of all known plant miRNAs were used as a query for homologous searches against cassava EST and GSS databases, and additional identification of novel and conserved miRNAs were gleaned from next generation sequencing (NGS) of two cassava landraces (T200 from southern Africa and TME3 from West Africa) at three different stages post explant transplantation and acclimatization. EST and GSS derived data revealed 259 and 32 miRNAs in cassava, and one of the miRNA families (miR2118) from previous studies has not been reported in cassava. NGS data collectively displayed expression of 289 conserved miRNAs in leaf tissue, of which 230 had not been reported previously. Of the 289 conserved miRNAs identified in T200 and TME3, 208 were isomiRs. Thirty-nine novel cassava-specific miRNAs of low abundance, belonging to 29 families, were identified. Thirty-eight (98.6%) of the putative new miRNAs identified by NGS have not been previously reported in cassava. Several miRNA targets were identified in T200 and TME3, highlighting differential temporal miRNA expression between the two cassava landraces. This study contributes to the expanding knowledge base of the micronome of this important crop. PMID:26799216

  20. Local domestication of lactic acid bacteria via cassava beer fermentation.

    PubMed

    Colehour, Alese M; Meadow, James F; Liebert, Melissa A; Cepon-Robins, Tara J; Gildner, Theresa E; Urlacher, Samuel S; Bohannan, Brendan J M; Snodgrass, J Josh; Sugiyama, Lawrence S

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal.

  1. Local domestication of lactic acid bacteria via cassava beer fermentation

    PubMed Central

    Meadow, James F.; Liebert, Melissa A.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Urlacher, Samuel S.; Bohannan, Brendan J.M.; Snodgrass, J. Josh; Sugiyama, Lawrence S.

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal. PMID:25071997

  2. The industrial applications of cassava: current status, opportunities and prospects.

    PubMed

    Li, Shubo; Cui, Yanyan; Zhou, Yuan; Luo, Zhiting; Liu, Jidong; Zhao, Mouming

    2017-06-01

    Cassava (Manihot esculenta Crantz) is a drought-tolerant, staple food crop that is grown in tropical and subtropical areas. As an important raw material, cassava is a valuable food source in developing countries and is also extensively employed for producing starch, bioethanol and other bio-based products (e.g. feed, medicine, cosmetics and biopolymers). These cassava-based industries also generate large quantities of wastes/residues rich in organic matter and suspended solids, providing great potential for conversion into value-added products through biorefinery. However, the community of cassava researchers is relatively small and there is very limited information on cassava. Therefore this review summarizes current knowledge on the system biology, economic value, nutritional quality and industrial applications of cassava and its wastes in an attempt to accelerate understanding of the basic biology of cassava. The review also discusses future perspectives with respect to integrating and utilizing cassava information resources for increasing the economic and environmental sustainability of cassava industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Edible Film from the Pectin of Papaya Skin (The Study of Cassava Starch and Glycerol Addition)

    NASA Astrophysics Data System (ADS)

    Rosida; Sudaryati; Yahya, A. M.

    2018-01-01

    The production of edible cooking made from the pectin of papaya skin with cassava starch and glycerol adition had been studied. The usage of pectin of papaya skin was one way to use papaya skin waste in order to raise its economic value. The aim of this study was to study the effect of cassava starch and glycerol concentration on the product qualities and to determine the the best treatment in making a good quality adible film and acceptable by the consumer. This research used completely randomized design in factorial patern with two factors. The first factor was cassava starch concentration (25%, 35% and 45%) and the second factor was glycerol concentration (20 %, 15% and 10). The data were analyzed by Analysis of Variance (Anova) and Duncan’s Multiple Range Test to detect the difference between the treatment. The best treatment was 25% cassava starch addition and 10% glycerol concentration which produced edible film which had moisture content of 21.16%, thickness of 0.023 mm, tensile strength of 1.900 N, elasticity of 14.223%, and vapor transmission rate of 116.963 g/m2/24 hours. So the production of edible film from papaya skin pectin was potential to be developed.

  4. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th; Pavasant, Prasert

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not onlymore » substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.« less

  5. Regeneration of Cassava Plants from Apical Meristems,

    DTIC Science & Technology

    widely for human consumption. Propagation through stem cuttings encourages the spread of many virus diseases, such as cassava mosaic virus. This paper reports on procedures for regenerating cassava plants from the apical meristems.

  6. Characterizing dinner meals served and consumed by low-income preschool children.

    PubMed

    Nicklas, Theresa A; O'Neil, Carol E; Stuff, Janice E; Hughes, Sheryl O; Liu, Yan

    2012-12-01

    A dinner meal is consumed by approximately 95% of preschool children, yet few studies have characterized the dinner meal within a broader environmental context. The primary goal of this study was to identify the average quantities of foods served and consumed at the dinner meal by preschool children. A secondary goal was to look at factors that influenced the total amounts of food and energy consumed among preschoolers at the dinner meal. Food intake at a family dinner meal was measured using digital photography in African-American and Hispanic-American preschool children (n = 231). Pictorial records were converted to gram and energy estimates of food served and consumed; grams were converted to kilocalories for each food using Nutrition Data System for Research (NDSR) nutritional software. Foods were categorized by groups/subgroups. Comparison of means and coefficient of variation was examined overall and by food groups for food grams (and energy) served, consumed, and wasted. The relationship of mother/child characteristics to amounts served and consumed were analyzed by regression and analysis of variance (ANOVA). Plate waste was high; 30% of the foods served to the child at the dinner meal were not consumed. The amounts of food and beverage served and consumed varied within and among the food groups studied. The proportion of children served a major food group at the dinner meal varied considerably: 44% fruit/juice, 97% vegetables, 99% grains, 97% meats, 74% dairy, 66% sweetened beverages, 92% fat and oils, and 40% sweets and sugars. The amount of food served was positively associated with the amount consumed (p < 0.0001). Energy density of the dinner meal was positively associated with energy intake consumed (p < 0.0001). Plate waste and variation in amounts served and consumed was substantial. The amount of food served was positively associated with the amount of food consumed by preschool children.

  7. Neurochemical and behavioural correlates in cassava-induced neurotoxicity in rats.

    PubMed

    Mathangi, D C; Namasivayam, A

    2000-01-01

    Chronic cyanide intoxication from cassava has been implicated as the cause for a degenerative neuropathy known widely as tropical ataxic neuropathy. An attempt has been made in this study to identify the specific cause for neuropathy caused by cassava using Wistar strain albino rats as the experimental animal model. The results of cassava fed animals were compared with control animals, animals given cyanide, malnourished animals and malnourished animals fed cyanide, to identify the causative factors. This study revealed that though the behavioural pattern in motor coordination of the cassava fed animals was similar to the other groups studied, the neurochemical basis for the observed behavioural pattern was unique for cassava. Hence the neurotoxicity of cassava could be attributed to unmetabolized linamarin, more than its nutritional status and/or cyanide toxicity.

  8. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID

  9. Consumption study and identification of methyl salicylate in spicy cassava chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirjana, Marlene, E-mail: marlenenirjana@gmail.com; Anggadiredja, Kusnandar; Damayanti, Sophi

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students’ pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassavamore » chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam’s addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the

  10. Cassava: a basic energy source in the tropics.

    PubMed

    Cock, J H

    1982-11-19

    Cassava (Manihot esculenta) is the fourth most important source of food energy in the tropics. More than two-thirds of the total production of this crop is used as food for humans, with lesser amounts being used for animal feed and industrial purposes. The ingestion of high levels of cassava has been associated with chronic cyanide toxicity in parts of Africa, but this appears to be related to inadequate processing of the root and poor overall nutrition. Although cassava is not a complete food it is important as a cheap source of calories. The crop has a high yield potential under good conditions, and compared to other crops it excels under suboptimal conditions, thus offering the possibility of using marginal land to increase total agricultural production. Breeding programs that bring together germ plasm from different regions coupled with improved agronomic practices can markedly increase yields. The future demand for fresh cassava may depend on improved storage methods. The markets for cassava as a substitute for cereal flours in bakery products and as an energy source in animal feed rations are likely to expand. The use of cassava as a source of ethanol for fuel depends on finding an efficient source of energy for distillation or an improved method of separating ethanol from water.

  11. Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia.

    PubMed

    Carvajal-Yepes, Monica; Olaya, Cristian; Lozano, Ivan; Cuervo, Maritza; Castaño, Mauricio; Cuellar, Wilmer J

    2014-06-24

    In the Americas, different disease symptoms have been reported in cassava including leaf mosaics, vein clearings, mottles, ring spots, leaf distortions and undeveloped and deformed storage roots. Some viruses have been identified and associated with these symptoms while others have been reported in symptomless plants or latent infections. We observed that reoviruses associated with severe root symptoms (RS) of Cassava Frogskin Disease (CFSD) are not associated with leaf symptoms (LS) observed in the cassava indicator plant 'Secundina'. Neither were these LS associated with the previously characterized Cassava common mosaic virus, Cassava virus X, Cassava vein mosaic virus or phytoplasma, suggesting the presence of additional pathogens. In order to explain LS observed in cassava we used a combination of biological, serological and molecular tests. Here, we report three newly described viruses belonging to the families Secoviridae, Alphaflexiviridae and Luteoviridae found in cassava plants showing severe RS associated with CFSD. All tested plants were infected by a mix of viruses that induced distinct LS in 'Secundina'. Out of the three newly described viruses, a member of family Secoviridae could experimentally induce LS in single infection. Our results confirm the common occurrence of complex viral infections in cassava field-collected since the 1980s. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Impact of genotype and cooking style on the content, retention, and bioacessibility of β-carotene in biofortified cassava (Manihot esculenta Crantz) conventionally bred in Brazil.

    PubMed

    Berni, Paulo; Chitchumroonchokchai, Chureeporn; Canniatti-Brazaca, Solange G; De Moura, Fabiana F; Failla, Mark L

    2014-07-16

    Biofortification is a strategy for decreasing micronutrient deficiencies in vulnerable populations by increasing nutrient density in staple food crops. Roots from five varieties of cassava biofortified with β-carotene (βC), three parental accessions, and one variety of commonly consumed white cassava from Brazil were investigated. Roots from biofortified varieties contained up to 23-fold higher βC than white cassava, and the additional complement of βC was primarily the all-trans isomer. At least 68% of βC per gram fresh weight was retained after boiling or boiling and briefly frying. Micellarization of βC during simulated digestion of fried root exceeded that of boiled root. Apical uptake of all-trans-βC from mixed micelles by Caco-2 cells was affected by an interaction between variety and cooking style. These results suggest that Brazilian cassava biofortified with βC has the potential to reduce vitamin A deficiency without requiring major changes in local and ethnic styles of home cooking.

  13. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa.

    PubMed

    Legg, J P; Jeremiah, S C; Obiero, H M; Maruthi, M N; Ndyetabula, I; Okao-Okuja, G; Bouwmeester, H; Bigirimana, S; Tata-Hangy, W; Gashaka, G; Mkamilo, G; Alicai, T; Lava Kumar, P

    2011-08-01

    The rapid geographical expansion of the cassava mosaic disease (CMD) pandemic, caused by cassava mosaic geminiviruses, has devastated cassava crops in 12 countries of East and Central Africa since the late 1980s. Region-level surveys have revealed a continuing pattern of annual spread westward and southward along a contiguous 'front'. More recently, outbreaks of cassava brown streak disease (CBSD) were reported from Uganda and other parts of East Africa that had been hitherto unaffected by the disease. Recent survey data reveal several significant contrasts between the regional epidemiology of these two pandemics: (i) severe CMD radiates out from an initial centre of origin, whilst CBSD seems to be spreading from independent 'hot-spots'; (ii) the severe CMD pandemic has arisen from recombination and synergy between virus species, whilst the CBSD pandemic seems to be a 'new encounter' situation between host and pathogen; (iii) CMD pandemic spread has been tightly linked with the appearance of super-abundant Bemisia tabaci whitefly vector populations, in contrast to CBSD, where outbreaks have occurred 3-12 years after whitefly population increases; (iv) the CMGs causing CMD are transmitted in a persistent manner, whilst the two cassava brown streak viruses appear to be semi-persistently transmitted; and (v) different patterns of symptom expression mean that phytosanitary measures could be implemented easily for CMD but have limited effectiveness, whereas similar measures are difficult to apply for CBSD but are potentially very effective. An important similarity between the pandemics is that the viruses occurring in pandemic-affected areas are also found elsewhere, indicating that contrary to earlier published conclusions, the viruses per se are unlikely to be the key factors driving the two pandemics. A diagrammatic representation illustrates the temporal relationship between B. tabaci abundance and changing incidences of both CMD and CBSD in the Great Lakes region

  14. Melatonin attenuates postharvest physiological deterioration of cassava storage roots.

    PubMed

    Ma, Qiuxiang; Zhang, Ting; Zhang, Peng; Wang, Zhen-Yu

    2016-05-01

    Melatonin reportedly increases abiotic and biotic stress tolerance in plants, but information on its in vivo effects during postharvest physiological deterioration (PPD) in cassava is limited. In this study, we investigated the effect of melatonin in regulating cassava PPD. Treatment with 500 mg/L melatonin significantly delayed cassava PPD and reduced the accumulation of hydrogen peroxide (H2O2) while increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), but not ascorbate peroxidase (APX). Transcript analysis further showed that expression of copper/zinc SOD (MeCu/ZnSOD), MeCAT1, glutathione peroxidase (MeGPX), peroxidase 3 (MePX3), and glutathione S-transferases (MeGST) was higher in cassava roots sliced treated with 500 mg/L melatonin than in those not exposed to exogenous melatonin. These data demonstrate that melatonin delays cassava PPD by directly or indirectly maintaining homoeostasis of cellular reactive oxygen species (ROS). We also found that accumulation of endogenous melatonin and the transcript levels of melatonin biosynthesis genes changed dynamically during the PPD process. This finding suggested that endogenous melatonin acts as a signal modulator for maintaining cassava PPD progression and that manipulation of melatonin biosynthesis genes through genetic engineering might prevent cassava root deterioration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Transcriptional Response of Virus-Infected Cassava and Identification of Putative Sources of Resistance for Cassava Brown Streak Disease

    PubMed Central

    Maruthi, M. N.; Bouvaine, Sophie; Tufan, Hale A.; Mohammed, Ibrahim U.; Hillocks, Rory J.

    2014-01-01

    Cassava (Manihot esculenta) is a major food staple in sub-Saharan Africa, which is severely affected by cassava brown streak disease (CBSD). The aim of this study was to identify resistance for CBSD as well as to understand the mechanism of putative resistance for providing effective control for the disease. Three cassava varieties; Kaleso, Kiroba and Albert were inoculated with cassava brown streak viruses by grafting and also using the natural insect vector the whitefly, Bemisia tabaci. Kaleso expressed mild or no disease symptoms and supported low concentrations of viruses, which is a characteristic of resistant plants. In comparison, Kiroba expressed severe leaf but milder root symptoms, while Albert was susceptible with severe symptoms both on leaves and roots. Real-time PCR was used to estimate virus concentrations in cassava varieties. Virus quantities were higher in Kiroba and Albert compared to Kaleso. The Illumina RNA-sequencing was used to further understand the genetic basis of resistance. More than 700 genes were uniquely overexpressed in Kaleso in response to virus infection compared to Albert. Surprisingly, none of them were similar to known resistant gene orthologs. Some of the overexpressed genes, however, belonged to the hormone signalling pathways and secondary metabolites, both of which are linked to plant resistance. These genes should be further characterised before confirming their role in resistance to CBSD. PMID:24846209

  16. Cassava: a basic energy source in the tropics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cock, J.H.

    1982-11-19

    Cassava (Manihot esculenta) is the fourth most important source of food energy in the tropics. More than two-thirds of the total production of this crop is used as food for humans, with lesser amounts being used for animal feed and industrial purposes. The ingestion of high levels of cassava has been associated with chronic cyanide toxicity in parts of Africa, but this appears to be related to inadequate processing of the root and poor overall nutrition. Although cassava is not a complete food it is important as a cheap source of calories. The crop has a high yield potential undermore » good conditions, and compared to other crops it excels under suboptimal conditions, thus offering the possibility of using marginal land to increase total agricultural production. Breeding programs that bring together germ plasm from different regions coupled with improved agronomic practices can markedly increase yields. The future demand for fresh cassava may depend on improved storage methods. The markets for cassava as a substitute for cereal flours in bakery products and as an energy source in animal feed rations are likely to expand. The use of cassava as a source of ethanol for fuel depends on finding an efficient source of energy for distillation or an improved method of separating ethanol from water. 7 figures, 8 tables.« less

  17. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.

    PubMed

    Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun

    2011-06-01

    A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.

  18. Consuming Anomie: Children and Global Commercial Culture. Research Note

    ERIC Educational Resources Information Center

    Langer, Beryl

    2005-01-01

    This article locates George Herbert Meads account of self-formation in the context of global consumer capitalism, in which the "generalized other" is constructed as a desiring consumer. It argues for a sociology of consumer childhood that, via Mead, takes children's agency as a given and explores the implications of their interaction with the…

  19. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    PubMed

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  20. Data analysis on physical and mechanical properties of cassava pellets.

    PubMed

    Oguntunde, Pelumi E; Adejumo, Oluyemisi A; Odetunmibi, Oluwole A; Okagbue, Hilary I; Adejumo, Adebowale O

    2018-02-01

    In this data article, laboratory experimental investigation results carried out at National Centre for Agricultural Mechanization (NCAM) on moisture content, machine speed, die diameter of the rig, and the outputs (hardness, durability, bulk density, and unit density of the pellets) at different levels of cassava pellets were observed. Analysis of variance using randomized complete block design with factorial was used to perform analysis for each of the outputs: hardness, durability, bulk density, and unit density of the pellets. A clear description on each of these outputs was considered separately using tables and figures. It was observed that for all the output with the exception of unit density, their main factor effects as well as two and three ways interactions is significant at 5% level. This means that the hardness, bulk density and durability of cassava pellets respectively depend on the moisture content of the cassava dough, the machine speed, the die diameter of the extrusion rig and the combinations of these factors in pairs as well as the three altogether. Higher machine speeds produced more quality pellets at lower die diameters while lower machine speed is recommended for higher die diameter. Also the unit density depends on die diameter and the three-way interaction only. Unit density of cassava pellets is neither affected by machine parameters nor moisture content of the cassava dough. Moisture content of cassava dough, speed of the machine and die diameter of the extrusion rig are significant factors to be considered in pelletizing cassava to produce pellets. Increase in moisture content of cassava dough increase the quality of cassava pellets.

  1. Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus

    PubMed Central

    Lu, Fuping; Liang, Xiao; Lu, Hui; Li, Qian; Chen, Qing; Zhang, Peng; Li, kaimian; Liu, Guanghua; Yan, Wei; Song, Jiming; Duan, Chunfang; Zhang, Linhui

    2017-01-01

    To explore the role of protective enzymes in cassava (Manihot esculenta Crantz) resistance to mites, transgenic cassava lines overproducing copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) were used to evaluate and molecularly confirm cassava resistance to Tetranychus cinnabarinus. Laboratory evaluation demonstrated that, compared with the control cultivar TMS60444 (wild type, WT), the survival, reproduction, development and activities of SOD and CAT in T. cinnabarinus feeding on transgenic cassava lines SC2, SC4, and SC11 significantly inhibited. Furthermore, the activities of SOD and CAT in transgenic cassava lines SC2, SC4, and SC11 damaged by T. cinnabarinus significantly increased. These findings were similar to the results in the mite-resistant cassava cultivars. Besides, field evaluation indicated that the transgenic cassava lines SC2, SC4, and SC11 were slightly damaged as the highly mite-resistant control C1115, while the highly mite-susceptible WT was severely damaged by T. cinnabarinus. Laboratory and field evaluation demonstrated that transgenic cassava lines were resistant to T. cinnabarinus, which directly confirmed that the increase in SOD and CAT activities was positively related to cassava resistance to T. cinnabarinus. These results will help in understanding the antioxidant defense responses in the cassava–mite interaction and molecular breeding of mite-resistant cassava for effective pest control. PMID:28054665

  2. Digestibility and metabolizable energy values of processed cassava chips for growing and finishing pigs.

    PubMed

    Lokaewmanee, Kanda; Kanto, Uthai; Juttupornpong, Sukanya; Yamauchi, Koh-en

    2011-02-01

    Determinations of digestibility of dry matter (DM), digestible energy (DE), and metabolizable energy (ME) in cassava chips with different levels of crude fiber (CF) were measured in growing pigs (20 kg) and finishing pigs (60 kg). The treatments were (1) cassava starch (0% CF), (2) peeled cassava chips (2.5% CF), (3) non-peeled washed cassava chips (3.9% CF), and (4) non-peeled and non-washed cassava chips (5.2% CF). In the growing pigs, peeled cassava chips, non-peeled washed cassava chips, and non-peeled and non-washed cassava chips had DM digestibility of 87.51%, 78.63%, and 73.89%, respectively. Their DE was 3.69, 3.49, and 3.32 Mcal/kg DM, respectively (DE of cassava starch is 3.90 Mcal/kg DM). ME was 3.54, 3.35, and 3.19 Mcal/kg DM, respectively (ME of cassava starch is 3.74 Mcal/kg DM). On the other hand, in the finishing pigs, the digestibility of DM was 89.13%, 80.63%, and 76.13%, respectively. Their DE was 3.72, 3.53, and 3.43 Mcal/kg DM, respectively (DE of cassava starch is 3.91 Mcal/kg DM). ME was 3.57, 3.38, and 3.29 Mcal/kg DM, respectively (ME of cassava starch is 3.75 Mcal/kg DM). These values increased with decreasing CF content, and the peeled cassava chips had the highest values (P < 0.01). These suggest that the digestibility values of DM, DE, and ME of cassava chips is inversely related to the CF content in cassava chips. It is recommended that cassava chips be peeled for better nutrition for growing and finishing pigs.

  3. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding.

    PubMed

    Wanapat, Metha; Kang, Sungchhang

    2015-12-01

    Cassava ( Manihot esculenta Crantz) is widely grown in sub-tropical and tropical areas, producing roots as an energy source while the top biomass including leaves and immature stems can be sun-dried and used as cassava hay. Cassava roots can be processed as dried chip or pellet. It is rich in soluble carbohydrate (75 to 85%) but low in crude protein (2 to 3%). Its energy value is comparable to corn meal but has a relatively higher rate of rumen degradation. Higher levels of non-protein nitrogen especially urea (1 to 4%) can be successfully incorporated in concentrates containing cassava chip as an energy source. Cassava chip can also be processed with urea and other ingredients (tallow, sulfur, raw banana meal, cassava hay, and soybean meal) to make products such as cassarea, cassa-ban, and cassaya. Various studies have been conducted in ruminants using cassava chip to replace corn meal in the concentrate mixtures and have revealed satisfactory results in rumen fermentation efficiency and the subsequent production of meat and milk. In addition, it was advantageous when used in combination with rice bran in the concentrate supplement. Practical home-made-concentrate using cassava chip can be easily prepared for use on farms. A recent development has involved enriching protein in cassava chips, yielding yeast fermented cassava chip protein (YEFECAP) of up to 47.5% crude protein, which can be used to replace soybean meal. It is therefore, recommended to use cassava chip as an alternative source of energy to corn meal when the price is economical and it is locally available.

  4. Composition, structure, physicochemical properties, and modifications of cassava starch.

    PubMed

    Zhu, Fan

    2015-05-20

    Cassava is highly tolerant to harsh climatic conditions and has great productivity on marginal lands. The supply of cassava starch, the major component of the root, is thus sustainable and cheap. This review summarizes the current knowledge of the composition, physical and chemical structures, physicochemical properties, nutritional quality, and modifications of cassava starch. Research opportunities to better understand this starch are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Deep Learning for Image-Based Cassava Disease Detection.

    PubMed

    Ramcharan, Amanda; Baranowski, Kelsee; McCloskey, Peter; Ahmed, Babuali; Legg, James; Hughes, David P

    2017-01-01

    Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.

  6. Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties.

    PubMed

    Edhirej, Ahmed; Sapuan, S M; Jawaid, Mohammad; Zahari, Nur Ismarrubie

    2017-08-01

    A hybrid composite was prepared from cassava bagasse (CB) and sugar palm fiber (SPF) using casting technique with cassava starch (CS) as matrix and fructose as a plasticizer. Different loadings of SPF (2, 4, 6 and 8% w/w of dry starch) were added to the CS/CB composite film containing 6% CB. The addition of SPF significantly influenced the physical properties. It increased the thickness while decreasing the density, water content, water solubility and water absorption. However, no significant effect was noticed on the thermal properties of the hybrid composite film. The incorporation of SPF increased the relative crystallinity up to 47%, compared to 32% of the CS film. SEM micrographs indicated that the filler was incorporated in the matrix. The film with a higher concentration of SPF (CS-CB/SPF8) showed a more heterogeneous surface. It could be concluded that the incorporation of SPF led to changes in cassava starch film properties, potentially affecting the film performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of cyanogenic glycosides and protein content in cassava diets on hamster prenatal development.

    PubMed

    Frakes, R A; Sharma, R P; Willhite, C C; Gomez, G

    1986-08-01

    Cassava is a staple food for 450-500 million people in 26 tropical countries. Groups of pregnant hamsters were fed diets consisting of cassava meal:laboratory chow (80:20) during Days 3-14 of gestation. One low cyanide (sweet) cassava meal and one high cyanide (bitter) cassava meal were studied. One additional group was fed a diet which resembled cassava in nutritional value, but which lacked the cyanogenic glycosides. Thiocyanate concentrations increased significantly in the urine and blood of dams fed cassava diets. Increased tissue thiocyanate concentrations were observed in fetuses recovered from cassava-fed dams. Cassava-fed dams gained significantly less weight than did control animals and their offspring showed evidence of fetotoxicity. Reduced fetal body weight and reduced ossification of sacrocaudal vertebrae, metatarsals, and sternebrae were associated with cassava diets. High cyanide cassava diets were also associated with a significant increase in the numbers of runts compared to litters from dams fed either low protein or laboratory stock diets.

  8. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    PubMed

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  9. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta Crantz) is an important staple food crop in Africa and South America whose fitness may be severely reduced by ubiquitous deleterious variation. To evaluate these deleterious mutations in cassava genome, we constructed a cassava haplotype map by deep sequencing of 241 diver...

  10. Functionality of maize, wheat, teff and cassava starches with stearic acid and xanthan gum.

    PubMed

    Maphalla, Thabelang Gladys; Emmambux, Mohammad Naushad

    2016-01-20

    Consumer concerns to synthetic chemicals have led to strong preference for 'clean' label starches. Lipid and hydrocolloids are food friendly chemicals. This study determines the effects of stearic acid and xanthan gum alone and in combination on the functionality of maize, wheat, teff and cassava starches. An increase in viscosity was observed for all starches with stearic acid and xanthan gum compared to the controls with cassava having the least increase. A further increase in viscosity was observed for the cereal starches with combination of stearic acid and xanthan gum. Stearic acid reduced retrogradation, resulting in soft textured pastes. Combination of stearic acid and xanthan gum reduced the formation of type IIb amylose-lipid complexes, syneresis, and hysteresis in cereal starches compared to stearic acid alone. A combination of stearic acid and xanthan gum produce higher viscosity non-gelling starches and xanthan gum addition increases physical stability to freezing and better structural recovery after shear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Geospatial association of endemicity of ataxic polyneuropathy and highly cyanogenic cassava cultivars.

    PubMed

    Oluwole, Olusegun Steven Ayodele; Oludiran, Adeyinka

    2013-09-14

    Exposure to cyanide from cassava foods is present in communities where ataxic polyneuropathy is endemic. Ataxic polyneuropathy is endemic in coastal parts of southwest and southeast Nigeria, and coastal Newala, south India, but it has been reported in epidemic or endemic forms from Africa, Asia, or Caribbean. This study was done to determine if cyanogenicity of cassava cultivars is higher in lowland than highland areas, and if areas of endemicity of ataxic polyneuropathy colocalize with areas of highest cyanogenicity of cassava. Roots of cassava cultivars were collected from 150 farmers in 32 of 37 administrative areas in Nigeria. Global positioning system was used to determine the location of the roots. Roots were assayed for concentrations of cyanogens. Thin Plate Spline regression was used to produce the contour map of cyanogenicity of the study area. Contour maps of altitude of the endemic areas were produced. Relationship of cyanogenicity of cassava cultivars and altitude, and of locations of areas of high cyanogenicity and areas of endemicity were determined. Geometrical mean (95% CI) cyanogen concentration was 182 (142-233) mg HCN eq/kg dry wt for cassava cultivars in areas ≤ 25 m above sea level, but 54 (43-66) mg HCN eq/kg dry wt for areas > 375 m. Non-spatial linear regression of altitude on logarithm transformed concentrations of cyanogens showed highly significant association, (p < 0.0001). Contour map of concentrations of cyanogens in cassava cultivars in Nigeria showed four areas with average concentrations of cassava cyanogens > 250 mg HCN eq/kg dry wt, and one area of moderately high cyanogen concentration > 150 mg HCN eq/kg dry wt. The endemic areas colocalized with areas of highest cassava cyanogenicity in lowland areas close to the Atlantic Ocean. This study shows strong geospatial association of areas of endemicity of ataxic polyneuropathy and areas of highest cyanogenicity of cassava cultivars. Finding of higher

  12. Structural, thermal, and morphological characteristics of cassava amylodextrins.

    PubMed

    Costa, Mariana Souza; Volanti, Diogo Paschoalini; Grossmann, Maria Victória Eiras; Franco, Célia Maria Landi

    2018-05-01

    Amylodextrins from cassava starch were obtained by acid hydrolysis, and their structural, thermal and morphological characteristics were evaluated and compared to those from potato and corn amylodextrins. Cassava starch was the most susceptible to hydrolysis due to imperfections in its crystalline structure. The crystalline patterns of amylodextrins remained unchanged, and crystallinity and peak temperature increased with hydrolysis time, whereas thermal degradation temperature decreased, independent of treatment time and starch source. Cassava amylodextrins had similar structural and morphological characteristics to those from corn amylodextrins due to their A-type crystalline arrangements. A-amylodextrins were structurally and thermally more stable than potato amylodextrins (B-type). Starch nanocrystals (SNC) were observed by transmission electron microscopy from the third day of hydrolysis in cassava amylodextrins, whereas potato and corn amylodextrins displayed SNC only on the fifth day. A-SNC displayed platelet shapes, whereas B-SNC were rounded. The SNC shape was related to the packing form and geometry of unit cells of allomorphs A and B. Microstructures (agglomerated crystalline particles) and nanostructures (double helix organization) were observed for amylodextrins. Cassava starch was shown to be a promising material for SNC production, since it requires less hydrolysis time to obtaining more stable crystals. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform.

    PubMed

    Zhang, Jian; Fang, Zhenhong; Deng, Hongbo; Zhang, Xiaoxi; Bao, Jie

    2013-04-01

    Cassava cellulose accounts for one quarter of cassava residues and its utilization is important for improving the efficiency and profit in commercial scale cassava ethanol industry. In this study, three scenarios of cassava cellulose utilization for ethanol production were experimentally tested under same conditions and equipment. Based on the experimental results, a rigorous flowsheet simulation model was established on Aspen plus platform and the cost of cellulase enzyme and steam energy in the three cases was calculated. The results show that the simultaneous co-saccharification of cassava starch/cellulose and ethanol fermentation process (Co-SSF) provided a cost effective option of cassava cellulose utilization for ethanol production, while the utilization of cassava cellulose from cassava ethanol fermentation residues was not economically sound. Comparing to the current fuel ethanol selling price, the Co-SSF process may provide an important choice for enhancing cassava ethanol production efficiency and profit in commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Consumer Socialization: Children's Saving and Spending.

    ERIC Educational Resources Information Center

    Cohen, Stewart

    1994-01-01

    Provides examples of age-appropriate saving and spending activities that teachers can encourage in students to help them develop wise consumer behaviors. Suggests that younger children can save money in piggy banks or savings accounts, and older students can utilize checking accounts and mutual funds. All students can donate unneeded possessions…

  15. Modification of cell wall polysaccharides during retting of cassava roots.

    PubMed

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cassava starch as a stabilizer of soy-based beverages.

    PubMed

    Drunkler, Northon Lee; Leite, Rodrigo Santos; Mandarino, José Marcos Gontijo; Ida, Elza Iouko; Demiate, Ivo Mottin

    2012-10-01

    Soy-based beverages are presented as healthy food alternatives for human nutrition. Cassava (Manihot esculenta, Crantz) starch is relatively inexpensive, widely available in Brazil and is broadly used by the food industry due to its desired properties that result from pasting. The objective of this study was to develop soy-based beverages with good sensory quality using native cassava starch as a stabilizer and maintaining the nutritional value that makes this product a functional food. The developed formulations featured a range of cassava starch and soybean extract concentrations, which were tested in a 2² experimental design with three central points. The results of sensory analysis showed that the studied variables (cassava starch and soybean extract concentrations) did not have a significant effect with respect to a 5% probability level. When considering the apparent viscosity, on the other hand, the variables had a significant effect: the increase in soybean extract and cassava starch concentrations caused an increase in the viscosity of the final product. The profile of isoflavones in the tested formulations was similar to the profiles reported in other papers, with a predominance of the conjugated glycosides over the aglycone forms.

  17. Geospatial association of endemicity of ataxic polyneuropathy and highly cyanogenic cassava cultivars

    PubMed Central

    2013-01-01

    Background Exposure to cyanide from cassava foods is present in communities where ataxic polyneuropathy is endemic. Ataxic polyneuropathy is endemic in coastal parts of southwest and southeast Nigeria, and coastal Newala, south India, but it has been reported in epidemic or endemic forms from Africa, Asia, or Caribbean. This study was done to determine if cyanogenicity of cassava cultivars is higher in lowland than highland areas, and if areas of endemicity of ataxic polyneuropathy colocalize with areas of highest cyanogenicity of cassava. Methods Roots of cassava cultivars were collected from 150 farmers in 32 of 37 administrative areas in Nigeria. Global positioning system was used to determine the location of the roots. Roots were assayed for concentrations of cyanogens. Thin Plate Spline regression was used to produce the contour map of cyanogenicity of the study area. Contour maps of altitude of the endemic areas were produced. Relationship of cyanogenicity of cassava cultivars and altitude, and of locations of areas of high cyanogenicity and areas of endemicity were determined. Results Geometrical mean (95% CI) cyanogen concentration was 182 (142–233) mg HCN eq/kg dry wt for cassava cultivars in areas ≤ 25 m above sea level, but 54 (43–66) mg HCN eq/kg dry wt for areas > 375 m. Non-spatial linear regression of altitude on logarithm transformed concentrations of cyanogens showed highly significant association, (p < 0.0001). Contour map of concentrations of cyanogens in cassava cultivars in Nigeria showed four areas with average concentrations of cassava cyanogens > 250 mg HCN eq/kg dry wt, and one area of moderately high cyanogen concentration > 150 mg HCN eq/kg dry wt. The endemic areas colocalized with areas of highest cassava cyanogenicity in lowland areas close to the Atlantic Ocean. Conclusion This study shows strong geospatial association of areas of endemicity of ataxic polyneuropathy and areas of highest cyanogenicity of

  18. A Pontential Agriculture Waste Material as Coagulant Aid: Cassava Peel

    NASA Astrophysics Data System (ADS)

    Othman, N.; Abd-Rahim, N.-S.; Tuan-Besar, S.-N.-F.; Mohd-Asharuddin, S.; Kumar, V.

    2018-02-01

    All A large amount of cassava peel waste is generated annually by small and medium scale industries. This has led to a new policy of complete utilization of raw materials so that there will be little or no residue left that could pose pollution problems. Conversion of these by-products into a material that poses an ability to remove toxic pollutant would increase the market value and ultimately benefits the producers. This study investigated the characteristics of cassava peel as a coagulant aid material and optimization process using the cassava peel was explored through coagulation and flocculation. This research had highlighted that the Cassava peels contain sugars in the form of polysaccharides such as starch and holocellulose. The FTIR results revealed that amino acids containing abundant of carboxyl, hydroxyl and amino groups which has significant capabilities in removing pollutants. Whereas analysis by XRF spectrometry indicated that the CP samples contain Fe2O3 and Al2O3 which might contribute to its coagulation ability. The optimum condition allowed Cassava peel and alum removed high turbidity up to 90. This natural coagulant from cassava peel is found to be an alternative coagulant aid to reduce the usage of chemical coagulants

  19. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  20. Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava.

    PubMed

    Chetty, C C; Rossin, C B; Gruissem, W; Vanderschuren, H; Rey, M E C

    2013-01-25

    Knowledge and technology transfer to African laboratories and farmers is an important objective for achieving food security and sustainable crop production on the sub-Saharan African continent. Cassava (Manihot esculenta Crantz) is a vital source of calories for more than a billion people in developing countries, and its potential industrial use for starch and bioethanol in the tropics is increasingly being recognized. However, cassava production remains constrained by the susceptibility of the crop to several biotic and abiotic stresses. For more than a decade, biotechnology has been considered an attractive tool to improve cassava as it substantially circumvents the limitations of traditional breeding, which is particularly time-consuming and tedious because of the high heterozygosity of the crop. A major constraint to the development of biotechnological approaches for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite some success achieved in genetic modification of the model cassava cultivar Tropical Manihot Series (TMS), TMS 60444, in some European and U.S. laboratories, the lack of a reproducible and robust protocol has not allowed the establishment of a routine transformation system in sub-Saharan Africa. In this study, we optimized a robust and efficient protocol developed at ETH Zurich to successfully establish transformation of a commercially cultivated South African landrace, T200, and compared this with the benchmark model cultivar TMS 60444. Results from our study demonstrated high transformation rates for both T200 (23 transgenic lines from 100 friable embryogenic callus (FEC) clusters) compared with TMS 60444 (32 transgenic lines from 100 FEC clusters). The success in transforming landraces or farmer-preferred cultivars has been limited, and the high transformation rate of an industry-preferred landrace in this study is encouraging for a feasible transformation program for cassava

  1. Soil-to-cassava transfer of naturally occurring radionuclides from communities along Ghana's oil and gas rich Tano Basin.

    PubMed

    Doyi, Israel Nutifafa Yawo; Essumang, David Kofi; Agyapong, Asare Kwaku; Asumadu-Sarkodie, Samuel

    2018-02-01

    Soil-to-plant transfer factor (TF) is widely used to assess the impact of soil radioactivity on agricultural crops. The root crop cassava (Manihot esculenta) provides 30%-50% of the calories consumed in Sub-Saharan Africa and is widely used in South America. γ-ray analysis was used to measure activity concentrations of 238 U, 232 Th, and 40 K in cassava root and soil. The TF values for 238 U, 232 Th, and 40 K were in the range 0.06-0.12, 0.01-0.10 and 0.04-0.28 respectively. The median transfer factors were 0.10 ( 238 U), 0.04 ( 232 Th) and 0.08 ( 40 K). For 238 U and 232 Th, the highest TF values were 0.12 and 0.10 respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).

    PubMed

    Siritunga, Dimuth; Sayre, Richard

    2004-11-01

    Cassava is the major root crop for a quarter billion subsistence farmers in sub-Saharan Africa. It is valued for its ability to grow in adverse environments and the food security it provides. Cassava contains potentially toxic levels of cyanogenic glycosides (linamarin) which protect the plant from herbivory and theft. The cyanogens, including linamarin and its deglycosylated product, acetone cyanohydrin, can be efficiently removed from the root by various processing procedures. Short-cuts in processing, which may occur during famines, can result in only partial removal of cyanogens. Residual cyanogens in cassava foods may cause neurological disorders or paralysis, particularly in nutritionally compromised individuals. To address this problem and to further understand the function of cyanogenic glycosides in cassava, we have generated transgenic cassava in which cyanogenic glycoside synthesis has been selectively inhibited in leaves and roots by antisense expression of CYP79D1/D2 gene fragments. The CYP79D1/D2 genes encode two highly similar cytochrome P450s that catalyze the first-dedicated step in cyanogenic glycoside synthesis. Transgenic plants in which the expression of these genes was selectively inhibited in leaves had substantially reduced (60- 94% reduction) linamarin leaf levels. Surprisingly, these plants also had a greater than a 99% reduction in root linamarin content. In contrast, transgenic plants in which the CYP79D1/D2 transcripts were reduced to non-detectable levels in roots had normal root linamarin levels. These results demonstrate that linamarin synthesized in leaves is transported to the roots and accounts for nearly all of the root linamarin content. Importantly, transgenic plants having reduced leaf and root linamarin content were unable to grow in the absence of reduced nitrogen (NH3) . Cassava roots have previously been demonstrated to have an active cyanide assimilation pathway leading to the synthesis of amino acids. We propose that

  3. Survey of farmers' knowledge of cassava mosaic disease and their preferences for cassava cultivars in three agro-ecological zones in Benin.

    PubMed

    Houngue, Jerome Anani; Pita, Justin S; Cacaï, Gilles Habib Todjro; Zandjanakou-Tachin, Martine; Abidjo, Emmanuel A E; Ahanhanzo, Corneille

    2018-04-25

    Cassava is an important crop in Africa that is widely cultivated for its starchy tuberous root, which constitutes a major source of dietary carbohydrates. Cassava mosaic disease (CMD) is the most devastating disease affecting cassava in Africa and causes enormous losses in yield. In Benin, specifically, cultivars resistant to CMD are not commonly planted, and even when CMD is observed in fields, farmers do not implement control measures, presumably because they lack proper knowledge and training. Our study aimed to evaluate farmers' knowledge of CMD to determine whether there is consistency between farmers' criteria for selecting cassava cultivars and the currently CMD-recommended cassava varieties. We conducted structured interviews with 369 farmers in 20% of townships in each of three agro-ecological zones in Benin between November 2015 and February 2016. Farmers were selected randomly in each household, and their fields were assessed for CMD incidence and severity. All farmers surveyed, representing a broad demographic pool with regard to education level, age group, and years of experience in cassava production, successfully recognized CMD symptoms in photos, but most (98.60%) said they did not know the causes and vectors of the disease. Most farmers (93.51%) reported that they obtain planting material from neighboring fields or their own fields. In total, 52 unique cultivars were identified, of which 3 (5.76%) were preferred based on their yield and precocity and 3 (5.76%) were preferred based on taste or ability for transformation. The assessment of disease incidence and severity showed that the areas most affected by CMD were Comè Township (37.77% of fields affected) and agro-ecological zone VIII (26.33%). Farmers already know how to recognize the symptoms of CMD and could implement control measures against it if they are trained by researchers. Across all surveyed areas, we identified six preferred cultivars based on the four most commonly stated preference

  4. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots.

    PubMed

    Bayoumi, Soad A L; Rowan, Michael G; Beeching, John R; Blagbrough, Ian S

    2010-04-01

    A phytochemical analysis of cassava (Manihot esculenta Crantz) fresh roots and roots suffering from post-harvest physiological deterioration (PPD) has been carried out. The first isolation and identification of galactosyl diacylglycerides from fresh cassava roots is reported, as well as beta-carotene, linamarin, and beta-sitosterol glucopyranoside. The hydroxycoumarin scopoletin and its glucoside scopolin were identified from cassava roots during PPD, as well as trace quantities of esculetin and its glucoside esculin. There is no isoscopoletin in cassava roots during PPD. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Cassava genome from a wild ancestor to cultivated varieties

    PubMed Central

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D.; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J.C.B.; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J.; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L. Augusto Becerra; Wu, Jiajie; You, Frank M.; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-01-01

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology. PMID:25300236

  6. Development and application of transgenic technologies in cassava.

    PubMed

    Taylor, Nigel; Chavarriaga, Paul; Raemakers, Krit; Siritunga, Dimuth; Zhang, Peng

    2004-11-01

    The capacity to integrate transgenes into the tropical root crop cassava (Manihot esculenta Crantz) is now established and being utilized to generate plants expressing traits of agronomic interest. The tissue culture and gene transfer systems currently employed to produce these transgenic cassava have improved significantly over the past 5 years and are assessed and compared in this review. Programs are underway to develop cassava with enhanced resistance to viral diseases and insects pests, improved nutritional content, modified and increased starch metabolism and reduced cyanogenic content of processed roots. Each of these is described individually for the underlying biology the molecular strategies being employed and progress achieved towards the desired product. Important advances have occurred, with transgenic plants from several laboratories being prepared for field trails.

  7. Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa: Cassava, Maize and Sweet Potato

    PubMed Central

    De Moura, Fabiana F.; Miloff, Alexander; Boy, Erick

    2015-01-01

    HarvestPlus, part of the Consultative Group on Internation Agriculture research (CGIAR) Program on Agriculture for Nutrition and Health (A4NH) uses conventional plant breeding techniques to develop staple food crops that are rich in micronutrients, a food-based approach to reduce micronutrient malnutrition known as biofortification. The nutritional breeding targets are established based on the food intake of target populations, nutrient losses during storage and processing and bioavailability. This review collates the evidence on the retention of provitamin A carotenoid (pVAC) after processing, cooking, and storing of the staple crops targeted for pVAC biofortification: cassava, maize, and sweet potato. Sun drying was more detrimental to the pVAC levels (27–56% retention) in cassava than shade (59%) or oven (55–91%) drying, while the pVAC retention levels (66–96%) in sweet potato were not significantly different among the various drying methods. Overall, boiling and steaming had higher pVAC retention (80–98%) compared to baking (30–70%) and frying (18–54%). Gari, the most frequently consumed form of cassava in West Africa had the lowest pVAC retention (10–30%). The pVAC retention of maize grain and cassava and sweet potato flour reached levels as low as 20% after 1–4 months of storage and was highly dependent on genotype. Therefore, we recommend that an evaluation of the pVAC degradation rate among different genotypes be performed before a high pVAC crop is promoted. PMID:24915386

  8. Assessing consumer expectations about pizza: A study on celiac and non-celiac individuals using the word association technique.

    PubMed

    Pontual, I; Amaral, G V; Esmerino, E A; Pimentel, T C; Freitas, M Q; Fukuda, R K; Sant'Ana, I L; Silva, L G; Cruz, A G

    2017-04-01

    The word association (WA) technique was used to investigate the perception of two groups of consumers (72 celiac and 78 non-celiac individuals; 150 in total) to pizza dough (thick or thin) and the raw material used at the manufacture (cassava flour or rice flour). Different perceptions of the four stimuli were detected by Chi-square test (X 2 =314.393, p<0.0001) for both groups. Seven categories were used for both groups: food/composition, health, doubt/uncertainty, novelty, negative feelings, positive feelings, and sensory aspects. The stimulus 'pizza dough made with cassava flour' was associated with the category "food/composition" and the stimuli 'pizza made with rice flour', 'pizza made with cassava flour' and 'thin dough' were associated with "positive feelings". The stimulus 'thick dough' was related only to the category "negative feelings". WA indicated that gluten-free pizza should have thin dough and us cassava flour or rice flour as the raw material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Low dietary cyanogen exposure from frequent consumption of potentially toxic cassava in Malawi.

    PubMed

    Chiwona-Karltun, L; Tylleskär, T; Mkumbira, J; Gebre-Medhin, M; Rosling, H

    2000-01-01

    In a cassava-growing area in Malawi, where roots are processed by soaking and water is available throughout the year, we interviewed 176 women farmers regarding their preferences for cassava cultivars and frequency of cassava consumption. Dietary cyanogen exposure was estimated from urinary levels of linamarin, the cyanogenic glycoside in cassava, and urinary thiocyanate, the main cyanide metabolite. Protection against unplanned harvest by family members, theft and animal spoilage were stated to be very important reasons for growing bitter cassava cultivars by 91%, 90% and 74% of the women, respectively. The mean (+/- SD) number of cultivars grown by each woman was 4.6 (+/- 2.4). The correlation between mean taste and mean danger scores for the 25 most grown cultivars was strong (r > 0.98). The scoring indicated that cultivars belonged to two distinct groups, eight to a group referred to as 'cool' and 17 to a group termed 'bitter'. The dumpling-like porridge (kondowole) made from cassava flour from bitter roots was eaten twice daily by 51% and at least weekly by 81%. The mean (+/- SEM) urinary linamarin was 14 (+/- 1) mumol/L and thiocyanate was 50 (+/- 4) mumol/L, less than a tenth of levels reported from populations eating insufficiently processed bitter cassava roots, and in the same range as in a non-smoking Swedish reference population. We conclude that cyanogenesis is a preferred characteristic of cassava by the studied farmers because it enhances food security. The availability of water and their knowledge about toxicity and processing enables these women farmers to provide a safe staple food from bitter cassava roots.

  10. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  11. Storage root of cassava: Morphological types, anatomy, formation, growth, development and harvest time

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta, Crantz) is considered a starchy root crop that provides staple food for millions of people in tropical and subtropical regions of the world. Research efforts are directed towards genetic breeding and cultivation of cassava to improve cassava storage root starch production...

  12. Cassava (Manihot esculenta Crantz) and Yam (Dioscorea spp.) Crops and Their Derived Foodstuffs: Safety, Security and Nutritional Value.

    PubMed

    Ferraro, Vincenza; Piccirillo, Clara; Tomlins, Keith; Pintado, Manuela E

    2016-12-09

    Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) are tropical crops consumed by ca. 2 billion people and represent the main source of carbohydrate and energy for the approximately 700 million people living in the tropical and sub-tropical areas. They are a guarantee of food security for developing countries. The production of these crops and the transformation into food-derived commodities is increasing, it represents a profitable business and farmers generate substantial income from their market. However, there are some important concerns related to the food safety and food security. The high post-harvest losses, mainly for yam, the contamination by endogenous toxic compounds, mainly for cassava, and the contamination by external agents (such as micotoxins, pesticides, and heavy metal) represent a depletion of economic value and income. The loss in the raw crops or the impossibility to market the derived foodstuffs, due to incompliance with food regulations, can seriously limit all yam tubers and the cassava roots processors, from farmers to household, from small-medium to large enterprises. One of the greatest challenges to overcome those concerns is the transformation of traditional or indigenous processing methods into modern industrial operations, from the crop storage to the adequate package of each derived foodstuff.

  13. Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration.

    PubMed

    Uarrota, Virgílio Gavicho; Maraschin, Marcelo

    2015-11-05

    Under postharvest physiological deterioration cassava root tubers alter the expression of biosynthetic pathways of certain primary and secondary metabolites, as well as the activity of some scavenging enzymes. Therefore, in this study we hypothesized that cassava cultivars differ as to their physiological responses to deterioration and their biochemical profiles can be an indicative of the tolerance or susceptibility to deterioration. The results corroborate the working hypothesis, revealing that high Levels of phenolic acids, scopoletin, carotenoids, proteins, and augmented activities of guaiacol peroxidase and hydrogen peroxide in non-stored cassava roots can be used as potential biomarkers of cassava deterioration. Cassava physiological deterioration depends on cultivar and many compounds are up and downregulated during storage time. Secondary metabolites, enzymes, scopoletin, scavenging reactive oxygen species, and acidic polysaccharides are activated as responses to the physiological stress induced in root tubers.

  14. Whitefly Bemisia tabaci (Homoptera: Aleyrodidae) infestation on cassava genotypes grown at different ecozones in Nigeria.

    PubMed

    Ariyo, O A; Dixon, A G O; Atiri, G I

    2005-04-01

    Large-scale screening of cassava, Manihot esculenta Crantz, genotypes for resistance to infestation by whitefly Bemisia tabaci Gennadius, the vector of cassava mosaic geminiviruses, is limited. A range of new cassava elite clones were therefore assessed for the whitefly infestation in the 1999/2000 and 2000/2001 cropping seasons in experimental fields of International Institute of Tropical Agriculture, Ibadan, Nigeria. On each scoring day, between 0600 and 0800 hours when the whiteflies were relatively immobile, adult whitefly populations on the five topmost expanded leaves of cassava cultivars were counted. All through the 6-mo scoring period, there was a highly significant difference in whitefly infestation among the new cassava elite clones. Vector population buildup was observed in Ibadan (forest-savanna transition zone) and Onne (humid forest), 2 mo after planting (MAP). Mean infestation across cassava genotypes was significantly highest (16.6 whiteflies per plant) in Ibadan and lowest in Zaria (0.2). Generally, whitefly infestation was very low in all locations at 5 and 6 MAP. During this period, cassava genotypes 96/1439 and 91/02324 significantly supported higher infestations than other genotypes. Plants of 96/1089A and TMS 30572 supported the lowest whitefly infestation across cassava genotypes in all locations. The preferential whitefly visitation, the differences between locations in relation to whitefly population, cassava mosaic disease, and the fresh root yield of cassava genotypes are discussed.

  15. Cassava biology and physiology.

    PubMed

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  16. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava.

    PubMed

    Ferguson, Morag E; Hearne, Sarah J; Close, Timothy J; Wanamaker, Steve; Moskal, William A; Town, Christopher D; de Young, Joe; Marri, Pradeep Reddy; Rabbi, Ismail Yusuf; de Villiers, Etienne P

    2012-03-01

    The availability of genomic resources can facilitate progress in plant breeding through the application of advanced molecular technologies for crop improvement. This is particularly important in the case of less researched crops such as cassava, a staple and food security crop for more than 800 million people. Here, expressed sequence tags (ESTs) were generated from five drought stressed and well-watered cassava varieties. Two cDNA libraries were developed: one from root tissue (CASR), the other from leaf, stem and stem meristem tissue (CASL). Sequencing generated 706 contigs and 3,430 singletons. These sequences were combined with those from two other EST sequencing initiatives and filtered based on the sequence quality. Quality sequences were aligned using CAP3 and embedded in a Windows browser called HarvEST:Cassava which is made available. HarvEST:Cassava consists of a Unigene set of 22,903 quality sequences. A total of 2,954 putative SNPs were identified. Of these 1,536 SNPs from 1,170 contigs and 53 cassava genotypes were selected for SNP validation using Illumina's GoldenGate assay. As a result 1,190 SNPs were validated technically and biologically. The location of validated SNPs on scaffolds of the cassava genome sequence (v.4.1) is provided. A diversity assessment of 53 cassava varieties reveals some sub-structure based on the geographical origin, greater diversity in the Americas as opposed to Africa, and similar levels of diversity in West Africa and southern, eastern and central Africa. The resources presented allow for improved genetic dissection of economically important traits and the application of modern genomics-based approaches to cassava breeding and conservation.

  17. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.

    PubMed

    Ogbo, Frank C

    2010-06-01

    Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.).

    PubMed

    Patanun, Onsaya; Lertpanyasampatha, Manassawe; Sojikul, Punchapat; Viboonjun, Unchera; Narangajavana, Jarunya

    2013-03-01

    MicroRNAs (miRNAs) are a newly discovered class of noncoding endogenous small RNAs involved in plant growth and development as well as response to environmental stresses. miRNAs have been extensively studied in various plant species, however, only few information are available in cassava, which serves as one of the staple food crops, a biofuel crop, animal feed and industrial raw materials. In this study, the 169 potential cassava miRNAs belonging to 34 miRNA families were identified by computational approach. Interestingly, mes-miR319b was represented as the first putative mirtron demonstrated in cassava. A total of 15 miRNA clusters involving 7 miRNA families, and 12 pairs of sense and antisense strand cassava miRNAs belonging to six different miRNA families were discovered. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. The cis-regulatory elements relevant to drought stress and plant hormone response were identified in the promoter regions of those miRNA genes. The results provided a foundation for further investigation of the functional role of known transcription factors in the regulation of cassava miRNAs. The better understandings of the complexity of miRNA-mediated genes network in cassava would unravel cassava complex biology in storage root development and in coping with environmental stresses, thus providing more insights for future exploitation in cassava improvement.

  19. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  20. Transcriptional response to petiole heat girdling in cassava.

    PubMed

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K; Brutnell, Thomas P; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-02-12

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation.

  1. Transcriptional response to petiole heat girdling in cassava

    PubMed Central

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K.; Brutnell, Thomas P.; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-01-01

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation. PMID:25672661

  2. Energy Value of Cassava Products in Broiler Chicken Diets with or without Enzyme Supplementation

    PubMed Central

    Bhuiyan, M. M.; Iji, P. A.

    2015-01-01

    This study investigated the metabolizable energy (ME) intake, net energy of production (NEp), heat production (HP), efficiencies of ME use for energy, lipid and protein retention as well as the performance of broiler chickens fed diets based on cassava chips or pellets with or without supplementation with an enzyme product containing xylanase, amylase, protease and phytase. The two products, cassava chips and pellets, were analysed for nutrient composition prior to feed formulation. The cassava chips and pellets contained 2.2% and 2.1% crude protein; 1.2% and 1.5% crude fat; and 75.1% and 67.8% starch, respectively. Lysine and methionine were 0.077%, 0.075%, and 0.017%, 0.020% protein material, respectively, while calculated ME was 12.6 and 11.7 MJ/kg, respectively. Feed intake to day 21 was lower (p<0.01) on the diet containing cassava chips compared to diets with cassava pellets. Enzyme supplementation increased (p<0.01) feed intake on all diets. Live weight at day 21 was significantly (p<0.01) reduced on the diet based on cassava chips compared to pellets, but an improvement (p<0.01) was noticed with the enzyme supplementation. Metabolizable energy intake was reduced (p<0.01) by both cassava chips and pellets, but was increased (p<0.01) on all diets by enzyme supplementation. The NEp was higher (p<0.01) in the maize-based diets than the diets containing cassava. Enzyme supplementation improved (p<0.01) NEp in all the diets. Heat production was highest (p<0.01) on diets containing cassava pellets than on cassava chips. It is possible to use cassava pellets in diets for broiler chickens at a level close to 50% of the diet to reduce cost of production, and the nutritive value of such diets can be improved through supplementation of enzyme products containing carbohydrases, protease, and phytase. PMID:26194227

  3. Correlation of Chemical Compositions of Cassava Varieties to Their Resistance to Prostephanus truncatus Horn (Coleoptera: Bostrichidae)

    PubMed Central

    Osipitan, Adebola A.; Sangowusi, Victoria T.; Lawal, Omoniyi I.; Popoola, Kehinde O.

    2015-01-01

    The preference of cassava as a major host by Prostephanus truncatus Horn is a major constraint to ample production of cassava, Manihot esculenta Crantz and storage. This study analyzed the nutritional and secondary metabolite compositions in 15 cassava varieties, evaluated levels of damage and reproduction by P. truncatus, and assessed their resistance to attack. One hundred grams of dried cassava chips in 250-ml Kilner jars were infested with 10 adult larger grain borerof 0–10 days old and held for 3 months. The nutritional and secondary metabolites compositions of the dry cassava chips were determined using the method of Association of Analytical Chemists . Chip perforation rates in the cassava varieties ranged from 17.7 to 71.6%. The weight of cassava powder varied by about threefold. The final number of larger grain borer in the cassava varieties varied by about sixfold with 63 in 01/0040 and 379 in 01/1368. Hydrocyanic acid content content varied by over 10-fold and correlated negatively with number of larger grain borer. Flavonoid content varied by ∼10%. Tannins and saponin content of the cassava negatively correlated with number of adult P. truncatus. The cassava varieties 95/0166, 92/0326, 01/0040, 05/0024, and 34 91934 had selection index <0.8 and were classified as resistant to larger grain borer damage, while others with selection index >0.8 were classified as susceptible. The resistance to high damage in the resistant varieties was conferred by secondary metabolites such as tannins, saponins, alkaloids, and hydrocyanic acid content. The genetic variation in cassava varieties could be explored to breed resistant cassava varieties for use in larger grain borer-endemic areas. PMID:25700536

  4. Cassava root diet induces low pyruvate levels.

    PubMed

    Golay, Van K

    2010-01-01

    The high cyanogenic-glucoside carbohydrate of the cassava root (Manihot esculenta) has special properties that make it an ideal therapeutic food for lowering nicotinamide adenine dinucleotide reduced form (NADH) and inducing Sirtuin (Sirt) gene overexpression when eaten in an exclusive mono-food diet regime. The author, using himself as the sole test subject, repeatedly induced low pyruvate levels (reflective of NADH levels) after being on the diet for 1-2 weeks at a time. The possible influences of exclusive cassava dieting on redox control and Sirtuin activation will be discussed.

  5. Correlation of concentration of modified cassava flour for banana fritter flour using simple linear regression

    NASA Astrophysics Data System (ADS)

    Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.

    2017-12-01

    The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.

  6. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava.

    PubMed

    Hummel, Aaron W; Chauhan, Raj Deepika; Cermak, Tomas; Mutka, Andrew M; Vijayaraghavan, Anupama; Boyher, Adam; Starker, Colby G; Bart, Rebecca; Voytas, Daniel F; Taylor, Nigel J

    2017-12-09

    Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Correlation of chemical compositions of cassava varieties to their resistance to Prostephanus truncatus Horn (Coleoptera: Bostrichidae).

    PubMed

    Osipitan, Adebola A; Sangowusi, Victoria T; Lawal, Omoniyi I; Popoola, Kehinde O

    2015-01-01

    The preference of cassava as a major host by Prostephanus truncatus Horn is a major constraint to ample production of cassava, Manihot esculenta Crantz and storage. This study analyzed the nutritional and secondary metabolite compositions in 15 cassava varieties, evaluated levels of damage and reproduction by P. truncatus, and assessed their resistance to attack. One hundred grams of dried cassava chips in 250-ml Kilner jars were infested with 10 adult larger grain borerof 0-10 days old and held for 3 months. The nutritional and secondary metabolites compositions of the dry cassava chips were determined using the method of Association of Analytical Chemists . Chip perforation rates in the cassava varieties ranged from 17.7 to 71.6%. The weight of cassava powder varied by about threefold. The final number of larger grain borer in the cassava varieties varied by about sixfold with 63 in 01/0040 and 379 in 01/1368. Hydrocyanic acid content content varied by over 10-fold and correlated negatively with number of larger grain borer. Flavonoid content varied by ∼10%. Tannins and saponin content of the cassava negatively correlated with number of adult P. truncatus. The cassava varieties 95/0166, 92/0326, 01/0040, 05/0024, and 34 91934 had selection index <0.8 and were classified as resistant to larger grain borer damage, while others with selection index >0.8 were classified as susceptible. The resistance to high damage in the resistant varieties was conferred by secondary metabolites such as tannins, saponins, alkaloids, and hydrocyanic acid content. The genetic variation in cassava varieties could be explored to breed resistant cassava varieties for use in larger grain borer-endemic areas. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Mental health consumer parents' recommendations for designing psychoeducation interventions for their minor children.

    PubMed

    Riebschleger, Joanne; Onaga, Esther; Tableman, Betty; Bybee, Deborah

    2014-09-01

    This research explores consumer parents' recommendations for developing psychoeducation programs for their minor children. Data were drawn from a purposive sample of 3 focus groups of parent consumers of a community mental health agency. The research question was: "What do consumer parents recommend for developing psychoeducation programs for their minor children?" Parents recommended content foci of mental illness, recovery, heritability, stigma, and coping. The next step is youth psychoeducation intervention development and evaluation. Parents, youth, and professionals should be included in the program planning. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  9. Analysis of heterogeneity of Copia-like retrotransposons in the genome of cassava (Manihot esculenta Crantz).

    PubMed

    Gbadegesin, Micheal A; Beeching, John R

    2011-12-20

    Retrotransposons are ubiquitous in eukaryotic genomes and now proving to be useful genetic tools for genetic diversity and phylogenetic analyses, especially in plants. In order to assess the diversity of Ty1/Copia-like retrotransposons of cassava, we used PCR primers anchored on the conserved domains of reverse transcriptases (RTs) to amplify cassava Ty1/Copia-like RT. The PCR product was cloned and sequenced. Sequences analysis of the clones revealed the presence of 69 families of Ty1/Copia-like retrotransposon in the genome of cassava. Comparative analyses of the predicted amino acid sequences of these clones with those of other plants showed that retroelements of this class are very heterogeneous in cassava. Cassava is widely grown for its edible roots in the tropical and subtropical regions of the world. Cassava roots, though poor in protein, are rich in starch (makes up about 80% of the dry matter), vitamin C, carotenes, calcium and potassium. It has a great commercial importance as a source of starch and starch based products. Realizing the importance of cassava, it stands out as a crop to benefit from biotechnology development. Heterogeneity of Mecops (Manihot esculenta copia-like Retrotransposons) showed that they may be useful for genetic diversity and phylogenetic analyses of cassava germplasm.

  10. Process for protein enrichment of cassava by solid substrate fermentation in rural conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daubresse, P.; Ntibashirwa, S.; Gheysen, A.

    1987-06-01

    An artisanal static process for protein enrichment of cassava by solid-state fermentation, developed in laboratory and tested on pilot units in Burundi (Central Africa), provides enriched cassava containing 10.7% of dry matter protein versus 1% before fermentation. Cassava chips, processed into granules of 2-4-mm diameter, are moistened (40% water content) and steamed. After cooling to 40 degrees C, cassava is mixed with a nutritive solution containing the inoculum (Rhizopus oryzae, strain MUCL 28627) and providing the following per 100 g dry matter: 3.4 g urea, 1.5 g KH/sub 2/PO/sub 4/, O.8 g MgSO/sub 4/.7H/sub 2/O, and 22.7 g citric acid.more » For the fermentation, cassava, with circa 60% moisture content, is spread in a thin layer (2-3 cm thick) on perforated trays and slid into an aerated humidified enclosure. The incubation lasts more or less 65 hours. The production of protein enriched cassava is 3.26 kg dry matter/square m tray. The effects of the variation of the nutritive solution composition and the inoculum conservation period on the protein production are equally discussed. (Refs. 37).« less

  11. Preparation and Characterization of Cellulose and Nanocellulose from Agro-industrial Waste - Cassava Peel

    NASA Astrophysics Data System (ADS)

    Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M.

    2017-02-01

    Cassava peel is an agro-industrial waste which is available in huge quantities in Lampung Province of Indonesia. This work was conducted to evaluate the potential of cassava peel as a source of cellulose and nanocellulose. Cellulose was extracted from cassava peel by using different chemical treatment, and the nanocellulose was prepared by hydrolysis with the use of sulfuric acid. The best methods of cellulose extraction from cassava peels are using alkali treatment followed by a bleaching process. The cellulose yield from this methods was 17.8% of dry base cassava peel, while the yield from nitric and sulfuric methods were about 10.78% and 10.32% of dry base cassava peel respectively. The hydrolysis was performed at the temperature of 50 °C for 2 hours. The intermediate reaction product obtained after each stage of the treatments was characterized. Fourier transform infrared spectroscopy showed the removal of non-cellulosic constituent. X-ray Diffraction (XRD) analysis revealed that the crystallinity of cellulose increased after hydrolysis. Morphological investigation was performed using Scanning Electron Microscopy (SEM). The size of particle was confirmed by Particle Size Analyzer (PSA) and Transmission Electron Microscopy (TEM).

  12. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).

    PubMed

    van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N

    2013-09-04

    The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

  13. Effectiveness of wetting method for control of konzo and reduction of cyanide poisoning by removal of cyanogens from cassava flour.

    PubMed

    Banea, Jean Pierre; Bradbury, J Howard; Mandombi, Chretienne; Nahimana, Damien; Denton, Ian C; Kuwa, N'landa; Tshala Katumbay, D

    2014-03-01

    Konzo is an irreversible paralysis of the legs that occurs mainly among children and young women in remote villages in tropical Africa and is associated with a monotonous diet of bitter cassava. Konzo was discovered in 1938 by Dr. G. Trolli in the Democratic Republic of Congo (DRC). It also occurs in Mozambique, Tanzania, Cameroon, Central African Republic, and Angola. It was first controlled in Kay Kalenge village, DRC, in 2011 with the use of a wetting method to remove cyanogens from cassava flour. Fourteen months later, another visit was made to Kay Kalenge. To determine whether Kay Kalenge women were still using the wetting method, whether there were new cases of konzo, and whether the wetting method had spread to other villages. Meetings were held with chiefs, leaders, and heads of mothers' groups, women from 30 households were interviewed, and three nearby villages were visited. Total cyanide and thiocyanate were analyzed in cassava flour and urine samples, respectively. The women in Kay Kalenge village still used the wetting method. There were no new cases of konzo. The mean cyanide content of the flour samples was 9 ppm, and no child had a mean urinary thiocyanate content greater than 350 micromol/L. The use of the wetting method had spread naturally to three adjacent villages. The wetting method has been readily accepted by rural women as a simple and useful method to control konzo by removing cyanide from cassava flour, and its use has spread to nearby villages. The wetting method should be promoted by health authorities to control konzo and reduce cyanide poisoning from high-cyanide cassava flour.

  14. Ninety-Day Oral Toxicity Assessment of an Alternative Biopolymer for Controlled Release Drug Delivery Systems Obtained from Cassava Starch Acetate.

    PubMed

    Jesus, Douglas Rossi; Barbosa, Lorena Neris; Prando, Thiago Bruno Lima; Martins, Leonardo Franco; Gasparotto, Francielli; Guedes, Karla Moraes Rocha; Dragunski, Douglas Cardoso; Lourenço, Emerson Luiz Botelho; Dalsenter, Paulo Roberto; Gasparotto Junior, Arquimedes

    2015-01-01

    The large consumption of biodegradable films from cassava starch acetate (FCSA) as ingredients in food and pharmaceutical products requires the assessment of the possible toxicity of these products. The aim of this study was to investigate the toxicity of biodegradable film from cassava starch acetate after oral exposure of Wistar rats for 90 days. The amount of food consumed and the body weight were weekly monitored. Blood and urine samples were obtained for the assessment of serum parameters and renal function. Histopathological analyses in target organs were also performed. No evidence of clinical toxicity in hematological, biochemical, or renal parameters in the FCSA-treated animals was found. In addition, relative organ weight and histopathological evaluations did not differ between groups treated with FCSA and control. Data obtained suggest that the subchronic exposure to FCSA does not cause obvious signs of toxicity in Wistar rats, indicating possible safety of this biofilm.

  15. Functional characterization of WHY-WRKY75 transcriptional module in plant response to cassava bacterial blight.

    PubMed

    Liu, Wen; Yan, Yu; Zeng, Hongqiu; Li, Xiaolin; Wei, Yunxie; Liu, Guoyin; He, Chaozu; Shi, Haitao

    2018-05-19

    Cassava is a major food crop in tropical areas, but its productivity and quality are seriously limited by cassava bacterial blight. So far, the key factors regulating cassava immune response remain elusive. In this study, we identified three cassava Whirly genes (MeWHYs) in cassava variety of South China 124 (SC124), and explored the possible roles and utilization of MeWHYs in cassava disease resistance. Gene expression analysis revealed that the transcripts of three MeWHYs were commonly regulated by the highly conserved N-terminal epitope of f lagellin (flg22) and Xanthomonas axonopodis pv. manihotis Hainan (Xam HN) treatments. Overexpression of MeWHYs improved plant disease resistance against X. axonopodis pv. manihotis, while MeWHYs-silenced cassava plants by virus-induced gene silencing exhibited decreased disease resistance. Notably, MeWRKY75 physically interacted with three MeWHYs in yeast and in planta, and served as a transcriptional activator of MeWHY3. Moreover, the physical interaction between MeWHYs and MeWRKY75 promoted the transcriptional activities of each other. Consistently, MeWRKY75 also positively regulated disease resistance against cassava bacterial blight. Taken together, our observations suggested that MeWRKY75 and MeWHYs confer improved disease resistance against cassava bacterial blight through forming an interacting complex of MeWRKY75-MeWHY1/2/3 and transcriptional module of MeWRKY75-MeWHY3. This study facilitates our understanding of the positive effect of the MeWRKY75-MeWHY3 transcriptional module in plant disease resistance.

  16. Bark analysis as a guide to cassava nutrition in Sierra Leone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey-Sam-Aggrey, W.; Garber, M.J.

    1979-01-01

    Cassava main stem barks from two experiments in which similar fertilizers were applied directly in a 2/sup 5/ confounded factorial design were analyzed and the bark nutrients used as a guide to cassava nutrition. The application of multiple regression analysis to the respective root yields and bark nutrient concentrations enable nutrient levels and optimum adjusted root yields to be derived. Differences in bark nutrient concentrations reflected soil fertility levels. Bark analysis and the application of multiple regression analysis to root yields and bark nutrients appear to be useful tools for predicting fertilizer recommendations for cassava production.

  17. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    PubMed Central

    2011-01-01

    Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v) based films plasticized with glycerol (30 g/100 g starch) were characterized with respect to the effect of carboxymethyl cellulose (CMC) concentrations (0, 10, 20, 30 and 40%w/w total solid) and relative humidity (34 and 54%RH) on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR), melting temperature by differential scanning calorimetry (DSC), and morphology by scanning electron microscopy (SEM). Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O) and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products. PMID:21306655

  18. Genome-wide association and prediction analysis in African cassava (Manihot esculenta) reveals the genetic architecture of resistance to cassava mosaic disease and prospects for rapid genetic improvement

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta) is a crucial, under-researched crop feeding millions worldwide, especially in Africa. Cassava mosaic disease (CMD) has plagued production in Africa for over a century. Bi-parental mapping studies suggest primarily a single major gene mediates resistance. To be certain and...

  19. Lower sulfurtransferase detoxification rates of cyanide in konzo-A tropical spastic paralysis linked to cassava cyanogenic poisoning.

    PubMed

    Kambale, K J; Ali, E R; Sadiki, N H; Kayembe, K P; Mvumbi, L G; Yandju, D L; Boivin, M J; Boss, G R; Stadler, D D; Lambert, W E; Lasarev, M R; Okitundu, L A; Mumba Ngoyi, D; Banea, J P; Tshala-Katumbay, D D

    2017-03-01

    Using a matched case-control design, we sought to determine whether the odds of konzo, a distinct spastic paraparesis associated with food (cassava) cyanogenic exposure in the tropics, were associated with lower cyanide detoxification rates (CDR) and malnutrition. Children with konzo (N=122, 5-17 years of age) were age- and sex-matched with presumably healthy controls (N=87) and assessed for motor and cognition performances, cyanogenic exposure, nutritional status, and cyanide detoxification rates (CDR). Cyanogenic exposure was ascertained by thiocyanate (SCN) concentrations in plasma (P-SCN) and urine (U-SCN). Children with a height-for-age z-score (HAZNCHS)<-2 were classified as nutritionally stunted. CDR was measured as time required to convert cyanide to SCN, and expressed as ms/μmol SCN/mg protein or as mmolSCN/ml plasma/min. Mean (SD) U-SCN in children with konzo was 521.9 (353.6) μmol/l and was, significantly higher than 384.6 (223.7) μmol/l in those without konzo. Conditional regression analysis of data for age- and sex- matched case-control pairs showed that konzo was associated with stunting (OR: 5.8; 95% CI: 2.7-12.8; p<0.01; N=83 paired groups) and higher U-SCN (OR: 1.1; 95% CI: 1.02-1.20 per 50-μmol increase in U-SCN; p=0.02; N=47 paired groups). After adjusting for stunting and U-SCN, the odds of developing konzo was reduced by 63% (95% CI: 11-85%, p=0.03; N=41 paired groups) for each 5mmol SCN/(ml plasma/min)-increase in CDR. Linear regression analysis indicated a significant association between BOT-2 or KABC-II scores and both the HAZNCHS z-score and the U-SCN concentration, but not the CDR. Our findings provide evidence in support of interventions to remove cyanogenic compounds from cassava prior to human consumption or, peharps, enhance the detoxification of cyanide in those relying on the cassava as the main source of food. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Lower sulfurtransferase detoxification rates of cyanide in konzo—A tropical spastic paralysis linked to cassava cyanogenic poisoning

    PubMed Central

    Kambale, K.J.; Ali, E.R.; Sadiki, N.H.; Kayembe, K.P.; Mvumbi, L.G.; Yandju, D.L.; Boivin, M.J.; Boss, G.R.; Stadler, D.D.; Lambert, W.E.; Lasarev, M.R.; Okitundu, L.A.; Ngoyi, D. Mumba; Banea, J.P.; Tshala-Katumbay, D.D.

    2016-01-01

    Using a matched case-control design, we sought to determine whether the odds of konzo, a distinct spastic paraparesis associated with food (cassava) cyanogenic exposure in the tropics, were associated with lower cyanide detoxification rates (CDR) and malnutrition. Children with konzo (N= 122, 5–17 years of age) were age- and sex-matched with presumably healthy controls (N = 87) and assessed for motor and cognition performances, cyanogenic exposure, nutritional status, and cyanide detoxification rates (CDR). Cyanogenic exposure was ascertained by thiocyanate (SCN) concentrations in plasma (P-SCN) and urine (U-SCN). Children with a height-for-age z-score (HAZNCHS) < −2 were classified as nutritionally stunted. CDR was measured as time required to convert cyanide to SCN, and expressed as ms/μmol SCN/mg protein or as mmolSCN/ml plasma/min. Mean (SD) U-SCN in children with konzo was 521.9 (353.6) μmol/l and was, significantly higher than 384.6 (223.7) μmol/l in those without konzo. Conditional regression analysis of data for age- and sex- matched case-control pairs showed that konzo was associated with stunting (OR: 5.8; 95% CI: 2.7–12.8; p <0.01; N = 83 paired groups) and higher U-SCN (OR: 1.1; 95% CI: 1.02–1.20 per 50-μmol increase in U-SCN; p = 0.02; N = 47 paired groups). After adjusting for stunting and U-SCN, the odds of developing konzo was reduced by 63% (95% CI: 11–85%, p = 0.03; N = 41 paired groups) for each 5 mmol SCN/(ml plasma/min)-increase in CDR. Linear regression analysis indicated a significant association between BOT-2 or KABC-II scores and both the HAZNCHS z-score and the U-SCN concentration, but not the CDR. Our findings provide evidence in support of interventions to remove cyanogenic compounds from cassava prior to human consumption or, peharps, enhance the detoxification of cyanide in those relying on the cassava as the main source of food. PMID:27246648

  1. Alcoholic fermentation of raw cassava starch by Rhizopus koji without cooking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuijo, Y.; Suyanadona, P.; Attasampunna, P.

    Using only wheat bran koji from the Rhizopus strain, raw cassava starch and cassava pellets converted reasonably well to alcohol (ethanol) without cooking at 35 degrees C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus species koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical value of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1more » g corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation. (Refs. 15).« less

  2. Application of thermophilic enzymes and water jet system to cassava pulp.

    PubMed

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Two Cassava Basic Leucine Zipper (bZIP) Transcription Factors (MebZIP3 and MebZIP5) Confer Disease Resistance against Cassava Bacterial Blight.

    PubMed

    Li, Xiaolin; Fan, Shuhong; Hu, Wei; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao

    2017-01-01

    Basic domain-leucine zipper (bZIP) transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs ( MebZIP3 and MebZIP5 ) in response to pathogen infection. Gene expression analysis indicated that MebZIP3 and MebZIP5 were commonly regulated by flg22, Xanthomonas axonopodis pv. manihotis ( Xam ), salicylic acid (SA), and hydrogen peroxide (H 2 O 2 ). Subcellular localization analysis showed that MebZIP3 and MebZIP5 are specifically located in cell nucleus. Through overexpression in tobacco, we found that MebZIP3 and MebZIP5 conferred improved disease resistance against cassava bacterial blight, with more callose depositions. On the contrary, MebZIP3- and MebZIP5 -silenced plants by virus-induced gene silencing (VIGS) showed disease sensitive phenotype, lower transcript levels of defense-related genes and less callose depositions. Taken together, this study highlights the positive role of MebZIP3 and MebZIP5 in disease resistance against cassava bacterial blight for further utilization in genetic improvement of cassava disease resistance.

  4. Cassava: constraints to production and the transfer of biotechnology to African laboratories.

    PubMed

    Bull, Simon E; Ndunguru, Joseph; Gruissem, Wilhelm; Beeching, John R; Vanderschuren, Hervé

    2011-05-01

    Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries.

  5. Feeding behavior of feedlot lambs fed diets containing levels of cassava wastewater.

    PubMed

    de Aguiar Silva, Paula; de Carvalho, Gleidson Giordano Pinto; Pires, Aureliano José Vieira; Santos, Stefanie Alvarenga; Dos Santos Pina, Douglas; Silva, Robério Rodrigues; Rodrigues, Carlindo Santos; de Matos, Luis Henrique Almeida; Eiras, Carlos Emanuel; Novais-Eiras, Daiane; Nunes, Wilson Souza

    2018-04-01

    In this study, we evaluated the effects of including cassava wastewater in the diet on the feeding behavior of feedlot lambs in 35 male uncastrated Santa Inês × Dorper crossbred lambs at an approximate age of 3 months, with an average live weight of 20.0 ± 3.4 kg. Diets were formulated with hay of cassava shoots (roughage) and a concentrate based on corn and soybean, with a roughage:concentrate ratio of 50:50, plus inclusion of cassava wastewater at the levels of 0, 12, 24, 36, or 48 g/kg of the total diet. Feeding behavior was evaluated between the 46th and 52nd days of the experiment. Increasing cassava wastewater levels in the diet reduced (P < 0.05) the intakes (kg/day) of dry matter and neutral detergent fiber as well as the efficiency of rumination (g/cud and g/h) of dry matter and neutral detergent fiber. The other behavioral parameters were not affected by wastewater inclusion in the diet. Therefore, the inclusion of up to 48 g/kg of cassava wastewater on fresh matter of diets is not recommended for feedlot lambs.

  6. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Pathological and Molecular Characterization of Xanthomonas campestris Strains Causing Diseases of Cassava (Manihot esculenta)

    PubMed Central

    Verdier, Valérie; Boher, Bernard; Maraite, Henri; Geiger, Jean-Paul

    1994-01-01

    Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava. Images PMID:16349463

  8. Breeding cassava for higher yield

    USDA-ARS?s Scientific Manuscript database

    Cassava is a root crop grown for food and for starch production. Breeding progress is slowed by asexual production and high levels of heterozygosity. Germplasm resources are rich and accessible to breeders through genebanks worldwide. Breeding objectives include high root yield, yield stability, dis...

  9. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    PubMed Central

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  10. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    PubMed Central

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  11. The community and consumer food environment and children's diet: a systematic review.

    PubMed

    Engler-Stringer, Rachel; Le, Ha; Gerrard, Angela; Muhajarine, Nazeem

    2014-05-29

    While there is a growing body of research on food environments for children, there has not been a published comprehensive review to date evaluating food environments outside the home and school and their relationship with diet in children. The purpose of this paper is to review evidence on the influence of the community and consumer nutrition environments on the diet of children under the age of 18 years. Our search strategy included a combination of both subject heading searching as well as natural language, free-text searching. We searched nine databases (MEDLINE, Web of Science, CINAHL, Embase, Scopus, ProQuest Public Health, PsycINFO, Sociological Abstracts, and GEOBASE) for papers published between 1995 and July 2013. Study designs were included if they were empirically-based, published scholarly research articles, were focused on children as the population of interest, fit within the previously mentioned date range, included at least one diet outcome, and exposures within the community nutrition environment (e.g., location and accessibility of food outlets), and consumer nutrition environment (e.g., price, promotion, and placement of food choices). After applying exclusion and inclusion criteria, a total of 26 articles were included in our review. The vast majority of the studies were cross-sectional in design, except for two articles reporting on longitudinal studies. The food environment exposure(s) included aspects of the community nutrition environments, except for three that focused on the consumer nutrition environment. The community nutrition environment characterization most often used Geographic Information Systems to geolocate participants' homes (and/or schools) and then one or more types of food outlets in relation to these. The children included were all of school age. Twenty-two out of 26 studies showed at least one positive association between the food environment exposure and diet outcome. Four studies reported only null associations. This

  12. Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feed.

    PubMed

    Tweyongyere, Robert; Katongole, Ignatious

    2002-12-01

    This study determined the cyanogenic potential of the cassava peels and assess the effectiveness of sun drying, heap fermentation and wet fermentation (soaking) in reducing the cyanide potential of the peels. Fresh cassava peels from major fresh food markets in Kampala and cassava grown in various parts of Uganda from Namolonge Agricultural and Animal Research Institute were used. The fresh peels from the market were subjected to the different detoxification methods foe 5 d; the cyanide potential was determined by enzymatic assay. The mean potential of the cassava peels from the food markets Kampala was 856 mg cyanide equivalen/kg of dry matter. The potential of the peels of the 14 cultivars fell between 253 and 1081 mg cyanide eQuivalent/kg of dry matter. High cyanogenic potential cultivars dominate on the market and pose danger of poisoning to livestock fed on fresh cassava peels. Treatment of the peels by sun-drying, heap fermentation on soaking reduced the cyanide potential to below 100 mg cyanide equivalent/kg of dry matter at 48, 72 and 96 h respectively. Sun-dying caused an early sharp fall in the cyanide potential, but heap fermentation or soaking gave the lowest residual cyanide after 120 h. Cassava peels could be safely used as livestock feed if they are treated to reduce the cyanogenic potential.

  13. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    PubMed Central

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Harvey, Jagger J. W.; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of drought stress in cassava. One drought-tolerant (improved variety) and one drought-susceptible (farmer-preferred) cassava landrace were grown in the glasshouse under well-watered and water-stressed conditions. Their morphological, physiological and molecular responses to drought were characterized. Morphological and physiological measurements indicate that the tolerance of the improved variety is based on drought avoidance, through reduction of water loss via partial stomatal closure. Ten genes that have previously been biologically validated as conferring or being associated with drought tolerance in other plant species were confirmed as being drought responsive in cassava. Four genes (MeALDH, MeZFP, MeMSD and MeRD28) were identified as candidate cassava drought-tolerance genes, as they were exclusively up-regulated in the drought-tolerant genotype to comparable levels known to confer drought tolerance in other species. Based on these genes, we hypothesize that the basis of the tolerance at the cellular level is probably through mitigation of the oxidative burst and osmotic adjustment. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The drought-responsive genes can now be used as expression-based markers of drought stress tolerance in cassava, and the candidate tolerance genes tested in the context of breeding (as possible quantitative trait loci) and engineering drought tolerance in transgenics

  14. Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing.

    PubMed

    Wosula, Everlyne N; Chen, Wenbo; Fei, Zhangjun; Legg, James P

    2017-11-01

    Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Prediction of cassava protein interactome based on interolog method.

    PubMed

    Thanasomboon, Ratana; Kalapanulak, Saowalak; Netrphan, Supatcharee; Saithong, Treenut

    2017-12-08

    Cassava is a starchy root crop whose role in food security becomes more significant nowadays. Together with the industrial uses for versatile purposes, demand for cassava starch is continuously growing. However, in-depth study to uncover the mystery of cellular regulation, especially the interaction between proteins, is lacking. To reduce the knowledge gap in protein-protein interaction (PPI), genome-scale PPI network of cassava was constructed using interolog-based method (MePPI-In, available at http://bml.sbi.kmutt.ac.th/ppi ). The network was constructed from the information of seven template plants. The MePPI-In included 90,173 interactions from 7,209 proteins. At least, 39 percent of the total predictions were found with supports from gene/protein expression data, while further co-expression analysis yielded 16 highly promising PPIs. In addition, domain-domain interaction information was employed to increase reliability of the network and guide the search for more groups of promising PPIs. Moreover, the topology and functional content of MePPI-In was similar to the networks of Arabidopsis and rice. The potential contribution of MePPI-In for various applications, such as protein-complex formation and prediction of protein function, was discussed and exemplified. The insights provided by our MePPI-In would hopefully enable us to pursue precise trait improvement in cassava.

  16. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.

    PubMed

    Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J

    2018-02-01

    Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.

  17. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz).

    PubMed

    Koehorst-van Putten, Herma J J; Wolters, Anne-Marie A; Pereira-Bertram, Isolde M; van den Berg, Hans H J; van der Krol, Alexander R; Visser, Richard G F

    2012-12-01

    In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.

  18. Cassava brown streak virus has a rapidly evolving genome: implications for virus speciation, variability, diagnosis and host resistance

    PubMed Central

    Alicai, Titus; Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Okao-Okuja, Geoffrey; Nanvubya, Resty; Kiiza, Lilliane; Kubatko, Laura; Kehoe, Monica A.; Boykin, Laura M.

    2016-01-01

    Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate. Previous studies have documented that CBSV is more devastating than UCBSV because it more readily infects both susceptible and tolerant cassava cultivars, resulting in greater yield losses. Using whole genome sequences from NGS data, we produced the first coalescent-based species tree estimate for CBSV and UCBSV. This species framework led to the finding that CBSV has a faster rate of evolution when compared with UCBSV. Furthermore, we have discovered that in CBSV, nonsynonymous substitutions are more predominant than synonymous substitution and occur across the entire genome. All comparative analyses between CBSV and UCBSV presented here suggest that CBSV may be outsmarting the cassava immune system, thus making it more devastating and harder to control. PMID:27808114

  19. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.

    PubMed

    Soto-Blanco, Benito; Górniak, Silvana Lima

    2010-07-01

    Cassava (Manihot esculenta Crantz) is a major source of dietary energy for humans and domestic animals in many tropical countries. However, consumption of cassava is limited by its characteristic content of cyanogenic glycosides. The present work aimed to evaluate the toxic effects of ingestion of cassava leaves by goats for 30 consecutive days, and to compare the results with the toxic effects of cyanide in goats, which have been described previously. Eight Alpine cross-bred female goats were divided into two equal groups, and were treated with ground frozen cassava leaves at a target dose of 6.0mg hydrogen cyanide (HCN)/kg/day (treated animals), or with ground hay and water only (control group) by gavage for 30 consecutive days. Blood samples were collected on days 0, 7, 15, 21, and 30 for biochemical panel and cyanide determination. At the end of the experiment, fragments of pancreas, thyroid gland, liver, kidney, lungs, heart, spleen, and the whole central nervous system were collected for histopathological examination. Clinical signs were observed in all goats treated with cassava on the first day of the experiment. From the second day the dose of cassava leaves was reduced to 4.5mgHCN/kg/day. No changes were found in the blood chemical panel. A mild increase in the number of resorption vacuoles in the thyroid follicular colloid, slight vacuolation of periportal hepatocytes, and spongiosis of the mesencephalon were found in goats treated with cassava. The pattern of lesions seen in the present goats was similar to what has been described previously in cyanide-dosed goats. Thus, the toxic effects of the ingestion of cassava leaves by goats can be attributed to the action of cyanide released from cyanogenic glycosides, and none of the effects was promoted by these glycosides directly.

  20. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures

    EPA Science Inventory

    Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their phy...

  2. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes.

    PubMed

    Wei, Yunxie; Chang, Yanli; Zeng, Hongqiu; Liu, Guoyin; He, Chaozu; Shi, Haitao

    2018-01-01

    With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The mutagenicity of cassava (Manihot esculenta Crantz) preparations.

    PubMed

    De Meester, C; Rollmann, B; Mupenda, K; Mary, Y

    1990-01-01

    Different cassava products were found to contain mutagenic activities in the Ames test. This paper describes how the flavonol quercetin is released during the cooking of fresh cassava leaves, following a process very similar to culinary habits. The hydrolysis of the glucoside(s) and the release of free quercetin has been followed by the monitoring of mutagenic activities with a simultaneous isolation and purification by thin-layer chromatography. The fluorodensitometric method applied revealed that fresh leaves contained about 1300 mg quercetin per kg wet weight, of which 800 mg were released during a normal cooking process.

  4. Formulation, sensory evaluation, proximate composition and storage stability of cassava strips produced from the composite flour of cassava and cowpea.

    PubMed

    Dada, Toluwase A; Barber, Lucretia I; Ngoma, Lubanza; Mwanza, Mulunda

    2018-03-01

    The study developed an acceptable formula for the production of cassava strips (a deep fried product) using composite flour of cassava/cowpea at four different levels of cowpea substitutions (100:0, 90:10, 80:20, and 70:30). Sensory properties, proximate composition, and shelf life at ambient temperature were determined. Proximate composition, shelf life, and microbial analysis were further done on the most preferred sample (80:20) and the control (100:0). Results showed a significant difference between the tested sample and the control, except in their moisture (4.1%-4.2%) and fiber (5.0%) contents which were similar. Protein content increased from 0.9% to 2.6%, fat 24.6% to 28.5%, carbohydrate 59.7% to 61.1%, and ash 1.8% to 2.5% in both control and most preferred sample. Results showed no changes in their peroxide value (2.4 mEq/kg), moisture content (4.1%), and bacterial count of 0 × 10 2  CFU/g at ambient storage temperature for 4 weeks. The addition of cowpea flour increased the nutritional quality of the cassava strips.

  5. Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping.

    PubMed

    Odoch, Martin; Buys, Elna M; Taylor, John R N

    2017-08-01

    Steeping of cassava root pieces in 0.75% NaOH in combination with wet milling was investigated to determine whether and how dilute NaOH modifies cassava cell walls. Gas chromatography data of cell wall constituent sugar composition and Fourier transform infrared (FTIR) data showed that NaOH steeping reduced the level of pectin in cassava cell walls. FTIR and wide-angle X-ray scattering spectroscopy also indicated that NaOH steeping combined with fine milling slightly reduced cellulose crystallinity. Scanning electron microscopy showed that NaOH steeping produced micropores in the cell walls and light microscopy revealed that NaOH steeping increased disaggregation of parenchyma cells. Steeping of ground cassava in NaOH resulted in a 12% decrease in large residue particles and approx. 4% greater starch yield with wet milling. Therefore dilute NaOH steeping can improve the effectiveness of wet milling in disintegrating cell walls through solubilisation of pectin, thereby reduced cell wall strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives.

    PubMed

    de Carvalho, Júlio Cesar; Borghetti, Ivo Alberto; Cartas, Liliana Carrilo; Woiciechowski, Adenise Lorenci; Soccol, Vanete Thomaz; Soccol, Carlos Ricardo

    2018-01-01

    Cassava, the 5th most important staple crop, generates at least 600L of wastewater per ton of processed root. This residue, cassava processing wastewater (CPW) has a high chemical oxygen demand, that can reach 56 g/L, and has also high concentrations of several mineral nutrients. The cultivation of microalgae such as Chlorella, Spirulina and wild strains was evaluated in the last years in raw, minimally processed and partially digested CPW. Concentrations of 2-4 g/L of these microalgae, comparable to those obtained in synthetic media, could be reached. The BOD of the residue was reduced by up to 92%. This process can be integrated into cassava processing industries, if challenges such as the toxicity of the concentrated residue, bacterial contamination, and the isolation of robust strains are addressed. Because CPW carries about 11% of the crop energy, integrating biogas production and microalgal cultivation into the cassava processing chain is promising. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of ethanol from raw cassava starch by a nonconventional fermentation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, S.; Zenin, C.T.; Monteiro, D.A.

    Raw cassava root starch was transformed into ethanol in a one-step process of fermentation, in which are combined the conventional processes of liquefaction, saccharification, and fermentation to alcohol. Aspergillus awamori NRRL 3112 and Aspergillus niger were cultivated on wheat bran and used as Koji enzymes. Commercial A. niger amyloglucosidase was also used in this experiment. A raw cassava root homogenate-enzymes-yeast mixture fermented optimally at pH 3.5 and 30/degree/C, for five days and produced ethanol. Alcohol yields from raw cassava roots were between 82.3 and 99.6%. Fungal Koji enzymes effectively decreased the viscosity of cassava root fermentation mashes during incubation. Commercialmore » A. niger amyloglucosidase decreased the viscosity slightly. Reduction of viscosity of fermentation mashes was 40, 84, and 93% by commercial amyloglucosidase, A. awamori, and A. niger enzymes, respectively. The reduction of viscosity of fermentation mashes is probably due to the hydrolysis of pentosans by Koji enzymes. 12 refs.« less

  8. Accuracies of univariate and multivariate genomic prediction models in African cassava.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2017-12-04

    Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs especially for crop species such as cassava that have long breeding cycles. Practically, to implement GS in cassava breeding, it is necessary to evaluate different GS models and to develop suitable models for an optimized breeding pipeline. In this paper, we compared (1) prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model for a single-environment genetic evaluation (Scenario 1), and (2) accuracies from a compound symmetric multi-environment model (uE) parameterized as a univariate multi-kernel model to a multivariate (ME) multi-environment mixed model that accounts for genotype-by-environment interaction for multi-environment genetic evaluation (Scenario 2). For these analyses, we used 16 years of public cassava breeding data for six target cassava traits and a fivefold cross-validation scheme with 10-repeat cycles to assess model prediction accuracies. In Scenario 1, the MT models had higher prediction accuracies than the uT models for all traits and locations analyzed, which amounted to on average a 40% improved prediction accuracy. For Scenario 2, we observed that the ME model had on average (across all locations and traits) a 12% improved prediction accuracy compared to the uE model. We recommend the use of multivariate mixed models (MT and ME) for cassava genetic evaluation. These models may be useful for other plant species.

  9. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-02-25

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment.

  10. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava

    PubMed Central

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  11. [The impact of consumer behavior on the development of overweight children. An overview].

    PubMed

    Reisch, L A; Gwozdz, W

    2010-07-01

    The goal of this article is to provide an overview of internal and external factors influencing childhood obesity. Overweight and obese children are more likely to become overweight and obese adults with the well-known negative psychological, social, and economic consequences. Politics and research are searching for efficient prevention and intervention strategies. Consumer research helps to better understand the underlying mechanisms and feedback loops. Increasingly, children's complex and multilayered "obesogenic" environment is held responsible for the increasing number of overweight children. Based on an ecological model, the paper explores the scientific evidence of these environmental factors on an individual, an interpersonal (i.e., family, peers), as well as on a community level (i.e., the physical environment). Furthermore, it looks at societal factors, such as media influence, advertising, product offers, and consumer policies. It concludes that access, affordability, and availability of healthy diets and lifestyles are crucial factors to develop and sustain healthy lifestyles. Implications for consumer and corporate policy are drawn.

  12. High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs.

    PubMed

    Khatabi, Behnam; Arikit, Siwaret; Xia, Rui; Winter, Stephan; Oumar, Doungous; Mongomake, Kone; Meyers, Blake C; Fondong, Vincent N

    2016-01-28

    Small RNAs (sRNAs) are endogenous sRNAs that play regulatory roles in plant growth, development, and biotic and abiotic stress responses. In plants, one subset of sRNAs, microRNAs (miRNAs) exhibit tissue-differential expression and regulate gene expression mainly through direct cleavage of mRNA or indirectly via production of secondary phased siRNAs (phasiRNAs) that silence cognate target transcripts in trans. Here, we have identified cassava (Manihot esculenta Crantz) miRNAs using high resolution sequencing of sRNA libraries from leaf, stem, callus, male and female flower tissues. To analyze the data, we built a cassava genome database and, via sequence analysis and secondary structure prediction, 38 miRNAs not previously reported in cassava were identified. These new cassava miRNAs included two miRNAs not previously been reported in any plant species. The miRNAs exhibited tissue-differential accumulation as confirmed by quantitative RT-PCR and Northern blot analysis, largely reflecting levels observed in sequencing data. Some of the miRNAs identified were predicted to trigger production of secondary phased siRNAs (phasiRNAs) from 80 PHAS loci. Cassava is a woody perennial shrub, grown principally for its starch-rich storage roots, which are rich in calories. In this study, new miRNAs were identified and their expression was validated using qRT-PCR of RNA from five different tissues. The data obtained expand the list of annotated miRNAs and provide additional new resources for cassava improvement research.

  13. Land Husbandry: Biochar application to reduce land degradation and erosion on cassava production

    NASA Astrophysics Data System (ADS)

    Yuniwati, E. D.

    2017-12-01

    This field experiment was carried out to examine the effect of increasing crop yield on land degradation and erosion in cassava-based cropping systems. The experiment was also aimed at showing that with proper crop management, the planting of cassava does not result in land degradation, and therefore, a sustainable production system can be obtained. The experiment was done in a farmer's fields in Batu, about 15 km south east of Malang, East Java, Indonesia. The soils are Alfisols with a surface slope of about 8%. There were 8 experimental treatments with two replications. The experiment results show that biochar applications reduce of soil erosion rate of the cassava field were not necessarily higher than those of maize in terms of crop yield and crop management. At low-to-medium yield, also observed the nutrient uptake of cassava was lower than that of maize. At high yield, only the K uptake of cassava was higher than that of maize, whereas the N and P uptake was more or less similar. Soil erosion on the cassava field was significantly higher than that on the maize field; however, this only occurred when there was no suitable crop management. Simple crop managements, such as ridging, biochar application, or manure application could significantly reduce soil erosion. The results also revealed that proper management could prevent land degradation and increase crop yield. In turn, the increase in crop yield could decrease soil erosion and plant nutrient depletion.

  14. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    PubMed Central

    Dantas, Mara Suyane Marques; Monteiro Rolim, Mário; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Maria Regis Pedrosa, Elvira; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  15. The potential and biological test on cloned cassava crop remains on local sheep

    NASA Astrophysics Data System (ADS)

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  16. Properties of cassava starch-based edible coating containing essential oils.

    PubMed

    Oriani, Vivian Boesso; Molina, Gustavo; Chiumarelli, Marcela; Pastore, Gláucia Maria; Hubinger, Miriam Dupas

    2014-02-01

    Edible coatings were produced using cassava starch (2% and 3% w/v) containing cinnamon bark (0.05% to 0.30% v/v) or fennel (0.05% to 0.30% v/v) essential oils. Edible cassava starch coating at 2% and 3% (w/v) containing or not containing 0.30% (v/v) of each essential oils conferred increased in water vapor resistance and decreased in the respiration rates of coated apple slices when compared with uncoated fruit. Cassava starch coatings (2% w/v) added 0.10% or 0.30% (v/v) fennel or cinnamon bark essential oils showed antioxidant capacity, and the addition of 0.30% (v/v) of each essential oil demonstrated antimicrobial properties. The coating containing cinnamon bark essential oil showed a significant antioxidant capacity, comparing to fennel essential oil. Antimicrobial tests showed that the addition of 0.30% (v/v) cinnamon bark essential oil to the edible coating inhibited the growth of Staphylococcus aureus and Salmonella choleraesuis, and 0.30% fennel essential oil inhibited just S. aureus. Treatment with 2% (w/v) of cassava starch containing 0.30% (v/v) of the cinnamon bark essential oil showed barrier properties, an antioxidant capacity and microbial inhibition. © 2014 Institute of Food Technologists®

  17. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz).

    PubMed

    Adeyemo, O Sarah; Chavarriaga, Paul; Tohme, Joe; Fregene, Martin; Davis, Seth J; Setter, Tim L

    2017-01-01

    Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding.

  18. Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz)

    PubMed Central

    Adeyemo, O. Sarah; Chavarriaga, Paul; Tohme, Joe; Fregene, Martin; Davis, Seth J.

    2017-01-01

    Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding. PMID:28753668

  19. Regional heritability mapping provides insights into dry matter (DM) content in African white and yellow cassava populations

    USDA-ARS?s Scientific Manuscript database

    The HarvestPlus program for cassava (Manihot esculenta Crantz) fortifies cassava with beta-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. Here, we investigated the genetic control of ...

  20. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR

    PubMed Central

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  1. Incidence of cassava mosaic disease and associated whitefly vectors in South West and North Central Nigeria: Data exploration.

    PubMed

    Eni, Angela O; Efekemo, Oghenevwairhe P; Soluade, Mojisola G; Popoola, Segun I; Atayero, Aderemi A

    2018-08-01

    Cassava mosaic disease (CMD) is one of the most economically important viral diseases of cassava, an important staple food for over 800 million people in the tropics. Although several Cassava mosaic virus species associated with CMD have been isolated and characterized over the years, several new super virulent strains of these viruses have evolved due to genetic recombination between diverse species. In this data article, field survey data collected from 184 cassava farms in 12 South Western and North Central States of Nigeria in 2015 are presented and extensively explored. In each State, one cassava farm was randomly selected as the first farm and subsequent farms were selected at 10 km intervals, except in locations were cassava farms are sporadically located. In each selected farm, 30 cassava plants were sampled along two diagonals and all selected plant was scored for the presence or absence of CMD symptoms. Cassava mosaic disease incidence and associated whitefly vectors in South West and North Central Nigeria are explored using relevant descriptive statistics, box plots, bar charts, line graphs, and pie charts. In addition, correlation analysis, Analysis of Variance (ANOVA), and multiple comparison post-hoc tests are performed to understand the relationship between the numbers of whiteflies counted, uninfected farms, infected farms, and the mean of symptom severity in and across the States under investigation. The data exploration provided in this data article is considered adequate for objective assessment of the incidence and symptom severity of cassava mosaic disease and associated whitefly vectors in farmers' fields in these parts of Nigeria where cassava is heavily cultivated.

  2. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    USDA-ARS?s Scientific Manuscript database

    The fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae were investigated to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stems using conidial suspensions resulted in endophytic colonization of ca...

  3. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    PubMed

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  4. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    PubMed Central

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  5. Development of cassava periclinal chimera may boost production.

    PubMed

    Bomfim, N; Nassar, N M A

    2014-02-10

    Plant periclinal chimeras are genotypic mosaics arranged concentrically. Trials to produce them to combine different species have been done, but pratical results have not been achieved. We report for the second time the development of a very productive interspecific periclinal chimera in cassava. It has very large edible roots up to 14 kg per plant at one year old compared to 2-3 kg in common varieties. The epidermal tissue formed was from Manihot esculenta cultivar UnB 032, and the subepidermal and internal tissue from the wild species, Manihot fortalezensis. We determined the origin of tissues by meiotic and mitotic chromosome counts, plant anatomy and morphology. Epidermal features displayed useful traits to deduce tissue origin: cell shape and size, trichome density and stomatal length. Chimera roots had a wholly tuberous and edible constitution with smaller starch granule size and similar distribution compared to cassava. Root size enlargement might have been due to an epigenetic effect. These results suggest a new line of improved crop based on the development of interspecific chimeras composed of different combinations of wild and cultivated species. It promises boosting cassava production through exceptional root enlargement.

  6. Technical and Socioeconomic Potential of Biogas from Cassava Waste in Ghana.

    PubMed

    Kemausuor, Francis; Addo, Ahmad; Darkwah, Lawrence

    2015-01-01

    This study analyses technical potential and ex ante socioeconomic impacts of biogas production using cassava waste from agroprocessing plants. An analysis was performed for two biodigesters in two cassava processing communities in Ghana. The results showed that the two communities generate an excess of 4,500 tonnes of cassava peels per year. Using approximately 5% of the peels generated and livestock manure as inoculum can generate approximately 75,000 m(3) of gas with an estimated 60% methane content from two separate plants of capacities 500 m(3) and 300 m(3) in the two communities. If used internally as process fuel, the potential gas available could replace over 300 tonnes of firewood per year for cassava processing. The displacement of firewood with gas could have environmental, economic, and social benefits in creating sustainable development. With a 10 percent discount rate, an assumed 20-year biodigester will have a Net Present Value of approximately US$ 148,000, 7-year Payback Period, and an Internal Rate of Return of 18.7%. The project will create 10 full-time unskilled labour positions during the investment year and 4 positions during operation years.

  7. Technical and Socioeconomic Potential of Biogas from Cassava Waste in Ghana

    PubMed Central

    Kemausuor, Francis; Addo, Ahmad; Darkwah, Lawrence

    2015-01-01

    This study analyses technical potential and ex ante socioeconomic impacts of biogas production using cassava waste from agroprocessing plants. An analysis was performed for two biodigesters in two cassava processing communities in Ghana. The results showed that the two communities generate an excess of 4,500 tonnes of cassava peels per year. Using approximately 5% of the peels generated and livestock manure as inoculum can generate approximately 75,000 m3 of gas with an estimated 60% methane content from two separate plants of capacities 500 m3 and 300 m3 in the two communities. If used internally as process fuel, the potential gas available could replace over 300 tonnes of firewood per year for cassava processing. The displacement of firewood with gas could have environmental, economic, and social benefits in creating sustainable development. With a 10 percent discount rate, an assumed 20-year biodigester will have a Net Present Value of approximately US$ 148,000, 7-year Payback Period, and an Internal Rate of Return of 18.7%. The project will create 10 full-time unskilled labour positions during the investment year and 4 positions during operation years. PMID:26664752

  8. Quantitative risk assessment of E. coli in street-vended cassava-based delicacies in the Philippines

    NASA Astrophysics Data System (ADS)

    Mesias, I. C. P.

    2018-01-01

    In the Philippines, rootcrop-based food products are gaining popularity in street food trade. However, a number of street-vended food products in the country are reported to be contaminated with E. coli posing possible risk among consumers. In this study, information on quantitative risk assessment of E. coli in street-vended cassava-based delicacies was generated. The assessment started with the prevalence and concentration of E. coli at post production in packages of the cassava-based delicacies. Combase growth predictor was used to trace the microbial population of E. coli in each step of the food chain. The @Risk software package, version 6 (Palisade USA) was used to run the simulations. Scenarios in the post-production to consumption pathway were simulated. The effect was then assessed in relation to exposure to the defined infective dose. In the worst case scenario, a minimum and most likely concentration of 6.3 and 7.8 log CFU of E. coli per serving respectively were observed. The simulation revealed that lowering the temperature in the chain considerably decreased the E. coli concentration prior to consumption and subsequently decreased the percentage of exposure to the infective dose. Exposure to infective dose however was increased with longer lag time from postproduction to consumption.

  9. Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development.

    PubMed

    Perera, P I P; Ordoñez, C A; Dedicova, B; Ortega, P E M

    2014-05-21

    Gametes have the unique potential to enter the sporophytic pathway, called androgenesis. The plants produced are usually haploid and recombinant due to the preceding meiosis and they can double their chromosome number to form doubled haploids, which are completely homozygous. Availability of the doubled haploids facilitates mapping the genes of agronomically important traits, shortening the time of the breeding process required to produce new hybrids and homozygous varieties, and saving the time and cost for inbreeding. This study aimed to test the feasibility of using isolated and in vitro cultured immature cassava (Manihot esculenta) microspores to reprogramme and initiate sporophytic development. Different culture media and different concentrations of two ion components (Cu(2+) and Fe(2+)) were tested in two genotypes of cassava. External structural changes, nuclear divisions and cellular changes during reprogramming were analysed by scanning electron microscopy, by staining with 4',6-diamidino-2-phenylindole, and through classical histology and transmission electron microscopy. In two cassava genotypes, different developmental stages of microspores were found to initiate sporophytic cell divisions, that is, with tetrads of TMS 60444 and with mid or late uni-nucleate microspores of SM 1219-9. In the modified NLN medium (NLNS), microspore enlargements were observed. The medium supplemented with either sodium ferrous ethylene-diamine-tetraacetic acid (NaFeEDTA) or CuSO4·5H2O induced sporophytic cell division in both genotypes. A low frequency of the reprogramming and the presence of non-responsive microspores among the responsive ones in tetrads were found to be related to the viability and exine formation of the microspores. The present study clearly demonstrated that reprogramming occurs much faster in isolated microspore culture than in anther culture. This paves the way for the development of an efficient technique for the production of homozygous lines in

  10. Cassava dreg as replacement of corn in goat kid diets.

    PubMed

    Ferraz, Lucíola Vilarim; Guim, Adriana; Véras, Robson Magno Liberal; de Carvalho, Francisco Fernando Ramos; de Freitas, Marciela Thais Dino

    2018-02-01

    The effects of corn replacement by cassava dreg in diets of crossbred goat kids were evaluated. We tested the impacts of 0, 33, 66 and 100% replacement on intake, digestibility, feeding behaviour, performance and carcass characteristics. Thirty-six goat kids, aged between 4 and 5 months and with initial body weights of 17.61 ± 1.98 kg, were used in a completely randomised design. Analysis of regression revealed a negative linear effect on neutral detergent fibre (NDF) intake and a positive linear effect on non-fibrous carbohydrates (NFC) and hydrocyanic acids (HCN) intake. Cassava dreg use had a positive linear effect on organic matter digestibility and non-fibrous carbohydrates. Based on our results, cassava dreg use did not negatively impact animal performance, feeding behaviour and carcass characteristics, suggesting that it may replace corn up to 100% in the diets of confined goat kids.

  11. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  12. Application of edible coating from cassava peel – bay leaf on avocado

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Karlina, S.; Sugiarti, Y.; Cakrawati, D.

    2018-05-01

    Avocados have a fairly short shelf life and are included in climacteric fruits. Edible coating application is one alternative to maintain the shelf life of avocado. Cassava peel starch is potential to be used as raw material for edible coating making. Addition of bay leaf extract containing antioxidants can increase the functional value of edible coating. The purpose of this study is to know the shrinkage of weight, acid number, color change and respiration rate of avocado coated with edible coating from cassava peel starch with an addition of bay leaf extract. The study consisted of making cassava peel starch, bay leaf extraction, edible coating making, edible coating application on avocado, and analysis of avocado characteristics during storage at room temperature. The results showed that addition of bay leaf extract on cassava peel starch edible coating applied to avocado, an effect on characteristics of avocado. Avocado applied edible coating and stored at room temperatures had lower weight loss than avocado without edible coating, lower acid number, tend to be more able to maintain color rather than avocado without edible coating.

  13. Optimization of factors to obtain cassava starch films with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.

  14. Fermentation Methods for Protein Enrichment of Cassava and Corn with Candida tropicalis

    PubMed Central

    Azoulay, Edgard; Jouanneau, Françoise; Bertrand, Jean-Claude; Raphael, Alain; Janssens, Jacques; Lebeault, Jean Michel

    1980-01-01

    Candida tropicalis grows on soluble starch, corn, and cassava powders without requiring that these substrates be previously hydrolyzed. C. tropicalis possesses the enzyme needed to hydrolyze starch, namely, an α-amylase. That property has been used to develop a fermentation process whereby C. tropicalis can be grown directly on corn or cassava powders so that the resultant mixture of biomass and residual corn or cassava contains about 20% protein, which represents a balanced diet for either animal fodder or human food. The fact that no extra enzymes are required to hydrolyze starch results in a particularly efficient way of improving the nutritional value of amylaceous products, through a single-step fermentation process. PMID:16345495

  15. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  16. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration

    PubMed Central

    Qin, Yuling; Djabou, Astride Stéphanie Mouafi; An, Feifei; Li, Kaimian; Li, Zhaogui; Yang, Long; Wang, Xiaojing

    2017-01-01

    Postharvest physiological deterioration (PPD) is a global challenge in the improvement of cassava value chain. However, how to reduce cassava spoilage and reveal the mechanism of injured cassava storage roots in response to PPD were poorly understood. In the present study, we investigated the activities of antioxidant enzymes of cassava injured storage roots in PPD-susceptible (SC9) and PPD-tolerant (QZ1) genotypes at the time-points from 0h to 120h, and further analyzed their proteomic changes using two-dimensional electrophoresis (2-DE) in combination with MALDI-TOF-MS/MS. Ninety-nine differentially expressed proteins were identified from SC9 and QZ1 genotypes in the pairwise comparison of 24h/0h, 48h/0h, 72h/0h and 96h/0h. Of those proteins were associated with 13 biological functions, in which carbohydrate and energy metabolism related proteins were the biggest amount differential proteins in both genotypes, followed by chaperones, DNA and RNA metabolism, and defense system. We speculated that SOD in combination with CAT activities would be the first line of defense against PPD to support PPD-tolerant cassava varieties. The four hub proteins including CPN60B, LOS2, HSC70-1 and CPN20B, produced from the network of protein-protein interaction, will be the candidate key proteins linked with PPD. This study provides a new clue to improve cassava PPD-tolerant varieties and would be helpful to much better understand the molecular mechanism of PPD of cassava injured storage roots. PMID:28339481

  17. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration.

    PubMed

    Qin, Yuling; Djabou, Astride Stéphanie Mouafi; An, Feifei; Li, Kaimian; Li, Zhaogui; Yang, Long; Wang, Xiaojing; Chen, Songbi

    2017-01-01

    Postharvest physiological deterioration (PPD) is a global challenge in the improvement of cassava value chain. However, how to reduce cassava spoilage and reveal the mechanism of injured cassava storage roots in response to PPD were poorly understood. In the present study, we investigated the activities of antioxidant enzymes of cassava injured storage roots in PPD-susceptible (SC9) and PPD-tolerant (QZ1) genotypes at the time-points from 0h to 120h, and further analyzed their proteomic changes using two-dimensional electrophoresis (2-DE) in combination with MALDI-TOF-MS/MS. Ninety-nine differentially expressed proteins were identified from SC9 and QZ1 genotypes in the pairwise comparison of 24h/0h, 48h/0h, 72h/0h and 96h/0h. Of those proteins were associated with 13 biological functions, in which carbohydrate and energy metabolism related proteins were the biggest amount differential proteins in both genotypes, followed by chaperones, DNA and RNA metabolism, and defense system. We speculated that SOD in combination with CAT activities would be the first line of defense against PPD to support PPD-tolerant cassava varieties. The four hub proteins including CPN60B, LOS2, HSC70-1 and CPN20B, produced from the network of protein-protein interaction, will be the candidate key proteins linked with PPD. This study provides a new clue to improve cassava PPD-tolerant varieties and would be helpful to much better understand the molecular mechanism of PPD of cassava injured storage roots.

  18. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture.

    PubMed

    Shang, Qian; Tang, Haifang; Wang, Yinghui; Yu, Kefu; Wang, Liwei; Zhang, Ruijie; Wang, Shaopeng; Xue, Rui; Wei, Chaoshuai

    2018-02-15

    As a kind of tropical agricultural solid waste, cassava dregs had become a thorny nonpoint source pollution problem. This study investigated the feasibility of applying cassava dregs as a substitute for sucrose in biofloc technology (BFT) systems. Three types of biofloc systems (using three different carbon sources sucrose (BFT1), cassava dregs (BFT2) and enzyme-hydrolyzed cassava dregs (BFT3) respectively), and the control were constructed in this experiment in 200L tanks with a C/N ratio of 20/1. The comparison of the water quality indicators (The total ammonia nitrogen (TAN), nitrite (NO 2 - -N), nitrate (NO 3 - -N), chemical oxygen demand (COD)), biofloc for the above four groups was performed, and the results indicated that BFT3 showed greater potential to the formation of biofloc, which was beneficial for the water quality control. So the shrimp survival rate was the highest and the feed conversion rate was the lowest in BFT3. Besides, the high-throughput sequencing results showed that the relative abundance of heterotrophic bacteria in the top 30 dominant microbial communities in BFT3 was higher than those in BFT1 and BFT2 by 20.70% and 1.19%, respectively, which could decrease TAN to improve the water quality. Overall, the results had proved that the cassava dregs of enzymes hydrolysis could be used as an ideal and cheap carbon source in BFT. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Unexpected Outcomes of Thai Cassava Trade: A Case of Global Complexity and Local Unsustainability

    PubMed Central

    CURRAN, SARA R.; COOKE, ABIGAIL M.

    2014-01-01

    Tracing the Thai cassava (Manihot esculenta) trade network, between 1960 and 2000, offers a compelling example of global complexity at work. The emergence of Thailand’s dominance of world export markets caught the world by surprise. The opening up of a European market for cassava was supposed to be met by Brazilian and Indonesian producers. Instead, Thailand took over the market by 1975. Several factors facilitated this emergence including: entrepreneurial diasporic networks of Thai-Chinese traders, local political economy conditions in both Europe and Thailand, and ecological conditions in Thailand. These same factors also shaped the subsequent timing of the closing of the European market, the emergence of a new industry association, the creation of new cassava products, and the expansion to other markets. Furthermore, the dynamic nature of cassava market yielded equivocal outcomes for both Europe and Thai farmers. PMID:25328444

  20. Histopathological changes in rat pancreas after fasting and cassava feeding.

    PubMed

    Geldof, A A; Becking, J L; de Vries, C D; van der Veen, E A

    1992-01-01

    Histopathological changes in rat pancreas were induced by cyclic periods of experimental malnutrition or by cassava (manioc) feeding for 11 weeks. Decline of body weight was correlated with decrease in testicular fat pad weight as a measure of body fat stores. A marked decrease in pancreatic weight in the cassava-fed group was correlated with shrinkage of acinar structures and degenerative features in exocrine pancreas. In the malnutrition group vacuolisation and loss of tissue architecture were observed in some parts of the organ. No signs of ductal obstruction as a tentative cause of pancreatic pathology after malnutrition could be detected. Loss of islets tissue was occasionally seen in degenerative areas. It is concluded that histopathological changes in exocrine pancreas result from malnutrition and cassava feeding differentially and precede ultimate degenerative processes of pancreas endocrine tissue. Tropical malnutrition type diabetes and low protein related diabetes may in their etiology be different entities, but may coincide in practice and aggravate each other to yield severe and irreversible morbidity.

  1. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response.

    PubMed

    Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé

    2018-02-01

    Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes. © 2017 THE AUTHORS. MOLECULAR PLANT

  2. Variation in cassava germplasm for tolerance to post-harvest physiological deterioration.

    PubMed

    Venturini, M T; Santos, L R; Vildoso, C I A; Santos, V S; Oliveira, E J

    2016-05-06

    Tolerant varieties can effectively control post-harvest physiological deterioration (PPD) of cassava, although knowledge on the genetic variability and inheritance of this trait is needed. The objective of this study was to estimate genetic parameters and identify sources of tolerance to PPD and their stability in cassava accessions. Roots from 418 cassava accessions, grown in four independent experiments, were evaluated for PPD tolerance 0, 2, 5, and 10 days post-harvest. Data were transformed into area under the PPD-progress curve (AUP-PPD) to quantify tolerance. Genetic parameters, stability (Si), adaptability (Ai), and the joint analysis of stability and adaptability (Zi) were obtained via residual maximum likelihood (REML) and best linear unbiased prediction (BLUP) methods. Variance in the genotype (G) x environment (E) interaction and genotypic variance were important for PPD tolerance. Individual broad-sense heritability (hg(2)= 0.38 ± 0.04) and average heritability in accessions (hmg(2)= 0.52) showed high genetic control of PPD tolerance. Genotypic correlation of AUP-PPD in different experiments was of medium magnitude (ȓgA = 0.42), indicating significant G x E interaction. The predicted genotypic values o f G x E free of interaction (û + ĝi) showed high variation. Of the 30 accessions with high Zi, 19 were common to û + ĝi, Si, and Ai parameters. The genetic gain with selection of these 19 cassava accessions was -55.94, -466.86, -397.72, and -444.03% for û + ĝi, Si, Ai, and Zi, respectively, compared with the overall mean for each parameter. These results demonstrate the variability and potential of cassava germplasm to introduce PPD tolerance in commercial varieties.

  3. Raw Starch Degrading Amylase Production by Various Fungal Cultures Grown on Cassava Waste

    PubMed Central

    Balaji, P.; Eyini, M.

    2006-01-01

    The solid waste of sago industry using cassava was fermented by Aspergillus niger, Aspergillus terreus and Rhizopus stolonifer in solid state fermentation. Cassava waste contained 52 per cent starch and 2.9 per cent protein by dry weight. The amylase activity was maintained at a high level and the highest amylase activity was observed on the 8th day in R. stolonifer mediated fermentation. R. stolonifer was more efficient than Aspergillus niger and Aspergillus terreus in bioconverting cassava waste into fungal protein (90.24 mg/g) by saccharifying 70% starch and releasing 44.5% reducing sugars in eight days of solid state fermentation. PMID:24039485

  4. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    PubMed

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  5. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives.

    PubMed

    An, Feifei; Chen, Ting; Stéphanie, Djabou Mouafi Astride; Li, Kaimian; Li, Qing X; Carvalho, Luiz J C B; Tomlins, Keith; Li, Jun; Gu, Bi; Chen, Songbi

    2016-01-01

    Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena.

  6. Cassava starch coating and citric acid to preserve quality parameters of fresh-cut "Tommy Atkins" mango.

    PubMed

    Chiumarelli, Marcela; Pereira, Leila M; Ferrari, Cristhiane C; Sarantópoulos, Claire I G L; Hubinger, Miriam D

    2010-06-01

    Combination of citric acid dipping (5 g/L) and cassava starch coating (10 g/L), with and without glycerol (10 g/L), was studied to verify the effectiveness of these treatments to inhibit enzymatic browning, to reduce respiration rate, and to preserve quality parameters of "Tommy Atkins" fresh-cut mangoes during storage at 5 degrees C. Color characteristics (L and C), mechanical properties (stress at failure), weight loss, beta-carotene content, sensory acceptance, and microbial growth of fruits were evaluated during 15 d. The respiration rate of fruit subjected to the treatments was also analyzed. Nontreated fresh-cut mango was used as a control sample. Cassava starch edible coatings and citric acid dipping promoted a decrease in respiration rate of mango slices, with values up to 41% lower than the control fruit. This treatment also promoted better preservation of texture and color characteristics of mangoes and delayed carotenoid formation and browning reactions during storage. Moreover, the treated fruit showed great sensory acceptance by consumers throughout the whole storage period. However, the use of glycerol in the coating formulation was not efficient in the maintenance of quality parameters of fresh-cut mangoes, promoting a higher weight loss of samples, impairing fruit texture characteristics, increasing carotenogenesis, and favoring microbial growth during storage.

  7. The Search for Resistance to Cassava Mosaic Geminiviruses: How Much We Have Accomplished, and What Lies Ahead

    PubMed Central

    Fondong, Vincent N.

    2017-01-01

    The cassava mosaic disease (CMD), which occurs in all cassava growing regions of Africa and the Indian subcontinent, is caused by cassava mosaic geminiviruses (CMGs). CMGs are considered to be the most damaging vector-borne plant pathogens. So far, the most successful approach used to control these viruses has been the transfer of a polygenic recessive resistance locus, designated CMD1, from wild cassava to cassava cultivars. Further progress in harnessing natural resistance to contain CMGs has come from the discovery of the dominant monogenic resistance locus, CMD2, in some West African cassava cultivars. CMD2 has been combined with CMD1 through genetic crosses. Because of the limitations of the cassava breeding approach, especially with regard to time required to produce a variety and the loss of preferred agronomic attributes, efforts have been directed toward the deployment of genetic engineering approaches. Most of these approaches have been centered on RNA silencing strategies, developed mainly in the model plant Nicotiana benthamiana. Early RNA silencing platforms assessed for CMG resistance have been use of viral genes for co-suppression, antisense suppression or for hairpin RNAs-mediated gene silencing. Here, progress and challenges in the deployment of these approaches in the control of CMGs are discussed. Novel functional genomics approaches with potential to overcome some of the drawbacks of the current strategies are also discussed. PMID:28392798

  8. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia.

    PubMed

    Koehorst-van Putten, H J J; Sudarmonowati, E; Herman, M; Pereira-Bertram, I J; Wolters, A M A; Meima, H; de Vetten, N; Raemakers, C J J M; Visser, R G F

    2012-02-01

    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality.

  9. Effect of co-administration of cassava (Manihot esculenta Crantz) rich diet and alcohol in rats.

    PubMed

    Boby, R G; Indira, M

    2004-01-01

    The effects of co-administration of a cassava rich diet and alcohol in rats were investigated. The animals were divided into four groups (1) Control, (2) Alcohol, (3) Cassava and (4) Alcohol + Cassava. Consumption of alcohol along with cassava reduced the alcohol induced toxicity which was evidenced by the lower activities of GOT, GPT, GGT, acid phosphatase and alkaline phosphatase in the liver and serum of co-administered group. The pyruvate content in the blood increased while the lactate content, lactate/pyruvate ratio and the activity of LDH decreased in the blood due to co-administration. The blood cyanide content, serum thiocyanate content and the activities of rhodanase and beta-glucuronidase increased on co-administration. The histopathological studies also revealed that co-administration reduced the alcohol induced toxicity.

  10. Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer

    NASA Astrophysics Data System (ADS)

    Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes

    2017-05-01

    Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.

  11. Persistent konzo and cyanogen toxicity from cassava in northern Mozambique.

    PubMed

    Ernesto, Mario; Cardoso, A Paula; Nicala, Domingos; Mirione, Estevão; Massaza, Fernando; Cliff, Julie; Haque, M Rezaul; Bradbury, J Howard

    2002-06-01

    We aimed to detect new cases of konzo and monitor cyanogen exposure from cassava flour in communities previously affected by konzo epidemics in Nampula Province, northern Mozambique. Other objectives were to detect subclinical upper motor neuron damage in schoolchildren and test a new kit to measure urinary thiocyanate concentration. In 1999 and 2000, we carried out active and passive case detection for konzo in Memba and Mogincual Districts. In July and October, 1999, we collected cassava flour from 30 houses in three communities and measured cyanogen concentrations with a picrate kit. In October 1999, we examined all schoolchildren in three communities for ankle clonus and measured urinary thiocyanate concentration in thirty schoolchildren in each of five communities with a picrate kit. We found 27 new cases of konzo in Mogincual District. Mean total cyanogen concentrations in cassava flour varied between both seasons and years, but were always high, ranging from 26 to 186 ppm. Very high mean levels at three sites in November 1998 and July 1999 were probably due to low rainfall in the 1997-1998 season. The proportion of schoolchildren with ankle clonus varied from 8 to 17%. The new picrate kit for urinary thiocyanate worked well; mean concentrations in schoolchildren ranged from 225 to 384 micromol x l(-1). Konzo and sub-clinical upper motor neuron damage persist in poor rural communities in northern Mozambique, associated with high cyanogen concentrations in cassava flour and high urinary thiocyanate concentrations in schoolchildren.

  12. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  13. Consumer products and activities associated with dental injuries to children treated in United States emergency departments, 1990-2003.

    PubMed

    Stewart, Gregory B; Shields, Brenda J; Fields, Sarah; Comstock, R Dawn; Smith, Gary A

    2009-08-01

    Describe the association of consumer products and activities with dental injuries among children 0-17 years of age treated in United States emergency departments. A retrospective analysis of data from the National Electronic Injury Surveillance System, 1990-2003. There was an average of 22 000 dental injuries annually among children <18 years of age during the study period, representing an average annual rate of 31.6 dental injuries per 100 000 population. Children with primary dentition (<7 years) sustained over half of the dental injuries recorded, and products/activities associated with home structures/furniture were the leading contributors. Floors, steps, tables, and beds were the consumer products within the home most associated with dental injuries. Outdoor recreational products/activities were associated with the largest number of dental injuries among children with mixed dentition (7-12 years); almost half of these were associated with the bicycle, which was the consumer product associated with the largest number of dental injuries. Among children with permanent teeth (13- to 17-year olds), sports-related products/activities were associated with the highest number of dental injuries. Of all sports, baseball and basketball were associated with the largest number of dental injuries. To our knowledge, this is the first study to evaluate dental injuries among children using a national sample. We identified the leading consumer products/activities associated with dental injuries to children with primary, mixed, and permanent dentition. Knowledge of these consumer products/activities allows for more focused and effective prevention strategies.

  14. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava.

    PubMed

    Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya

    2018-01-01

    Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or Me

  15. Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight.

    PubMed

    Zeng, Hongqiu; Xie, Yanwei; Liu, Guoyin; Lin, Daozhe; He, Chaozu; Shi, Haitao

    2018-06-01

    MeGAPCs were identified as negative regulators of plant disease resistance, and the interaction of MeGAPCs and MeATG8s was highlighted in plant defense response. As an important enzyme of glycolysis metabolic pathway, glyceraldehyde-3-P dehydrogenase (GAPDH) plays important roles in plant development, abiotic stress and immune responses. Cassava (Manihot esculenta) is most important tropical crop and one of the major food crops, however, no information is available about GAPDH gene family in cassava. In this study, 14 MeGAPDHs including 6 cytosol GAPDHs (MeGAPCs) were identified from cassava, and the transcripts of 14 MeGAPDHs in response to Xanthomonas axonopodis pv manihotis (Xam) indicated their possible involvement in immune responses. Further investigation showed that MeGAPCs are negative regulators of disease resistance against Xam. Through transient expression in Nicotiana benthamiana, we found that overexpression of MeGAPCs led to decreased disease resistance against Xam. On the contrary, MeGAPCs-silenced cassava plants through virus-induced gene silencing (VIGS) conferred improved disease resistance. Notably, MeGAPCs physically interacted with autophagy-related protein 8b (MeATG8b) and MeATG8e and inhibited autophagic activity. Moreover, MeATG8b and MeATG8e negatively regulated the activities of NAD-dependent MeGAPDHs, and are involved in MeGAPCs-mediated disease resistance. Taken together, this study highlights the involvement of MeGAPCs in plant disease resistance, through interacting with MeATG8b and MeATG8e.

  16. Identification of potentially high yielding irradiated cassava ‘Gajah’ genotype with different geographic coordinates

    NASA Astrophysics Data System (ADS)

    Subekti, I.; Khumaida, N.; Ardie, SW

    2017-01-01

    Cassava is one of the main and important carbohydrate producing crops in Indonesia. Thus cassava production and its tuber quality need to be improved. ‘Gajah’ genotype is a local genotypes cassava from East Kalimantan, has high potential yield (> 60 ton Ha-1). However, the harvest time of this genotype is quite long (>= 12 months). The objective of this research was to identify the high yielding cassava mutants from the gamma rays irradiated ‘Gajah’ genotype at M1V3 population and potential yield at different location. Several putative cassava mutants (12 mutants) were planted in Cikabayan Experimental Field, IPB from March 2015 to March 2016 and the yields compared with the same genotype grown at different location by seeing its coordinates to observe the potential yield. Our result showed that the fresh tuber weight per plant of some putative mutants could reach more than 8 kg (yield potential of 64 ton Ha-1). The harvested tubers also had sweet flavor, although the tubers of some putative mutants were bitter. Based on previous research study, the different geographic coordinate has resulted variability on fresh tuber yield. It seems that it needs to observe the stability of ‘Gajah’- irradiated mutants in several location in Java Island.

  17. Impact of style of processing on retention and bioaccessibility of beta-carotene in cassava (Manihot esculanta, Crantz).

    PubMed

    Thakkar, Sagar K; Huo, Tianyao; Maziya-Dixon, Bussie; Failla, Mark L

    2009-02-25

    We previously demonstrated that the quantity of beta-carotene (BC) partitioning in mixed micelles during simulated small intestinal digestion, i.e., the bioaccessibility, of boiled cassava is highly correlated with the BC content of different cultivars. However, cassava is also traditionally prepared by fermentation and roasting. These different methods of preparation have the potential to affect both the retention and bioaccessibility of BC. Here, we first compared retention of BC in boiled cassava, gari (fermentation followed by roasting), and fufu (fermentation followed by sieving and cooking into a paste) prepared from roots of three cultivars. BC content in unprocessed cultivars ranged from 6-8 microg/g wet weight, with cis isomers accounting for approximately one-third of total BC. Apparent retention of BC was approximately 90% for boiled cassava and fufu. In contrast, roasting fermented cassava at 195 degrees C for 20 min to prepare gari decreased BC content by 90%. Retention was increased to 63% when temperature was decreased to 165 degrees C and roasting was limited to 10 min. Processing was also associated with a decline in all-trans-BC and concomitant increase in 13-cis-BC. The efficiency of micellarization of all-trans and cis isomers of BC during simulated digestion was 25-30% for boiled cassava and gari and independent of cultivar. However, micellarization of BC isomers during digestion of fufu was only 12-15% (P < 0.05). These differences in retention and bioaccessibility of BC from cassava products prepared according to traditional processing methods suggest that gari and fufu may provide less retinol activity equivalents than isocaloric intake of boiled cassava.

  18. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives

    PubMed Central

    An, Feifei; Chen, Ting; Stéphanie, Djabou Mouafi Astride; Li, Kaimian; Li, Qing X.; Carvalho, Luiz J. C. B.; Tomlins, Keith; Li, Jun; Gu, Bi; Chen, Songbi

    2016-01-01

    Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena. PMID:27023871

  19. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava.

    PubMed

    Putpeerawit, Pattaranit; Sojikul, Punchapat; Thitamadee, Siripong; Narangajavana, Jarunya

    2017-12-01

    Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  1. Television and the Young Consumer. An Analysis of Consumer Needs of Children and a Proposal for the Utilization of Television to Meet These Needs.

    ERIC Educational Resources Information Center

    Williams, Sally

    The Committee on Children's Television (CCT) and five commercial television stations in San Francisco designed and broadcast television messages for children to help them to develop healthy eating habits and sound consumer skills. Surveys showed that: 1) children aged 9-13 spent about $10 per month, mainly for toys and sugar-related snacks; 2)…

  2. Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi

    PubMed Central

    Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain

    2017-01-01

    ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908

  3. Genome Sequence of Phytomonas françai, a Cassava (Manihot esculenta) Latex Parasite.

    PubMed

    Butler, Claire E; Jaskowska, Eleanor; Kelly, Steven

    2017-01-12

    Here, we report the genome sequence of the cassava (Manihot esculenta) latex parasite Phytomonas françai P. françai infection is linked with the yield-loss disease "chochamento de raizes" (empty roots) in the Unha variety of cassava, a disease characterized by poor root development and chlorosis of the leaves. Copyright © 2017 Butler et al.

  4. Genome Sequence of Phytomonas françai, a Cassava (Manihot esculenta) Latex Parasite

    PubMed Central

    Butler, Claire E.; Jaskowska, Eleanor

    2017-01-01

    ABSTRACT Here, we report the genome sequence of the cassava (Manihot esculenta) latex parasite Phytomonas françai. P. françai infection is linked with the yield-loss disease “chochamento de raizes” (empty roots) in the Unha variety of cassava, a disease characterized by poor root development and chlorosis of the leaves. PMID:28082482

  5. Efficient transmission of cassava brown streak disease viral pathogens by chip bud grafting.

    PubMed

    Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M; Taylor, Nigel J

    2013-12-06

    Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6-8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2-6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12-14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10-14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and

  6. A Virus-Derived Stacked RNAi Construct Confers Robust Resistance to Cassava Brown Streak Disease

    PubMed Central

    Beyene, Getu; Chauhan, Raj Deepika; Ilyas, Muhammad; Wagaba, Henry; Fauquet, Claude M.; Miano, Douglas; Alicai, Titus; Taylor, Nigel J.

    2017-01-01

    Cassava brown streak disease (CBSD) threatens food and economic security for smallholder farmers throughout East and Central Africa, and poses a threat to cassava production in West Africa. CBSD is caused by two whitefly-transmitted virus species: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) (Genus: Ipomovirus, Family Potyviridae). Although varying levels of tolerance have been achieved through conventional breeding, to date, effective resistance to CBSD within East African cassava germplasm has not been identified. RNAi technology was utilized to integrate CBSD resistance into the Ugandan farmer-preferred cassava cultivar TME 204. Transgenic plant lines were generated expressing an inverted repeat construct (p5001) derived from coat-protein (CP) sequences of CBSV and UCBSV fused in tandem. Northern blots using probes specific for each CP sequence were performed to characterize 169 independent transgenic lines for accumulation of CP-derived siRNAs. Transgenic plant lines accumulating low, medium and high levels of siRNAs were bud graft challenged with the virulent CBSV Naliendele isolate alone or in combination with UCBSV. Resistance to CBSD in the greenhouse directly correlated to levels of CP-derived siRNAs as determined by visual assessment of leaf and storage root symptoms, and RT-PCR diagnosis for presence of the pathogens. Low expressing lines were found to be susceptible to CBSV and UCBSV, while medium to high accumulating plant lines were resistant to both virus species. Absence of detectable virus in the best performing p5001 transgenic lines was further confirmed by back-inoculation via sap or graft challenge to CBSD susceptible Nicotiana benthamiana and cassava cultivar 60444, respectively. Data presented shows robust resistance of transgenic p5001 TME 204 lines to both CBSV and UCBSV under greenhouse conditions. Levels of resistance correlated directly with levels of transgene derived siRNA expression such that the

  7. Isoelectric Focusing of Cassava Protoplasts

    PubMed Central

    Santana, María Angélica; Villegas, Leopoldo

    1991-01-01

    Cassava (Manihot esculenta Crantz) protoplast was analyzed by using isoelectric focusing techniques. Two populations, representing 68 and 32% of the total sample, with mean isoelectric points of 4.48 and 4.60, were obtained using mesophyll protoplasts. The use of this technique allows demonstration of a discontinuous distribution of protoplast isoelectric point from one species according to their surface potential. Images Figure 1 PMID:16667975

  8. Gene-based Microsatellites for Cassava (Manihot esculenta Crantz): Prevalence, Polymorphisms, and Cross-taxa Utility

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta Crantz), a starchy root crop grown in tropical and subtropical climates, is the sixth most important crop in the world after wheat, rice, maize, potato and barley. The repertoire of simple sequence repeat (SSR) markers for cassava is limited and warrants a need for a large...

  9. Factors Influencing Rural Women Cassava Processors' Intention to Participate in an Agricultural Extension Education Program. Summary of Research 80.

    ERIC Educational Resources Information Center

    Ojomo, Christian O.; McCaslin, N. L.

    A study examined factors influencing female cassava processors' intentions regarding participation in an extension education program on cassava processing in rural Nigeria. Interviews were conducted with 224 women who were purposely selected from areas of zone 3 of Ondo State, Nigeria, which has large concentrations of cassava processors.…

  10. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-03-01

    The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits. Copyright © 2018 Crop Science Society of America.

  12. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    PubMed

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  13. Alcoholic fermentation of raw cassava starch by Rhizopus koji without cooking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujio, Y.; Suyanadona, P.; Attasampunna, P.

    Using only wheat bran koji from the Rhizopus strain, raw cassava starch and casava pellets converted reasonably well to alcohol (ethanol) without cooking at 35/sup 0/C and pH 4.5-5.0. When the initial broth contained 30 g raw cassava starch, 10 g Rhizopus sp. koji, and 100 mL tap water, 12.1 g of alcohol was recovered by final distillation from fermented broth. In this case, 12.1 g alcohol corresponds to an 85.5% conversion rate based on the theoretical value of the starch content. When the initial broth contained 40 g cassava starch, 14.1 g of alcohol was recovered, where 14.1 gmore » corresponds to a 74.5% conversion rate. The alcoholic fermentation process described in the present work is considered more effective and reasonable than the process using raw starch without cooking reported until now, since the new process makes it unnecessary to add yeast cells and glucoamylase preparation.« less

  14. Isolation and Characterization of Ftsz Genes in Cassava.

    PubMed

    Geng, Meng-Ting; Min, Yi; Yao, Yuan; Chen, Xia; Fan, Jie; Yuan, Shuai; Wang, Lei; Sun, Chong; Zhang, Fan; Shang, Lu; Wang, Yun-Lin; Li, Rui-Mei; Fu, Shao-Ping; Duan, Rui-Jun; Liu, Jiao; Hu, Xin-Wen; Guo, Jian-Chun

    2017-12-15

    The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the MeFtsZs play an important role in chloroplast division, and that MeFtsZ 2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.

  15. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures.

    PubMed

    Tulve, Nicolle S; Stefaniak, Aleksandr B; Vance, Marina E; Rogers, Kim; Mwilu, Samuel; LeBouf, Ryan F; Schwegler-Berry, Diane; Willis, Robert; Thomas, Treye A; Marr, Linsey C

    2015-05-01

    Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their physiological functions, developmental stage, and activities and behaviors. Despite much research to date, children's potential exposures to AgNPs are not well characterized. Our objectives were to characterize selected consumer products containing AgNPs and to use the data to estimate a child's potential non-dietary ingestion exposure. We identified and cataloged 165 consumer products claiming to contain AgNPs that may be used by or near children or found in the home. Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a tiered analytical approach to determine silver content, form (particulate or ionic), size, morphology, agglomeration state, and composition. Silver was detected in all products except one sippy cup body. Among products in a given category, silver mass contributions were highly variable and not always uniformly distributed within products, highlighting the need to sample multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this data, a child's potential non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup is 1.53 μg Ag/kg. Additional research is needed to understand the number and types of consumer products containing silver and the concentrations of silver in these products in order to more accurately predict children's potential aggregate and cumulative exposures to AgNPs. Published by Elsevier GmbH.

  16. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.

    PubMed

    Nambisan, Bala

    2011-03-01

    Toxicity of cassava arises due to the presence of the cyanoglucosides linamarin and lotaustralin which are hydrolysed by endogenous enzyme linamarase to acetonecyanohydrin (ACN) and cyanide (CN) which are toxic. Major research efforts to eliminate/reduce cyanoglucosides have focused on (i) development of acyanogenic cassava varieties by breeding; (ii) controlling its metabolism; and (iii) processing to remove cyanogens. The cyanoglucoside (CNG) content in cassava is genetically controlled and cultivars may be classified as low (<50 μg/g), medium (50-100 μg/g) and high CN (>100 μg CN eq./g) varieties. Molecular techniques for reducing tuber CNG have focused on development of transgenic plants with reduced expression of cyt P 450 in leaves, or increased expression of hydroxynitrilelyase in tuber. For immediate solution, CNG content can be reduced using several processing methods. Traditional methods used for processing include boiling, drying, parboiling and drying, baking, steaming, frying and preparation of flour. These processes result in CN losses ranging from 25% to 98%. The cyanogen level in the final product is influenced both by the tuber CNG and the method of processing. In order to achieve safe levels of 10 μg/g in cassava products, new methods of processing, especially for cassava containing more than 250 μg CN eq./g, remains a challenging problem. Copyright © 2010. Published by Elsevier Ltd.

  17. The Discrepant and Similar Responses of Genome-Wide Transcriptional Profiles between Drought and Cold Stresses in Cassava.

    PubMed

    Zeng, Changying; Ding, Zehong; Zhou, Fang; Zhou, Yufei; Yang, Ruiju; Yang, Zi; Wang, Wenquan; Peng, Ming

    2017-12-12

    Background : Cassava, an important tropical crop, has remarkable drought tolerance, but is very sensitive to cold. The growth, development, and root productivity of cassava are all adversely affected under cold and drought. Methods : To profile the transcriptional response to cold and drought stresses, cassava seedlings were respectively subjected to 0, 6, 24, and 48 h of cold stress and 0, 4, 6, and 10 days of drought stress. Their folded leaves, fully extended leaves, and roots were respectively investigated using RNA-seq. Results : Many genes specifically and commonly responsive to cold and drought were revealed: genes related to basic cellular metabolism, tetrapyrrole synthesis, and brassinosteroid metabolism exclusively responded to cold; genes related to abiotic stress and ethylene metabolism exclusively responded to drought; and genes related to cell wall, photosynthesis, and carbohydrate metabolism, DNA synthesis/chromatic structure, abscisic acid and salicylic acid metabolism, and calcium signaling commonly responded to both cold and drought. Discussion : Combined with cold- and/or drought-responsive transcription factors, the regulatory networks responding to cold and drought in cassava were constructed. All these findings will improve our understanding of the specific and common responses to cold and drought in cassava, and shed light on genetic improvement of cold and drought tolerance in cassava.

  18. Prospects for genomic selection in cassava breeding

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa in order to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on p...

  19. Allocative Efficiency Analysys Production Function Of Cassava Farming (Manihot, Sp.) In Tenayan Raya Sub-District Of Pekanbaru City

    NASA Astrophysics Data System (ADS)

    Nizar, Rini; Nurwati, Niken; Amalia

    2017-12-01

    Cassava (Manihot sp) has long been known and cultivated by Indonesian farmers. The economic and social potential of cassava aside from foodstuffs can also be used as raw materials for industrial use and animal feed. In Riau Province, Cassva has the potential to be developed considering Cassva is a plant that can easily grow on low altitude to high altitude lands. Cassava does not need a complex maintenance. Conventionally, this plant can be planted and left alone by itself. Cassava roots can be developed to be a processed products that society needs as main foodstuffs ingredients. This research is done in three months and the purpose is to know the influence of input use (pesticide, seeds, fertilizers and labor) on cassava farming to cassava farming by the model of cobb-douglas. Other than that is also the effect on economical efficiency. The method used in this research is a quantitative research by using Cobb-Douglas Function Model. This research was done in the Tenayan Raya sub-district with 55 farmer samples. This research shows Cobb-Douglas Production Function can be used as the predictor for Cassava production function in Tenayan Raya Sub-district of Pekanbaru City. Altogether the production factor used by farmers influence production. Partially only usage of organic fertilizer that does not affect production, while other production factor such as, seeds, pesticides, an-organic fertilizer (urea) and labor affect production by quite a bit. Usage of production factor seeds, urea and pesticides is not yet efficient while usage of organic fertilizer is not efficient and usage of labor on cassava agriculture by respondent farmers is relatively efficient

  20. Isolation and partial characterization of a root-specific promoter for stacking multiple traits into cassava (Manihot esculenta CRANTZ).

    PubMed

    Gbadegesin, M A; Beeching, J R

    2011-06-07

    Cassava can be cultivated on impoverished soils with minimum inputs, and its storage roots are a staple food for millions in Africa. However, these roots are low in bioavailable nutrients and in protein content, contain cyanogenic glycosides, and suffer from a very short post-harvest shelf-life, and the plant is susceptible to viral and bacterial diseases prevalent in Africa. The demand for improvement of cassava with respect to these traits comes from both farmers and national agricultural institutions. Genetic improvement of cassava cultivars by molecular biology techniques requires the availability of appropriate genes, a system to introduce these genes into cassava, and the use of suitable gene promoters. Cassava root-specific promoter for auxin-repressed protein was isolated using the gene walking approach, starting with a cDNA sequence. In silico analysis of promoter sequences revealed putative cis-acting regulatory elements, including root-specific elements, which may be required for gene expression in vascular tissues. Research on the activities of this promoter is continuing, with the development of plant expression cassettes for transformation into major African elite lines and farmers' preferred cassava cultivars to enable testing of tissue-specific expression patterns in the field.

  1. Michaelis kinetic analysis of extracellular cellulase and amylase excreted by Lactobacillus plantarum during cassava fermentation

    NASA Astrophysics Data System (ADS)

    Frediansyah, Andri; Kurniadi, Muhamad

    2017-01-01

    Our previous study reveal that single culture of Lactobacillus plantarum has ability to ferment cassava tuber in relation to produce modified cassava flour (mocaf). It was used to accelerate a fermentation process. L. plantarum grow well and produce some extracellular enzymes i.e. cellulase to change the structure and breakdown the cell wall of cassava tuber. Then, the starchy materials will be hydrolyzed by i.e. amylase into simple sugar and convert to organic acid. All of these process will give new characteristic of cassava i.e. lower fiber content, good flavor, taste, aroma and texture and the amount of cyanide acid is lower. Therefore this present study was to analyze Michaelis kinetics of extracellular carboxymethyl cellulase and amylase production by L. plantarum during cassava fermentation. The maximum carboxymethyl cellulase and amylase activity of 8.60 U/ml and 14.07 U/ml, respectively, were obtained from filtrate which has been incubated at 37°C for 18 h under stationary conditions. The Vmax and Km of CMCase were 0.8506 × 10-3 U/ml and 0.9594 × 10-3 g/mL, respectively. For amylase were 9.291 × 10-3 U/ml and 0.9163 × 10-3 g/ml, respectively.

  2. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci.

    PubMed

    Ghosh, Saptarshi; Bouvaine, Sophie; Richardson, Simon C W; Ghanim, Murad; Maruthi, M N

    2018-01-01

    We investigated the dual effects of bacterial infections and diseased cassava plants on the fitness and biology of the Bemisia tabaci infesting cassava in Africa. Isofemale B. tabaci colonies of sub-Saharan Africa 1-subgroup 3 (SSA1-SG3), infected with two secondary endosymbiotic bacteria Arsenophonus and Rickettsia (AR+) and those free of AR infections (AR-), were compared for fitness parameters on healthy and East African cassava mosaic virus -Uganda variant (EACMV-UG)-infected cassava plants. The whitefly fecundity and nymph development was not affected by bacterial infections or the infection of cassava by the virus. However, emergence of adults from nymphs was 50 and 17% higher by AR- on healthy and virus-infected plants, respectively, than AR+ flies. Development time of adults also was 10 days longer in AR+ than AR-. The whiteflies were further compared for acquisition and retention of EACMV-UG. Higher proportion of AR- acquired (91.8%) and retained (87.6%) the virus than AR+ (71.8, 61.2%, respectively). Similarly, the AR- flies retained higher quantities of virus (~ninefold more) than AR+. These results indicated that bacteria-free whiteflies were superior and better transmitters of EACMV-UG, as they had higher adult emergence, quicker life cycle and better virus retention abilities than those infected with bacteria.

  3. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    NASA Astrophysics Data System (ADS)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  4. Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends

    PubMed Central

    Oladunmoye, Olufunmilola O; Aworh, Ogugua C; Maziya-Dixon, Bussie; Erukainure, Ochuko L; Elemo, Gloria N

    2014-01-01

    High-quality cassava starch (HQCS) produced from high-yielding low-cyanide improved cassava variety, TMS 30572, was mixed with durum wheat semolina (DWS) on a replacement basis to produce flour samples containing 0, 20, 30, 50, 70, and 100% cassava starch. They were analyzed for chemical composition (proximate, amylose, free sugars, starch, wet gluten, and cyanide) and functional properties (pasting, swelling power, solubility, water absorption, water binding, starch damage, diastatic and α-amylase activity, dough mixing, and stability). Protein, carbohydrate, fat, and ash of flour samples ranged from 0.75–12.31%, 70.87–87.80%, 0.95–4.41%, and 0.12–0.83%, respectively. Cyanide levels in all the flour samples were less than 0.1 ppm. Amylose content varied between 19.49% for cassava and 28.19% for wheat, correlating significantly with protein (r = 0.95, P = 0.004) and ash contents (r = 0.92, P = 0.01) at 5%. DWS and HQCS had similar pasting temperatures (50.2–53°C), while other pasting properties increased with increasing levels of HQCS. Dough mixing stability of samples decreased with increasing levels of HQCS. All the flour samples had α-amylase activity greater than 200. Both HQCS and DWS compare favorably well in swelling power (7.80–9.01%); but the solubility of wheat starch doubled that of cassava. Starch damage varied between 3.3 and 7.2 AACC for semolina and starch, with the latter having higher absorption rate (97%), and the former, higher absorption speed (67 sec). Results obtained showed positive insight into cassava–wheat blend characteristics. Data thus generated provide additional opportunities of exploiting cassava utilization and hence boost its value–addition potentials for product development. PMID:24804071

  5. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    PubMed

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  6. Cassava tissue culture and long-term preservation

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta Crantz) is cultivated mainly for its starchy roots as an important staple food for the tropics. M. esculenta is the only cultivated species in the genus Manihot, which contains 98 species, mostly native to Brazil. In recent years several research groups have reported metho...

  7. Domestication and defence: Foliar tannins and C/N ratios in cassava and a close wild relative

    NASA Astrophysics Data System (ADS)

    Mondolot, Laurence; Marlas, Amandine; Barbeau, Damien; Gargadennec, Annick; Pujol, Benoît; McKey, Doyle

    2008-09-01

    Plant domestication is accompanied by shifts in resource allocation, as a result of farmer selection for genotypes that give high yields in agricultural habitats. Relaxed natural selection for chemical and physical defences in these habitats could facilitate resource allocation to yield. We compared the concentrations of tannins, and C/N ratios, which are often correlated with investment in cell-wall compounds, in leaves of landraces of domesticated cassava ( Manihot esculenta) and a close wild relative in French Guiana. Foliar concentrations of tannins were about 1.9 times higher in the wild relative than in domesticated cassava. Histochemical analyses showed that tannins were present in nearly all palisade and spongy parenchyma cells of the wild taxon, but in only some cells of these tissues in M. esculenta. C/N ratios were also 1.9 times higher in leaves of the wild relative than in those of domesticated cassava. Tannins accounted for only a small proportion of total carbon, and the higher C/N ratio in wild than in domesticated cassava may reflect higher investment in carbon-containing compounds additional to tannins, such as cell-wall compounds. The divergence in these traits between cassava and this close wild relative mirrors a broad pattern observed in wild plant species across habitats varying in resource availability. One explanation for our results is that domestication in cassava may have favoured a shift from a resource conservation strategy to a resource acquisition strategy.

  8. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes.

    PubMed

    An, Feifei; Fan, Jie; Li, Jun; Li, Qing X; Li, Kaimian; Zhu, Wenli; Wen, Feng; Carvalho, Luiz J C B; Chen, Songbi

    2014-01-01

    Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN) metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.

  9. Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonserm, P.

    1985-01-01

    On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy cropsmore » need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.« less

  10. Diabetes is not caused by cassava toxicity. A study in a Tanzanian community.

    PubMed

    Swai, A B; Mclarty, D G; Mtinangi, B L; Tatala, S; Kitange, H M; Mlingi, N; Rosling, H; Howlett, W P; Brubaker, G R; Alberti, K G

    1992-10-01

    To test the hypothesis that consumption of cassava with liberation of cyanide causes diabetes in malnourished individuals. Glucose tolerance was assessed in two rural communities in Tanzania; in one (Nyambori), the main source of calories was cassava; and in the other (Uswaa), cassava was rarely eaten. Undernutrition was prevalent in both communities. The people of Nyambori were known to have high dietary cyanide exposure for many years from consumption of insufficiently processed cassava. Of the 1435 people in Nyambori greater than or equal to 15 yr old, 1067 (74%) were surveyed, and 1429 of 1472 (97%) eligible subjects in Uswaa were surveyed. All had 75-g oral glucose tolerance tests and measurement of BMI. Plasma and urine thiocyanate and blood cyanide also were measured in some subjects. Mean +/- SD plasma and urine thiocyanate levels in Nyambori were 296 +/- 190 and 497 +/- 457 microM (n = 204), respectively, compared with 30 +/- 37 and 9 +/- 13 microM, respectively, in Uswaa (n = 92) (P less than 0.001 for all differences). The mean blood cyanide level in Nyambori was elevated (1.4 [range 0.1-30.2] microM; n = 91). The prevalence of diabetes in the cassava village (Nyambori) was 0.5% compared with 0.9% in Uswaa (NS). The prevalence of IGT was similar in the two villages in the 15- to 34- and the 34- to 54-yr-old age-groups; but in those greater than or equal to 55 yr old, IGT was higher in Nyambori (17.4 vs 7.2%, P = 0.029). Mean fasting and 2-h blood glucose levels were slightly higher in Nyambori village after adjusting for age, sex, and BMI (4.5 vs. 4.2 and 5.0 vs. 4.4 mM, respectively). High dietary cyanide exposure was not found to have had a significant effect on the prevalence of diabetes in an undernourished population in Tanzania. Cassava consumption is thus highly unlikely to be a major etiological factor in so-called MRDM, at least in East Africa.

  11. The influence of frequently consumed beverages and snacks on dental erosion among preschool children in Saudi Arabia.

    PubMed

    Al-Dlaigan, Yousef H; Al-Meedania, Laila A; Anil, Sukumaran

    2017-12-11

    To determine the prevalence of dental erosion and its association to commonly used beverages and snacks among 3 to 5 year old preschool children in Riyadh, Saudi Arabia. Three hundred eighty-eight preschool children between 3 and 5 years old were selected from 10 different schools using a cluster random sample selection; there were 184 (47%) boys and 204 (53%) girls. The surfaces of each tooth were examined for erosion, and the level of tooth wear was recorded. Data on the frequently used beverages and snacks were obtained by questionnaires completed by the parents of the preschool children. Among the 388 children examined, 47% exhibited low erosion, 10% exhibited moderate erosion and 4% exhibited severe erosion. There was no statistically significant difference between boys and girls in terms of the prevalence of erosion. Sixty percent of the children regularly consumed juice drinks. Among daily consumers, 84% of children showed erosion prevalence with strongly significant association (p < 0.005). Holding the drink in the mouth also showed a significant association with erosion (p < 0.02). It was concluded that an association was found between the prevalence of dental erosion and the frequency of citrus and carbonated juice consumed by the preschool children in Saudi Arabia.

  12. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta).

    PubMed

    Ruan, Meng-Bin; Guo, Xin; Wang, Bin; Yang, Yi-Ling; Li, Wen-Qi; Yu, Xiao-Ling; Zhang, Peng; Peng, Ming

    2017-06-15

    The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Anatomic changes due to interspecific grafting in cassava (Manihot esculenta).

    PubMed

    Bomfim, N; Ribeiro, D G; Nassar, N M A

    2011-05-31

    Cassava rootstocks of varieties UnB 201 and UnB 122 grafted with scions of Manihot fortalezensis were prepared for anatomic study. The roots were cut, stained with safranin and alcian blue, and examined microscopically, comparing them with sections taken from ungrafted roots. There was a significant decrease in number of pericyclic fibers, vascular vessels and tyloses in rootstocks. They exhibited significant larger vessels. These changes in anatomic structure are a consequence of genetic effects caused by transference of genetic material from scion to rootstock. The same ungrafted species was compared. This is the first report on anatomic changes due to grafting in cassava.

  14. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  15. Sorption Isotherm Modelling Of Fermented Cassava Flour by Red Yeast Rice

    NASA Astrophysics Data System (ADS)

    Cahyanti, M. N.; Alfiah, M. N.; Hartini, S.

    2018-04-01

    The objective of the study is to determine the characteristic of moisture sorption isotherm from fermented cassava flour by red yeast rice using various modeling. This research used seven salt solutions and storage temperature of 298K, 303K, and 308K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 4.51 – 5.99% db. Constant related to absorption heat in the multilayer area of [GAB model was around 0.86-0,91. Constant related to absorption heat in the monolayer area of GAB model was around 4.67-5.97. Constant related to absorption heat in the monolayer area of BET model was around 4.83-7.04. Caurie constant was around 1.25-1.59. The equilibrium and monolayer moisture content on fermented cassava flour by red yeast rice was decreasing as increasing temperature. GAB constant value indicated that the process of moisture absorption on the fermented cassava flour by red yeast rice categorized in type II.

  16. Ethnopharmacological values of cassava and its potential for diabetes and dyslipidemia management: Knowledge survey and critical review of report

    PubMed Central

    Nwose, Ezekiel Uba; Onodu, Bonaventure C.; Anyasodor, Anayochukwu Edward; Sedowo, Mathew O.; Okuzor, John N.; Culas, Richard J.

    2017-01-01

    Background: Beyond nutritional values are the pharmacological potentials of cassava comparative with other staple carbohydrate plant-based foods such as wheat. The knowledge of applicability to diabetes and its cardiovascular complications management seems not just limited but unacknowledged. As a preliminary study, a community’s knowledge of pharmacological value of cassava is investigated. Methods: Descriptive observational study using questionnaire-based “cross-sectional” survey was conducted. 136 Participants completed the survey and 101 respondents were selected for evaluation. Open-ended questions were used qualitatively to generate experience and view cassava values for diabetes and dyslipidemia. While categorical (yes or no) questions were used quantitatively to generate numerical results for diabetes, critical reanalysis of a report data was performed, especially comparing carbohydrate/fiber and fat/fiber ratios of cassava with wheat in view of dyslipidemia. Result: On the positive side, 42% of the participants believe that cassava has medicinal values. This includes 6% (among the 42) who believes that the plant is useful in treating diabetes and 24% who do not know it may be useful in diabetes management. Critical review showed that cassava may contribute up to sixteen times more fiber and four times less digestible sugar, as well as carbohydrate/fiber and fat/fiber ratios being 14 and 55 times less than wheat. Conclusion: There is evidence that relative to wheat flour meal, for instance, cassava contributes less fat and much more fiber. Since fat is pro-obesity, which in turn is pro-diabetic/metabolic syndrome; and fiber is anti-dyslipidemic; cassava has pharmacological values to be appreciated over some carbohydrate plant-based foods. PMID:28894623

  17. Diallel analysis of provitamin A carotenoid and dry matter content in cassava (Manihot esculenta Crantz)

    PubMed Central

    Esuma, Williams; Kawuki, Robert S.; Herselman, Liezel; Labuschagne, Maryke Tine

    2016-01-01

    Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gene actions controlling total carotenoid content (TCC), dry matter content (DMC) in cassava roots and other relevant traits. Fifteen F1 families generated from the diallel crosses were evaluated in two environments using a randomized complete block design. General combining ability (GCA) effects were significant for TCC and DMC, suggesting the relative importance of additive gene effects in controlling these traits in cassava. On the other hand, non-additive effects were predominant for root and shoot weight. MH02-073HS, with the highest level of TCC, was the best general combiner for TCC while NASE 3, a popular white-fleshed variety grown by farmers in Uganda, was the best general combiner for DMC. Such progenitors with superior GCA effects could form the genetic source for future programs targeting cassava breeding for TCC and DMC. A negative correlation was observed between TCC and DMC, which will require breeding strategies to combine both traits for increased adoption of provitamin A cassava varieties. PMID:27795688

  18. Lead in candy consumed and blood lead levels of children living in Mexico City.

    PubMed

    Tamayo y Ortiz, Marcela; Téllez-Rojo, Martha María; Hu, Howard; Hernández-Ávila, Mauricio; Wright, Robert; Amarasiriwardena, Chitra; Lupoli, Nicola; Mercado-García, Adriana; Pantic, Ivan; Lamadrid-Figueroa, Héctor

    2016-05-01

    Recent studies have shown that lead exposure continues to pose a health risk in Mexico. Children are a vulnerable population for lead effects and Mexican candy has been found to be a source of exposure in children. There are no previous studies that estimates lead concentrations in candy that children living in Mexico City consume and its association with their blood lead level. To evaluate whether there is an association between reported recent consumption of candies identified to have lead, and blood lead levels among children in Mexico City. A subsample of 171 children ages 2-6 years old, from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohort study was assessed between June 2006 and July 2007. The candy reported most frequently were analyzed for lead using ICP-MS. The total weekly intake of lead through the consumption of candy in the previous week was calculated. Capillary blood lead levels (BLL) were measured using LeadCare (anodic stripping voltammetry). Lead concentrations ≥0.1ppm, the FDA permitted level (range: 0.13-0.7ppm) were found in 6 samples out of 138 samples from 44 different brands of candy. Median BLL in children was 4.5µg/dl. After adjusting for child's sex, age, BMI, maternal education & occupation, milk consumption, sucking the candy wrapper, use of lead-glazed pottery, child exposure behavior, living near a lead exposure site and use of folk remedies, an increase of 1µg of lead ingested through candy per week was associated with 3% change (95% CI: 0.1%, 5.2%) in BLL. Although lead concentrations in candy were mostly below the FDA permitted level, high lead concentrations were detected in 4% of the candy samples and 12% of brands analyzed. Although candy intake was modestly associated with children's BLL, lead should not be found in consumer products, especially in candy that children can consume due to the well documented long-lasting effect of lead exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparison of Leaf Proteomes of Cassava (Manihot esculenta Crantz) Cultivar NZ199 Diploid and Autotetraploid Genotypes

    PubMed Central

    An, Feifei; Fan, Jie; Li, Jun; Li, Qing X.; Li, Kaimian; Zhu, Wenli; Wen, Feng; Carvalho, Luiz J. C. B.; Chen, Songbi

    2014-01-01

    Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN) metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies. PMID:24727655

  20. Influence of factors on the drying of cassava in a solar simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    In tropical countries, sun drying is still the most popular method used for processing root and tuber crops like cassava and yam. Relatively very little has been done on studying the kinetics of sun drying a bed of chips of cassava and similar crops, but this information is invaluable in finding options for reducing drying time and costs, and increasing tonnage produced. This project studied some factors that have an effect on the sun drying rate of cassava chips. The factors were ambient temperature, relative humidity, radiation intensity, air velocity, and loading density. A solar simulation chamber was constructed somore » that drying could be achieved under controllable conditions similar to those obtained in sun drying. Experiments carried out in the simulator revealed that temperature had the most significant effect on drying rate, followed by air velocity, and radiation intensity. Regression equations were developed relating the drying rate with the factors studied.« less

  1. In vitro degradation of linamarin by microorganisms isolated from cassava wastewater treatment lagoons

    PubMed Central

    Vasconcellos, S. P; Cereda, M. P.; Cagnon, J. R.; Foglio, M.A.; Rodrigues, R.A.; Manfio, G. P.; Oliveira, V. M.

    2009-01-01

    This study aimed at isolating and characterizing of microorganisms able to use linamarin as sole carbon source. Thirty one microbial strains were isolated from manipueira, a liquid effluent of cassava processing factories. Among these strains, Bacillus licheniformis (isolate 2_2) and Rhodotorulla glutinis (isolate L1) were able to degrade 71% and 95% of added linamarin, respectively, within 7 days, showing high biodegradation activity and great potential for detoxification of cassava processing wastewaters. PMID:24031436

  2. In field damage of high and low cyanogenic cassava due to a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).

    PubMed

    Riis, Lisbeth; Bellotti, Anthony Charles; Castaño, Oscar

    2003-12-01

    The hypothesis that cyanogenic potential in cassava roots deters polyphagous insects in the field is relevant to current efforts to reduce or eliminate the cyanogenic potential in cassava. To test this hypothesis, experiments were conducted in the field under natural selection pressure of the polyphagous root feeder Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae). A number of cassava varieties (33) as well as 13 cassava siblings and their parental clone, each representing a determined level of cyanogenic potential (CNP), were scored for damage caused by C. bergi and related to CNP and nonglycosidic cyanogens, measured as hydrogen cyanide. Additionally, 161 low-CNP varieties (< 50 ppm hydrogen cyanide, fresh weight) from the cassava germplasm core collection at Centro Internacional de Agricultura Tropical (CIAT) were screened for resistance/tolerance to C. bergi. Low root damage scores were registered at all levels of CNP. Nevertheless, CNP and yield (or root size) partly explained the damage in cassava siblings (r2 = 0.82) and different cassava varieties (r2 = 0.42), but only when mean values of damage scores were used. This relation was only significant in one of two crop cycles. A logistic model describes the underlying negative relation between CNP and damage. An exponential model describes the underlying negative relation between root size and damage. Damage, caused by C. bergi feeding, released nonglycosidic cyanogens, and an exponential model fits the underlying positive relation. Fifteen low-CNP clones were selected for potential resistance/tolerance against C. bergi.

  3. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes

    PubMed Central

    Hu, Wei; Xia, Zhiqiang; Yan, Yan; Ding, Zehong; Tie, Weiwei; Wang, Lianzhe; Zou, Meiling; Wei, Yunxie; Lu, Cheng; Hou, Xiaowan; Wang, Wenquan; Peng, Ming

    2015-01-01

    Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs) have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava. PMID:26579161

  4. Genetic inheritance of pulp colour and selected traits of cassava (Manihot esculenta Crantz) at early generation selection.

    PubMed

    Nduwumuremyi, Athanase; Melis, Rob; Shanahan, Paul; Theodore, Asiimwe

    2018-06-01

    The early generation selection of cassava quantitative and qualitative traits saves breeding resources as it can shorten breeding schemes. Inheritance analysis provides important breeding information for developing new improved varieties. This study aimed at developing an F1 segregating cassava population and determining mode of gene action of pulp colour and selected traits at early generation selection (F1 seedling and clones). The 15 families exhibited significant (P < 0.05) phenotypic variation between offspring. The general combining ability (GCA) was significant for all traits except cassava brown streak disease on leaves, whereas specific combining ability (SCA) was significant for all evaluated traits. The Garukansubire and Gitamisi genotypes were the best general combiners for improving fresh storage root yield, while G1 and G2 were the best general combiners for improved carotenoid (yellow/orange pulp colour) and delayed physiological postharvest deterioration. The pulp colour had the highest GCA/SCA ratio and percent sum of squares due to GCA. The 15 F1 families exhibited essential genetic diversity for cassava improvement. The expression of most cassava traits was controlled by both additive and non-additive gene action. The study elucidated the role of dominance effects over the additive effects for the evaluated traits. However, the pulp colour was predominantly controlled by additive gene action. This implies the possibility of improving cassava through conventional breeding using recurrent selection for most traits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Combination process method of lactic acid hydrolysis and hydrogen peroxide oxidation for cassava starch modification

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa

    2017-05-01

    Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.

  6. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  7. Cassava-enriched diet is not diabetogenic rather it aggravates diabetes in rats.

    PubMed

    Yessoufou, Akadiri; Ategbo, Jean-Marc; Girard, Aurelie; Prost, Josiane; Dramane, Karim L; Moutairou, Kabirou; Hichami, Aziz; Khan, Naim A

    2006-12-01

    Chronic intake of cassava has been thought to play a role in the pathogenesis of diabetes. We investigated the effects of dietary cassava (Manihot esculenta), which naturally contains cyanogenic glycosides, in the progression of diabetes mellitus in rats. Diabetes was induced by five mild doses of streptozotocin, in male Wistar rats which were fed a standard or cyanide-free cassava (CFC) diet containing or not containing exogenous cyanide with or without methionine. Methionine was employed to counterbalance the toxic effects of cyanide. During diabetes progression, we determined glycaemia and antioxidant status, by measuring vitamin C levels and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSSG-Red). Feeding CFC diet did not induce diabetes in control rats; rather this diet, in diabetic animals, aggravated hyperglycaemia the severity of which was increased in these animals fed CFC diet, supplemented with cyanide. Addition of methionine curtailed the toxic effects of cyanide supplementation in CFC diet-fed diabetic animals. In standard diet-fed animals, the activities of SOD, GSH-Px and GSSG-Red were lower in diabetic rats than control rats. Interestingly, all of the CFC diets with or without cyanide or methionine, increased vitamin C levels and antioxidant enzyme activities in both control and diabetic animals. However, supplementing cyanide to CFC diet (without methionine) curtailed SOD and GSH-Px activities in diabetic rats. Our study shows that cassava diet containing cyanide is 'diabetes-aggravating'.

  8. Characters related to higher starch accumulation in cassava storage roots

    PubMed Central

    Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan

    2016-01-01

    Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed. PMID:26892156

  9. Characters related to higher starch accumulation in cassava storage roots.

    PubMed

    Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan

    2016-02-19

    Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed.

  10. A web accessible resource for investigating cassava phenomics and genomics information: BIOGEN BASE

    PubMed Central

    Jayakodi, Murukarthick; selvan, Sreedevi Ghokhilamani; Natesan, Senthil; Muthurajan, Raveendran; Duraisamy, Raghu; Ramineni, Jana Jeevan; Rathinasamy, Sakthi Ambothi; Karuppusamy, Nageswari; Lakshmanan, Pugalenthi; Chokkappan, Mohan

    2011-01-01

    The goal of our research is to establish a unique portal to bring out the potential outcome of the research in the Casssava crop. The Biogen base for cassava clearly brings out the variations of different traits of the germplasms, maintained at the Tapioca and Castor Research Station, Tamil Nadu Agricultural University. Phenotypic and genotypic variations of the accessions are clearly depicted, for the users to browse and interpret the variations using the microsatellite markers. Database (BIOGEN BASE ‐ CASSAVA) is designed using PHP and MySQL and is equipped with extensive search options. It is more user-friendly and made publicly available, to improve the research and development of cassava by making a wealth of genetics and genomics data available through open, common, and worldwide forum for all individuals interested in the field. Availability The database is available for free at http://www.tnaugenomics.com/biogenbase/casava.php PMID:21904428

  11. A web accessible resource for investigating cassava phenomics and genomics information: BIOGEN BASE.

    PubMed

    Jayakodi, Murukarthick; Selvan, Sreedevi Ghokhilamani; Natesan, Senthil; Muthurajan, Raveendran; Duraisamy, Raghu; Ramineni, Jana Jeevan; Rathinasamy, Sakthi Ambothi; Karuppusamy, Nageswari; Lakshmanan, Pugalenthi; Chokkappan, Mohan

    2011-01-01

    The goal of our research is to establish a unique portal to bring out the potential outcome of the research in the Casssava crop. The Biogen base for cassava clearly brings out the variations of different traits of the germplasms, maintained at the Tapioca and Castor Research Station, Tamil Nadu Agricultural University. Phenotypic and genotypic variations of the accessions are clearly depicted, for the users to browse and interpret the variations using the microsatellite markers. Database (BIOGEN BASE - CASSAVA) is designed using PHP and MySQL and is equipped with extensive search options. It is more user-friendly and made publicly available, to improve the research and development of cassava by making a wealth of genetics and genomics data available through open, common, and worldwide forum for all individuals interested in the field. The database is available for free at http://www.tnaugenomics.com/biogenbase/casava.php.

  12. Starch determination, amylose content and susceptibility to in vitro amylolysis in flours from the roots of 25 cassava varieties.

    PubMed

    Mejía-Agüero, Luisa Elena; Galeno, Florangel; Hernández-Hernández, Oswaldo; Matehus, Juan; Tovar, Juscelino

    2012-02-01

    Cassava cultivars are classified following different criteria, such as cyanogenic glucoside content or starch content. Here, flours from the roots of 25 cassava varieties cultivated simultaneously in a single plantation, were characterized in terms of starch content (SC), amylose content (AC), α-amylolysis index (AI) and gel formation ability. Resistant starch content (RS) was measured in 10 of the samples. Cassava flours exhibited high SC, low AC and low AI values, with differences among varieties. Cluster analysis based on these parameters divided the cultivars in four groups differing mainly in SC and AC. AI and AC were inversely correlated (r = -0.59, P < 0.05) in 18 of the cultivars, suggesting AC as an important factor governing the susceptibility to enzymatic hydrolysis of starch in raw cassava. Differences in susceptibility to amylolysis, assessed by RS, were also recorded in the sample subset analyzed. Most flours yielded pastes or gels upon heating and cooling. Gels differed in their subjective grade of firmness, but none exhibited syneresis, confirming the low retrogradation proclivity of cassava starch. Some differences were found among cassava samples, which may be ascribed to inter-cultivar variation. This information may have application in further agronomic studies or for developing industrial uses for this crop. Copyright © 2011 Society of Chemical Industry.

  13. Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration

    PubMed Central

    2013-01-01

    Background Cassava is a well-known starchy root crop utilized for food, feed and biofuel production. However, the comprehension underlying the process of starch production in cassava is not yet available. Results In this work, we exploited the recently released genome information and utilized the post-genomic approaches to reconstruct the metabolic pathway of starch biosynthesis in cassava using multiple plant templates. The quality of pathway reconstruction was assured by the employed parsimonious reconstruction framework and the collective validation steps. Our reconstructed pathway is presented in the form of an informative map, which describes all important information of the pathway, and an interactive map, which facilitates the integration of omics data into the metabolic pathway. Additionally, to demonstrate the advantage of the reconstructed pathways beyond just the schematic presentation, the pathway could be used for incorporating the gene expression data obtained from various developmental stages of cassava roots. Our results exhibited the distinct activities of the starch biosynthesis pathway in different stages of root development at the transcriptional level whereby the activity of the pathway is higher toward the development of mature storage roots. Conclusions To expand its applications, the interactive map of the reconstructed starch biosynthesis pathway is available for download at the SBI group’s website (http://sbi.pdti.kmutt.ac.th/?page_id=33). This work is considered a big step in the quantitative modeling pipeline aiming to investigate the dynamic regulation of starch biosynthesis in cassava roots. PMID:23938102

  14. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  15. Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration.

    PubMed

    Saithong, Treenut; Rongsirikul, Oratai; Kalapanulak, Saowalak; Chiewchankaset, Porntip; Siriwat, Wanatsanan; Netrphan, Supatcharee; Suksangpanomrung, Malinee; Meechai, Asawin; Cheevadhanarak, Supapon

    2013-08-10

    Cassava is a well-known starchy root crop utilized for food, feed and biofuel production. However, the comprehension underlying the process of starch production in cassava is not yet available. In this work, we exploited the recently released genome information and utilized the post-genomic approaches to reconstruct the metabolic pathway of starch biosynthesis in cassava using multiple plant templates. The quality of pathway reconstruction was assured by the employed parsimonious reconstruction framework and the collective validation steps. Our reconstructed pathway is presented in the form of an informative map, which describes all important information of the pathway, and an interactive map, which facilitates the integration of omics data into the metabolic pathway. Additionally, to demonstrate the advantage of the reconstructed pathways beyond just the schematic presentation, the pathway could be used for incorporating the gene expression data obtained from various developmental stages of cassava roots. Our results exhibited the distinct activities of the starch biosynthesis pathway in different stages of root development at the transcriptional level whereby the activity of the pathway is higher toward the development of mature storage roots. To expand its applications, the interactive map of the reconstructed starch biosynthesis pathway is available for download at the SBI group's website (http://sbi.pdti.kmutt.ac.th/?page_id=33). This work is considered a big step in the quantitative modeling pipeline aiming to investigate the dynamic regulation of starch biosynthesis in cassava roots.

  16. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women

    PubMed Central

    Zhu, Chenghao; Cai, Yimeng; Gertz, Erik R.; La Frano, Michael R.; Burnett, Dustin J.; Burri, Betty J.

    2016-01-01

    Boiled biofortified cassava containing β-carotene can increase retinyl palmitate in triacylglycerol-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification is a popular method of preparing cassava that removes cyanogen glucosides. Our objective was to compare the effectiveness of biofortified gari to gari prepared with red palm oil. The study was a randomized cross-over trial in 8 American women. Three gari preparations separated by 2 wk washout periods were consumed. Treatments (containing 200 – 225.9 g gari) were: biofortified gari (containing 1 mg β-carotene); red palm oil-fortified gari (1 mg β-carotene), and unfortified gari with a 0.3 mg retinyl palmitate reference dose. Blood was collected six times from −0.5 – 9.5 h post-ingestion. Triacylglycerol-rich plasma was separated by ultracentrifugation and analyzed by HPLC with diode array detection. Area under the curve for β-carotene, α-carotene, and retinyl palmitate increased after the fortified meals were fed (P < 0.05), though the retinyl palmitate increase induced by the red palm oil treatment was greater than that induced by the biofortified treatment (p<0.05). Vitamin A conversion was 2.4 ± 0.3 and 4.2 ± 1.5 μg pro-vitamin A carotenoid:1 μg retinol (means ± SEM) for red palm oil and biofortified gari, respectively. These results show that both treatments increased β-carotene, α-carotene, and retinyl palmitate in triacylglycerol-rich plasma concentrations in healthy well- nourished adult women, supporting our hypothesis that both interventions could support efforts to alleviate vitamin A deficiency. PMID:26319612

  17. Effects of processing, cooking, and storage on ß-carotene retention and bioaccessibility in biofortified cassava (Manihot esculenta)

    USDA-ARS?s Scientific Manuscript database

    Biofortification of cassava with beta-carotene is currently being tested in African populations where cassava is a staple food and vitamin A deficiency is a public health problem. Measuring the impact of traditional African processing and cooking on beta-carotene concentration and bioaccessibility ...

  18. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more than or equal to 6.0 in a liquid medium, or pH of more than or equal to 7.0 on solid media. The optimum growth conditions of pH 3.8 and 45 degrees were stronglymore » inhibitive to potential contaminants. It rapidly hydrolyzed cassava starch. It did not utilize sucrose, but approximately 16% of the small sucrose component of cassava was chemically hydrolyzed during the process. Growth with cassava meal (50 g/l) was complete in approximately 20 h, yielding 22.5 g/l (dry biomass), containing 41% crude protein (48-50% crude protein in the mycelium) and 31% true protein (7.0 g/l). Resting and germinating spores (10 to the power of 6 - 10 to the power of 8 per animal) injected by various routes into normal and gamma-irradiated 6-week-old mice and 7-day-old chickens failed to initiate infections.« less

  19. Vitamin B1 diversity and characterization of biosynthesis genes in cassava.

    PubMed

    Mangel, Nathalie; Fudge, Jared B; Fitzpatrick, Teresa B; Gruissem, Wilhelm; Vanderschuren, Hervé

    2017-06-15

    Vitamin B1, which consists of the vitamers thiamin and its phosphorylated derivatives, is an essential micronutrient for all living organisms because it is required as a metabolic cofactor in several enzymatic reactions. Genetic diversity of vitamin B1 biosynthesis and accumulation has not been investigated in major crop species other than rice and potato. We analyzed cassava germplasm for accumulation of B1 vitamers. Vitamin B1 content in leaves and roots of 41 cassava accessions showed significant variation between accessions. HPLC analyses of B1 vitamers revealed distinct profiles in cassava leaves and storage roots, with nearly equal relative levels of thiamin pyrophosphate and thiamin monophosphate in leaves, but mostly thiamin pyrophosphate in storage roots. Unusually, the cassava genome has two genes encoding the 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, THIC (MeTHIC1 and MeTHIC2), both of which carry a riboswitch in the 3'-UTR, as well as the adenylated thiazole synthase, THI1 (MeTHI1a and MeTHI1b). The THIC and THI1 genes are expressed at very low levels in storage roots compared with the accumulation of vitamin B1, indicating only limited biosynthesis de novo therein. In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC by the riboswitch present in the 3'-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Effects of boiling and frying on the bioaccessibility of beta-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari).

    PubMed

    Gomes, Suellen; Torres, Alexandre Guedes; Godoy, Ronoel; Pacheco, Sidney; Carvalho, José; Nutti, Marília

    2013-03-01

    The effects of boiling and frying on the bioaccessibility of all-trans-beta-carotene in biofortified BRS Jari cassava roots have not been investigated, although these are conventional methods of cassava preparation. The aims of the present study were to investigate beta-carotene micellarization efficiency of yellow-fleshed BRS Jari cassava roots after boiling and frying, as an indicator of the bioaccessibility of this carotenoid, and to apply fluorescence microscopy to investigate beta-carotene in the emulsified fraction. Uncooked, boiled, and fried cassava roots were digested in vitro for the evaluation, by reversed-phase high-performance liquid chromatography (HPLC), of the efficiency of micellarization of all-trans-beta-carotene in BRS Jari cassava roots. Fluorescence microscopy of the micellar fraction was used to confirm the presence of beta-carotene in the emulsified fraction and to observe the structure of the microemulsion from the boiled and fried cassava samples. Fried cassava roots showed the highest (p < .05) micellarization efficiency for total carotenoids and all-trans-beta-carotene (14.1 +/- 2.25% and 14.37 +/- 2.44%, respectively), compared with boiled and raw samples. Fluorescence microscopy showed that after in vitro digestion there were no carotenoid crystals in the micellar fraction, but rather that this fraction presented a biphasic system compatible with emulsified carotenoids, which was consistent with the expected high bioavailability of beta-carotene in this fraction. Increased emulsification and bioaccessibility of beta-carotene from fried biofortified BRS Jari cassava roots compensates for chemical losses during preparation, indicating that this preparation is suitable for home use of BRS Jari cassava roots and might represent a relatively good food source of bioavailable provitamin A.

  1. Evaluation of tensile properties and water absortion of cassava starch film

    NASA Astrophysics Data System (ADS)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  2. Characteristics of Chemical and Functional Properties of Modified Cassava Flour (Manihot esculenta) by Autoclaving-Cooling Cycles Method

    NASA Astrophysics Data System (ADS)

    Cecep Erwan Andriansyah, Raden; Rahman, Taufik; Herminiati, Ainia; Rahman, Nurhaidar; Luthfiyanti, Rohmah

    2017-12-01

    The modified cassava flour can be made using the method of the autoclaving cooling cycle (AAC). The stability of the warming can be seen from the decreasing value of breakdown viscosity, while the stability of the stirring process can be seen by the decreasing value of setback viscosity. The stages of research include: (1) the making of cassava flour, (2) the making of modified cassava flour by the method of treatment of ACC with a variety of flour concentration and autoclaving time, (3) chemical analysis of the moisture, ash, fat, protein, carbohydrate; The functional properties of the pasting characteristics to the initial temperature of the pasting, peak viscosity, hot paste viscosity, breakdown viscosity, cold paste viscosity and setback viscosity. The result shows that cassava flour modified by treatment of flour concentration 16% and autoclaving time 41 minutes having pasting code and pasting viscosity which is resistant to high temperature. Flour with this character is flour that is expected to maintain the texture of processed products with a paste form that remains stable. Utilization of modified cassava flour by the ACC method can be applied to the pasting product such as noodle and spaghetti, hoping to support for food diversification program to reduce dependence on wheat flour in Indonesia.

  3. Nutrient content of young cassava leaves and assessment of their acceptance as a green vegetable in Nigeria.

    PubMed

    Awoyinka, A F; Abegunde, V O; Adewusi, S R

    1995-01-01

    Cassava (Manihot esculenta Crantz) leaves contained a high level of crude protein (29.3-32.4% dry weight) compared to a conventional vegetable, Amaranthus (19.6%). Ash was 4.6-6.4% in cassava leaf samples but 13.1% dry weight in Amaranthus. Dietary fibre was very high in all samples (26.9-39% dry weight) while HCN-potential was low (5.1-12.6 mg/100 g dry weight). Tannin was the highest in IITA red cassava leaves (29.7 mg/g) and the lowest in Amaranthus vegetable. In vitro digestibility was very low in oven dried samples (15.6-22.7%). Blanching increased protein content (except Amaranthus) and in vitro protein digestibility but decreased ash, minerals, dietary fibre and tannin, while HCN-potential was unchanged. Grinding reduced both HCN-potential and tannin by 84 and 71% respectively while oven drying only reduced the HCN content marginally. Preference studies showed that the highest percentage of respondents (25.3%) preferred Amaranthus vegetable, followed by Celosia (17.5%), Talinum (12.4%), garden egg (11.5%), with cassava leaves as the least (0.5%). Organoleptic evaluation rated cassava leaf soup inferior to Amaranthus in terms of appearance, colour and texture but equal in terms of taste and flavour and overall acceptability.

  4. Occupational exposure to hydrogen cyanide during large-scale cassava processing, in Alagoas State, Brazil.

    PubMed

    Zacarias, Cyro Hauaji; Esteban, Claudia; Rodrigues, Gilson Lucio; Nascimento, Elizabeth de Souza

    2017-07-27

    The cassava roots used for flour production contain high amounts of cyanogenic glycosides and are, therefore, potential hydrogen cyanide (HCN) releasers. This fact is the cause of an increasing health concern in the sector of cassava processing. Brazilian workers engaged in the flour production may be chronically exposed to HCN in levels above the safety limits. This hypothesis is based on the drastic reduction in cyanide content of cassava roots during a traditional Brazilian method of processing and in the physical properties of the compound, which makes it very susceptible to volatilization and air contamination. As an attempt to explore this issue, HCN exposure in Brazilian "flour houses" was evaluated in this study through environmental and biological monitoring. Four flour houses placed in Alagoas State, Brazil, were investigated. The results indicated that the cassava processors are chronically exposed to HCN at average levels between 0.464 and 3.328mg/m3 (TWA), in the work environment. This range is below the TLV-C of 5mg/m3 but not below the Action Level of 2.5mg/m3. These data may be interpreted as a possible risk to susceptible individuals. Additionally, the biological monitoring indicated a high cyanide exposure in the population study, considering urinary thiocyanate (SCN-) levels.

  5. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    PubMed Central

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  6. Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta).

    PubMed

    Siebers, Tyche; Catarino, Bruno; Agusti, Javier

    2017-03-01

    We have identified new potential regulators of xylem cell-type determination and cellular proliferation in cassava and studied their expression in roots. Results are highly relevant for cassava biotechnology. Cassava's root system is composed of two types of root that coexist in every individual: the fibrous and the storage roots. Whether a root becomes fibrous or storage depends on the xylem cell types that it develops: fibrous roots develop xylem fibres and vessels while storage roots develop parenchyma xylem, the starch-storing tissue. A crucial question in cassava root development is how the specific xylem cell types differentiate and proliferate in the fibrous and storage roots. Using phylogenetic, protein sequence and synteny analyses we identified (1) MeVND6, MeVND7.1, MeVND7.2, MeNST3.1 and MeNST3.2 as the potential cassava orthologues of the Arabidopsis regulators of xylem cell type determination AtVND6, AtVND7 and AtNST3; and (2) MeWOX4.1 and MeWOX4.2 as the potential cassava orthologues of the Arabidopsis cambium regulator AtWOX4. Fibrous and storage roots were anatomically characterised and tested for the expression of the identified genes. Results revealed that (1) MeVND7.1 and MeVND7.2 are expressed in the fibrous but not in the storage roots; (2) MeVND6 shows low expression in both root types; (3) MeNST3.1 is not expressed in the fibrous or storage roots, while MeNST3.2 is highly expressed in both root-types and (4) MeWOX4.1 and, to a higher level, MeWOX4.2 are expressed in both the fibrous and storage roots. Results open new avenues for research in cassava root development and for food security-oriented biotechnology programmes.

  7. Diversity, Physicochemical and Technological Characterization of Elite Cassava (Manihot esculenta Crantz) Cultivars of Bantè, a District of Central Benin.

    PubMed

    Sanoussi, Abadjayé Faouziath; Loko, Laura Yéyinou; Ahissou, Hyacinthe; Adjahi, Adidjath Koubourath; Orobiyi, Azize; Agré, Angelot Paterne; Azokpota, Paulin; Dansi, Alexandre; Sanni, Ambaliou

    2015-01-01

    Cassava is one of the staple food crops contributing significantly to food and nutrition security in Benin. This study aimed to assess the diversity of the elite cassava cultivars of Bantè district, determine the physicochemical properties of the most preferred ones as well as the sensory attributes of their major derived products (gari and tapioca), and compare them with the farmers' and processors' perception on their technological qualities. The ethnobotanical investigation revealed existence of 40 cultivars including 9 elites that were further classified into three groups based on agronomics and technological and culinary properties. Clustered together, cultivars Idilèrou, Monlèkangan, and Odohoungbo characterized by low fiber content, high yield of gari and tapioca, and good in-ground postmaturity storage were the most preferred ones. Their physicochemical analysis revealed good rate of dry matters (39.8% to 41.13%), starch (24.47% to 25.5%) and total sugars (39.46% to 41.13%), low fiber (0.80% to 1.02%), and cyanide (50 mg/kg) contents. The sensory analysis of their gari and tapioca revealed very well appreciated (taste, color, and texture) products by the consumers. The confirmation by scientific analysis of the farmers' perception on qualities of the most preferred cultivars indicated that they have good knowledge of their materials.

  8. Anticipatory Consumer Socialization.

    ERIC Educational Resources Information Center

    Moore, Roy L.; Moschis, George P.

    Anticipatory consumer socialization is the learning of consumer roles and perceptions, which will be assumed at a later time, such as those that children acquire before they become adult consumers. A survey of 784 adolescents was conducted in a southern state to examine the anticipatory consumer socialization effects of such factors as the mass…

  9. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene.

    PubMed

    Welsch, Ralf; Arango, Jacobo; Bär, Cornelia; Salazar, Bertha; Al-Babili, Salim; Beltrán, Jesús; Chavarriaga, Paul; Ceballos, Hernan; Tohme, Joe; Beyer, Peter

    2010-10-01

    Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification.

  10. A standardized extract of Ginkgo biloba prevents locomotion impairment induced by cassava juice in Wistar rats

    PubMed Central

    Rivadeneyra-Domínguez, Eduardo; Vázquez-Luna, Alma; Rodríguez-Landa, Juan F.; Díaz-Sobac, Rafael

    2014-01-01

    The long-term consumption of cassava (Manihot esculenta Crantz) juice produce neurotoxic effects in the rat, characterized by an increased motor activity in the open field test and presence of uncoordinated swim (i.e., lateral swimming), in the swim test; which has been associated with damage in the hippocampus (CA1). On the other hand, flavonoids content in the Ginkgo biloba extract has been reported to produces neuroprotective effects at experimental level; therefore we hypothesized that G. biloba extract may prevents the motor alterations produced by cassava juice and reduce cellular damage in hippocampal neurons of the rat. In present study the effect of vehicle, cassava juice (linamarin, 0.30 mg/kg), G. biloba extract (dry extract, 160 mg/kg), and combination of treatment were evaluated in the open field and swim tests to identify locomotor and hippocampal alterations in adult male Wistar rats. All treatments were administered once per day, every 24 h, for 28 days, by oral rout. The effect was evaluated at 0, 7, 14, 21, and 28 days of treatment. The results show that cassava group from day 14 of treatment increase crossing and rearing in the open field test, as compared with the vehicle group; while in the swim test produces an uncoordinated swim characterized by the lateral swim. In this same group an increase in the number of damage neurons in the hippocampus (CA1) was identified. Interestingly, both behavioral and neuronal alterations produced by cassava juice administration were prevented by treatment with G. biloba extract. The results shown that G. biloba extract exert a protective effect against behavioral and neuronal damage associated with consumption of cassava juice in the rat. These effects are possibly related with flavonoid content in the G. biloba extract. PMID:25309441

  11. Landscape context does not constrain biological control of Phenacoccus manihoti in intensified cassava systems of southern Vietnam

    USDA-ARS?s Scientific Manuscript database

    Following its continent-wide spread in Africa during the 1970s and early 1980s, the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae) was inadvertently introduced to Southeast (SE) Asia in late 2008. In both regions P. manihoti can inflict severe damage on cassava, impact food secur...

  12. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.

    PubMed

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T

    2017-01-01

    Cassava ( Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth.

  13. Extending cassava root shelf life via reduction of reactive oxygen species production.

    PubMed

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-08-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration.

  14. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development

    PubMed Central

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T.

    2017-01-01

    Cassava (Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth. PMID:28286506

  15. The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark--a chemical food safety issue?

    PubMed

    Kolind-Hansen, Lotte; Brimer, Leon

    2010-01-30

    A number of retail shops in Copenhagen sell fresh cassava roots. Cassava roots contain the toxic cyanogenic glucoside linamarin. A survey was made of the shop characteristics, origin of the roots, buyers, shop owner's knowledge of toxicity levels, and actual toxicity levels. Shops selling fresh cassava were shown mostly to be owned by persons originating in the Middle East or Afghanistan, buyers were found to predominantly be of African origin, and sellers' knowledge concerning the potential toxicity was found to be very restricted. Seventy-six per cent of the roots purchased had a total cyanogenic potentials (CNp) above the 50 mg HCN equivalents kg(-1) dry weight (d.w.) proposed as acceptable by an EU working group. Two of 25 roots purchased had CNp higher than 340 mg HCN eq. kg(-1) d.w. The EU has previously made risk assessments concerning cassava and cyanogenic compounds. In the light of the conclusions drawn, the EU needs to make decisions about how to deal with the regulation and control of fresh cassava roots imported to the European food market. Also cassava root products and cassava leaves should be considered. (c) 2009 Society of Chemical Industry.

  16. Lactic acid fermentation of cassava dough into agbelima.

    PubMed

    Amoa-Awua, W K; Appoh, F E; Jakobsen, M

    1996-08-01

    The souring of cassava dough during fermentation into the fermented cassava meal, agbelima, was investigated. Four different types of traditional inocula were used to ferment the dough and increases in titrable acidity expressed as lactic acid from 0.31-0.38 to 0.78-0.91% (w/w) confirmed the fermentation to be a process of acidification. The microflora of all inocula and fermenting dough contained high counts of lactic acid bacteria, 10(8)-10(9) cfu/g in all inocula and 10(7)-10(8), 10(8)-10(9) and 10(9) cfu/g at 0, 24 and 48 h in all fermentations. Lactobacillus plantarum was the dominant species of lactic acid bacteria during all types of fermentation accounting for 51% of 171 representative isolates taken from various stages of fermentation. Other major lactic acid bacteria found were Lactobacillus brevis, 16%, Leuconostoc mesenteroides, 15% and some cocci including Streptococcus spp. whose numbers decreased with fermentation time. The lactic acid bacteria were responsible for the souring of agbelima through the production of lactic acid. All L. plantarum, L. brevis and L. mesenteroides isolates examined demonstrated linamarase as well as other enzymatic activities but did not possess tissue degrading enzymes like cellulase, pectin esterase and polygalacturonase. The aroma profile of agbelima did not vary with the type of inoculum used and in all samples the build-up of aroma compounds were dominated by a non-identified low molecular weight alcohol, 1-propanol, isoamyl alcohol, ethyl acetate, 3-methyl-1-butanol and acetoin. Substantial reductions occurred in the levels of cyanogenic compounds present in cassava during fermentation into agbelima and detoxification was enhanced by the use of inoculum.

  17. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease.

    PubMed

    Pinweha, Nattaya; Asvarak, Thipa; Viboonjun, Unchera; Narangajavana, Jarunya

    2015-02-01

    Cassava is a starchy root crop for food and industrial applications in many countries around the world. Among the factors that affect cassava production, diseases remain the major cause of yield loss. Cassava anthracnose disease is caused by the fungus Colletotrichum gloeosporioides. Severe anthracnose attacks can cause tip die-backs and stem cankers, which can affect the availability of planting materials especially in large-scale production systems. Recent studies indicate that plants over- or under-express certain microRNAs (miRNAs) to cope with various stresses. Understanding how a disease-resistant plant protects itself from pathogens should help to uncover the role of miRNAs in the plant immune system. In this study, the disease severity assay revealed different response to C. gloeosporioides infection in two cassava cultivars. Quantitative RT-PCR analysis uncovered the differential expression of the two miRNAs and their target genes in the two cassava cultivars that were subjected to fungal infection. The more resistant cultivar revealed the up-regulation of miR160 and miR393, and consequently led to low transcript levels in their targets, ARF10 and TIR1, respectively. The more susceptible cultivar exhibited the opposite pattern. The cis-regulatory elements relevant to defense and stress responsiveness, fungal elicitor responsiveness and hormonal responses were the most prevalent present in the miRNAs gene promoter regions. The possible dual role of these specific miRNAs and their target genes associated with cassava responses to C. gloeosporioides is discussed. This is the first study to address the molecular events by which miRNAs which might play a role in fungal-infected cassava. A better understanding of the functions of miRNAs target genes should greatly increase our knowledge of the mechanism underlying susceptibility and lead to new strategies to enhance disease tolerance in this economically important crop. Copyright © 2014 Elsevier GmbH. All

  18. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers.

    PubMed

    Omar, Nur Faezah; Hassan, Siti Aishah; Yusoff, Umi Kalsom; Abdullah, Nur Ashikin Psyquay; Wahab, Puteri Edaroyati Megat; Sinniah, Umarani

    2012-02-27

    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.

  19. Effect of cassava starch coating on quality and shelf life of fresh-cut pineapple (Ananas comosus L. Merril cv "Pérola").

    PubMed

    Bierhals, Vânia S; Chiumarelli, Marcela; Hubinger, Miriam D

    2011-01-01

    agents can extend the storage time and maintain the quality of fresh-cut produce. Cassava starch and alginate coatings are alternative to preserve minimally processed pineapples without changing the quality parameters of fresh fruit. Thus, this study is useful for consumers and fresh-cut industry interested in knowing factors affecting shelf life and quality of fresh-cut pineapple.

  20. Effect of feeding cassava (Manihot esculenta Crantz) root meal on growth performance, hydrocyanide intake and haematological parameters of broiler chicks.

    PubMed

    Akapo, Abiola Olajetemi; Oso, Abimbola Oladele; Bamgbose, Adeyemi Mustapha; Sanwo, Kehinde A; Jegede, Adebayo Vincent; Sobayo, Richard Abayomi; Idowu, Olusegun Mark; Fan, Juexin; Li, Lili; Olorunsola, Rotimi A

    2014-10-01

    The effect of feeding cassava root meal on growth performance, hydrocyanide intake, haematological indices and serum thiocyanate concentration of broiler chicks was investigated using 300-day-old male broilers. There were five dietary treatments arranged in a 2 × 2 + 1 factorial arrangement of two processing methods of cassava root (peeled and unpeeled) included at two levels (100 and 200 g/kg) plus a control diet (maize-based diet, containing no cassava root). Each treatment was replicated six times with ten birds per replicate. The feeding trial lasted for 28 days. Control-fed birds had the highest overall (P < 0.01) final liveweight and weight gain, least (P < 0.05) hydrocyanide (HCN) intake and best (P < 0.05) feed-to-gain ratio. Chicks fed with control and diet containing 100 g/kg peeled cassava root meal (PCRM) had the least (P < 0.05) feed cost per weight gain. Chicks fed with diet containing 100 g/kg cassava root meal had higher (P < 0.05) final liveweight and weight gain and reduced (P < 0.05) HCN intake than chicks fed with diet containing 200 g/kg cassava root meal. Dietary inclusion of peeled cassava root meal (PCRM) for broiler chicks resulted in increased final liveweight (P < 0.05), weight gain (P < 0.01) and feed intake (P < 0.01) when compared with birds fed with diet containing unpeeled cassava root meal (UCRM). The least (P < 0.01) final liveweight and weight gain and worst (P < 0.05) feed-to-gain ratio were obtained with chicks fed with diet containing 200 g/kg UCRM. Increased dietary inclusion levels of cassava root resulted in significant increase (P < 0.05) in white blood cell (WBC) count, heterophil count and serum thiocyanate concentration. In comparison with chicks fed with diet containing UCRM, dietary inclusion of PCRM resulted in increased (P < 0.05) red blood cell (RBC) count and haemoglobin (Hb) concentration and reduced (P < 0.05) white blood cell (WBC) count and serum

  1. Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava.

    PubMed

    Ren, Meng Yun; Feng, Ren Jun; Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5' upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had

  2. Expression patterns of members of the ethylene signaling–related gene families in response to dehydration stresses in cassava

    PubMed Central

    Shi, Hou Rui; Lu, Li Fang; Yun, Tian Yan; Peng, Ming; Guan, Xiao; Zhang, Heng; Wang, Jing Yi; Zhang, Xi Yan; Li, Cheng Liang; Chen, Yan Jun; He, Peng; Zhang, Yin Dong; Xie, Jiang Hui

    2017-01-01

    Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5’ upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had

  3. Improvement in the traditional processing method and nutritional quality of traditional extruded cassava-based snack (modified Ajogun).

    PubMed

    Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E

    2013-07-01

    This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional "Ajogun", fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P < 0.05) between the control sample and the extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P < 0.05) between the extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that "Ajogun", which is a lesser known cassava product, is rich in protein and fat.

  4. In vitro somatic embryogenesis and plant regeneration of cassava.

    PubMed

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  5. Biosafety considerations for selectable and scorable markers used in cassava (Manihot esculenta Crantz) biotechnology.

    PubMed

    Petersen, William; Umbeck, Paul; Hokanson, Karen; Halsey, Mark

    2005-01-01

    Cassava is an important subsistence crop grown only in the tropics, and represents a major source of calories for many people in developing countries. Improvements in the areas of resistance to insects and viral diseases, enhanced nutritional qualities, reduced cyanogenic content and modified starch characteristics are urgently needed. Traditional breeding is hampered by the nature of the crop, which has a high degree of heterozygosity, irregular flowering, and poor seed set. Biotechnology has the potential to enhance crop improvement efforts, and genetic engineering techniques for cassava have thus been developed over the past decade. Selectable and scorable markers are critical to efficient transformation technology, and must be evaluated for biosafety, as well as efficiency and cost-effectiveness. In order to facilitate research planning and regulatory submission, the literature on biosafety aspects of the selectable and scorable markers currently used in cassava biotechnology is surveyed. The source, mode of action and current use of each marker gene is described. The potential for toxicity, allergenicity, pleiotropic effects, horizontal gene transfer, and the impact of these on food or feed safety and environmental safety is evaluated. Based on extensive information, the selectable marker genes nptII, hpt, bar/pat, and manA, and the scorable marker gene uidA, all have little risk in terms of biosafety. These appear to represent the safest options for use in cassava biotechnology available at this time.

  6. Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz).

    PubMed

    Ou, Wenjun; Mao, Xiang; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Wu, Chunlai; Xia, Zhiqiang; Wang, Wenquan; Zhou, Shiyi; Li, Kaimian; Hu, Wei

    2018-01-01

    KT/HAK/KUP (KUP) family is responsible for potassium ion (K + ) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava ( Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes ( MeKUPs ) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H 2 O 2 , and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP -mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.

  7. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material.

    PubMed

    Iamareerat, Butsadee; Singh, Manisha; Sadiq, Muhammad Bilal; Anal, Anil Kumar

    2018-05-01

    Biodegradable packaging in food materials is a green technology based novel approach to replace the synthetic and conventional packaging systems. This study is aimed to formulate the biodegradable cassava starch based films incorporated with cinnamon essential oil and sodium bentonite clay nanoparticles. The films were characterized for their application as a packaging material for meatballs. The cassava starch films incorporated with sodium bentonite and cinnamon oil showed significant antibacterial potential against all test bacteria; Escherichia coli , Salmonella typhimurium and Staphylococcus aureus. Antibacterial effect of films increased significantly when the concentration of cinnamon oil was increased. The cassava starch film incorporated with 0.75% (w/w) sodium bentonite, 2% (w/w) glycerol and 2.5% (w/w) cinnamon oil was selected based on physical, mechanical and antibacterial potential to evaluate shelf life of meatballs. The meatballs stored at ambient temperature in cassava starch film incorporated with cinnamon oil and nanoclay, significantly inhibited the microbial growth till 96 h below the FDA limits (10 6  CFU/g) in foods compared to control films that exceeded above the limit within 48 h. Hence cassava starch based film incorporated with essential oils and clay nanoparticles can be an alternate approach as a packaging material for food industries to prolong the shelf life of products.

  8. Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.

    PubMed

    An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng

    2016-01-01

    Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  9. Red palm oil-supplemented and biofortified cassava gari increase the carotenoid and retinyl palmitate concentrations of triacylglycerol-rich plasma in women.

    PubMed

    Zhu, Chenghao; Cai, Yimeng; Gertz, Erik R; La Frano, Michael R; Burnett, Dustin J; Burri, Betty J

    2015-11-01

    Boiled biofortified cassava containing β-carotene can increase retinyl palmitate in triacylglycerol-rich plasma. Thus, it might alleviate vitamin A deficiency. Cassava requires extensive preparation to decrease its level of cyanogenic glucosides, which can be fatal. Garification is a popular method of preparing cassava that removes cyanogen glucosides. Our objective was to compare the effectiveness of biofortified gari to gari prepared with red palm oil. The study was a randomized crossover trial in 8 American women. Three gari preparations separated by 2-week washout periods were consumed. Treatments (containing 200-225.9 g gari) were as follows: biofortified gari (containing 1 mg β-carotene), red palm oil-fortified gari (1 mg β-carotene), and unfortified gari with a 0.3-mg retinyl palmitate reference dose. Blood was collected 6 times from -0.5 to 9.5 hours after ingestion. Triacylglycerol-rich plasma was separated by ultracentrifugation and analyzed by high-performance liquid chromatography (HPLC) with diode array detection. Area under the curve for β-carotene, α-carotene, and retinyl palmitate increased after the fortified meals were fed (P < .05), although the retinyl palmitate increase induced by the red palm oil treatment was greater than that induced by the biofortified treatment (P < .05). Vitamin A conversion was 2.4 ± 0.3 and 4.2 ± 1.5 μg pro-vitamin A carotenoid/1 μg retinol (means ± SEM) for red palm oil and biofortified gari, respectively. These results show that both treatments increased β-carotene, α-carotene, and retinyl palmitate in triacylglycerol-rich plasma concentrations in healthy well-nourished adult women, supporting our hypothesis that both interventions could support efforts to alleviate vitamin A deficiency. Published by Elsevier Inc.

  10. Provitamin A Accumulation in Cassava (Manihot esculenta) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene[W

    PubMed Central

    Welsch, Ralf; Arango, Jacobo; Bär, Cornelia; Salazar, Bertha; Al-Babili, Salim; Beltrán, Jesús; Chavarriaga, Paul; Ceballos, Hernan; Tohme, Joe; Beyer, Peter

    2010-01-01

    Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification. PMID:20889914

  11. Biofortification of essential nutritional compounds and trace elements in rice and cassava.

    PubMed

    Sautter, C; Poletti, S; Zhang, P; Gruissem, W

    2006-05-01

    Plant biotechnology can make important contributions to food security and nutritional improvement. For example, the development of 'Golden Rice' by Professor Ingo Potrykus was a milestone in the application of gene technology to deliver both increased nutritional qualities and health improvement to wide sections of the human population. Mineral nutrient and protein deficiency as well as food security remain the most important challenges for developing countries. Current projects are addressing these issues in two major staple crops, cassava (Manihot esculenta Crantz) and rice. The tropical root crop cassava is a major source of food for approximately 600 million of the population worldwide. In sub-Saharan Africa >200 million of the population rely on cassava as their major source of dietary energy. The nutritional quality of the cassava root is not sufficient to meet all dietary needs. Rice is the staple food for half the world population, providing approximately 20% of the per capita energy and 13% of the protein for human consumption worldwide. In many developing countries the dietary contributions of rice are substantially greater (29.3% dietary energy and 29.1% dietary protein). The current six most popular 'mega' rice varieties (in terms of popularity and acreage), including Chinese hybrid rice, have an incomplete amino acid profile and contain limited amounts of essential micronutrients. Rice lines with improved Fe contents have been developed using genes that have functions in Fe absorption, translocation and accumulation in the plant, as well as improved Fe bioavailability in the human intestine. Current developments in biotechnology-assisted plant improvement are reviewed and the potential of the technology in addressing human nutrition and health are discussed.

  12. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    NASA Astrophysics Data System (ADS)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  13. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  14. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  15. Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava.

    PubMed

    Shang, Sang; Wu, Chunlai; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Tian, Libo; Hu, Wei

    2018-02-20

    GENERAL REGULATORY FACTOR (GRF) proteins play vital roles in the regulation of plant growth, development, and response to abiotic stress. However, little information is known for this gene family in cassava ( Manihot esculenta ). In this study, 15 MeGRFs were identified from the cassava genome and were clustered into the ε and the non-ε groups according to phylogenetic, conserved motif, and gene structure analyses. Transcriptomic analyses showed eleven Me GRFs with constitutively high expression in stems, leaves, and storage roots of two cassava genotypes. Expression analyses revealed that the majority of GRFs showed transcriptional changes under cold, osmotic, salt, abscisic acid (ABA), and H₂O₂ treatments. Six Me GRFs were found to be commonly upregulated by abiotic stress, ABA, and H₂O₂ treatments, which may be the converging points of multiple signaling pathways. Interaction network analysis identified 18 possible interactors of MeGRFs. Taken together, this study elucidates the transcriptional control of Me GRFs in tissue development and the responses of abiotic stress and related signaling in cassava. Some constitutively expressed, tissue-specific, and abiotic stress-responsive candidate MeGRF genes were identified for the further genetic improvement of crops.

  16. Ethiopian pre-school children consuming a predominantly unrefined plant-based diet have low prevalence of iron-deficiency anaemia.

    PubMed

    Gashu, Dawd; Stoecker, Barbara J; Adish, Abdulaziz; Haki, Gulelat D; Bougma, Karim; Marquis, Grace S

    2016-07-01

    Children from low-income countries consuming predominantly plant-based diets but little animal products are considered to be at risk of Fe deficiency. The present study determined the Fe status of children from resource-limited rural households. A cross-sectional study. Twenty six kebeles (the smallest administrative unit) from six zones of the Amhara region, Ethiopia. Children aged 54-60 months (n 628). Grain, roots or tubers were the main dietary components consumed by 100 % of the study participants, followed by pulses, legumes or nuts (66·6 %). Consumption of fruit and vegetables (19·3 %) and meat, poultry and fish (2·2 %) was low. Children had a mean dietary diversity score of 2·1 (sd 0·8). Most children (74·8 %, n 470) were in the lowest dietary diversity group (1-2 food groups). Rate of any morbidity in the preceding 14 d was 22·9 % (n 114). Infection or inflammation (α1-acid glycoprotein >1·2 g/l) was present in 30·2 % (n 184) of children. Children had a high rate of stunting (43·2 %). Of the total sample, 13·6 % (n 82) of children were anaemic, 9·1 % (n 57) were Fe deficient and 5·3 % (n 32) had Fe-deficiency anaemia. Fe-deficiency erythropoiesis was present in 14·2 % (n 60) of children. Despite consuming a predominantly plant-based diet and little animal-source foods, there was a low prevalence of Fe-deficiency anaemia. This illustrates that dietary patterns can be inharmonious with Fe biochemical status; thus, Fe-related interventions require biochemical screening.

  17. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root

    USDA-ARS?s Scientific Manuscript database

    Several groups have reported on massive accumulation of total carotenoids in cassava storage root (CSR). Naturally occurring color variation associated with carotenoid accumulation was observed in cassava (Manihot esculenta Crantz) storage root of landraces from Amazon. Here carotenoid profiles from...

  18. Morphological and mechanical characterization of thermoplastic starch and its blends with polylactic acid using cassava starch and bagasse

    USDA-ARS?s Scientific Manuscript database

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it w...

  19. Introduction of East African cassava mosaic Zanzibar virus to Oman harks back to "Zanzibar, the capital of Oman".

    PubMed

    Khan, Akhtar J; Akhtar, Sohail; Al-Matrushi, Abdulrahman M; Fauquet, Claude M; Briddon, Rob W

    2013-02-01

    Cassava mosaic disease (CMD) is the most devastating disease of the subsistence crop cassava (Manihot esculenta) across Africa and the Indian subcontinent. The disease is caused by viruses of the genus Begomovirus (family Geminiviridae)-seven species have been identified so far. The Sultanate of Oman is unusual among countries in Arabia in growing cassava on a small scale for local consumption. During a recent survey in A'Seeb wilayat of Muscat governorate, Oman, cassava plants were identified with symptoms typical of CMD. A begomovirus, East African cassava mosaic Zanzibar virus (EACMZV), was isolated from symptomatic plants. This virus was previously only known to occur in Zanzibar and Kenya. During the 19th Century, Zanzibar was governed by Oman and was so important that the Sultan of Oman moved his capital there from Muscat. After a period of colonial rule, the governing Arab elite was overthrown, following independence in the 1960s, and many expatriate Omanis returned to their homeland. Having gained a liking for the local Zanzibar cuisine, it appears that returning Omanis did not wish to do without dishes made from one particular favorite, cassava. Consequently, they carried planting material back to Oman for cultivation in their kitchen gardens. The evidence suggests that this material harbored EACMZV. Recently, Oman has been shown to be a nexus for geminiviruses and their associated satellites from diverse geographic origins. With their propensity to recombine, a major mechanism for evolution of geminiviruses, and the fact that Oman (and several other Arabian countries) is a major hub for trade and travel by air and sea, the possibility of onward spread is worrying.

  20. Cyanide and Aflatoxin Loads of Processed Cassava (Manihot esculenta) Tubers (Garri) in Njaba, Imo State, Nigeria

    PubMed Central

    Chikezie, Paul Chidoka; Ojiako, Okey A.

    2013-01-01

    Objectives: The present study sought to investigate the role of palm oil, in conjunction with the duration of fermentation, on cyanide and aflatoxin (AFT) loads of processed cassava tubers (Garri). Materials and Methods: Matured cassava (Manihot esculenta Crantz) tubers were harvested from three different locations (Akunna, Mkporo-Oji and Durungwu) in Njaba Local Government Area, Imo State, Nigeria. The cassava tubers were processed into Garri according to standard schemes with required modifications and measured for cyanide content using titrimetric methods. Samples of Garri for determination of AFT levels were stored for 30 days before the commencement of spectrophotometric analysis. Results: Cyanide content of peeled cassava tubers was within the range of 4.07 ± 0.16-5.20 ± 0.19 mg hydrocyanic acid (HCN) equivalent/100 g wet weight, whereas the various processed cassava tubers was within the range of 1.44 ± 0.34-3.95 ± 0.23 mg HCN equivalents/100 g. For the 48 h fermentation scheme, Garri treated with palm oil exhibited marginal reduction in cyanide contents by 0.96%, 3.52% and 3.69%, whereas 4 h fermentation scheme is in concurrence with palm oil treatment caused 4.42%, 7.47% and 5.15% elimination of cyanide contents compared with corresponding untreated Garri samples (P > 0.05). Levels of AFT of the various Garri samples ranged between 0.26 ± 0.07 and 0.55 ± 0.04 ppb/100 g. There was no significant difference (P > 0.05) in AFT levels among the various samples in relation to their corresponding sources. Conclusion: The present study showed that the 48 h fermentation scheme for Garri production caused significant (P < 0.05) reduction, but did not obliterate the cyanide content of cassava tubers. Conversely, the 48 h fermentation scheme promoted the elevation of AFT levels, but was relatively reduced in Garri samples treated with palm oil. PMID:24403736

  1. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava

    PubMed Central

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava. PMID:26904033

  2. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    PubMed

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  3. Genetic diversity in cassava landraces grown on farms in Alta Floresta-MT, Brazil.

    PubMed

    Tiago, A V; Rossi, A A B; Tiago, P V; Carpejani, A A; Silva, B M; Hoogerheide, E S S; Yamashita, O M

    2016-09-02

    Brazil is considered one of the domestication centers of cassava (Manihot esculenta), containing a large part of the biological diversity and traditional knowledge of the species. The aim of the present study was to evaluate the genetic diversity of cassava landraces grown by farmers in the north of Mato Grosso State, Brazil, using inter simple sequence repeat (ISSR) molecular markers. The study was carried out in the municipality of Alta Floresta, MT, on farms located in two rural areas. Seventeen cassava landraces were selected. The DNA was extracted and polymerase chain reaction amplifications were performed using 15 ISSR primers. Genetic similarity estimates were calculated using Jaccard's index and the generated matrix was used for clustering the genotypes by using UPGMA and Tocher's methods. The 15 ISSR primers amplified 120 fragments, revealing 61.67% polymorphism. The polymorphism information content ranged from 0.04 to 0.61, averaging 0.39. The most similar genotypes were AF5 and AF8, whereas the least similar were AF1 and AF16. The UPGMA clustering method formed five groups. Group I included twelve landraces, Group II contained two, and the other groups contained one landrace each. Tocher's method resulted in six groups: 12 landraces clustered in one group, and the other groups each contained one landrace. The ISSR markers proved efficient in revealing genetic diversity among the cassava landraces. The landraces grown by farmers in the two rural areas of Alta Floresta have a great variability and, thus, can be exploited in programs for breeding and preservation of the species.

  4. Response of cassava genotypes to different micropropagation media

    USDA-ARS?s Scientific Manuscript database

    Cassava is one of the most important staple foods in the human diet in the tropics, where it ranks fourth as a source of energy, after rice, sugar cane and maize. Since it is a vegetative propagated crop, the use of in vitro propagation is very important to preserve the germplasm free of pest and di...

  5. Comparative Proteome Analysis of the Tuberous Roots of Six Cassava (Manihot esculenta) Varieties Reveals Proteins Related to Phenotypic Traits.

    PubMed

    Schmitz, Gabriela Justamante Händel; de Magalhães Andrade, Jonathan; Valle, Teresa Losada; Labate, Carlos Alberto; do Nascimento, João Roberto Oliveira

    2016-04-27

    Cassava (Manihot esculenta Crantz) is a staple food and an important source of starch, and the attributes of its tuberous root largely depend on the variety. The proteome of cassava has been investigated; however, to date, no study has focused on varieties that reveal the molecular basis of phenotypical characteristics. Therefore, we aimed to compare the proteome of the tuberous roots of six cassava varieties that differed in carbohydrates, carotenoids, and resistance to diseases, among other attributes. Two-dimensional gels showed 146 differential spots between the varieties, and the functional roles of some differential proteins were correlated to phenotypic characteristics of the varieties, such as the amount of carbohydrates or carotenoids and the resistance to biotic or abiotic stresses. The results obtained here highlight elements that might help to direct the improvement of new cultivars of cassava, which is an economically and socially relevant crop worldwide.

  6. Improvement in the traditional processing method and nutritional quality of traditional extruded cassava-based snack (modified Ajogun)

    PubMed Central

    Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E

    2013-01-01

    This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional “Ajogun”, fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P < 0.05) between the control sample and the extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P < 0.05) between the extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that “Ajogun”, which is a lesser known cassava product, is rich in protein and fat. PMID:24804039

  7. The management of cassava toxicity and its changing sociocultural context in the Kei Islands, eastern Indonesia.

    PubMed

    Soselisa, Hermien L; Ellen, Roy

    2013-01-01

    Over a period of 150 years the Kei Islands have undergone environmental change, from rainforest to dryland savanna woodland. This has been accompanied by a shift in starch staple from sago, tubers, and grain to cassava. We show how this has been an effective ecological adaptation with social ramifications, not least the adoption of bitter cassava as a cultural identity marker. One of the problems of bitter cassava diets where people have become dependent upon them in poor parts of the Old World tropics are the effects of toxicity. We show how through a combination of factors and strategies this has not been a major issue in the Kei Islands, and how through a government-assisted agricultural project, attempts are being made to build upon this successful transition. The viability of present trends are evaluated.

  8. Evaluation of a nutrient-based diet quality index in UK young children and investigation into the diet quality of consumers of formula and infant foods.

    PubMed

    Verger, Eric O; Eussen, Simone; Holmes, Bridget A

    2016-07-01

    To adapt and evaluate a nutrient-based diet quality index (PANDiet) for UK young children and to determine the nutritional adequacy of their diets according to consumption of young child formula (YCF) and commercial infant foods (CIF). Content and construct validity of the PANDiet were assessed by studying associations between the PANDiet and its components, energy intake, food intakes, and child and maternal characteristics. Four groups of children were defined according to their intake of YCF and CIF: (i) no consumption; (ii) consumption of YCF; (iii) consumption of CIF; and (iv) consumption of YCF and CIF. Child and maternal characteristics, PANDiet scores and food intakes of these four groups were compared. Secondary analysis of data from the UK Diet and Nutrition Survey of Infants and Young Children (DNSIYC, 2011). Young children (n 1152) aged 12-18 months. The PANDiet was adapted to the UK based on twenty-five nutrients. A lower PANDiet score was linked to lower intakes of YCF, CIF, vegetables and fruits. Determinants of having a lower score were being older, having siblings and having a younger mother with a lower educational level. Compared with children consuming neither YCF nor CIF, PANDiet scores were higher in children consuming CIF (+1·4), children consuming YCF (+7·2) and children consuming YCF and CIF (+7·8; all P<0·001). The PANDiet is a valid indicator of the nutrient adequacy of the diet of UK young children. Consuming CIF was not found to be associated with lower nutritional adequacy whereas consuming YCF was associated with higher nutritional adequacy.

  9. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses.

    PubMed

    Maruthi, Midatharahally N; Jeremiah, Simon C; Mohammed, Ibrahim U; Legg, James P

    2017-12-01

    Cassava brown streak disease (CBSD) is arguably the most dangerous current threat to cassava, which is Africa's most important food security crop. CBSD is caused by two RNA viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The roles of the whitefly Bemisia tabaci (Gennadius) and farmer practices in the spread of CBSD were investigated in a set of field and laboratory experiments. The virus was acquired and transmitted by B. tabaci within a short time (5-10 min each for virus acquisition and inoculation), and was retained for up to 48 hr. Highest virus transmission (60%) was achieved using 20-25 suspected viruliferous whiteflies per plant that were given acquisition and inoculation periods of 24 and 48 hr, respectively. Experiments mimicking the agronomic practices of cassava leaf picking or the use of contaminated tools for making cassava stem cuttings did not show the transmission of CBSV or UCBSV. Screenhouse and field experiments in Tanzania showed that the spread of CBSD next to spreader rows was high, and that the rate of spread decreased with increasing distance from the source of inoculum. The disease spread in the field up to a maximum of 17 m in a cropping season. These results collectively confirm that CBSV and UCBSV are transmitted by B. tabaci semipersistently, but for only short distances in the field. This implies that spread over longer distances is due to movements of infected stem cuttings used for planting material. These findings have important implications for developing appropriate management strategies for CBSD.

  10. Amounts of artificial food dyes and added sugars in foods and sweets commonly consumed by children.

    PubMed

    Stevens, Laura J; Burgess, John R; Stochelski, Mateusz A; Kuczek, Thomas

    2015-04-01

    Artificial food colors (AFCs) are used to color many beverages, foods, and sweets in the United States and throughout the world. In the United States, the Food and Drug Administration (FDA) limits the AFCs allowed in the diet to 9 different colors. The FDA certifies each batch of manufactured AFCs to guarantee purity and safety. The amount certified has risen from 12 mg/capita/d in 1950 to 62 mg/capita/d in 2010. Previously, we reported the amounts of AFCs in commonly consumed beverages. In this article, the amounts of AFCs in commonly consumed foods and sweets are reported. In addition, the amount of sugars in each product is included. Amounts of AFCs reported here along with the beverage data show that many children could be consuming far more dyes than previously thought. Clinical guidance is given to help caregivers avoid AFCs and reduce the amount of sugars in children's diets. © The Author(s) 2014.

  11. Retention during processing and bioaccessibility of β-carotene in high β-carotene transgenic cassava root.

    PubMed

    Failla, Mark L; Chitchumroonchokchai, Chureeporn; Siritunga, Dimuth; De Moura, Fabiana F; Fregene, Martin; Manary, Mark J; Sayre, Richard T

    2012-04-18

    Cassava is a root crop that serves as a primary caloric source for many African communities despite its low content of β-carotene (βC). Carotenoid content of roots from wild type (WT) and three transgenic lines with high βC were compared after cooking and preparation of nonfermented and fermented flours according to traditional African methods. The various methods of processing all decreased βC content per gram dry weight regardless of genotype. The greatest loss of βC occurred during preparation of gari (dry fermentation followed by roasting) from WT and transgenic lines. The quantities of βC in cooked transgenic cassava root that partitioned into mixed micelles during in vitro digestion and transported into Caco-2 cells were significantly greater than those for identically processed WT root. These results suggest that transgenic high βC cassava will provide individuals with greater quantities of bioaccessible βC.

  12. Toward better understanding of postharvest deterioration: biochemical changes in stored cassava (Manihot esculenta Crantz) roots.

    PubMed

    Uarrota, Virgílio Gavicho; Nunes, Eduardo da Costa; Peruch, Luiz Augusto Martins; Neubert, Enilto de Oliveira; Coelho, Bianca; Moresco, Rodolfo; Domínguez, Moralba Garcia; Sánchez, Teresa; Meléndez, Jorge Luis Luna; Dufour, Dominique; Ceballos, Hernan; Becerra Lopez-Lavalle, Luis Augusto; Hershey, Clair; Rocha, Miguel; Maraschin, Marcelo

    2016-05-01

    Food losses can occur during production, postharvest, and processing stages in the supply chain. With the onset of worldwide food shortages, interest in reducing postharvest losses in cassava has been increasing. In this research, the main goal was to evaluate biochemical changes and identify the metabolites involved in the deterioration of cassava roots. We found that high levels of ascorbic acid (AsA), polyphenol oxidase (PPO), dry matter, and proteins are correlated with overall lower rates of deterioration. On the other hand, soluble sugars such as glucose and fructose, as well as organic acids, mainly, succinic acid, seem to be upregulated during storage and may play a role in the deterioration of cassava roots. Cultivar Branco (BRA) was most resilient to postharvest physiological deterioration (PPD), while Oriental (ORI) was the most susceptible. Our findings suggest that PPO, AsA, and proteins may play a distinct role in PPD delay.

  13. Comparative effects of corn-based diet and phase-fed cassava-based diet on growth rate, carcass characteristics and lipid profile of meat-type ducks.

    PubMed

    Saree, Saowalak; Bunchasak, Chaiyapoom; Rakangtong, Choawit; Sakdee, Jessada; Krutthai, Nuttawut; Poeikhampha, Theerawit

    2017-06-01

    This experiment was conducted to evaluate the effects of a corn- or cassava- based diet on the production of meat-type ducks. Four hundred day-old ducks were used in this experiment. They were divided into five groups with each group replicated eight times. The ducks fed the corn-based diets served as the control group. The four other groups comprised different treatments, with each one given the cassava-based diet based on phase-feeding. Three treatments were fed the cassava-based diet from 16, 28, and 35 d; respectively up to 42 d of age and the other group was fed the cassava-based diet from 1 to 42 d of age. The results indicated that ducks on either the corn- or cassava-based diets were similar in growth during 1 to 9 d of age. However, toward 35 to 42 d, the cassava-diet produced a higher weight gain (p<0.05). The cassava-based diet was better than the corn-based diet at increasing the outer and inner breast weights at 28, 35, or 42 d (p<0.05). In contrast, the corn-based diet was better at increasing abdominal fat (p<0.05). The two diets did not differ in their effects on the serum triglyceride, cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, very-low-density lipoprotein-cholesterol, and liver cholesterol. The corn-based diet, however, caused a highly significantly greater level of liver triglyceride (p<0.01). The results of this study suggest that both the cassava- and corn- based diets are similar in their effect on meat-type ducks during the starter stage but toward the finisher stage, the cassava-based diet has a better influence on weight gain and carcass characteristics.

  14. Diversity, Physicochemical and Technological Characterization of Elite Cassava (Manihot esculenta Crantz) Cultivars of Bantè, a District of Central Benin

    PubMed Central

    Sanoussi, Abadjayé Faouziath; Loko, Laura Yéyinou; Ahissou, Hyacinthe; Adjahi, Adidjath Koubourath; Orobiyi, Azize; Agré, Angelot Paterne; Azokpota, Paulin; Dansi, Alexandre; Sanni, Ambaliou

    2015-01-01

    Cassava is one of the staple food crops contributing significantly to food and nutrition security in Benin. This study aimed to assess the diversity of the elite cassava cultivars of Bantè district, determine the physicochemical properties of the most preferred ones as well as the sensory attributes of their major derived products (gari and tapioca), and compare them with the farmers' and processors' perception on their technological qualities. The ethnobotanical investigation revealed existence of 40 cultivars including 9 elites that were further classified into three groups based on agronomics and technological and culinary properties. Clustered together, cultivars Idilèrou, Monlèkangan, and Odohoungbo characterized by low fiber content, high yield of gari and tapioca, and good in-ground postmaturity storage were the most preferred ones. Their physicochemical analysis revealed good rate of dry matters (39.8% to 41.13%), starch (24.47% to 25.5%) and total sugars (39.46% to 41.13%), low fiber (0.80% to 1.02%), and cyanide (50 mg/kg) contents. The sensory analysis of their gari and tapioca revealed very well appreciated (taste, color, and texture) products by the consumers. The confirmation by scientific analysis of the farmers' perception on qualities of the most preferred cultivars indicated that they have good knowledge of their materials. PMID:26693522

  15. The Effects of Television Advertising on Children. Report No. 4: Attitudes of Industry Executives, Government Officials and Consumer Critics Toward Children's Advertising. Final Report.

    ERIC Educational Resources Information Center

    Atkin, Charles K.; Culley, James

    This report, the fourth in a series of six reports on television advertising and children, describes attitudes toward children's television advertising held by industry executives, government officials, and consumer critics. The accuracy with which each group perceives the positions of the other parties involved is also assessed. Data were…

  16. Genome-Wide Analyses of Calcium Sensors Reveal Their Involvement in Drought Stress Response and Storage Roots Deterioration after Harvest in Cassava.

    PubMed

    Hu, Wei; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wu, Chunlai; Ding, Xupo; Wang, Wenquan; Xia, Zhiqiang; Guo, Jianchun; Peng, Ming

    2018-04-19

    Calcium (Ca 2+ ) plays a crucial role in plant development and responses to environmental stimuli. Currently, calmodulins (CaMs), calmodulin-like proteins (CMLs), and calcineurin B-like proteins (CBLs), such as Ca 2+ sensors, are not well understood in cassava ( Manihot esculenta Crantz), an important tropical crop. In the present study, 8 CaMs, 48 CMLs, and 9 CBLs were genome-wide identified in cassava, which were divided into two, four, and four groups, respectively, based on evolutionary relationship, protein motif, and gene structure analyses. Transcriptomic analysis revealed the expression diversity of cassava CaMs-CMLs-CBLs in distinct tissues and in response to drought stress in different genotypes. Generally, cassava CaMs-CMLs-CBLs showed different expression profiles between cultivated varieties (Arg7 and SC124) and wild ancestor (W14) after drought treatment. In addition, numerous CaMs-CMLs-CBLs were significantly upregulated at 6 h, 12 h, and 48 h after harvest, suggesting their possible role during storage roots (SR) deterioration. Further interaction network and co-expression analyses suggested that a CBL-mediated interaction network was widely involved in SR deterioration. Taken together, this study provides new insights into CaMs-CMLs-CBLs-mediated drought adaption and SR deterioration at the transcription level in cassava, and identifies some candidates for the genetic improvement of cassava.

  17. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.

    PubMed

    Narayanan, Narayanan N; Ihemere, Uzoma; Ellery, Claire; Sayre, Richard T

    2011-01-01

    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.

  18. An ordered EST catalogue and gene expression profiles of cassava (Manihot esculenta) at key growth stages.

    PubMed

    Li, You-Zhi; Pan, Ying-Hua; Sun, Chang-Bin; Dong, Hai-Tao; Luo, Xing-Lu; Wang, Zhi-Qiang; Tang, Ji-Liang; Chen, Baoshan

    2010-12-01

    A cDNA library was constructed from the root tissues of cassava variety Huanan 124 at the root bulking stage. A total of 9,600 cDNA clones from the library were sequenced with single-pass from the 5'-terminus to establish a catalogue of expressed sequence tags (ESTs). Assembly of the resulting EST sequences resulted in 2,878 putative unigenes. Blastn analysis showed that 62.6% of the unigenes matched with known cassava ESTs and the rest had no 'hits' against the cassava database in the integrative PlantGDB database. Blastx analysis showed that 1,715 (59.59%) of the unigenes matched with one or more GenBank protein entries and 1,163 (40.41%) had no 'hits'. A cDNA microarray with 2,878 unigenes was developed and used to analyze gene expression profiling of Huanan 124 at key growth stages including seedling, formation of root system, root bulking, and starch maturity. Array data analysis revealed that (1) the higher ratio of up-regulated ribosome-related genes was accompanied by a high ratio of up-regulated ubiquitin, proteasome-related and protease genes in cassava roots; (2) starch formation and degradation simultaneously occur at the early stages of root development but starch degradation is declined partially due to decrease in UDP-glucose dehydrogenase activity with root maturity; (3) starch may also be synthesized in situ in roots; (4) starch synthesis, translocation, and accumulation are also associated probably with signaling pathways that parallel Wnt, LAM, TCS and ErbB signaling pathways in animals; (5) constitutive expression of stress-responsive genes may be due to the adaptation of cassava to harsh environments during long-term evolution.

  19. A Study on Low-Cost Case Hardening of Mild and Alloy Steels Utilizing Cassava Leaf Media

    NASA Astrophysics Data System (ADS)

    Gordon, Renee Erica

    Conventional case hardening processes have major drawbacks in being expensive and hazardous to perform. A novel cyaniding technique has been developed to case harden steel which involves the use of cassava leaf. Cassava is ideal for use in this process as it contains varying degrees of cyanogenic glucoside (15-1000 mg of HCN per kg of cassava). The entire hardening process involves direct thermal decomposition of the HCN, which produced C and N gas that then diffused into the steel creating a hardened surface. Pulverized cassava leaf was involved in the pack-cyaniding of AISI 1018 and Nitralloy 135 within three varying process atmospheres. The use of barium carbonate (BaCO3) as an energizer was employed at the high temperature regime while barium chloride (BaCl2) was utilized at low temperatures. Vickers microhardness testing, microstructural characterization, and diffraction techniques were utilized for analysis. While no improvement was observed at low temperatures, processing within the high temperature regime showed significant hardening. The addition of BaCO3 to pulverized cassava leaf accelerated the hardening process by substantially increasing the resident surface microhardness while generating a shallow case layer distance. Diffusion theory was used to identify changes experienced with the variation in parameters. The presence of barium carbonate during processing decreased the diffusivity of hardening agents. This manifested in a very large, initial mass transfer of diffusing species localized in the case region followed by a minimum of any further increase in case depths, even as treatment time intervals were increased. The level of influence each parameter delivered was assessed using stepwise regression analysis and a unified model was constructed.

  20. Efficient CRISPR/Cas9 Genome Editing of Phytoene desaturase in Cassava.

    PubMed

    Odipio, John; Alicai, Titus; Ingelbrecht, Ivan; Nusinow, Dmitri A; Bart, Rebecca; Taylor, Nigel J

    2017-01-01

    CRISPR/Cas9 has become a powerful genome-editing tool for introducing genetic changes into crop species. In order to develop capacity for CRISPR/Cas9 technology in the tropical staple cassava ( Manihot esculenta ), the Phytoene desaturase ( MePDS ) gene was targeted in two cultivars using constructs carrying gRNAs targeting two sequences within MePDS exon 13. After Agrobacterium -mediated delivery of CRISPR/Cas9 reagents into cassava cells, both constructs induced visible albino phenotypes within cotyledon-stage somatic embryos regenerating on selection medium and the plants regenerated therefrom. A total of 58 (cv. 60444) and 25 (cv. TME 204) plant lines were recovered, of which 38 plant lines (19 from each cultivar) were analyzed for mutagenesis. The frequency of plant lines showing albino phenotype was high, ranging from 90 to 100% in cv. TME 204. Observed albino phenotypes were comprised of full albinos devoid of green tissue and chimeras containing a mixture of white and green tissues. Sequence analysis revealed that 38/38 (100%) of the plant lines examined carried mutations at the targeted MePDS site, with insertions, deletions, and substitutions recorded. One putatively mono-allelic homozygous line (1/19) was found from cv. 60444, while 1 (1/19) and 4 (4/19) putatively bi-allelic homozygous lines were found in 60444 and TME204, respectively. The remaining plant lines, comprised mostly of the chimeras, were found to be putatively heterozygous. We observed minor (1 bp) nucleotide substitutions and or deletions upstream of the 5' and or downstream of the 3' targeted MePDS region. The data reported demonstrates that CRISPR/Cas9-mediated genome editing of cassava is highly efficient and relatively simple, generating multi-allelic mutations in both cultivars studied. Modification of MePDS described here generates visually detectable mutated events in a relatively short time frame of 6-8 weeks, and does not require sequencing to confirm editing at the target. It

  1. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz).

    PubMed

    Moresco, Rodolfo; Uarrota, Virgílio Gavicho; Pereira, Aline; Tomazzoli, Maíra Maciel; Nunes, Eduardo da C; Peruch, Luiz Augusto Martins; Gazzola, Jussara; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-10-21

    In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis-β-carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (red-fleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.

  2. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz).

    PubMed

    Moresco, Rodolfo; Uarrota, Virgílio G; Pereira, Aline; Tomazzoli, Maíra; Nunes, Eduardo da C; Martins Peruch, Luiz Augusto; Gazzola, Jussara; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-12-01

    In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis- β-carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (redfleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.

  3. Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch.

    PubMed

    Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2017-10-01

    Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Morphological diversity of cassava accessions of the south-central mesoregion of the State of Mato Grosso, Brazil.

    PubMed

    Zago, B W; Barelli, M A A; Hoogerheide, E S S; Corrêa, C L; Delforno, G I S; da Silva, C J

    2017-08-17

    Genetic variability of cassava (Manihot esculenta Crantz) in Brazil is wide, being this the result of natural and cultural selection during pre- and post-domestication of the species in different environments. Given the number of species of the genus found in the region (38 of a total of 98 species), the central region of Brazil was defined as the primary center of cassava diversity. Therefore, genetic diversity characterization of cassava accessions is fundamental, both for farmers and for plant breeders, because it allows the organization of genetic resources and better utilization of available genetic diversity. This research aims to assess genetic divergence of cassava accessions from the south-central region of the State of Mato Grosso, based on multi-categorical morphological traits. For this purpose, 38 qualitative and quantitative morphological descriptors were used. Genetic diversity was expressed by the genetic similarity index, with subsequent clustering of accessions by the modified Tocher's procedure and UPGMA. Of 38 descriptors, only growth habit of stem showed no variability. Tocher and UPGMA methods were efficient and corroborated on group composition. Both methods were able to group accessions of different localities in distinct group consistency.

  5. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    PubMed Central

    Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu

    2007-01-01

    Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061

  6. Assessing the Effect of Composting Cassava Peel Based Substrates on the Yield, Nutritional Quality, and Physical Characteristics of Pleurotus ostreatus (Jacq. ex Fr.) Kummer

    PubMed Central

    Kortei, N. K.; Dzogbefia, V. P.; Obodai, M.

    2014-01-01

    Cassava peel based substrate formulations as an alternative substrate were used to grow mushrooms. The effect of two compost heights, three composting periods on the mycelia growth, physical characteristics, yield, and nutritional qualities of Pleurotus ostreatus (Jacq. ex Fr.) Kummer was studied. Mean mycelia growth of 16.2 cm after a period of seven (7) weeks was the best for 1.5 m compost height. Cap diameter and stipe length differed significantly (P < 0.05) with the compost heights (0.8 m and 1.5 m). The yield on compost height of 1.5 m, composted for 5 days, differed significantly (P < 0.05) from that of 0.8 m and gave increasing yields as follows: cassava peels and manure, cassava peels only, cassava peels and corn cobs (1 : 1 ratio), and cassava peels and corn cobs (1 : 1 ratio) with chicken manure. Composting periods (3 and 7 days) gave varying yields depending on the compost height. Based on the findings an interaction of 1.5 m compost height and 5 days composting period on cassava peels and corncobs (1 : 1 ratio) with chicken manure produced the best results. The nutritional quality of the mushrooms also differed significantly (P < 0.05), indicating that cassava peels could be used as a possible substrate in cultivation of mushroom. PMID:25580299

  7. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    PubMed Central

    Han, Bingying; Fu, Lili; Zhang, Dan; He, Xiuquan; Chen, Qiang; Peng, Ming; Zhang, Jiaming

    2016-01-01

    Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz) is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD). Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis). All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW), and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS), 10 trehalose-6-phosphate phosphatases (TPP), and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4) that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1) in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose under

  8. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    NASA Astrophysics Data System (ADS)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  9. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis.

    PubMed

    Yang, Jun; An, Dong; Zhang, Peng

    2011-03-01

    Mechanisms related to the development of cassava storage roots and starch accumulation remain largely unknown. To evaluate genome-wide expression patterns during tuberization, a 60 mer oligonucleotide microarray representing 20 840 cassava genes was designed to identify differentially expressed transcripts in fibrous roots, developing storage roots and mature storage roots. Using a random variance model and the traditional twofold change method for statistical analysis, 912 and 3 386 upregulated and downregulated genes related to the three developmental phases were identified. Among 25 significantly changed pathways identified, glycolysis/gluconeogenesis was the most evident one. Rate-limiting enzymes were identified from each individual pathway, for example, enolase, L-lactate dehydrogenase and aldehyde dehydrogenase for glycolysis/gluconeogenesis, and ADP-glucose pyrophosphorylase, starch branching enzyme and glucan phosphorylase for sucrose and starch metabolism. This study revealed that dynamic changes in at least 16% of the total transcripts, including transcription factors, oxidoreductases/transferases/hydrolases, hormone-related genes, and effectors of homeostasis. The reliability of these differentially expressed genes was verified by quantitative real-time reverse transcription-polymerase chain reaction. These studies should facilitate our understanding of the storage root formation and cassava improvement. © 2011 Institute of Botany, Chinese Academy of Sciences.

  10. Effects of Meloidogyne incognita on Growth and Storage-Root Formation of Cassava (Manihot esculenta)

    PubMed Central

    Makumbi-Kidza, N. N.; Speijer, P. R.; Sikora, R. A.

    2000-01-01

    Two-node cuttings of cassava cultivar SS4 were inoculated with 1,000 infective juveniles of Meloidogyne incognita at 1, 14, 40, 70, 88, and 127 days after planting (DAP). Plant growth and root damage were assessed at 150 DAP. Meloidogyne incognita significantly reduced the number of storageroots formed in plants inoculated at 14, 40, 70, and 88 DAP and the total weight of storage-roots in plants inoculated at 1, 14, 40, 70, and 88 DAP, compared to uninoculated plants. Individual storage-root weight and plant height were not affected by M. incognita. Storage-root formation in cassava is initiated when plants are 1 to 2 months old. The results of this experiment indicate that, at this time, young cassava plants are most prone to root-knot nematode damage in terms of storage-root formation. The production loss caused by M. incognita to young SS4 plants was due to a reduction of storage-root number rather than a reduction in individual storage-root weight. PMID:19270997

  11. Changes in cassava toxicity during processing into gari and ijapu--two fermented food products.

    PubMed

    Sokari, T G; Karibo, P S

    1992-01-01

    Grated cassava to which tap water was added at levels of 25%, 50% and 75% (v/w) was held at 30 degrees C, 40 degrees C or 50 degrees C and examined over a 6 h period for cyanide content, pH and titratable acidity (TTA). During the come-up time, i.e. the time between addition of water and attainment of desired holding temperature (between 14 and 47 min), reductions in bound cyanide of ca 54-85% occurred, depending on the level of added water and holding temperature. The corresponding losses for the control samples, to which no water was added, were ca 25-33%. The biggest reduction in the bound cyanide of > 99% (from 89.0 to 0.6 ppm) occurred in grated cassava with 75% added water held at 50 degrees C. There was little or no change in pH during the period of study. The reduction of processing time for certain cassava products based on separation into detoxication and flavour development/fermentation stages is discussed.

  12. Consuming calories and creating cavities: beverages NZ children associate with sport.

    PubMed

    Smith, Moira; Jenkin, Gabrielle; Signal, Louise; McLean, Rachael

    2014-10-01

    Sugar-sweetened beverages (SSBs) are widely available, discounted and promoted, and despite recommendations to the contrary, frequently consumed by children. They provide few nutritional benefits, and their consumption is implicated in a number of poor health outcomes. This study examined the nature of the beverages that sport-playing New Zealand (NZ) children associate with sport. It assessed how well the beverages aligned with nutrition guidelines and relevant regulations, and their likely impacts on health. Eighty-two children (38 girls and 44 boys) aged 10-12 years were purposively selected from netball, rugby and football clubs in low and high socioeconomic neighbourhoods, in Wellington, New Zealand (NZ). Children photographed beverages they associated with sport. The beverages were then purchased and analysed in accordance with NZ nutrition guidelines, and relevant content and labelling regulations, by: package and serving size; energy, sugar, sodium and caffeine content; pH; and advisory statements. The beverages the children associated with sport overwhelmingly had characteristics which do not support children in adhering to NZ nutrition guidelines. Implementing public health mechanisms, such as healthy food and beverage policies, widely promoting water as the beverage of choice in sport, and implementing healthy eating and drinking campaigns in sports clubs, would assist children who play organised sport to select beverages that are in keeping with children's nutrition guidelines. As part of a comprehensive public health approach they would also reduce the substantial, unnecessary and potentially harmful contribution sugar-sweetened beverages make to their diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Classification of cassava genotypes based on qualitative and quantitative data.

    PubMed

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  14. Perceptions and choices of Brazilian children as consumers of food products.

    PubMed

    Mazzonetto, A C; Fiates, G M R

    2014-07-01

    In order to identify children's perceptions about food choices and their behavior as consumers and influencers of food purchases, 16 focus groups were conducted with 71 students aged 8-10 years. Transcriptions were submitted to lexical analysis using the Alceste software. The initial contextual unit broke down into 1469 elementary contextual units, 84% of which were retained in the descending hierarchical classification. Results from the larger and more specific classes are reported here. Children were students from public schools where energy-dense nutrient-poor (EDNP) food consumption was severely restricted, but these foods were still bought by the children themselves or requested from their parents. Television shows and advertisements motivated food consumption in general, and consumption of EDNP foods was associated with social events and eating outside the home. Situations that emphasize the pleasure and satisfaction of not eating according to food guidelines are being addressed by traditional educational strategies directed at the individual. Appealing to the senses and employing visual stimuli to get to the affective component of children's attitudes seems to be an alternative tool for promoting healthy eating, instead of the traditional approach based on recommendations and restrictions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz).

    PubMed

    Beltrán, J; Prías, M; Al-Babili, S; Ladino, Y; López, D; Beyer, P; Chavarriaga, P; Tohme, J

    2010-05-01

    A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene including promoter sequence. A promoter fragment (CP2; 731 bp) was evaluated for its potential to regulate the expression of the reporter gene GUSPlus in transgenic cassava plants grown in the field. Intense GUS staining was observed in storage roots and vascular stem tissues; less intense staining in leaves; and none in the pith. Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a second approach, the activity of a longer promoter fragment (CP1) including an intrinsic intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference, conferring high expression in the secondary phloem and vascular cambium of roots, but six times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be useful tools to improve nutritional and agronomical traits of cassava by genetic engineering. To date, this is the first study presenting field data on the specificity and potential of promoters for transgenic cassava.

  16. Synthesis of periclinal chimera in cassava.

    PubMed

    Nassar, N M A; Bomfim, N

    2013-02-27

    We provide the first report on the synthesis of a very productive interspecific periclinal chimera of cassava, with large and edible roots. The epidermal tissue of the chimera was formed by the cultivated species Manihot esculenta (E), and the subepidermis and internal tissue were formed by the wild species, Manihot fortalezensis (F). We used cytogenetics and morphological analyses to determine the origins of all tissues. These results may offer potential for the development of new lines for crop improvement based on the use of chimera composed of different combinations of wild species and cultivars.

  17. Production and Purification of Bioethanol from Molasses and Cassava

    NASA Astrophysics Data System (ADS)

    Maryana, Roni; Wahono, Satriyo Krido

    2009-09-01

    This research aim to analysis bioethanol purification process. Bioethanol from cassava has been produced in previous research and the ethanol from molasses was taken from Bekonang region. The production of bioethanol from cassava was carried out through several processes such as homogenization, adding of α-amylase, β-amylase and yeast (Saccharomyces c). Two types of laboratory scale distillator have been used, the first type is 50 cm length and 4 cm diameter. The second type distillator is 30 cm length and 9 cm diameter. Both types have been used to distill bioethanol The initial concentration after the fermentation process is 15% for bioethanol from cassava and 20-30% ethanol from molasses. The results of first type distillator are 90% of bioethanol at 50° C and yield 2.5%; 70% of bioethanol at 60° C and yield 11.2%. 32% of bioethanol at 70° C and yield 42%. Meanwhile the second distillator results are 84% of bioethanol at 50° C with yield 12%; 51% of bioethanol at 60° C with yield 35.5%; 20% of bioethanol at 70° C with yield 78.8%; 16% of bioethanol at 80° C with yield 81.6%. The ethanol from molasses has been distillated once times in Bekonang after the fermentation process, the yield was about 20%. In this research first type distillator and the initial concentration is 20% has been used. The results are 95% of bioethanol at 75° C with yield 8%; 94% of bioethanol at 85° C with yield 13% when vacuum pump was used. And 94% of bioethanol at 90° C with yield 3.7% and 94% of bioethanol at 96° C with yield 10.27% without vacuum pump. The bioethanol purification use second type distillator more effective than first type distillator.

  18. Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz).

    PubMed

    Delgado, Alfredo; Hays, Dirk B; Bruton, Richard K; Ceballos, Hernán; Novo, Alexandre; Boi, Enrico; Selvaraj, Michael Gomez

    2017-01-01

    Understanding root traits is a necessary research front for selection of favorable genotypes or cultivation practices. Root and tuber crops having most of their economic potential stored below ground are favorable candidates for such studies. The ability to image and quantify subsurface root structure would allow breeders to classify root traits for rapid selection and allow agronomist the ability to derive effective cultivation practices. In spite of the huge role of Cassava ( Manihot esculenta Crantz), for food security and industrial uses, little progress has been made in understanding the onset and rate of the root-bulking process and the factors that influence it. The objective of this research was to determine the capability of ground penetrating radar (GPR) to predict root-bulking rates through the detection of total root biomass during its growth cycle. Our research provides the first application of GPR for detecting below ground biomass in cassava. Through an empirical study, linear regressions were derived to model cassava bulking rates. The linear equations derived suggest that GPR is a suitable measure of root biomass ( r  = .79). The regression analysis developed accounts for 63% of the variability in cassava biomass below ground. When modeling is performed at the variety level, it is evident that the variety models for SM 1219-9 and TMS 60444 outperform the HMC-1 variety model (r 2  = .77, .63 and .51 respectively). Using current modeling methods, it is possible to predict below ground biomass and estimate root bulking rates for selection of early root bulking in cassava. Results of this approach suggested that the general model was over predicting at early growth stages but became more precise in later root development.

  19. Chemical composition and nutritive value of four varieties of cassava leaves grown in South-Western Nigeria.

    PubMed

    Oni, A O; Onwuka, C F I; Arigbede, O M; Anele, U Y; Oduguwa, O O; Onifade, O S; Tan, Z L

    2011-10-01

    The nutritive value of leaves of four varieties of cassava - MS 6, TMS 30555, Idileruwa and TMS 30572 was evaluated based on their chemical composition and in vitro fermentation. Crude protein (CP) contents of cassava leaves ranged from 177 to 240 g/kg dry matter (DM), with TMS 30555 showing the highest CP contents. Neutral detergent fibre (NDFom) and acid detergent fibre (ADFom) contents of cassava leaves ranged from 596 to 662 and 418 to 546 g/kg DM respectively. Condensed tannin (CT) and hydrocyanic acid contents ranged from 1.0 to 3.8 g/kg and 58.5 to 86.7 mg/kg DM respectively. The range of volatile fatty acids (VFA) in the supernatant after in vitro incubation of the cassava varieties was: acetate (14.7-31.5 mmol/l); propionate (4.5-6.3 mmol/l); butyrate (3.1-3.9 mmol/l); valerate (0.4-0.6 mmol/l); iso-butyrate (0.6-1.3 mmol/l); iso-valerate (1.1-1.9 mmol/l). The acetate:propionate ratio resulting from fermentation of TMS 30555 was higher(p < 0.05) than that of the other leaves. The highest in vitro gas production of 50.5 ml/200 mg DM was recorded for MS6 being higher (p < 0.05) than for TMS 30572, but similar to TMS 30555 and Idileruwa. The DM, CP, ADF and HCN contents of cassava leaves were positively correlated with gas production, while CT content was negatively correlated with gas production. The study showed that leaves of the varieties MS 6 and TMS 30555 are superior to the others in terms of CP and gas production indicating a higher digestibility and energy content and thus nutritive potential. They may therefore serve as supplements for ruminants fed on poor roughages. © 2010 Blackwell Verlag GmbH.

  20. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  1. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  2. Radial Head Subluxation Among Young Children in the United States Associated With Consumer Products and Recreational Activities.

    PubMed

    Welch, Rachel; Chounthirath, Thiphalak; Smith, Gary A

    2017-07-01

    This study investigated the epidemiology of children treated in US emergency departments for radial head subluxation (RHS) associated with consumer products and recreational activities using data from the National Electronic Injury Surveillance System. An estimated 430 766 (95% confidence interval: 341 194-520 339) children ≤5 years of age were treated for RHS in US emergency departments from 1990 to 2011. The mean patient age was 2.1 years, and 56.5% of patients were girls. The most common mechanism of injury was a fall (43.2%), followed by arm pull (39.4%). The annual rate of RHS increased significantly by 190.1% during the 22-year study period. This is the largest study of RHS to date and the first to use a nationally representative sample to investigate secular trends and mechanisms of injury for RHS associated with consumer products and recreational activities. Events associated with consumer products and recreational activities are an important increasing source of RHS.

  3. Consumer Decisions. Student Manual.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational Education.

    This student manual covers five areas relating to consumer decisions. Titles of the five sections are Consumer Law, Consumer Decision Making, Buying a Car, Convenience Foods, and Books for Preschool Children. Each section may contain some or all of these materials: list of objectives, informative sections, questions on the information and answers,…

  4. High pressure intensification of cassava resistant starch (RS3) yields.

    PubMed

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  6. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  7. Cancer and non-cancer health risk from eating cassava grown in some mining communities in Ghana.

    PubMed

    Obiri, S; Dodoo, D K; Okai-Sam, F; Essumang, D K; Adjorlolo-Gasokpoh, A

    2006-07-01

    Food crops such as cassava, cocoyam and other tuber crops grown in mining communities uptake toxic or hazardous chemicals such as arsenic, and cadmium, from the soil. Cassava is a stable food for Ghanaians. This study evaluated human health risk from eating cassava grown in some mining communities in Ghana such as Bogoso, Prestea, Tarkwa and Tamso, which are important mining towns in the Western Region of Ghana. The study evaluated cancer and non-cancer health effects from eating cassava grown in the study areas in accordance with US Environmental Protection Agency's Risk Assessment guidelines. The results of the study revealed the following: cancer health risk for Tamso, 0.098 (RME--Reasonable Maximum Exposure) and 0.082 (CTE--Central Tendency Exposure). This means that approximately 10 and 8 out of 100 resident adults are likely to suffer from cancer related cases by RME and CTE parameters respectively. For Prestea, we have 0.010 and 0.12, which also means that approximately 1 out of 100 and 10 resident adults out of 100 are also likely to suffer from cancer related diseases by RME and CTE parameters. The results of the study obtained were found to be above the acceptable cancer risk range of 1x 10(-6) to 1x 10(-4), i.e., 1 case of cancer out of 1 million or 100,000 people respectively.

  8. Genome-Wide Association Studies of 11 Agronomic Traits in Cassava (Manihot esculenta Crantz)

    PubMed Central

    Zhang, Shengkui; Chen, Xin; Lu, Cheng; Ye, Jianqiu; Zou, Meiling; Lu, Kundian; Feng, Subin; Pei, Jinli; Liu, Chen; Zhou, Xincheng; Ma, Ping’an; Li, Zhaogui; Liu, Cuijuan; Liao, Qi; Xia, Zhiqiang; Wang, Wenquan

    2018-01-01

    Cassava (Manihot esculenta Crantz) is a major tuberous crop produced worldwide. In this study, we sequenced 158 diverse cassava varieties and identified 349,827 single-nucleotide polymorphisms (SNPs) and indels. In each chromosome, the number of SNPs and the physical length of the respective chromosome were in agreement. Population structure analysis indicated that this panel can be divided into three subgroups. Genetic diversity analysis indicated that the average nucleotide diversity of the panel was 1.21 × 10-4 for all sampled landraces. This average nucleotide diversity was 1.97 × 10-4, 1.01 × 10-4, and 1.89 × 10-4 for subgroups 1, 2, and 3, respectively. Genome-wide linkage disequilibrium (LD) analysis demonstrated that the average LD was about ∼8 kb. We evaluated 158 cassava varieties under 11 different environments. Finally, we identified 36 loci that were related to 11 agronomic traits by genome-wide association analyses. Four loci were associated with two traits, and 62 candidate genes were identified in the peak SNP sites. We found that 40 of these genes showed different expression profiles in different tissues. Of the candidate genes related to storage roots, Manes.13G023300, Manes.16G000800, Manes.02G154700, Manes.02G192500, and Manes.09G099100 had higher expression levels in storage roots than in leaf and stem; on the other hand, of the candidate genes related to leaves, Manes.05G164500, Manes.05G164600, Manes.04G057300, Manes.01G202000, and Manes.03G186500 had higher expression levels in leaves than in storage roots and stem. This study provides basis for research on genetics and the genetic improvement of cassava. PMID:29725343

  9. Genome-Wide Association Studies of 11 Agronomic Traits in Cassava (Manihot esculenta Crantz).

    PubMed

    Zhang, Shengkui; Chen, Xin; Lu, Cheng; Ye, Jianqiu; Zou, Meiling; Lu, Kundian; Feng, Subin; Pei, Jinli; Liu, Chen; Zhou, Xincheng; Ma, Ping'an; Li, Zhaogui; Liu, Cuijuan; Liao, Qi; Xia, Zhiqiang; Wang, Wenquan

    2018-01-01

    Cassava ( Manihot esculenta Crantz) is a major tuberous crop produced worldwide. In this study, we sequenced 158 diverse cassava varieties and identified 349,827 single-nucleotide polymorphisms (SNPs) and indels. In each chromosome, the number of SNPs and the physical length of the respective chromosome were in agreement. Population structure analysis indicated that this panel can be divided into three subgroups. Genetic diversity analysis indicated that the average nucleotide diversity of the panel was 1.21 × 10 -4 for all sampled landraces. This average nucleotide diversity was 1.97 × 10 -4 , 1.01 × 10 -4 , and 1.89 × 10 -4 for subgroups 1, 2, and 3, respectively. Genome-wide linkage disequilibrium (LD) analysis demonstrated that the average LD was about ∼8 kb. We evaluated 158 cassava varieties under 11 different environments. Finally, we identified 36 loci that were related to 11 agronomic traits by genome-wide association analyses. Four loci were associated with two traits, and 62 candidate genes were identified in the peak SNP sites. We found that 40 of these genes showed different expression profiles in different tissues. Of the candidate genes related to storage roots, Manes.13G023300, Manes.16G000800, Manes.02G154700, Manes.02G192500, and Manes.09G099100 had higher expression levels in storage roots than in leaf and stem; on the other hand, of the candidate genes related to leaves, Manes.05G164500, Manes.05G164600, Manes.04G057300, Manes.01G202000, and Manes.03G186500 had higher expression levels in leaves than in storage roots and stem. This study provides basis for research on genetics and the genetic improvement of cassava.

  10. Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations

    PubMed Central

    Adjei, Frank Kumah; Osei, Yaa Asantewaa; Kuntworbe, Noble

    2017-01-01

    The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts), crushing strength (Cs), and friability (Ft) of tablets containing 5–10% w/w of the cassava starches were similar (p > 0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p > 0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP. PMID:28781909

  11. Interactive effects of temperature and drought on cassava growth and toxicity: implications for food security?

    PubMed

    Brown, Alicia L; Cavagnaro, Timothy R; Gleadow, Ros; Miller, Rebecca E

    2016-10-01

    Cassava is an important dietary component for over 1 billion people, and its ability to yield under drought has led to it being promoted as an important crop for food security under climate change. Despite its known photosynthetic plasticity in response to temperature, little is known about how temperature affects plant toxicity or about interactions between temperature and drought, which is important because cassava tissues contain high levels of toxic cyanogenic glucosides, a major health and food safety concern. In a controlled glasshouse experiment, plants were grown at 2 daytime temperatures (23 °C and 34 °C), and either well-watered or subject to a 1 month drought prior to harvest at 6 months. The objective was to determine the separate and interactive effects of temperature and drought on growth and toxicity. Both temperature and drought affected cassava physiology and chemistry. While temperature alone drove differences in plant height and above-ground biomass, drought and temperature × drought interactions most affected tuber yield, as well as foliar and tuber chemistry, including C : N, nitrogen and cyanide potential (CNp; total cyanide released from cyanogenic glucosides). Conditions that most stimulated growth and yield (well-watered × high temperature) effected a reduction in tuber toxicity, whereas drought inhibited growth and yield, and was associated with increased foliar and tuber toxicity. The magnitude of drought effects on tuber yield and toxicity were greater at high temperature; thus, increases in tuber CNp were not merely a consequence of reduced tuber biomass. Findings confirm that cassava is adaptable to forecast temperature increases, particularly in areas of adequate or increasing rainfall; however, in regions forecast for increased incidence of drought, the effects of drought on both food quality (tuber toxicity) and yield are a greater threat to future food security and indicate an increasing necessity for processing of

  12. The Associations between the Milk Mothers Drink and the Milk Consumed by Their School-Aged Children. Nutrition, Health and Safety.

    ERIC Educational Resources Information Center

    Johnson, Rachel K.; Panely, Celeste V.; Wang, Min Qi

    2001-01-01

    A national survey identified predictors of school-age children's and adolescents' amount and type of milk intake. Findings indicated that geographic region, child's gender, and amount of milk mothers consumed predicted the children's milk consumption. Predictors of child milk type included the children's age, gender, race, geographic region,…

  13. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.

    PubMed

    Owiti, Judith; Grossmann, Jonas; Gehrig, Peter; Dessimoz, Christophe; Laloi, Christophe; Hansen, Maria Benn; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-07-01

    The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. Effects of different rates of drying cassava root on its toxicity to broiler chicks.

    PubMed

    Panigrahi, S; Rickard, J; O'Brien, G M; Gay, C

    1992-12-01

    1. The effects of drying cassava root at different rates on its composition and toxicity to broiler chicks were examined. Unpeeled roots from a high-cyanide cultivar of cassava were chipped and dried at 25 degrees C to a moisture content of below 100 g/kg over 24 h for fast-dried meal (FD) or 72 h for slow-dried meal (SD). The meals were incorporated at 250 and 500 g/kg into semi-synthetic diets which were fed to day-old broiler chicks as mash or pellets in separate experiments. 2. The two drying rates produced meals with similar concentrations of polyphenols, but different concentrations of cyanogens, the latter being 38 and 482 mg total cyanide/kg for SD and FD, respectively. The linamarin, acetonecyanohydrin or total cyanide content measurements of pelleted diets were highly correlated. 3. Growth rates of chicks fed on SD-based diets were significantly higher than those of chicks fed on FD-based diets. Compared with a control diet, weight gain of chicks fed on the 500 g FD/kg diet (containing 258 mg total cyanide/kg) was 77% lower, although performance also appeared to be reduced at 142 mg total cyanide/kg. 4. The ratio of water:food intake of chicks was higher in FD than in SD groups, and this was reflected in the high water content of excreta. There was increased bile excretion, the chloretic effect increasing with the cyanogen content of diet. Pancreas weights were lower in FD than in SD groups in experiment 1 (mash diets), but not in experiment 2 (pelleted diets), while there was a significant interaction between drying method and cassava inclusion rate on liver weight in experiment 2, but not in experiment 1. There were no effects on the mortality rate. 5. Pelleting of diets generated high temperatures, but did not significantly alter the cyanogen concentration or the growth of the chicks. 6. Thus, slower rates of drying cassava roots produce meals with lower cyanogen concentration that are, consequently, less toxic to broiler chicks. Cassava root meal of

  15. Transgenic Biofortification of the Starchy Staple Cassava (Manihot esculenta) Generates a Novel Sink for Protein

    PubMed Central

    Abhary, Mohammad; Siritunga, Dimuth; Stevens, Gene; Taylor, Nigel J.; Fauquet, Claude M.

    2011-01-01

    Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181–194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications. PMID:21283593

  16. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein.

    PubMed

    Abhary, Mohammad; Siritunga, Dimuth; Stevens, Gene; Taylor, Nigel J; Fauquet, Claude M

    2011-01-25

    Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181-194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications.

  17. Comparison of isolate dadih with yeast dadih in improving nutrition quality of Cassava Waste (CW)

    NASA Astrophysics Data System (ADS)

    Ginting, N.

    2018-03-01

    The cassava industry in North Sumatra Province was one of the most significant agricultural industries. Waste from the cassava industry which was called cassava waste/CW/Onggok was used as feed for ruminants such as cattle, sheep and monogastric such as pigs. The low nutrients in CW caused the need to find a way for improving the nutrients quality. This research was conducted with the aim to help livestockers to ferment their livestock feed. This study compared the ability of fermentation between dadih isolate with dadih yeast. Dadih is traditional food in Indonesia where milk is fermented in bamboo tube. Dadih yeast was made by mixing dadih and whey with flour, made in around shape and sun dried. The results showed that pH of CW by dadih isolate was the lowest while crude protein, crude fiber and fat in CW treated with dadih isolate were improved significantly compared either to control or to dadih starter while fermented CW was better than non-fermented CW. It was recommended livestockers to ferment CW by using either by dadih isolate or dadih starter.

  18. Microbial control of the invasive spiraling whitefly on cassava with entomopathogenic fungi.

    PubMed

    Boopathi, Thangavel; Karuppuchamy, Palaniappan; Singh, Soibam B; Kalyanasundaram, Manickavasagam; Mohankumar, S; Ravi, Madhaiyan

    2015-01-01

    The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Isaria fumosorosea were tested for their efficacy in managing the exotic spiraling whitefly Aleurodicus dispersus (Hemiptera, Aleyrodidae) on cassava (Manihot esculenta) during 2 seasons (2011-2012 and 2012-2013). The fungi I. fumosorosea and L. lecanii exhibited promising levels of control (> 70% mortality of the A. dispersus population). The percent mortality increased over time in both seasons. Application of I. fumosorosea was highly pathogenic to A. dispersus in both seasons compared to the other entomopathogenic fungi. Analysis of the percent mortality in both seasons revealed differences in efficacy between 3 and 15 days after treatment. The season also influenced the effects of the fungi on the A. dispersus population. Thus, entomopathogenic fungi have the potential to manage A. dispersus infestation of cassava.

  19. Microbial control of the invasive spiraling whitefly on cassava with entomopathogenic fungi

    PubMed Central

    Boopathi, Thangavel; Karuppuchamy, Palaniappan; Singh, Soibam B.; Kalyanasundaram, Manickavasagam; Mohankumar, S.; Ravi, Madhaiyan

    2015-01-01

    Abstract The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Isaria fumosorosea were tested for their efficacy in managing the exotic spiraling whitefly Aleurodicus dispersus (Hemiptera, Aleyrodidae) on cassava (Manihot esculenta) during 2 seasons (2011-2012 and 2012-2013). The fungi I. fumosorosea and L. lecanii exhibited promising levels of control (> 70% mortality of the A. dispersus population). The percent mortality increased over time in both seasons. Application of I. fumosorosea was highly pathogenic to A. dispersus in both seasons compared to the other entomopathogenic fungi. Analysis of the percent mortality in both seasons revealed differences in efficacy between 3 and 15 days after treatment. The season also influenced the effects of the fungi on the A. dispersus population. Thus, entomopathogenic fungi have the potential to manage A. dispersus infestation of cassava. PMID:26691465

  20. Experimental study of cassava sun drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.

  1. Involving consumers in health research: what do consumers say?

    PubMed

    Todd, Angela L; Nutbeam, Don

    2018-06-14

    To ensure that the contribution of patients and consumers in health research is better understood, respected and fully utilised. Type of program or service: Consumer representative networks that form part of a broader quality improvement program in local health services. Consultations were held with members of health consumer networks in Sydney, Northern Sydney and Western Sydney Local Health Districts, and the Sydney Children's Hospitals Network (at Westmead) about how to better involve consumers in health research. Feedback from 20 volunteers suggested that consumer involvement in research would be improved if: consumers understood more about research; communications clearly explained the research, why it was relevant to consumers and what might be involved; consumers' contributions were heard and respected; and being involved in research was made an easy and positive experience. People want to be involved in health research, and have valuable contributions to make. We must ensure that the potential contribution of patients and consumers is fully utilised, and get a great deal better at communicating benefits and risks.

  2. Loss of CMD2‐mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis

    PubMed Central

    Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C.; Taylor, Nigel J.

    2016-01-01

    Summary Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer‐preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)‐mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild‐type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2‐type varieties TME 3 and TME 7, but the CMD1‐type cultivar TMS 30572 and the CMD3‐type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2‐mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field‐level resistance in CMD2‐type cultivars presently grown by farmers in East Africa, where CMD pressure is high. PMID:26662210

  3. Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs.

    PubMed

    Graziosi, Ignazio; Minato, Nami; Alvarez, Elizabeth; Ngo, Dung Tien; Hoat, Trinh Xuan; Aye, Tin Maung; Pardo, Juan Manuel; Wongtiem, Prapit; Wyckhuys, Kris Ag

    2016-06-01

    Cassava is a major staple, bio-energy and industrial crop in many parts of the developing world. In Southeast Asia, cassava is grown on >4 million ha by nearly 8 million (small-scale) farming households, under (climatic, biophysical) conditions that often prove unsuitable for many other crops. While SE Asian cassava has been virtually free of phytosanitary constraints for most of its history, a complex of invasive arthropod pests and plant diseases has recently come to affect local crops. We describe results from a region-wide monitoring effort in the 2014 dry season, covering 429 fields across five countries. We present geographic distribution and field-level incidence of the most prominent pest and disease invaders, introduce readily-available management options and research needs. Monitoring work reveals that several exotic mealybug and (red) mite species have effectively colonised SE Asia's main cassava-growing areas, occurring in respectively 70% and 54% of fields, at average field-level incidence of 27 ± 2% and 16 ± 2%. Cassava witches broom (CWB), a systemic phytoplasma disease, was reported from 64% of plots, at incidence levels of 32 ± 2%. Although all main pests and diseases are non-natives, we hypothesise that accelerating intensification of cropping systems, increased climate change and variability, and deficient crop husbandry are aggravating both organism activity and crop susceptibility. Future efforts need to consolidate local capacity to tackle current (and future) pest invaders, boost detection capacity, devise locally-appropriate integrated pest management (IPM) tactics, and transfer key concepts and technologies to SE Asia's cassava growers. Urgent action is needed to mobilise regional as well as international scientific support, to effectively tackle this phytosanitary emergency and thus safeguard the sustainability and profitability of one of Asia's key agricultural commodities. © 2016 Society of Chemical Industry. © 2016

  4. Differential Roles of AC2 and AC4 of Cassava Geminiviruses in Mediating Synergism and Suppression of Posttranscriptional Gene Silencing

    PubMed Central

    Vanitharani, Ramachandran; Chellappan, Padmanabhan; Pita, Justin S.; Fauquet, Claude M.

    2004-01-01

    Posttranscriptional gene silencing (PTGS) in plants is a natural defense mechanism against virus infection. In mixed infections, virus synergism is proposed to result from suppression of the host defense mechanism by the viruses. Synergistic severe mosaic disease caused by simultaneous infection with isolates of the Cameroon strain of African cassava mosaic virus (ACMV-[CM]) and East African cassava mosaic Cameroon virus (EACMCV) in cassava and tobacco is characterized by a dramatic increase in symptom severity and a severalfold increase in viral-DNA accumulation by both viruses compared to that in singly infected plants. Here, we report that synergism between ACMV-[CM] and EACMCV is a two-way process, as the presence of the DNA-A component of ACMV-[CM] or EACMCV in trans enhanced the accumulation of viral DNA of EACMCV and ACMV-[CM], respectively, in tobacco BY-2 protoplasts. Furthermore, transient expression of ACMV-[CM] AC4 driven by the Cauliflower mosaic virus 35S promoter (p35S-AC4) enhanced EACMCV DNA accumulation by ∼8-fold in protoplasts, while p35S-AC2 of EACMCV enhanced ACMV-[CM] DNA accumulation, also by ∼8-fold. An Agrobacterium-based leaf infiltration assay determined that ACMV-[CM] AC4 and EACMCV AC2, the putative synergistic genes, were able to suppress PTGS induced by green fluorescent protein (GFP) and eliminated the short interfering RNAs associated with PTGS, with a correlated increase in GFP mRNA accumulation. In addition, we have identified AC4 of Sri Lankan cassava mosaic virus and AC2 of Indian cassava mosaic virus as suppressors of PTGS, indicating that geminiviruses evolved differently in regard to interaction with the host. The specific and different roles played by these AC2 and AC4 proteins of cassava geminiviruses in regulating anti-PTGS activity and their relation to synergism are discussed. PMID:15308741

  5. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.

    PubMed

    Essers, A J; Jurgens, C M; Nout, M J

    1995-07-01

    The effect of six individual strains of the dominant microflora in solid substrate fermenting cassava on cyanogen levels was examined. Six out of eight batches of disinfected cassava root pieces were incubated for 72 h after inoculation with either of the fungi Geotrichum candidum, Mucor racemosus, Neurospora sitophila, Rhizopus oryzae and Rhizopus stolonifer, or a Bacillus sp., isolated from on-farm fermented cassava flours from Uganda. One non-inoculated batch was incubated as a reference. Levels of initial and final moisture and cyanogens were assayed. The experiment was done in quadruplicate. Incubation of disinfected root pieces reduced cyanogenic glucoside levels significantly to 62.7% (SD 2.8) of the initial value. Microbial growth resulted in significant additional reduction of the cyanogenic glucoside levels to 29.8% (SD 18.9) of the levels which were obtained after non-inoculated incubation. Among the tested strains, N. sitophila reduced cyanogenic glucoside levels most effectively, followed by R. stolonifer and R. oryzae. Of all fermented samples, both Rhizopus spp. showed highest proportion of residual cyanogens in the cyanohydrin form. Flours showed similar patterns of cyanogens as the batches they were prepared from. Cyanogenic glucoside level reduction was significantly correlated (r = 0.86) with the extent of root softening. It is concluded that both incubation and microbial activity are instrumental in reducing the potential toxicity of cassava during the solid substrate fermentation and that effectiveness varies considerably between the species of microorganisms applied.

  6. The Late Embryogenesis Abundant Protein Family in Cassava (Manihot esculenta Crantz): Genome-Wide Characterization and Expression during Abiotic Stress.

    PubMed

    Wu, Chunlai; Hu, Wei; Yan, Yan; Tie, Weiwei; Ding, Zehong; Guo, Jianchun; He, Guangyuan

    2018-05-17

    Late embryogenesis abundant (LEA) proteins, as a highly diverse group of polypeptides, play an important role in plant adaptation to abiotic stress; however, LEAs from cassava have not been studied in cassava. In this study, 26 LEA members were genome-wide identified from cassava, which were clustered into seven subfamily according to evolutionary relationship, protein motif, and gene structure analyses. Chromosomal location and duplication event analyses suggested that 26 MeLEAs distributed in 10 chromosomes and 11 MeLEA paralogues were subjected to purifying selection. Transcriptomic analysis showed the expression profiles of MeLEAs in different tissues of stem, leaves, and storage roots of three accessions. Comparative transcriptomic analysis revealed that the function of MeLEAs in response to drought may be differentiated in different accessions. Compared with the wild subspecies W14, more MeLEA genes were activated in cultivated varieties Arg7 and SC124 after drought treatment. Several MeLEA genes showed induction under various stresses and related signaling treatments. Taken together, this study demonstrates the transcriptional control of MeLEAs in tissue development and the responses to abiotic stress in cassava and identifies candidate genes for improving crop resistance to abiotic stress.

  7. Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process.

    PubMed

    Penido, Fernanda Corrêa Leal; Piló, Fernanda Barbosa; Sandes, Sávio Henrique de Cicco; Nunes, Álvaro Cantini; Colen, Gecernir; Oliveira, Evelyn de Souza; Rosa, Carlos Augusto; Lacerda, Inayara Cristina Alves

    2018-02-28

    Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse.

    PubMed

    Latha, R; Murthy, B S

    2013-07-01

    Variations in CO(2) concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO(2) as a proxy for photosynthesis. CO(2) and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO(2) observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO(2) (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.

  9. Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse

    NASA Astrophysics Data System (ADS)

    Latha, R.; Murthy, B. S.

    2013-07-01

    Variations in CO2 concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO2 as a proxy for photosynthesis. CO2 and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO2 observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO2 (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.

  10. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-03-07

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.

  11. Rolling circle amplification-based analysis of Sri Lankan cassava mosaic virus isolates from Tamil Nadu, India, suggests a low level of genetic variability.

    PubMed

    Kushawaha, Akhilesh Kumar; Rabindran, Ramalingam; Dasgupta, Indranil

    2018-03-01

    Cassava mosaic disease is a widespread disease of cassava in south Asia and the African continent. In India, CMD is known to be caused by two single-stranded DNA viruses (geminiviruses), Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosdaic virus (SLCMV). Previously, the diversity of ICMV and SLCMV in India has been studied using PCR, a sequence-dependent method. To have a more in-depth study of the variability of the above viruses and to detect any novel geminiviruses associated with CMD, sequence-independent amplification using rolling circle amplification (RCA)-based methods were used. CMD affected cassava plants were sampled across eighty locations in nine districts of the southern Indian state of Tamil Nadu. Twelve complete sequence of coat protein genes of the resident geminiviruses, comprising 256 amino acid residues were generated from the above samples, which indicated changes at only six positions. RCA followed by RFLP of the 80 samples indicated that most samples (47) contained only SLCMV, followed by 8, which were infected jointly with ICMV and SLCMV. In 11 samples, the pattern did not match the expected patterns from either of the two viruses and hence, were variants. Sequence analysis of an average of 700 nucleotides from 31 RCA-generated fragments of the variants indicated identities of 97-99% with the sequence of a previously reported infectious clone of SLCMV. The evidence suggests low levels of genetic variability in the begomoviruses infecting cassava, mainly in the form of scattered single nucleotide changes.

  12. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: a review of the factors determining abundance.

    PubMed

    Macfadyen, S; Paull, C; Boykin, L M; De Barro, P; Maruthi, M N; Otim, M; Kalyebi, A; Vassão, D G; Sseruwagi, P; Tay, W T; Delatte, H; Seguni, Z; Colvin, J; Omongo, C A

    2018-02-13

    Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of households in East Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. Here we assess critically the knowledge base relating to factors that may lead to high population densities of sub-Saharan African (SSA) B. tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver sustainable management solutions. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact population dynamics and natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps.

  13. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis.

    PubMed

    Yan, Yu; He, Xinyi; Hu, Wei; Liu, Guoyin; Wang, Peng; He, Chaozu; Shi, Haitao

    2018-06-01

    MeCIPK23 interacts with MeCBL1/9, and they confer improved defense response, providing potential genes for further genetic breeding in cassava. Cassava (Manihot esculenta) is an important food crop in tropical area, but its production is largely affected by cassava bacterial blight. However, the information of defense-related genes in cassava is very limited. Calcium ions play essential roles in plant development and stress signaling pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are crucial components of calcium signals. In this study, systematic expression profile of 25MeCIPKs in response to Xanthomonas axonopodis pv. manihotis (Xam) infection was examined, by which seven candidate MeCIPKs were chosen for functional investigation. Through transient expression in Nicotiana benthamiana leaves, we found that six MeCIPKs (MeCIPK5, MeCIPK8, MeCIPK12, MeCIPK22, MeCIPK23 and MeCIPK24) conferred improved defense response, via regulating the transcripts of several defense-related genes. Notably, we found that MeCIPK23 interacted with MeCBL1 and MeCBL9, and overexpression of these genes conferred improved defense response. On the contrary, virus-induced gene silencing of either MeCIPK23 or MeCBL1/9 or both genes resulted in disease sensitive in cassava. To our knowledge, this is the first study identifying MeCIPK23 as well as MeCBL1 and MeCBL9 that confer enhanced defense response against Xam.

  14. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses.

    PubMed

    Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu

    2018-01-01

    Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL ( MeCBL ) and 26 CIPK ( MeCIPK ) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBL s and CIPK s. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10 , and Na + /H + antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses.

  15. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses

    PubMed Central

    Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu

    2018-01-01

    Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL (MeCBL) and 26 CIPK (MeCIPK) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBLs and CIPKs. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10, and Na+/H+ antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses. PMID:29552024

  16. Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO.

    PubMed

    Gleadow, Roslyn M; Evans, John R; McCaffery, Stephanie; Cavagnaro, Timothy R

    2009-11-01

    Global food security in a changing climate depends on both the nutritive value of staple crops as well as their yields. Here, we examined the direct effect of atmospheric CO(2) on cassava (Manihot esculenta Cranz., manioc), a staple for 750 million people worldwide. Cassava is poor in nutrients and contains high levels of cyanogenic glycosides that break down to release toxic hydrogen cyanide when damaged. We grew cassava at three concentrations of CO(2) (C(a): 360, 550 and 710 ppm) supplied together with nutrient solution containing either 1 mM or 12 mM nitrogen. We found that total plant biomass and tuber yield (number and mass) decreased linearly with increasing C(a). In the worst-case scenario, tuber mass was reduced by an order of magnitude in plants grown at 710 ppm compared with 360 ppm CO(2). Photosynthetic parameters were consistent with the whole plant biomass data. It is proposed that since cassava stomata are highly sensitive to other environmental variables, the decrease in assimilation observed here might, in part, be a direct effect of CO(2) on stomata. Total N (used here as a proxy for protein content) and cyanogenic glycoside concentrations of the tubers were not significantly different in the plants grown at elevated CO(2). By contrast, the concentration of cyanogenic glycosides in the edible leaves nearly doubled in the highest C(a). If leaves continue to be used as a protein supplement, they will need to be more thoroughly processed in the future. With increasing population density, declining soil fertility, expansion into marginal farmland, together with the predicted increase in extreme climatic events, reliance on robust crops such as cassava will increase. The responses to CO(2) shown here point to the possibility that there could be severe food shortages in the coming decades unless CO(2) emissions are dramatically reduced, or alternative cultivars or crops are developed.

  17. Drying kinetic of industrial cassava flour: Experimental data in view.

    PubMed

    Odetunmibi, Oluwole A; Adejumo, Oluyemisi A; Oguntunde, Pelumi E; Okagbue, Hilary I; Adejumo, Adebowale O; Suleiman, Esivue A

    2017-12-01

    In this data article, laboratory experimental investigation results on drying kinetic properties: the drying temperature ( T ), drying air velocity ( V ) and dewatering time (Te), each of the factors has five levels, and the experiment was replicated three times and the output: drying rate and drying time obtained, were observed. The experiment was conducted at National Centre for Agricultural Mechanization (NCAM) for a period of eight months, in 2014. Analysis of variance was carried out using randomized complete block design with factorial experiment on each of the outputs: drying rate and drying times of the industrial cassava flour. A clear picture on each of these outputs was provided separately using tables and figures. It was observed that all the main factors as well as two and three ways interactions are significant at 5% level for both drying time and rate. This also implies that the rate of drying grated unfermented cassava mash, to produce industrial cassava flour, depend on the dewatering time (the initial moisture content), temperature of drying, velocity of drying air as well as the combinations of these factors altogether. It was also discovered that all the levels of each of these factors are significantly difference from one another. In summary, the time of drying is a function of the dewatering time which was responsible for the initial moisture content. The higher the initial moisture content the longer the time of drying, and the lower the initial moisture content, the lower the time of drying. Also, the higher the temperature of drying the shorter the time of drying and vice versa. Also, the air velocity effect on the drying process was significant. As velocity increases, rate of drying also increases and vice versa. Finally, it can be deduced that the drying kinetics are influenced by these processing factors.

  18. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava.

    PubMed

    Wei, Yunxie; Liu, Guoyin; Bai, Yujing; Xia, Feiyu; He, Chaozu; Shi, Haitao; Foyer, Christine

    2017-10-13

    Similar to the situation in animals, melatonin biosynthesis is regulated by four sequential enzymatic steps in plants. Although the melatonin synthesis genes have been identified in various plants, the upstream transcription factors of them remain unknown. In this study on cassava (Manihot esculenta), we found that MeWRKY79 and heat-shock transcription factor 20 (MeHsf20) targeted the W-box and the heat-stress elements (HSEs) in the promoter of N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively. The interaction between MeWRKY79, MeHsf20, and the MeASMT2 promoter was evidenced by the activation of promoter activity and chromatin immunoprecipitation (ChIP) in cassava protoplasts, and by an in vitro electrophoretic mobility shift assay (EMSA). The transcripts of MeWRKY79, MeHsf20, and MeASMT2 were all regulated by a 22-amino acid flagellin peptide (flg22) and by Xanthomonas axonopodis pv manihotis (Xam). In common with the phenotype of MeASMT2, transient expression of MeWRKY79 and MeHsf20 in Nicotiana benthamiana leaves conferred improved disease resistance. Through virus-induced gene silencing (VIGS) in cassava, we found that MeWRKY79- and MeHsf20-silenced plants showed lower transcripts of MeASMT2 and less accumulation of melatonin, which resulted in disease sensitivity that could be reversed by exogenous melatonin. Taken together, these results indicate that MeASMT2 is a target of MeWRKY79 and MeHsf20 in plant disease resistance. This study identifies novel upstream transcription factors of melatonin synthesis genes in cassava, thus extending our knowledge of the complex modulation of melatonin synthesis in plant defense. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Development of comprehensive medium for micropropagation of cultivated Cassava accessions

    USDA-ARS?s Scientific Manuscript database

    Cassava is one of the most important foods in the human diet in the tropics, where it ranks fifth as a source of energy, after rice, sugar cane, and maize. Since it is a vegetative propagated crop, the use of in vitro propagation is very important to preserve germplasm free of pest and diseases. M...

  20. Characterization of bioplastic based from cassava crisp home industrial waste incorporated with chitosan and liquid smoke

    NASA Astrophysics Data System (ADS)

    Fathanah, U.; Lubis, M. R.; Nasution, F.; Masyawi, M. S.

    2018-03-01

    Cassava peel (Manihot utilissima) is waste of agricultural result that is much potential as raw material of bioplastic making. This research focuses on bioplastic making from cassava peel. It aims to characterize the resulted bioplastic (mechanical and physical properties, SEM analysis, FTIR analysis and time test of bioplastic degradation). The bioplastic preparation takes place by mixing starch of cassava peel and chitosan (20, 30, 40 and 50% w/w), glycerol 30% w/w as plasticizer, and liquid smoke (0, 1 and 2 mL) as antimicrobial agent. The research result shows the highest value of tensile strength is 96.04 MPa, the highest elongation at break is 52.27%, and the value of water-resistant test is 22.68%. Morphology analysis by using SEM shows uneven surface and there is fracture in its cross-section. The analysis of functional group by FTIR shows the presence of functional groups of O–H (hydroxyl), N–H (amine), dan CH3–O (ether). The fastest complete degradation of bioplastic occurs in 45 days, and the longest occurs in 57 days.

  1. Spectral separability and mapping potential of cassava leaf damage symptoms caused by whiteflies (Bemisia tabaci)

    PubMed Central

    De Barro, Paul; Newnham, Glenn J; Kalyebi, Andrew; Macfadyen, Sarina; Malthus, Tim J

    2017-01-01

    Abstract BACKGROUND This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high‐resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five‐level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. RESULTS Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. CONCLUSION SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28851022

  2. Linamarase Expression in Cassava Cultivars with Roots of Low- and High-Cyanide Content1

    PubMed Central

    Santana, María Angélica; Vásquez, Valeria; Matehus, Juan; Aldao, Rafael Rangel

    2002-01-01

    This paper reports the expression and localization of linamarase in roots of two cassava (Manihot esculenta Crantz) cultivars of low and high cyanide. Two different patterns of linamarase activity were observed. In the low-cyanide type, young leaves displayed very high enzyme activity during the early plant growing stage (3 months), whereas in root peel, the activity increased progressively to reach a peak in 11-month-old plants. Conversely, in the high-cyanide cultivar (HCV), root peel linamarase activity decreased during the growth cycle, whereas in expanded leaves linamarase activity peaked in 11-month-old plants. The accumulation of linamarin showed a similar pattern in both cultivars, although a higher concentration was always found in the HCV. Linamarase was found mainly in laticifer cells of petioles and roots of both cultivars with no significant differences between them. At the subcellular level, there were sharp differences because linamarase was found mainly in the cell walls of the HCV, whereas in the low-cyanide cultivar, the enzyme was present in vacuoles and cell wall of laticifer cells. Reverse transcriptase-PCR on cassava tissues showed no expression of linamarase in cassava roots, thus, the transport of linamarase from shoots to roots through laticifers is proposed. PMID:12177481

  3. Ethylene Responsive Factor MeERF72 Negatively Regulates Sucrose synthase 1 Gene in Cassava.

    PubMed

    Liu, Chen; Chen, Xin; Ma, Ping'an; Zhang, Shengkui; Zeng, Changying; Jiang, Xingyu; Wang, Wenquan

    2018-04-25

    Cassava, an important food and industrial crop globally, is characterized by its powerful starch accumulation in its storage root. However, the underlying molecular mechanism for this feature remains unclear. Sucrose synthase initializes the conversion of sucrose to starch, and, to a certain extent, its enzyme activity can represent sink strength. To understand the modulation of MeSus gene family, the relatively high expressed member in storage root, MeSus1 , its promoter was used as bait to screen cassava storage root full-length cDNA library through a yeast one-hybrid system. An ethylene responsive factor cDNA, designated as MeERF72 according to its homolog in Arabidopsis , was screened out. The transcript level of MeERF72 was induced by ethylene, drought, and salt treatments and repressed by abscisic acid, Auxin, gibberellin, salicylic acid, and low and high temperatures. The MeERF72 protein has a conserved APETALA2 domain in its N-terminus and an activated domain of 30 amino acids in its C-terminus, can bind to MeSus1 promoter in vitro and in vivo, and represses the promoter activity of MeSus1 . MeERF72 is a transcription factor that can negatively regulate the expression level of MeSus1 in cassava.

  4. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress.

    PubMed

    Ye, Jianqiu; Yang, Hai; Shi, Haitao; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Yan, Yan; Luo, Ying; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Li, Kaimian; Zhang, He; Hu, Wei

    2017-11-02

    Mitogen-activated protein kinase kinase kinases (MAPKKKs), an important unit of MAPK cascade, play crucial roles in plant development and response to various stresses. However, little is known concerning the MAPKKK family in the important subtropical and tropical crop cassava. In this study, 62 MAPKKK genes were identified in the cassava genome, and were classified into 3 subfamilies based on phylogenetic analysis. Most of MAPKKKs in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis showed that MAPKKK genes participated in tissue development and response to drought stress. Comparative expression profiles revealed that many MAPKKK genes were activated in cultivated varieties SC124 and Arg7 and the function of MeMAPKKKs in drought resistance may be different between SC124/Arg7 and W14. Expression analyses of the 7 selected MeMAPKKK genes showed that most of them were significantly upregulated by osmotic, salt and ABA treatments, whereas slightly induced by H 2 O 2 and cold stresses. Taken together, this study identified candidate MeMAPKKK genes for genetic improvement of abiotic stress resistance and provided new insights into MAPKKK -mediated cassava resistance to drought stress.

  5. Genome-wide association mapping of provitamin A carotenoid content in cassava

    USDA-ARS?s Scientific Manuscript database

    Global efforts are underway to develop staple crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency, which is widespread among resource-poor farmers in the developing world. As a staple crop for more than 500 million people in sub-Saharan Africa, cassava ...

  6. Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujio, Y.; Ogato, M.; Ueda, S.

    Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/l broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate. 10 references.

  7. Nutrient intakes and iron and vitamin D status differ depending on main milk consumed by UK children aged 12-18 months - secondary analysis from the Diet and Nutrition Survey of Infants and Young Children.

    PubMed

    Sidnell, Anne; Pigat, Sandrine; Gibson, Sigrid; O'Connor, Rosalyn; Connolly, Aileen; Sterecka, Sylwia; Stephen, Alison M

    2016-01-01

    Nutrition in the second year is important as this is a period of rapid growth and development. Milk is a major food for young children and this analysis evaluated the impact of the type of milk consumed on nutrient intakes and nutritional status. Data from the Diet and Nutrition Survey of Infants and Young Children were used to investigate the intakes of key nutrients, and Fe and vitamin D status, of children aged 12-18 months, not breastfed, and consuming >400 g/d fortified milk (n 139) or >400 g/d of whole cows' milk (n 404). Blood samples from eligible children for measurement of Hb (n 113), serum ferritin and plasma 25-hydroxyvitamin D (25(OH)D) concentrations (n 105) were available for approximately 20 % of children. Unpaired Mann-Whitney tests were used to compare nutrient intakes and status between consumers of fortified and cows' milk. Mean daily total dietary intakes of Fe, Zn, vitamin A and vitamin D were significantly higher in the fortified milk group. Mean daily total dietary intakes of energy, protein, Ca, iodine, Na and saturated fat were significantly higher in the cows' milk group. Hb was not different between groups. The fortified milk group had significantly higher serum ferritin (P = 0·049) and plasma 25(OH)D (P = 0·014). This analysis demonstrates significantly different nutrient intakes and status between infants consuming >400 g/d fortified milk v. those consuming >400 g/d whole cows' milk. These results indicate that fortified milks can play a significant role in improving the quality of young children's diets in their second year of life.

  8. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions

    PubMed Central

    Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K.

    2016-01-01

    Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. PMID:27506218

  9. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  10. Extending Cassava Root Shelf Life via Reduction of Reactive Oxygen Species Production1[C][W][OA

    PubMed Central

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-01-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration. PMID:22711743

  11. Relative contribution of biotic and abiotic factors to the population density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae).

    PubMed

    Rêgo, Adriano S; Teodoro, Adenir V; Maciel, Anilde G S; Sarmento, Renato A

    2013-08-01

    The cassava green mite, Mononychellus tanajoa, is a key pest of cassava, Manihot esculenta Crantz (Euphorbiaceae), and it may be kept in check by naturally occurring predatory mites of the family Phytoseiidae. In addition to predatory mites, abiotic factors may also contribute to regulate pest mite populations in the field. Here, we evaluated the population densities of both M. tanajoa and the generalist predatory mite Euseius ho DeLeon (Acari: Phytoseiidae) over the cultivation cycle (11 months) of cassava in four study sites located around the city of Miranda do Norte, Maranhão, Brazil. The abiotic variables rainfall, temperature and relative humidity were also recorded throughout the cultivation cycle of cassava. We determined the relative importance of biotic (density of E. ho) and abiotic (rainfall, temperature and relative humidity) factors to the density of M. tanajoa. The density of M. tanajoa increased whereas the density of E. ho remained constant throughout time. A hierarchical partitioning analysis revealed that most of the variance for the density of M. tanajoa was explained by rainfall and relative humidity followed by E. ho density and temperature. We conclude that abiotic factors, especially rainfall, were the main mechanisms driving M. tanajoa densities.

  12. Health risk for children and adults consuming apples with pesticide residue.

    PubMed

    Lozowicka, Bozena

    2015-01-01

    The presence of pesticide residues in apples raises serious health concerns, especially when the fresh fruits are consumed by children, particularly vulnerable to the pesticide hazards. This study demonstrates the results from nine years of investigation (2005-2013) of 696 samples of Polish apples for 182 pesticides using gas and liquid chromatography and spectrophotometric techniques. Only 33.5% of the samples did not contain residues above the limit of detection. In 66.5% of the samples, 34 pesticides were detected, of which maximum residue level (MRL) was exceeded in 3%. Multiple residues were present in 35% of the samples with two to six pesticides, and one sample contained seven compounds. A study of the health risk for children, adults and the general population consuming apples with these pesticides was performed. The pesticide residue data have been combined with the consumption of apples in the 97.5 percentile and the mean diet. A deterministic model was used to assess the chronic and acute exposures that are based on the average and high concentrations of residues. Additionally, the "worst-case scenario" and "optimistic case scenario" were used to assess the chronic risk. In certain cases, the total dietary pesticide intake calculated from the residue levels observed in apples exceeds the toxicological criteria. Children were the group most exposed to the pesticides, and the greatest short-term hazard stemmed from flusilazole at 624%, dimethoate at 312%, tebuconazole at 173%, and chlorpyrifos methyl and captan with 104% Acute Reference Dose (ARfD) each. In the cumulative chronic exposure, among the 17 groups of compounds studied, organophosphate insecticides constituted 99% acceptable daily intake (ADI). The results indicate that the occurrence of pesticide residues in apples could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring and tighter regulation of pesticide residues is recommended

  13. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing

    NASA Astrophysics Data System (ADS)

    Li, Mao; Zhou, Hanlin; Pan, Xiangyu; Xu, Tieshan; Zhang, Zhenwen; Zi, Xuejuan; Jiang, Yu

    2017-04-01

    Geese are extremely adept in utilizing plant-derived roughage within their diet. However, the intestinal microbiome of geese remains limited, especially the dietary effect on microbial diversity. Cassava foliage was widely used in animal feed, but little information is available for geese. In this study, the geese were fed with control diet (CK), experimental diet supplemented with 5% cassava foliage (CF5) or 10% (CF10) for 42 days, respectively. The cecal samples were collected after animals were killed. High-throughput sequencing technology was used to investigate the microbial diversity in the caecum of geese with different dietary supplements. Taxonomic analysis indicated that the predominant phyla were distinct with different dietary treatments. The phyla Firmicutes (51.4%), Bacteroidetes (29.55%) and Proteobacteria (7.90%) were dominant in the CK group, but Bacteroidetes (65.19% and 67.29%,) Firmicutes (18.01% and 17.39%), Proteobacteria (8.72% and 10.18%), Synergistete (2.51% and 1.76%) and Spirochaetes (2.60% and 1.46%) were dominant in CF5 and CF10 groups. The abundance of Firmicutes was negatively correlated with the supplementation of cassava foliage. However, the abundance of Bacteroidetes and Proteobacteria were positively correlated with the supplementation of cassava foliage. Our study also revealed that the microbial communities were significantly different at genus levels. Genes related to nutrient and energy metabolism, immunity and signal transduction pathways were primarily enriched by the microbiome.

  14. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content.

    PubMed

    Luo, Gang; Xie, Li; Zhou, Qi

    2009-06-01

    Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m(3) d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.

  15. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons

    PubMed Central

    Saithong, Treenut; Saerue, Samorn; Kalapanulak, Saowalak; Sojikul, Punchapat; Narangajavana, Jarunya; Bhumiratana, Sakarindr

    2015-01-01

    Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change. PMID:26366737

  16. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons.

    PubMed

    Saithong, Treenut; Saerue, Samorn; Kalapanulak, Saowalak; Sojikul, Punchapat; Narangajavana, Jarunya; Bhumiratana, Sakarindr

    2015-01-01

    Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change.

  17. Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater

    PubMed Central

    Ferraz, Fernanda M.; Bruni, Aline T.; Del Bianchi, Vanildo L.

    2009-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater, a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35ºC was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000 mg L-1 and it was evaluated the most appropriated hydraulic retention time (HRT) for the best performance on COD removal. The ABR was evaluated by analysis of COD (colorimetric method), pH, turbidity, total and volatile solids, alkalinity and acidity. Principal component analysis (PCA) was carried to better understand data obtained. The system showed buffering ability as acidity decreased along compartments while alkalinity and pH values were increased. There was particulate material retention and COD removal varied from 83 to 92% for HRT of 3.5 days. PMID:24031316

  18. Retention of total carotenoid and β-carotene in yellow sweet cassava (Manihot esculenta Crantz) after domestic cooking

    PubMed Central

    Carvalho, Lucia M. J.; Oliveira, Alcides R. G.; Godoy, Ronoel L. O.; Pacheco, Sidney; Nutti, Marília R.; de Carvalho, José L. V.; Pereira, Elenilda J.; Fukuda, Wânia G.

    2012-01-01

    Background Over the last decade, considerable efforts have been made to identify cassava cultivars to improve the vitamin A nutritional status of undernourished populations, especially in northeast Brazil, where cassava is one of the principal and essentially only nutritional source. Objectives The aim of this study was to evaluate the total carotenoid, β-carotene, and its all-E-, 9-, and 13-Z-β-carotene isomers content in seven yellow sweet cassava roots and their retention after three boiling cooking methods. Design The total carotenoid, β-carotene, and its all-E-, 9-, and 13-Z-β-carotene isomers in yellow sweet cassava samples were determined by ultraviolet/visible spectrometry and high-performance liquid chromatography, respectively, before and after applying the cooking methods. All analyses were performed in triplicate. Results The total carotenoid in raw roots varied from 2.64 to 14.15 µg/g and total β-carotene from 1.99 to 10.32 µg/g. The β-carotene predominated in all the roots. The Híbrido 2003 14 08 cultivar presented the highest β-carotene content after cooking methods 1 and 3. The 1153 – Klainasik cultivar presented the highest 9-Z-β-carotene content after cooking by method 3. The highest total carotenoid retention was observed in cultivar 1456 – Vermelhinha and that of β-carotene for the Híbrido 2003 14 11 cultivar, both after cooking method 1. Evaluating the real retention percentage (RR%) in sweet yellow cassava after home cooking methods showed differences that can be attributed to the total initial carotenoid contents. However, no cooking method uniformly provided a higher total carotenoid or β-carotene retention in all the cultivars. Conclusion Differences were found in the cooking methods among the samples regarding total carotenoid or β-carotene retention, suggesting that the different behaviors of the cultivars need to be further analyzed. However, high percentages of total carotenoid or β-carotene retention were observed

  19. Prospects for Genomic Selection in Cassava Breeding.

    PubMed

    Wolfe, Marnin D; Del Carpio, Dunia Pino; Alabi, Olumide; Ezenwaka, Lydia C; Ikeogu, Ugochukwu N; Kayondo, Ismail S; Lozano, Roberto; Okeke, Uche G; Ozimati, Alfred A; Williams, Esuma; Egesi, Chiedozie; Kawuki, Robert S; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc

    2017-11-01

    Cassava ( Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: cross-validation within populations, cross-population prediction and cross-generation prediction. We also evaluated the impact of increasing the training population (TP) size by phenotyping progenies selected either at random or with a genetic algorithm. Cross-validation results were mostly consistent across programs, with nonadditive models predicting of 10% better on average. Cross-population accuracy was generally low (mean = 0.18) but prediction of cassava mosaic disease increased up to 57% in one Nigerian population when data from another related population were combined. Accuracy across generations was poorer than within-generation accuracy, as expected, but accuracy for dry matter content and mosaic disease severity should be sufficient for rapid-cycling GS. Selection of a prediction model made some difference across generations, but increasing TP size was more important. With a genetic algorithm, selection of one-third of progeny could achieve an accuracy equivalent to phenotyping all progeny. We are in the early stages of GS for this crop but the results are promising for some traits. General guidelines that are emerging are that TPs need to continue to grow but phenotyping can be done on a cleverly selected subset of individuals, reducing the overall phenotyping burden. Copyright © 2017 Crop Science Society of America.

  20. Spectral separability and mapping potential of cassava leaf damage symptoms caused by whiteflies (Bemisia tabaci).

    PubMed

    Sims, Neil C; De Barro, Paul; Newnham, Glenn J; Kalyebi, Andrew; Macfadyen, Sarina; Malthus, Tim J

    2018-01-01

    This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high-resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five-level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  1. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.

    PubMed

    Wang, Rongliang; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2014-01-01

    Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α-amylase from Aspergillus oryzae as well as α-amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. © 2014 American Institute of Chemical Engineers.

  2. Effects of consistent food presentation on efficiency of eating and nutritive value of food consumed by children with severe neurological impairment.

    PubMed

    Pinnington, L; Hegarty, J

    1999-01-01

    The purpose of this investigation was to determine what implications consistent presentation of food, delivered by an assistive feeding device at a position regarded as optimal, would have for the maintenance of food intake, duration of meals, and efficiency of eating. The trial employed an AB within-subjects design and extended over a 9-month period. Twenty children, aged 7 to 17 years, with severe neurological impairment and associated eating difficulties, were studied. The effects of the intervention were compared by examination of diaries recording the sizes and composition of meals consumed during designated periods and by precautionary measures of growth and weight. Although no statistically significant changes in weight were recorded overall, meals presented consistently were consumed less efficiently and sometimes more slowly than were standard ones, where food was presented by hand. However, no change occurred in the amount of energy and protein consumed, which suggested that the children's ability to thrive was neither improved nor further compromised by participation in the study. The findings have implications for the way in which children are assisted during mealtimes by their caregivers.

  3. The effects of direct-to-consumer advertising on medication use among Medicaid children with asthma.

    PubMed

    McRoy, Luceta; Weech-Maldonado, Robert; Bradford, W David; Menachemi, Nir; Morrisey, Michael; Kilgore, Meredith

    2016-01-01

    Asthma medication adherence is low, particularly among Medicaid enrollees. There has been much debate on the impact of direct-to-consumer advertising (DTCA) on health care use, but the impact on medication use among children with asthma has been unexamined. The study sample included 180,584 children between the ages of 5 and 18 with an asthma diagnosis from a combined dataset of Medicaid Analytic eXtract and national advertising data. We found that DTCA expenditure during the study period was significantly associated with an increase in asthma medication use. However, the effectiveness declined after a certain level.

  4. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.

    PubMed

    Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K

    2016-10-01

    Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Genetic parameters and prediction of genotypic values for root quality traits in cassava using REML/BLUP.

    PubMed

    Oliveira, E J; Santana, F A; Oliveira, L A; Santos, V S

    2014-08-28

    The aim of this study was to estimate the genetic parameters and predict the genotypic values of root quality traits in cassava (Manihot esculenta Crantz) using restricted maximum likelihood (REML) and best linear unbiased prediction (BLUP). A total of 471 cassava accessions were evaluated over two years of cultivation. The evaluated traits included amylose content (AML), root dry matter (DMC), cyanogenic compounds (CyC), and starch yield (StYi). Estimates of the individual broad-sense heritability of AML were low (hg(2) = 0.07 ± 0.02), medium for StYi and DMC, and high for CyC. The heritability of AML was substantially improved based on mean of accessions (hm(2) = 0.28), indicating that some strategies such as increasing the number of repetitions can be used to increase the selective efficiency. In general, the observed genotypic values were very close to the predicted average of the improved population, most likely due to the high accuracy (>0.90), especially for DMC, CyC, and StYi. Gains via selection of the 30 best genotypes for each trait were 4.8 and 3.2% for an increase and decrease for AML, respectively, an increase of 10.75 and 74.62% for DMC for StYi, respectively, and a decrease of 89.60% for CyC in relation to the overall mean of the genotypic values. Genotypic correlations between the quality traits of the cassava roots collected were generally favorable, although they were low in magnitude. The REML/BLUP method was adequate for estimating genetic parameters and predicting the genotypic values, making it useful for cassava breeding.

  6. Unusual occurrence of a DAG motif in the Ipomovirus Cassava brown streak virus and implications for its vector transmission.

    PubMed

    Ateka, Elijah; Alicai, Titus; Ndunguru, Joseph; Tairo, Fred; Sseruwagi, Peter; Kiarie, Samuel; Makori, Timothy; Kehoe, Monica A; Boykin, Laura M

    2017-01-01

    Cassava is the main staple food for over 800 million people globally. Its production in eastern Africa is being constrained by two devastating Ipomoviruses that cause cassava brown streak disease (CBSD); Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), with up to 100% yield loss for smallholder farmers in the region. To date, vector studies have not resulted in reproducible and highly efficient transmission of CBSV and UCBSV. Most virus transmission studies have used Bemisia tabaci (whitefly), but a maximum of 41% U/CBSV transmission efficiency has been documented for this vector. With the advent of next generation sequencing, researchers are generating whole genome sequences for both CBSV and UCBSV from throughout eastern Africa. Our initial goal for this study was to characterize U/CBSV whole genomes from CBSD symptomatic cassava plants sampled in Kenya. We have generated 8 new whole genomes (3 CBSV and 5 UCBSV) from Kenya, and in the process of analyzing these genomes together with 26 previously published sequences, we uncovered the aphid transmission associated DAG motif within coat protein genes of all CBSV whole genomes at amino acid positions 52-54, but not in UCBSV. Upon further investigation, the DAG motif was also found at the same positions in two other Ipomoviruses: Squash vein yellowing virus (SqVYV), Coccinia mottle virus (CocMoV). Until this study, the highly-conserved DAG motif, which is associated with aphid transmission was only noticed once, in SqVYV but discounted as being of minimal importance. This study represents the first comprehensive look at Ipomovirus genomes to determine the extent of DAG motif presence and significance for vector relations. The presence of this motif suggests that aphids could potentially be a vector of CBSV, SqVYV and CocMov. Further transmission and ipomoviral protein evolutionary studies are needed to confirm this hypothesis.

  7. Effectiveness of incorporating citric acid in cassava starch edible coatings to preserve quality of Martha tomatoes

    NASA Astrophysics Data System (ADS)

    Ambarsari, I.; Oktaningrum, G. N.; Endrasari, R.

    2018-01-01

    Tomato as an agricultural product is extremely perishable. Coatings of tomatoes with edible starch extend quality and storage life of the fruits. Incorporation of citric acid as antimicrobial agent in the edible starch coatings is expected to preserve the quality of tomatoes during storage. The aim of this study was to verify the effectiveness of citric acid incorporated in cassava starch coating to preserve quality of tomatoes. The edible coatings formula consisted of cassava starch solutions (1; 2; 3%), citric acid (0.5; 1.0%) and glycerol (10%). Tomatoes were dipped to the coating solution for 10 seconds, then air-dried and stored at room temperature during 18 days. All the treatments were carried out in triplicates. Experimental data were analyzed using One Way ANOVA. The results showed that coating treatments did not affect the weight loss, moisture content, color characteristic, carotene and vitamin C content on Martha tomatoes. The low concentration of starch coating on Martha tomatoes are indicated to be the reason why there was no significant difference between coated and coated tomatoes for some parameters. However, incorporating citric acid in cassava starch-based coatings could prevent tomato fruits from firmness reduction and spoilage during storage.

  8. Potential of SNP markers for the characterization of Brazilian cassava germplasm.

    PubMed

    de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte

    2014-06-01

    High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.

  9. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  10. Microstructural and techno-functional properties of cassava starch modified by ultrasound.

    PubMed

    Monroy, Yuliana; Rivero, Sandra; García, María A

    2018-04-01

    This work was focused on the correlation between the structural and techno-functional properties of ultrasound treated cassava starch for the preparation of tailor-made starch-based ingredients and derivatives. Furthermore, the effect of treatment time, sample conditioning and ultrasound amplitude was studied. Ultrasonic treatment of cassava starch induced structural disorganization and microstructural changes evidenced mainly in the morphological characteristics of the granules and in their degrees of crystallinity. These structural modifications were supported by ATR-FTIR and SEM and CSLM studies as well as DRX and thermal analysis. The selection of the processing conditions is critical due to the complete gelatinization of the starch was produced with the maximum amplitude tested and without temperature control. Rheological dynamical analysis indicated changes at the molecular level in starch granules due to the ultrasound treated, revealing the paste stability under refrigeration condition. PCA allow to establish the interrelationships between microstructural and techno-functional properties. In summary, different starch derivatives could be obtained by adjusting the ultrasound treatment conditions depending on their potential applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Evaluating the Impacts of Selected Packaging Materials on the Quality Attributes of Cassava Flour (cvs. TME 419 and UMUCASS 36).

    PubMed

    Opara, Umezuruike Linus; Caleb, Oluwafemi J; Uchechukwu-Agua, Amarachi D

    2016-02-01

    The influence of packaging materials (plastic bucket, low density polyethylene [LDPE] bags and paper bags) on quality attributes of the flour of 2 cassava cultivars (TME 419 and UMUCASS 36) stored at 23 ± 2 °C and 60% relative humidity (RH) were investigated for 12 wk. Cassava flour from each package type was evaluated for proximate composition, physicochemical properties and microbial growth at 4-wk intervals. Total color difference (∆E) of both cassava flour cultivars increased with storage duration. Flour packed in plastic bucket had the lowest change in color (3.2 ± 0.42) for cv. "TME 419ˮ and (4.1 ± 0.87) for cv. "UMUCASS 36ˮ at the end of week 12. Total carotenoid decreased across all treatment, and after the 12 wk storage, the highest total carotenoid retention (1.7 ± 0.02 and 2.0 ± 0.05 μg/mL) was observed in flour packed in plastic bucket. However, cassava flour in paper bag had the lowest microbial count of 3.4 ± 0.03 and 3.4 ± 0.08 log cfu/g for total aerobic mesophilic bacteria and fungi, respectively. © 2015 Institute of Food Technologists®

  12. Children with Crohn's Disease Frequently Consume Select Food Additives.

    PubMed

    Lee, Dale; Swan, C Kaiulani; Suskind, David; Wahbeh, Ghassan; Vanamala, Jairam; Baldassano, Robert N; Leonard, Mary B; Lampe, Johanna W

    2018-06-04

    Certain food additives may promote the pathogenesis of Crohn's disease (CD), but thus far the evaluation of food additive exposures in humans has been limited. The objective of this study was to quantify food additive exposures in children with CD. In a trial for bone health in CD, children were followed over 24 months with evaluation of disease characteristics, dietary intake, and body composition. At baseline, participants completed three 24-h dietary recalls. Foods were categorized, and the ingredient list for each item was evaluated for the presence of select food additives: polysorbate-80, carboxymethylcellulose, xanthan gum, soy lecithin, titanium dioxide, carrageenan, maltodextrin, and aluminosilicates. The frequency of exposures to these food additives was described for study participants and for food categories. At study baseline, 138 participants, mean age 14.2 ± 2.8 years, 95% having inactive or mild disease, were enrolled and dietary recalls were collected. A total of 1325 unique foods were recorded. Mean exposures per day for xanthan gum was 0.96 ± 0.72, carrageenan 0.58 ± 0.63, maltodextrin 0.95 ± 0.77, and soy lecithin 0.90 ± 0.74. The other additives had less than 0.1 exposures per day. For the 8 examined food additives, participants were exposed to a mean (SD) of 3.6 ± 2.1 total additives per recall day and a mean (SD) of 2.4 ± 1.0 different additives per day. Children with CD frequently consume food additives, and the impact on disease course needs further study.

  13. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz).

    PubMed

    Wu, Jun-Zheng; Liu, Qin; Geng, Xiao-Shan; Li, Kai-Mian; Luo, Li-Juan; Liu, Jin-Ping

    2017-03-14

    Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 10 7 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H + /monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.

  14. Food groups consumed by infants and toddlers in urban areas of China

    PubMed Central

    Yu, Pan; Denney, Liya; Zheng, Yingdong; Vinyes-Parés, Gerard; Reidy, Kathleen C.; Eldridge, Alison L.; Wang, Peiyu; Zhang, Yumei

    2016-01-01

    Background Food consumption patterns of young children in China are not well known. Objective Characterised food groups consumed by infants and young children in urban China using data from the Maternal Infant Nutrition Growth (MING) study. Design One 24-h dietary recall was completed for 1,350 infants and young children (436 infants aged 6–11 months and 914 young children aged 12–35 months), who were recruited from maternal and child care centres in eight cities via face-to-face interviews with the primary caregiver. All foods, beverages and supplements reported were assigned to one of 64 food groups categorised into the following: milk and milk products, grains, vegetables, fruits, protein foods and desserts/sweets. The percentage of infants and young children consuming foods from specific food groups was calculated, regardless of the amount consumed. Results Less than half of infants consumed breast milk (47%), whereas 59% of infants consumed infant formula and 53–75% of young children consumed growing-up (fortified) milk. Rice was the number one grain food consumed after 6 months (up to 88%) and the consumption of infant cereal was low. About 50% of infants did not consume any fruits or vegetables, and 38% of young children did not consume any fruits on the day of the recall. Only 40% of all children consumed dark green leafy vegetables and even fewer consumed deep yellow vegetables. Eggs and pork were the most commonly consumed protein foods. Conclusions The data provide important insight for developing detailed food consumption guidelines for this population group. Mothers of infants should be encouraged to continue breastfeeding after the first 6 months. Parents should be advised to offer a wide variety of vegetables and fruits daily, particularly dark green leafy and deep yellow vegetables and colourful fruits. The consumption of fortified infant cereal should be advocated to improve the iron intake of Chinese infants. PMID:26864648

  15. Will farmers intend to cultivate Provitamin A genetically modified (GM) cassava in Nigeria? Evidence from a k-means segmentation analysis of beliefs and attitudes.

    PubMed

    Oparinde, Adewale; Abdoulaye, Tahirou; Mignouna, Djana Babatima; Bamire, Adebayo Simeon

    2017-01-01

    Analysis of market segments within a population remains critical to agricultural systems and policy processes for targeting new innovations. Patterns in attitudes and intentions toward cultivating Provitamin A GM cassava are examined through the use of a combination of behavioural theory and k-means cluster analysis method, investigating the interrelationship among various behavioural antecedents. Using a state-level sample of smallholder cassava farmers in Nigeria, this paper identifies three distinct classes of attitude and intention denoted as low opposition, medium opposition and high opposition farmers. It was estimated that only 25% of the surveyed population of farmers was highly opposed to cultivating Provitamin A GM cassava.

  16. Design and Evaluation of a Lactobacillus manihotivorans Species-Specific rRNA-Targeted Hybridization Probe and Its Application to the Study of Sour Cassava Fermentation

    PubMed Central

    Ampe, Frédéric

    2000-01-01

    Based on 16S rRNA sequence comparison, we have designed a 20-mer oligonucleotide that targets a region specific to the species Lactobacillus manihotivorans recently isolated from sour cassava fermentation. The probe recognized the rRNA obtained from all the L. manihotivorans strains tested but did not recognize 56 strains of microorganisms from culture collections or directly isolated from sour cassava, including 29 species of lactic acid bacteria. This probe was then successfully used in quantitative RNA blots and demonstrated the importance of L. manihotivorans in the fermentation of sour cassava starch, which could represent up to 20% of total lactic acid bacteria. PMID:10788405

  17. Will farmers intend to cultivate Provitamin A genetically modified (GM) cassava in Nigeria? Evidence from a k-means segmentation analysis of beliefs and attitudes

    PubMed Central

    Abdoulaye, Tahirou; Mignouna, Djana Babatima; Bamire, Adebayo Simeon

    2017-01-01

    Analysis of market segments within a population remains critical to agricultural systems and policy processes for targeting new innovations. Patterns in attitudes and intentions toward cultivating Provitamin A GM cassava are examined through the use of a combination of behavioural theory and k-means cluster analysis method, investigating the interrelationship among various behavioural antecedents. Using a state-level sample of smallholder cassava farmers in Nigeria, this paper identifies three distinct classes of attitude and intention denoted as low opposition, medium opposition and high opposition farmers. It was estimated that only 25% of the surveyed population of farmers was highly opposed to cultivating Provitamin A GM cassava. PMID:28700605

  18. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard

  19. Evaluation of the suitability and performance of cassava waste (peel) extracts in a microbial fuel cell for supplementary and sustainable energy production.

    PubMed

    Adekunle, Ademola; Raghavan, Vijaya

    2017-01-01

    In a number of energy-poor nations, peel from cassava processing represents one of the most abundant sources of lignocellulosic biomass. This peel is mostly discarded indiscriminately and eventually constitutes a problem to the environment. However, energy can be extracted from this peel in a microbial fuel cell. In this study, the viability of cassava peel extract as a substrate in a single-chamber air cathode microbial fuel cell is demonstrated, and optimum performance conditions are explored. The effects of different pretreatments on the extract are also discussed in the context of observed changes in the internal resistances, conductivity and Coulombic efficiencies. At the best conditions examined, the extract from cassava peel fermented for 168 h and adjusted to a pH of 7.63 attained a peak voltage of 687 mV ± 21 mV, a power density of 155 mW m -3 of reactor volume and a Coulombic efficiency of 11 %. Although this energy is limited to direct use, systems exist that can effectively harvest and boost the energy to levels sufficient for supplementary energy usage in cassava producing regions.

  20. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    PubMed

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  1. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.

    PubMed

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-03-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava.

  2. Understanding the Child Consumer

    ERIC Educational Resources Information Center

    Schor, Juliet B.

    2008-01-01

    A study was conducted to examine whether exposure to continuous commercial messages affects children's fundamental sense of well-being and whether they are at risk for a series of negative outcomes. Results show that consumer culture is harmful to adults and children, and both the American Academy of Pediatrics and the American Psychology…

  3. Good Housekeeping Implementation for Improving Efficiency in Cassava Starch Industry (Case Study : Margoyoso District, Pati Regency)

    NASA Astrophysics Data System (ADS)

    Aji, Wijayanto Setyo; Purwanto; Suherman, S.

    2018-02-01

    Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.

  4. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    PubMed

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop. Copyright © 2015 International Cassava Genetic Map Consortium (ICGMC).

  5. Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate

    PubMed Central

    Utsumi, Yoshinori; Utsumi, Chikako; Tanaka, Maho; Ha, Vu The; Matsui, Akihiro; Takahashi, Satoshi; Seki, Motoaki

    2017-01-01

    Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava. PMID:28806727

  6. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root.

    PubMed

    Carvalho, Luiz Jcb; Agustini, Marco Av; Anderson, James V; Vieira, Eduardo A; de Souza, Claudia Rb; Chen, Songbi; Schaal, Barbara A; Silva, Joseane P

    2016-06-10

    Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total β-carotene, containing all-E-, 9-Z-, and 13-Z-β-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no α-carotene was observed, variable amounts of a α-ring derived xanthophyll, lutein, was detected; with greater accumulation of α-ring xanthophylls than of β-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total β-carotene accumulation. Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low

  7. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1

    PubMed Central

    Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

    2012-01-01

    We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

  8. Consumer evaluation and satisfaction with individual versus group parent training for children with hyperkinetic disorder (HKD).

    PubMed

    Heubeck, Bernd G; Otte, Thomas A; Lauth, Gerhard W

    2016-09-01

    The objective of this study was to investigate the social validity of cognitive-behavioural parent training (CBPT) delivered in two formats to parents who have children with hyperkinetic disorder (HKD) with and without medication. Compared individual with group treatment as part of a multicentre randomized controlled trial. Obtained a broad range of evaluations and satisfaction ratings post-treatment and related them to pre-treatment and treatment factors. Attendance rates were high in the individual and slightly less in the group training. Levels of satisfaction were high in both treatment arms with large numbers rating the outcomes, the trainers and the overall training very favourably. Medication showed no effect on parental evaluations. Evaluation of outcomes and satisfaction with the trainer emerged as strong predictors of overall programme satisfaction. The social validity of cognitive-behavioural parent training for hyperkinetic children was supported by high levels of treatment acceptability across a range of indicators and for children with and without medication. Both forms of treatment delivery lead to high rates of consumer satisfaction. Consumer evaluations of CBPT appear independent of medication for HKD. Course satisfaction is clearly associated with two factors that trainers can affect: The parent-trainer relationship and parents' sense of achievement. Far more mothers than fathers attended the trainings. Attitudes may differ in other cultures. © 2015 The British Psychological Society.

  9. Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration.

    PubMed

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Coelho, Bianca; Nunes, Eduardo da Costa; Peruch, Luiz Augusto Martins; Neubert, Enilto de Oliveira; Rocha, Miguel; Maraschin, Marcelo

    2014-10-15

    Cassava roots are an important source of dietary and industrial carbohydrates and suffer markedly from postharvest physiological deterioration (PPD). This paper deals with metabolomics combined with chemometric tools for screening the chemical and enzymatic composition in several genotypes of cassava roots during PPD. Metabolome analyses showed increases in carotenoids, flavonoids, anthocyanins, phenolics, reactive scavenging species, and enzymes (superoxide dismutase family, hydrogen peroxide, and catalase) until 3-5days postharvest. PPD correlated negatively with phenolics and carotenoids and positively with anthocyanins and flavonoids. Chemometric tools such as principal component analysis, partial least squares discriminant analysis, and support vector machines discriminated well cassava samples and enabled a good prediction of samples. Hierarchical clustering analyses grouped samples according to their levels of PPD and chemical compositions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Identification and distribution of the NBS-LRR gene family in the cassava genome

    USDA-ARS?s Scientific Manuscript database

    Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analyzing the genomic organization of resistance genes i...

  11. Modelling potential ß-carotene intake and cyanide exposure from consumption of biofortified cassava

    USDA-ARS?s Scientific Manuscript database

    Background: Vitamin A (VA) deficiency causes disability and mortality. Cassava, a staple crop in Africa, can be crossbred to improve its pro-vitamin A (PVA) content and used as an alternative to capsule supplementation. However it contains cyanide and its continued consumption may lead to chronic...

  12. Experimental study on drying kinetic of cassava starch in a pneumatic drying system

    NASA Astrophysics Data System (ADS)

    Suherman, Kumoro, Andri Cahyo; Kusworo, Tutuk Djoko

    2015-12-01

    The aims of this study are to present the experimental research on the drying of cassava starch in a pneumatic dryer, to describe its drying curves, as well as to calculate its thermal efficiency. The effects of operating conditions, namely the inlet air temperature (60-100 °C) and solid-gas flow rate ratio (Ms/Mg 0.1-0.3) were studied. Heat transfer is accomplished through convection mechanism in a drying chamber based on the principle of direct contact between the heated air and the moist material. During the drying process, intensive heat and mass transfer between the drying air and the cassava starch take place. In order to meet the SNI standards on solid water content, the drying process was done in two cycles. The higher the temperature of the drying air, the lower the water content of the solids exiting the dryer. Thermal efficiency of the 2nd cycle was found to be lower than the 1st cycle.

  13. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    NASA Astrophysics Data System (ADS)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  14. Glass transitions and physical aging of cassava starch - corn oil blends.

    PubMed

    Pérez, Adriana; Sandoval, Aleida J; Cova, Aura; Müller, Alejandro J

    2014-05-25

    Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression.

    PubMed

    Sheffield, Jeanne; Taylor, Nigel; Fauquet, Claude; Chen, Sixue

    2006-03-01

    Using high-resolution 2-DE, we resolved proteins extracted from fibrous and tuberous root tissues of 3-month-old cassava plants. Gel image analysis revealed an average of 1467 electrophoretically resolved spots on the fibrous gels and 1595 spots on the tuberous gels in pH 3-10 range. Protein spots from both sets of gels were digested with trypsin. The digests were subjected to nanoelectrospray quadrupole TOF tandem mass analysis. Currently, we have obtained 299 protein identifications for 292 gel spots corresponding to 237 proteins. The proteins span various functional categories from energy, primary and secondary metabolism, disease and defense, destination and storage, transport, signal transduction, protein synthesis, cell structure, and transcription to cell growth and division. Gel image analysis has shown unique, as well as up- and down-regulated proteins, present in the tuberous and the fibrous tissues. Quantitative and qualitative analysis of the cassava root proteome is an important step towards further characterization of differentially expressed proteins and the elucidation of the mechanisms underlying the development and biological functions of the two types of roots.

  16. The effect of monoculture peanut and cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil under the biochar application and straw mulching

    NASA Astrophysics Data System (ADS)

    Chen, X.; Tian, Y.; Guo, X. F.; Chen, G. K.; He, H. Z.; Li, H. S.

    2017-03-01

    Cassava/peanut intercropping is a popular cultivation method in the south China, with the advantage of apparent yield increase. In order to analyze the effect of cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil, the physical and chemical properties were investigated under the biochar application and straw mulching. The result showed that the Ph, organic materials content, available phosphorus content, available potassium content in peanut rhizosphere under the biochar application increased by 7.06%, 94.52%, 17.53%, 25.08% (monoculture peanut) and 8.47%, 89.94%, 17.93%, 22.87% (cassava/peanut intercropping) compared with Ck in the same planting patterns. In addition, the available nitrogen content, organic materials content, available phosphorus content, and available potassium content in peanut rhizosphere under the straw mulching increased by 89.80%, 60.92%, 5.95%, 9.98% (monoculture peanut) and 67.09%, 52.34%, 6.96%, 11.94% (cassava/peanut intercropping) compared with Ck in the same planting patterns. In the same treatment conditions, bulk density in peanut rhizosphere soil decreased and porosity and saturated permeability coefficient increased slightly. But there was no significant difference between the two. At the same time, cassava/peanut intercropping could increase soil nutrients. Therefore, it is beneficial to apply biochar and straw mulching, and the suitable intercropping row spacing is more beneficial to increase soil nutrient contents.

  17. Consumer Product Safety Commission. Consumer Education Efforts for Revised Children's Sleepwear Safety Standard.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Health, Education, and Human Services Div.

    A study examined the type and extent of consumer education that occurred since the Consumer Product Safety Commission (CPSC) amended the 1972 federal safety standards (effective January 1997) to permit marketing of snug-fitting, nonflame-resistant cotton garments as sleepwear. Three voluntary point-of-sale (POS) practices recognized as important…

  18. Mutagenicity and cytotoxicity of liquid waste, press water and pond water, produced in the cassava flour industry, and of antitoxic sodium thiosulfate.

    PubMed

    Viana, Lilian Ávila; Düsman, Elisângela; Vicentini, Veronica Elisa Pimenta

    2014-02-01

    Cassava (Manihot esculenta Crantz), a plant used as food and an ingredient in industry, contains cyanogenic glycosides. The cassava root contains wastewater, popularly known as manipueira, which is a toxic substance. Its ingestion by animals causes poisoning although they react positively to treatment with sodium thiosulfate. The present research evaluates the cytotoxicity and the mutagenicity of liquid waste produced in the process of industrialization of the bitter cassava, olho-junto variety. The liquid wastes are characterized as press water, which is obtained when the cassava roots are pressed; pond water, which is press water stored in impounded ponds; and a solution of sodium thiosulfate, pure and with other waste. The system tests comprised root meristematic cells of Allium cepa L. and bone marrow cells of Rattus norvegicus. Treatment with saline solution was cytotoxic for Allium cepa L. and significantly reduced cell division rate. Although no treatment was cytotoxic in any of the tests with rats, the thiosulfate solution was clastogenic for the chromosomal aberrations test. Since it is harmful to the genetic material submitted within the conditions of current research, sodium thiosulfate should only be used in emergency conditions in which the benefits exceed the risks. © 2013 Society of Chemical Industry.

  19. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate.

    PubMed

    Thuy, Nguyen Thi Huong; Kongkaew, Artit; Flood, Adrian; Boontawan, Apichat

    2017-06-01

    The fermentation of succinic acid from fresh cassava root using Actinobacillus succinogenes ATCC55618, and the recovery of the product using crystallization were investigated. Fresh cassava root is an ideal succinic acid feedstock due to its low price and high starch content. Saccharification was carried out using commercially available enzymes and diammonium phosphate was used as an inexpensive nitrogen source. Different fermentation modes were compared in terms of product yield and productivity. Results for fed-batch fermentations showed that a succinic acid titer of 151.44g/L, with yield and productivity of 1.51g SA /g glucose and 3.22g/L/h could be obtained. Seeded batch cooling crystallization was investigated after pre-treatment using nanofiltration. A succinic acid crystal purity of 99.35% with a relative crystallinity of 96.77% was obtained from high seeding experiments. These results indicated that fresh cassava roots could be an economically alternative feedstock for a high quality succinic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz).

    PubMed

    Thanyasiriwat, T; Sraphet, S; Whankaew, S; Boonseng, O; Bao, J; Lightfoot, D A; Tangphatsornruang, S; Triwitayakorn, K

    2014-01-01

    Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77-13.01 and phenotype variations explained (PVE) from10.0-48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55-8.68 and explained 6.6-43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co-localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    NASA Astrophysics Data System (ADS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  2. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw.

    PubMed

    Kongphitee, Kanokwan; Sommart, Kritapon; Phonbumrung, Thamrongsak; Gunha, Thidarat; Suzuki, Tomoyuki

    2018-03-13

    This study was conducted to assess the effects of replacing rice straw with different proportions of cassava pulp on growth performance, feed intake, digestibility, rumen microbial population, energy partitioning and efficiency of metabolizable energy utilization in beef cattle. Eighteen yearling Thai native beef cattle (Bos indicus) with an average initial body weight of 98.3 ± 12.8 kg were allocated to one of three dietary treatments and fed ad libitum for 149 days in a randomized complete block design. Three dietary treatments using different proportions of cassava pulp (100, 300 and 500 g/kg dry matter basis) instead of rice straw as a base in a fermented total mixed ration were applied. Animals were placed in a metabolic pen equipped with a ventilated head box respiration system to determine total digestibility and energy balance. The average daily weight gain, digestible intake and apparent digestibility of dry matter, organic matter and non-fiber carbohydrate, total protozoa, energy intake, energy retention and energy efficiency increased linearly (p < 0.05) with an increasing proportion of cassava pulp in the diet, whereas the three main types of fibrolytic bacteria and energy excretion in the urine (p < 0.05) decreased. The metabolizable energy requirement for the maintenance of yearling Thai native cattle, determined by a linear regression analysis, was 399 kJ/kg BW0.75, with an efficiency of metabolizable energy utilization for growth of 0.86. Our results demonstrated that increasing the proportion of cassava pulp up to 500 g/kg of dry matter as a base in a fermented total mixed ration is an effective strategy for improving productivity in zebu cattle.

  3. Marker-Based Estimates Reveal Significant Non-additive Effects in Clonally Propagated Cassava (Manihot esculenta): Implications for the Prediction of Total Genetic Value and the Selection of Varieties.

    PubMed

    Wolfe, Marnin D; Kulakow, Peter; Rabbi, Ismail Y; Jannink, Jean-Luc

    2016-08-31

    In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and nature of non-additive genetic variation for three key traits in a breeding population of cassava from sub-Saharan Africa using additive and non-additive genome-wide marker-based relationship matrices. We then assessed the accuracy of genomic prediction for total (additive plus non-additive) genetic value. We confirmed previous findings based on diallel populations, that non-additive genetic variation is significant for key cassava traits. Specifically, we found that dominance is particularly important for root yield and epistasis contributes strongly to variation in CMD resistance. Further, we showed that total genetic value predicted observed phenotypes more accurately than additive only models for root yield but not for dry matter content, which is mostly additive or for CMD resistance, which has high narrow-sense heritability. We address the implication of these results for cassava breeding and put our work in the context of previous results in cassava, and other plant and animal species. Copyright © 2016 Author et al.

  4. Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield.

    PubMed

    Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva

    2012-12-01

    The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.

  5. Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield

    PubMed Central

    Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva

    2012-01-01

    The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves. PMID:25049534

  6. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    PubMed

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  7. Phenylpropanoids, Phenylalanine Ammonia Lyase and Peroxidases in Elicitor‐challenged Cassava (Manihot esculenta) Suspension Cells and Leaves

    PubMed Central

    GÓMEZ‐VÁSQUEZ, ROCÍO; DAY, ROBERT; BUSCHMANN, HOLGER; RANDLES, SOPHIE; BEECHING, JOHN R.; COOPER, RICHARD M.

    2004-01-01

    • Background and aims Control of diseases in the key tropical staple, cassava, is dependent on resistant genotypes, but the innate mechanisms are unknown. The aim was to study phenylpropanoids and associated enzymes as possible defence components. • Methods Phenylalanine ammonia‐lyase (PAL), phenylpropanoids and peroxidases (POD) were investigated in elicited cassava suspension cells and leaves. Yeast elicitor was the most effective of several microbial and endogenous elicitors. Fungitoxicity was determined against the cassava pathogens Fusarium solani, F. oxysporum and the saprotroph Trichoderma harzianum. • Key results A single and rapid (≥2–3 min) oxidative burst, measured as hydrogen peroxide, occurred in elicited cells. PAL activity was induced maximally at 15 h and was preceded by PAL mRNA accumulation, which peaked at 9 h. Symplasmic POD activity increased four‐fold in cells, 48 h post‐elicitation. POD isoforms (2–7 isoforms, pI 3·1–8·8) were detected in elicited and unelicited cells, extracellular medium and leaves but two extracellular isoforms were enhanced post‐elicitation. Also expression of a cassava peroxidase gene MecPOD1 increased in elicited cells. Only anionic forms oxidized scopoletin, with highest activity by isoform pI 3·6, present in all samples. Unidentified phenolics and possibly scopolin increased post‐elicitation, but there was no enhancement of scopoletin, rutin or kaempferol‐3‐O‐rutinoside concentration. Fungal germ tube elongation was inhibited more than germination by esculetin, ferulic acid, quercetin and scopoletin. T. harzianum was generally more sensitive than the pathogens and was inhibited by ≥50 µg mL–1 of ferulic acid and quercetin and ≥10 µg mL–1 of scopoletin. • Conclusions Phenolic levels in cells were not enhanced and were, theoretically, too low to be inhibitory. However, in combination and when oxidized they may contribute to defence, because oxidation of esculetin and

  8. Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.

    PubMed

    Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-01-04

    Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.

  9. Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development.

    PubMed

    Guo, D; Li, H L; Tang, X; Peng, S Q

    2014-12-18

    In plants, homeodomain proteins play a critical role in regulating various aspects of plant growth and development. KNOX proteins are members of the homeodomain protein family. The KNOX transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of cassava (Manihot esculenta Krantz) has allowed a genome-wide search for M. esculenta KNOX (MeKNOX) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. In the present study, we identified 12 MeKNOX genes in the cassava genome and grouped them into two distinct subfamilies based on their domain composition and phylogenetic analysis. Furthermore, semi-quantitative reverse transcription polymerase chain reaction analysis was performed to elucidate the expression profiles of these genes in different tissues and during various stages of root development. The analysis of MeKNOX expression profiles of indicated that 12 MeKNOX genes display differential expressions either in their transcript abundance or expression patterns.

  10. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    PubMed

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Serum 8,12-iso-iPF2α-VI isoprostane marker of oxidative damage and cognition deficits in children with konzo.

    PubMed

    Makila-Mabe, Bumoko G; Kikandau, Kambale J; Sombo, Thérèse M; Okitundu, Daniel L; Mwanza, Jean-Claude; Boivin, Michael J; Ngoyi, Mumba D; Muyembe, Jean-Jacques T; Banea, Jean-Pierre; Boss, Gerard R; Tshala-Katumbay, Desiré

    2014-01-01

    We sought to determine whether motor and cognitive deficits associated with cassava (food) cyanogenic poisoning were associated with high concentrations of F2-isoprostanes, well-established indicators of oxidative damage. Concentrations of serum F2-isoprostanes were quantified by LC-MS/MS and anchored to measures of motor proficiency and cognitive performance, which were respectively assessed through BOT-2 (Bruininks/Oseretsky Test, 2nd Edition) and KABC-II (Kaufman Assessment Battery for Children, 2nd edition) testing of 40 Congolese children (21 with konzo and 19 presumably healthy controls, overall mean age (SD): 9.3 (3.2) years). Exposure to cyanide was ascertained by concentrations of its main metabolite thiocyanate (SCN) in plasma and urine. Overall, SCN concentrations ranged from 91 to 325 and 172 to 1032 µmol/l in plasma and urine, respectively. Serum isoprostanes ranged from 0.1 to 0.8 (Isoprostane-III), 0.8 to 8.3 (total Isoprostane-III), 0.1 to 1.5 (Isoprostane-VI), 2.0 to 9.0 (total Isoprostane-VI), or 0.2 to 1.3 ng/ml (8,12-iso-iPF2α-VI isoprostane). Children with konzo poorly performed at the BOT-2 and KABC-II testing relative to presumably healthy children (p<0.01). Within regression models adjusting for age, gender, motor proficiency, and other biochemical variables, 8,12-iso-iPF2α-VI isoprostane was significantly associated with the overall cognitive performance (β = -32.36 (95% CI: -51.59 to -13.03; P<0.001). This model explained over 85% of variation of the KABC-II score in children with konzo, but was not significant in explaining the motor proficiency impairment. These findings suggest that cognitive deficits and, possibly, brain injury associated with cassava poisoning is mediated in part by oxidative damage in children with konzo. 8,12-iso-iPF2α-VI isoprostane appears to be a good marker of the neuropathogenic mechanisms of konzo and may be used to monitor the impact of interventional trials to prevent the neurotoxic effects of

  12. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

    PubMed

    Sorndech, Waraporn; Meier, Sebastian; Jansson, Anita M; Sagnelli, Domenico; Hindsgaul, Ole; Tongta, Sunanta; Blennow, Andreas

    2015-11-05

    Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE). We performed a detailed molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility. Step-by-step enzyme catalysis was the most efficient treatment, and it generated branch structures even more extreme than those of glycogen. All AM- and BE-treated samples showed increased resistance to degradation by porcine pancreatic α-amylase and glucoamylase as compared to cassava starch. The amylolytic products showed chain lengths and branching patterns similar to the products obtained from glycogen. Our data demonstrate that combinatorial enzyme catalysis provides a strategy to generate potential novel soluble α-glucan ingredients with low dietary digestibility assets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    PubMed

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  14. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  15. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: the E-Z-isomerisation stage.

    PubMed

    Bayoumi, Soad A L; Rowan, Michael G; Blagbrough, Ian S; Beeching, John R

    2008-12-01

    Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2',3',4',5',6'-d(5) acid gave scopoletin-d(2). However, feeding with E-cinnamic-3,2',3',4',5',6'-d(6) and E-cinnamic-2,3,2',3',4',5',6'-d(7) acids, both gave scopoletin-d(3), the latter not affording the expected scopoletin-d(4). We therefore synthesised and fed with E-cinnamic-2-d(1) when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by sigma-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2',3',4',5',6'-d(7) acid gave scopoletin-d(3) with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.

  16. Changes of Cyanide Content and Linamarase Activity in Wounded Cassava Roots 1

    PubMed Central

    Kojima, Mineo; Iwatsuki, Norio; Data, Emma S.; Villegas, Cynthia Dolores V.; Uritani, Ikuzo

    1983-01-01

    When cassava (Manihot esculenta Crantz) root was cut into blocks and incubated under laboratory conditions, the blocks showed more widespread and more even symptoms of physiological deterioration than those under natural conditions. Thus, the tissue block system has potential for biochemical studies of natural deterioration of cassava root. The changes in cyanide content and linamarase (linamarin β-d-glucoside glucohydrolase; EC 3.2.1.21) activity in various tissues during physiological deterioration were investigated. Total cyanide content increased in all parts of block tissue after 3-day incubation. The degree of increase in cyanide was most pronounced in white parenchymal tissue, 2 to 3 millimeters thick, next to the cortex (A-part tissue), where no physiological symptoms appeared. On the other hand, linamarase activity was decreased in all parts of block tissue after a 3-day incubation. A time course analysis of A-part tissue indicated a clear reciprocal relationship between changes in total cyanide and linamarase activity; total cyanide increased, while linamarase activity decreased. Free cyanide constituted a very small portion of the total cyanide and did not change markedly. Images Fig. 2 PMID:16662957

  17. Properties enhancement of cassava starch based bioplastics with addition of graphene oxide

    NASA Astrophysics Data System (ADS)

    Amri, A.; Ekawati, L.; Herman, S.; Yenti, S. R.; Zultiniar; Aziz, Y.; Utami, S. P.; Bahruddin

    2018-04-01

    The properties of cassava starch based bioplastic have been successfully enhanced by additioning of graphene oxide (GO) filler. The composite was synthesized via starch intercalation method using glycerol plasticizer with variation of 5 – 15 % v/v GO filler and mixing time of 30 and 60 minutes. The effects of GO content and the mixing time to the mechanical, water uptake and biodegradation were studied. The synthesis of GO and its integration in the bioplastic composite were also elucidated. The increasing of the GO content and mixing time improved the mechanical properties of composite mainly due to of good homogeneity among the constituents in the composite as indicated by scanning electron microscopy (SEM) and Fourier Transfom Infrared (FTIR) spectroscopy. The bioplastic produced using 15% of GO and 60 minutes mixing time had the highest mechanical properties with tensile strenght of 3,92 Mpa, elongation of 13,22% and modulus young of 29,66 MPa. The water uptake and biodegradation increased as the increase of GO content and decreased as the increase of the mixing time. Graphene oxide is the promissing filler for further development of cassava starch based bioplastics.

  18. The effect of long-term feeding of fresh and ensiled cassava (Manihot esculenta) foliage on gastrointestinal nematode infections in goats.

    PubMed

    Sokerya, S; Waller, P J; Try, P; Höglund, J

    2009-02-01

    The benefit of long-term feeding of fresh or ensiled cassava foliage on gastrointestinal parasite in goats was evaluated. Eighteen male goats (15.15 +/- 2.83 kg and between 4-6 months) were randomly allocated into three treatments supplemented with 200 g of wheat bran head(-1) day(-1). All groups were fed ad-libitum on either grass (CO), fresh cassava (CaF) or ensiled cassava foliage (CaS). At the beginning of the trial, each goat was inoculated with 3000 L3 containing approximately 50% Haemonchus contortus. Individual LWt, FEC and PCV were measured at weekly intervals for 10 weeks. At the termination of the experiment all goats were slaughtered for worm recovery and enumeration. The goats in CaF and CaS had similar weight gains while those in CO lost weight (p < 0.05) through the trial. FEC in CaF and CaS were lower (p < 0.05) than CO during the patency of parasite infections, but there was no difference between CaF and CaS goats. PCV of all groups decreased from above 30% to around 25% at the end of the trial. The compositions of established worm burdens were mainly H. contortus (19-40%) and Trichostrongylus colubriformis (55-76%). TWB did not differ among the groups, however, CaS significantly reduced H. contortus burdens, as compared to CaF and CO (p < or = 0.005). Thus, ensiled cassava foliage reduced the H. contortus population while the fresh foliage only reduced worm fecundity.

  19. A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples.

    PubMed

    Ediage, Emmanuel Njumbe; Di Mavungu, José Diana; Monbaliu, Sofie; Van Peteghem, Carlos; De Saeger, Sarah

    2011-05-25

    This study was designed to develop a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection and quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples with particular focus on the optimization of the sample preparation protocol and method validation. All 25 mycotoxins were extracted in a single step with a mixture of methanol/ethyl acetate/water (70:20:10, v/v/v). The method limits of quantification (LOQ) varied from 0.3 μg/kg to 106 μg/kg. Good precision and linearity were observed for most of the mycotoxins. The method was applied for the analysis of naturally contaminated peanut cake, cassava flour and maize samples from the Republic of Benin. All samples analyzed (fifteen peanut cakes, four maize flour and four cassava flour samples) tested positive for one or more mycotoxins. Aflatoxins (total aflatoxins; 10-346 μg/kg) and ochratoxin A (cassava flour samples. Fumonisin B(1) (13-836 μg/kg), fumonisin B(2) (5-221 μg/kg), fumonisin B(3) (

  20. A geographic distribution database of the Neotropical cassava whitefly complex (Hemiptera, Aleyrodidae) and their associated parasitoids and hyperparasitoids (Hymenoptera)

    PubMed Central

    Vásquez-Ordóñez, Aymer Andrés; Hazzi, Nicolas A.; Escobar-Prieto, David; Paz-Jojoa, Dario; Parsa, Soroush

    2015-01-01

    Abstract Whiteflies (Hemiptera, Aleyrodidae) are represented by more than 1,500 herbivorous species around the world. Some of them are notorious pests of cassava (Manihot esculenta), a primary food crop in the tropics. Particularly destructive is a complex of Neotropical cassava whiteflies whose distribution remains restricted to their native range. Despite their importance, neither their distribution, nor that of their associated parasitoids, is well documented. This paper therefore reports observational and specimen-based occurrence records of Neotropical cassava whiteflies and their associated parasitoids and hyperparasitoids. The dataset consists of 1,311 distribution records documented by the International Center for Tropical Agriculture (CIAT) between 1975 and 2012. The specimens are held at CIAT’s Arthropod Reference Collection (CIATARC, Cali, Colombia). Eleven species of whiteflies, 14 species of parasitoids and one species of hyperparasitoids are reported. Approximately 66% of the whitefly records belong to Aleurotrachelus socialis and 16% to Bemisia tuberculata. The parasitoids with most records are Encarsia hispida, Amitus macgowni and Encarsia bellottii for Aleurotrachelus socialis; and Encarsia sophia for Bemisia tuberculata. The complete dataset is available in Darwin Core Archive format via the Global Biodiversity Information Facility (GBIF). PMID:26798295

  1. Effect of cassava starch-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9

    NASA Astrophysics Data System (ADS)

    Praseptiangga, D.; Utami, R.; Khasanah, L. U.; Evirananda, I. P.; Kawiji

    2017-02-01

    Edible films and coatings have emerged as an alternative packaging in food applications and have received much attention due to their advantages. The incorporation of essential oils in film matrices to give antimicrobial properties had been observed recently, and could be used as promising preservation technology. In this study, cassava starch-based edible coating incorporated with lemongrass essential oil (1%) was applied by spraying and dipping methods to preserve papaya MJ9 during storage at room temperature. The quality of papaya MJ9 was analyzed based on its physicochemical and microbiological properties. The addition of lemongrass essential oil (1%) significantly inhibited the microbial growth on papaya MJ9 by reducing the value of total yeast and mold as compared to the control. This study also showed that for parameters of weight loss, total soluble solid, vitamin C, and total titratable acid, papaya MJ9 with cassava starch-based edible coating incorporated with lemongrass essential oil (1%) had the lower values than control, however, they had the higher value than control on firmness parameter. These results indicate that cassava starch-based edible coating incorporated with lemongrass essential oil (1%) can be used as an alternative preservation for papaya MJ9.

  2. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    PubMed

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  3. Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz).

    PubMed

    Ceballos, Hernán; Sánchez, Teresa; Denyer, Kay; Tofiño, Adriana P; Rosero, Elvia A; Dufour, Dominique; Smith, Alison; Morante, Nelson; Pérez, Juan C; Fahy, Brendan

    2008-08-27

    Only two mutations have been described in the literature, so far, regarding starch and root quality traits in cassava. This article reports on an induced mutation in this crop, first identified in 2006. Botanical seed from five different cassava families were irradiated with gamma rays. Seed was germinated, transplanted to the field (M1 plants), and self-pollinated to produce the M2 generation. Abnormal types regarding starch granule morphology were identified during the single plant evaluation of M2 genotypes. To confirm these characteristics, selected genotypes were cloned and a second evaluation, based on cloned plants obtained from vegetative multiplication, was completed in September 2007. Two M2 genotypes presented small starch granules, but only one could be fully characterized, presenting a granule size of 5.80 +/- 0.33 microm compared with three commercial clones with granule sizes ranging from 13.97 +/- 0.12 to 18.73 +/- 0.10 microm and higher-than-normal amylose content (up to 30.1% in cloned plants harvested in 2007, as compared with the typical values for "normal" cassava starch of around 19.8%). The gels produced by the starch of these plants did not show any viscosity when analyzed with the rapid viscoanalyzers (5% suspension), and the gels had low clarity. Low viscosity could be observed at higher concentrations (8 or 10% suspensions). Preliminary results suggest that the mutation may be due to a lesion in a gene encoding one of the isoforms of isoamylase (probably isa1 or isa2).

  4. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content.

    PubMed

    Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter

    2017-11-01

    Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.

  5. Field Level RNAi-Mediated Resistance to Cassava Brown Streak Disease across Multiple Cropping Cycles and Diverse East African Agro-Ecological Locations

    PubMed Central

    Wagaba, Henry; Beyene, Getu; Aleu, Jude; Odipio, John; Okao-Okuja, Geoffrey; Chauhan, Raj Deepika; Munga, Theresia; Obiero, Hannington; Halsey, Mark E.; Ilyas, Muhammad; Raymond, Peter; Bua, Anton; Taylor, Nigel J.; Miano, Douglas; Alicai, Titus

    2017-01-01

    Cassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96–100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle

  6. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress

    PubMed Central

    2012-01-01

    Background Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. Results A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4), transcription factors (TFs, e.g., RAP2.11), and reactive oxygen species (ROS) scavenging enzymes (e.g., catalase 2), as well as photosynthesis-related genes (e.g., PsaL). Seventeen major TF families including many well-studied members (e.g., AP2-EREBP) were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase in transcripts and

  7. Fungal cellulases as an aid for the saccharification of cassava

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Menezes, T.J.B.; Arakaki, T.; DeLamo, P.R.

    1978-01-01

    Culture broths of cellulolytic fungi were used together with commercial amylases to enhance the saccharification of cassava starch slurry. The addition of appropriate concentration of cellulase from Trichoderma viride and from a basidiomycete from soil increased both the rate of sugar formation and the degree of solubilization and decreased the viscosity of the hydrolyzates. Owing to the improvement of the rhetorical properties of the must and the additional sugar produced, an increased ethanol yield would be expected from the alcohol fermentation of this hydrolyzate.

  8. Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis.

    PubMed

    Fontana, J D; Passos, M; Baron, M; Mendes, S V; Ramos, L P

    2001-01-01

    Kinetic conditions were established for the depolymerization of cassava starch for the production of maltodextrins and glucose syrups. Thin-layer chromatography and high-performance liquid chromatography analyses corroborated that the proper H3PO4 strength and thermopressurization range (e.g., 142-170 degrees C; 2.8-6.8 atm) can be successfully explored for such hydrolytic purposes of native starch granules. Because phosphoric acid can be advantageously maintained in the hydrolysate and generates, after controlled neutralization with ammonia, the strategic nutrient triplet for industrial fermentations (C, P, N), this pretreatment strategy can be easily recognized as a recommended technology for hydrolysis and upgrading of starch and other plant polysaccharides. Compared to the classic catalysts, the mandatory desalting step (chloride removal by expensive anion-exchange resin or sulfate precipitation as the calcium-insoluble salt) can be avoided. Furthermore, properly diluted phosphoric acid is well known as an allowable additive in several popular soft drinks such as colas since its acidic feeling in the mouth is compatible and synergistic with both natural and artificial sweeteners. Glycosyrups from phosphorolyzed cassava starch have also been upgraded to high-value single-cell protein such as the pigmented yeast biomass of Xanthophyllomyces dendrorhous (Phaffia rhodozyma), whose astaxanthin (diketo-dihydroxy-beta-carotene) content may reach 0.5-1.0 mg/g of dry yeast cell. This can be used as an ideal complement for animal feeding as well as a natural staining for both fish farming (meat) and poultry (eggs).

  9. Nutrient Intake, Diet Quality, and Weight Measures in Breakfast Patterns Consumed by Children Compared with Breakfast Skippers: NHANES 2001-2008.

    PubMed

    O'Neil, Carol E; Nicklas, Theresa A; Fulgoni, Victor L

    2015-01-01

    Most studies showing that children consuming breakfast have better nutrient intakes, diet quality, and lower weight than breakfast skippers have the incorrect premise that breakfast meals are homogeneous. The purpose of this study was to classify breakfast meals into patterns and determine the association of the breakfast patterns with daily and breakfast nutrient intakes, diet quality, and weight. Data from children (2-18 years of age; N = 14,200) participating in the National Health and Nutrition Examination Survey 2001-2008 were used. Intake was determined from one day 24-hour dietary recalls. Diet quality was measured using the Healthy Eating Index-2005 (HEI-2005). Body mass index (BMI) z-scores were determined. Twelve patterns (including No Breakfast [∼19% of population]), explaining 63% of the variance in energy from breakfast, were examined. Covariate adjusted general linear models were used to compare outcome variables of consumers of different patterns with breakfast skippers. The p value was Bonferroni corrected (< 0.05/12 = < 0.0042). Consumers of the Eggs/Grain/Meat, Poultry, Fish (MPF)/ Fruit Juice (FJ) and MPF/ Grain/FJ patterns showed higher daily intakes of saturated fats, solid fats, and sodium and lower daily intakes of added sugars than breakfast skippers. Consumers of most breakfast patterns showed higher daily intakes of some nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium); however, those consuming the Grain or MPF/Grain/FJ pattern did not. Consumers of the Grain/Lower Fat Milk (LFM)/Sweets/FJ, Presweetened (PS) Ready-to-eat Cereal (RTEC)/ LFM, RTEC/LFM, Cooked Cereal/Milk/FJ, and Whole Fruit patterns had higher total HEI-2005 scores than breakfast skippers; those consuming the MPF/ Grain/FJ pattern had lower diet quality than breakfast skippers. Consumption of the Grain/ LFM/Sweets/FJ, PSRTEC/whole milk, Soft Drinks/ FJ/Grain/Potatoes, RTEC/whole milk, and Cooked Cereal/ Milk/ FJ patterns was associated

  10. Improvement of organoleptic quality of retted cassava products by alkali pretreatment of roots and addition of sodium nitrate during retting.

    PubMed

    Ogbo, Frank C

    2003-12-15

    Alkali pretreatment of cassava roots before retting and addition of sodium nitrate during retting were used to manipulate the metabolism of microorganisms involved in cassava (Manihot esculenta Crantz) retting, as a method for removing the characteristic offensive odour of retted cassava products. Odour was assessed by organoleptic methods. The characteristics of fermentation of cassava by the traditional method (control) were as follows; aerobic mesophilic count (APC) on nutrient agar (NA) at 30 degrees C/48 h, attained a maximum of 2.3 x 10(7)/ml retting juice while counts on de Man Rogosa and Sharpe agar (MRS) at 30 degrees C/48 h were 1.6 x 10(8)/ml. Maximum titrable acidity was 0.062% lactic acid by weight of retting juice. Cassava was retted in 3 days and the product exhibited characteristic offensive odour. Addition of NaNO3 into retting water effectively removed odour at a concentration of 0.3 g/l. Maximum APC on NA/30 degrees C/48 h was 6.8 x 10(6)/ml. Counts on MRS/30 degrees C/48 h exceeded 2.4 x 10(9)/ml. Retting was complete in 3 days with a final titrable acidity of 0.068% of retting juice. Removal of odour likely resulted from selection of homo-fermentative lactic acid bacteria, thus producing mostly odourless lactic acid. Alkali pretreatment of roots before retting was efficacious in removing odour at a concentration of 10 g/l for 30 min. This fermentation was characterized by APC on NA/30 degrees C/48 h of 5.4 x 10(6)/ml; MRS/30 degrees C/48 h reached a maximum of only 10 x 10(4)/ml and correspondingly low titrable acidity of 0.003%. Low counts of lactic acid bacteria correlate well with the absence of odour in this sample. Both treatments did not adversely affect the detoxification process, yielding "foo-foo" with HCN levels lower than 10 mg/kg. Residual nitrates and nitrites of 30 mg/kg in the sodium nitrate-treated sample were also within the safe limits of 156 mg/kg allowed in many countries. Organoleptically improved samples were acceptable to

  11. Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production.

    PubMed

    Poonsrisawat, Aphisit; Paemanee, Atchara; Wanlapatit, Sittichoke; Piyachomkwan, Kuakoon; Eurwilaichitr, Lily; Champreda, Verawat

    2017-10-01

    In this study, an efficient ethanol production process using simultaneous saccharification and viscosity reduction of raw cassava pulp with no prior high temperature pre-gelatinization/liquefaction step was developed using a crude starch- and cell wall-degrading enzyme preparation from Aspergillus aculeatus BCC17849. Proteomic analysis revealed that the enzyme comprised a complex mixture of endo- and exo-acting amylases, cellulases, xylanases, and pectina ses belonging to various glycosyl hydrolase families. Enzymatic hydrolysis efficiency was dependent on the initial solid loading in the reaction. Reduction in mixture viscosity was observed with a rapid decrease in complex viscosity from 3785 to 0.45 Pa s with the enzyme dosage of 2.19 mg/g on a dried weight basis within the first 2 h, which resulted from partial destruction of the plant cell wall fiber and degradation of the released starch granules by the enzymes as shown by scanning electron microscopy. Saccharification of cassava pulp at an initial solid of 16% (w/v) in a bench-scale bioreactor resulted in 736.4 mg glucose/g, which is equivalent to 82.92% glucose yield based on the total starch and glucan in the substrate, after 96 h at 40 °C. Simultaneous saccharification and fermentation of cassava pulp by Saccharomyces cerevisiae with the uncooked enzymatic process led to a final ethanol concentration of 6.98% w/v, equivalent to 96.7% theoretical yield based on the total starch and cellulose content. The results demonstrated potential of the enzyme for low-energy processing of cassava pulp in biofuel industry.

  12. Effects of polluting soil with cassava mill effluent on the bacteria and fungi populations of a soil cultivated with maize.

    PubMed

    Ogboghodo, I A; Oluwafemi, A P; Ekeh, S M

    2006-05-01

    The study was carried out to investigate the effects of application of cassava mill effluent on bacteria and fungi types and population in a soil grown to maize (Zea Mays L.) Microbial populations were determined before pollution of soil with cassava mill effluent, six weeks after pollution with effluent and at the end of the experiment. Results obtained showed that bacteria and fungi populations increased with time as rates of pollution increased. It was also observed that some bacteria present in the soil at the beginning of the experiment and up to the sixth week after pollution with effluent became extinct at the end of the experiment.

  13. Enhanced Reactive Oxygen Species Scavenging by Overproduction of Superoxide Dismutase and Catalase Delays Postharvest Physiological Deterioration of Cassava Storage Roots1[C][W][OA

    PubMed Central

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R.; Zhang, Peng

    2013-01-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  14. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.

    PubMed

    Danso, K E; Ford-Lloyd, B V

    2003-04-01

    We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.

  15. Study on Esterification Reaction of Starch Isolated from Cassava (Manihot esculeta) with Acetic Acid and Isopropyl Myrtistate Using Ultrasonicator

    NASA Astrophysics Data System (ADS)

    Wika Amini, Helda; Masruri; Mariyah Ulfa, Siti

    2018-01-01

    Cassava starch is a polysaccharide consists of amylose and amylopectin. This research was purposed to modify the starch isolated from local cassava (Manihot esculenta). Modification was undertaken to study the esterification reaction of cassava starch with acetic acid and with isopropyl myristate. Moreover, morphology observation was also conducted both for original starch and its modification yields. It was found that cassava’s starch was isolated in 16.4% yield as a white powder. Esterification on the starch provided DS value 0.549 for ratio 1:2 of starch-acetic acid. It gave DS value 0.356 for ratio 1:3 of starch-isopropyl myristate. Treatment by ultrasonication from 0 to 60 minutes was significantly improved the DS value to 0.549 for starch-acetic acid. But it gave DS value to 0.413 for 30 minute ultrasonication of starch-isopropyl myristate. In addition, morphology of the starch observed by microscope gave different features with starch ester acetate and starch ester myristate. The original starch consists of granules, but starch ester acetate indicates a non-granules shape (amorf solid). Moreover for starch ester myristate shows a rather bigger size of granules, and all of the granules afforded were round and oval.

  16. Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis

    NASA Astrophysics Data System (ADS)

    Witantri, R. G.; Purwoko, T.; Sunarto; Mahajoeno, E.

    2017-07-01

    Cassava peels waste contains, cellulose which is quite high at 43.626%, this is a potential candidate as a raw for bioethanol production. The purpose of this study was to determine the performance of the enzymatic hydrolysis, microbiological (Effective microbe) and fermentation in cassava peel waste is known from the results of quantitative measurement of multiple ethanol parameters (DNS Test, pH, ethanol concentration). This research was carried out in stages, the first stage is hydrolysis with completely randomized design with single factor variation of the catalyst, consisting of three levels ie cellulase enzymes, multienzyme and effective microbial EM4. The second stage is fermentation with factorial randomized block design, consisting of three groups of variations of catalyst, and has two factors: variations of fermipan levels 1, 2, 3% and the duration of fermentation, 2,4,6 days. The parameters in the test is a reducing sugar, pH and concentration of ethanol. The results showed that variation of hydrolysis treatment, fermentation time, and fermipan levels has real effect on the fermentation process. On average the highest ethanol content obtained from the treatment with multienzyme addition, with the addition of 2% fermipan levels and on the 2nd day of fermentation that is equal to 3.76%.

  17. Productive potential of cassava plants (Manihot esculenta Crantz) propagated by leaf buds.

    PubMed

    Neves, Reizaluamar J; Diniz, Rafael P; Oliveira, Eder J DE

    2018-04-23

    New techniques of rapid multiplication of cassava (Manihot esculenta Crantz) have been developed, requiring technical support for large-scale use. This work main to evaluate the agronomic performance of plantlets obtained by leaf buds technique against stem cuttings in the field conditions. The work was conducted using the randomized block design in a factorial scheme with 3 varieties (BRS Kiriris, 98150-06, 9624-09) × 4 origins of the plantlets (conventional - stem cuttings of 20 cm length, leaf buds of the upper, middle and inferior stem part) × 2 agrochemicals (control and treated). There was a remarkable decrease in some agronomic traits that ranged from 23% (number of branches) to 62% (shoot weight) when using leaf buds plantlets. The treatment of plantlets with agrochemicals promoted significant increases in all traits, ranging from 26% (number of roots per plant) to 46% (shoot weight). The plantlets originating from leaf buds of the upper and middle parts were able to generate stem-like plants similar to stem-derived ones. Despite its lower agronomic performance under field conditions, multiplication by leaf buds may generate five times the number of propagules in comparison with the conventional multiplication, and therefore it could be a viable alternative for rapid cassava multiplication.

  18. Effect of Agitation in Alkalization Process on the Characteristics of Sodium Carboxymethyl Sago and Cassava Starches

    NASA Astrophysics Data System (ADS)

    Titi, C. S.; Fachrudin, R.; Ruriani, E.; Yuliasih, I.

    2018-05-01

    Sodium carboxymethyl starch (Sodium CMS) is a modified starch prepared by two successive processes, alkalization and etherification. Alkalization will change the activated hydroxyl group of starch to more reactive alkoxide (St-O-), and then carboxymethyl group will substitute the hydroxyl group into sodium CMS. This research investigated the effect of agitation (1000 rpm of stirring and 4000 rpm of homogenization) in alkalization process to the modification of native starch into sodium CMS. Cassava and sago starches were mixed with sodium hydroxide (1.8 and 1.9 moles per mole anhydrous glucose units). The combination of NaOH and homogenizing gave the highest degrees of substitution for cassava (DS 0.73) and sago (DS 0.55) starches. The sodium CMS characteristics (paste clarity, water and oil absorption capacities, solubility, swelling power) were a function of mixing method but not on the amount of NaOH used.

  19. Potential Prebiotic Oligosaccharide Mixtures from Acidic Hydrolysis of Rice Bran and Cassava Pulp.

    PubMed

    Hansawasdi, Chanida; Kurdi, Peter

    2017-12-01

    Two agricultural wastes, rice bran and cassava pulp were subjected to acidic hydrolysis by 2 M sulfuric acid which resulted in hemicellulosic oligosaccharide mixtures. Monosaccharide component analysis of these mixtures revealed that the oligosaccharides of rice bran acid hydrolysate (RAHF) composed of glucose and arabinose while cassava pulp acid hydrolysate (CAHF) was found to be comprised of glucose, galactose and arabinose. Both RAHF and CAHF were able to fuel all of the tested three Lactobacillus, five Bifidobacterium and three Bacteroides strains indicating the prebiotic potential of these oligosaccharide mixtures. Moreover, Lb. gasseri grew significantly better on RAHF than on inulin, a benchmark prebiotic oligo- and polysaccharide mixture. When the digestibility of RAHF and CAHF were tested it was found that these oligosaccharide mixtures were only slightly hydrolyzed upon exposure to simulated human gastric (by less than 8%) and pancreatic juices (by less than 3%). Additionally, most sensory attributes of the above obtained oligosaccharide mixtures supplemented two model cereal drink formulations were generally not different from those of the control, while the overall acceptance was not affected significantly in one cereal drink formulation.

  20. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria. Copyright © 2016 Elsevier GmbH. All rights reserved.