Sample records for chilean crops corn

  1. Winter rye cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops have been grown successfully in Iowa, but sometimes a cereal rye cover crop preceding corn can reduce corn yields. Our research examines the effect of a rye cover crop on infections of the succeeding corn crop by soil fungal pathogens. Plant measurements included: growth stage, height, r...

  2. Winter cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  3. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Hybrid seed corn crop insurance provisions. 457.152... corn crop insurance provisions. The Hybrid Seed Corn Crop Insurance Provisions for the 1998 and... policies Hybrid Seed Corn Crop Provisions If a conflict exists among the policy provisions, the order of...

  4. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Hybrid seed corn crop insurance provisions. 457.152... corn crop insurance provisions. The Hybrid Seed Corn Crop Insurance Provisions for the 1998 and... policies Hybrid Seed Corn Crop Provisions If a conflict exists among the policy provisions, the order of...

  5. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Hybrid seed corn crop insurance provisions. 457.152... corn crop insurance provisions. The Hybrid Seed Corn Crop Insurance Provisions for the 1998 and... policies Hybrid Seed Corn Crop Provisions If a conflict exists among the policy provisions, the order of...

  6. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Hybrid seed corn crop insurance provisions. 457.152... corn crop insurance provisions. The Hybrid Seed Corn Crop Insurance Provisions for the 1998 and... policies Hybrid Seed Corn Crop Provisions If a conflict exists among the policy provisions, the order of...

  7. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost. The dollar amount...

  8. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost. The dollar amount...

  9. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost. The dollar amount...

  10. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost.—The dollar amount...

  11. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    NASA Astrophysics Data System (ADS)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  12. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  13. Monitoring corn and soybean crop development by remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1978-01-01

    A system for spectrally monitoring the stages of crop development for corn and soybeans based upon red and photographic infrared spectral radiances is proposed. The red and photographic infrared spectral radiance, highly correlated with the green leaf area index or green leaf biomass, enable nondestructive monitoring of the crop canopy throughout the growing season. Five distinct periods are apparent which are related to crop development for corn and soybeans.

  14. Forward chaining method on diagnosis of diseases and pests corn crop

    NASA Astrophysics Data System (ADS)

    Nurlaeli, Subiyanto

    2017-03-01

    Integrated pest management should be done to control the explosion of plants pest and diseases due to climate change is uncertain. This paper is a present implementation of the forward chaining method in the diagnosis diseases and pests of corn crop to help farmers/agricultural facilitators in getting knowledge about disease and pest corn crop. Forward chaining method as inference engine is used to get a disease/pest that attacks the corn crop based on symptoms. The forward chaining method works based on the fact that there is to get a conclusion. Fact in this system derived from the symptoms of the selected user is matched with the premise on every rule in the knowledge base. A rule that matches the facts to be executed to be the conclusion in the form of diagnosis. This validation using 36 data test, 32 data showed the same diagnostic results between systems with an expert. So, the percentage accuracy of results of diagnosis using data test of 88%. Finally, it can be concluded that the diagnosis system of diseases and pests corn crop can be used to help farmers/agricultural facilitators to diagnose diseases and pests corn crop.

  15. Tolerance of interseeded annual ryegrass and red clover cover crops to residual herbicides in Mid-Atlantic corn cropping systems

    USDA-ARS?s Scientific Manuscript database

    In the Mid-Atlantic region, there is increasing interest in the use of relay-cropping strategies to establish cover crops in corn cropping systems. Recent studies have demonstrated the potential to establish annual ryegrass and red clover cover crops at the V5 corn growth stage using a high-clearan...

  16. Establishment and function of cover crops interseeded into corn

    USDA-ARS?s Scientific Manuscript database

    Cover crops can provide ecological services and improve the resiliency of annual cropping systems; however, cover crop use is low in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations in the upper Midwest due to challenges with establishment. Our objective was to compare three planting me...

  17. Increased Risk of Insect Injury to Corn Following Rye Cover Crop.

    PubMed

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-08-01

    Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  19. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems

    USDA-ARS?s Scientific Manuscript database

    Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...

  20. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  1. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Hybrid seed corn crop insurance provisions. 457.152 Section 457.152 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.152 Hybrid seed...

  2. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457.154 Section 457.154 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.154 Processing...

  3. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Winter rye cover crops as a host for corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil protection, soil health and water quality. However, emerging implementations of cover cropping, such as winter cereals preceding corn, may dampen beneficial rotation effects by putting similar crop species i...

  5. Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama

    NASA Technical Reports Server (NTRS)

    Hayes, Carol E.; Perkey, Donald J.

    1998-01-01

    In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.

  6. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    USDA-ARS?s Scientific Manuscript database

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  7. Evaluation of Cuphea as a rotation crop for control of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, Robert W; Isbell, Terry A

    2005-12-01

    The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data

  8. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh market...

  9. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    USDA-ARS?s Scientific Manuscript database

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  10. Evaluation of the Community Land Model (CLM-Crop) in the United States Corn Belt

    NASA Astrophysics Data System (ADS)

    Chen, M.; Griffis, T.

    2013-12-01

    An accurate representation of crop phenology in land surface models is crucial for predicting the carbon, water and energy budgets of managed ecosystems. Soybean and corn are cultivated in approximately 600,000 km2 in the Corn Belt- an area greater than the entire State of California. Accurate prediction of the radiation, energy, and carbon budgets of this region is especially important for understanding its influence on radiative forcing, the thermodynamic properties of the atmospheric boundary layer, and changes in climate. Recently, key algorithms describing crop biophysics and interactive crop management (planting, fertilization, irrigation, harvesting) have been implemented in the Community Land Model (CLM-Crop). CLM-Crop provides a framework for prognostic simulation of crop phenology and evaluation of human management decisions under future climate scenarios. However, there is an important need to evaluate CLM-Crop against a broad range of agricultural site observations in order to understand its limitations and to help optimize the crop biophysical parameterization. Here we evaluated CLM-Crop version 4.5 at 9 AmeriFlux corn/soybean sites that are located within the United States Corn Belt. The following questions were addressed: 1) How well does CLM perform for the 9 crop sites with different management techniques (e.g., tillage vs. no-till, rainfed vs. irrigated)? 2) What are the model's strengths and weaknesses of simulating crop phenology, energy fluxes and carbon fluxes? 3) What steps are needed in order to improve the reliability of the CLM-Crop simulations? Our preliminary results indicate that CLM-Crop can simulate the radiation, energy, and carbon fluxes with reasonable accuracy during the mid growing season. The model performance degrades substantially during the early and late growing seasons, which we attribute to a bias in crop phenology. For instance, we observed that the simulated corn and soybean phenology (LAI) has an earlier phase than the

  11. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation

    PubMed Central

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J.; Moore, Kenneth J.; Thorburn, Peter; Archontoulis, Sotirios V.

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR’s were within the historical N rate error range (40–50 kg N ha-1). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward

  12. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation.

    PubMed

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J; Moore, Kenneth J; Thorburn, Peter; Archontoulis, Sotirios V

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn ( Zea mays L. ) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean ( Glycine max L. ) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha -1 ) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR's were within the historical N rate error range (40-50 kg N ha -1 ). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward

  13. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    PubMed

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  14. Effect of tillage and crop residue management on nematode densities on corn.

    PubMed

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  15. The potential for cereal rye cover crops to host corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil health and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects by growing two grass species in succession. Here, we show that rye cover crops host pathog...

  16. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corn processor contract with the processing company, and recognized by the Cooperative State Research... in the area would normally not further care for the crop, must be replanted unless we agree that it... samples of the unharvested crop for our inspection. The samples must be at least 10 feet wide and extend...

  17. Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.

  18. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  19. Intensifying production in the northern Corn Belt by incorporating cash cover crops

    USDA-ARS?s Scientific Manuscript database

    Relay cropping soybean with winter camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) in corn and soybean rotations in the northern Corn Belt, USA provides ecosystem services and is economically viable. However, questions remain regarding the optimum time to interseed these cov...

  20. An analysis of spectral discrimination between corn and soybeans using a row crop reflectance model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.

    1983-01-01

    Reflectance calculations of soybeans and corn crops at two times during the growing season indicate that the high sensitivity of the thematic mapper mid-infrared band to exposed bare soil between soybean rows is most likely responsible for early season spectral discrimination of corn and soybean crops by this band.

  1. An analysis of spectral discrimination between corn and soybeans using a row crop reflectance model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.

    1985-01-01

    Reflectance calculations of soybeans and corn crops at two times during the growing season indicate that the high sensitivity of the thematic mapper mid-infrared band to exposed bare soil between soybean rows is most likely responsible for early season spectral discrimination of corn and soybean crops by this band.

  2. Long-term rotation history and previous crop effects on corn seedling health

    USDA-ARS?s Scientific Manuscript database

    Diverse rotations provide benefits to agroecosystems through changes in the soil environment. A long term experiment was established to study four different four-year rotation sequences in which the crop phase prior to corn was sampled. Soils from rotations ending with soybean, sunflower, corn and p...

  3. Normal crop calendars. Volume 3: The corn and soybean states of Illinois, Indiana, and Iowa

    NASA Technical Reports Server (NTRS)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The state and crop reporting district crop calendars for Iowa, Illinois, and Indiana are presented. Crop calendars for corn, soybeans, sorghum, oats, wheat, barley, clover, flax, sugar beets, and tobacco are included.

  4. Limited irrigation of corn-based no-till crop rotations in West Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...

  5. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and weed suppression, however little research has investigated the effects of winter cover crops on soil properties. ...

  6. Correlation between Annual Corn Crop per Hectare in Croatia and Drought Indices for Zagreb-Gric Observatory

    NASA Astrophysics Data System (ADS)

    Pandzic, Kreso; Likso, Tanja

    2017-04-01

    Correlation coefficients between annual corn crop per hectare in Croatia and 9-month Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) for Zagreb - Gric for August are shown as significant. The results indicate that there is also a significant correlation between those drought indices and drought damages. Thus a forecast of the indices for August could be used for estimation e.g. annual corn crop per hectare in Croatia. Better results could be expected if statistical relationship between annual corn crops per hectare will be considered on county level instead the whole Croatia and indices calculated for weather stations for the same county. Effective way for reduction of drought damages is irrigation which need to be significantly improved in future in Croatia

  7. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    USDA-ARS?s Scientific Manuscript database

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  8. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    USDA-ARS?s Scientific Manuscript database

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  9. Rolled cover crop mulches for organic corn and soybean production

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  10. Evaluation of cover crops drill interseeded into corn across the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop adoption remains low in the mid-Atlantic region despite the potential conservation and production benefits. The short growing season window after corn (Zea mays L.), is a primary factor limiting cover crop adoption in these regions. A high-clearance grain drill has been developed to allow...

  11. Using the USDA Weekly Crop Progress Record to Document Trends in Corn Planting Date From 1979 to 2005

    NASA Astrophysics Data System (ADS)

    Kucharik, C. J.

    2005-12-01

    Agriculture is a dominant driver of land surface phenology in the United States Corn Belt. The timing of planting and harvest, along with the rate of plant development, are influenced by crop type, technology, land management decisions, and weather and soil conditions. Collectively, these integrated factors affect the spatial and temporal spectral signature of crops captured by remote sensing. While many studies have used the historical satellite record of vegetation activity to detect changes across the land surface, there has been less emphasis on using ground-based or remote sensing data to depict the contemporary phenology of individual US agro-ecosystems. The objectives of this study were twofold: (1) demonstrate how weekly USDA-NASS 'Crop Progress' data and 'Weekly Weather and Crop Bulletins' could be useful to remote sensing science when characterizing changing land surface phenology over the US; and (2) quantify long-term trends in corn planting progress from 1979 to 2005 across 12 states in the US Corn Belt. Examination of the weekly NASS crop progress data shows that the initiation of corn planting has become significantly (P < 0.01) earlier by 6 to 24 days since 1979, potentially contributing to about 10% to 64% of the linear increase in corn yields during this period. The magnitude of earlier planting date trend varies regionally, and not all of this change can be attributed to an earlier arrival of spring or warmer springtime temperatures. Rather, the change appears to be related to increased farmer planting efficiency in spring attributed to the increased adoption of no-tillage or reduced-tillage practices and plowing soils in fall. Regardless of the exact cause of this trend, we have a legitimate reason to suspect that 'greening' of the Corn Belt since about 1980, according to remote sensing observations, is not entirely due to climate change, but rather arises from human land-use change in combination with climate factors. In the future, crop

  12. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. The known benefits of winter cover crops include reduced nitrate leaching, soil erosion, and weed germination, but evidence of improvements in soil productivity would provide further incentive for famers to implemen...

  13. Effect of date of termination of a winter cereal rye cover crop (Secale cereale) on corn seedling disease

    USDA-ARS?s Scientific Manuscript database

    Cover cropping is an expanding conservation practice that offers substantial benefits to soil protection, soil health, water quality, and potentially crop yields. Presently, winter cereals are the most widely used cover crops in the upper Midwest. However, winter cereal cover crops preceding corn, ...

  14. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  15. Nitrous oxide emissions in cover crop-based corn production systems

    NASA Astrophysics Data System (ADS)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  16. Crop advisor perceptions of giant ragweed distribution, herbicide-resistance, and management in the Corn Belt

    USDA-ARS?s Scientific Manuscript database

    Giant ragweed has been increasing as a major weed of row crops in North America. We conducted a web-based survey of Certified Crop Advisors in the Corn Belt to determine the current distribution of giant ragweed, the distribution of herbicide resistant populations, and management and ecological fact...

  17. Midwest Agriculture: A comparison of AVHRR NDVI3g data and crop yields in Corn Belt region of the United States from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, E.; Anyamba, A.; Eastman, R.

    2016-12-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) images was compared to National Agricultural Statistics Service (NASS) corn yield data in the Corn Belt of the United States from 1982 to 2014. The relationship between NDVI and crop yields under El Nino, neutral, and La Nina conditions was used to assess 1) the reliability of using NDVI as an indicator of crop productivity, and 2) the response of the Corn Belt to El Nino/ Southern Oscillation (ENSO) teleconnection effects. First, bi-monthly NDVI data were combined into monthly data using the maximum value compositing technique to reduce cloud contamination and other effects. The most representative seasonal curve of NDVI values over the course of the study period was extracted to define the growing season in the region - May to October. Standardized NDVI anomalies were calculated and averaged to produce a growing season NDVI metrics to represent each Agricultural Statistics Division (ASD) for each year in the study period. The corn yields were detrended in order to remove effects of technological advancements on crop productivity (use of genetically modified seeds, fertilizer, herbicides). Correlation (R) values between the NDVI anomalies and detrended corn yields varied across the Corn Belt, with a maximum of 0.81 and mean of 0.49. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be accounted for by an increase in soy yield for a given year due to crop rotation practices. The 10 El Nino events and 9 La Nina events that occurred between 1982 and 2014 are not reflected in a consistent manner in NDVI or corn yield data. However, composites of NDVI and crop yields for all El Nino events indicate there is a tendency for higher than normal NDVI and increased corn yields. Conversely, the composite crop yield image for La Nina events shows a slight decrease in productivity.

  18. Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation

    USDA-ARS?s Scientific Manuscript database

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  19. Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry. [corn and soybeans

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C. (Principal Investigator); Kilgore, R. W.

    1981-01-01

    The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time.

  20. Recent changes in county-level corn yield variability in the United States from observations and crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially

  1. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    PubMed

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  2. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY

  3. Solutions Network Formulation Report. Using NASA Sensors to Perform Crop Type Assessment for Monitoring Insect Resistance in Corn

    NASA Technical Reports Server (NTRS)

    Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent

    2007-01-01

    The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.

  4. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States

    USGS Publications Warehouse

    Coupe, Richard H.; Capel, Paul D.

    2016-01-01

    BACKGROUNDGenetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected.RESULTSThere has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops.CONCLUSIONSThe observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis.

  5. Organic supplemental nitrogen sources for field corn production after a hairy vetch cover crop

    USDA-ARS?s Scientific Manuscript database

    The combined use of legume cover crops and animal byproduct organic amendments could provide agronomic and environmental benefits to organic farmers by increasing corn grain yield while optimizing N and P inputs. To test this hypothesis we conducted a two-year field study and a laboratory soil incu...

  6. Large-scale alcohol production from corn, grain sorghum, and crop residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turhollow, A.F. Jr.

    1982-01-01

    The potential impacts that large-scale alcohol production from corn, grain sorghum, and crop residues may have on US agriculture in the year 2000 are investigated. A one-land-group interregional linear-programming model is used. The objective function is to minimize the cost of production in the agricultural sector, given specified crop demands and constrained resources. The impacts that levels of alcohol production, ranging from zero to 12 billion gallons, have at two projected levels of crop demands, two grain-to-alcohol conversion and two milling methods, wet and dry, rates are considered. The impacts that large-scale fuel alcohol production has on US agriculture aremore » small. The major impacts that occur are the substitution of milling by-products, DDG, gluten feed, and gluten meal, for soybean meal in livestock feed rations. Production of 12 billion gallons of alcohol is estimated to be equivalent to an 18 percent increase in crop exports. Improving the grain-to-alcohol conversion rate from 2.6 to 3.0 gallons per bushels reduces the overall cost of agricultural production by $989 billion when 12 billion gallons of alcohol are produced.« less

  7. Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop yields in the United States Corn Belt from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, Erin; Anyamba, Assaf

    2018-06-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) data were compared to National Agricultural Statistics Service (NASS) corn yield data in the United States Corn Belt from 1982 to 2014. The main objectives of the comparison were to assess 1) the consistency of regional Corn Belt responses to El Niño/Southern Oscillation (ENSO) teleconnection signals, and 2) the reliability of using NDVI as an indicator of crop yield. Regional NDVI values were used to model a seasonal curve and to define the growing season - May to October. Seasonal conditions in each county were represented by NDVI and land surface temperature (LST) composites, and corn yield was represented by average annual bushels produced per acre. Correlation analysis between the NDVI, LST, corn yield, and equatorial Pacific sea surface temperature anomalies revealed patterns in land surface dynamics and corn yield, as well as typical impacts of ENSO episodes. It was observed from the study that growing seasons coincident with La Niña events were consistently warmer, but El Niño events did not consistently impact NDVI, temperature, or corn yield data. Moreover, the El Niño and La Niña composite images suggest that impacts vary spatially across the Corn Belt. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be attributed to soy crops and other background interference. The overall correlation between the total growing season NDVI anomaly and detrended corn yield was 0.61(p = 0.00013), though the strength of the relationship varies across the Corn Belt.

  8. Barriers to implementing climate resilient agricultural strategies: The case of crop diversification in the U.S. Corn Belt

    Treesearch

    Gabrielle E. Roesch-McNally; J.G. Arbuckle; John C. Tyndall

    2018-01-01

    Cropping system diversity can help build greater agroecosystem resilience by suppressing insect, weed, and disease pressures while also mitigating effects of extreme and more variable weather. Despite the potential benefits of cropping systems diversity, few farmers in the US Corn Belt use diverse rotations. This study examines factors that may influence farmers’...

  9. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    PubMed

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p < 0.01). Therefore, the mixing ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  10. Corn rootworms and Bt resistance

    USDA-ARS?s Scientific Manuscript database

    Corn rootworms have been a major pest of corn for many years. As their name suggests, corn rootworms damage corn plants by feeding on the roots. Western and northern corn rootworms have overcome practices farmers use to keep their population numbers down, such as insecticides and crop rotation. Cor...

  11. Effects of different mechanized soil fertilization methods on corn soil fertility under continuous cropping

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.

  12. Integrated weed management strategies in cover crop-based, organic rotational no-till corn and soybean in the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based, organic rotational no-till (CCORNT) corn and soybean systems have been developed in the mid-Atlantic region to build soil health, increase management flexibility, and reduce labor. In this system, a roll-crimped cover crop mulch provides within-season weed suppression in no-till co...

  13. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    PubMed

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P < 0.01) was noted for final BW, ADG, G:F, and HCW. Greater final BW was observed for treated stover (4.6%) and straw (5.6%) compared with NT residues; however, AT and NT cobs were similar. Treated straw (9.7%) and stover (12.5%) resulted in greater ADG (P < 0.01) and improved G:F (10.7% and 5.0%, respectively; P < 0.01) compared with NT forms. In Exp. 2, ruminally fistulated steers (n = 5) were used in an unbalanced 5 × 7 incomplete Latin square design with a 2 × 3 + 1 factorial arrangement of treatments. Factors were crop residue (corn cobs, wheat straw, and corn stover) and chemical treatment (NT or AT) fed at 25% of diet DM. Greater DM (73.7% vs. 66.1%; P < 0.01), OM (77.0% vs. 68.5%; P < 0.01), fat (89.2 vs. 85.2; P = 0.02), and NDF (66.8% vs. 51.5%; P < 0.01) digestibilities were noted for AT than for NT. However, no difference (P > 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P < 0.01) NDF intake was observed for treated diets (3.1 vs. 3.5 kg/d), suggesting that CaO treatment was effective in solubilizing some carbohydrate. These data

  14. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States.

    PubMed

    Coupe, Richard H; Capel, Paul D

    2016-05-01

    Genetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected. There has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops. The observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.

    2014-10-01

    Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distancemore » (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.« less

  16. Rapid corn and soybean mapping in US Corn Belt and neighboring areas

    PubMed Central

    Zhong, Liheng; Yu, Le; Li, Xuecao; Hu, Lina; Gong, Peng

    2016-01-01

    The goal of this study was to promptly map the extent of corn and soybeans early in the growing season. A classification experiment was conducted for the US Corn Belt and neighboring states, which is the most important production area of corn and soybeans in the world. To improve the timeliness of the classification algorithm, training was completely based on reference data and images from other years, circumventing the need to finish reference data collection in the current season. To account for interannual variability in crop development in the cross-year classification scenario, several innovative strategies were used. A random forest classifier was used in all tests, and MODIS surface reflectance products from the years 2008–2014 were used for training and cross-year validation. It is concluded that the fuzzy classification approach is necessary to achieve satisfactory results with R-squared ~0.9 (compared with the USDA Cropland Data Layer). The year of training data is an important factor, and it is recommended to select a year with similar crop phenology as the mapping year. With this phenology-based and cross-year-training method, in 2015 we mapped the cropping proportion of corn and soybeans around mid-August, when the two crops just reached peak growth. PMID:27811989

  17. Rapid corn and soybean mapping in US Corn Belt and neighboring areas

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng; Yu, Le; Li, Xuecao; Hu, Lina; Gong, Peng

    2016-11-01

    The goal of this study was to promptly map the extent of corn and soybeans early in the growing season. A classification experiment was conducted for the US Corn Belt and neighboring states, which is the most important production area of corn and soybeans in the world. To improve the timeliness of the classification algorithm, training was completely based on reference data and images from other years, circumventing the need to finish reference data collection in the current season. To account for interannual variability in crop development in the cross-year classification scenario, several innovative strategies were used. A random forest classifier was used in all tests, and MODIS surface reflectance products from the years 2008-2014 were used for training and cross-year validation. It is concluded that the fuzzy classification approach is necessary to achieve satisfactory results with R-squared ~0.9 (compared with the USDA Cropland Data Layer). The year of training data is an important factor, and it is recommended to select a year with similar crop phenology as the mapping year. With this phenology-based and cross-year-training method, in 2015 we mapped the cropping proportion of corn and soybeans around mid-August, when the two crops just reached peak growth.

  18. Understanding successful resistance management: The European corn borer and Bt corn in the United States

    USDA-ARS?s Scientific Manuscript database

    European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn that expresses toxins from Bacillus thuringiensis, referred to as Bt c...

  19. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  20. Automated mapping of soybean and corn using phenology

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng; Hu, Lina; Yu, Le; Gong, Peng; Biging, Gregory S.

    2016-09-01

    For the two of the most important agricultural commodities, soybean and corn, remote sensing plays a substantial role in delivering timely information on the crop area for economic, environmental and policy studies. Traditional long-term mapping of soybean and corn is challenging as a result of the high cost of repeated training data collection, the inconsistency in image process and interpretation, and the difficulty of handling the inter-annual variability of weather and crop progress. In this study, we developed an automated approach to map soybean and corn in the state of Paraná, Brazil for crop years 2010-2015. The core of the approach is a decision tree classifier with rules manually built based on expert interaction for repeated use. The automated approach is advantageous for its capacity of multi-year mapping without the need to re-train or re-calibrate the classifier. Time series MODerate-resolution Imaging Spectroradiometer (MODIS) reflectance product (MCD43A4) were employed to derive vegetation phenology to identify soybean and corn based on crop calendar. To deal with the phenological similarity between soybean and corn, the surface reflectance of the shortwave infrared band scaled to a phenological stage was used to fully separate the two crops. Results suggested that the mapped areas of soybean and corn agreed with official statistics at the municipal level. The resultant map in the crop year 2012 was evaluated using an independent reference data set, and the overall accuracy and Kappa coefficient were 87.2% and 0.804 respectively. As a result of mixed pixel effect at the 500 m resolution, classification results were biased depending on topography. In the flat, broad and highly-cropped areas, uncultivated lands were likely to be identified as soybean or corn, causing over-estimation of cropland area. By contrast, scattered crop fields in mountainous regions with dense natural vegetation tend to be overlooked. For future mapping efforts, it has great

  1. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  2. Agroecology of corn production in Tlaxcala, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, M.A.; Trujillo, J.

    1987-06-01

    The primary components of Tlaxcalan corn agriculture are described, including cropping patterns employed, resource management strategies, and interactions of human and biological factors. Tlaxcalan farmers grow corn in an array of polyculture and agroforestry designs that result in a series of ecological processes important for insect pest and soil fertility management. Measurements derived from a few selected fields show that trees integrated into cropping systems modify the aerial and soil environment of associated understory corn plants, influencing their growth and yields. With decreasing distance from trees, surface concentrations of most soil nutrients increase. Certain tree species affect corn yields moremore » than others. Arthropod abundance also varies depending on their degree of association with one or more of the vegetational components of the system. Densities of predators and the corn pest Macrodactylus sp. depend greatly on the presence and phenology of adjacent alfalfa strips. Although the data were derived from nonreplicated fields, they nevertheless point out some important trends, information that can be used to design new crop association that will achieve sustained soil fertility and low pest potentials.« less

  3. Impact of broadcasting a cereal rye or oat cover crop before corn and soybean harvest on nitrate leaching

    USDA-ARS?s Scientific Manuscript database

    The corn and soybean rotation in Iowa has no living plants taking up water and nutrients from crop maturity until planting, a period of over six months in most years. In many fields, this results in losses of nitrate in effluent from artificial drainage systems during this time. In a long-term fiel...

  4. A method for mapping corn using the US Geological Survey 1992 National Land Cover Dataset

    USGS Publications Warehouse

    Maxwell, S.K.; Nuckols, J.R.; Ward, M.H.

    2006-01-01

    Long-term exposure to elevated nitrate levels in community drinking water supplies has been associated with an elevated risk of several cancers including non-Hodgkin's lymphoma, colon cancer, and bladder cancer. To estimate human exposure to nitrate, specific crop type information is needed as fertilizer application rates vary widely by crop type. Corn requires the highest application of nitrogen fertilizer of crops grown in the Midwest US. We developed a method to refine the US Geological Survey National Land Cover Dataset (NLCD) (including map and original Landsat images) to distinguish corn from other crops. Overall average agreement between the resulting corn and other row crops class and ground reference data was 0.79 kappa coefficient with individual Landsat images ranging from 0.46 to 0.93 kappa. The highest accuracies occurred in Regions where corn was the single dominant crop (greater than 80.0%) and the crop vegetation conditions at the time of image acquisition were optimum for separation of corn from all other crops. Factors that resulted in lower accuracies included the accuracy of the NLCD map, accuracy of corn areal estimates, crop mixture, crop condition at the time of Landsat overpass, and Landsat scene anomalies.

  5. Geographic information systems in corn rootworm management

    USDA-ARS?s Scientific Manuscript database

    Corn rootworms (Diabrotica spp. Coleoptera: Chrysomelidae) are serious pests of corn (Zea mays) in the United States and Europe. Control measures for corn rootworms (CRW) were historically based upon chemical pesticides and crop rotation. Pesticide use created environmental and economic concerns. In...

  6. A Remote Sensing-Derived Corn Yield Assessment Model

    NASA Astrophysics Data System (ADS)

    Shrestha, Ranjay Man

    be further associated with the actual yield. Utilizing satellite remote sensing products, such as daily NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m pixel size, the crop yield estimation can be performed at a very fine spatial resolution. Therefore, this study examined the potential of these daily NDVI products within agricultural studies and crop yield assessments. In this study, a regression-based approach was proposed to estimate the annual corn yield through changes in MODIS daily NDVI time series. The relationship between daily NDVI and corn yield was well defined and established, and as changes in corn phenology and yield were directly reflected by the changes in NDVI within the growing season, these two entities were combined to develop a relational model. The model was trained using 15 years (2000-2014) of historical NDVI and county-level corn yield data for four major corn producing states: Kansas, Nebraska, Iowa, and Indiana, representing four climatic regions as South, West North Central, East North Central, and Central, respectively, within the U.S. Corn Belt area. The model's goodness of fit was well defined with a high coefficient of determination (R2>0.81). Similarly, using 2015 yield data for validation, 92% of average accuracy signified the performance of the model in estimating corn yield at county level. Besides providing the county-level corn yield estimations, the derived model was also accurate enough to estimate the yield at finer spatial resolution (field level). The model's assessment accuracy was evaluated using the randomly selected field level corn yield within the study area for 2014, 2015, and 2016. A total of over 120 plot level corn yield were used for validation, and the overall average accuracy was 87%, which statistically justified the model's capability to estimate plot-level corn yield. Additionally, the proposed model was applied to the impact estimation by examining the changes in corn yield

  7. Response of corn to organic matter quantity and distribution in soil

    USDA-ARS?s Scientific Manuscript database

    The objectives of this experiment were to: 1. Quantify the agronomic response of corn to tillage and cover crop management, 2. Determine soil quality changes following cropping of previous land in pasture, and 3. Estimate economics of corn production in response to tillage and cover crop management....

  8. Climate change impacts on corn phenology and productivity

    USDA-ARS?s Scientific Manuscript database

    Climate is changing around the world and will impact future production of all food and feed crops. Corn is no exception to these impacts and to ensure a future supply of this vital crop we must begin to understand how climate impacts both the phenological development of corn and the productivity. Te...

  9. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  10. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  11. Resistance Management Monitoring For the US Corn Crop

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  12. Large area application of a corn hazard model. [Soviet Union

    NASA Technical Reports Server (NTRS)

    Ashburn, P.; Taylor, T. W. (Principal Investigator)

    1981-01-01

    An application test of the crop calendar portion of a corn (maize) stress indicator model developed by the early warning, crop condition assessment component of AgRISTARS was performed over the corn for grain producing regions of the U.S.S.R. during the 1980 crop year using real data. Performance of the crop calendar submodel was favorable; efficiency gains in meteorological data analysis time were on a magnitude of 85 to 90 percent.

  13. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  14. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  15. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  16. Resistance Management Monitoring for the US Corn Crop to the Illinois Corn Growers Association

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  17. On-Farm Validation of Alfalfa N Credits to Corn

    USDA-ARS?s Scientific Manuscript database

    Rotating alfalfa with corn is useful for reducing soil erosion, enhancing soil tilth and carbon storage, reducing weed seedbanks, disrupting the life cycles of disease and insect pests of corn, and supplying nitrogen (N) to the subsequent corn crop. To adjust N fertilizer rates for corn following al...

  18. Establishing alfalfa in corn silage

    USDA-ARS?s Scientific Manuscript database

    According to recent agricultural statistics, alfalfa was planted on 0.44 million acres and harvested from 2.2 million acres, and corn silage was planted and harvested from 1.0 million acres per year in Wisconsin. Because both crops are often grown in rotation, alfalfa could be interseeded at corn pl...

  19. Establishing alfalfa in silage corn

    USDA-ARS?s Scientific Manuscript database

    According to recent agricultural statistics, alfalfa was planted on 0.44 million acres and harvested from 2.2 million acres and silage corn was planted and harvested from 1.0 million acres per year in Wisconsin. Because both crops are often grown in rotation, alfalfa could be interseeded at corn pla...

  20. Risk Management of GM Crops

    EPA Science Inventory

    Driven by biofuel demand, a significant increase in GM corn acreage is anticipated for the 2007 growing season with future planted GM corn acreage approaching 80% of the corn crop by 2009. As demand increases, grower non-compliance with mandated planting requirements is likely to...

  1. Corn residue utilization by livestock in the USA

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) residue grazing or harvest provides a simple and economical practice to integrate crops and livestock. Limited information is available on how widespread corn residue utilization is practiced by US producers. In 2010, the USDA-ERS surveyed producers from 19 states on corn grain ...

  2. Improvement of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Seo, B.; Lee, K.

    2017-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have been developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. Also we investigated factors associated with crop development rate. Temperature and photoperiod are the two main factors which would influence the crop's growth pattern expressed in the VI data. Only the effect of temperature on crop development rate was considered. The temperature response function in the Wang-Engel (WE) model was used, which simulates crop development using nonlinear models with response functions that range from zero to one. It has attempted at the state level over 14 years (2003-2016) in Iowa and Illinois state of USA, where the estimated phenology date by using four methods for both corn and soybean. Weekly crop progress reports produced by the USDA NASS were used to validate phenology detection algorithms effected by temperature. All methods showed substantial uncertainty but the threshold method showed relatively better agreement with the State-level data for soybean phenology.

  3. Soil water evaporation and crop residues

    USDA-ARS?s Scientific Manuscript database

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  4. Rotational Effects of Cuphea on Corn, Spring Wheat, and Soybean

    USDA-ARS?s Scientific Manuscript database

    Agricultural diversity is lacking in the northern Corn Belt. Adding crop diversity to rotations can give economic and environmental benefits. Cuphea (Cuphea viscosissima Jacq. x C. lanceolata W.T. Aiton; PSR23), which grows well in the northern Corn Belt, is a new oilseed crop and a source of medium...

  5. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  6. Resistance evolution to Bt crops: predispersal mating of European corn borers.

    PubMed

    Dalecky, Ambroise; Ponsard, Sergine; Bailey, Richard I; Pélissier, Céline; Bourguet, Denis

    2006-06-01

    Over the past decade, the high-dose refuge (HDR) strategy, aimed at delaying the evolution of pest resistance to Bacillus thuringiensis (Bt) toxins produced by transgenic crops, became mandatory in the United States and is being discussed for Europe. However, precopulatory dispersal and the mating rate between resident and immigrant individuals, two features influencing the efficiency of this strategy, have seldom been quantified in pests targeted by these toxins. We combined mark-recapture and biogeochemical marking over three breeding seasons to quantify these features directly in natural populations of Ostrinia nubilalis, a major lepidopteran corn pest. At the local scale, resident females mated regardless of males having dispersed beforehand or not, as assumed in the HDR strategy. Accordingly, 0-67% of resident females mating before dispersal did so with resident males, this percentage depending on the local proportion of resident males (0% to 67.2%). However, resident males rarely mated with immigrant females (which mostly arrived mated), the fraction of females mating before dispersal was variable and sometimes substantial (4.8% to 56.8%), and there was no evidence for male premating dispersal being higher. Hence, O. nubilalis probably mates at a more restricted spatial scale than previously assumed, a feature that may decrease the efficiency of the HDR strategy under certain circumstances, depending for example on crop rotation practices.

  7. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  8. Economic Benefits of Improved Information on Worldwide Crop Production: An Optimal Decision Model of Production and Distribution with Application to Wheat, Corn, and Soybeans

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1977-01-01

    An optimal decision model of crop production, trade, and storage was developed for use in estimating the economic consequences of improved forecasts and estimates of worldwide crop production. The model extends earlier distribution benefits models to include production effects as well. Application to improved information systems meeting the goals set in the large area crop inventory experiment (LACIE) indicates annual benefits to the United States of $200 to $250 million for wheat, $50 to $100 million for corn, and $6 to $11 million for soybeans, using conservative assumptions on expected LANDSAT system performance.

  9. Corn and soybean Landsat MSS classification performance as a function of scene characteristics

    NASA Technical Reports Server (NTRS)

    Batista, G. T.; Hixson, M. M.; Bauer, M. E.

    1982-01-01

    In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.

  10. Climate forecasts for corn producer decision making

    USDA-ARS?s Scientific Manuscript database

    Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertai...

  11. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  12. Greenhouse gas emissions from traditional and biofuels cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  13. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.

    1981-01-01

    Progress and technical issues are reported in the development of corn/soybeans area estimation procedures for use on data from South America, with particular emphasis on Argentina. Aspects related to the supporting research section of the AgRISTARS Project discussed include: (1) multisegment corn/soybean estimation; (2) through the season separability of corn and soybeans within the U.S. corn belt; (3) TTS estimation; (4) insights derived from the baseline corn and soybean procedure; (5) small fields research; and (6) simulating the spectral appearance of wheat as a function of its growth and development. To assist the foreign commodity production forecasting, the performance of the baseline corn/soybean procedure was analyzed and the procedure modified. Fundamental limitations were found in the existing guidelines for discriminating these two crops. The temporal and spectral characteristics of corn and soybeans must be determined because other crops grow with them in Argentina. The state of software technology is assessed and the use of profile techniques for estimation is considered.

  14. IMPACT OF OZONE ON FIELD-CORN YIELD

    EPA Science Inventory

    Field corn(Zea mays L.) is the most important agricultural crop in the U.S. and the major production areas are subjected to potentially damaging concentrations of ozone (O3). Since no information was available regarding the sensitivity of field-corn hybrids grown in the Midwest, ...

  15. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops

    NASA Astrophysics Data System (ADS)

    Kross, Angela; McNairn, Heather; Lapen, David; Sunohara, Mark; Champagne, Catherine

    2015-02-01

    Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV ≤ 20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance

  16. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    NASA Astrophysics Data System (ADS)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  17. Effect of winter cover crops on nematode population levels in north Florida.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  18. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  19. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  20. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  1. Corn grain yield and soil properties after 10 years of broiler litter amendment

    USDA-ARS?s Scientific Manuscript database

    Use of broiler litter nutrients for crop production benefits crops, soils, and aids in disposing manure. Understanding corn (Zea mays L.) grain production and soil properties resulting from long-term poultry litter amendment helps establish a sustainable animal manure based corn production with low ...

  2. Statistical modeling of yield and variance instability in conventional and organic cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...

  3. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows: 1...

  4. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows: 1...

  5. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows: 1...

  6. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows: 1...

  7. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to highermore » demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.« less

  8. Variability, stability, and resilience of fecal microbiota in dairy cows fed whole crop corn silage.

    PubMed

    Tang, Minh Thuy; Han, Hongyan; Yu, Zhu; Tsuruta, Takeshi; Nishino, Naoki

    2017-08-01

    The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.

  9. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  10. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  11. Effect of conservation practices on soil carbon and nitrogen accretion and crop yield in a corn production system in the southeastern coastal plain, USA

    USDA-ARS?s Scientific Manuscript database

    We implemented conservation farming practices (winter cover cropping plus strip tillage) for a non-irrigated corn production system in the southern coastal plain of Georgia, USA that had been previously been managed under a plow and harrow tillage regime. Total soil carbon and nitrogen were measure...

  12. Long-term cropping systems study

    USDA-ARS?s Scientific Manuscript database

    This long-term study has been conducted on the Agronomy Farm at ARDC since the early 1970’s. In the beginning, the objectives were mainly related to crop production as affected by different cropping systems. The cropping systems included in the study are Continuous Corn, Soybean, and Sorghum; 2-year...

  13. Fiscal year 1981 US corn and soybeans pilot preliminary experiment plan, phase 1

    NASA Technical Reports Server (NTRS)

    Livingston, G. P.; Nedelman, K. S.; Norwood, D. F.; Smith, J. H. (Principal Investigator)

    1981-01-01

    A draft of the preliminary experiment plan for the foreign commodity production forecasting project fiscal year 1981 is presented. This draft plan includes: definition of the phase 1 and 2 U.S. pilot objectives; the proposed experiment design to evaluate crop calendar, area estimation, and area aggregation components for corn and soybean technologies using 1978/1979 crop-year data; a description of individual sensitivity evaluations of the baseline corn and soybean segment classification procedure; and technology and data assessment in support of the corn and soybean estimation technology for use in the U.S. central corn belt.

  14. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    NASA Astrophysics Data System (ADS)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  15. Yield response to landscape position under variable N for irrigated corn

    USDA-ARS?s Scientific Manuscript database

    Variable nutrient and water supply can result in spatial and temporal variation in crop yield within a given agricultural field. For the western Corn Belt, irrigated corn accounts for 58% of total annual corn production with the majority grown in Nebraska. Although irrigation decreases temporal yi...

  16. Crop weather models of corn and soybeans for Agrophysical Units (APU's) in Iowa using monthly meteorological predictors

    NASA Technical Reports Server (NTRS)

    Leduc, S. (Principal Investigator)

    1982-01-01

    Models based on multiple regression were developed to estimate corn and soybean yield from weather data for agrophysical units (APU) in Iowa. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for crop reporting districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU's were selected to be more homogeneous with respect crop to production than the CRDs. The APU models are quite similar to the CRD models, similar explained variation and number of predictor variables. The APU models are to be independently evaluated and compared to the previously evaluated CRD models. That comparison should indicate the preferred model area for this application, i.e., APU or CRD.

  17. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.

    PubMed

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather

  18. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

    PubMed Central

    Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.

    2018-01-01

    Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years

  19. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Corn Farmscapes

    PubMed Central

    Cottrell, Ted E.; Tillman, P. Glynn

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States but little is known concerning its spatiotemporal distribution in corn cropping systems. Therefore, the spatiotemporal distribution of C. hilaris in farmscapes, when corn was adjacent to cotton, peanut, or both, was examined weekly. The spatial patterns of C. hilaris counts were analyzed using Spatial Analysis by Distance Indices methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops in corn–peanut–cotton farmscapes. This stink bug was detected in six of seven corn–cotton farmscapes, four of six corn–peanut farmscapes, and in both corn–peanut–cotton farmscapes. The frequency of C. hilaris in cotton (89.47%) was significantly higher than in peanut (7.02%) or corn (3.51%). This stink bug fed on noncrop hosts that grew in field borders adjacent to crops. The spatial distribution of C. hilaris in crops and the capture of C. hilaris adults and nymphs in pheromone-baited traps near noncrop hosts indicated that these hosts were sources of this stink bug dispersing into crops, primarily cotton. Significant aggregated spatial distributions were detected in cotton on some dates within corn–peanut–cotton farmscapes. Maps of local clustering indices depicted small patches of C. hilaris in cotton or cotton–sorghum at the peanut–cotton interface. Factors affecting the spatiotemporal dynamics of C. hilaris in corn farmscapes are discussed. PMID:25843581

  20. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USGS Publications Warehouse

    Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma

    2015-01-01

    In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery

  1. Tillage and cover cropping effects on soil properties and crop production in Illinois

    USDA-ARS?s Scientific Manuscript database

    Cover crops (CCs) have been heralded for their potential to improve soil properties, retain nutrients in the field, and increase subsequent crop yields yet support for these claims within the state of Illinois remains limited. We assessed the effects of integrating five sets of CCs into a corn-soybe...

  2. Less waste corn, more land in soybeans, and the switch to genetically modified crops: trends with important implications to wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    An abundance of waste corn, a key food of many wildlife species, has helped make possible the widespread success of wildlife management in the United States over the past half century. We found waste corn post harvest in Nebraska declined by 47% from 1978 to 1998 due primarily to improvements in combine headers resulting in a marked decline in ear loss. The reduction in waste coincided with major declines in fat storage by sandhill cranes and white-fronted geese during spring migration. Sandhill cranes, northern pintails, white-fronted geese, and lesser snow geese avoided soybeans while staging in spring in the Rainwater Basin Area and Central Platte River Valley. These findings and other literature suggest soybeans are a marginal food for wildlife particularly during periods of high energy requirements. Soybean acreage has increased by 600% in the United States since 1950 and now comprises nearly one-quarter of the nation>'s cropland. With over 80% of the soybean crop now in genetically modified varieties and treated with glyphosate, weed seed is becoming scarce in soybean fields leaving limited food for wildlife on 72 million acres of U.S. cropland. We suggest that the combined effect of increasing efficiency of crop harvesting techniques, expansion of soybeans and other crops poorly suited for wildlife nutrient needs, and more efficient weed control through the shift to genetically modified crops may severely limit seed-eating wildlife populations in the future unless ways are found to replace high energy food sources being lost. We encourage more research to gain greater insight into effects of declining food resources on wildlife populations and propose that the conservation title of the 2002 farm bill be used as a mechanism to replace part of the high-energy food being lost due to changes in production agriculture.

  3. Concepts in crop rotations

    USDA-ARS?s Scientific Manuscript database

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  4. Soil carbon and nitrogen dynamic after corn stover harvest

    USDA-ARS?s Scientific Manuscript database

    Biofuel production from plant biomass seems to be a suitable solution to mitigate fossil fuel use and reduce greenhouse gas emissions. Corn (Zea mays) is a highly promising crop for biomass production. However, stover harvest could negatively impact soil properties. Changes in the quantity of corn r...

  5. Weed manipulation for insect pest management in corn

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Whitcomb, W. H.

    1980-11-01

    Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.

  6. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  7. Soil profile organic carbon as affected by tillage and cropping systems

    USDA-ARS?s Scientific Manuscript database

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  8. Temporal spectral response of a corn canopy

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Kimes, D. S.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Techniques developed for the prediction of winter wheat yields from remotely sensed data indicating crop status over the growing season are tested for their applicability to corn. Ground-based spectral measurements in the Landsat Thematic Mapper bands 3 (0.62-0.69 microns), 4 (0.76-0.90 microns) and 5 (1.55-1.75 microns) were performed at one-week intervals throughout the growing season for 24 plots of corn, and analyzed to derive spectral ratios and normalized spectral differences of the IR and shortwave IR bands with the red. The ratios of the near IR and shortwave IR bands are found to provide the highest and most consistent correlations with corn yield and dry matter accumulation, however the value of band 5 could not be tested due to the absence of water stress conditions. Integration of spectral ratios over several dates improved the correlations over those of any single date by achieving a seasonal, rather than instantaneous, estimate of crop status. Results point to the desirability of further tests under other growth conditions to determine whether satellite-derived data will be useful in providing corn yield information.

  9. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R.; Crist, E.; Kauth, R. J.; Pont, W.

    1980-01-01

    Classification and technology development for area estimation of corn, soybeans, wheat, barley, and sunflowers are outlined. Supporting research for corn and soybean foreign commodity production forecasting is highlighted. Graphs profiling the greenness and brightness of the crops are presented.

  10. Exploring economically and environmentally viable northeastern US dairy farm strategies for coping with rising corn grain prices.

    PubMed

    Ghebremichael, L T; Veith, T L; Cerosaletti, P E; Dewing, D E; Rotz, C A

    2009-08-01

    In 2008, corn grain prices rose $115/t of DM above the 2005 average. Such an increase creates tight marginal profits for small (<100) and medium-sized (100 to 199) dairy farms in the northeastern United States importing corn grain as animal feed supplement. Particularly in New York State, dairy farmers are attempting to avoid or minimize profit losses by growing more corn silage and reducing corn grain purchases. This study applies the Integrated Farm Systems Model to 1 small and 1 medium-sized New York State dairy farm to predict 1) sediment and P loss impacts from expanding corn fields, 2) benefits of no-till or cover cropping on corn fields, and 3) alternatives to the economic challenge of the current farming system as the price ratio of milk to corn grain continues to decline. Based on the simulation results, expanding corn silage production by 3% of the cultivated farm area increased sediment and sediment-bound P losses by 41 and 18%, respectively. Implementing no-till controlled about 84% of the erosion and about 75% of the sediment-bound P that would have occurred from the conventionally tilled, expanded corn production scenario. Implementing a conventionally tilled cover crop with the conventionally tilled, expanded corn production scenario controlled both erosion and sediment-bound P, but to a lesser extent than no-till corn with no cover crop. However, annual farm net return using cover crops was slightly less than when using no-till. Increasing on-farm grass productivity while feeding cows a high-quality, high-forage diet and precise dietary P levels offered dual benefits: 1) improved farm profitability from reduced purchases of dietary protein and P supplements, and 2) decreased runoff P losses from reduced P-levels in applied manure. Moreover, alternatives such as growing additional small grains on marginal lands and increasing milk production levels demonstrated great potential in increasing farm profitability. Overall, it is crucial that conservation

  11. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm.

    PubMed

    Venugopal, P Dilip; Dively, Galen P

    2017-06-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop-pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996-2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

  12. A Home-Made Trap Baited With Sex Pheromone for Monitoring Spodoptera Frugiperda Males (Lepidoptera: Noctuidae) in Corn crops in Mexico.

    PubMed

    Malo, Edi A; Cruz-Esteban, Samuel; González, Francisco J; Rojas, Julio C

    2018-05-15

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), populations are monitored with a variety of commercial sex pheromone-baited traps. However, a number of trap-related variables may affect the number of FAW males captured. In this study, we tested the effect of trap design, trap size, and trap color for monitoring FAW males in corn crops in Mexico. We found that plastic jug trap (a home-made trap), captured significantly more FAW males than a commercial trap (Scentry Heliothis) and water bottle trap (another home-made trap). We also found that size of plastic jug traps (3.78, 10, or 20 liters) did not affect the captures of FAW males. Our results indicated that plastic yellow jug traps captured significantly more males than blue and black traps. Plastic jug white, red, and green traps captured a similar number of FAW males than plastic jug yellow, blue, and black traps. Plastic jug blue, white, and yellow traps captured more nontarget insects compared to black traps. The number of nontarget insects captured by green and red traps was similar and not significantly different to that caught by blue, white, yellow, and black traps. Traps captured more individuals from Diptera than Coleoptera and Hymenoptera. Overall, the results suggest that yellow plastic jug may be used for monitoring FAW males in corn and sorghum crops in Mexico.

  13. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States

    DOE PAGES

    Jesus, Ederson da C.; Liang, Chao; Quensen, John F.; ...

    2015-06-28

    Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less

  14. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesus, Ederson da C.; Liang, Chao; Quensen, John F.

    Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less

  15. Supporting Climatic Trends of Corn and Soybean Production in the USA

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cherkauer, K. A.; Verdin, J. P.

    2010-12-01

    The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June

  16. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.

    PubMed

    Guo, Tian; Cibin, Raj; Chaubey, Indrajeet; Gitau, Margaret; Arnold, Jeffrey G; Srinivasan, Raghavan; Kiniry, James R; Engel, Bernard A

    2018-02-01

    Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. Simulated results from bioenergy crop scenarios were compared with those from the baseline. The results showed that simulated annual crop yields were similar to observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (3.74Mg/ha/yr) with Miscanthus production on highly erodible areas and marginal land (17.49Mg/ha/yr) provided the highest biofeedstock production (279,000Mg/yr). Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of bioenergy crops on highly erodible areas and marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment and nutrient losses under corn stover removal could be offset with the combination of other bioenergy crops. Potential areas for bioenergy crop production when meeting the criteria above were small (10.88km 2 ), thus the ability to produce biomass and improve water quality was not substantial. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile

  17. Research in satellite-aided crop inventory and monitoring

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Dragg, J. L.; Bizzell, R. M.; Trichel, M. C. (Principal Investigator)

    1982-01-01

    Automated information extraction procedures for analysis of multitemporal LANDSAT data in non-U.S. crop inventory and monitoring are reviewed. Experiments to develope and evaluate crop area estimation technologies for spring small grains, summer crops, corn, and soybeans are discussed.

  18. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    PubMed

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Agronomic characterization of the Argentina Indicator Region. [U.S. corn belt and Argentine pampas

    NASA Technical Reports Server (NTRS)

    Hicks, D. R. (Principal Investigator)

    1982-01-01

    An overview of the Argentina indicator region including information on topography, climate, soils and vegetation is presented followed by a regionalization of crop livestock land use. Corn/soybean production and exports as well as agricultural practices are discussed. Similarities and differences in the physical agronomic scene, crop livestock land use and agricultural practices between the U.S. corn belt and the Argentine pampa are considered. The Argentine agricultural economy is described. Crop calendars for the Argentina indicator region, an accompanying description, notes on crop-livestock zones, wheat production, field size, and agricultural problems and practices are included.

  20. AgRISTARS: Foreign commodity production forecasting. Corn/soybean decision logic development and testing

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Abotteen, K. M. (Principal Investigator)

    1980-01-01

    The development and testing of an analysis procedure which was developed to improve the consistency and objectively of crop identification using Landsat data is described. The procedure was developed to identify corn and soybean crops in the U.S. corn belt region. The procedure consists of a series of decision points arranged in a tree-like structure, the branches of which lead an analyst to crop labels. The specific decision logic is designed to maximize the objectively of the identification process and to promote the possibility of future automation. Significant results are summarized.

  1. Accounting for alfalfa N credits increases returns to corn production

    USDA-ARS?s Scientific Manuscript database

    Guidelines are relatively consistent across the Upper Midwest regarding the N benefit of alfalfa to the following grain crops. With higher corn yields and prices, however, some growers have questioned these guidelines and whether more N fertilizer is needed for first-year corn following a good stand...

  2. Long-term impacts of cropping systems and landscape positions on grain crop production on claypan soils

    USDA-ARS?s Scientific Manuscript database

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  3. Effect of crop residues on soil properties, plant growth, and crop yield. Agronomy Farm, Lincoln, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, J.F.

    1981-01-01

    Progress is reported in a study designed to evaluate the effects of quantity of crop residues left on soil surface on soil properties, plant growth, and crop yield and to determine the effects of quantity of surface residues upon soil, fertilizer, and residue N transformations, availability, and efficiency of use. In a dryland corn-sorghum-soybean rotation produced on a clay loam, residues remaining after harvest of the previous crop were removed and respread on plots at rates of 0, 0.5, 1.0, and 1.5 times the quantity of residues originally present. The above crops were planted in four replications the following springmore » without tillage, after broadcasting 50 kg N/ha as ammonium nitrate. In 1980, /sup 15/N-depleted NH/sub 4/NO/sub 3/ was applied to half of each plot. After harvest, crop residues produced on the half-plot receiving the N-isotope were transferred to the half-plot receiving regular fertilizer, and visa versa. In 1981, /sup 15/N-depleted NH/sub 4/NO/sub 3/ was applied to half of each plot again, except at right angles to the fertilizer applied in 1980. After planting each year, thermocouples were installed in each plot and soil temperatures were recorded. Also access tubes were installed in all plots and soil water content was measured to the 150 cm soil depth periodically during the growing season. Dry matter production and N uptake by the plant tissue was measured periodically during the growing season and at maturity. Additional measurements taken included leaf area index, xylem water potentials, and soil microbial populations. Data are presented on corn and soybean production characteristics as affected by rate of crop residue on soil surface. Results are also given on leaf area index (LAI) and dry matter production of corn and soybeans as affected by surface residue rate. Total N content of corn and soybean plant materials and surface residues, and total and inorganic soil N (1980) are reported.« less

  4. a Weather Monitoring System for Application to Apple and Corn Production

    NASA Astrophysics Data System (ADS)

    Stirm, Walter Leroy

    Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.

  5. Lubrication properties of new crop oils

    USDA-ARS?s Scientific Manuscript database

    Oils from new crops such as lesquerella (Lesquerella fendleri), field pennycress (Thlaspi arvense L.), meadowfoam (Limnanthes alba L.), and cuphea PSR-23 (Cuphea viscosissima × Cuphea lanceolata) were investigated and compared with vegetable oils from commodity crops such as castor, corn, and soybea...

  6. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    PubMed

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Propelled abrasive grit for weed control in organic silage corn

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...

  8. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    USDA-ARS?s Scientific Manuscript database

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  9. Life cycle assessment of fertilization of corn and corn-soybean rotations with Swine manure and synthetic fertilizer in iowa.

    PubMed

    Griffing, Evan Michael; Schauer, Richard Lynn; Rice, Charles W

    2014-03-01

    Life cycle assessment is the predominant method to compare energy and environmental impacts of agricultural production systems. In this life cycle study, we focused on the comparison of swine manure to synthetic fertilizer as nutrients for corn production in Iowa. Deep pit (DP) and anaerobic lagoon (AL) treatment systems were compared separately, and urea ammonium nitrate (UAN) was chosen as the representative synthetic fertilizer. The two functional units used were fertilization of 1000 kg of corn in a continuous corn system and fertilization of a crop yielding 1000 kg of corn and a crop yielding 298 kg of soybean in a 2-yr corn-soybean rotation. Iowa-specific versions of emission factors and energy use were used when available and compared with Intergovernmental Panel on Climate Change values. Manure was lower than synthetic fertilizer for abiotic depletion and about equal with respect to eutrophication. Synthetic fertilizer was lower than manure for global warming potential (GWP) and acidification. The choice of allocation method and life cycle boundary were important in understanding the context of these results. In the DP system, methane (CH) from housing was the largest contributor to the GWP, accounting for 60% of the total impact. When storage systems were compared, the DP system had 50% less GWP than the AL system. This comparison was due to reduction in CH emissions from the storage system and conservation of nitrogen. Nitrous oxide emissions were the biggest contributor to the GWP of UAN fertilization and the second biggest contributor to the GWP of manure. Monte Carlo and scenario analyses were used to test the robustness of the results and sensitivity to methodology and important impact factors. The available crop-land and associated plant nutrient needs in Iowa was compared with manure production for the current hog population. On a state- or county-wide level, there was generally an excess of available land. On a farm level, there is often an excess

  10. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing.

    PubMed

    Ni, Kuikui; Minh, Tang Thuy; Tu, Tran Thi Minh; Tsuruta, Takeshi; Pang, Huili; Nishino, Naoki

    2017-02-01

    The microbiota of pre-ensiled crop and silage were examined using denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS). Wilted Italian ryegrass (IR), whole crop corn (WC), and wilted alfalfa (AL) silages stored for 2 months were examined. All silages contained lactic acid as a predominant fermentation product. Across the three crop species, DGGE detected 36 and 28 bands, and NGS identified 253 and 259 genera in the pre-ensiled crops and silages, respectively. The NGS demonstrated that, although lactic acid bacteria (LAB) became prevalent in all silages after 2 months of storage, the major groups were different between crops: Leuconostoc spp. and Pediococcus spp. for IR silage, Lactobacillus spp. for WC silage, and Enterococcus spp. for AL silage. The predominant silage LAB genera were also detected by DGGE, but the presence of diverse non-LAB species in pre-ensiled crops was far better detected by NGS. Likewise, good survival of Agrobacterium spp., Methylobacterium spp., and Sphingomonas spp. in IR and AL silages was demonstrated by NGS. The diversity of the microbiota described by principal coordinate analysis was similar between DGGE and NGS. Our finding that analysis of pre-ensiled crop microbiota did not help predict silage microbiota was true for both DGGE and NGS.

  11. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  12. WSR-88D doppler radar detection of corn earworm moth migration

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  13. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev

    2016-12-01

    Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.

  14. Status of market, regulation and research of genetically modified crops in Chile.

    PubMed

    Sánchez, Miguel A; León, Gabriel

    2016-12-25

    Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Estimating cropland NPP using national crop inventory and MODIS derived crop specific parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; West, T. O.; Ricciuto, D. M.

    2011-12-01

    Estimates of cropland net primary production (NPP) are needed as input for estimates of carbon flux and carbon stock changes. Cropland NPP is currently estimated using terrestrial ecosystem models, satellite remote sensing, or inventory data. All three of these methods have benefits and problems. Terrestrial ecosystem models are often better suited for prognostic estimates rather than diagnostic estimates. Satellite-based NPP estimates often underestimate productivity on intensely managed croplands and are also limited to a few broad crop categories. Inventory-based estimates are consistent with nationally collected data on crop yields, but they lack sub-county spatial resolution. Integrating these methods will allow for spatial resolution consistent with current land cover and land use, while also maintaining total biomass quantities recorded in national inventory data. The main objective of this study was to improve cropland NPP estimates by using a modification of the CASA NPP model with individual crop biophysical parameters partly derived from inventory data and MODIS 8day 250m EVI product. The study was conducted for corn and soybean crops in Iowa and Illinois for years 2006 and 2007. We used EVI as a linear function for fPAR, and used crop land cover data (56m spatial resolution) to extract individual crop EVI pixels. First, we separated mixed pixels of both corn and soybean that occur when MODIS 250m pixel contains more than one crop. Second, we substituted mixed EVI pixels with nearest pure pixel values of the same crop within 1km radius. To get more accurate photosynthetic active radiation (PAR), we applied the Mountain Climate Simulator (MTCLIM) algorithm with the use of temperature and precipitation data from the North American Land Data Assimilation System (NLDAS-2) to generate shortwave radiation data. Finally, county specific light use efficiency (LUE) values of each crop for years 2006 to 2007 were determined by application of mean county inventory

  16. Recommended data sets, corn segments and spring wheat segments, for use in program development

    NASA Technical Reports Server (NTRS)

    Austin, W. W. (Principal Investigator)

    1981-01-01

    The sets of Large Area Crop Inventory Experiment sites, crop year 1978, which are recommended for use in the development and evaluation of classification techniques based on LANDSAT spectral data are presented. For each site, the following exists: (1) accuracy assessment digitized ground truth; (2) a minimum of 5 percent of the scene ground truth identified as corn or spring wheat; and (3) at least four acquisitions of acceptable data quality during the growing season of the crop of interest. The recommended data sets consist of 41 corn/soybean sites and 17 spring wheat sites.

  17. Climate change impacts on dryland cropping systems in the central Great Plains, USA

    USDA-ARS?s Scientific Manuscript database

    Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...

  18. Early forecasting of crop condition using an integrative remote sensing method for corn and soybeans in Iowa and Illinois, USA

    NASA Astrophysics Data System (ADS)

    Seo, Bumsuk; Lee, Jihye; Kang, Sinkyu

    2017-04-01

    The weather-related risks in crop production is not only crucial for farmers but also for market participants and policy makers since securing food supply is an important issue for society. While crop growth condition and phenology are essential information about such risks, the extensive observations on those are often non-existent in many parts of the world. In this study, we have developed a novel integrative approach to remotely sense crop growth condition and phenology at a large scale. For corn and soybeans in Iowa and Illinois of USA (2003-2014), we assessed crop growth condition and crop phenology by EO data and validated it against the United States Department of Agriculture (USDA) National Agriculture Statistics System (NASS) crop statistics. For growth condition, we used two distinguished approaches to acquire crop condition indicators: a process-based crop growth modelling and a satellite NDVI based method. Based on their pixel-wise historic distributions, we determined relative growth conditions and scaled-down to the state-level. For crop phenology, we calculated three crop phenology metrics [i.e., start of season (SOS), end of season (EOS), and peak of season (POS)] at the pixel level from MODIS 8-day Normalized Difference Vegetation Index (NDVI). The estimates were compared with the Crop Progress and Condition (CPC) data of NASS. For the condition, the state-level 10-day estimates showed a moderate agreement (RMSE < 15.0%) and the average accuracy of the normal/bad year classification was well (> 70%). Notably, the condition estimates corresponded to the severe soybeans disease in 2003 and the drought in 2012 for both crops. For the phenology, the average RMSE of the estimates was 8.6 day for the all three metrics. The average |ME| was smaller than 1.0 day after bias correction. The proposed method enables us to evaluate crop growth at any given period and place. Global climate changes are increasing the risk in agricultural production such as long

  19. Regulation of Bt crops in Canada.

    PubMed

    Macdonald, Phil; Yarrow, Stephen

    2003-06-01

    The Canadian Food Inspection Agency (CFIA) regulates environmental releases of plants with novel traits, which include transgenic plants such as Bt crops. Bt crops are regulated in Canada because they express insect resistance novel to their species. Commercialization of crops with novel traits such as the production of insecticidal Bt proteins requires an approval for environmental release, as well as approvals for use as feed and food. Environmental factors such as potential impacts on non-target species are considered. Insect resistance management (IRM) may be imposed as a condition for environmental release of Bt crops to delay the development of resistance in the target insect. Bt potato and European corn borer-resistant Bt corn have been released with mandatory IRM. The CFIA imposes an IRM plan consisting of appropriate refugia, education of farmers and seed dealers, and monitoring and mitigation. Industry, regulators, government extension staff and public researchers provide expert advice on IRM.

  20. Corn response to climate stress detected with satellite-based NDVI time series

    DOE PAGES

    Wang, Ruoyu; Cherkauer, Keith; Bowling, Laura

    2016-03-23

    Corn growth conditions and yield are closely dependent on climate variability. Leaf growth, measured as the leaf area index, can be used to identify changes in crop growth in response to climate stress. This research was conducted to capture patterns of spatial and temporal corn leaf growth under climate stress for the St. Joseph River watershed, in northeastern Indiana. Leaf growth is represented by the Normalized Difference Vegetative Index (NDVI) retrieved from multiple years (2000–2010) of Landsat 5 TM images. By comparing NDVI values for individual image dates with the derived normal curve, the response of crop growth to environmentalmore » factors is quantified as NDVI residuals. Regression analysis revealed a significant relationship between yield and NDVI residual during the pre-silking period, indicating that NDVI residuals reflect crop stress in the early growing period that impacts yield. Both the mean NDVI residuals and the percentage of image pixels where corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry weather is prone to hamper potential crop growth, with stress affecting most of the observed corn pixels in the area. Oversupply of rainfall at the end of the growing season was not found to have a measurable effect on crop growth, while above normal precipitation earlier in the growing season reduces the risk of yield loss at the watershed scale. Furthermore, the spatial extent of stress is much lower when precipitation is above normal than under dry conditions, masking the impact of small areas of yield loss at the watershed scale.« less

  1. Corn response to climate stress detected with satellite-based NDVI time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruoyu; Cherkauer, Keith; Bowling, Laura

    Corn growth conditions and yield are closely dependent on climate variability. Leaf growth, measured as the leaf area index, can be used to identify changes in crop growth in response to climate stress. This research was conducted to capture patterns of spatial and temporal corn leaf growth under climate stress for the St. Joseph River watershed, in northeastern Indiana. Leaf growth is represented by the Normalized Difference Vegetative Index (NDVI) retrieved from multiple years (2000–2010) of Landsat 5 TM images. By comparing NDVI values for individual image dates with the derived normal curve, the response of crop growth to environmentalmore » factors is quantified as NDVI residuals. Regression analysis revealed a significant relationship between yield and NDVI residual during the pre-silking period, indicating that NDVI residuals reflect crop stress in the early growing period that impacts yield. Both the mean NDVI residuals and the percentage of image pixels where corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry weather is prone to hamper potential crop growth, with stress affecting most of the observed corn pixels in the area. Oversupply of rainfall at the end of the growing season was not found to have a measurable effect on crop growth, while above normal precipitation earlier in the growing season reduces the risk of yield loss at the watershed scale. Furthermore, the spatial extent of stress is much lower when precipitation is above normal than under dry conditions, masking the impact of small areas of yield loss at the watershed scale.« less

  2. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due

  3. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern U.S.A.

    USDA-ARS?s Scientific Manuscript database

    Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the r...

  4. Enhanced efficiency fertilizers: Effects on agronomic performance of corn in Iowa

    USDA-ARS?s Scientific Manuscript database

    Management of N in corn (Zea mays L.) production systems attempts to increase crop yields and minimize environment impact. This study evaluated enhanced efficiency fertilizers (EEFs) compared to their non-EEF forms on grain yield and corn biomass at the beginning of the grain-filling period, leaf ch...

  5. Influence of land area and capital strengthening fund of rural economic enterprises toward corn production in North Sumatera province

    NASA Astrophysics Data System (ADS)

    Rahmanta

    2018-02-01

    Corn is one of the staple food crops. Corn can also be processed into various foods and also as animal feed. The need for corn will continue to increase from year to year so it is necessary to increase production. The government has targeted corn crop self-sufficiency to achieve the corn production standards required by the animal feed industry. The purpose of this study is to analyze the effect of land area and capital strengthening funds to rural economic enterprises on corn production. This study uses secondary data obtained from the Central Statistical Agency of North Sumatra Province. The research method used is panel regression method. The result shows that the area of land has a significant effect on corn production and the capital strengthening fund to the rural economy institution has an insignificant effect on corn production in North Sumatera Province.

  6. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion Tmore » values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.« less

  7. Soil water dynamics and nitrate leaching under corn-soybean rotation, continuous corn, and kura clover

    USDA-ARS?s Scientific Manuscript database

    Improving the water quantity and water quality impacts of corn (Zea mays L.)- and soybean (Glycine max L.)-based cropping systems is a key challenge for agriculture in the US Midwest and similar regions around the world. Long-term field experiments are important for documenting those effects and exp...

  8. Assessment of soil attributes and crop productivity after diversification of the ubiquitous corn-soybean rotation in the northwestern U.S. Corn Belt

    USDA-ARS?s Scientific Manuscript database

    Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...

  9. HERBICIDE SENSITIVITY OF ECHINOCHLOA CRUS-GALLI POPULATIONS: A COMPARISON BETWEEN CROPPING SYSTEMS.

    PubMed

    Claerhout, S; De Cauwer, B; Reheul, D

    2014-01-01

    Echinochloa crus-galli populations exhibit high morphological variability and their response to herbicides varies from field to field. Differential response to herbicides could reflect differences in selection pressure, caused by years of cropping system related herbicide usage. This study investigates the relation between herbicide sensitivity of Echinochloa crus-galli populations and the cropping system to which they were subjected. The herbicide sensitivity of Echinochloa crus-galli was evaluated for populations collected on 18 fields, representing three cropping systems, namely (1) a long-term organic cropping system, (2) a conventional cropping system with corn in crop rotation or (3) a conventional cropping system with long-term monoculture of corn. Each cropping system was represented by 6 E. crus-galli populations. All fields were located on sandy soils. Dose-response pot experiments were conducted in the greenhouse to assess the effectiveness of three foliar-applied corn herbicides: nicosulfuron (ALS-inhibitor), cycloxydim (ACCase-inhibitor) and topramezone (HPPD-inhibitor), and two soil-applied corn herbicides: S-metolachlor and dimethenamid-P (both VLCFA-inhibitors). Foliar-applied herbicides were tested at a quarter, half and full recommended doses. Soil-applied herbicides were tested within a dose range of 0-22.5 g a.i. ha(-1) for S-metolachlor and 0-45 g a.i. ha(-1) for dimethenamid-P. Foliar-applied herbicides were applied at the three true leaves stage. Soil-applied herbicides were treated immediately after sowing the radicle-emerged seeds. All experiments were performed twice. The foliage dry weight per pot was determined four weeks after treatment. Plant responses to herbicides were expressed as biomass reduction (%, relative to the untreated control). Sensitivity to foliar-applied herbicides varied among cropping systems. Compared to populations from monoculture corn fields, populations originating from organic fields were significantly more

  10. Compositional analysis of genetically modified corn events (NK603, MON88017×MON810 and MON89034×MON88017) compared to conventional corn.

    PubMed

    Rayan, Ahmed M; Abbott, Louise C

    2015-06-01

    Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Using Landsat digital data to detect moisture stress in corn-soybean growing regions

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1980-01-01

    As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.

  12. Including climate variability in determination of the optimum rate of N fertilizer application using a crop model: A case study for rainfed corn in eastern Canada

    NASA Astrophysics Data System (ADS)

    Mesbah, M.; Pattey, E.; Jégo, G.; Geng, X.; Tremblay, N.; Didier, A.

    2017-12-01

    Identifying optimum nitrogen (N) application rate is essential for increasing agricultural production while limiting potential environmental contaminations caused by release of reactive N, especially for high demand N crops such as corn. The central question of N management is then how the optimum N rate is affected by climate variability for given soil. The experimental determination of optimum N rates involve the analyses of variance on the mean value of crop yield response to various N application rates used by factorial plot based experiments for a few years in several regions. This traditional approach has limitations to capture 1) the non-linear response of yield to N application rates due to large incremental N rates (often more than 40 kg N ha-1) and 2) the ecophysiological response of the crop to climate variability because of limited numbers of growing seasons considered. Modeling on the other hand, does not have such limitations and hence we use a crop model and propose a model-based methodology called Finding NEMO (N Ecophysiologically Modelled Optimum) to identify the optimum N rates for variable agro-climatic conditions and given soil properties. The performance of the methodology is illustrated using the STICS crop model adapted for rainfed corn in the Mixedwood Plains ecozone of eastern Canada (42.3oN 83oW-46.8oN 71oW) where more than 90% of Canadian corn is produced. The simulations were performed using small increment of preplant N application rate (10 kg N ha -1), long time series of daily climatic data (48 to 61 years) for 5 regions along the ecozone, and three contrasting soils per region. The results show that N recommendations should be region and soil specific. Soils with lower available water capacity required more N compared to soil with higher available water capacity. When N rates were at their ecophysiologically optimum level, 10 to 17 kg increase in dry yield could be achieved by adding 1 kg N. Expected yield also affected the optimum

  13. Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management.

    PubMed

    Pittelkow, Cameron M; Clover, Matthew W; Hoeft, Robert G; Nafziger, Emerson D; Warren, Jeffery J; Gonzini, Lisa C; Greer, Kristin D

    2017-09-01

    Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Water table management reduces tile nitrate loss in continuous corn and in a soybean-corn rotation.

    PubMed

    Drury, C F; Tan, C S; Gaynor, J D; Reynolds, W D; Welacky, T W; Oloya, T O

    2001-10-25

    Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l(-1)) under DR (11.4 mg N l(-1)), but not under CDS (7.0 mg N l(-1)). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l(-1)) and CDS (4.0 mg N l(-1)). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  15. Corn-Based Ethanol Production and Environmental Quality: A Case of Iowa and the Conservation Reserve Program

    NASA Astrophysics Data System (ADS)

    Secchi, Silvia; Gassman, Philip W.; Williams, Jimmy R.; Babcock, Bruce A.

    2009-10-01

    Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.

  16. An assessment of LANDSAT data acquisition history on identification and area estimation of corn and soybeans. [U.S. Corn Belti Indiana and Iowa

    NASA Technical Reports Server (NTRS)

    Hixson, M. M.; Bauer, M. E.; Scholz, D. K. (Principal Investigator)

    1980-01-01

    Multitemporally registered LANDSAT MSS data from four acquisitions during the 1978 growing season were used in classification of eight sample segments in Iowa and Indiana. The results illustrate that use of LANDSAT acquisition when corn has tasseled is critical, as this is the optimum time for separation of corn and soybeans. An early season acquisition when the summer crops appear as bare soil can be beneficial in reducing the confusion between these two crops and other cover types. A subset of one visible and one infrared band from each date was found to produce results not significantly different from the use of all bands. Selection of a subset of these bands may also be feasible for multitemporal analysis.

  17. Energy analysis and agriculture: an application to US Corn Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smil, V.; Nachman, P.; Long, T.V. II

    1983-01-01

    Changes in farming technology have increased the amount and cost of energy used in crop production, raising the question of whether energy efficiency in agriculture has remained constant, decreased, or increased. Despite some studies to the contrary, the authors assert that all essential energy used, both directly and indirectly, in US corn farming has remained constant in relation to crop production during the past two decades. Using a detailed process of energy analysis that takes into account various management and technological changes, they trace and quantify the energy cost of corn production from 1945-1947 and forecast its changes through 1984.more » They conclude that the energy efficiency of corn farming has not declined, and find that future technological and process improvements, led by conservation measures, will likely increase its energy efficiency in the 1980s. 39 references, 33 figures, 88 tables.« less

  18. Meteorological models for estimating phenology of corn

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Cochran, J. C.; Hollinger, S. E.

    1984-01-01

    Knowledge of when critical crop stages occur and how the environment affects them should provide useful information for crop management decisions and crop production models. Two sources of data were evaluated for predicting dates of silking and physiological maturity of corn (Zea mays L.). Initial evaluations were conducted using data of an adapted corn hybrid grown on a Typic Agriaquoll at the Purdue University Agronomy Farm. The second phase extended the analyses to large areas using data acquired by the Statistical Reporting Service of USDA for crop reporting districts (CRD) in Indiana and Iowa. Several thermal models were compared to calendar days for predicting dates of silking and physiological maturity. Mixed models which used a combination of thermal units to predict silking and days after silking to predict physiological maturity were also evaluated. At the Agronomy Farm the models were calibrated and tested on the same data. The thermal models were significantly less biased and more accurate than calendar days for predicting dates of silking. Differences among the thermal models were small. Significant improvements in both bias and accuracy were observed when the mixed models were used to predict dates of physiological maturity. The results indicate that statistical data for CRD can be used to evaluate models developed at agricultural experiment stations.

  19. Datasets for transcriptomic analyses of maize leaves in response to Asian corn borer feeding and/or jasmonic acid

    USDA-ARS?s Scientific Manuscript database

    Corn is one of the most widely grown crops throughout the world. However, many corn fields develop pest problems such as corn borers every year that seriously affect its yield and quality. Corn's response to initial insect damage involves a variety of changes to the levels of defensive enzymes, toxi...

  20. Crop yield response to increasing biochar rates

    USDA-ARS?s Scientific Manuscript database

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  1. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  2. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  3. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations' show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.

  4. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development

    PubMed Central

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations’ show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments. PMID:28828265

  5. Late-season corn measurements to assess soil residual nitrate and nitrogen management

    USDA-ARS?s Scientific Manuscript database

    Evaluation of corn (Zea mays L.) nitrogen (N) management and soil residual nitrate (NO3-N) late in the growing season could provide important management information for subsequent small grain crops and about potential NO3-N loss. Our objective was to evaluate the ability of several late-season corn...

  6. Crop identification using Landsat temporal-spectral profiles

    NASA Technical Reports Server (NTRS)

    Odenweller, J. B.; Johnson, K. I.

    1982-01-01

    The temporal-spectral profile is a detailed indicator of the physical state of a field through time. Characteristic profiles have been observed for a variety of crops and other cover classes from Landsat data in the United States Corn Belt. These profiles contain information to support crop identification at various levels.

  7. Control of Larval Northern Corn Rootworm. (Diabrotica barberi) with Two Steinernematid Nematode Species

    PubMed Central

    Thurston, G. S.; Yule, W. N.

    1990-01-01

    The entomogenous nematodes Steinerema feltiae and S. bibionis did not penetrate the roots of corn, Zea mays, to infect larval northern corn rootworm (NCR), Diabrotica barberi, feeding within. Laboratory bioassays against first instar NCR indicated that S. feltiae, Mexican strain (LD₅₀ = 49 nematodes/insect) is more virulent than S. bibionis (LD₅₀ = 100). Numbers of NCR larvae in a grain corn crop were reduced by both nematode species applied at corn seeding time at the rate of 10,000 infective-stage juveniles per linear meter of corn row. The chemical insecticide fonofos provided significantly better control than either nematode species. PMID:19287699

  8. Establishment of Cry9C susceptibility baselines for European corn borer and southwestern corn borer (Lepidoptera: Crambidae).

    PubMed

    Reed, J P; Halliday, W R

    2001-04-01

    In 1997 and 1998, Cry9C susceptibility baselines were established for field-collected populations of European corn borer, Osrinia nubilalis (Hubner), and southwestern corn borer, Diatraea grandiosella Dyar. Bioassay of neonate European corn borer larvae of 16 colonies collected from the midwestern United States indicated LC50 values ranging from 13.2 to 65.1 ng of Cry9C protein per square centimeter. Neonate European corn borer LC50 values ranged from 46.5 to 214 ng/cm2. Neonate larvae of three colonies of southwestern corn borer collected from the southern and southwestern United States exhibited LC50 values from 16.9 to 39.9 ng of Cry9C protein per square centimeter. Southwestern corn borer neonate LC90 confidence limit values ranged from 40.3 to 157 ng of Cry9C protein per centimeter. The most sensitive southwestern corn borer colony was collected from the Mississippi delta exhibiting an LC50 value of 22.6 ng of Cry9C per cm2 and also displayed the widest LC0 confidence limits of 40.3-94.8 ng of Cry9C per cm2. Geographic baseline susceptibility data establishes the natural genetic variation and provides the foundation for future testing of insect populations exposed to increased use of Bacillus thuringiensis-based crops. Insect resistance management and stewardship of Cry9C will rely upon baseline data for the validation of discriminating dose assays for European corn borer and southwestern corn borer.

  9. Prohexadione-calcium improves stand density and yield of alfalfa interseeded into silage corn

    USDA-ARS?s Scientific Manuscript database

    Interseeded alfalfa (Medicago sativa L.) could serve as a dual-purpose crop to provide groundcover for silage corn (Zea mays L.) and forage during subsequent years of production, but interspecific competition often leads to poor stands of alfalfa and unsatisfactory yields of corn. Four experiments e...

  10. Impact of corn stover removal on soil microbial communities in no-till and conventional till continuous corn

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) residue, or stover, can be used as a dry forage replacement in beef cattle diets and is being considered as a feedstock for cellulosic biofuel production. The soil quality and crop productivity ramifications of removing stover, however, likely will depend on stover removal rate an...

  11. Chronic exposure to neonicotinoids reduces honey bee health near corn crops.

    PubMed

    Tsvetkov, N; Samson-Robert, O; Sood, K; Patel, H S; Malena, D A; Gajiwala, P H; Maciukiewicz, P; Fournier, V; Zayed, A

    2017-06-30

    Experiments linking neonicotinoids and declining bee health have been criticized for not simulating realistic exposure. Here we quantified the duration and magnitude of neonicotinoid exposure in Canada's corn-growing regions and used these data to design realistic experiments to investigate the effect of such insecticides on honey bees. Colonies near corn were naturally exposed to neonicotinoids for up to 4 months-the majority of the honey bee's active season. Realistic experiments showed that neonicotinoids increased worker mortality and were associated with declines in social immunity and increased queenlessness over time. We also discovered that the acute toxicity of neonicotinoids to honey bees doubles in the presence of a commonly encountered fungicide. Our work demonstrates that field-realistic exposure to neonicotinoids can reduce honey bee health in corn-growing regions. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  13. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.

  14. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    PubMed

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Estimating E-Race European Corn Borer (Lepidoptera: Crambidae) Adult Activity in Snap Bean Fields Based on Corn Planting Intensity and Their Activity in Corn in New York Agroecosystems.

    PubMed

    Schmidt-Jeffris, Rebecca A; Huseth, Anders S; Nault, Brian A

    2016-07-24

    European corn borer, Ostrinia nubilalis (Hübner), is a major pest of processing snap bean because larvae are contaminants in pods. The incidence of O. nubilalis-contaminated beans has become uncommon in New York, possibly because widespread adoption of Bt field corn has suppressed populations. Snap bean fields located where Bt corn has been intensively grown in space and time may be at lower risk for O. nubilalis than fields located where Bt corn is not common. To manage O. nubilalis infestation risk, growers determine insecticide application frequency in snap bean based on pheromone-trapping information in nearby sweet corn fields; adult activity is presumed equivalent in both crops. Our goal was to determine if corn planting intensity and adult activity in sweet corn could be used to estimate O. nubilalis populations in snap bean in New York in 2014-2015. Numbers of O nubilalis adults captured in pheromone-baited traps located in snap bean fields where corn was and was not intensively grown were similar, suggesting that O. nubilalis does not respond to local levels of Bt corn in the landscape. Numbers of Ostrinia nubilalis captured in pheromone-baited traps placed by snap bean fields and proximal sweet corn fields were not related, indicating that snap bean growers should no longer make control decisions based on adult activity in sweet corn. Our results also suggest that the risk of O. nubilalis infestations in snap bean is low (∼80% of the traps caught zero moths) and insecticide applications targeting this pest should be reduced or eliminated. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. A Comparison of Corn (Zea mays L.) Residue and Its Biochar on Soil C and Plant Growth

    PubMed Central

    Calderón, Francisco J.; Benjamin, Joseph; Vigil, Merle F.

    2015-01-01

    In order to properly determine the value of charring crop residues, the C use efficiency and effects on crop performance of biochar needs to be compared to the un-charred crop residues. In this study we compared the addition of corn stalks to soil, with equivalent additions of charred (300 °C and 500 °C) corn residues. Two experiments were conducted: a long term laboratory mineralization, and a growth chamber trial with proso millet plants. In the laboratory, we measured soil mineral N dynamics, C use efficiency, and soil organic matter (SOM) chemical changes via infrared spectroscopy. The 300 °C biochar decreased plant biomass relative to a nothing added control. The 500°C biochar had little to no effect on plant biomass. With incubation we measured lower soil NO3 content in the corn stalk treatment than in the biochar-amended soils, suggesting that the millet growth reduction in the stalk treatment was mainly driven by N limitation, whereas other factors contributed to the biomass yield reductions in the biochar treatments. Corn stalks had a C sequestration use efficiency of up to 0.26, but charring enhanced C sequestration to values that ranged from 0.64 to 1.0. Infrared spectroscopy of the soils as they mineralized showed that absorbance at 3400, 2925-2850, 1737 cm-1, and 1656 cm-1 decreased during the incubation and can be regarded as labile SOM, corn residue, or biochar bands. Absorbances near 1600, 1500-1420, and 1345 cm-1 represented the more refractory SOM moieties. Our results show that adding crop residue biochar to soil is a sound C sequestration technology compared to letting the crop residues decompose in the field. This is because the resistance to decomposition of the chars after soil amendment offsets any C losses during charring of the crop residues. PMID:25836653

  17. A comparison of corn (Zea mays L.) residue and its biochar on soil C and plant growth.

    PubMed

    Calderón, Francisco J; Benjamin, Joseph; Vigil, Merle F

    2015-01-01

    In order to properly determine the value of charring crop residues, the C use efficiency and effects on crop performance of biochar needs to be compared to the un-charred crop residues. In this study we compared the addition of corn stalks to soil, with equivalent additions of charred (300 °C and 500 °C) corn residues. Two experiments were conducted: a long term laboratory mineralization, and a growth chamber trial with proso millet plants. In the laboratory, we measured soil mineral N dynamics, C use efficiency, and soil organic matter (SOM) chemical changes via infrared spectroscopy. The 300 °C biochar decreased plant biomass relative to a nothing added control. The 500°C biochar had little to no effect on plant biomass. With incubation we measured lower soil NO3 content in the corn stalk treatment than in the biochar-amended soils, suggesting that the millet growth reduction in the stalk treatment was mainly driven by N limitation, whereas other factors contributed to the biomass yield reductions in the biochar treatments. Corn stalks had a C sequestration use efficiency of up to 0.26, but charring enhanced C sequestration to values that ranged from 0.64 to 1.0. Infrared spectroscopy of the soils as they mineralized showed that absorbance at 3400, 2925-2850, 1737 cm-1, and 1656 cm-1 decreased during the incubation and can be regarded as labile SOM, corn residue, or biochar bands. Absorbances near 1600, 1500-1420, and 1345 cm-1 represented the more refractory SOM moieties. Our results show that adding crop residue biochar to soil is a sound C sequestration technology compared to letting the crop residues decompose in the field. This is because the resistance to decomposition of the chars after soil amendment offsets any C losses during charring of the crop residues.

  18. Sugarcane and other crops as fuel feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, J.E.

    1980-07-01

    The use of sugarcane as a feedstock for fuel alcohol production in Brazil, and in Zimbabwe Rhodesia and Panama stimulated tremendous interest in the potential of agricultural crops for renewable energy sources. The cost of the feedstock is important. Corn, the current major agricultural feedstock in US fuel alcohol production, costs 60 to 80% of the selling price of the alcohol produced from it. Production costs for sugarcane and sugarbeets are higher than for corn. Sugarcane and sugarbeets, yield more fermentable carbohydrates per acre than any other crop. Sugarcane has the distinct advantage of containing a large amount of fibermore » in the harvested portion. The feedstock cost of sugarcane can be reduced by producing more cane per acre. Sweet sorghum has been discussed as a fuel crop. Cassana, the tapioca source, is thought to be a fuel crop of major potential. Feedstock cost can also be reduced through management decisions that reduce costly practices. Cultivation and fertilizer costs can be reduced. The operating cost of the processing plant is affected by the choice of crops grown for feedstock, both by their cost and by availability. (DP)« less

  19. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    USDA-ARS?s Scientific Manuscript database

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  20. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm

    PubMed Central

    Chu, Chia-Ching; Spencer, Joseph L.; Curzi, Matías J.; Zavala, Jorge A.; Seufferheld, Manfredo J.

    2013-01-01

    Insects are constantly adapting to human-driven landscape changes; however, the roles of their gut microbiota in these processes remain largely unknown. The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) (Coleoptera: Chrysomelidae) is a major corn pest that has been controlled via annual rotation between corn (Zea mays) and nonhost soybean (Glycine max) in the United States. This practice selected for a “rotation-resistant” variant (RR-WCR) with reduced ovipositional fidelity to cornfields. When in soybean fields, RR-WCRs also exhibit an elevated tolerance of antiherbivory defenses (i.e., cysteine protease inhibitors) expressed in soybean foliage. Here we show that gut bacterial microbiota is an important factor facilitating this corn specialist’s (WCR's) physiological adaptation to brief soybean herbivory. Comparisons of gut microbiota between RR- and wild-type WCR (WT-WCR) revealed concomitant shifts in bacterial community structure with host adaptation to soybean diets. Antibiotic suppression of gut bacteria significantly reduced RR-WCR tolerance of soybean herbivory to the level of WT-WCR, whereas WT-WCR were unaffected. Our findings demonstrate that gut bacteria help to facilitate rapid adaptation of insects in managed ecosystems. PMID:23798396

  1. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    NASA Technical Reports Server (NTRS)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  2. Assessment of drought during corn growing season in Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Hu, Zhenghua

    2018-04-01

    Northeast China has experienced extensive climate change during the past decades. Corn is the primary production crop in China and is sensitive to meteorological disasters, especially drought. Drought has thus greatly endangered crop production and the country's food security. The majority of previous studies has not highlighted farming adaptation activities undertaken within the changed climate, which should not be neglected. In this study, we assessed drought hazard in the corn vegetation growing period, the reproductive growing period, and the whole growing period based on data for yearly corn phenology, daily precipitation, and temperature gathered at 26 agro-meteorological stations across Northeast China from 1981 to 2009. The M-K trend test was used to detect trends in sowing date and drought. The standardized precipitation evapotranspiration index (SPEI) was used to describe drought. Drought frequency and intensity were used to assess the drought hazard in the region. We found that the sowing date was delayed in the southern part of the study area, coupled with a trend towards a shorter and more humid vegetation growing period. In the northern part of the study area, an earlier sowing date increased the length of the vegetation growing period and the reproductive growing period, while drying trends occurred within the two corn growing periods. We assessed the drought hazard during each growing period: the reproductive growing period faced a more severe drought hazard and was also the period where corn was most sensitive to water stress. Drought hazard during the total growing period was closely related to corn yield.

  3. Is Corn Stover Harvest Predictable Using Farm Operation, Technology, and Management Variables?

    USDA-ARS?s Scientific Manuscript database

    Crop residue management, provision of animal feed or bedding, and increased income potential are some reasons for harvesting corn (Zea mays L.) stover. Reasons for not doing so are that crop residue is essential for restoring soil organic matter, protecting against wind and water erosion, and cyclin...

  4. Cultural and environmental influences on temporal-spectral development patterns of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    A technique for evaluating crop temporal-spectral development patterns is described and applied to the analysis of cropping practices and environmental conditions as they affect reflectance characteristics of corn and soybean canopies. Typical variations in field conditions are shown to exert significant influences on the spectral development patterns, and thereby to affect the separability of the two crops.

  5. Economics of growth regulator treatment of alfalfa seed for interseeding into silage corn

    USDA-ARS?s Scientific Manuscript database

    Previous studies have focused on interseeding of alfalfa into corn for use as a temporary cover crop rather than as a means of jump-starting alfalfa production after corn. In ongoing field studies, we are evaluating whether plant growth regulators (PGR) may be used to aid the establishment of inters...

  6. Prohexadione-calcium responsive alfalfa varieties ensure success of corn-interseeded alfalfa production systems

    USDA-ARS?s Scientific Manuscript database

    Recent USDA-NASS data indicate alfalfa and corn were planted on about 0.8 and 1.9 million hectares per year, respectively, in the Northeast, Great Lakes, Upper Midwest, and Northern Mountain regions the USA. Because both crops are often grown in rotation, alfalfa could be interseeded at corn plantin...

  7. Assessing corn water stress using spectral reflectance

    NASA Astrophysics Data System (ADS)

    Mefford, Brenna S.

    Multiple remote sensing techniques have been developed to identify crop water stress, but some methods may be difficult for farmers to apply. Unlike most techniques, shortwave vegetation indices can be calculated using satellite, aerial, or ground imagery from the green (525-600 nm), red (625-700 nm), and near infrared (750-900 nm) spectral bands. If vegetation indices can be used to monitor crop water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over irrigating. This study occurred in the 2013 growing season near Greeley, CO, where pressurized drip irrigation was used to irrigate twelve corn ( Zea mays L.) treatments of varying water deficit. Multispectral data was collected and four different vegetation indices were evaluated: Normalized Difference Vegetation Index (NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Normalized Difference Vegetation Index (GNDVI), and the Wide Dynamic Range Vegetation Index (WDRVI). The four vegetation indices were compared to corn water stress as indicated by the stress coefficient (Ks) and water deficit in the root zone, calculated by using a water balance that monitors crop evapotranspiration (ET), irrigation events, precipitation events, and deep percolation. ET for the water balance was calculated using two different methods for comparison purposes: (1) calculation of the stress coefficient (Ks) using FAO-56 standard procedures; (2) use of canopy temperature ratio (Tc ratio) of a stressed crop to a non-stressed crop to calculate Ks. It was found that obtaining Ks from Tc ratio is a viable option, and requires less data to obtain than Ks from FAO-56. In order to compare the indices to Ks, vegetation ratios were developed in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water

  8. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    PubMed

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  9. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    USDA-ARS?s Scientific Manuscript database

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  10. Crop response to biochar under differing irrigation levels in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Application of biochar to soils is hypothesized to increase crop yield. Crop productivity impacts of biochar application in Southeastern cropping systems consisting of peanut (Arachis hypogaea L.), corn (Zea mays L.), and cotton (Gossypium hirsutum L.) produced under varying rates of irrigation have...

  11. Future generation energy crops

    USDA-ARS?s Scientific Manuscript database

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  12. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    NASA Astrophysics Data System (ADS)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    The recently expanded Renewable Fuel Standard, which now requires 36 billion gallons of renewable fuels by 2022, has increased demand for biofuel refinery feedstocks. Currently, biofuel production consists mainly of corn-based ethanol, but concern over increasing nitrate levels resulting from increased corn crop fertilization has prompted research into alternative biofuel feedstocks. Of these, high-yielding biomass crops such as Miscanthus have been suggested for cellulose-based ethanol production. Because these perennial crops require less fertilization and do not need tilling, increasing land area in the Midwest planted with Miscanthus would result in less nitrate pollution to the Gulf of Mexico. There is a tradeoff, however, as Miscanthus also has higher water requirements than conventional crops in the region. This could pose a serious problem for riparian ecosystems and other streamflow users such as municipalities and biofuel refineries themselves, as the lowest natural flows in this region coincide with the peak of the growing season. Moreover, low flow reduction may eventually cut off the water quality benefit that planting Miscanthus provides. Therefore, for large-scale cellulosic ethanol production to be sustainable, it is important to understand how the watershed will respond to this change in land and water use. To this end a detailed data analysis of current watershed conditions has been combined with hydrologic modeling to gain deeper insights into how catchments in the highly agricultural central IL watershed of the Sangamon River respond to current and future land and water usage, with the focus on the summer low-flow season. In addition, an integrated systems optimization model has been developed that combines hydrologic, agro-biologic, engineering infrastructural, and economic inputs to provide optimal scenarios of crop type and area and corresponding refinery locations and capacities. Through this integrated modeling framework, we address the key

  13. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and amore » 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.« less

  14. Improving Seasonal Crop Monitoring and Forecasting for Soybean and Corn in Iowa

    NASA Astrophysics Data System (ADS)

    Togliatti, K.; Archontoulis, S.; Dietzel, R.; VanLoocke, A.

    2016-12-01

    Accurately forecasting crop yield in advance of harvest could greatly benefit farmers, however few evaluations have been conducted to determine the effectiveness of forecasting methods. We tested one such method that used a combination of short-term weather forecasting from the Weather Research and Forecasting Model (WRF) to predict in season weather variables, such as, maximum and minimum temperature, precipitation and radiation at 4 different forecast lengths (2 weeks, 1 week, 3 days, and 0 days). This forecasted weather data along with the current and historic (previous 35 years) data from the Iowa Environmental Mesonet was combined to drive Agricultural Production Systems sIMulator (APSIM) simulations to forecast soybean and corn yields in 2015 and 2016. The goal of this study is to find the forecast length that reduces the variability of simulated yield predictions while also increasing the accuracy of those predictions. APSIM simulations of crop variables were evaluated against bi-weekly field measurements of phenology, biomass, and leaf area index from early and late planted soybean plots located at the Agricultural Engineering and Agronomy Research Farm in central Iowa as well as the Northwest Research Farm in northwestern Iowa. WRF model predictions were evaluated against observed weather data collected at the experimental fields. Maximum temperature was the most accurately predicted variable, followed by minimum temperature and radiation, and precipitation was least accurate according to RMSE values and the number of days that were forecasted within a 20% error of the observed weather. Our analysis indicated that for the majority of months in the growing season the 3 day forecast performed the best. The 1 week forecast came in second and the 2 week forecast was the least accurate for the majority of months. Preliminary results for yield indicate that the 2 week forecast is the least variable of the forecast lengths, however it also is the least accurate

  15. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    USDA-ARS?s Scientific Manuscript database

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  16. Chilean Strategy Towards Antarctica

    DTIC Science & Technology

    2016-02-16

    government , the Department of Defense, or Air University. In accordance with Air Force Instruction 51-303, it is not copyrighted but is the property of the...United States government . iii Biography Lieutenant Colonel Vicente Donoso Herman is a Chilean Air Force Officer assigned to the Air War...establishing a strategic vision and has failed to lay foundations with sufficient concrete investments. Most alarming is that multiple Chilean governments

  17. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  18. A method for sampling waste corn

    USGS Publications Warehouse

    Frederick, R.B.; Klaas, E.E.; Baldassarre, G.A.; Reinecke, K.J.

    1984-01-01

    Corn had become one of the most important wildlife food in the United States. It is eaten by a wide variety of animals, including white-tailed deer (Odocoileus virginianus ), raccoon (Procyon lotor ), ring-necked pheasant (Phasianus colchicus , wild turkey (Meleagris gallopavo ), and many species of aquatic birds. Damage to unharvested crops had been documented, but many birds and mammals eat waste grain after harvest and do not conflict with agriculture. A good method for measuring waste-corn availability can be essential to studies concerning food density and food and feeding habits of field-feeding wildlife. Previous methods were developed primarily for approximating losses due to harvest machinery. In this paper, a method is described for estimating the amount of waste corn potentially available to wildlife. Detection of temporal changes in food availability and differences caused by agricultural operations (e.g., recently harvested stubble fields vs. plowed fields) are discussed.

  19. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.

    PubMed

    Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet

    2013-02-19

    There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result

  20. The Role of Climate Covariability on Crop Yields in the Conterminous United States

    DOE PAGES

    Leng, Guoyong; Zhang, Xuesong; Huang, Maoyi; ...

    2016-09-12

    The covariability of temperature (T), precipitation (P) and radiation (R) is an important aspect in understanding the climate influence on crop yields. Here in this paper, we analyze county-level corn and soybean yields and observed climate for the period 1983–2012 to understand how growing-season (June, July and August) mean T, P and R influence crop yields jointly and in isolation across the CONterminous United States (CONUS). Results show that nationally averaged corn and soybean yields exhibit large interannual variability of 21% and 22%, of which 35% and 32% can be significantly explained by T and P, respectively. By including R,more » an additional of 5% in variability can be explained for both crops. Using partial regression analyses, we find that studies that ignore the covariability among T, P, and R can substantially overestimate the sensitivity of crop yields to a single climate factor at the county scale. Further analyses indicate large spatial variation in the relative contributions of different climate variables to the variability of historical corn and soybean yields. Finally, the structure of the dominant climate factors did not change substantially over 1983–2012, confirming the robustness of the findings, which have important implications for crop yield prediction and crop model validations.« less

  1. Winter cover crops as a best management practice for reducing nitrogen leaching

    NASA Astrophysics Data System (ADS)

    Ritter, W. F.; Scarborough, R. W.; Chirnside, A. E. M.

    1998-10-01

    The role of rye as a winter cover crop to reduce nitrate leaching was investigated over a three-year period on a loamy sand soil. A cover crop was planted after corn in the early fall and killed in late March or early April the following spring. No-tillage and conventional tillage systems were compared on large plots with irrigated corn. A replicated randomized block design experiment was conducted on small plots to evaluate a rye cover crop under no-tillage and conventional tillage and with commercial fertilizer, poultry manure and composted poultry manure as nitrogen fertilizer sources. Nitrogen uptake by the cover crop along with nitrate concentrations in groundwater and the soil profile (0-150 cm) were measured on the large plots. Soil nitrate concentrations and nitrogen uptake by the cover crop were measured on the small plots. There was no significant difference in nitrate concentrations in the groundwater or soil profile with and without a cover crop in either no-tillage or conventional tillage. Annual amounts of nitrate-N leached to the water-table varied from 136.0 to 190.1 kg/ha in 1989 and from 82.4 to 116.2 kg/ha in 1991. Nitrate leaching rates were somewhat lower with a cover crop in 1989, but not in 1990. There was no statistically significant difference in corn grain yields between the cover crop and non-cover crop treatments. The planting date and adequate rainfall are very important in maximizing nitrogen uptake in the fall with a rye cover crop. On the Delmarva Peninsula, the cover crop should probably be planted by October 1 to maximize nitrogen uptake rates in the fall. On loamy sand soils, rye winter cover crops cannot be counted on as a best management practice for reducing nitrate leaching in the Mid-Atlantic states.

  2. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda.

    PubMed

    Yang, Fei; Kerns, David L; Head, Graham P; Price, Paula; Huang, Fangneng

    2017-12-01

    Gene-pyramiding by combining two or more dissimilar Bacillus thuringiensis (Bt) proteins into a crop has been used to delay insect resistance. The durability of gene-pyramiding can be reduced by cross-resistance. Fall armyworm, Spodoptera frugiperda, is a major target pest of the Cry2Ab2 protein used in pyramided Bt corn and cotton. Here, we provide the first experimental evaluation of cross-resistance in S. frugiperda selected with Cry2Ab2 corn to multiple Bt sources including purified Bt proteins, Bt corn and Bt cotton. Concentration - response bioassays showed that resistance ratios for Cry2Ab2-resistant (RR) relative to Cry2Ab2-susceptible (SS) S. frugiperda were -1.4 for Cry1F, 1.2 for Cry1A.105, >26.7 for Cry2Ab2, >10.0 for Cry2Ae and -1.1 for Vip3A. Larvae of Cry2Ab2-heterozygous (RS), SS and RR S. frugiperda were all susceptible to Bt corn and Bt cotton containing Cry1 (Cry1F or Cry1A.105) and/or Vip3A proteins. Pyramided Bt cotton containing Cry1Ac + Cry2Ab2 or Cry1Ab + Cry2Ae were also effective against SS and RS, but not RR. These findings suggest that Cry2Ab2-corn-selected S. frugiperda is not cross-resistant to Cry1F, Cry1A.105 or Vip3A protein, or corn and cotton plants containing these Bt proteins, but it can cause strong cross-resistance to Cry2Ae and Bt crops expressing similar Bt proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Fitness costs associated with Cry1F resistance in the European corn borer

    USDA-ARS?s Scientific Manuscript database

    Crops producing insecticidal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely planted in order to manage key insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn b...

  4. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980-2010.

    PubMed

    Leng, Guoyong

    2017-12-15

    Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO 2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (R GST_CY ) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in association with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K--3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in R GST_CY are mainly observed in Midwest Corn Belt and central High Plains, but are partly reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study period

  5. Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping

    EPA Science Inventory

    This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...

  6. A diversified no-till crop rotation reduces nitrous oxide emissions, increases soybean yields, and promotes soil C accrual

    USDA-ARS?s Scientific Manuscript database

    We evaluated the impact of crop rotational diversity on greenhouse gas (GHG) emissions, global warming potential (GWP), and crop yields. Under no-till, rain-fed conditions, a two-yr (corn (Zea mays L.)-soybean (Glycine max (L.) Merr.)) rotation and a four-yr (corn-field peas (Pisum sativum L.)-winte...

  7. Distributional patterns of fall armyworm parasitoids in a corn field and pasture field in Florida

    USDA-ARS?s Scientific Manuscript database

    An assessment of parasitoids and their selective patterns among Spodoptera frugiperda corn and rice host strains was performed from August 2008-August 2010 in a corn crop and a grass pasture in northern Florida under different seasonal conditions (spring and fall). Sentinel larvae from our laborator...

  8. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion

    DOE PAGES

    Kallenbach, Cynthia M.; Stuart Grandy, A.

    2014-07-14

    Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and

  9. Genetically modified crops: Brazilian law and overview.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; dos Santos, O J A P; Alves, D P; Brasileiro, B P; Peternelli, L A

    2014-07-07

    In Brazil, the first genetically modified (GM) crop was released in 1998, and it is estimated that 84, 78, and 50% of crop areas containing soybean, corn, and cotton, respectively, were transgenic in 2012. This intense and rapid adoption rate confirms that the choice to use technology has been the main factor in developing national agriculture. Thus, this review focuses on understanding these dynamics in the context of farmers, trade relations, and legislation. To accomplish this goal, a survey was conducted using the database of the National Cultivar Registry and the National Service for Plant Variety Protection of the Ministry of Agriculture, Livestock and Supply [Ministério da Agricultura, Pecuária e Abastecimento (MAPA)] between 1998 and October 13, 2013. To date, 36 events have been released: five for soybeans, 18 for corn, 12 for cotton, and one for beans. From these events, 1395 cultivars have been developed and registered: 582 for soybean, 783 for corn and 30 for cotton. Monsanto owns 73.05% of the technologies used to develop these cultivars, while the Dow AgroScience - DuPont partnership and Syngenta have 16.34 and 4.37% ownership, respectively. Thus, the provision of transgenic seeds by these companies is an oligopoly supported by legislation. Moreover, there has been a rapid replacement of conventional crops by GM crops, whose technologies belong almost exclusively to four multinational companies, with the major ownership by Monsanto. These results reflect a warning to the government of the increased dependence on multinational corporations for key agricultural commodities.

  10. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  11. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant.

    PubMed

    Keshri, Jitendra; Chen, Yaira; Pinto, Riky; Kroupitski, Yulia; Weinberg, Zwi G; Sela Saldinger, Shlomo

    2018-05-01

    Microbial population dynamics associated with corn silage, with and without Lactobacillus plantarum treatment, was studied. Whole crop corn was ensiled using laboratory silos and sampled at different times, up to 3 months. The dominant bacteria, before ensiling, were Acinetobacter (38.5%) and Klebsiella (16.3%), while the dominant fungi were Meyerozyma (53.5%) and Candida (27.7%). During ensiling, the microbial population shifted considerably, and Lactobacillus (> 94%) and Candida (> 74%) became the most dominant microbial genera in both treated and untreated silages. Yet, lactic acid content was higher in the treated silage, while the microbial diversity was lower than in the untreated silage. Upon aerobic exposure, spoilage occurred more rapidly in the treated silage, possibly due to the higher abundance of lactic acid-assimilating fungi, such as Candida. Our study is the first to describe microbial population dynamics during whole-crop corn ensiling and the results indicate that microbial diversity may be an indicator of aerobic stability.

  12. Crop identification technology assessment for remote sensing (CITARS). Volume 10: Interpretation of results

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Feiveson, A. H.; Hall, F. G.; Bauer, M. E.; Davis, B. J.; Malila, W. A.; Rice, D. P.

    1975-01-01

    The CITARS was an experiment designed to quantitatively evaluate crop identification performance for corn and soybeans in various environments using a well-defined set of automatic data processing (ADP) techniques. Each technique was applied to data acquired to recognize and estimate proportions of corn and soybeans. The CITARS documentation summarizes, interprets, and discusses the crop identification performances obtained using (1) different ADP procedures; (2) a linear versus a quadratic classifier; (3) prior probability information derived from historic data; (4) local versus nonlocal recognition training statistics and the associated use of preprocessing; (5) multitemporal data; (6) classification bias and mixed pixels in proportion estimation; and (7) data with differnt site characteristics, including crop, soil, atmospheric effects, and stages of crop maturity.

  13. Replacing fallow with forage triticale in dryland crop rotations increases profitability

    USDA-ARS?s Scientific Manuscript database

    A common dryland rotational cropping system in the semi-arid central Great Plains of the U.S. is wheat (Triticum aestivum L.)-corn (Zea mays L.)-fallow (WCF). However, the 12-month fallow period following corn production has been shown to be relatively inefficient in storing precipitation during the...

  14. Implications of Using Corn Stalks as a Biofuel Source: A Joint ARS and DOE Project

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. W.; Cushman, J.

    2003-12-01

    Corn stover is a readily source of biomass for cellulosic ethanol production, and may provide additional income for growers. Published research shows that residue removal changes the rate of soil physical, chemical, and biological processes, and in turn, crop growth. Building a sustainable cellulosic ethanol industry based on corn residue requires residue management practices that do not reduce long-term productivity. To develop such systems, impacts of stover removal on the soil and subsequent crops must be quantified. The ARS/DOE Biofuel Project is the cooperative endeavor among scientists from six western Corn Belt US Dept. of Agriculture, Agricultural Research Service (ARS) locations and US Dept. of Energy. The objectives of the project are to determine the influence of stover removal on crop productivity, soil aggregation, quality, carbon content, and seasonal energy balance, and carbon sequestration. When residue is removed soil temperatures fluctuate more and soil water evaporation is greater. Residue removal reduces the amount of soil organic carbon (SOC), but the degree of reduction is highly dependent on degree of tillage, quantity of stover removed, and frequency of stover removal. Of the three cultural factors (stover removal, tillage, and N fertilization) tillage had the greatest effect on amount of corn-derived SOC. No tillage tends to increase the fraction of aggregates in the 2.00 to 0.25 mm size range at all removal rates. Stover harvest reduces corn-derived SOC by 35% compared to retaining stover on the soil averaged over all tillage systems. Corn stover yield has not differed across stover removal treatments in these studies. In the irrigated study, grain yield increased with stover removal. In the rain-fed studies, grain yield has not differed among residue management treatments. Incorporating the biomass ethanol fermentation by-product into a soil with low SOC showed a positive relationship between the amount of lignin added and the subsequent

  15. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  16. A temporal/spectral analysis of small grain crops and confusion crops. [North Dakota

    NASA Technical Reports Server (NTRS)

    Johnson, W. R. (Principal Investigator)

    1981-01-01

    Spectral data from the LANDSAT-2 satellite were used to study the growth cycles of fields of wheat, barley, alfalfa, corn, sunflowers, soybeans, rye, flax, oats, millet, grass, and hay. Signatures of pastures, trees, and idle fallow were also studied. The growth cycles were portrayed in the form of temporal plots of the greeness-brightness transformation vector applied to average channel pixel values within the fields, all of which were in three counties in North Dakota. The plots of each crop reveal characteristics which can be used in crop classification procedures.

  17. Evidence for a weakening strength of temperature-corn yield relation in the United States during 1980–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong

    Temperature is known to be correlated with crop yields, causing reduction of crop yield with climate warming without adaptations or CO2 fertilization effects. The historical temperature-crop yield relation has often been used for informing future changes. This relationship, however, may change over time following alternations in other environmental factors. Results show that the strength of the relationship between the interannual variability of growing season temperature and corn yield (RGST_CY) has declined in the United States between 1980 and 2010 with a loss in the statistical significance. The regression slope which represents the anomalies in corn yield that occur in associationmore » with 1 degree temperature anomaly has decreased significantly from -6.9%/K of the first half period to -2.4%/K~-3.5%/K of the second half period. This implies that projected corn yield reduction will be overestimated by a fact of 2 in a given warming scenario, if the corn-temperature relation is derived from the earlier historical period. Changes in RGST_CY are mainly observed in Midwest Corn Belt and central High Plains, and are well reproduced by 11 process-based crop models. In Midwest rain-fed systems, the decrease of negative temperature effects coincides with an increase in water availability by precipitation. In irrigated areas where water stress is minimized, the decline of beneficial temperature effects is significantly related to the increase in extreme hot days. The results indicate that an extrapolation of historical yield response to temperature may bias the assessment of agriculture vulnerability to climate change. Efforts to reduce climate impacts on agriculture should pay attention not only to climate change, but also to changes in climate-crop yield relations. There are some caveats that should be acknowledged as the analysis is restricted to the changes in the linear relation between growing season mean temperature and corn yield for the specific study

  18. Nitrous oxide emissions from corn-soybean systems in the midwest.

    PubMed

    Parkin, Timothy B; Kaspar, Thomas C

    2006-01-01

    Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.

  19. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.; Pont, W.; Thelen, B.; Sellman, A.

    1981-01-01

    Accomplishments for a machine-oriented small grains labeler T&E, and for Argentina ground data collection are reported. Features of the small grains labeler include temporal-spectral profiles, which characterize continuous patterns of crop spectral development, and crop calendar shift estimation, which adjusts for planting date differences of fields within a crop type. Corn and soybean classification technology development for area estimation for foreign commodity production forecasting is reported. Presentations supporting quarterly project management reviews and a quarterly technical interchange meeting are also included.

  20. Development of a corn and soybean labeling procedure for use with profile parameter classification

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1982-01-01

    Some essential processes for the development of a green-number-based logic for identifying (labeling) crops in LANDSAT imagery are documented. The supporting data and subsequent conclusions that resulted from development of a specific labeling logic for corn and soybean crops in the United States are recorded.

  1. Effects of Crop Canopies on Rain Splash Detachment

    PubMed Central

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2·h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields. PMID:24992386

  2. Effects of crop canopies on rain splash detachment.

    PubMed

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2 · h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields.

  3. Evapotranspiration of annual and perennial biofuel crops in a variable climate

    DOE PAGES

    Abraha, Michael; Chen, Jiquan; Chu, Housen; ...

    2015-02-06

    Eddy covariance measurements were made in seven fields in the Midwest USA over 4 years (including the 2012 drought year) to estimate evapotranspiration (ET) of newly established rain-fed cellulosic and grain biofuel crops. Four of the converted fields had been managed as grasslands under the USDA’s Conservation Reserve Program (CRP) for 22 years, and three had been in conventional agriculture (AGR) soybean/corn rotation prior to conversion. In 2009, all sites were planted to no-till soybean except one CRP grassland that was left unchanged as a reference site; in 2010, three of the former CRP sites and the three former AGRmore » sites were planted to annual (corn) and perennial (switchgrass and mixed-prairie) grasslands. The annual ET over the 4 years ranged from 45% to 77% (mean = 60%) of the annual precipitation (848–1063 mm; November–October), with the unconverted CRP grassland having the highest ET (622–706 mm). In the fields converted to annual and perennial crops, the annual ET ranged between 480 and 639 mm despite the large variations in growing-season precipitation and in soil water contents, which had strong effects on regional crop yields. Results suggest that in this humid temperate climate, which represents the US Corn Belt, water use by annual and perennial crops is not greatly different across years with highly variable precipitation and soil water availability. Thus, large-scale conversion of row crops to perennial biofuel cropping systems may not strongly alter terrestrial water balances.« less

  4. Evapotranspiration of annual and perennial biofuel crops in a variable climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraha, Michael; Chen, Jiquan; Chu, Housen

    Eddy covariance measurements were made in seven fields in the Midwest USA over 4 years (including the 2012 drought year) to estimate evapotranspiration (ET) of newly established rain-fed cellulosic and grain biofuel crops. Four of the converted fields had been managed as grasslands under the USDA’s Conservation Reserve Program (CRP) for 22 years, and three had been in conventional agriculture (AGR) soybean/corn rotation prior to conversion. In 2009, all sites were planted to no-till soybean except one CRP grassland that was left unchanged as a reference site; in 2010, three of the former CRP sites and the three former AGRmore » sites were planted to annual (corn) and perennial (switchgrass and mixed-prairie) grasslands. The annual ET over the 4 years ranged from 45% to 77% (mean = 60%) of the annual precipitation (848–1063 mm; November–October), with the unconverted CRP grassland having the highest ET (622–706 mm). In the fields converted to annual and perennial crops, the annual ET ranged between 480 and 639 mm despite the large variations in growing-season precipitation and in soil water contents, which had strong effects on regional crop yields. Results suggest that in this humid temperate climate, which represents the US Corn Belt, water use by annual and perennial crops is not greatly different across years with highly variable precipitation and soil water availability. Thus, large-scale conversion of row crops to perennial biofuel cropping systems may not strongly alter terrestrial water balances.« less

  5. [Review of transgenic crop breeding in China].

    PubMed

    Huang, Dafang

    2015-06-01

    The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made.

  6. Mealybug species from Chilean agricultural landscapes and main factors influencing the genetic structure of Pseudococcus viburni

    PubMed Central

    Correa, Margarita C. G.; Lombaert, Eric; Malausa, Thibaut; Crochard, Didier; Alvear, Andrés; Zaviezo, Tania; Palero, Ferran

    2015-01-01

    The present study aimed to characterize the distribution of mealybug species along Chilean agro-ecosystems and to determine the relative impact of host plant, management strategy, geography and micro-environment on shaping the distribution and genetic structure of the obscure mealybug Pseudococcus viburni. An extensive survey was completed using DNA barcoding methods to identify Chilean mealybugs to the species level. Moreover, a fine-scale study of Ps. viburni genetic diversity and population structure was carried out, genotyping 529 Ps. viburni individuals with 21 microsatellite markers. Samples from 16 localities were analyzed using Bayesian and spatially-explicit methods and the genetic dataset was confronted to host-plant, management and environmental data. Chilean crops were found to be infested by Ps. viburni, Pseudococcus meridionalis, Pseudococcus longispinus and Planococcus citri, with Ps. viburni and Ps. meridionalis showing contrasting distribution and host-plant preference patterns. Ps. viburni samples presented low genetic diversity levels but high genetic differentiation. While no significant genetic variance could be assigned to host-plant or management strategy, climate and geography were found to correlate significantly with genetic differentiation levels. The genetic characterization of Ps. viburni within Chile will contribute to future studies tracing back the origin and improving the management of this worldwide invader. PMID:26559636

  7. Life cycle of the corn-soybean agroecosystem for biobased production.

    PubMed

    Landis, Amy E; Miller, Shelie A; Theis, Thomas L

    2007-02-15

    Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.

  8. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    DOE PAGES

    Bonner, Ian J.; Cafferty, Kara G.; Muth, Jr., David J.; ...

    2014-10-01

    Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study on Hardin County, Iowa to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. The strategy presented integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn (Zea mays L.) grain is modeledmore » to operate at a net economic loss. The results of this analysis show that switchgrass integration has the potential to increase sustainable biomass production from 48 to 99% (depending on the rigor of conservation practices applied to corn stover collection) while also improving field level profitability. Candidate land area is highly sensitive to grain price (0.18 to 0.26 US$ kg-1) and dependent on the acceptable net profit for corn production (ranging from 0 to -1,000 US$ ha-1). This work presents the case that switchgrass can be economically implemented into row crop production landscapes when management decisions are applied at a subfield scale and compete against areas of the field operating at a negative net profit.« less

  9. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    PubMed

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd corn grains were 0.054, 6.65 × 10 -4 , 7.94 × 10 -4 , 0.0044, 0.028, 0.13, and 0.19, respectively. The corresponding BCFs values for wheat grains were 0.25, 0.0045, 5.42 × 10 -4 , 0.009, 4.03 × 10 -4 , 0.11, and 0.054, respectively.

  10. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J.

    2014-05-01

    Early and on-going crop production forecasts are important to facilitate food price stability for regions at risk, and for agriculture exporters, to set market value. Most regional and global efforts in forecasting rely on multiple sources of information from the field. With increased access to data from spaceborne Synthetic Aperture Radar (SAR), these sensors could contribute information on crop acreage. But these acreage estimates must be available early in the season to assist with production forecasts. This study acquired TerraSAR-X and RADARSAT-2 data over a region in eastern Canada dominated by economically important corn and soybean production. Using a supervised decision tree classifier, results determined that either sensor was capable of delivering highly accurate maps of corn and soybeans at the end of the growing season. Accuracies far exceeded 90%. Spatial and multi-temporal filtering approaches were compared and small improvements in accuracies were found by applying the multi-temporal filter to the RADARSAT-2 data. Of significant interest, this study determined that by using only three TerraSAR-X images corn could be accurately identified by the end of June, a mere six weeks after planting and at a vegetative growth stage (V6 - sixth leaf collar developed). However, soybeans required additional acquisitions given the variance in planting densities and planting dates in this region of Canada. In this case, accurate soybean classification required TerraSAR-X images until early August at the start of the reproductive stage (R5 - seed development is beginning). Also important, by applying a multi-temporal filter accurate mapping (close to 90%) of corn and soybeans from RADARSAT-2 could occur five weeks earlier (by August 19) than if a spatial filter was used. Thus application of this filtering approach could accelerate delivery of a crop inventory for this region of Canada. Corn and soybeans are important commodities both globally and within Canada. This

  11. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  12. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    PubMed

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  13. Corn blight review: Sampling model and ground data measurements program

    NASA Technical Reports Server (NTRS)

    Allen, R. D.

    1972-01-01

    The sampling plan involved the selection of the study area, determination of the flightline and segment sample design within the study area, and determination of a field sample design. Initial interview survey data consisting of crop species acreage and land use were collected. On all corn fields, additional information such as seed type, row direction, population, planting date, ect. were also collected. From this information, sample corn fields were selected to be observed through the growing season on a biweekly basis by county extension personnel.

  14. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Griffis, Tim J.; Baker, John; Wood, Jeffrey D.; Xiao, Ke

    2015-02-01

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water, and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to Earth system models is relatively rare. Here we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy-simulated leaf area index (LAI), energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long-wave radiation bias. CLM4-Crop underestimated soil water content during midgrowing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics is needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.

  15. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  16. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    USDA-ARS?s Scientific Manuscript database

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...

  17. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    USDA-ARS?s Scientific Manuscript database

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...

  18. The Effects of Salinity on the Herbivorous Crop Pest Tetranychus urticae (Trombidiformes: Tetranychidae) on Soybean and Corn.

    PubMed

    Eichele-Nelson, Jaclyn L; Wick, Abbey F; DeSutter, Thomas M; Harmon, Jason P

    2017-08-01

    Many environmental factors, including soil characteristics, are critical for plants, herbivorous arthropods, and their interactions. Despite increasing evidence that soil salinity drastically impacts plants, little is known about how salinity affects the herbivorous arthropod pests feeding on those plants. We investigated how soil salinity affects the twospotted spider mite (Tetranychus urticae Koch) feeding on corn (Zea mays L.) and soybean (Glycine max L.). We performed two greenhouse studies, one focusing on the impact of salinity on individual mite fecundity over a period of 3 d and the other focusing on population growth of T. urticae over 7 d. Both experiments were performed across varying salinity levels; electrical conductivity values ranged from 0.84 to 8.07 dS m-1. We also performed the 3-d fecundity experiment in the field, across naturally varying saline conditions. Overall, the twospotted spider mite performed better as salinity increased; both fecundity and population growth tended to have a positive linear correlation with salinity. These studies suggest that salinity can be important for herbivores, just as it is for plants. Moreover, the negative effects of soil salinity on crop plants in agroecosystems may be further compounded by a greater risk of pest problems. Salinity may be another important environmental stressor that can directly influence crop production while also indirectly influencing herbivorous pests. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Southern corn leaf blight a story worth retelling

    USDA-ARS?s Scientific Manuscript database

    The Southern Corn Leaf Blight Epidemic of 1970-1971 was one of the most costly disease outbreaks to affect North American agriculture, destroying 15% of the crop at a cost of $1.0 billion (US). It resulted from an over reliance on cytoplasmic Texas male sterile (cms-T) lines in hybrid seed producti...

  20. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and nomore » tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain

  1. Reflectance and internal structure of leaves from several crops during a growing season.

    NASA Technical Reports Server (NTRS)

    Sinclair, T. R.; Hoffer, R. M.; Schreiber, M. M.

    1971-01-01

    Measurements of spectral reflectance characteristics during a growing season of leaves from six crops are reported. These crops include soybeans, wheat, oats, sorghum, corn, and sudangrass. The characteristics measured are related to changes in leaf structure and water content.

  2. Alfalfa varieties differ markedly in seedling survival when interseeded into corn and treated with prohexadione-calcium

    USDA-ARS?s Scientific Manuscript database

    Interseeded alfalfa could serve as a dual purpose crop for providing groundcover during silage corn production and forage during subsequent years of production, but this system has been unworkable because competition between the co-planted crops often leads to stand failure of interseeded alfalfa. R...

  3. A 5-year analysis of crop phenologies from the United States Heartland (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.

    2010-12-01

    Time series imagery data from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) was intersected with annually updated field-level crop data from the United States Department of Agriculture (USDA) Farm Service Agency (FSA). Phenological metrics were derived for major crop types found in the United States (US) Heartland region. The specific MODIS data consisted of the 16-day composited Normalized Difference Vegetation Index (NDVI) 250 meter spatial resolution imagery from the Terra satellite. Crops evaluated included corn, soybeans, wheat, cotton, sorghum, rice, and other small grains. Charts showing the annual average state-level NDVI phenologies by crop were constructed for the five years between 2006 and 2010. The states of interest covered the intensively cultivated regions in the US Great Plains, Corn Belt, and Mississippi River Alluvial Plain. Results demonstrated the recent biophysical growth cycles of prevalent and widespread US crops and how they varied by geography and year. Linkages between the time series data and planting practices, weather impacts, crop progress reports, and yields were also investigated.

  4. Soil microbial community response to corn stover harvesting under rain-fed, no-till conditions at multiple U.S. locations

    USDA-ARS?s Scientific Manuscript database

    Harvesting of corn stover for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decrea...

  5. Climate Effects on Corn Yield in Missouri(.

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Buyanovsky, Gregory

    2003-11-01

    Understanding climate effects on crop yield has been a continuous endeavor aiming at improving farming technology and management strategy, minimizing negative climate effects, and maximizing positive climate effects on yield. Many studies have examined climate effects on corn yield in different regions of the United States. However, most of those studies used yield and climate records that were shorter than 10 years and were for different years and localities. Although results of those studies showed various influences of climate on corn yield, they could be time specific and have been difficult to use for deriving a comprehensive understanding of climate effects on corn yield. In this study, climate effects on corn yield in central Missouri are examined using unique long-term (1895 1998) datasets of both corn yield and climate. Major results show that the climate effects on corn yield can only be explained by within-season variations in rainfall and temperature and cannot be distinguished by average growing-season conditions. Moreover, the growing-season distributions of rainfall and temperature for high-yield years are characterized by less rainfall and warmer temperature in the planting period, a rapid increase in rainfall, and more rainfall and warmer temperatures during germination and emergence. More rainfall and cooler-than-average temperatures are key features in the anthesis and kernel-filling periods from June through August, followed by less rainfall and warmer temperatures during the September and early October ripening time. Opposite variations in rainfall and temperature in the growing season correspond to low yield. Potential applications of these results in understanding how climate change may affect corn yield in the region also are discussed.

  6. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practicesmore » [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].« less

  7. Molecules that inhibit growth of Fusarium graminearum, a pathogen causing disease in wheat and corn

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum can cause head blight in wheat and stalk or ear rot in corn, which results in crop losses. Discovery of novel antifungal resistance proteins are crucial to mitigating crop losses. We found, via in vitro studies, a small cationic peptide was capable of inhibiting the growth of th...

  8. Disease risks associated with cover crops in corn and soybean production

    USDA-ARS?s Scientific Manuscript database

    Cover crops have numerous environmental and soil health benefits and are being more widely used by farmers in Iowa. Still some farmers are reluctant to use cover crops because of increased risks to crop yields in part because of increased disease potential. The goal of our research is to understand ...

  9. A mowing strategy to convert red clover to annual crops in organic farming

    USDA-ARS?s Scientific Manuscript database

    Organic producers are interested in no-till cropping systems. In this study, we found that perennial clover can be converted to corn without tillage. Conversion tactics involved fall mowing in the third year of red clover, followed by between-row mowing of weeds and volunteer red clover in corn gr...

  10. Soil physical and hydrological properties under three biofuel crops in Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonin, Catherine; Lal, Dr. Rattan; Schmitz, Matthias

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended tomore » be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.« less

  11. Sustainability of corn stover harvest strategies in Pennsylvania

    Treesearch

    Paul R. Adler; Benjamin M. Rau; Gregory W. Roth

    2015-01-01

    Pennsylvania farmers have a long history of harvesting corn (Zea mays L.) stover after grain harvest for animal bedding and feed or as a component of mushroom compost, or as silage for dairy cattle feed. With the shallow soils and rolling topography, soil erosion and carbon losses have been minimized through extensive use of cover crops, no-till, and...

  12. Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora.

    PubMed

    Sánchez, Miguel A; Cid, Pablo; Navarrete, Humberto; Aguirre, Carlos; Chacón, Gustavo; Salazar, Erika; Prieto, Humberto

    2016-02-01

    The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen-mediated gene flow from GM crops and non-GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national-scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from 'very low' (1) to 'very high' (5)] was developed, showing medium OPs (3) for GM-native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape-Vitis vinifera GM-introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  14. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  15. Characterization of Chilean hazel nut sweet cookies.

    PubMed

    Villarroel, M; Biolley, E; Bravo, S; Carrasco, P; Ríos, P

    1993-05-01

    A series of studies were carried out to test the effect of the incorporation of Chilean hazel nut flour in sweet cookies at the levels of 0%, 5%, 10%, 15% and 20%. The proximate chemical analysis of the different flour mixtures showed a regular increase from 7.2 to 12.2%, 14.5% to 18.8% and 1% to 2.2%, respectively, decreasing at the same time with the percentages of water and carbohydrates. Chemical amino acid scores of leucine and threonine in wheat flour improved with the incorporation of Chilean hazel nut flour. The farinographic evaluation made to the different blends showed several changes occurred with the incorporation of Chilean hazel nut flour to wheat flour. These included increase in water absorption, decrease in dough developing time and weakening of the dough. Sensory characteristics such as appearance, texture, flavor and also acceptability improved with the incorporation of Chilean hazel nut flour into the cookie formulas.

  16. [Corn.

    ERIC Educational Resources Information Center

    Iowa History for Young People, 1993

    1993-01-01

    This theme issue focuses on corn. Iowa is the number one corn producing state in the United States. The featured articles in the issue concern, among other topics, Iowa children who live on farms, facts and statistics about corn, the Mesquakie Indians and corn shelling, corn hybrids, a short story, and the corn palaces of Sioux City. Activities,…

  17. Ergonomics in mining: the Chilean experience.

    PubMed

    Apud, Elías

    2012-12-01

    The objective of this article is to analyze the current state of knowledge regarding ergonomics in Chilean mining. Information has been gathered during the past 15 years from studies of Chilean miners. This article is based on a compilation of information of 700 workplaces where physical, mental, environmental, and organizational loads were evaluated with a systemic approach. The results of the Chilean experience reveal that it is important to overcome the concept of "static" ergonomics focused on workplaces that may be valid for offices and machine operation but not for a significant number of miners who will be moving around workstations located in systems of different complexity. The consequence of these complex and dynamic work situations is that more than 50% of absenteeism for health reasons is attributed to musculoskeletal disorders, and there are no standard recommendations that universally apply. The results showed that these problems can be tackled by implementing participatory programs. The main conclusion of the Chilean experience is that there is a need to continue advancing from diagnostic studies to participatory interventions. At the same time, it is imperative that all new investments in plants, small or large, include considerations of relevant ergonomic concepts from the early planning stages. It is also important to increase ergonomic training within companies, including not only the managers who make major decisions but also the workers who are directly affected by the lack of ergonomics. It is expected that this description of the Chilean experience may be useful for other countries where mining is also a source of income and employment.

  18. Impact of irrigation scheduling on pore water nitrate and phosphate in coastal plains soils with corn production

    USDA-ARS?s Scientific Manuscript database

    Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...

  19. Estimating crop net primary production using inventory data and MODIS-derived parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois inmore » years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.« less

  20. Nitrogen accumulation profiles of selected grain and vegetable crops: A bibliography (1940-1992)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meischen, S.J.; Byrd, K.R.

    1994-10-01

    A bibliography of nitrogen accumulation profile data for 25 vegetable and grain crops reported between 1940 and 1992 is presented. The selected crops are asparagus, broccoli, brussels sprouts, cabbage, carrots, cauliflower, celery, corn, cotton, cucumber, field bean, field pea, garlic, lettuce, onions, and peppers.

  1. 78 FR 38483 - Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Area Risk Protection Insurance (ARPI) Basic Provisions, ARPI Barley Crop Insurance Provisions, ARPI Corn Crop Insurance Provisions, ARPI Cotton Crop Insurance Provisions, ARPI Forage Crop Insurance Provisions, ARPI Grain Sorghum Crop Insurance Provisions, ARPI Peanut Crop Insurance Provisions, ARPI Soybean Crop Insurance Provisions, and ARPI Wheat Crop Insurance Provisions to provide area yield protection and area revenue protection. These provisions will replace the Group Risk Plan (GRP) provisions in 7 CFR part 407, which includes the: GRP Basic Provisions, GRP Barley Crop Provisions, GRP Corn Crop Provisions, GRP Cotton Crop Provisions, GRP Forage Crop Provisions, GRP Peanut Crop Provisions, GRP Sorghum Crop Provisions, GRP Soybean Crop Provisions, and GRP Wheat Crop Provisions. The ARPI provisions will also replace the Group Risk Income Protection (GRIP) Basic Provisions, the GRIP Crop Provisions, and the GRIP-Harvest Revenue Option (GRIP-HRO). The GRP and GRIP plans of insurance will no longer be available. The intended effect of this action is to offer producers a choice of Area Revenue Protection, Area Revenue Protection with the Harvest Price Exclusion, or Area Yield Protection, all within one Basic Provision and the applicable Crop Provisions. This will reduce the amount of information producers must read to determine the best risk management tool for their operation and will improve the provisions to better meet the needs of insureds. The changes will apply for the 2014 and succeeding crop years.

  2. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    PubMed

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  3. Tillage and Irrigation Management of Cotton in a Corn/Cotton Rotation

    USDA-ARS?s Scientific Manuscript database

    A research study was undertaken to evaluate the yield of cotton in a corn-cotton rotation under two tillage treatments, conventional and minimum/conservation, and two irrigation treatments, irrigated and non-irrigated. Crops were grown under four treatments, irrigated-conventional tillage, irrigate...

  4. Evaluation of results of US corn and soybeans exploratory experiment: Classification procedures verification test. [Missouri, Iowa, Indiana, and Illinois

    NASA Technical Reports Server (NTRS)

    Carnes, J. G.; Baird, J. E. (Principal Investigator)

    1980-01-01

    The classification procedure utilized in making crop proportion estimates for corn and soybeans using remotely sensed data was evaluated. The procedure was derived during the transition year of the Large Area Crop Inventory Experiment. Analysis of variance techniques were applied to classifications performed by 3 groups of analysts who processed 25 segments selected from 4 agrophysical units (APU's). Group and APU effects were assessed to determine factors which affected the quality of the classifications. The classification results were studied to determine the effectiveness of the procedure in producing corn and soybeans proportion estimates.

  5. Crop Rotation and Races of Meloidogyne incognita in Cotton Root-knot Management

    PubMed Central

    Kirkpatrick, T. L.; Sasser, J. N.

    1984-01-01

    The influence o f various crop rotations and nematode inoculum levels on subsequent population densities of Meloidogyne incognita races 1 and 3 were studied in microplots. Ten different 3-year sequences o f cotton, corn, peanut, or soybean, all with cotton as the 3rd-year crop, were grown in microplots infested with each race. Cotton monoculture, two seasons o f corn, or cotton followed by corn resulted in high race 3 population densities and severe root galling on cotton the 3rd year. Peanut for 2 years preceding cotton most effectively decreased the race 3 population and root galls on cotton the 3rd year. Race 1 did not significantly influence cotton growth or yield at initial populations of up to 5,000 eggs/500 cm³ soil. At 5,000 eggs/500 cm³, cotton growth was suppressed by race 3 but yield was not affected. PMID:19294030

  6. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.

    PubMed

    Henson, Chasity; Market, Patrick; Lupo, Anthony; Guinan, Patrick

    2017-05-01

    An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov "method of cycles" demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April-September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55-70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.

  7. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.

    PubMed

    Prasad, Rishi; Hochmuth, George J

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the

  8. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida

    PubMed Central

    Prasad, Rishi; Hochmuth, George J.

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010–2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the

  9. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system.

    PubMed

    Garcia, Valerie; Cooter, Ellen; Crooks, James; Hinckley, Brian; Murphy, Mark; Xing, Xiangnan

    2017-05-15

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥5mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additionally, the average number of animal feeding operations (AFOs) for these areas was nearly 5 times higher, and the mean N-fertilizer rate was 4 times higher. Finally, we found that areas prone to high groundwater nitrate-N concentrations attributable to the expansion scenario did not occur in new grid cells of irrigated grain-corn croplands, but were clustered around areas of existing corn crops. This application demonstrates the value of the coupled modeling system in developing spatially refined multi

  10. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Corn Farmscapes

    USDA-ARS?s Scientific Manuscript database

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is an economic pest of cotton across the southeastern U.S., however, little is known concerning its spatial distribution in corn fields of this region. It is likely that the proximity of other adjacent row crops, i.e., cotton an...

  11. A new artificial diet for western corn rootworm larvae is compatible with and detects resistance to all current Bt toxins

    USDA-ARS?s Scientific Manuscript database

    Insect resistance to transgenic crops expressing one or more genes from Bacillus thuringiensis Berliner (Bt) is a growing concern for farmers, regulatory agencies, the seed industry, and researchers alike. Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a pest of corn (Zea mays L.)...

  12. Best management practices: Managing cropping systems for soil protection and bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  13. Analysis of the profile characteristics of corn and soybeans using field reflectance data

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    The typical patterns of spectral development (profiles) for corn and soybeans are presented, based on field-collected reflectance data transformed to correspond to LANDSAT-MSS Tasseled Cap coordinates. Reasonable variations in field conditions and cultural practices are shown to significantly influence profile features. The separability of the two crops is determined to be primarily related to the maximum value of the reflectance equivalent of Greenness, and to the plateau effect seen in corn Greenness profiles. The impact of changes in conditions on separability is described. In addition, association is made between profile features and stages of development for corn and soybeans. Corn is shown to peak at a stage well before tasseling or maximum LAI, while the characteristics of the soybean profile are shown to be unrelated to any particular stage of development.

  14. The Crop Evaluation Research for Environmental Strategies (CERES) Remote Sensing 2008 Project Activities

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George

    2009-01-01

    In recent years, the use of Plant Incorporated Protectant (PIP) corn by American producers has been increasing dramatically. PIP corn contains genetically inserted traits that produce toxins in the plant that provide narrowly targeted protection against specific insect pests. The plant producing t oxms can offer significant reductions in the application of broad -spectrum pesticides that have ecological and human health consequences. PIP corn as a percentage of total corn acreage planted in the US is expected to continue to increase as these protective traits are "stacked" with other desirable traits by seed companies, and producers are seeing considerable increases in corn yield as a result. The introduction of corn as a bio-fuel source for ethanol has increased production by over 6 million hectares in 2007. The United States Environmental Protection Agency (USEPA), which is responsible for the registration of PIP crops under the Federal Insecticide, Fungicide and Rodenticide Act, views the use of PIP corn as positive. Broad spectrum pesticide use has declined since the PIP traits have been introduced. As the agricultural landscape sees a higher percentage of corn acres using the PIP technology, the risk of the targeted insect pest populations developing resistance to the toxins, thereby rendering the in will increase as well. This result would negate the effectiveness of the PIP corn traits and could reduce production of a US field corn crop valued at $33 billion dollars in 2006 and place US food and now energy security at risk. Concerns over insect pest resistance development to PIP traits have led the USEPA to team with NASA and the Institute for Technology Development (ITD) to develop geo-spatial technologies designed to proactively monitor the corn production landscape for insect pest infestation and possible resistance development. USEPA resistance management simulation models are combined with NASA remote sensi ng products to monitor the corn landscape for

  15. Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonserm, P.

    1985-01-01

    On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy cropsmore » need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.« less

  16. Insect Pests of Field Crops. MP-28.

    ERIC Educational Resources Information Center

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  17. Regional Climate Implications of Large-scale Cultivation of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.

    2008-12-01

    Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.

  18. 1978 Insect Pest Management Guide: Commercial Vegetable Crops and Greenhouse Vegetables. Circular 897.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)

  19. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    USDA-ARS?s Scientific Manuscript database

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  20. UAS imaging for automated crop lodging detection: a case study over an experimental maize field

    NASA Astrophysics Data System (ADS)

    Chu, Tianxing; Starek, Michael J.; Brewer, Michael J.; Masiane, Tiisetso; Murray, Seth C.

    2017-05-01

    Lodging has been recognized as one of the major destructive factors for crop quality and yield, particularly in corn. A variety of contributing causes, e.g. disease and/or pest, weather conditions, excessive nitrogen, and high plant density, may lead to lodging before harvesting season. Traditional lodging detection strategies mainly rely on ground data collection, which is insufficient in efficiency and accuracy. To address this problem, this research focuses on the use of unmanned aircraft systems (UAS) for automated detection of crop lodging. The study was conducted over an experimental corn field at the Texas A and M AgriLife Research and Extension Center at Corpus Christi, Texas, during the growing season of 2016. Nadir-view images of the corn field were taken by small UAS platforms equipped with consumer grade RGB and NIR cameras on a per week basis, enabling a timely observation of the plant growth. 3D structural information of the plants was reconstructed using structure-from-motion photogrammetry. The structural information was then applied to calculate crop height, and rates of growth. A lodging index for detecting corn lodging was proposed afterwards. Ground truth data of lodging was collected on a per row basis and used for fair assessment and tuning of the detection algorithm. Results show the UAS-measured height correlates well with the ground-measured height. More importantly, the lodging index can effectively reflect severity of corn lodging and yield after harvesting.

  1. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    NASA Astrophysics Data System (ADS)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop

  2. A comprehensive data processing plan for crop calendar MSS signature development from satellite imagery: Crop identification using vegetation phenology

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A. (Principal Investigator); Carlyle, S. M.; Haralick, R. M.; Yokoyama, R.

    1978-01-01

    The author has identified the following significant results. The phenological method of crop identification involves the creation of crop signatures which characterize multispectral observations as phenological growth states. The phenological signature models spectral reflectance explicitly as a function of crop maturity rather than as a function of date. A correspondence of time to growth state is established which minimizes the smallest difference between the given multispectral multitemporal vector and a category mean vector. The application of the method to the identification of winter wheat and corn shows (1) the method is capable of discriminating crop type with about the same degree of accuracy as more traditional classifiers; (2) the use of LANDSAT observations on two or more dates yields better results than the use of a single observation; and (3) some potential is demonstrated for labeling the degree of maturity of the crop, as well as the crop type.

  3. A systems approach to identify adaptation strategies for Midwest US cropping systems under increased climate variability and change.

    NASA Astrophysics Data System (ADS)

    Basso, B.; Dumont, B.

    2015-12-01

    A systems approach was implemented to assess the impact of management strategies and climate variability on crop yield, nitrate leaching and soil organic carbon across the the Midwest US at a fine scale spatial resolution. We used the SALUS model which designed to simulated yield and environmental outcomes of continous crop rotations under different agronomic management, soil, weather. We extracted soil parameters from the SSURGO (Soil Survey Geographic) data of nine Midwest states (IA, IL, IN, MI, MN, MO, OH, SD, WI) and weather from NARR (North American Regional Reanalysis). State specific management itineraries were extracted from USDA-NAS. We present the results different cropping systems (continuous corn, corn-soybean and extended rotations) under different management practices (no-tillage, cover crops and residue management). Simulations were conducted under both the baseline (1979-2014) and projected climatic projections (RCP2.5, 6). Results indicated that climate change would likely have a negative impact on corn yields in some areas and positive in others. Soil N, and C losses can be reduced with the adoption of conservation practices.

  4. [The Chilean Association of Biomedical Journal Editors].

    PubMed

    Reyes, H

    2001-01-01

    On September 29th, 2000, The Chilean Association of Biomedical Journal Editors was founded, sponsored by the "Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)" (the Governmental Agency promoting and funding scientific research and technological development in Chile) and the "Sociedad Médica de Santiago" (Chilean Society of Internal Medicine). The Association adopted the goals of the World Association of Medical Editors (WAME) and therefore it will foster "cooperation and communication among Editors of Chilean biomedical journals; to improve editorial standards, to promote professionalism in medical editing through education, self-criticism and self-regulation; and to encourage research on the principles and practice of medical editing". Twenty nine journals covering a closely similar number of different biomedical sciences, medical specialties, veterinary, dentistry and nursing, became Founding Members of the Association. A Governing Board was elected: President: Humberto Reyes, M.D. (Editor, Revista Médica de Chile); Vice-President: Mariano del Sol, M.D. (Editor, Revista Chilena de Anatomía); Secretary: Anna María Prat (CONICYT); Councilors: Manuel Krauskopff, Ph.D. (Editor, Biological Research) and Maritza Rahal, M.D. (Editor, Revista de Otorrinolaringología y Cirugía de Cabeza y Cuello). The Association will organize a Symposium on Biomedical Journal Editing and will spread information stimulating Chilean biomedical journals to become indexed in international databases and in SciELO-Chile, the main Chilean scientific website (www.scielo.cl).

  5. An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Campbell, James B.; Taff, Gregory N.; Zheng, Baojuan

    2015-06-01

    The Midwestern United States is one of the world's most important corn-producing regions. Monitoring and forecasting of corn yields in this intensive agricultural region are important activities to support food security, commodity markets, bioenergy industries, and formation of national policies. This study aims to develop forecasting models that have the capability to provide mid-season prediction of county-level corn yields for the entire Midwestern United States. We used multi-temporal MODIS NDVI (normalized difference vegetation index) 16-day composite data as the primary input, with digital elevation model (DEM) and parameter-elevation relationships on independent slopes model (PRISM) climate data as additional inputs. The DEM and PRISM data, along with three types of cropland masks were tested and compared to evaluate their impacts on model predictive accuracy. Our results suggested that the use of general cropland masks (e.g., summer crop or cultivated crops) generated similar results compared with use of an annual corn-specific mask. Leave-one-year-out cross-validation resulted in an average R2 of 0.75 and RMSE value of 1.10 t/ha. Using a DEM as an additional model input slightly improved performance, while inclusion of PRISM climate data appeared not to be important for our regional corn-yield model. Furthermore, our model has potential for real-time/early prediction. Our corn yield esitmates are available as early as late July, which is an improvement upon previous corn-yield prediction models. In addition to annual corn yield forecasting, we examined model uncertainties through spatial and temporal analysis of the model's predictive error distribution. The magnitude of predictive error (by county) appears to be associated with the spatial patterns of corn fields in the study area.

  6. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    PubMed

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  7. Enhancement of silage sorghum and corn production using best management practices

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor), and Silage Corn (Zea mays) production is not sufficient in irrigated eastern areas of Jordan and so families cannot afford sufficient animal feeds. This is due to two main reasons: the first is lower crop productivity related to poor agricultural practices including no use...

  8. Impact of second-generation biofuel agriculture on greenhouse gas emissions in the corn-growing regions of the US

    USDA-ARS?s Scientific Manuscript database

    Land use for bioenergy crops is controversial because terrestrial resources that supply food, livestock feed, and ecosystem services already compete for geographical space in some regions of the world. Currently, in the US, both feed and bioenergy are produced from the food crop Zea mays L. (corn), ...

  9. Drought tolerant (DT) and non-DT corn production under center pivot irrigation in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) for feed is an important crop in the Texas High Plains region. However, it requires more water than the other major crops grown in the area to maximize grain yields. Pumping water for agriculture from the declining Ogallala Aquifer is of concern and improving irrigation water use ...

  10. An evaluation of corn earworm damage and thresholds in soybean

    NASA Astrophysics Data System (ADS)

    Adams, Brian Patrick

    Interactions between corn earworm, Helicoverpa zea (Boddie), and soybean, Glycine max L. (Merrill), were investigated in the Mid-South to evaluate thresholds and damage levels. Field studies were conducted in both indeterminate and determinate modern cultivars to evaluate damage, critical injury levels, and soybean response to simulated corn earworm injury. Field studies were also conducted to evaluate the response of indeterminate cultivars to infestations of corn earworm. Field studies were also conducted to investigate the relationship between pyrethroid insecticide application and corn earworm oviposition in soybean. Results of field studies involving simulated corn earworm damage indicated the need for a dynamic threshold that becomes more conservative as soybean phenology progressed through the reproductive growth stages. This suggested that soybean was more tolerant to fruit loss during the earlier reproductive stages and was able to compensate for fruit loss better during this time than at later growth stages. Results of field studies involving infestations of corn earworm indicated that current thresholds are likely too liberal. This resulted in economic injury level tables being constructed based upon a range of crop values and control costs, however, a general action threshold was also recommended for indeterminate soybean in the Mid-South. Field study results investigating the relationship of pyrethroid application and corn earworm oviposition indicated that even in the presence of an insecticide, corn earworm prefers to oviposit in the upper portion of the canopy, as well as on the leaves as opposed to all other plant parts, consistent with all previous literature.

  11. Reducing Freshwater Toxicity while Maintaining Weed Control, Profits, And Productivity: Effects of Increased Crop Rotation Diversity and Reduced Herbicide Usage.

    PubMed

    Hunt, Natalie D; Hill, Jason D; Liebman, Matt

    2017-02-07

    Increasing crop rotation diversity while reducing herbicide applications may maintain effective weed control while reducing freshwater toxicity. To test this hypothesis, we applied the model USEtox 2.0 to data from a long-term Iowa field experiment that included three crop rotation systems: a 2-year corn-soybean sequence, a 3-year corn-soybean-oat/red clover sequence, and 4-year corn-soybean-oat/alfalfa-alfalfa sequence. Corn and soybean in each rotation were managed with conventional or low-herbicide regimes. Oat, red clover, and alfalfa were not treated with herbicides. Data from 2008-2015 showed that use of the low-herbicide regime reduced freshwater toxicity loads by 81-96%, and that use of the more diverse rotations reduced toxicity and system dependence on herbicides by 25-51%. Mean weed biomass in corn and soybean was <25 kg ha -1 in all rotation × herbicide combinations except the low-herbicide 3-year rotation, which contained ∼110 kg ha -1 of weed biomass. Corn and soybean yields and net returns were as high or higher for the 3- and 4-year rotations managed with the low-herbicide regime as for the conventional-herbicide 2-year rotation. These results indicate that certain forms of cropping system diversification and alternative weed management strategies can maintain yield, profit, and weed suppression while delivering enhanced environmental performance.

  12. Summer cover crops reduce atrazine leaching to shallow groundwater in southern Florida.

    PubMed

    Potter, Thomas L; Bosch, David D; Joo, Hyun; Schaffer, Bruce; Muñoz-Carpena, Rafael

    2007-01-01

    At Florida's southeastern tip, sweet corn (Zea Mays) is grown commercially during winter months. Most fields are treated with atrazine (6-chloro-N-ethyl-N'-[1-methylethyl]-1,3,5-triazine-2,4-diamine). Hydrogeologic conditions indicate a potential for shallow groundwater contamination. This was investigated by measuring the parent compound and three degradates--DEA (6-chloro-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine), DIA (6-chloro-N-ethyl)-1,3,5-triazine-2,4-diamine, and HA (6-hydroxy-N-[1-methylethyl]-1,3,5-triazine-2,4-diamine)--in water samples collected beneath sweet corn plots treated annually with the herbicide. During the study, a potential mitigation measure (i.e., the use of a cover crop, Sunn Hemp [Crotalaria juncea L.], during summer fallow periods followed by chopping and turning the crop into soil before planting the next crop) was evaluated. Over 3.5 yr and production of four corn crops, groundwater monitoring indicated leaching of atrazine, DIA, and DEA, with DEA accounting for more than half of all residues in most samples. Predominance of DEA, which increased after the second atrazine application, was interpreted as an indication of rapid and extensive atrazine degradation in soil and indicated that an adapted community of atrazine degrading organisms had developed. A companion laboratory study found a sixfold increase in atrazine degradation rate in soil after three applications. Groundwater data also revealed that atrazine and degradates concentrations were significantly lower in samples collected beneath cover crop plots when compared with concentrations below fallow plots. Together, these findings demonstrated a relatively small although potentially significant risk for leaching of atrazine and its dealkylated degradates to groundwater and that the use of a cover crop like Sunn Hemp during summer months may be an effective mitigation measure.

  13. Research in the application of spectral data to crop identification and assessment, volume 2

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T. (Principal Investigator); Hixson, M. M.; Bauer, M. E.

    1980-01-01

    The development of spectrometry crop development stage models is discussed with emphasis on models for corn and soybeans. One photothermal and four thermal meteorological models are evaluated. Spectral data were investigated as a source of information for crop yield models. Intercepted solar radiation and soil productivity are identified as factors related to yield which can be estimated from spectral data. Several techniques for machine classification of remotely sensed data for crop inventory were evaluated. Early season estimation, training procedures, the relationship of scene characteristics to classification performance, and full frame classification methods were studied. The optimal level for combining area and yield estimates of corn and soybeans is assessed utilizing current technology: digital analysis of LANDSAT MSS data on sample segments to provide area estimates and regression models to provide yield estimates.

  14. Corn response and soil nutrient concentration from subsurface application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...

  15. Alfalfa N credits to second-year corn larger than expected

    USDA-ARS?s Scientific Manuscript database

    Alfalfa can provide substantial amounts of nitrogen (N) to the first crop that follows it. Recent field research on first-year corn confirms that it is highly likely that grain yields will not improve with added fertilizer N, except on very sandy and very clayey soils. It is less clear how much fert...

  16. PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING

    EPA Science Inventory

    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...

  17. Potential economic losses to the USA corn industry from aflatoxin contamination

    PubMed Central

    Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F.

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonize food crops, can pose a heavy economic burden to the United States corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the US and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (FDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from $52.1 million to $1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606

  18. Potential economic losses to the US corn industry from aflatoxin contamination.

    PubMed

    Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years.

  19. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  20. Integrating pasture-based livestock production with annual crop production on the Great Plains to reduce loss of grassland wildlife

    USDA-ARS?s Scientific Manuscript database

    Tallgrass prairie has been replaced by corn and soybeans and mixed-grass prairie is being replaced by various annual crops. Annual crop fields support vegetarian diets but not much wildlife. Alternatively, integrating pastured livestock farming with annual crops can provide wildlife habitat. For ...

  1. Monitoring Agricultural Drought Using Geographic Information Systems and Remote Sensing on the Primary Corn and Soybean Belt in the United States

    NASA Astrophysics Data System (ADS)

    Al-Shomrany, Adel

    The study aims to evaluate various remote sensing drought indices to assess those most fitting for monitoring agricultural drought. The objectives are (1) to assess and study the impact of drought effect on (corn and soybean) crop production by crop mapping information and GIS technology; (2) to use Geographical Weighted Regression (GWR) as a technical approach to evaluate the spatial relationships between precipitation vs. irrigated and non-irrigated corn and soybean yield, using a Nebraska county-level case study; (3) to assess agricultural drought indices derived from remote sensing (NDVI, NMDI, NDWI, and NDII6); (4) to develop an optimal approach for agricultural drought detection based on remote sensing measurements to determine the relationship between US county-level yields versus relatively common variables collected. Extreme drought creates low corn and soybean production where irrigation systems are not implemented. This results in a lack of moisture in soil leading to dry land and stale crop yields. When precipitation and moisture is found across all states, corn and soybean production flourishes. For Kansas, Nebraska, and South Dakota, irrigation management methods assist in strong crop yields throughout SPI monthly averages. The data gathered on irrigation consisted of using drought indices gathered by the national agricultural statistics service website. For the SPI levels ranging between one-month and nine-months, Kansas and Nebraska performed the best out of all 12-states contained in the Midwestern primary Corn and Soybean Belt. The reasoning behind Kansas and Nebraska's results was due to a more efficient and sustainable irrigation system, where upon South Dakota lacked. South Dakota was leveled by strong correlations throughout all SPI periods for corn only. Kansas showed its strongest correlations for the two-month and three-month averages, for both corn and soybean. Precipitation regression with irrigated and non-irrigated maize (corn) and

  2. Examining the impacts of increased corn production on ...

    EPA Pesticide Factsheets

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio

  3. Enhancing forage yields and soil conservation by interseeding alfalfa into silage corn

    USDA-ARS?s Scientific Manuscript database

    Recent field studies have identified prohexadione-calcium (PHD) as an effective plant growth regulator for enhancing the establishment of alfalfa interseeded into corn as a dual-purpose cover and forage crop. Foliar applications of PHD on seedlings doubled or tripled stand survival of interseeded al...

  4. Extraction and Analysis of Major Autumn Crops in Jingxian County Based on Multi - Temporal gf - 1 Remote Sensing Image and Object-Oriented

    NASA Astrophysics Data System (ADS)

    Ren, B.; Wen, Q.; Zhou, H.; Guan, F.; Li, L.; Yu, H.; Wang, Z.

    2018-04-01

    The purpose of this paper is to provide decision support for the adjustment and optimization of crop planting structure in Jingxian County. The object-oriented information extraction method is used to extract corn and cotton from Jingxian County of Hengshui City in Hebei Province, based on multi-period GF-1 16-meter images. The best time of data extraction was screened by analyzing the spectral characteristics of corn and cotton at different growth stages based on multi-period GF-116-meter images, phenological data, and field survey data. The results showed that the total classification accuracy of corn and cotton was up to 95.7 %, the producer accuracy was 96 % and 94 % respectively, and the user precision was 95.05 % and 95.9 % respectively, which satisfied the demand of crop monitoring application. Therefore, combined with multi-period high-resolution images and object-oriented classification can be a good extraction of large-scale distribution of crop information for crop monitoring to provide convenient and effective technical means.

  5. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  6. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  7. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  8. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  9. Surprising yields with no-till cropping systems

    USDA-ARS?s Scientific Manuscript database

    Producers using no-till systems have found that crop yields often exceed their expectation based on nutrient and water supply. For example, corn yields 7% higher in a no-till system in central South Dakota than in a tilled system in eastern South Dakota. This is surprising because rainfall is 5 in...

  10. Surprising yields with no-till cropping systems

    USDA-ARS?s Scientific Manuscript database

    Producers using no-till practices have observed that crop yields can greatly exceed expectations based on nutrient and water supply. For example, Ralph Holzwarth, who farms near Gettysburg, SD, has averaged 150 bu/ac of corn on his farm for the past 6 years. We were surprised with this yield, as c...

  11. The impact of Chilean migration on employment in Patagonia.

    PubMed

    Cariola Sanz, L

    1989-06-01

    This paper discusses the employment situation of Chilean migrant workers, their impact on labor markets in Patagonia, Argentina, and the government's past and projected responses to this phenomenon. In 1980, Chilean inhabitants of patagonia comprised 11% of the area's population. Chilean migration to patagonia was closely linked to economic activities that began to flourish in the 20th century, such as livestock raising, fruit and vegetable cultivation, and mining for coal and petroleum. No Chilean migrants work in a wide range of sectors. In Patagonia's southern provinces availability and ability to withstand rigorous climate conditions are the main factors which account for the prevalence of Chilean manpower. Chilean migrants do not in general displace local manpower. Legislation and the permeability of the border ensure that most workers enter the country as tourists. Clandestine migration is not an issue. Illegal migrants have provoked negative reactions for several reasons: 1) they comprise a marginal population without formal citizenship; 2) being employed as clandestine workers, they pay no social security, nor do their employers; 3) being illegal, they are obliged to accept lower wages and inferior working conditions which creates unfair competition within labor markets; and 4) as a result of these conditions, xenophobic and endophobic attitudes in relations with Argentine nationalists are reinforced. The government has attempted to solve these problems through various measures. Beginning in 1934, most foreigners entered Argentina with a tourist visa, becoming illegal when they stayed beyond authorized limits. Several measures over the years provided amnesty to illegal migrants. Currently, the law promotes immigration, monitors the admission of foreigners to the country and stipulates their rights and obligations. The law lists 115 articles on immigration promotion and on regulation of the movements of foreigners. Because of the present economic crisis in

  12. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    NASA Astrophysics Data System (ADS)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  13. Corn kernel oil and corn fiber oil

    USDA-ARS?s Scientific Manuscript database

    Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...

  14. Comparing N2O emissions at varying N rates from irrigated and rainfed corn in the US Midwest

    NASA Astrophysics Data System (ADS)

    Millar, N.; Kahmark, K.; Basso, B.; Robertson, G. P.

    2011-12-01

    Global N2O emissions from agriculture are estimated to be ~2.8 Pg CO2e yr-1 accounting for 60% of total anthropogenic emissions. N2O is the largest contributor to the GHG burden of cropping systems in the US, with annual estimated emissions of ~0.5 Tg primarily due to N fertilizer inputs and other soil management activities. Currently 23 million acres of corn, soybean and wheat are irrigated annually in the US with increased N2O emissions due to the practice likely under-reported in GHG inventories. Here we compare N2O emissions and yield from irrigated and rainfed corn at varying N rates between 0 and 246 kg N ha-1 from the Kellogg Biological Station in SW Michigan. Initial results show that N2O emissions increase with increasing N rate and are significantly higher from irrigated corn compared to rainfed corn at the same N rate. At increasing N rates daily emissions following an irrigation event were between 2.4 - 77.5 g N2O-N ha-1 from irrigated corn and 1.6 - 13.0 g N2O-N ha-1 from rainfed corn. Emissions data from automated and static chambers will be presented and trade-offs between N2O emissions, N fertilizer rate, crop yield and irrigation practice will be evaluated from an environmental and economic standpoint.

  15. Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies

    USDA-ARS?s Scientific Manuscript database

    Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...

  16. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    Much of the NO3 in the riverine surface waters of the upper Mississippi River basin originates from artificially drained agricultural land used for corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) production. Cover crops grown between maturity and planting of these crops are one approach to r...

  17. Crop residue considerations for sustainable biomass feedstock supplies

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays, L.) stover was identified as an important feedstock for second generation biofuel production in the U.S. because of the extensive area upon which the crop is grown. This presentation will summarize 239 site-years of field research examining effects of zero, moderate, and high stover ...

  18. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.

  19. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    PubMed

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High speed measurement of corn seed viability using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Ambrose, Ashabahebwa; Kandpal, Lalit Mohan; Kim, Moon S.; Lee, Wang-Hee; Cho, Byoung-Kwan

    2016-03-01

    Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.

  1. Heterologous Acidothermus cellulolyticus 1,4-β-Endoglucanase E1 Produced Within the Corn Biomass Converts Corn Stover Into Glucose

    NASA Astrophysics Data System (ADS)

    Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam

    Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

  2. Nitrogen source effects on soil nitrous oxide emissions from strip-till corn.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Jantalia, Claudia Pozzi

    2011-01-01

    Nitrogen (N) application to crops generally results in increased nitrous oxide (NO) emissions. Commercially available, enhanced-efficiency N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated strip-till (ST) corn ( L.) production system. Enhanced-efficiency N fertilizers evaluated were a controlled-release, polymer-coated urea (ESN), stabilized urea, and UAN products containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus), and UAN containing a slow-release N source (Nfusion). Each N source was surface-band applied (202 kg N ha) at corn emergence and watered into the soil the next day. A subsurface-band ESN treatment was included. Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N sources had significantly lower growing season NO emissions than granular urea, with UAN+AgrotainPlus and UAN+Nfusion having lower emissions than UAN. Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Loss of NO-N per kilogram of N applied was <0.8% for all N sources. Corn grain yields were not different among N sources but greater than treatments with no N applied. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in strip-till, irrigated corn in semiarid areas. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. HIV prevention and low-income Chilean women

    PubMed Central

    CIANELLI, ROSINA; FERRER, LILIAN; MCELMURRY, BEVERLY J.

    2008-01-01

    Socio-cultural factors and HIV-related misinformation contribute to the increasing number of Chilean women living with HIV. In spite of this, and to date, few culturally specific prevention activities have been developed for this population. The goal of the present study was to elicit the perspectives of low-income Chilean women regarding HIV and relevant socio-cultural factors, as a forerunner to the development of a culturally appropriate intervention. As part of a mixed-methods study, fifty low-income Chilean women participated in a survey and twenty were selected to participate in prevention, in-depth interviews. Results show evidence of widespread misinformation and misconceptions related to HIV/AIDS. Machismo and marianismo offer major barriers to prevention programme development. Future HIV prevention should stress partner communication, empowerment and improving the education of women vulnerable to HIV. PMID:18432428

  4. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    PubMed Central

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  5. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    PubMed Central

    Landis, Douglas A.; Gardiner, Mary M.; van der Werf, Wopke; Swinton, Scott M.

    2008-01-01

    Increased demand for corn grain as an ethanol feedstock is altering U.S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem service that is strongly influenced by local landscape structure. Here, we estimate the value of natural biological control of the soybean aphid, a major pest in agricultural landscapes, and the economic impacts of reduced biocontrol caused by increased corn production in 4 U.S. states (Iowa, Michigan, Minnesota, and Wisconsin). For producers who use an integrated pest management strategy including insecticides as needed, natural suppression of soybean aphid in soybean is worth an average of $33 ha−1. At 2007–2008 prices these services are worth at least $239 million y−1 in these 4 states. Recent biofuel-driven growth in corn planting results in lower landscape diversity, altering the supply of aphid natural enemies to soybean fields and reducing biocontrol services by 24%. This loss of biocontrol services cost soybean producers in these states an estimated $58 million y−1 in reduced yield and increased pesticide use. For producers who rely solely on biological control, the value of lost services is much greater. These findings from a single pest in 1 crop suggest that the value of biocontrol services to the U.S. economy may be underestimated. Furthermore, we suggest that development of cellulosic ethanol production processes that use a variety of feedstocks could foster increased diversity in agricultural landscapes and enhance arthropod-mediated ecosystem services. PMID:19075234

  6. Grain yield and plant characteristics of corn hybrids in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Water supply for crop use is the primary factor controlling corn (Zea mays L.) grain yield in the west-central Great Plains. With water supply varying as production systems range from dryland through irrigated, selecting hybrids for optimum yield in the anticipated water environment is vital for suc...

  7. Language, Identity, Education, and Transmigration: Chilean Adolescents in Sweden

    ERIC Educational Resources Information Center

    King, Kendall; Ganuza, Natalie

    2005-01-01

    This article examines patterns of national, cultural, and linguistic identification among Chilean-Swedish transmigrant adolescents in and around Stockholm, Sweden. Drawing from ethnographic interviews and observations, analysis focuses on adolescents' (a) views on ethnic and national identity; (b) general perceptions of Chileans and Swedes; and…

  8. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  9. Formation of Aspergillus flavus sclerotia on corn grown under different drought stress conditions

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a major producer of carcinogenic aflatoxins worldwide in corn, peanuts, tree nuts, cottonseed, spices and other crops. Many countries have strict limits on the amount of aflatoxins permitted in human commodities and animal feed. Sclerotia produced by A. flavus serve several f...

  10. Corn yield under subirrigation and future climate scenarios in the Maumee river basin

    USDA-ARS?s Scientific Manuscript database

    Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...

  11. Extracted sweet corn tassels as a renewable alternative to peat in greenhouse substrates

    USDA-ARS?s Scientific Manuscript database

    Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops. Sphagnum peat moss is a primary constituent of these substrates and its harvest from endangered ecosystems has become a worldwide concern. Ethanol-extracted, coarse-ground corn (Zea mays L. ‘Sil...

  12. Crop resources. [18 papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seigler, D.S.

    Eighteen papers originally presented as a symposium on Crop Resources at the 17th annual meeting of the Society for Economic Botany in Urbana, Illinois, June 13 to 17, 1976 comprise this book. The papers are: Potential Wealth in New Crops: Research and Development, L. H. Princen; Plant Introductions--A Source of New Crops, George A. White; Nonfood Uses for Commercial Vegetable Oil Crops, E. H. Pryde; New Industrial Potentials for Carbohydrates, F. H. Otey; The Current Importance of Plants as a Source of Drugs, Norman R. Farnsworth; Potentials for Development of Wild Plants as Row Crops for Use by Man, Arnoldmore » Krochmal and Connie Krochmal; Recent Evidence in Support of the Tropical Origin of New World Crops, C. Earle Smith, Jr.; Requirements for a Green Revolution, G. F. Sprague; How Green Can a Revolution Be, Jack R. Harlan; Increasing Cereal Yields: Evolution under Domestication, J. M. J. de Wet; Hevea Rubber: Past and Future, Ernest P. Imle; Horseradish--Problems and Research in Illinois, A. M. Rhodes; Dioscorea--The Pill Crop, Norman Applezweig; Plant Derivatives for Insect Control, Robert L. Metcalf; Evolutionary Dynamics of Sorghum Domestication, J. M. J. de Wet and Y. Shecter; The Origin and Future of Wheat, E. R. Sears; Current Thoughts on Origins, Present Status, and Future of Soybeans, T. Hymowitz and C. A. Newell; and The Origin of Corn--Studies of the Last Hundred Years, Garrison Wilkes. (MCW)« less

  13. Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2013-12-01

    The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.

  14. The state of genetically modified crop regulation in Canada

    PubMed Central

    Smyth, Stuart J

    2014-01-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238

  15. Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure.

    PubMed

    Royer, Isabelle; Angers, Denis A; Chantigny, Martin H; Simard, Régis R; Cluis, Daniel

    2007-01-01

    Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.

  16. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  17. Purple corn-associated rhizobacteria with potential for plant growth promotion.

    PubMed

    Castellano-Hinojosa, A; Pérez-Tapia, V; Bedmar, E J; Santillana, N

    2018-05-01

    Purple corn (Zea mays var. purple amylaceum) is a native variety of the Peruvian Andes, cultivated at 3000 m since the pre-Inca times without N fertilization. We aimed to isolate and identify native plant growth-promoting rhizobacteria (PGPR) for future microbial-based inoculants. Eighteen strains were isolated from the rhizosphere of purple corn plants grown without N fertilization in Ayacucho (Peru). The 16S rRNA gene clustered the 18 strains into nine groups that contained species of Bacillus, Stenotrophomonas, Achromobacter, Paenibacillus, Pseudomonas and Lysinibacillus. A representative strain from each group was selected and assayed for N 2 fixation, phosphate solubilization, indole acetic and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and biocontrol abilities. Inoculation of purple corn plants with single and combined strains selected after a principal component analysis caused significant increases in root and shoot dry weight, total C and N contents of the plants. PGPRs can support growth and crop production of purple corn in the Peruvian Andes and constitute the base for microbial-based inoculants. This study enlarges our knowledge on plant-microbial interactions in high altitude mountains and provides new applications for PGPR inoculation in purple amylaceum corn, which is part of the staple diet for the native Quechua communities. © 2018 The Society for Applied Microbiology.

  18. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

    USDA-ARS?s Scientific Manuscript database

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Non-normalized male and female O. furnacalis antennal cDNA libraries we...

  19. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    PubMed

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  20. Spectral estimates of intercepted solar radiation by corn and soybean canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Brooks, C. C.; Daughtry, C. S. T.; Bauer, M. E.; Vanderbilt, V. C.

    1982-01-01

    Attention is given to the development of methods for combining spectral and meteorological data in crop yield models which are capable of providing accurate estimates of crop condition and yields throughout the growing season. The present investigation is concerned with initial tests of these concepts using spectral and agronomic data acquired in controlled experiments. The data were acquired at the Purdue University Agronomy Farm, 10 km northwest of West Lafayette, Indiana. Data were obtained throughout several growing seasons for corn and soybeans. Five methods or models for predicting yields were examined. On the basis of the obtained results, it is concluded that estimating intercepted solar radiation using spectral data is a viable approach for merging spectral and meteorological data in crop yield models.

  1. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  2. Field pennycress: A new oilseed crop for the production of biofuels, lubricants, and high-quality proteins

    USDA-ARS?s Scientific Manuscript database

    Field pennycress (Thlaspi arvense L.) has numerous positive attributes that make it a very promising industrial oilseed crop. Its short growing season makes it suitable as an off-season crop between corn and soybean production in most of the upper Midwestern U.S. Fall planting of pennycress may also...

  3. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    PubMed Central

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    sweet corn provide strong evidence of field-evolved resistance in H. zea populations to multiple Cry toxins. The high adoption rate of Bt field corn and cotton, along with the moderate dose expression of Cry1Ab and related Cry toxins in these crops, and decreasing refuge compliance probably contributed to the evolution of resistance. Our results have important implications for resistance monitoring, refuge requirements and other regulatory policies, cross-resistance issues, and the sustainability of the pyramided Bt technology. PMID:28036388

  4. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.

    PubMed

    Dively, Galen P; Venugopal, P Dilip; Finkenbinder, Chad

    2016-01-01

    . zea populations to multiple Cry toxins. The high adoption rate of Bt field corn and cotton, along with the moderate dose expression of Cry1Ab and related Cry toxins in these crops, and decreasing refuge compliance probably contributed to the evolution of resistance. Our results have important implications for resistance monitoring, refuge requirements and other regulatory policies, cross-resistance issues, and the sustainability of the pyramided Bt technology.

  5. The benefits of herbicide-resistant crops.

    PubMed

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  6. Producing biofuel crops: environmental and economic implications and strategies

    USDA-ARS?s Scientific Manuscript database

    The growing need for sustainable fuel sources must become compatible with the continued need for food by an ever increasing world population and the effects of climate change on ability to produce food and biofuel. Growing more hectares of biofuel crops such as corn increases sediment and nutrient l...

  7. A Decade of Carbon Flux Measurements with Annual and Perennial Crop Rotations on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.

    2016-12-01

    The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.

  8. Area estimation of crops by digital analysis of Landsat data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Hixson, M. M.; Davis, B. J.

    1978-01-01

    The study for which the results are presented had these objectives: (1) to use Landsat data and computer-implemented pattern recognition to classify the major crops from regions encompassing different climates, soils, and crops; (2) to estimate crop areas for counties and states by using crop identification data obtained from the Landsat identifications; and (3) to evaluate the accuracy, precision, and timeliness of crop area estimates obtained from Landsat data. The paper describes the method of developing the training statistics and evaluating the classification accuracy. Landsat MSS data were adequate to accurately identify wheat in Kansas; corn and soybean estimates for Indiana were less accurate. Systematic sampling of entire counties made possible by computer classification methods resulted in very precise area estimates at county, district, and state levels.

  9. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  10. Satellite Data Inform Forecasts of Crop Growth

    NASA Technical Reports Server (NTRS)

    2015-01-01

    During a Stennis Space Center-led program called Ag 20/20, an engineering contractor developed models for using NASA satellite data to predict crop yield. The model was eventually sold to Genscape Inc., based in Louisville, Kentucky, which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.

  11. A NEW APPROACH TO PIP CROP MONITORING USING REMOTE SENSING

    EPA Science Inventory

    Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...

  12. The impact of fall cover crops on soil nitrate and corn growth

    USDA-ARS?s Scientific Manuscript database

    Incorporating cover crops into current production systems can have many beneficial impacts on the current cropping system including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A fiel...

  13. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    PubMed

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  14. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  15. Anaerobic conversion of lignocellulosic corn fiber to butyric acid, a substrate for microbial butanol production

    USDA-ARS?s Scientific Manuscript database

    Many factors, including sharply fluctuating fuel prices and questions regarding the sustainability of fuel produced from potential food crops, have bolstered interest in renewable fuels from alternative feedstocks. We tested pretreated and nonpretreated corn fiber for its susceptibility to hydrolys...

  16. No-till corn response and soil nutrient concentrations from subsurface banding of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...

  17. Comparison of DNDC and RZWQM2 for simulating hydrology and nitrogen dynamics in a corn-soybean system with a winter cover crop

    NASA Astrophysics Data System (ADS)

    Desjardins, R.; Smith, W.; Qi, Z.; Grant, B.; VanderZaag, A.

    2017-12-01

    Biophysical models are needed for assessing science-based mitigation options to improve the efficiency and sustainability of agricultural cropping systems. In order to account for trade-offs between environmental indicators such as GHG emissions, soil C change, and water quality it is important that models can encapsulate the complex array of interrelated biogeochemical processes controlling water, nutrient and energy flows in the agroecosystem. The Denitrification Decomposition (DNDC) model is one of the most widely used process-based models, and is arguably the most sophisticated for estimating GHG emissions and soil C&N cycling, however, the model simulates only simple cascade water flow. The purpose of this study was to compare the performance of DNDC to a comprehensive water flow model, the Root Zone Water Quality Model (RZWQM2), to determine which processes in DNDC may be limiting and recommend improvements. Both models were calibrated and validated for simulating crop biomass, soil hydrology, and nitrogen loss to tile drains using detailed observations from a corn-soybean rotation in Iowa, with and without cover crops. Results indicated that crop yields, biomass and the annual estimation of nitrogen and water loss to tiles drains were well simulated by both models (NSE > 0.6 in all cases); however, RZWQM2 performed much better for simulating soil water content, and the dynamics of daily water flow (DNDC: NSE -0.32 to 0.28; RZWQM2: NSE 0.34 to 0.70) to tile drains. DNDC overestimated soil water content near the soil surface and underestimated it deeper in the profile which was presumably caused by the lack of a root distribution algorithm, the inability to simulate a heterogeneous profile and lack of a water table. We recommend these improvements along with the inclusion of enhanced water flow and a mechanistic tile drainage sub-model. The accurate temporal simulation of water and N strongly impacts several biogeochemical processes.

  18. Report: EPA Needs Better Data, Plans and Tools to Manage Insect Resistance to Genetically Engineered Corn

    EPA Pesticide Factsheets

    Report #16-P-0194, June 1, 2016. Bt crops have reduced insecticide applications by 123 million pounds. The EPA can preserve this significant public benefit through enhanced monitoring and preparation to address insect resistance in Bt corn.

  19. Wing shape and size of the western corn rootworm (Coleoptera: Chrysomelidae) is related to sex and resistance to soybean-maize crop rotation.

    PubMed

    Mikac, K M; Douglas, J; Spencer, J L

    2013-08-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a major pest of maize in the United States and more recently, Europe. Understanding the dispersal dynamics of this species will provide crucial information for its management. This study used geometric morphometric analysis of hind wing venation based on 13 landmarks in 223 specimens from nine locations in Illinois, Nebraska, Iowa, and Missouri, to assess whether wing shape and size differed between rotated and continuously grown maize where crop rotation-resistant and susceptible individuals are found, respectively. Before assessing differences between rotation-resistant and susceptible individuals, sexual dimorphism was investigated. No significant difference in wing (centroid) size was found between males and females; however, females had significantly different shaped (more elongated) wings compared with males. Wing shape and (centroid) size were significantly larger among individuals from rotated maize where crop-rotation resistance was reported; however, cross-validation of these results revealed that collection site resistance status was an only better than average predictor of shape in males and females. This study provides preliminary evidence of wing shape and size differences in D. v. virgifera from rotated versus continuous maize. Further study is needed to confirm whether wing shape and size can be used to track the movement of rotation-resistant individuals and populations as a means to better inform management strategies.

  20. Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Bizzell, R. M.

    1975-01-01

    A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.

  1. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    PubMed

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area.

  2. Hydraulic properties affected by topsoil thickness in switchgrass and corn-soybean cropping systems

    USDA-ARS?s Scientific Manuscript database

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  3. Carbon Debt of CRP Lands Converted to Annual and Perennial Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Abraha, M.; Gelfand, I.; Hamilton, S. K.; Chen, J.; Robertson, G. P.

    2017-12-01

    The net greenhouse gas fluxes of an ecosystem are directly influenced by land use conversions. In the USA, 5 Mha of grassland in the Conservation Reserve Program (CRP) have been converted to agricultural production in response to higher demand for corn grain biofuel. The global warming impact (GWI) of these biofuel crops can remain positive for many years following the conversions until the "carbon debt" incurred upon conversion is repaid. Model estimates suggest that 340-351 ×106 Mt of carbon dioxide equivalents (CO2eq) would be released to the atmosphere after the conversions. These estimates, while highly uncertain, appear to have payback times of decades or even centuries. In a field experiment conducted from 2009-16, we converted CRP grassland and conventionally-tilled agricultural (AGR) land to grain (corn) and cellulosic (switchgrass and restored prairie) biofuel feedstocks. We conducted life cycle analysis (LCA) on all converted lands by accounting for greenhouse gas fluxes related to farming operations, agronomic inputs, and soil-atmosphere greenhouse gas exchanges. We found that cumulative carbon debt for the conversion on former CRP grasslands over the 8 years is -295, 652 and 7661 gCO2eq m-2 for switchgrass, restored prairie and corn, respectively, where a positive debt indicates net emissions to the atmosphere. These indicate that the switchgrass field repaid its carbon debt in the 8th year following conversion; and the restored prairie field will likely repay its carbon debt in the next year. The corn field, however, is projected to pay its carbon debt in another 250 years. The same biofuel crops established on former AGR lands became net CO2eq sinks within two years following the conversion. Our findings indicate that the GWI estimates and the time needed to repay CO2eq debt due to conversion of grasslands to bioenergy crops is underestimated by current models.

  4. Simulating the fate of water in field soil crop environment

    NASA Astrophysics Data System (ADS)

    Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.

    2005-12-01

    This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for

  5. Economic feasibility analysis of conventional and dedicated energy crop production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.G.; Langemeier, M.R.; Krehbiel, L.R.

    Economic feasibilities (net return per acre) associated with conventional agricultural crop production versus that of dedicated bioenergy crop (herbaceous energy crops) were investigated for northeastern Kansas. Conventional agricultural crops examined were corn, soybeans, wheat, sorghum and alfalfa and dedicated herbaceous energy crops included big bluestem/indiangrass, switchgrass, eastern gamagrass, brome, fescue and cane hay. Costs, prices and government program information from public and private sources were used to project the net return per acre over a six-year period beginning in 1997. Three soil productivity levels (low, average and high), which had a direct effect on the net return per acre, weremore » used to model differences in expected yield. In all three soil productivity cases, big bluestem/indiangrass, switchgrass and brome hay provided a higher net return per acre versus conventional crops grown on both program and non-program acres. Eastern gamagrass, fescue hay and cane hay had returns that were similar or less than returns provided by conventional crops.« less

  6. A new nitrogen index for assessment of nitrogen management practices of Andean Mountain cropping systems of Ecuador

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) is the most important crop for food security in several regions of Ecuador. Small farmers are using nitrogen (N) fertilizer without technical advice based on soil, crop and climatological data. The scientific literature lacks studies where tools are validated that can be used to q...

  7. Effects on aquatic and human health due to large scale bioenergy crop expansion.

    PubMed

    Love, Bradley J; Einheuser, Matthew D; Nejadhashemi, A Pouyan

    2011-08-01

    In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans. Threshold toxicity levels were obtained for the bluegill and for human consumption for all pesticides being evaluated through an extensive literature review. Model output was compared to each toxicity level for the suggested exposure time (96-hour for bluegill and 24-hour for humans). The results suggest that traditional intensive row crops such as canola, corn and sorghum may negatively impact aquatic life, and in most cases affect the safe drinking water availability. The continuous corn rotation, the most representative rotation for current agricultural practices for a starch-based ethanol economy, delivers the highest concentrations of glyphosate to the stream. In addition, continuous canola contributed to a concentration of 1.11 ppm of trifluralin, a highly toxic herbicide, which is 8.7 times the 96-hour ecotoxicity of bluegills and 21 times the safe drinking water level. Also during the period of study, continuous corn resulted in the impairment of 541,152 km of stream. However, there is promise with second-generation lignocellulosic bioenergy crops such as switchgrass, which resulted in a 171,667 km reduction in total stream length that exceeds the human threshold criteria, as compared to the base scenario. Results of this study may be useful in determining the suitability of bioenergy crop rotations and aid in decision making regarding the adaptation of large

  8. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  9. Impacts of corn residue grazing and baling on wind erosion potential in a semiarid environment

    USDA-ARS?s Scientific Manuscript database

    Implications of corn (Zea mays L.) residue grazing and baling on wind erosion in integrated crop-livestock systems are not well understood. We studied: 1) soil properties affecting wind erosion potential including dry aggregate-size distribution, geometric mean diameter (GMDA), geometric standard de...

  10. Users manual for the US baseline corn and soybean segment classification procedure

    NASA Technical Reports Server (NTRS)

    Horvath, R.; Colwell, R. (Principal Investigator); Hay, C.; Metzler, M.; Mykolenko, O.; Odenweller, J.; Rice, D.

    1981-01-01

    A user's manual for the classification component of the FY-81 U.S. Corn and Soybean Pilot Experiment in the Foreign Commodity Production Forecasting Project of AgRISTARS is presented. This experiment is one of several major experiments in AgRISTARS designed to measure and advance the remote sensing technologies for cropland inventory. The classification procedure discussed is designed to produce segment proportion estimates for corn and soybeans in the U.S. Corn Belt (Iowa, Indiana, and Illinois) using LANDSAT data. The estimates are produced by an integrated Analyst/Machine procedure. The Analyst selects acquisitions, participates in stratification, and assigns crop labels to selected samples. In concert with the Analyst, the machine digitally preprocesses LANDSAT data to remove external effects, stratifies the data into field like units and into spectrally similar groups, statistically samples the data for Analyst labeling, and combines the labeled samples into a final estimate.

  11. Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings.

    PubMed

    Myresiotis, Charalampos K; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2015-09-01

    Corn (Zea mays L.) is one of the most important cereal crops in the world and is used for food, feed and energy. Inoculation with plant-growth-promoting rhizobacteria (PGPR) would reduce the use of chemical fertilisers and pesticides and could be suggested as an alternative practice for sustainable production of corn in modern agricultural systems. In this study, the effect of two Bacillus PGPR formulated products, Companion (B. subtilis GB03) and FZB24 (B. subtilis FZB24), on corn growth and root uptake of insecticide thiamethoxam was investigated. All bacterial treatments enhanced root biomass production by 38-65% compared with the uninoculated control, with no stimulatory effect of PGPR on above-ground biomass of corn. The uptake results revealed that, in plants inoculated with the PGPR B. subtilis FZB24 and B. subtilis GB03, singly or in combination, the uptake and/or systemic translocation of thiamethoxam in the above-ground corn parts was significantly higher at the different growth ages compared with the control receiving no bacterial treatment. The findings suggest that the PGPR-elicited enhanced uptake of thiamethoxam could lead to improved efficiency of thiamethoxam using reduced rates of pesticides in combination with PGPR as an alternative crop protection technique. © 2014 Society of Chemical Industry.

  12. Biological and genetic characterization of new and known necroviruses causing an emerging systemic necrosis disease of corn salad (Valerianella locusta L.) in France.

    PubMed

    Verdin, Eric; Marais, Armelle; Wipf-Scheibel, Catherine; Faure, Chantal; Pelletier, Brigitte; David, Perrine; Svanella-Dumas, Laurence; Poisblaud, Clement; Lecoq, Herve'; Candresse, Thierry

    2018-02-28

    An emerging systemic necrosis disease of corn salad was first observed in the Nantes region of France in the late 2000's. Classical virology and high-throughput sequencing approaches demonstrated that the disease is associated with four different necroviruses, tobacco necrosis virus A (TNVA), tobacco necrosis virus D (TNVD), olive mild mosaic virus (OMMV) and a novel recombinant Alphanecrovirus for which the name corn salad necrosis virus (CSNV) is proposed. Satellite tobacco necrosis virus (STNV) was also frequently observed. Koch's postulates were completed for all four agents, each one alone being able to cause systemic necrosis of varying severity in corn salad. OMMV was the most frequently observed virus and causes the most severe symptoms. TNVA was the second, both in terms of prevalence and symptom severity while TNVD and CSNV were only rarely observed and cause the less severe symptoms. The emergence of this systemic disease may have been favoured by the short and repeated cropping cycles used for corn salad, possibly allowing the selection of necrovirus isolates with an improved ability to systemically invade this specialty crop.

  13. Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field.

    PubMed

    Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E

    2011-02-01

    Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.

  14. E-precision agriculture for small scale cash crops in Tobasa regency

    NASA Astrophysics Data System (ADS)

    Putra Simanjuntak, Panca; Tiurniari Napitupulu, Pangeran; Pratama Silalahi, Soni; Kisno; Pasaribu, Norlina; Valešová, Libuše

    2017-09-01

    Cash crop is a promising sector in Tobasa regency; however, the trend showed a negative change of the cash crop production in. This research aims to develop an application which is based on Arduino for watering and fertilizing corn land. The result of using e-precision agriculture based on embedded system is 100% higher than the conventional one and the risk of harvesting failure using the embedded system decreased to 50%. Embedded system in this study acquired critical environment measurements which at last affected the yield raising and risk reduction. As the result, the use of e-precision agriculture provided a framework to be used by different stakeholders to implement e-agriculture platform that supports marketing of agricultural production since the system is proven to save the material and time which finally reduces the risk of harvesting failure and increases the yield. In other words, the system is able to economize the use of water and fertilizer on a small corn land. The system will be developed for more efficiency in material loss and the mobile-based application development to reach sustainable rural development particularly for cash-crop farmers.

  15. A novel integrated cropping system for efficient grain production, improved soil quality, and enhanced beneficial arthropod communities

    USDA-ARS?s Scientific Manuscript database

    The solar corridor crop system (SCCS) is designed for improved crop productivity by using broad strips (corridors or skip rows) that promote highly efficient use of solar radiation and ambient carbon dioxide by C-4 plants including corn. Field trials in 2013 and 2014 showed that yields of selected c...

  16. Linking resilience theory and diffusion of innovations theory to understand the potential for perennials in the U.S. Corn Belt

    Treesearch

    Ryan C. Atwell; Lisa A. Schulte; Lynne M. Westphal

    2009-01-01

    In the last 200 yr, more than 80% of the land in the U.S. Corn Belt agro-ecosystem has been converted from natural perennial vegetation to intensive agricultural production of row crops. Despite research showing how re-integration of perennial vegetation, e.g., cover crops, pasture, riparian buffers, and restored wetlands, at strategic landscape positions can bolster...

  17. Finger millet: An alternative crop for the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    In the Southern High Plains, dairies are expanding to take advantage of favorable climatic conditions. Currently, corn (Zea mays L.) and forage sorghum [Sorghum bicolor (L.) Moench] are the two major crops grown in the region to meet silage demands for the expanding dairy industry, but they have rel...

  18. Glyphosate applications,glyphosate resistant corn, and tillage on nitrification rates and distribution of nitrifying microbial communities

    USDA-ARS?s Scientific Manuscript database

    Conservation tillage practices have combined genetically modified glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the null hypothesis that the soil process of nitrification and the distribution of archaeal and bacterial nitrifying communities would not ...

  19. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Treesearch

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  20. Growing season temperature and precipitation variability and extremes in the U.S. Corn Belt from 1981 to 2012

    NASA Astrophysics Data System (ADS)

    Dai, S.; Shulski, M.

    2013-12-01

    Climate warming and changes in rainfall patterns and increases in extreme events are resulting in higher risks of crop failures. A greater sense of urgency has been induced to understand the impacts of past climate on crop production in the U.S. As one of the most predominant sources of feed grains, corn is also the main source of U.S. ethanol. In the U.S. Corn Belt, region-scale evaluation on temperature and precipitation variability and extremes during the growing season is not well-documented yet. This study is part of the USDA-funded project 'Useful to Usable: Transforming climate variability and change information for cereal crop producers'. The overall goal of our work is to study the characteristics of average growing season conditions and changes in growing season temperature- and precipitation-based indices that are closely correlated with corn grain yield in the U.S. Corn Belt. The research area is the twelve major Corn Belt states, including IL, IN, IA, KS, MI, MN, MO, NE, OH, SD, ND, and WI. Climate data during 1981-2010 from 132 meteorological stations (elevation ranges from 122 m to 1,202 m) are used in this study, including daily minimum, maximum, and mean temperature, and daily precipitation. From 1981 to 2012, beginning date (BD), ending date (ED), and growing season length (GSL) in the climatological corn growing season are studied. Especially, during the agronomic corn growing season, from Apr to Oct, temperature- and precipitation-based indices are analyzed. The temperature-based indices include: number of days with daily mean temperature below 10°C, number of days with daily mean temperature above 30°C, the sum of growing degree days (GDD) between 10°C to 30°C (GDD10,30, growth range for corn), the sum of growing degree days above 30°C (GDD30+, exposure to harmful warming for corn), the sum of growing degree days between 0°C and 44°C (GDD0,44, survival range limits for corn), the sum of growing degree days between 5°C and 35°C (GDD5

  1. Economic impact of GM crops

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  2. PREFACE: XV Chilean Physics Symposium, 2006

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Moreno, José; Ávila, Ricardo; Cubillos, Karla

    2008-02-01

    The Chilean Physics Symposium is the main gathering of Physics in Chile, and its organization is one of the central activities of the Chilean Physical Society (Sociedad Chilena de Física, SOCHIFI). The Symposium assembles the largest number of Chilean and foreign physicists resident in the country. Recent advances in the various research areas in Physics are presented, by researchers from Universities and national research centres. At the same time this is an occasion for the participation of Physics students from both the pre- and post-graduate programs. The Symposium has gathered continuously every two years, since 1978. The organization of the XV symposium was in charge of the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission, and it took place on 15-17 November 2006, at La Reina Nuclear Studies Centre, in the city of Santiago, Chile. During this symposium the relation of research in Physics with education and with the productive sector in the country was also analysed. During the Symposium, 121 abstracts were submitted, from 255 authors. All authors were invited to submit articles for publication in the Symposium Proceedings. The articles received were reviewed by the Symposium Scientific Committee and by invited peers. The criteria for review focussed on the demand for a consistent piece of research, and a clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, 52 articles are presented in this issue. We would like to express our appreciation to their authors. Finally, my personal apology is in order regarding my delay in publishing these proceedings. A sequence of personal and professional highly demanding circumstances have been in the way. I would like to thank Journal of Physics: Conference Series for providing very fast publication of the proceedings, having published them online less than 4 weeks after my

  3. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE PAGES

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; ...

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS

  4. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.

    PubMed

    Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q

    2015-01-01

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits

  5. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS

  6. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil

    DOE PAGES

    McDaniel, M. D.; Grandy, A. S.; Tiemann, L. K.; ...

    2016-08-11

    Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). Here, we used a residue mixture incubation to examine how variation in long-term diversity of plant communities in agroecosystems influences decomposition of residue mixtures, thus providing a comparison of the effects of plant diversification on decomposition in the long term (via crop rotation) and short term (via residue mixtures). Three crop residue mixtures, ranging in diversity from two to four species,more » were incubated for 360 d with soils from five crop rotations, ranging from monoculture corn (mC) to a complex five-crop rotation. In response, we measured fundamental soil pools and processes underlying C and N cycling. These included soil respiration, inorganic N, microbial biomass, and extracellular enzymes. We hypothesized that soils with more diverse cropping histories would show greater synergistic mixture effects than mC. For most variables (except extracellular enzymes), crop rotation history, or the long-term history of plant diversity in the field, had a stronger effect on soil processes than mixture composition. In contrast to our hypothesis, the mC soil had nearly three and seven times greater synergistic mixture effects for respiration and microbial biomass N, respectively, compared with soils from crop rotations. This was due to the low response of the mC soils to poor quality residues (corn and wheat), likely resulting from a lack of available C and nutrients to cometabolize these residues. These results indicate that diversifying crop rotations in agricultural systems alter the decomposition dynamics of new residue inputs, which may be linked to the benefits of increasing crop rotation diversity on soil nutrient cycling, SOM dynamics, and yields.« less

  7. Effect of Tropical Rotation Crops on Meloidogyne incognita and Other Plant-Parasitic Nematodes.

    PubMed

    McSorley, R; Dickson, D W

    1995-12-01

    In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor x S. sudanense) were effective in maintaining low population densities (<12/100 cm(3) soil) of Meloidogyne incognita race 1, whereas high population densities (>450/100 cm(3) soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low (crop planted in 1994, but increased by the end of the eggplant crop. The rotation crops planted during 1993 had little effect on yield of eggplant in 1994. Eggplant yield was inversely correlated with preplant densities (Pi) of Belonolaimus longicaudatus (r = -0.282; P crop cultivars were lower (P corn (Zea mays) control, but only 'Mississippi Silver' cowpea and 'Sesaco 16' sesame (Sesamum indicum) resulted in lower (P corn control. It is critical that rotation crops intended for suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well.

  8. Corn insect pests

    USDA-ARS?s Scientific Manuscript database

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  9. Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis.

    PubMed

    Fang, Zhen-Hong; Zhang, Jian; Lu, Qi-Ming; Bao, Jie

    2014-09-01

    Currently short-chain polyols such as ethanediol, propanediol, and butanediol are produced either from the petroleum feedstock or from the starch-based food crop feedstock. In this study, a combinational process of enzymatic hydrolysis with catalytic hydrogenolysis for short-chain polyols production using corn stover as feedstock was developed. The enzymatic hydrolysis of the pretreated corn stover was optimized to produce stover sugars at the minimum cost. Then the stover sugars were purified and hydrogenolyzed into polyols products catalyzed by Raney nickel catalyst. The results show that the yield of short-chain polyols from the stover sugars was comparable to that of the corn-based glucose. The present study provided an important prototype for polyols production from lignocellulose to replace the petroleum- or corn-based polyols for future industrial applications.

  10. AgRISTARS: Foreign commodity production forecasting. The 1980 US corn and soybeans exploratory experiment

    NASA Technical Reports Server (NTRS)

    Malin, J. T.; Carnes, J. G. (Principal Investigator)

    1981-01-01

    The U.S. corn and soybeans exploratory experiment is described which consisted of evaluations of two technology components of a production forecasting system: classification procedures (crop labeling and proportion estimation at the level of a sampling unit) and sampling and aggregation procedures. The results from the labeling evaluations indicate that the corn and soybeans labeling procedure works very well in the U.S. corn belt with full season (after tasseling) LANDSAT data. The procedure should be readily adaptable to corn and soybeans labeling required for subsequent exploratory experiments or pilot tests. The machine classification procedures evaluated in this experiment were not effective in improving the proportion estimates. The corn proportions produced by the machine procedures had a large bias when the bias correction was not performed. This bias was caused by the manner in which the machine procedures handled spectrally impure pixels. The simulation test indicated that the weighted aggregation procedure performed quite well. Although further work can be done to improve both the simulation tests and the aggregation procedure, the results of this test show that the procedure should serve as a useful baseline procedure in future exploratory experiments and pilot tests.

  11. Uniparental ancestry markers in Chilean populations

    PubMed Central

    Vieira-Machado, Camilla Dutra; Tostes, Maluah; Alves, Gabrielle; Nazer, Julio; Martinez, Liliana; Wettig, Elisabeth; Pizarro Rivadeneira, Oscar; Diaz Caamaño, Marcela; Larenas Ascui, Jessica; Pavez, Pedro; Dutra, Maria da Graça; Castilla, Eduardo Enrique; Orioli, Ieda Maria

    2016-01-01

    Abstract The presence of Native Americans, Europeans, and Africans has led to the development of a multi-ethnic, admixed population in Chile. This study aimed to contribute to the characterization of the uniparental genetic structure of three Chilean regions. Newborns from seven hospitals in Independencia, Providencia, Santiago, Curicó, Cauquenes, Valdívia, and Puerto Montt communes, belonging to the Chilean regions of Santiago, Maule, and Los Lagos, were studied. The presence of Native American mitochondrial DNA (mtDNA) haplogroups and two markers present in the non-recombinant region of the Y chromosome, DYS199 and DYS287, indicative of Native American and African ancestry, respectively, was determined. A high Native American matrilineal contribution and a low Native American and African patrilineal contributions were found in all three studied regions. As previously found in Chilean admixed populations, the Native American matrilineal contribution was lower in Santiago than in the other studied regions. However, there was an unexpectedly higher contribution of Native American ancestry in one of the studied communes in Santiago, probably due to the high rate of immigration from other regions of the country. The population genetic sub-structure we detected in Santiago using few uniparental markers requires further confirmation, owing to possible stratification for autosomal and X-chromosome markers. PMID:27561109

  12. Quantities and qualities of physical and chemical fractions of soil organic matter under a rye cover crop

    USDA-ARS?s Scientific Manuscript database

    To detect the effects of a rye cover crop on labile soil carbon, the light fraction, large particulate organic matter (POM), small POM, and two NaOH-extractable humic fractions were extracted from three depths of a corn soil in central Iowa having an overwinter rye cover crop treatment and a contro...

  13. Results of Chilean water markets: Empirical research since 1990

    NASA Astrophysics Data System (ADS)

    Bauer, Carl J.

    2004-09-01

    Chile's free-market Water Code turned 20 years old in October 2001. This anniversary was an important milestone for both Chilean and international debates about water policy because Chile has become the world's leading example of the free-market approach to water law and water resources management, the textbook case of treating water rights not merely as private property but also as a fully marketable commodity. The predominant view outside of Chile is that Chilean water markets and the Chilean model of water management have been a success, and this perception has encouraged other countries to follow Chile's lead in water law reform. Much of the debate about Chilean water markets, however, has been based more on theoretical or political beliefs than on empirical study. This paper reverses that emphasis by reviewing the evolution of empirical research about these markets since 1990, when Chile returned to democratic government after 16 years of military rule. During the period since 1990, understanding of how Chilean water markets have worked in practice has gradually improved. There have been two major trends in this research: first, a gradual shift from exaggerated claims of the markets' success toward more balanced assessments of mixed results and, second, a heavy emphasis on the economics of water rights trading with very little attention given to the Water Code's impacts on social equity, river basin management, environmental protection, or resolution of water conflicts. The analysis in this study is qualitative and interdisciplinary, combining law, economics, and institutions.

  14. Crop residues as soil amendments and feedstock for bioethanol production.

    PubMed

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  15. Soil microbial biomass and function are altered by 12 years of crop rotation

    NASA Astrophysics Data System (ADS)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  16. Intercomparison of Soil Moisture, Evaporative Stress, and Vegetation Indices for Estimating Corn and Soybean Yields Over the U.S.

    NASA Technical Reports Server (NTRS)

    Mladenova, Iliana E.; Bolten, John D.; Crow, Wade T.; Anderson, Martha C.; Hain, C. R.; Johnson, David M.; Mueller, Rick

    2017-01-01

    This paper presents an intercomparative study of 12 operationally produced large-scale datasets describing soil moisture, evapotranspiration (ET), and or vegetation characteristics within agricultural regions of the contiguous United States (CONUS). These datasets have been developed using a variety of techniques, including, hydrologic modeling, satellite-based retrievals, data assimilation, and survey in-field data collection. The objectives are to assess the relative utility of each dataset for monitoring crop yield variability, to quantitatively assess their capacity for predicting end-of-season corn and soybean yields, and to examine the evolution of the yield-index correlations during the growing season. This analysis is unique both with regards to the number and variety of examined yield predictor datasets and the detailed assessment of the water availability timing on the end-of-season crop production during the growing season. Correlation results indicate that over CONUS, at state-level soil moisture and ET indices can provide better information for forecasting corn and soybean yields than vegetation-based indices such as normalized difference vegetation index. The strength of correlation with corn and soybean yields strongly depends on the interannual variability in yield measured at a given location. In this case study, some of the remotely derived datasets examined provide skill comparable to that of in situ field survey-based data further demonstrating the utility of these remote sensing-based approaches for estimating crop yield.

  17. A Robotic Platform for Corn Seedling Morphological Traits Characterization

    PubMed Central

    Lu, Hang; Tang, Lie; Whitham, Steven A.; Mei, Yu

    2017-01-01

    Crop breeding plays an important role in modern agriculture, improving plant performance, and increasing yield. Identifying the genes that are responsible for beneficial traits greatly facilitates plant breeding efforts for increasing crop production. However, associating genes and their functions with agronomic traits requires researchers to observe, measure, record, and analyze phenotypes of large numbers of plants, a repetitive and error-prone job if performed manually. An automated seedling phenotyping system aimed at replacing manual measurement, reducing sampling time, and increasing the allowable work time is thus highly valuable. Toward this goal, we developed an automated corn seedling phenotyping platform based on a time-of-flight of light (ToF) camera and an industrial robot arm. A ToF camera is mounted on the end effector of the robot arm. The arm positions the ToF camera at different viewpoints for acquiring 3D point cloud data. A camera-to-arm transformation matrix was calculated using a hand-eye calibration procedure and applied to transfer different viewpoints into an arm-based coordinate frame. Point cloud data filters were developed to remove the noise in the background and in the merged seedling point clouds. A 3D-to-2D projection and an x-axis pixel density distribution method were used to segment the stem and leaves. Finally, separated leaves were fitted with 3D curves for morphological traits characterization. This platform was tested on a sample of 60 corn plants at their early growth stages with between two to five leaves. The error ratios of the stem height and leave length measurements are 13.7% and 13.1%, respectively, demonstrating the feasibility of this robotic system for automated corn seedling phenotyping. PMID:28895892

  18. A Robotic Platform for Corn Seedling Morphological Traits Characterization.

    PubMed

    Lu, Hang; Tang, Lie; Whitham, Steven A; Mei, Yu

    2017-09-12

    Crop breeding plays an important role in modern agriculture, improving plant performance, and increasing yield. Identifying the genes that are responsible for beneficial traits greatly facilitates plant breeding efforts for increasing crop production. However, associating genes and their functions with agronomic traits requires researchers to observe, measure, record, and analyze phenotypes of large numbers of plants, a repetitive and error-prone job if performed manually. An automated seedling phenotyping system aimed at replacing manual measurement, reducing sampling time, and increasing the allowable work time is thus highly valuable. Toward this goal, we developed an automated corn seedling phenotyping platform based on a time-of-flight of light (ToF) camera and an industrial robot arm. A ToF camera is mounted on the end effector of the robot arm. The arm positions the ToF camera at different viewpoints for acquiring 3D point cloud data. A camera-to-arm transformation matrix was calculated using a hand-eye calibration procedure and applied to transfer different viewpoints into an arm-based coordinate frame. Point cloud data filters were developed to remove the noise in the background and in the merged seedling point clouds. A 3D-to-2D projection and an x -axis pixel density distribution method were used to segment the stem and leaves. Finally, separated leaves were fitted with 3D curves for morphological traits characterization. This platform was tested on a sample of 60 corn plants at their early growth stages with between two to five leaves. The error ratios of the stem height and leave length measurements are 13.7% and 13.1%, respectively, demonstrating the feasibility of this robotic system for automated corn seedling phenotyping.

  19. Biofuel crops with CAM photosynthesis: Economic potential on moisture-limited lands

    NASA Astrophysics Data System (ADS)

    Bartlett, Mark; Hartzell, Samantha; Porporato, Amilcare

    2017-04-01

    As the demand for food and renewable energy increases, the intelligent utilization of marginal lands is becoming increasingly critical. In marginal lands classified by limited rainfall or soil salinity, the cultivation of traditional C3 and C4 photosynthesis crops often is economically infeasible. However, in such lands, nontraditional crops with crassulacean acid metabolism (CAM) photosynthesis show great economic potential for cultivation. CAM crops including Opuntia (prickly pear) and Ananas (pineapple) achieve a water use efficiency which is three fold higher than C4 crops such as corn and 6-fold higher than C3 crops such as wheat, leading to a comparable annual productivity with only 20% of the water demand. This feature, combined with a shallow rooting depth and a high water storage capacity, allows CAM plants to take advantage of small, infrequent rainfall amounts in shallow, quickly draining soils. Furthermore, CAM plants typically have properties (e.g., high content of non-structural carbohydrates) that are favorable for biofuel production. Here, for marginal lands characterized by low soil moisture availability and/or high salinity, we assess the potential productivity and economic benefits of CAM plants. CAM productivity is estimated using a recently developed model which simulates CAM photosynthesis under a range of soil and climate conditions. From these results, we compare the energy and water resource inputs required by CAM plants to those required by more traditional C3 and C4 crops (corn, wheat, sorghum), and we evaluate the economic potential of CAM crops as sources of food, fodder, or biofuel in marginal soils. As precipitation events become more intense and infrequent, we show that even though marginal land area may increase, CAM crop cultivation shows great promise for maintaining high productivity with minimal water inputs. Our analysis indicates that on marginal lands, widespread cultivation of CAM crops as biofuel feedstock may help

  20. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  1. Landscape, community, countryside: linking biophysical and social scales in US Corn Belt agricultural landscapes

    Treesearch

    Ryan C. Atwell; Lisa A. Schulte; Lynne M. Westphal

    2009-01-01

    Understanding the interplay between ecological and social factors across multiple scales is integral to landscape change initiatives in productive agricultural regions such as the rural US Corn Belt. We investigated the cultural context surrounding the use of perennial cover types--such as stream buffers, wetlands, cellulosic bioenergy stocks, and diverse cropping...

  2. Evaluating optimum limited irrigation management strategies for corn production in the ogallala aquifer region

    USDA-ARS?s Scientific Manuscript database

    Water is the major factor limiting crop production in the Ogallala Aquifer Region of the U.S. Central High Plains. Seasonal precipitation is highly variable, low in amount, and not enough to meet full corn water needs. The Ogallala Aquifer is the major source of irrigation water for commercial agric...

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  4. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  5. A three-part geometric model to predict the radar backscatter from wheat, corn, and sorghum

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Eger, G. W., III; Kanemasu, E. T.

    1982-01-01

    A model to predict the radar backscattering coefficient from crops must include the geometry of the canopy. Radar and ground-truth data taken on wheat in 1979 indicate that the model must include contributions from the leaves, from the wheat head, and from the soil moisture. For sorghum and corn, radar and ground-truth data obtained in 1979 and 1980 support the necessity of a soil moisture term and a leaf water term. The Leaf Area Index (LAI) is an appropriate input for the leaf contribution to the radar response for wheat and sorghum, however the LAI generates less accurate values for the backscattering coefficient for corn. Also, the data for corn and sorghum illustrate the importance of the water contained in the stalks in estimating the radar response.

  6. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    PubMed

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  7. Assessing Honey Bee (Hymenoptera: Apidae) Foraging Populations and the Potential Impact of Pesticides on Eight U.S. Crops

    PubMed Central

    Frazier, Maryann T.; Mullin, Chris A.; Frazier, Jim L.; Ashcraft, Sara A.; Leslie, Tim W.; Mussen, Eric C.; Drummond, Frank A.

    2015-01-01

    Beekeepers who use honey bees (Apis mellifera L.) for crop pollination services, or have colonies making honey on or in close proximity to agricultural crops, are concerned about the reductions of colony foragers and ultimate weakening of their colonies. Pesticide exposure is a potential factor in the loss of foragers. During 2009–2010, we assessed changes in the field force populations of 9–10 colonies at one location per crop on each of the eight crops by counting departing foragers leaving colonies at regular intervals during the respective crop blooming periods. The number of frames of adult bees was counted before and after bloom period. For pesticide analysis, we collected dead and dying bees near the hives, returning foragers, crop flowers, trapped pollen, and corn-flowers associated with the cotton crop. The number of departing foragers changed over time in all crops except almonds; general patterns in foraging activity included declines (cotton), noticeable peaks and declines (alfalfa, blueberries, cotton, corn, and pumpkins), and increases (apples and cantaloupes). The number of adult bee frames increased or remained stable in all crops except alfalfa and cotton. A total of 53 different pesticide residues were identified in samples collected across eight crops. Hazard quotients (HQ) were calculated for the combined residues for all crop-associated samples and separately for samples of dead and dying bees. A decrease in the number of departing foragers in cotton was one of the most substantial crop-associated impacts and presented the highest pesticide risk estimated by a summed pesticide residue HQ. PMID:26453703

  8. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    PubMed

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss.

    PubMed

    Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D

    2009-01-01

    Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.

  10. Distribution and Biocontrol Potential of phlD(+) Pseudomonads in Corn and Soybean Fields.

    PubMed

    McSpadden Gardener, Brian B; Gutierrez, Laura J; Joshi, Raghavendra; Edema, Richard; Lutton, Elizabeth

    2005-06-01

    ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of

  11. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung

    Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels’ attractiveness and eligibility under a number of renewable fuel policies in the U.S. and abroad. Modeling was used to refine the spatial resolution and depth-extent of domestic estimates of SOC change for land (cropland, cropland pasture, grasslands, and forests) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow). In most regions, conversions from cropland and cropland pasture to biofuel crops ledmore » to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. Results of SOC change were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions for the biofuels considered. Total LUC GHG emissions (g CO2eq MJ-1) were 2.1–9.3 for corn, -0.7 for corn stover, -3.4–12.9 for switchgrass, and -20.1–-6.2 for Miscanthus; these varied with SOC modeling assumptions applied. Extending soil depth from 30 to 100cm affected spatially-explicit SOC change and overall LUC GHG emissions; however the influence on LUC GHG emissions estimates were less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO2eq MJ-1, 100cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -0.6–-7 for Miscanthus ethanol.« less

  12. Aerial Photography: Use in Detecting Simulated Insect Defoliation in Corn

    NASA Technical Reports Server (NTRS)

    Chiang, H. C.; Latham, R.; Meyer, M. P.

    1973-01-01

    Artificial defoliation in corn was used to explore the usefulness of aerial photography in detecting crop insect infestations. Defoliation on the top of plants was easily detected, while that on the base was less so. Aero infrared film with Wratten 89B filter gave the best results, and morning flights at the scale of 1:15840 are recommended. Row direction, plant growth stage, and time elapse since defoliation were not important factors.

  13. Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities.

    PubMed

    Rauschen, Stefan; Schultheis, Eva; Pagel-Wieder, Sibylle; Schuphan, Ingolf; Eber, Sabine

    2009-04-01

    In Europe, Bt-corn resistant against the European Corn Borer has until now been the only genetically modified plant to be grown commercially. With the advent of the Western Corn Rootworm Bt-corn varieties with resistance against Coleoptera will become important. The cultivation of Bt-plants may have negative impacts on non-target organisms, i.e. all species not explicitly targeted by a given Bt-crop. One prominent non-target group in corn are the herbivorous plant bugs (Heteroptera: Miridae). They are common, abundant and exposed to the Cry-protein. We therefore assessed the potential impact of the cultivation of the Cry3Bb1-expressing Bt-corn variety MON88017 and three conventional varieties on this group. Trigonotylus caelestialium (Kirkaldy) was the most abundant plant bug at the experimental field. There was no evidence for a negative impact of MON88017 on this species, despite its considerable exposure to Cry3Bb1 demonstrated with ELISA. The conventional corn varieties, however, had a consistent and significant influence on the field densities of this species over all three growing seasons.

  14. Predicted impact of transgenic, herbicidetolerant corn on drinking water quality in vulnerable watersheds of the mid-western USA.

    PubMed

    Wauchope, R Don; Estes, Tammara L; Allen, Richard; Baker, James L; Hornsby, Arthur G; Jones, Russell L; Richards, R Peter; Gustafson, David I

    2002-02-01

    In the intensely farmed corn-growing regions of the mid-western USA, surface waters have often been contaminated by herbicides, principally as a result of rainfall runoff occurring shortly after application of these to corn and other crops. In some vulnerable watersheds, water quality criteria for chronic human exposure through drinking water are occasionally exceeded. We selected three settings representative of vulnerable corn-region watersheds, and used the PRZM-EXAMS model with the Index Reservoir scenario to predict corn herbicide concentrations in the reservoirs as a function of herbicide properties and use pattern, site characteristics and weather in the watersheds. We compared herbicide application scenarios, including broadcast surface pre-plant atrazine and alachlor applications with a glyphosate pre-plant application, scenarios in which losses of herbicides were mitigated by incorporation or banding, and scenarios in which only glyphosate or glufosinate post-emergent herbicides were used with corn genetically modified to be resistant to them. In the absence of drift, in almost all years a single runoff event dominates the input into the reservoir. As a result, annual average pesticide concentrations are highly correlated with annual maximum daily values. The modeled concentrations were generally higher than those derived from monitoring data, even for no-drift model scenarios. Because of their lower post-emergent application rates and greater soil sorptivity, glyphosate and glufosinate loads in runoff were generally one-fifth to one-tenth those of atrazine and alachlor. These model results indicate that the replacement of pre-emergent corn herbicides with the post-emergent herbicides allowed by genetic modification of crops would dramatically reduce herbicide concentrations in vulnerable watersheds. Given the significantly lower chronic mammalian toxicity of these compounds, and their vulnerability to breakdown in the drinking water treatment process

  15. Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen

    USDA-ARS?s Scientific Manuscript database

    Using chlorophyll meters, crop sensors, or aerial photography to fine-tune sidedress N application rates have been proposed for optimizing and perhaps reducing overall N fertilizer use on corn (Zea mays L.) and thereby improving water quality by reducing NO3 losses to surface and ground waters. Howe...

  16. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  17. [Alcohol consumption among traveling Chilean older people].

    PubMed

    Yu, Chung Bin C; Rojas, Verónica A; Zalaquett, Macarena R; Torres, Romina S; Ramírez, Cristián C; Román, Fernando O; Carrasco, Marcela G; Gac, Homero E; Valderrama, Sebastián C; Marín, Pedro Paulo L

    2014-12-01

    Problems associated with alcohol consumption are prevalent in Chile, but little is known about the situation in the elderly. To perform a screening to detect alcohol-related problems and risks in the Chilean older people who travel. The Alcohol Use Disorders Identification Test (AUDIT) questionnaire was answered by 1,076 travelers aged 60 to 93 years (66% females), who participated in trips organized by the Chilean National Tourism Service (SERNATUR). Seventy six percent of respondents acknowledged to have ingested an alcoholic drink during the last month. The average AUDIT score was of 2.2 ± 2.6. Only 3.7% of the sample had a score equal or higher than eight, considered as risky use. Within this last group, 60% had symptoms of alcohol dependence. A higher alcohol consumption was associated with male gender (p < 0.01), being younger than 75 years of age (p < 0.01), having a medium-low economic income (p < 0.01) and having a higher education level (p = 0.03). There was no significant association with the respondents' occupation. In this sample of Chilean traveling older people, there was a high prevalence of alcohol consumption, and nearly 4% of respondents had alcohol related problems.

  18. Effects of MON810 Bt field corn on adult emergence of Helicoverpa zea (Lepidoptera: Noctuidae).

    PubMed

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    A 3-yr study (1996-1998) was conducted to evaluate the effects of MON810 Bt corn on Helicoverpa zea (Boddie) emergence and to determine whether delayed larval development as a result of Bt intoxication results in higher levels of diapause induction and pupal mortality. In the 1997 study, there was no difference in prepupal mortality between corn types, although significantly more prepupae from Bt plots than from non-Bt plots died in emergence buckets before constructing pupal chambers in 1998. In all years, significantly fewer moths emerged from prepupae collected from Bt plots, suggesting that effects of the expressed Cry1Ab extended to the prepupal and pupal stages. Late plantings of corn showed the greatest reductions in moth emergence from Bt corn because environmental conditions were more conducive to trigger diapause at the time H. zea was developing in these plantings. This was supported by a significantly greater proportion of diapausing pupae remaining in the ground in the late plantings of both Bt and non-Bt corn. For April and early May plantings, larval feeding on Bt corn delayed the time to pupation, although there was no significant difference in moth emergence between corn types for those larvae that successfully pupated. Although Bt expression had less impact on the proportion of moths emerging, the actual number of moths emerging from Bt corn was significantly reduced because fewer larvae reached pupation. Delays in adult emergence, along with significant reductions in adult emergence from MON810 Bt corn, should reduce the rates of colonization in soybean and other late host crops but may also result in asynchrony of mating between individuals emerging from Bt and non-Bt corn. This, in turn, may contribute to the evolution of resistance to Bt corn.

  19. Effects of Cover Crops to Offset Soil Carbon Changes Under No-till on an Ohio farm when Biomass is Harvested

    NASA Astrophysics Data System (ADS)

    Kimble, J. M.; Everett, L. R.; Richards, W.

    2003-12-01

    The results of a long term experiment to look at the use of cover crops and there effect on soil organic carbon. No-till has been shown to increase SOC and improve the overall soil quality under conditions where the biomass has been returned to the field. However, biomass may be removed as silage or for use in biofuels. The removal will reduce the inputs to the field so to overcome the amount of biomass not returned to the soil different cover crops were used. This experiment was done on a working farm where the corn biomass was being removed as silage. Four cover crops were planted in early September of 2002: rye, oats, clover, and canola with two controls, one with no cover crop and one where corn stubble was left on the field. The soils were sampled soon after the crops were planted and again in the spring of 2003 before the cover crops were killed just prior to planting. The first results indicate that the most root biomass was produced by the rye followed by oats then canola and then clover.

  20. Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization

    DOE PAGES

    Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.; ...

    2016-10-03

    The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less

  1. Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.

    The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less

  2. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  3. Biofuel potential of cellulosic double crops across the U.S. corn-soybean belt

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable energy sources derived from plant biomass is increasing, raising concern over fuel versus food competition. One strategy to produce additional cellulosic biomass without reducing food-harvest potential is to grow winter cover crops after harvest of the primary summer crop. Thi...

  4. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops.

    PubMed

    Bressler, Alison; Vidon, Philippe; Hirsch, Paul; Volk, Timothy

    2017-04-01

    The development of shrub willow as a bioenergy feedstock contributes to renewable energy portfolios in many countries with temperate climates and marginal croplands due to excessive moisture. However, to fully understand the potential of shrub willow as an alternative crop on marginal cropland, more research is needed to understand the potential of shrub willow for providing a variety of ecosystem services. At the same time, there is much need for research developing strategies to value ecosystem services beyond conventional valuation systems (e.g., monetary, intrinsic). In this context, this project investigates the ecosystem services of shrub willow woody biomass from an environmental science perspective, and proposes a new avenue to assess ecosystem services for management purposes based on the relative value of key ecosystem services under various land management strategies (i.e., willow vs. corn vs. hay). On marginal cropland in the US Northeast, shrub willow may be used to replace crops like corn or hay. Transitioning from conventional corn or hay to willow tends to reduce nutrient loss and erosion, improve biodiversity and adaptability to climate change, and increase access to recreational activities. However, it is unlikely to change soil carbon pools or greenhouse gas emissions at the soil-atmosphere interface. By encouraging decision makers to weigh the pros and cons of each management decision (i.e., willow vs. corn vs. hay) based on the situation, the ecosystems services valuation method used here provides a clear framework for decision making in a watershed management context.

  5. A Comparison of Machine Learning Approaches for Corn Yield Estimation

    NASA Astrophysics Data System (ADS)

    Kim, N.; Lee, Y. W.

    2017-12-01

    Machine learning is an efficient empirical method for classification and prediction, and it is another approach to crop yield estimation. The objective of this study is to estimate corn yield in the Midwestern United States by employing the machine learning approaches such as the support vector machine (SVM), random forest (RF), and deep neural networks (DNN), and to perform the comprehensive comparison for their results. We constructed the database using satellite images from MODIS, the climate data of PRISM climate group, and GLDAS soil moisture data. In addition, to examine the seasonal sensitivities of corn yields, two period groups were set up: May to September (MJJAS) and July and August (JA). In overall, the DNN showed the highest accuracies in term of the correlation coefficient for the two period groups. The differences between our predictions and USDA yield statistics were about 10-11 %.

  6. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  7. Tillage and crop rotation effects on soil quality in two Iowa fields

    USDA-ARS?s Scientific Manuscript database

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  8. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda)

    USDA-ARS?s Scientific Manuscript database

    Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm is a devastating pest controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein. However, fall armyworm populations ...

  9. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages.

    PubMed

    Kleinschmit, D H; Kung, L

    2006-10-01

    The results of adding Lactobacillus buchneri to silages from 43 experiments in 23 sources reporting standard errors were summarized using meta-analysis. The effects of inoculation were summarized by type of crop (corn or grass and small grains) and the treatments were classified into the following categories: 1) untreated silage with nothing applied (LB0), 2) silage treated with L. buchneri at < or = 100,000 cfu/g of fresh forage (LB1), and 3) silage treated with L. buchneri at > 100,000 cfu/g (LB2). In both types of crops, inoculation with L. buchneri decreased concentrations of lactic acid, and this response was dose-dependent in corn but not in grass and small-grain silages. Treatment with L. buchneri markedly increased the concentrations of acetic acid in both crops in a dose-dependent manner. The numbers of yeasts were lower in silages treated with LB1 and further decreased in silages treated with LB2 compared with untreated silages. Untreated corn silage spoiled after 25 h of exposure to air but corn silage treated with LB1 did not spoil until 35 h, and this stability was further enhanced to 503 h with LB2. In grass and small-grain silages, yeasts were nearly undetectable; however, inoculation improved aerobic stability in a dose-dependent manner (206, 226, and 245 h for LB0, LB1, and LB2, respectively). The recovery of DM after ensiling was lower for LB2 (94.5%) when compared with LB0 (95.5%) in corn silage and was lower for both LB1 (94.8%) and LB2 (95.3%) when compared with LB0 (96.6%) in grass and small-grain silages.

  10. How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region?

    DOE PAGES

    Swinton, Scott M.; Tanner, Sophia; Barham, Bradford L.; ...

    2016-04-30

    Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes,more » where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.« less

  11. How willing are landowners to supply land for bioenergy crops in the Northern Great Lakes Region?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinton, Scott M.; Tanner, Sophia; Barham, Bradford L.

    Land to produce biomass is essential if the United States is to expand bioenergy supply. Use of agriculturally marginal land avoids the food vs. fuel problems of food price rises and carbon debt that are associated with crop and forestland. Recent remote sensing studies have identified large areas of US marginal land deemed suitable for bioenergy crops. Yet the sustainability benefits of growing bioenergy crops on marginal land only pertain if land is economically available. Scant attention has been paid to the willingness of landowners to supply land for bioenergy crops. Focusing on the northern tier of the Great Lakes,more » where grassland transitions to forest and land prices are low, this contingent valuation study reports on the willingness of a representative sample of 1124 private, noncorporate landowners to rent land for three bioenergy crops: corn, switchgrass, and poplar. Of the 11% of land that was agriculturally marginal, they were willing to make available no more than 21% for any bioenergy crop (switchgrass preferred on marginal land) at double the prevailing land rental rate in the region. At the same generous rental rate, of the 28% that is cropland, they would rent up to 23% for bioenergy crops (corn preferred), while of the 55% that is forestland, they would rent up to 15% for bioenergy crops (poplar preferred). Regression results identified deterrents to land rental for bioenergy purposes included appreciation of environmental amenities and concern about rental disamenities. In sum, like landowners in the southern Great Lakes region, landowners in the Northern Tier are reluctant to supply marginal land for bioenergy crops. If rental markets existed, they would rent more crop and forestland for bioenergy crops than they would marginal land, which would generate carbon debt and opportunity costs in wood product and food markets.« less

  12. 9 CFR 319.102 - Corned beef round and other corned beef cuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...

  13. 9 CFR 319.102 - Corned beef round and other corned beef cuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...

  14. 9 CFR 319.102 - Corned beef round and other corned beef cuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...

  15. 9 CFR 319.102 - Corned beef round and other corned beef cuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...

  16. 9 CFR 319.102 - Corned beef round and other corned beef cuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...

  17. Effects of climate change on water requirements and phenological period of major crops in Heihe River basin, China - Based on the accumulated temperature threshold method

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Xu, Xinyi; Yan, Denghua

    2016-04-01

    In recent years, global climate change has significantly caused a serious crisis of water resources throughout the world. However, mainly through variations in temperature, climate change will affect water requirements of crop. It is obvious that the rise of temperature affects growing period and phenological period of crop directly, then changes the water demand quota of crop. Methods including accumulated temperature threshold and climatic tendency rate were adopted, which made up for the weakness of phenological observations, to reveal the response of crop phenological change during the growing period. Then using Penman-Menteith model and crop coefficients from the United Nations Food& Agriculture Organization (FAO), the paper firstly explored crop water requirements in different growth periods, and further forecasted quantitatively crop water requirements in Heihe River Basin, China under different climate change scenarios. Results indicate that: (i) The results of crop phenological change established in the method of accumulated temperature threshold were in agreement with measured results, and (ii) there were many differences in impacts of climate warming on water requirement of different crops. The growth periods of wheat and corn had tendency of shortening as well as the length of growth periods. (ii)Results of crop water requirements under different climate change scenarios showed: when temperature increased by 1°C, the start time of wheat growth period changed, 2 days earlier than before, and the length of total growth period shortened 2 days. Wheat water requirements increased by 1.4mm. However, corn water requirements decreased by almost 0.9mm due to the increasing temperature of 1°C. And the start time of corn growth period become 3 days ahead, and the length of total growth period shortened 4 days. Therefore, the contradiction between water supply and water demands are more obvious under the future climate warming in Heihe River Basin, China.

  18. Diallel analysis of corn for special use as corn grits: determining the main genetic effects for corn gritting ability.

    PubMed

    Conrado, T V; Scapim, C A; Bignotto, L S; Pinto, R J B; Freitas, I L J; Amaral, A T; Pinheiro, A C

    2014-08-26

    Corn grits are used for various purposes such as flakes, snacks, livestock feed, hominy, extruded products, beer, etc. The grit size proportion varies according to the hybrid, and thus, once the use of the grits is linked to the particle size, determining the genetic effects is essential to develop hybrids for any specific use. For this purpose a complete diallel series of crosses, involving eight parents, was performed near Maringá, PR, Brazil. The objective of this study was to evaluate the general (GCA) and specific (SCA) combining abilities of 28 progeny for selection of hybrids for breeding programs and extraction of inbred lines for hybrid development. The response variables, such as plant height, ear insertion height, crop stand, grain yield, and grits, small grits and bran production, were gauged and appraised for each of the 28 progeny. The trait effects and GCA were significant for all response variables, while for SCA, only grain yield and crop stand showed significance (P < 0.05), according to Griffing (1955) analysis. A significant weak negative partial correlation was found between grain yield and grits conversion. In relation to the hybrid selection for breeding programs, the parent IAC Nelore was highly recommended for recurrent selection and the hybrids IPR 119 x HT 392 and IAC Nelore x HD 332 for the extraction of pure lines for hybrid development.

  19. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it

  20. Sex estimation from the scapula in a contemporary Chilean population.

    PubMed

    Peckmann, Tanya R; Logar, Ciara; Meek, Susan

    2016-09-01

    The scapula is valuable for sex estimation in human skeletons. Muscles provide protection to the scapula making it difficult to fracture, therefore increasing the potential for undamaged scapulae at forensic scenes. The goal of this project is to evaluate the accuracy of discriminant functions, created using an indigenous Guatemalan and contemporary Mexican population, when applied to a contemporary Chilean sample for estimation of sex from the scapula. The length of the glenoid cavity (LGC) and breadth of the glenoid cavity (BGC) were measured. The sample included 114 individuals (58 males and 56 females) with age ranges from 17 to 85years old. When the Guatemalan discriminant functions were applied to the Chilean sample they showed higher accuracy rates for sexing male scapulae (89.6% to 94.8%) than for sexing female scapulae (53.4% to 80.3%). When the Mexican discriminant functions were applied to the Chilean sample they showed higher accuracy rates for sexing female scapulae (82.1% to 96.4%) than for sexing male scapulae (56.9% to 89.6%). Size comparisons were made to a Guatemalan, Mexican, White American, and Greek population. Overall, in males and females of the Chilean population both left and right scapulae were larger than in the Guatemalan population but smaller than in the Mexican, White American, and Greek samples. Population-specific discriminant functions were created for the Chilean population with an overall sex classification accuracy rate of 80.7% to 86.0%. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.

    2016-12-01

    Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.

  2. Actinomycetales from Corn

    PubMed Central

    Lyons, A. J.; Pridham, T. G.; Rogers, R. F.

    1975-01-01

    Mesophilic Actinomycetales were isolated from whole corn, brewer's grits, and break flour received from three different mills. In addition, strains were isolated from high-moisture (27%) field corn; high-moisture, silo-stored corn (untreated); and high-moisture corn treated with ammonia, ammonium isobutyrate, or propionic-acetic acid. According to standard techniques, 139 strains were extensively characterized and 207 additional strains were partially characterized. On the basis of these characterizations, the streptomycete strains were identified by both the systems of Pridham et al. and Hütter because these systems are rapid and accurate. In general, only Streptomyces griseus (Krainsky) Waksman and Henrici was isolated from high-moisture whole corn (treated or untreated) except from grain exposed to ammonium isobutyrate. Strains isolated from high-moisture corn subjected to that treatment represented both S. griseus and S. albus (Rossi Doria) Waksman and Henrici. The strains isolated from corn and corn products from the three mills were identified with a number of streptomycete species. Of all Actinomycetales isolated, only three were not streptomycetes—two from brewer's grits and one from break flour. Images PMID:803819

  3. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  4. Parsing multiple processes of high temperature impacts on corn/soybean yield using a newly developed CLM-APSIM modeling framework

    NASA Astrophysics Data System (ADS)

    Peng, B.; Guan, K.; Chen, M.

    2016-12-01

    Future agricultural production faces a grand challenge of higher temperature under climate change. There are multiple physiological or metabolic processes of how high temperature affects crop yield. Specifically, we consider the following major processes: (1) direct temperature effects on photosynthesis and respiration; (2) speed-up growth rate and the shortening of growing season; (3) heat stress during reproductive stage (flowering and grain-filling); (4) high-temperature induced increase of atmospheric water demands. In this work, we use a newly developed modeling framework (CLM-APSIM) to simulate the corn and soybean growth and explicitly parse the above four processes. By combining the strength of CLM in modeling surface biophysical (e.g., hydrology and energy balance) and biogeochemical (e.g., photosynthesis and carbon-nitrogen interactions), as well as that of APSIM in modeling crop phenology and reproductive stress, the newly developed CLM-APSIM modeling framework enables us to diagnose the impacts of high temperature stress through different processes at various crop phenology stages. Ground measurements from the advanced SoyFACE facility at University of Illinois is used here to calibrate, validate, and improve the CLM-APSIM modeling framework at the site level. We finally use the CLM-APSIM modeling framework to project crop yield for the whole US Corn Belt under different climate scenarios.

  5. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    PubMed

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  6. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared

  7. Effect of Mixed Systems on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  8. Restriction fragment length polymorphism markers associated with silk maysin, antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae, in a dent and sweet corn cross.

    PubMed

    Guo, B Z; Zhang, Z J; Li, R G; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2001-04-01

    Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.

  9. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  10. Food Crops Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2009-12-01

    Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.

  11. Updates to the Corn Ethanol Pathway and Development of an Integrated Corn and Corn Stover Ethanol Pathway in the GREET™ Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Wang, Michael Q.

    Corn ethanol, a first-generation biofuel, is the predominant biofuel in the United States. In 2013, the total U.S. ethanol fuel production was 13.3 billion gallons, over 95% of which was produced from corn (RFA, 2014). The 2013 total renewable fuel mandate was 16.6 billion gallons according to the Energy Independence and Security Act (EISA) (U.S. Congress, 2007). Furthermore, until 2020, corn ethanol will make up a large portion of the renewable fuel volume mandated by Renewable Fuels Standard (RFS2). For the GREET1_2014 release, the corn ethanol pathway was subject to updates reflecting changes in corn agriculture and at corn ethanolmore » plants. In the latter case, we especially focused on the incorporation of corn oil as a corn ethanol plant co-product. Section 2 covers these updates. In addition, GREET now includes options to integrate corn grain and corn stover ethanol production on the field and at the biorefinery. These changes are the focus of Section 3.« less

  12. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    PubMed

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  13. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J

    2012-01-01

    A nitrogen (N) source comparison study was conducted to further evaluate the effects of inorganic N source and placement on growing-season and non-crop period soil nitrous oxide (NO). Commercially available controlled-release N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn ( L.) production system. Controlled-release N fertilizers evaluated were: a polymer-coated urea (ESN), stabilized urea (SuperU), and UAN+AgrotainPlus (SuperU and AgrotainPlus contain nitrification and urease inhibitors). Each N source was surface band applied (202 kg N ha) near the corn row at emergence and watered into the soil the next day. Subsurface banded ESN (ESNssb) and check (no N applied) treatments were included. Nitrous oxide fluxes were measured during two growing seasons and after harvest using static, vented chambers. All N sources had significantly lower growing-season NO emissions than granular urea (0.7% of applied N), with UAN+AgrotainPlus (0.2% of applied N) and ESN (0.3% of applied N) having lower emissions than UAN (0.4% of applied N). Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Corn grain yields were not different among N sources but were greater than the check. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in NT, irrigated corn in semiarid areas. In our study, UAN+AgrotainPlus consistently had the lowest level of NO emissions with no yield loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. The Chilean Press Since Allende.

    ERIC Educational Resources Information Center

    Knudson, Jerry W.

    Based on interviews with 19 Chilean editors, government officials, heads of professional associations, and journalism education directors, this paper deals with the role of the press in Chile and with its future under the current military government. Following a review of the events concerning press control and censorship that followed the…

  15. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    PubMed

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  16. Radiological study on newly developed composite corn advance lines in Malaysia

    NASA Astrophysics Data System (ADS)

    Adekunle Olatunji, Michael; Bemigho Uwatse, Onosohwo; Uddin Khandaker, Mayeen; Amin, Y. M.; Faruq, G.

    2014-12-01

    Owing to population growth, there has been high demand for food across the world, and hence, different agricultural activities such as use of phosphate fertilizers, recycling of organic matters, etc, have been deployed to increase crop yields. In Malaysia, a total of nine composite corn advance lines have been developed at the Institute of Biological Sciences, University of Malaya and are being grown under different conditions with a bid to meet the average daily human need for energy and fiber intake. To this end, the knowledge of radioactivity levels in these corn advance lines are of paramount importance for the estimation of possible radiological hazards due to its consumption. Hence, the radioactivity concentrations of 226Ra, 228Ra and 40K in the corn have been determined using HPGe γ-ray spectrometry. The activity concentrations in the corn ranged from 0.05 to 19.18 Bq kg-1 for 226Ra, from 0.10 to 3.22 Bq kg-1 for 228Ra and from 26.4 to 129 Bq kg-1 for 40K. In order to ascertain the radiological safety of the population regarding maize consumption, the daily intakes of these radionuclides as well as the annual effective dose were estimated. The total effective dose obtained due to the ingestion of radionuclides via maize consumption is 15.39 μSv y-1, which is less than the international recommendations.

  17. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    USDA-ARS?s Scientific Manuscript database

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  18. Iowa Commercial Pesticide Applicator Manual, Category 1C: Agricultural Crop Disease Control. CS-11.

    ERIC Educational Resources Information Center

    Nyvall, Robert F.; Ryan, Stephen O.

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. It summarizes the economically important diseases of field and forage crops such as corn, soybeans and alfalfa. Special attention is given to pesticide application methods and safety. (CS)

  19. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  20. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...