Science.gov

Sample records for chilean crops corn

  1. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions AGENCY: Federal Crop Insurance... amend the Common Crop Insurance Regulations, Processing Sweet Corn Crop Insurance Provisions. The.... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24,...

  2. 78 FR 55171 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ...; Processing Sweet Corn Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION... Regulations, Processing Sweet Corn Crop Insurance Provisions. The intended effect of this action is to provide.... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24,...

  3. Alfalfa interseeded into silage corn can serve as a cover crop and subsequent forage crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) and corn (Zea mays) silage are commonly grown in rotation in dairy forage production systems throughout the northern regions of the USA. Alfalfa interseeded into silage corn could potentially serve two purposes: as a cover crop during the silage corn production year, and as...

  4. Impact of corn residue on yield of cool-season crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synergy between dry pea and corn can reduce the density of corn needed for optimum yield. Lower crop density may accrue an additional benefit, as after-harvest residues of corn lying on the soil surface can reduce yield of crops planted the next year. This study evaluated impact of corn residue lev...

  5. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase your... 7 Agriculture 6 2012-01-01 2012-01-01 false Processing sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The Processing Sweet Corn Crop Insurance Provisions for the...

  6. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase your... 7 Agriculture 6 2013-01-01 2013-01-01 false Processing sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The Processing Sweet Corn Crop Insurance Provisions for the...

  7. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase your... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The Processing Sweet Corn Crop Insurance Provisions for the...

  8. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase your... 7 Agriculture 6 2014-01-01 2014-01-01 false Processing sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The Processing Sweet Corn Crop Insurance Provisions for the...

  9. Rolled cover crop mulches for organic corn and soybean production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  10. Corn Belt Assessment of Cover Crop Management and Preferences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveying end-users about their use of technologies and preferences provides information for researchers and educators to develop relevant research and educational programs. A mail survey was sent to Corn Belt farmers during 2006 to quantify cover crop management and preferences. Results indicated t...

  11. Temporal spectral measurements of corn and soybean crops

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1979-01-01

    A ground-based, hand-held radiometer, configured to measure red and photographic infrared spectral radiances, was successfully used to collect in situ temporal spectral measurements of corn and soybean crops. Significant relationships were found between the radiance data and the biomass, plant height, percentage crop cover, percentage crop chlorosis, and percentage leaf loss. The results of this experiment show conclusively that hand-held radiometers can be used to collect spectral data that are highly correlated to several agronomic variables. These findings suggest approaches for agronomic research, and confirm the value of remote sensing of agricultural targets.

  12. Normal crop calendars. Volume 3: The corn and soybean states of Illinois, Indiana, and Iowa

    NASA Technical Reports Server (NTRS)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The state and crop reporting district crop calendars for Iowa, Illinois, and Indiana are presented. Crop calendars for corn, soybeans, sorghum, oats, wheat, barley, clover, flax, sugar beets, and tobacco are included.

  13. Cover Crop Biomass and Corn Yield Following 13 Rye, Wheat, and Triticale Cultivars Used as Winter Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce nitrate leaching and erosion in corn-soybean rotations in the upper Midwest. The cover crop growing season between harvest and planting of corn and soybean, however, is short and cold. Additionally, previous studies in Iowa have indicated that winter r...

  14. Selection of herbaceous energy crops for the western corn belt

    SciTech Connect

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A.

    1994-05-01

    The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

  15. Few crop traits accurately predict variables important to productivity of processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recovery, case production, and gross profit margin, hereafter called ‘processor variables’, are as important metrics to processing sweet corn as grain yield is to field corn production. However, crop traits such as ear number or ear mass alone are reported in sweet corn production research rather t...

  16. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...

  17. Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama

    NASA Technical Reports Server (NTRS)

    Hayes, Carol E.; Perkey, Donald J.

    1998-01-01

    In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.

  18. An analysis of spectral discrimination between corn and soybeans using a row crop reflectance model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.

    1983-01-01

    Reflectance calculations of soybeans and corn crops at two times during the growing season indicate that the high sensitivity of the thematic mapper mid-infrared band to exposed bare soil between soybean rows is most likely responsible for early season spectral discrimination of corn and soybean crops by this band.

  19. An analysis of spectral discrimination between corn and soybeans using a row crop reflectance model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.

    1985-01-01

    Reflectance calculations of soybeans and corn crops at two times during the growing season indicate that the high sensitivity of the thematic mapper mid-infrared band to exposed bare soil between soybean rows is most likely responsible for early season spectral discrimination of corn and soybean crops by this band.

  20. Limited irrigation of corn-based no-till crop rotations in West Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...

  1. Ozone impacts on the productivity of selected crops. [Corn, wheat, soybean and peanut crops

    SciTech Connect

    Heck, W.W.; Cure, W.W.; Shriner, D.S.; Olson, R.J.; Heagle, A.S.

    1982-01-01

    The regional impacts of ozone on corn, wheat, soybean, and peanut crops are estimated by using dose-response functions to relate ambient maximum 7 h/d seasonal ozone concentrations to crop productivity data. Linear dose-response functions were developed from open-top field chamber studies. It was assumed that the limited number of cultivars and growing conditions available for the analysis were representative of major agricultural regions. Hourly ozone data were selected to represent rural concentrations and used to calculate maximum 7-h/d average values. Seasonal ozone averages for counties were extrapolated from approximately 300 monitoring sites. Results must be interpreted with knowledge of these assumptions and sources of uncertainty. Impacts are calculated for county units for the conterminous United States with maps showing patterns and tables summarizing the potential magnitude of ozone effects on selected crop yields. The assessment estimates that approximately three billion dollars of productivity could be gained if current maximum 7 hour per day ozone levels were reduced from present levels to below 25 parts per billion. Dollar values are based on 1978 crop prices, without accounting for price effects, to provide an overall estimate of the impact. Of the estimated economic impact, soybean represents 64%, corn 17%, wheat 12%, and peanuts 7%.

  2. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  3. Economic considerations for the adoption of transgenic crops: the case of bt corn.

    PubMed

    Martin, M A; Hyde, J

    2001-12-01

    Biotechnology is offering farmers new crop production opportunities and challenges. Prior to selecting a transgenic variety, farmers must consider the cost of the technology fee, possible yield drag, potential pest infestations, possible reductions in pesticide costs, refuge requirements to minimize the development of insect resistance, and adjustments in cultural practices. Moreover, crop segregation in the field, storage, and shipment may be necessary to capture potential price premiums for nontransgenic varieties. As farmers consider these various production and marketing factors, they find that Bt corn is a more profitable control method for European corn borer in the Western Corn Belt relative to the Eastern Corn Belt. This is primarily due to higher infestation probabilities in the Western Corn Belt, coupled with greater demand for manufacturing and export uses in the Eastern Corn Belt where several buyers do not accept transgenic corn.

  4. Economic Considerations for the Adoption of Transgenic Crops: The Case of Bt Corn

    PubMed Central

    Martin, Marshall A.; Hyde, Jeffrey

    2001-01-01

    Biotechnology is offering farmers new crop production opportunities and challenges. Prior to selecting a transgenic variety, farmers must consider the cost of the technology fee, possible yield drag, potential pest infestations, possible reductions in pesticide costs, refuge requirements to minimize the development of insect resistance, and adjustments in cultural practices. Moreover, crop segregation in the field, storage, and shipment may be necessary to capture potential price premiums for nontransgenic varieties. As farmers consider these various production and marketing factors, they find that Bt corn is a more profitable control method for European corn borer in the Western Corn Belt relative to the Eastern Corn Belt. This is primarily due to higher infestation probabilities in the Western Corn Belt, coupled with greater demand for manufacturing and export uses in the Eastern Corn Belt where several buyers do not accept transgenic corn. PMID:19265877

  5. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time.

  6. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh...

  7. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  8. The potential for cereal rye cover crops to host corn seedling pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil health and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects by growing two grass species in succession. Here, we show that rye cover crops host pathog...

  9. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  10. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping. PMID:26926485

  11. Long-term rotation history and previous crop effects on corn seedling health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse rotations provide benefits to agroecosystems through changes in the soil environment. A long term experiment was established to study four different four-year rotation sequences in which the crop phase prior to corn was sampled. Soils from rotations ending with soybean, sunflower, corn and p...

  12. Increased Risk of Insect Injury to Corn Following Rye Cover Crop.

    PubMed

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-08-01

    Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn.

  13. Corn and soybean cropping effects on soil losses and C factors

    SciTech Connect

    Alberts, E.E.; Wendt, R.C.; Burwell, R.E.

    1985-05-01

    Greater soil losses are generally thought to occur with soybean (Glycine max. (L.) Merr.) cropping than with corn (Zea mays L.) cropping. However, runoff and soil losses from corn and soybean cropping systems have been measured simultaneously in only a few studies. The objectives of our study were to evaluate differences in soil and water losses between continuous corn and continuous soybean cropping for conventional, field cutivation, and no-till methods of tillage; and to evaluate differences between measured cropping and management (C) factors and those in Agricultural Handbook 537, USDA that are currently used in soil conservation planning. These objectives were accomplished by analyzing soil and water loss data from a 7-yr study conducted on a claypan soil in central Missouri. Cropping differences were evaluated for five seasonal periods based upon cultural operation dates and estimated amounts of canopy cover. Average annual soil loss from soybeans was significantly higher (p less than 0.01) than that of corn for the conventional and no-till methods. Seasonal periods having the greatest cropping differences in soil loss were period F (rough fallow), period 12(30 to 60 d after planting) and period 4 (fall harvest to spring tillage). Annual C factors for soybeans were about two times those of corn for all tillage methods. Measured C factors for all tillage methods were consistently lower than those presented in Agricultural Handbook 537, USDA.

  14. Evaluation of Cuphea as a rotation crop for control of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, Robert W; Isbell, Terry A

    2005-12-01

    The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data

  15. Soil response to corn residue removal and cover crops in Eastern South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of crop residue has been shown to degrade soil organic carbon (SOC), and hence soil quality. The present study was conducted to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality parameters. The experimental site was located in Brookings County, ...

  16. Crop advisor perceptions of giant ragweed distribution, herbicide-resistance, and management in the Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant ragweed has been increasing as a major weed of row crops in North America. We conducted a web-based survey of Certified Crop Advisors in the Corn Belt to determine the current distribution of giant ragweed, the distribution of herbicide resistant populations, and management and ecological fact...

  17. Can Crop Models Simulate the ENSO Impacts on Regional Corn Yield in U.s. Corn Belt?

    NASA Astrophysics Data System (ADS)

    Niyogi, D. S.; Liu, X.; Andresen, J.; Jain, A. K.; Kumar, A.; Kellner, O.; Elias, A.

    2013-12-01

    In this paper, we seek to answer two questions: 1. Whether climate variability/ ENSO events impact the corn yield in U.S. Corn Belt?; and 2.Can crop models capture these impacts?. First, we evaluated the relationships between ENSO events and regional corn yield in the U.S Corn Belt, by taking data from 18 representative crop reporting districts for a 30 year period (1981-2010). These data were compiled as part of a large multiscale NIFA project titled U2U that aims at making Climate Information Useful to Usable. We clustered the data for different ENSO phases and performed statistical analysis to understand the impacts on corn yield. The detrended observed data indicate that El Niño events have positive impact on corn yields while La Niña events have slightly negative impact. These results are statistically significant at 0.05 level. To investigate whether crop models can capture the impacts of El Niño / La Niña; we compared the yields from three different crop models of varying complexity (Hybrid Maize; DSSAT; and ISAM) with default/ common agronomic and onsite meteorological input. Simulated yields show similar pattern as seen in the observed data: higher yield for El Niño years, and lower yields for the La Niña years. However, we also found MAE (Mean absolute error) of simulations in El Niño years are higher than for the La Niña years and Neutral years. To understand whether the performance can be enhanced by providing regional climatology, hydroclimatological, or agronomic information - we conducted additional experiments with the Hybrid Maize models involving- (i) use of onsite versus regional reanalysis data - the hypothesis being that even if the onsite data may have limited ENSO signature; the reanalysis data will have a much stronger ENSO feedback embedded within; (ii) use of actual planting date versus the default value used in the crop models - to understand if the year to year agronomic practice might influence or improve the response to capture

  18. Corn Stover for Bioethanol: Your New Cash Crop?

    SciTech Connect

    2001-02-01

    Biomass ethanol technology is still developing and important questions need to be answered about corn stover removal, but prospects are excellent for you to someday be able to harvest and sell a substantial portion of your stover for fuel production—without hurting your soil or main corn grain operation.

  19. Resistance Management Monitoring For the US Corn Crop

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  20. Corn Stover for Bioethanol -- Your New Cash Crop?

    SciTech Connect

    Brown, H.

    2001-05-16

    Biomass ethanol technology is still developing and important questions need to be answered about corn stover removal, but prospects are excellent for you to someday be able to harvest and sell a substantial portion of your stover for fuel production--without hurting your soil or main corn grain operation.

  1. Winter annual cover crop has only minor effects on major corn arthropod pests.

    PubMed

    Davis, Holly N; Currie, Randall S; Klocke, Norman L; Buschman, Lawrent L

    2010-04-01

    We studied the effects of downy brome, Bromus tectorum L., winter cover crop on several corn, Zea mays L., pests in the summer crop after the cover crop. An experiment was conducted that consisted of two trials with two levels of irrigation, two levels of weed control, and two levels of downy brome. Corn was grown three consecutive years after the downy brome grown during the winter. Banks grass mites, Oligonychus pratensis (Banks), twospotted spider mites, Tetranychus urticae Koch, and predatory mites from the genus Neoseiulus were present in downy brome at the beginning of the growing season. They moved into corn, but their numbers did not differ significantly across the treatments. Larval western corn rootworm, Diabrotica virgifera virgifera LeConte, feeding on corn roots was evaluated the second and third years of corn, production. Irrigation and herbicide treatments had no significant effects on rootworm injury levels. In one trial, rootworm injury ratings were significantly greater in treatments with a history of high versus low brome, but this effect was not significant in the other trial. Rootworm injury seemed to be similar across plots with different surface soil moistures. This suggests that the use of a winter cover crop such as downy brome will not have a major negative impact the arthropods studied.

  2. Evaluation of the Community Land Model (CLM-Crop) in the United States Corn Belt

    NASA Astrophysics Data System (ADS)

    Chen, M.; Griffis, T.

    2013-12-01

    An accurate representation of crop phenology in land surface models is crucial for predicting the carbon, water and energy budgets of managed ecosystems. Soybean and corn are cultivated in approximately 600,000 km2 in the Corn Belt- an area greater than the entire State of California. Accurate prediction of the radiation, energy, and carbon budgets of this region is especially important for understanding its influence on radiative forcing, the thermodynamic properties of the atmospheric boundary layer, and changes in climate. Recently, key algorithms describing crop biophysics and interactive crop management (planting, fertilization, irrigation, harvesting) have been implemented in the Community Land Model (CLM-Crop). CLM-Crop provides a framework for prognostic simulation of crop phenology and evaluation of human management decisions under future climate scenarios. However, there is an important need to evaluate CLM-Crop against a broad range of agricultural site observations in order to understand its limitations and to help optimize the crop biophysical parameterization. Here we evaluated CLM-Crop version 4.5 at 9 AmeriFlux corn/soybean sites that are located within the United States Corn Belt. The following questions were addressed: 1) How well does CLM perform for the 9 crop sites with different management techniques (e.g., tillage vs. no-till, rainfed vs. irrigated)? 2) What are the model's strengths and weaknesses of simulating crop phenology, energy fluxes and carbon fluxes? 3) What steps are needed in order to improve the reliability of the CLM-Crop simulations? Our preliminary results indicate that CLM-Crop can simulate the radiation, energy, and carbon fluxes with reasonable accuracy during the mid growing season. The model performance degrades substantially during the early and late growing seasons, which we attribute to a bias in crop phenology. For instance, we observed that the simulated corn and soybean phenology (LAI) has an earlier phase than the

  3. Are Cover Crops Being Used in the Corn Belt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wealth of scientific information exists quantifying the benefits of cover crops, yet adoption of cover crops in agronomic farming systems is low. Research has documented the effectiveness of using cover crops to decrease soil erosion and decrease nitrogen losses to sub-surface drainage water. Othe...

  4. Resistance Management Monitoring for the US Corn Crop to the Illinois Corn Growers Association

    EPA Science Inventory

    Significant increases in genetically modified corn planting are expected for future planted acreages approaching 80% of total corn plantings anticipated by 2009. As demand increases, incidence of farmer non-compliance with mandated non-genetically modified refuge is likely to in...

  5. Increased Risk of Insect Injury to Corn Following Rye Cover Crop.

    PubMed

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-08-01

    Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn. PMID:27325884

  6. NASA crop calendars: Wheat, barley, oats, rye, sorghum, soybeans, corn

    NASA Technical Reports Server (NTRS)

    Stuckey, M. R.; Anderson, E. N.

    1975-01-01

    Crop calenders used to determine when Earth Resources Technology Satellite ERTS data would provide the most accurate wheat acreage information and to minimize the amount of ground verified information needed are presented. Since barley, oats, and rye are considered 'confusion crops, i.e., hard to differentiate from wheat in ERTS imagery, specific dates are estimated for these crops in the following stages of development: (1) seed-bed operation, (2) planting or seeding, (3) intermediate growth, (4) dormancy, (5) development of crop to full ground cover, (6) heading or tasseling, and flowering, (7) harvesting, and (8) posting-harvest operations. Dormancy dates are included for fall-snow crops. A synopsis is given of each states' growing conditions, special cropping practices, and other characteristics which are helpful in identifying crops from ERTS imagery.

  7. Nematode Numbers and Crop Yield in a Fenamiphos-Treated Sweet Corn-Sweet Potato-Vetch Cropping System

    PubMed Central

    Johnson, A. W.; Dowler, C. C.; Glaze, N. C.; Chalfant, R. B.; Golden, A. M.

    1992-01-01

    Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P ≤ 0.05) yields of sweet corn in 1981 and 1982 and sweet potato number 1 grade in 1982 and 1983. Yield of sweet corn and numbers of M. incognita second-stage juveniles (J2) in the soil each month were negatively correlated from planting (r = - 0.47) to harvest (r = -0.61) in 1982. Yield of number 1 sweet potato was inversely related to numbers of J2 in the soil in July-October 1982 and July-September 1983. Yield of cracked storage roots was positively related to the numbers of J2 in the soil on one or more sampling dates in all years except 1985. Some factor(s), such as microbial degradation, resistant M. incognita development, or environment, reduced the effect of fenamiphos. PMID:19283032

  8. Nematode numbers and crop yield in a fenamiphos-treated sweet corn-sweet potato-vetch cropping system.

    PubMed

    Johnson, A W; Dowler, C C; Glaze, N C; Chalfant, R B; Golden, A M

    1992-12-01

    Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P corn in 1981 and 1982 and sweet potato number 1 grade in 1982 and 1983. Yield of sweet corn and numbers of M. incognita second-stage juveniles (J2) in the soil each month were negatively correlated from planting (r = - 0.47) to harvest (r = -0.61) in 1982. Yield of number 1 sweet potato was inversely related to numbers of J2 in the soil in July-October 1982 and July-September 1983. Yield of cracked storage roots was positively related to the numbers of J2 in the soil on one or more sampling dates in all years except 1985. Some factor(s), such as microbial degradation, resistant M. incognita development, or environment, reduced the effect of fenamiphos. PMID:19283032

  9. Analysis of the dynamics of adaptation to transgenic corn and crop rotation by western corn rootworm (Coleoptera: Chrysomelidae) using a daily time-step model.

    PubMed

    Crowder, D W; Onstad, D W; Cray, M E; Pierce, C M F; Hager, A G; Ratcliffe, S T; Steffey, K L

    2005-04-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte, has overcome crop rotation in several areas of the north central United States. The effectiveness of crop rotation for management of corn rootworm has begun to fail in many areas of the midwestern United States, thus new management strategies need to be developed to control rotation-resistant populations. Transgenic corn, Zea mays L., effective against western corn rootworm, may be the most effective new technology for control of this pest in areas with or without populations adapted to crop rotation. We expanded a simulation model of the population dynamics and genetics of the western corn rootworm for a landscape of corn; soybean, Glycine max (L.); and other crops to study the simultaneous development of resistance to both crop rotation and transgenic corn. Results indicate that planting transgenic corn to first-year cornfields is a robust strategy to prevent resistance to both crop rotation and transgenic corn in areas where rotation-resistant populations are currently a problem or may be a problem in the future. In these areas, planting transgenic corn only in continuous cornfields is not an effective strategy to prevent resistance to either trait. In areas without rotation-resistant populations, gene expression of the allele for resistance to transgenic corn, R, is the most important factor affecting the evolution of resistance. If R is recessive, resistance can be delayed longer than 15 yr. If R is dominant, resistance may be difficult to prevent. In a sensitivity analysis, results indicate that density dependence, rotational level in the landscape, and initial allele frequency are the three most important factors affecting the results.

  10. Crop models capture the impacts of climate variability on corn yield

    NASA Astrophysics Data System (ADS)

    Niyogi, Dev; Liu, Xing; Andresen, Jeff; Song, Yang; Jain, Atul K.; Kellner, Olivia; Takle, Eugene S.; Doering, Otto C.

    2015-05-01

    We investigate the ability of three different crop models of varying complexity for capturing El Niño-Southern Oscillation-based climate variability impacts on the U.S. Corn Belt (1981-2010). Results indicate that crop models, irrespective of their complexity, are able to capture the impacts of climate variability on yield. Multiple-model ensemble analysis provides best results. There was no significant difference between using on-site and gridded meteorological data sets to drive the models. These results highlight the ability of using simpler crop models and gridded regional data sets for crop-climate assessments.

  11. Cover crop management practices-implications for early season weed control in conservation tillage corn cotton rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of the winter cover crops is an integral component of the conservation systems in corn (Zea mays L.) and cotton (Gossypium hirsutum L.). A field experiment was initiated in 2004 to evaluate weed suppression provided by winter cover crops in a conservation tillage corn and cotton rotation. Rotati...

  12. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    PubMed

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p < 0.01). Therefore, the mixing ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture. PMID:19266927

  13. Inoculants for ensiling low-dry matter corn crop: a midlactation cow perspective.

    PubMed

    Nikkhah, A; Ghaempour, A; Khorvash, M; Ghorbani, G R

    2011-10-01

    In many regions, optimum dry matter (DM) content of corn crop pre-ensilage cannot be ensured for management, agronomical and climatic reasons. Under such conditions, corn crops are harvested at low DM, and are easily exposed to unfavourable fermentation pathways and plant spoilage and wastage. Thus, it is a major question for dairy agriculturists whether certain microbial inoculants application to low-DM corn crop pre-ensilage affects silage quality and cow performance. The objective was to determine effects of adding microbial inoculants to low-DM corn crop at ensiling on silage quality, rumen fermentation and milk production of eight Holstein cows fed the treated silages. Whole corn plant was harvested at milk stage of maturity with 204 g DM/kg of fresh crop, cut to a theoretical particle length of 2 cm, filled in 60 t bunker silos, and treated layer by layer with either no inoculant (control), inoculant 'E' (100 000 cfu/g of fresh crop) containing mainly Lactobacillus plantarum, inoculant 'B' (100 000 cfu) containing mainly Pediococcus pentosanus, Lactobacillus plantarum and Propionibacter freudenreichii or a mixture of inoculants 'E' and 'B' (200,000 cfu). Inoculants were mixed with water and sprayed on thin layers of corn chops layer by layer followed by rolling to ensure proper oxygen outage and even microbial distribution throughout the plants. Eight multiparous lactating Holstein cows at 100 ± 20.5 days in milk were used in a replicated 4 × 4 Latin square design with four 20-day periods including 14 days of adaptation and 6 days of sampling. Dietary treatments were mixed rations containing corn silages with or without the inoculants. The basal diet contained 32.9% corn silage, 14.3% alfalfa hay and 52.8% concentrate on a DM basis. Inoculants did not affect silage pH or content of DM, CP, lactate, acetate, ash and total volatile fatty acids (VFA). Applying 'B' to corn crop resulted in higher water soluble carbohydrates (47.7 g/kg vs 29.8 g/kg) and lower

  14. Crop rotation affects corn, grain sorghum, and soybean yields and nitrogen recovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term cropping system and fertilizer N studies are essential towards understanding production potential and yield stability of corn (Zea mays L.), grain sorghum [Sorghum bicolor (L.) Moench], and soybean [Glycine max (L.) Merr.] in rain-fed environments. A no-till experiment (2007-13) was conduc...

  15. Multi-location corn stover harvest effects on crop yields and nutrient removal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays, L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. Our objective is to summarize more than 200 site-years of field research conducted across the U.S.A. to determine quantities and...

  16. Organic supplemental nitrogen sources for field corn production following a hairy vetch cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combined use of legume cover crops and animal byproduct organic amendments could provide agronomic and environmental benefits to organic farmers by increasing corn grain yield while optimizing N and P inputs. To test this hypothesis we conducted a two-year field study and a laboratory soil incu...

  17. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.

    PubMed

    Gallagher, Morgan E; Hockaday, William C; Masiello, Caroline A; Snapp, Sieglinde; McSwiney, Claire P; Baldock, Jeffrey A

    2011-03-01

    Concerns about energy security and climate change have increased biofuel demand, particularly ethanol produced from cellulosic feedstocks (e.g., food crop residues). A central challenge to cropping for cellulosic ethanol is the potential environmental damage from increased fertilizer use. Previous analyses have assumed that cropping for carbohydrate in residue will require the same amount of fertilizer as cropping for grain. Using (13)C nuclear magnetic resonance, we show that increases in biomass in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Although corn grain responds vigorously and nonlinearly, corn residue shows only modest increases in carbohydrate yields in response to high levels of fertilization (25% increase with 202 kg N ha(-1)). Lignin yields in the residue increased almost twice as much as carbohydrate yields in response to nitrogen, implying that residue feedstock quality declines as more fertilizer is applied. Fertilization also increases the decomposability of corn residue, implying that soil carbon sequestration becomes less efficient with increased fertilizer. Our results suggest that even when corn is grown for grain, benefits of fertilization decline rapidly after the ecosystem's N demands are met. Heavy application of fertilizer yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil carbon sequestration capacity. PMID:21348531

  18. Multispectral determination of vegetative cover in corn crop canopy

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1972-01-01

    The relationship between different amounts of vegetative ground cover and the energy reflected by corn canopies was investigated. Low altitude photography and an airborne multispectral scanner were used to measure this reflected energy. Field plots were laid out, representing four growth stages of corn. Two plot locations were chosen-on a very dark and a very light surface soil. Color and color infrared photographs were taken from a vertical distance of 10 m. Estimates of ground cover were made from these photographs and were related to field measurements of leaf area index. Ground cover could be predicted from leaf area index measurements by a second order equation. Microdensitometry and digitzation of the three separated dye layers of color infrared film showed that the near infrared dye layer is most valuable in ground cover determinations. Computer analysis of the digitized photography provided an accurate method of determining precent ground cover.

  19. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  20. Effect of tillage and crop residue management on nematode densities on corn.

    PubMed

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  1. [Corn.

    ERIC Educational Resources Information Center

    Iowa History for Young People, 1993

    1993-01-01

    This theme issue focuses on corn. Iowa is the number one corn producing state in the United States. The featured articles in the issue concern, among other topics, Iowa children who live on farms, facts and statistics about corn, the Mesquakie Indians and corn shelling, corn hybrids, a short story, and the corn palaces of Sioux City. Activities,…

  2. Using a generational time-step model to simulate dynamics of adaptation to transgenic corn and crop rotation by western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Crowder, D W; Onstad, D W

    2005-04-01

    We expanded a simulation model of the population dynamics and genetics of the western corn rootworm for a landscape of corn, soybean, and other crops to study the simultaneous development of resistance to both crop rotation and transgenic corn. Transgenic corn effective against corn rootworm was recently approved in 2003 and may be a very effective new technology for control of western corn rootworm in areas with or without the rotation-resistant variant. In simulations of areas with rotation-resistant populations, planting transgenic corn to only rotated cornfields was a robust strategy to prevent resistance to both traits. In these areas, planting transgenic corn to only continuous fields was not an effective strategy for preventing adaptation to crop rotation or transgenic corn. In areas without rotation-resistant phenotypes, gene expression of the allele for resistance to transgenic corn was the most important factor affecting the development of resistance to transgenic corn. If the allele for resistance to transgenic corn is recessive, resistance can be delayed longer than 15 yr, but if the resistant allele is dominant then resistance usually developed within 15 yr. In a sensitivity analysis, among the parameters investigated, initial allele frequency and density dependence were the two most important factors affecting the evolution of resistance. We compared the results of this simulation model with a more complicated model and results between the two were similar. This indicates that results from a simpler model with a generational time-step can compare favorably with a more complex model with a daily time-step.

  3. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt

    SciTech Connect

    Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya; Hurtt, George C.

    2014-10-01

    Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.

  4. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    PubMed

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  5. Runoff losses from corn silage-manure cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of P, N, and sediment via runoff from crop fields, especially where manure has been applied, can contribute to eutrophication and degradation of surface waters. We established a paired-watershed field site in central Wisconsin to evaluate surface runoff losses of nutrients and sediment fro...

  6. Crop productivity and soil resilience observed on short-term corn stover or cob harvest on several northern soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly productive soils are found throughout the US Corn Belt, in part due to their inherently high soil organic matter. Their productivity contributes to the high corn grain and stover yields; hence, this crop residue is predicted to be a significant bioenergy feedstock within this region. The obje...

  7. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  8. Estimation of crop coefficients by means of optimized vegetation indices for corn

    NASA Astrophysics Data System (ADS)

    Gonzalez-Piqueras, Jose; Calera, Alfonso; Gilabert, Maria A.; Cuesta, Andres; De la Cruz Tercero, Fernando

    2004-02-01

    A linear relationship between NDVI and basal crop coefficient (Kcb) allows to compute the spectral crop coefficient (Krcb). Due to the influence of soil variations varying surface humidity on NDVI, five soil optimized indices have been used to obtain a linear relationship normalized for soil background effect (SAVI, OSAVI, TSAVI, MSAVI and GESAVI). Data used on this work have been obtained from a field campaign for corn in the area of Barrax, Spain), describing crop growth stages with green fraction cover (GFC), and leaf area index (LAI). SAVI with optimized factor L set to 0.5 is a good estimator of Krcb from sparse to dense vegetation, nevertheless the soil line based index ( GESAVI) due to a wider range of variation are more sensitive to leaf variations at high levels of vegetation amount. Spectral crop coefficients obtained from SAVI and soil line based GESAVI are sensitive to crop hazards by weather anomalies and estimates in real time the basal crop coefficients to estimate the amount of water removed by the crop from the active root zone.

  9. Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.

  10. Application of Computer Axial Tomography (CAT) to measuring crop canopy geometry. [corn and soybeans

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C. (Principal Investigator); Kilgore, R. W.

    1981-01-01

    The feasibility of using the principles of computer axial topography (CAT) to quantify the structure of crop canopies was investigated because six variables are needed to describe the position-orientation with time of a small piece of canopy foliage. Several cross sections were cut through the foliage of healthy, green corn and soybean canopies in the dent and full pod development stages, respectively. A photograph of each cross section representing the intersection of a plane with the foliage was enlarged and the air-foliage boundaries delineated by the plane were digitized. A computer program was written and used to reconstruct the cross section of the canopy. The approach used in applying optical computer axial tomography to measuring crop canopy geometry shows promise of being able to provide needed geometric information for input data to canopy reflectance models. The difficulty of using the CAT scanner to measure large canopies of crops like corn is discussed and a solution is proposed involving the measurement of plants one at a time.

  11. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management.

    PubMed

    González-Muñoz, Adrian; Quesille-Villalobos, Ana Maria; Fuentealba, Claudia; Shetty, Kalidas; Gálvez Ranilla, Lena

    2013-11-20

    Thirty-three Chilean corn accessions were screened for the first time regarding their phenolic profiles, total phenolic contents (TPC), antioxidant capacity (DPPH and ABTS), and in vitro inhibition against key enzymes relevant for hyperglycemia (α-amylase and α-glucosidase) and hypertension (angiotensin I-converting enzyme, ACE-I) in both free and cell wall-bound fractions. TPC varied from 132.2 to 262.5 mg of gallic acid equivalents/100g dry weight (DW), and around 88% of TPC and antioxidant capacity were found in the bound form. Vanillin, vanillic, protocatechuic, ferulic, and p-coumaric acids were detected by HPLC in free fractions, whereas ferulic and p-coumaric acids were found in the bound form. Pisankalla accession (red kernel) had the highest ferulic acid content (269.5 mg/100g DW). No α-amylase and ACE-I inhibition were found; however, all free fractions inhibited α-glucosidase (10.8-72.5%). Principal component analysis revealed that darker samples (free fraction) showed higher TPC and antioxidant capacity, while α-glucosidase inhibition was related to yellow-colored samples.

  12. Crop identification studies using Landsat data Separation of barley from other spring small grains and corn and soybean decision logic

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Register, D. T.; Abotteen, K. M.; Palmer, W. F.; Spikes, G. D.; Magness, E. R.; Wade, L. C.

    1980-01-01

    Two labeling procedures were developed which identify various agricultural crops through the use of Landsat data. One procedure separates barley from other spring small grains, and the other identifies corn and soybeans. For both procedures, a minimum data set (critical acquisition time) has been designated. Landsat data in both image format and various graphic displays were used along with ancillary data to obtain information which aided in labeling the spectral signatures. The corn and soybean procedure also employed a structured decision logic. Test results for the barley separation procedure emphasized the importance of obtaining a critical acquisition and showed some success especially in areas where spring crops followed the expected growth patterns. Two tests of the corn and soybean procedure produced good labeling accuracies. Problems with the procedure were easy to identify, and some solutions were implemented for the second test. Automation of various parts of the procedure and extension to other crops and regions were recommended.

  13. Effects and Carry-Over Benefits of Nematicides in Soil Planted to a Sweet Corn-Squash-Vetch Cropping System

    PubMed Central

    Johnson, A. W.; Leonard, R. A.

    1995-01-01

    The effects of irrigation on the efficacy of nematicides on Meloidogyne incognita race 1 population densities, yield of sweet corn, and the carry-over of nematicidal effect in the squash crop were determined in a sweet corn-squash-vetch cropping system for 3 years. Fenamiphos 15G and aldicarb 15G were applied at 6.7 kg a.i./ha and incorporated 15 cm deep with a tractor-mounted rototiller. Ethylene dibromide (EDB) was injected at 18 kg a.i./ha on each side of the sweet corn rows (total 36 kg a.i./ha) at planting for nematode control. Supplemental sprinkler irrigation (1.52-4.45 cm), applied in addition to natural rainfall (4.60-10.80 cm) within l0 days after application of nematicides, did not affect nematicide efficacy against M. incognita or yield of sweet corn. Soil treatment with fenamiphos, EDB, and aldicarb increased the number and total weight of sweet corn ears and the weight per ear each year over untreated controls (P ≤ 0.05). All nematicides provided some control of M. incognita on squash planted after sweet corn, but yields were consistently greater and root-gall indices lower on squash following sweet corn treated with fenamiphos than other nematicides. PMID:19277323

  14. Effects and carry-over benefits of nematicides in soil planted to a sweet corn-squash-vetch cropping system.

    PubMed

    Johnson, A W; Leonard, R A

    1995-12-01

    The effects of irrigation on the efficacy of nematicides on Meloidogyne incognita race 1 population densities, yield of sweet corn, and the carry-over of nematicidal effect in the squash crop were determined in a sweet corn-squash-vetch cropping system for 3 years. Fenamiphos 15G and aldicarb 15G were applied at 6.7 kg a.i./ha and incorporated 15 cm deep with a tractor-mounted rototiller. Ethylene dibromide (EDB) was injected at 18 kg a.i./ha on each side of the sweet corn rows (total 36 kg a.i./ha) at planting for nematode control. Supplemental sprinkler irrigation (1.52-4.45 cm), applied in addition to natural rainfall (4.60-10.80 cm) within l0 days after application of nematicides, did not affect nematicide efficacy against M. incognita or yield of sweet corn. Soil treatment with fenamiphos, EDB, and aldicarb increased the number and total weight of sweet corn ears and the weight per ear each year over untreated controls (P corn, but yields were consistently greater and root-gall indices lower on squash following sweet corn treated with fenamiphos than other nematicides. PMID:19277323

  15. Large-scale alcohol production from corn, grain sorghum, and crop residues

    SciTech Connect

    Turhollow, A.F. Jr.

    1982-01-01

    The potential impacts that large-scale alcohol production from corn, grain sorghum, and crop residues may have on US agriculture in the year 2000 are investigated. A one-land-group interregional linear-programming model is used. The objective function is to minimize the cost of production in the agricultural sector, given specified crop demands and constrained resources. The impacts that levels of alcohol production, ranging from zero to 12 billion gallons, have at two projected levels of crop demands, two grain-to-alcohol conversion and two milling methods, wet and dry, rates are considered. The impacts that large-scale fuel alcohol production has on US agriculture are small. The major impacts that occur are the substitution of milling by-products, DDG, gluten feed, and gluten meal, for soybean meal in livestock feed rations. Production of 12 billion gallons of alcohol is estimated to be equivalent to an 18 percent increase in crop exports. Improving the grain-to-alcohol conversion rate from 2.6 to 3.0 gallons per bushels reduces the overall cost of agricultural production by $989 billion when 12 billion gallons of alcohol are produced.

  16. Hyperspectral Reflectance and Fluorescence Indices for Carbon Related Parameters in Corn Crops

    NASA Astrophysics Data System (ADS)

    Middleton, E. M.; Corp, L. A.; Campbell, P. E.; Daughtry, C. S.

    2006-05-01

    The relative success in monitoring physiological or stand properties related to carbon (C) assimilation using narrow band (hyperspectral) reflectance and fluorescence indices was evaluated at leaf and canopy levels for mature corn crops (Zea mays L.) in two years. The corn crops were arranged in plots, each receiving a controlled nitrogen (N) fertilization regime at one of four dosages in experiments conducted in 2004 and 2005 at the USDA facility in Beltsville, MD, USA. Leaf reflectance spectra were obtained in conjunction with leaf level photosynthesis, chlorophyll fluorescence (ChlF), and chemistry (chlorophyll and carotenoid content per leaf area; percent C and N by dry mass). Whole plant canopy spectra and leaf area index data were obtained the same week as leaf measurements, followed by determinations of yields and biomass at harvest. The spectra were acquired using a spectroradiometer (ASD-FR FieldSpec Pro, Analytical Spectral Devices, Inc., Boulder, CO, USA), either coupled with a hemisphere for leaf optical properties or to measure nadir radiances 1 m above plant canopies within a 22o field of view. In situ photosynthesis and ChlF parameters were determined simultaneously with a photosynthetic system (Li-Cor 6400, Lincoln, Nebraska, USA) fitted with a fluorimeter under controlled conditions (temperature, irradiance, carbon dioxide, and humidity). Canopy-level steady state ChlF emissions were extracted from the apparent canopy reflectance spectra at 688 and 760 nm using the Fraunhofer Line Depth (FLD) principal. Both fluorescence and reflectance indices were successful in discriminating foliar constituents (e.g., pigment ratios, C/N ratios) but only fluorescence indices were correlated with light use efficiency (LUE) and corn yields in both years. LUE was inversely correlated (r = 0.85) with the ratio of non-photochemical (Qn) to photochemical (Qp) quenching of ChlF, (Qn/Qp). LUE was not strongly influenced by pigment levels, including the chlorophyll

  17. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-01

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  18. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-01

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  19. Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting winter cover crops into corn-soybean rotation is a promising approach for reducing subsurface drainage and nitrate loss. However, the long-term impact of this practice needs investigation. We evaluated the performance of the RZWQM-DSSAT model against five years of comprehensive field data n...

  20. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  1. Stover removal and cover crops effects on corn production and water use under full and limited irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) residue removal in irrigated cropping systems for livestock forage or cellulosic ethanol is of great interest in south-central Nebraska. Irrigation water restrictions in the region have also resulted in adoption of limited-irrigation strategies. Little is known regarding the inter...

  2. Absence of genetic divergence between western corn rootworms (Coleoptera: Chrysomelidae) resistant and susceptible to control by crop rotation.

    PubMed

    Miller, N J; Kim, K S; Ratcliffe, S T; Estoup, A; Bourguet, D; Guillemaud, T

    2006-06-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn, Zea mays L., in North America that has recently invaded Europe. A loss of ovipositional fidelity to cornfields has allowed the species to circumvent crop rotation as a means of control in part of its range in the United States. Analyses of variation at eight microsatellite loci provided no evidence for general genetic differentiation between samples of western corn rootworm collected in soybean, Glycine max (L.) Merr., fields and those collected in cornfields both inside and outside the rotation-resistance problem area. This result suggests that few or no barriers to gene flow exist between rotation-resistant and -susceptible rootworm populations. The implications of this result for the management of western corn rootworm in North America and Europe are discussed.

  3. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  4. GEOGLAM best available crop masks and calendars for the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world.

    NASA Astrophysics Data System (ADS)

    Barker, B.; McGaughey, K.; Humber, M. L.; Nordling, J.; Claverie, M.; Justice, C. O.; Deshayes, M.; Becker-Reshef, I.

    2014-12-01

    The Global Agricultural Monitoring (GEOGLAM) initiative was developed by the Group on Earth Observations in order to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of earth observations, agro-meteorological data, field reports and national level expertise. As part of this goal GEOGLAM has developed the monthly GEOGLAM Crop Monitor, which provides coordinated global crop assessments on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. As a component of these assessments the GEOGLAM Crop Monitor has developed best available crop specific masks and seasonal specific calendars for each of the four primary crop types within these main producing regions of the world based on Crop Monitor partner products and inputs. These crop masks and calendars are due to be publically released in order to be of benefit to the greater agricultural research and monitoring communities. This talk will discuss the sources and development of these crop specific masks and calendars.

  5. Resistance Evolution to Bt Crops: Predispersal Mating of European Corn Borers

    PubMed Central

    Dalecky, Ambroise; Ponsard, Sergine; Bailey, Richard I; Pélissier, Céline; Bourguet, Denis

    2006-01-01

    Over the past decade, the high-dose refuge (HDR) strategy, aimed at delaying the evolution of pest resistance to Bacillus thuringiensis (Bt) toxins produced by transgenic crops, became mandatory in the United States and is being discussed for Europe. However, precopulatory dispersal and the mating rate between resident and immigrant individuals, two features influencing the efficiency of this strategy, have seldom been quantified in pests targeted by these toxins. We combined mark-recapture and biogeochemical marking over three breeding seasons to quantify these features directly in natural populations of Ostrinia nubilalis, a major lepidopteran corn pest. At the local scale, resident females mated regardless of males having dispersed beforehand or not, as assumed in the HDR strategy. Accordingly, 0–67% of resident females mating before dispersal did so with resident males, this percentage depending on the local proportion of resident males (0% to 67.2%). However, resident males rarely mated with immigrant females (which mostly arrived mated), the fraction of females mating before dispersal was variable and sometimes substantial (4.8% to 56.8%), and there was no evidence for male premating dispersal being higher. Hence, O. nubilalis probably mates at a more restricted spatial scale than previously assumed, a feature that may decrease the efficiency of the HDR strategy under certain circumstances, depending for example on crop rotation practices. PMID:16719560

  6. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... include selling through an on-farm or roadside stand, farmer's market, and permitting the general public...—The number of containers of sweet corn that the sweet corn plants will or would have produced per acre... per acre if you have not produced the minimum amount of production of sweet corn contained in...

  7. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... include selling through an on-farm or roadside stand, farmer's market, and permitting the general public... production. The number of containers of sweet corn that the sweet corn plants will or would have produced per... per acre if you have not produced the minimum amount of production of sweet corn contained in...

  8. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... include selling through an on-farm or roadside stand, farmer's market, and permitting the general public... production. The number of containers of sweet corn that the sweet corn plants will or would have produced per... per acre if you have not produced the minimum amount of production of sweet corn contained in...

  9. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... include selling through an on-farm or roadside stand, farmer's market, and permitting the general public... production. The number of containers of sweet corn that the sweet corn plants will or would have produced per... per acre if you have not produced the minimum amount of production of sweet corn contained in...

  10. Solutions Network Formulation Report. Using NASA Sensors to Perform Crop Type Assessment for Monitoring Insect Resistance in Corn

    NASA Technical Reports Server (NTRS)

    Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent

    2007-01-01

    The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.

  11. Comparison of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hong, S. Y.; Kang, S.

    2015-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. In threshold method assumes the emergence and harvesting date when NDVI values exceed and decreases down to a given threshold, respectively. Two kind of threshold values were applied for NDVI and it increment for eight days. The other two methods use a logistic fitting model and inflection points on fitted curve, respectively. It was compared the four methods for corn and soybean, respectively. For validation, three kinds of datasets were utilized: AmeriFlux biological data of planting and harvest dates, and emergence date estimated from growing degree days (AGDDs) at flux tower sites, and state-level USDA Crop Progress Report (CPR). All methods showed substantial uncertainty but the threshold method showed relatively better agreement against with both site- and state-level data for soybean phenology. For better NDVI-based regional estimation of crop phenology, factors of uncertainty were examined and discussed in this study.

  12. The effect of relocation of whole-crop wheat and corn silages on their quality.

    PubMed

    Chen, Y; Weinberg, Z G

    2014-01-01

    Whole-crop wheat and corn silages in 1.5-L anaerobic jars were exposed to air for 0 up to 48 h during their anaerobic storage period to simulate relocation of silages. Ensiling treatments included control (no additives) and either Koffosil T (Koffolk Inc., Petah Tikva, Israel) comprising a mixture of organic acids or Lactobacillus plantarum MTD1 (Ecosyl Products Ltd., Stokesley, UK). In the first set of experiments, the duration of exposure to air had little effect on ensiling parameters or on the aerobic stability of the final silages. In the second set of experiments, both the inoculant and duration of exposure to air had an effect on various fermentation parameters and on the aerobic stability of the final silages. We concluded that if the silages are of good quality, the duration of the relocation process has little effect on silage quality or its aerobic stability. However, if the silage contains any factor that may affect its aerobic stability, it is more sensitive to the time it takes to re-ensile the forage. PMID:24210488

  13. Planting date impacts on soil water management, plant growth, and weeds in cover-crop-based no-till corn production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low input and organic farmers are increasingly utilizing cover crop mulches in maize production. Many farmers are delaying planting corn into these high residue environments to allow greater growth of the cover crop to maximize nitrogen fixation and improve mechanical termination with roller crimpe...

  14. Improving crop biomass through asynchronous assimilation of LAI and soil moisture during multiple growing seasons of corn

    NASA Astrophysics Data System (ADS)

    Bongiovanni, T. E.; Nagarajan, K.; Jones, J. W.; Monsivais Huertero, A.; Judge, J.

    2010-12-01

    Crop biomass is an important indicator of the health of a plant and is also critical for various remote sensing algorithms. In addition, it determines water uptake by the roots, affecting the root zone soil moisture (RZSM). Typically, crop models are used to simulate growth and development in a growing season and estimate biomass and yield. However large uncertainties in these estimates occur over time due to errors in computation, initialization conditions, forcings, and model parameters. Such uncertainties can be significantly reduced by assimilating in situ and/or remotely sensed observations. Satellite-based LAI and near-surface soil moisture (SM) are available weekly and 3 days, respectively. In this study, an EnKF-based assimilation algorithm was implemented to improve crop biomass using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. In situ observations of weekly LAI and every 3-day SM were assimilated asynchronously to update model estimates of LAI, RZSM, and crop biomass. The in situ observations were obtained from intensive field experiments during three seasons of sweet corn grown in North Central Florida. The impact of different assimilation scenarios for crop biomass was determined by the root mean squared difference and the standard deviation between the model estimates and observations during the seasons.

  15. In vivo digestibility of corn and sunflower intercropped as a silage crop.

    PubMed

    Valdez, F R; Harrison, J H; Deetz, D A; Fransen, S C

    1988-07-01

    Six nonlactating Holstein cows in a 3 x 3 Latin square total collection digestion trial were used to evaluate three low DM (less than 26%) silage types: 1) corn; 2) corn and sunflower intercropped and 3) sunflower. Feeding periods consisted of a 7-d adjustment followed by a 5-d collection period. Dry matter intake was similar for the three treatments; 12.5, 12.1, and 12.0 kg, respectively. Percent apparent digestibilities for DM, NDF, and N for corn and corn-sunflower were similar and greater than for sunflower: DM (69.6, 68.2, 57.4); NDF (68.1, 61.5, 51.6); and N (66.3, 66.5, 63.6). No differences were observed for digestibilities of ADF, hemicellulose, starch, or for N retention. Percent ether extract digestibility was greatest for corn-sunflower and sunflower silage when compared with digestibility of corn silage (82.5, 77.9, vs. 66.3). Major changes in rumen fermentation patterns were not observed as evidenced by rumen molar proportions of propionate, isobutyrate, isovalerate, valerate, or acetate to propionate ratios. No difference was observed for rumen NH3 N (2.7, 3.2, 4.1 mg/dl, respectively). Corn and sunflower intercropped silage had intermediate concentrations of fat, fiber, and protein when compared with those of corn or sunflower silages.

  16. Vertical distribution of corn biomass as influenced by cover crop and stover harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) production for grain is important given its many uses for human food, animal feed and other industrial products. Additionally, the abundance and potentially large biomass yield makes corn an attractive bioenergy feedstock. The objective of this study was to evaluate the effect of ...

  17. Crimped Cover Crop Legume Residue Effects on Sweet Corn (Zea mays L.) Yield in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crimped legume residue can control weeds and supply N for sweet corn production if biomass is sufficient. Three sweet corn (Zea mays L.) open pollinated variety “Suresweet 2011” plantings (April, 2013; July 2013; February 2014) were conducted on an Oxisol (very fine, kaolinitic, isohyperthermic and...

  18. Crop weather models of corn and soybeans for Agrophysical Units (APU's) in Iowa using monthly meteorological predictors

    NASA Technical Reports Server (NTRS)

    Leduc, S. (Principal Investigator)

    1982-01-01

    Models based on multiple regression were developed to estimate corn and soybean yield from weather data for agrophysical units (APU) in Iowa. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for crop reporting districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU's were selected to be more homogeneous with respect crop to production than the CRDs. The APU models are quite similar to the CRD models, similar explained variation and number of predictor variables. The APU models are to be independently evaluated and compared to the previously evaluated CRD models. That comparison should indicate the preferred model area for this application, i.e., APU or CRD.

  19. Potential of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) for biological control of European corn borer (Lepidoptera: Crambidae) in solanaceous crops.

    PubMed

    Kuhar, Thomas P; Barlow, Vonny M; Hoffmann, Michael P; Fleischer, Shelby J; Groden, Eleanor; Gardner, Jeffrey; Hazzard, Ruth; Wright, Mark G; Pitcher, Sylvie A; Speese, John; Westgate, Pam

    2004-08-01

    We assessed the ability of Trichogramma ostriniae (Peng & Chen) to locate and parasitize Ostrinia nubilalis (Hübner) eggs in crops other than corn, and we evaluated the efficacy of inundative releases of the parasitoid in two solanaceous crops, pepper and potato. Despite a greater plant surface area to search, parasitism of O. nubilalis eggs was consistently higher in sweet corn than dicotyledonous crops such as pepper, snap bean, broccoli, potato, and melon, in choice and no-choice experiments. Nonetheless, in 2002 and 2003, we made four to five separate inundative releases of approximately 30,000-50,000 T. ostriniae per 0.02 ha in nine pepper fields in Virginia, Pennsylvania, and Massachusetts and compared O. nubilalis egg parasitization and fruit damage in those plots with spatially isolated nonrelease plots. Egg parasitization averaged 48.7% in T. ostriniae release plots, which was significantly higher than in nonrelease plots (1.9%). Also, cumulative pepper fruit damage averaged 8.7% in release plots, which was significantly less than in nonrelease plots (27.3%). In potatoes in 2002 and 2003, we made two releases of approximately 75,000 T. ostriniae per 0.2 ha in nine fields in Maine and Virginia and compared O. nubilalis damage in those plots with that in nonrelease plots. T. ostriniae releases significantly reduced the number of tunnel holes and number of O. nubilalis larvae in potato stems. We conclude that this parasitoid has great potential as a biocontrol agent for O. nubilalis in solanaceous crops.

  20. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.152 Hybrid seed... succeeding crop years are as follows: FCIC Policies United States Department of Agriculture Federal Crop Insurance Corporation Reinsured Policies (Appropriate title for insurance provider) Both FCIC and...

  1. Trends in Crop Management and Phenology in the U.S. Corn Belt, and Effects on Yields, Evapotranspiration and Energy Balance

    NASA Astrophysics Data System (ADS)

    Sacks, W. J.; Kucharik, C. J.

    2010-12-01

    Two important factors that can affect crop yields are planting dates and the length of the crop growth period. We analyzed 25 years of data collected by the USDA in order to document trends in planting dates, lengths of the vegetative and reproductive growth periods, and the length of time between maturity and harvest for corn and soybeans across the U.S. We then used these observations to drive the Agro-IBIS model, in order to investigate the effects of changing planting dates and crop cultivars on crop yields and fluxes of water and energy. Averaged across the U.S., corn planting dates advanced about 10 days from 1981 to 2005, and soybean planting dates about 12 days. For both crops, but especially for corn, this has been accompanied by a lengthening of the growth period. The period from corn planting to maturity was about 12 days longer around 2005 than it was around 1981. A large driver of this change was a 14% increase in the number of growing degree days needed for corn to progress through the grainfill period, probably reflecting an adoption of longer-season cultivars. This trend to longer-season cultivars was responsible for a 12.6 bu ac-1 yield increase across the U.S. Corn Belt over this 25-year period, according to our simulations. Thus, the adoption of longer-season cultivars can account for 26% of the observed yield trend. These changes in crop phenology, together with a shortening of the time from maturity to harvest, have also modified the surface water and energy balance. Earlier planting has led to an increase in the latent heat flux and a decrease in the sensible heat flux in June, while a shorter time from maturity to harvest has meant an increase in net radiation in October.

  2. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm.

    PubMed

    Chu, Chia-Ching; Spencer, Joseph L; Curzi, Matías J; Zavala, Jorge A; Seufferheld, Manfredo J

    2013-07-16

    Insects are constantly adapting to human-driven landscape changes; however, the roles of their gut microbiota in these processes remain largely unknown. The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) (Coleoptera: Chrysomelidae) is a major corn pest that has been controlled via annual rotation between corn (Zea mays) and nonhost soybean (Glycine max) in the United States. This practice selected for a "rotation-resistant" variant (RR-WCR) with reduced ovipositional fidelity to cornfields. When in soybean fields, RR-WCRs also exhibit an elevated tolerance of antiherbivory defenses (i.e., cysteine protease inhibitors) expressed in soybean foliage. Here we show that gut bacterial microbiota is an important factor facilitating this corn specialist's (WCR's) physiological adaptation to brief soybean herbivory. Comparisons of gut microbiota between RR- and wild-type WCR (WT-WCR) revealed concomitant shifts in bacterial community structure with host adaptation to soybean diets. Antibiotic suppression of gut bacteria significantly reduced RR-WCR tolerance of soybean herbivory to the level of WT-WCR, whereas WT-WCR were unaffected. Our findings demonstrate that gut bacteria help to facilitate rapid adaptation of insects in managed ecosystems.

  3. Biofuel potential of cellulosic double crops across the U.S. corn-soybean belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable energy sources derived from plant biomass is increasing, raising concern over fuel versus food competition. One strategy to produce additional cellulosic biomass without reducing food-harvest potential is to grow winter cover crops after harvest of the primary summer crop. Thi...

  4. Effect of conservation practices on soil carbon and nitrogen accretion and crop yield in a corn production system in the southeastern coastal plain, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We implemented conservation farming practices (winter cover cropping plus strip tillage) for a non-irrigated corn production system in the southern coastal plain of Georgia, USA that had been previously been managed under a plow and harrow tillage regime. Total soil carbon and nitrogen were measure...

  5. The applications of remote sensing to corn blight detection and crop yield forecasting

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1970-01-01

    Photography revealed the widespread and variable effects of southern corn leaf blight in Indiana. Three levels of severity of the infection could be discerned from good quality color and color infrared photography. As many as five severity levels appeared to be detectable and classifiable with multispectral scanner data and pattern recognition analysis. These conclusions are preliminary in nature, however, having been obtained from a limited amount of good quality scanner data collected over a small geographic area.

  6. Economic Benefits of Improved Information on Worldwide Crop Production: An Optimal Decision Model of Production and Distribution with Application to Wheat, Corn, and Soybeans

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1977-01-01

    An optimal decision model of crop production, trade, and storage was developed for use in estimating the economic consequences of improved forecasts and estimates of worldwide crop production. The model extends earlier distribution benefits models to include production effects as well. Application to improved information systems meeting the goals set in the large area crop inventory experiment (LACIE) indicates annual benefits to the United States of $200 to $250 million for wheat, $50 to $100 million for corn, and $6 to $11 million for soybeans, using conservative assumptions on expected LANDSAT system performance.

  7. Radiometric Sensitivity to Soil Moisture at 1.4 GHz Through a Corn Crop at Maximum Biomass

    NASA Astrophysics Data System (ADS)

    Hornbuckle, B. K.; England, A. W.

    2004-05-01

    3 m-3. Vertically-polarized brightness temperature was 0.5 K per 0.01 m3 m-3 less sensitive than horizontally-polarized brightness temperature. A widely-used radiative transfer model underestimated this soil moisture sensitivity at horizontal polarization by over 1 K per 0.01 m3 m-3. We hypothesize this is because the water in a corn canopy is concentrated in stems and ears and not spread evenly over the canopy volume as assumed by the model, and as it effectively is in vegetation with electrically small components like grass. Enhanced backscatter from such scattering canopies has been observed in radar experiments. There may be a similar effect in radiometry. It is also possible that this "backscatter effect" could itself be enhanced when the vegetation canopy constituents are wet, and hence more reflective, when intercepted precipitation or dew is present. Given an appropriate emission model that correctly accounts for the differences in transparency between corn and grass-like canopies and/or an enhancement of soil moisture sensitivity through volume scattering, it appears that there will be practical sensitivity to soil moisture through corn (and most, if not all row crops) throughout the growing season.

  8. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    NASA Astrophysics Data System (ADS)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    The recently expanded Renewable Fuel Standard, which now requires 36 billion gallons of renewable fuels by 2022, has increased demand for biofuel refinery feedstocks. Currently, biofuel production consists mainly of corn-based ethanol, but concern over increasing nitrate levels resulting from increased corn crop fertilization has prompted research into alternative biofuel feedstocks. Of these, high-yielding biomass crops such as Miscanthus have been suggested for cellulose-based ethanol production. Because these perennial crops require less fertilization and do not need tilling, increasing land area in the Midwest planted with Miscanthus would result in less nitrate pollution to the Gulf of Mexico. There is a tradeoff, however, as Miscanthus also has higher water requirements than conventional crops in the region. This could pose a serious problem for riparian ecosystems and other streamflow users such as municipalities and biofuel refineries themselves, as the lowest natural flows in this region coincide with the peak of the growing season. Moreover, low flow reduction may eventually cut off the water quality benefit that planting Miscanthus provides. Therefore, for large-scale cellulosic ethanol production to be sustainable, it is important to understand how the watershed will respond to this change in land and water use. To this end a detailed data analysis of current watershed conditions has been combined with hydrologic modeling to gain deeper insights into how catchments in the highly agricultural central IL watershed of the Sangamon River respond to current and future land and water usage, with the focus on the summer low-flow season. In addition, an integrated systems optimization model has been developed that combines hydrologic, agro-biologic, engineering infrastructural, and economic inputs to provide optimal scenarios of crop type and area and corresponding refinery locations and capacities. Through this integrated modeling framework, we address the key

  9. Reduced-tillage organic corn production in a hairy vetch cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is much interest in developing no-tillage systems for organic farming, however, potential limitations include the inability to control weeds and to provide sufficient crop available N. A three-year field experiment was conducted on organically-certified land to explore the use of roller-crimp...

  10. Rye cover crop effects on nitrous oxide emissions from a corn-soybean system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities are a major source nitrous oxide emitted to the atmosphere. Development of management practices to reduce these emissions is needed. Non-leguminous cover crops are efficient scavengers of residual soil nitrate, but their effects on nitrous oxide emissions have not been well d...

  11. High Resolution Evaporative Fluxes Over Corn and Soybean Crops from Lidar

    NASA Astrophysics Data System (ADS)

    Eichinger, W. E.; Cooper, D. I.; Hipps, L. E.; Kustas, W. P.; Neale, C. M.; Prueger, J. H.

    2003-12-01

    The Soil Moisture-Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek Watershed near Ames, Iowa over the period from June 15-July 11, 2002. A main focus of SMACEX was the investigation of the interactions between the atmospheric boundary layer, surface moisture and current vegetative state. The Lidar collected data over fields of soybeans and corn, with mutually supporting measurements by the NRC Twin Otter atmospheric research aircraft, the Utah State University Piper Seneca remote sensing aircraft, two elastic Lidars, and an array of eddy covariance towers in the nearby fields. The aircraft and lidar will provide a high resolution mapping of the evaporation rate over the fields and the changes between them. A mapping of the evaporative fluxes that existed during the field campaign, with a comparison to the topology of the local area will be presented.

  12. An integrated crop- and soil-based strategy for variable-rate nitrogen management in corn

    NASA Astrophysics Data System (ADS)

    Roberts, Darrin F.

    Nitrogen (N) management in cereal crops has been the subject of considerable research and debate for several decades. Historic N management practices have contributed to low nitrogen use efficiency (NUE). Low NUE can be caused by such things as poor synchronization between soil N supply and crop demand, uniform application rates of fertilizer N to spatially variable landscapes, and failure to account for temporally variable influences on soil N supply and crop N need. Active canopy reflectance sensors and management zones (MZ) have been studied separately as possible plant- and soil-based N management tools to increase NUE. Recently, some have suggested that the integration of these two approaches would provide a more robust N management strategy that could more effectively account for soil and plant effects on crop N need. For this reason, the goal of this research was to develop an N application strategy that would account for spatial variability in soil properties and use active canopy reflectance sensors to determine in-season, on-the-go N fertilizer rates, thereby increasing NUE and economic return for producers over current N management practices. To address this overall goal, a series of studies were conducted to better understand active canopy sensor use and explore the possibility of integrating spatial soil data with active canopy sensors. Sensor placement to assess crop N status was first examined. It was found that the greatest reduction in error over sensing each individual row for a hypothetical 24-row applicator was obtained with 2-3 sensors estimating an average chlorophyll index for the entire boom width. Next, use of active sensor-based soil organic matter (OM) estimation was compared to more conventional aerial image-based soil OM estimation. By adjusting regression intercept values for each field, OM could be predicted using either a single sensor or image data layer. The final study consisted of validation of the active sensor algorithm

  13. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system.

    PubMed

    Venterea, Rodney T; Bijesh, Maharjan; Dolan, Michael S

    2011-01-01

    Management practices such as fertilizer or tillage regime may affect nitrous oxide (N₂O) emissions and crop yields, each of which is commonly expressed with respect to area (e.g., kg N ha or Mg grain ha). Expressing N₂O emissions per unit of yield can account for both of these management impacts and might provide a useful metric for greenhouse gas inventories by relating N₂O emissions to grain production rates. The objective of this study was to examine the effects of long-term (>17 yr) tillage treatments and N fertilizer source on area- and yield-scaled N₂O emissions, soil N intensity, and nitrogen use efficiency for rainfed corn ( L.) in Minnesota over three growing seasons. Two different controlled-release fertilizers (CRFs) and conventional urea (CU) were surface-applied at 146 kg N ha(-1) several weeks after planting to conventional tillage (CT) and no-till (NT) treatments. Yield-scaled emissions across all treatments represented 0.4 to 1.1% of the N harvested in the grain. Both CRFs reduced soil nitrate intensity, but not N₂O emissions, compared with CU. One CRF, consisting of nitrification and urease inhibitors added to urea, decreased N₂O emissions compared with a polymer-coated urea (PCU). The PCU tended to have lower yields during the drier years of the study, which increased its yield-scaled N₂O emissions. The overall effectiveness of CRFs compared with CU in this study may have been reduced because they were applied several weeks after corn was planted. Across all N treatments, area-scaled N₂O emissions were not significantly affected by tillage. However, when expressed per unit yield of grain, grain N, or total aboveground N, N₂O emissions with NT were 52, 66, and 69% greater, respectively, compared with CT. Thus, in this cropping system and climate regime, production of an equivalent amount of grain using NT would generate substantially more N₂O compared with CT. PMID:21869514

  14. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system.

    PubMed

    Venterea, Rodney T; Bijesh, Maharjan; Dolan, Michael S

    2011-01-01

    Management practices such as fertilizer or tillage regime may affect nitrous oxide (N₂O) emissions and crop yields, each of which is commonly expressed with respect to area (e.g., kg N ha or Mg grain ha). Expressing N₂O emissions per unit of yield can account for both of these management impacts and might provide a useful metric for greenhouse gas inventories by relating N₂O emissions to grain production rates. The objective of this study was to examine the effects of long-term (>17 yr) tillage treatments and N fertilizer source on area- and yield-scaled N₂O emissions, soil N intensity, and nitrogen use efficiency for rainfed corn ( L.) in Minnesota over three growing seasons. Two different controlled-release fertilizers (CRFs) and conventional urea (CU) were surface-applied at 146 kg N ha(-1) several weeks after planting to conventional tillage (CT) and no-till (NT) treatments. Yield-scaled emissions across all treatments represented 0.4 to 1.1% of the N harvested in the grain. Both CRFs reduced soil nitrate intensity, but not N₂O emissions, compared with CU. One CRF, consisting of nitrification and urease inhibitors added to urea, decreased N₂O emissions compared with a polymer-coated urea (PCU). The PCU tended to have lower yields during the drier years of the study, which increased its yield-scaled N₂O emissions. The overall effectiveness of CRFs compared with CU in this study may have been reduced because they were applied several weeks after corn was planted. Across all N treatments, area-scaled N₂O emissions were not significantly affected by tillage. However, when expressed per unit yield of grain, grain N, or total aboveground N, N₂O emissions with NT were 52, 66, and 69% greater, respectively, compared with CT. Thus, in this cropping system and climate regime, production of an equivalent amount of grain using NT would generate substantially more N₂O compared with CT.

  15. Use of crop simulation models to evaluate limited irrigation management options for corn in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Saseendran, S. A.; Ahuja, L. R.; Nielsen, D. C.; Trout, T. J.; Ma, L.

    2008-07-01

    Increasing competition for land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. It is important to develop location-specific agronomic practices to maximize water use efficiency (WUE). Adequately calibrated and validated agricultural systems models provide a systems approach and a fast alternative method for developing and evaluating agronomic practices that can utilize technological advances in limited irrigation agriculture. The objectives of this study were to (1) calibrate and validate the CERES-maize model under both dryland and irrigated corn (Zea mays L.) production in northeastern Colorado and (2) use the model with a long-term weather record to determine (1) optimum allocation of limited irrigation between vegetative and reproductive growth stages and (2) optimum soil water depletion level for initiating limited irrigation. The soil series was a Rago silt loam, and the initial water content on 1 January of each year was equal to field capacity in the upper 300 mm and half of the field capacity below this depth. Optimum production and WUE with minimum nitrogen (N) losses were found when (1) a water allocation ratio of 40:60 or 50:50 (uniform) between vegetative and reproductive stages for irrigations up to 100 mm, and a ratio of 20:80 for irrigations above 100 mm was used; and (2) irrigation was initiated at 20% plant-available water (PAW) (80% depletion). When available water for irrigation is limited to 100 mm, irrigating 50% of the area with 200 mm of water at 20:80 split irrigations between the vegetative and reproductive stages produced greater yield than irrigating 100% of the area with 100 mm water. Concepts developed in the study can potentially be adapted to other locations, climates, and crops. However, precise site-specific recommendations need to be developed for each soil-climate zone using the validated system model.

  16. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    PubMed

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P < 0.01) was noted for final BW, ADG, G:F, and HCW. Greater final BW was observed for treated stover (4.6%) and straw (5.6%) compared with NT residues; however, AT and NT cobs were similar. Treated straw (9.7%) and stover (12.5%) resulted in greater ADG (P < 0.01) and improved G:F (10.7% and 5.0%, respectively; P < 0.01) compared with NT forms. In Exp. 2, ruminally fistulated steers (n = 5) were used in an unbalanced 5 × 7 incomplete Latin square design with a 2 × 3 + 1 factorial arrangement of treatments. Factors were crop residue (corn cobs, wheat straw, and corn stover) and chemical treatment (NT or AT) fed at 25% of diet DM. Greater DM (73.7% vs. 66.1%; P < 0.01), OM (77.0% vs. 68.5%; P < 0.01), fat (89.2 vs. 85.2; P = 0.02), and NDF (66.8% vs. 51.5%; P < 0.01) digestibilities were noted for AT than for NT. However, no difference (P > 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P < 0.01) NDF intake was observed for treated diets (3.1 vs. 3.5 kg/d), suggesting that CaO treatment was effective in solubilizing some carbohydrate. These data

  17. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    PubMed

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P < 0.01) was noted for final BW, ADG, G:F, and HCW. Greater final BW was observed for treated stover (4.6%) and straw (5.6%) compared with NT residues; however, AT and NT cobs were similar. Treated straw (9.7%) and stover (12.5%) resulted in greater ADG (P < 0.01) and improved G:F (10.7% and 5.0%, respectively; P < 0.01) compared with NT forms. In Exp. 2, ruminally fistulated steers (n = 5) were used in an unbalanced 5 × 7 incomplete Latin square design with a 2 × 3 + 1 factorial arrangement of treatments. Factors were crop residue (corn cobs, wheat straw, and corn stover) and chemical treatment (NT or AT) fed at 25% of diet DM. Greater DM (73.7% vs. 66.1%; P < 0.01), OM (77.0% vs. 68.5%; P < 0.01), fat (89.2 vs. 85.2; P = 0.02), and NDF (66.8% vs. 51.5%; P < 0.01) digestibilities were noted for AT than for NT. However, no difference (P > 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P < 0.01) NDF intake was observed for treated diets (3.1 vs. 3.5 kg/d), suggesting that CaO treatment was effective in solubilizing some carbohydrate. These data

  18. [Effects of tillage conversion on carbon sequestration capability of farmland soil doubled cropped with wheat and corn].

    PubMed

    Han, Bin; Kong, Fan-Lei; Zhang, Hai-Lin; Chen, Fu

    2010-01-01

    By the methods of field experiment, laboratory analysis, and in situ investigation, this paper studied the effects of different tillage conversion on the carbon sequestration capability of farmland soil doubled cropped with wheat and corn. Compared with conventional tillage (CTA), conservation tillage practices benefited the accumulation of soil organic carbon, among which, no-tillage plus straw returning (NTS) increased the organic carbon accumulation in 0-5 cm soil layer by 18.0%, rotary tillage plus straw returning (RTS) increased this accumulation in 0-5 and 5-10 cm soil layers by 17.6% and 25.0%, respectively, and conventional tillage plus straw returning (CTS) increased the organic carbon in 10-30 cm soil layer by 31.8%. After the conversion from CTA to NTS, the carbon emission from farm operations decreased by 54.3 kg x hm(-2) x a(-1); while the conversion from CTA to CTS and RTS resulted in an increase of this emission by 46.9 kg x hm(-2) x a(-1) and 34.4 kg x hm(-2) x a(-1), respectively. Considering of the accumulation of soil organic carbon and the carbon emission from farm operations, it could be concluded that the conversion from CTA to conservation tillage changed this farmland soil from carbon source to carbon sink, and the RTS among the three conservation tillage modes resulted in the highest soil carbon sequestration (1011.1 kg x hm(-2) x a(-1)).

  19. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  20. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn.

    PubMed

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  1. Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; McIsaac, G. F.

    2013-06-01

    Worldwide expansion of agriculture is impacting Earth's climate by altering the carbon, water and energy fluxes, but climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM). In particular, we implement crop specific phenology schemes, which account for light, water, and nutrient stresses while allocating the assimilated carbon to leaf, root, stem and grain pools; dynamic vegetation structure growth, which better simulate the LAI and canopy height; dynamic root distribution processes in the soil layers, which better simulate the root response of soil water uptake and transpiration; and litter fall due to fresh and old dead leaves to better represent the water and energy interception by both stem and brown leaves of the canopy during leaf senescence. Observational data for LAI, above and below ground biomass, and carbon, water and energy fluxes were compiled from two Ameri-Flux sites, Mead, NE and Bondville, IL, to calibrate and evaluate the model performance under corn (C4)-soybean (C3) rotation system over the period 2001-2004. The calibrated model was able to capture the diurnal and seasonal patterns of carbon assimilation, water and energy fluxes under the corn-soybean rotation system at these two sites. Specifically, the calculated GPP, net radiation fluxes at the top of canopy and latent heat fluxes compared well with observations. The largest bias in model results is in sensible heat flux (H) for corn and soybean at both sites. With dynamic carbon allocation and root distribution processes, model simulated GPP and latent heat flux (LH) were in much better agreement with observation data than for the without dynamic case. Modeled latent heat improved by 12-27% during the growing season at both sites, leading to the improvement in modeled GPP by 13

  2. [Chilean nuclear policy].

    PubMed

    Bobadilla, E

    1996-06-01

    This official document is statement of the President of the Chilean Nuclear Energy Commission, Dr. Eduardo Bobadilla, about the nuclear policy of the Chilean State, Thanks to the international policy adopted by presidents Aylwin (1990-1994) and his successor Frei Ruiz Tagle (1994-), a nuclear development plan, protected by the Chilean entrance to the nuclear weapons non proliferation treaty and Tlatelolco Denuclearization treaty, has started. Chile will be able to develop without interference, an autonomous nuclear electrical system and other pacific uses of nuclear energy. Chile also supports a new international treaty to ban nuclear weapon tests.

  3. Less waste corn, more land in soybeans, and the switch to genetically modified crops: trends with important implications to wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    An abundance of waste corn, a key food of many wildlife species, has helped make possible the widespread success of wildlife management in the United States over the past half century. We found waste corn post harvest in Nebraska declined by 47% from 1978 to 1998 due primarily to improvements in combine headers resulting in a marked decline in ear loss. The reduction in waste coincided with major declines in fat storage by sandhill cranes and white-fronted geese during spring migration. Sandhill cranes, northern pintails, white-fronted geese, and lesser snow geese avoided soybeans while staging in spring in the Rainwater Basin Area and Central Platte River Valley. These findings and other literature suggest soybeans are a marginal food for wildlife particularly during periods of high energy requirements. Soybean acreage has increased by 600% in the United States since 1950 and now comprises nearly one-quarter of the nation>'s cropland. With over 80% of the soybean crop now in genetically modified varieties and treated with glyphosate, weed seed is becoming scarce in soybean fields leaving limited food for wildlife on 72 million acres of U.S. cropland. We suggest that the combined effect of increasing efficiency of crop harvesting techniques, expansion of soybeans and other crops poorly suited for wildlife nutrient needs, and more efficient weed control through the shift to genetically modified crops may severely limit seed-eating wildlife populations in the future unless ways are found to replace high energy food sources being lost. We encourage more research to gain greater insight into effects of declining food resources on wildlife populations and propose that the conservation title of the 2002 farm bill be used as a mechanism to replace part of the high-energy food being lost due to changes in production agriculture.

  4. Delaying corn rootworm resistance to Bt corn.

    PubMed

    Tabashnik, Bruce E; Gould, Fred

    2012-06-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.

  5. High clearance phenotyping systems for season-long measurement of corn, sorghum and other row crops to complement unmanned aerial vehicle systems

    NASA Astrophysics Data System (ADS)

    Murray, Seth C.; Knox, Leighton; Hartley, Brandon; Méndez-Dorado, Mario A.; Richardson, Grant; Thomasson, J. Alex; Shi, Yeyin; Rajan, Nithya; Neely, Haly; Bagavathiannan, Muthukumar; Dong, Xuejun; Rooney, William L.

    2016-05-01

    The next generation of plant breeding progress requires accurately estimating plant growth and development parameters to be made over routine intervals within large field experiments. Hand measurements are laborious and time consuming and the most promising tools under development are sensors carried by ground vehicles or unmanned aerial vehicles, with each specific vehicle having unique limitations. Previously available ground vehicles have primarily been restricted to monitoring shorter crops or early growth in corn and sorghum, since plants taller than a meter could be damaged by a tractor or spray rig passing over them. Here we have designed two and already constructed one of these self-propelled ground vehicles with adjustable heights that can clear mature corn and sorghum without damage (over three meters of clearance), which will work for shorter row crops as well. In addition to regular RGB image capture, sensor suites are incorporated to estimate plant height, vegetation indices, canopy temperature and photosynthetically active solar radiation, all referenced using RTK GPS to individual plots. These ground vehicles will be useful to validate data collected from unmanned aerial vehicles and support hand measurements taken on plots.

  6. Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; McIsaac, G. F.

    2013-12-01

    Worldwide expansion of agriculture is impacting the earth's climate by altering carbon, water, and energy fluxes, but the climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water, and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM). In particular, we implemented crop-specific phenology schemes and dynamic carbon allocation schemes. These schemes account for light, water, and nutrient stresses while allocating the assimilated carbon to leaf, root, stem, and grain pools. The dynamic vegetation structure simulation better captured the seasonal variability in leaf area index (LAI), canopy height, and root depth. We further implemented dynamic root distribution processes in soil layers, which better simulated the root response of soil water uptake and transpiration. Observational data for LAI, above- and belowground biomass, and carbon, water, and energy fluxes were compiled from two AmeriFlux sites, Mead, NE, and Bondville, IL, USA, to calibrate and evaluate the model performance. For the purposes of calibration and evaluation, we use a corn-soybean (C4-C3) rotation system over the period 2001-2004. The calibrated model was able to capture the diurnal and seasonal patterns of carbon assimilation and water and energy fluxes for the corn-soybean rotation system at these two sites. Specifically, the calculated gross primary production (GPP), net radiation fluxes at the top of the canopy, and latent heat fluxes compared well with observations. The largest bias in model results was in sensible heat flux (SH) for corn and soybean at both sites. The dynamic crop growth simulation better captured the seasonal variability in carbon and energy fluxes relative to the static simulation implemented in the original version of ISAM. Especially, with dynamic carbon allocation and root distribution processes, the model

  7. Urea Fertilizer Decreases N2O Emissions Compared to Anhydrous Ammonia in Corn Cropping Systems in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying nitrous oxide (N2O) emissions from corn and soybean fields under different fertilizer regimes is essential to developing national inventories of greenhouse gas (GHG) emissions. The objective of this study was to compare N2O emissions in plots managed for more than 15 yr under continuous ...

  8. Developing and normalizing average corn crop water production functions across years and locations using a system model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water production functions (CWPFs) are often expressed as crop yield vs. consumptive water use or irrigation water applied. CWPFs are helpful for optimizing management of limited water resources, but are site-specific and vary from year to year, especially when yield is expressed as a function ...

  9. Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Campbell, Petya K. E.

    2007-01-01

    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems.

  10. Containment of the western corn rootworm Diabrotica v.virgifera: continued successful management 2008 in southern Switzerland by monitoring and crop rotation.

    PubMed

    Hummel, Hans E; Bertossa, M

    2009-01-01

    Diabrotica virgifera virgifera LeConte (Col.: Chrysomelidae), known as western corn rootworm (WCR) and endemic in North America, invaded Europe about two decades ago. Various unsuccessful attempts have been made to eradicate it from the Old World. Management with a variety of strategies is the option now remaining. WCR management in Southern Switzerland by a unique containment approach has been practiced successfully since 2003 using biotechnical means. Without any chemical pesticides or GMO input, the Swiss government mandated adherence to strict crop rotation. In addition to the economic benefits of this relatively simple approach, the environment was saved a considerable burden of pesticide applications. Other countries are invited to follow this example of sustainable pest management. PMID:20222583

  11. Containment of the western corn rootworm Diabrotica v.virgifera: continued successful management 2008 in southern Switzerland by monitoring and crop rotation.

    PubMed

    Hummel, Hans E; Bertossa, M

    2009-01-01

    Diabrotica virgifera virgifera LeConte (Col.: Chrysomelidae), known as western corn rootworm (WCR) and endemic in North America, invaded Europe about two decades ago. Various unsuccessful attempts have been made to eradicate it from the Old World. Management with a variety of strategies is the option now remaining. WCR management in Southern Switzerland by a unique containment approach has been practiced successfully since 2003 using biotechnical means. Without any chemical pesticides or GMO input, the Swiss government mandated adherence to strict crop rotation. In addition to the economic benefits of this relatively simple approach, the environment was saved a considerable burden of pesticide applications. Other countries are invited to follow this example of sustainable pest management.

  12. Wing shape and size of the western corn rootworm (Coleoptera: Chrysomelidae) is related to sex and resistance to soybean-maize crop rotation.

    PubMed

    Mikac, K M; Douglas, J; Spencer, J L

    2013-08-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a major pest of maize in the United States and more recently, Europe. Understanding the dispersal dynamics of this species will provide crucial information for its management. This study used geometric morphometric analysis of hind wing venation based on 13 landmarks in 223 specimens from nine locations in Illinois, Nebraska, Iowa, and Missouri, to assess whether wing shape and size differed between rotated and continuously grown maize where crop rotation-resistant and susceptible individuals are found, respectively. Before assessing differences between rotation-resistant and susceptible individuals, sexual dimorphism was investigated. No significant difference in wing (centroid) size was found between males and females; however, females had significantly different shaped (more elongated) wings compared with males. Wing shape and (centroid) size were significantly larger among individuals from rotated maize where crop-rotation resistance was reported; however, cross-validation of these results revealed that collection site resistance status was an only better than average predictor of shape in males and females. This study provides preliminary evidence of wing shape and size differences in D. v. virgifera from rotated versus continuous maize. Further study is needed to confirm whether wing shape and size can be used to track the movement of rotation-resistant individuals and populations as a means to better inform management strategies.

  13. Comparison of SVM RBF-NN and DT for crop and weed identification based on spectral measurement over corn fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is important to find an appropriate pattern-recognition method for in-field plant identification based on spectral measurement in order to classify the crop and weeds accurately. In this study, the method of Support Vector Machine (SVM) was evaluated and compared with two other methods, Decision ...

  14. Soil-crop dynamic depth response determined from TDR of a corn silage field compared to EMI measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electromagnetic induction (EMI) mapping techniques have been used to monitor seasonal soil-crop electrical conductivity (EC) dynamics. These mapping techniques can be affected by many confounding seasonal changes in the soil profile, such as water content or salt leaching. Time domain reflectometry ...

  15. Herbicide Transport and Transformations in the Unsaturated Zone of Three Small Agricultural Basins with Corn and Soybean Row Crops

    NASA Astrophysics Data System (ADS)

    Hancock, T. C.; Vogel, J. R.; Sandstrom, M. W.; Capel, P. D.; Bayless, R. E.; Webb, R. M.

    2006-05-01

    In the United States, herbicides are among the most significant nonpoint-source pollutants and were applied to 95% of all fields in corn production and 97% of all fields in soybean production in 2003 and 2004. The United States Geological Survey (USGS) has conducted a study on select herbicides in the unsaturated zone under corn and soybean fields in three predominantly agricultural basins: Morgan Creek (Maryland), Leary Weber Ditch within Sugar Creek (Indiana), and Maple Creek (Nebraska). In 2004, the Morgan Creek and Leary Weber Ditch fields were in soybeans and the Maple Creek fields were in corn. The Maple Creek fields were irrigated, whereas those in Morgan Creek and Leary Weber Ditch were not. Similarities and differences in agricultural management practices, climatic conditions, and natural features, such as soil types and geology, were evaluated as part of the study. In general, the amounts of herbicides entering the unsaturated zone from rain in these basins were minor (1%) compared to amounts commonly applied to the land surface during agricultural practices. Few herbicides were detected on solid core samples from the unsaturated zones of these basins. An exception was found at a Morgan Creek site in an upland recharge area with sandier soils. Here, atrazine concentrations were highest in the near surface solids and decreased with depth. In the unsaturated-zone porewater of the Morgan Creek Basin, parent triazine and acetanilide herbicides were detected and only at the site in the upland recharge area at relatively low concentrations at depths greater than 4 meters, probably because these compounds had not been applied for several years. At the Morgan Creek and Leary Weber Ditch sites, acetanilide metabolites were frequently detected in the unsaturated-zone porewater. In general, the fraction of metolachlor ethane sulfonic acid (ESA) relative to the total mass of parent and metabolites increased with depth overall and at several individual sampling

  16. Impact of the spatial resolution of climatic data and soil physical properties on regional corn yield predictions using the STICS crop model

    NASA Astrophysics Data System (ADS)

    Jégo, Guillaume; Pattey, Elizabeth; Mesbah, S. Morteza; Liu, Jiangui; Duchesne, Isabelle

    2015-09-01

    The assimilation of Earth observation (EO) data into crop models has proven to be an efficient way to improve yield prediction at a regional scale by estimating key unknown crop management practices. However, the efficiency of prediction depends on the uncertainty associated with the data provided to crop models, particularly climatic data and soil physical properties. In this study, the performance of the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model for predicting corn yield after assimilation of leaf area index derived from EO data was evaluated under different scenarios. The scenarios were designed to examine the impact of using fine-resolution soil physical properties, as well as the impact of using climatic data from either one or four weather stations across the region of interest. The results indicate that when only one weather station was used, the average annual yield by producer was predicted well (absolute error <5%), but the spatial variability lacked accuracy (root mean square error = 1.3 t ha-1). The model root mean square error for yield prediction was highly correlated with the distance between the weather stations and the fields, for distances smaller than 10 km, and reached 0.5 t ha-1 for a 5-km distance when fine-resolution soil properties were used. When four weather stations were used, no significant improvement in model performance was observed. This was because of a marginal decrease (30%) in the average distance between fields and weather stations (from 10 to 7 km). However, the yield predictions were improved by approximately 15% with fine-resolution soil properties regardless of the number of weather stations used. The impact of the uncertainty associated with the EO-derived soil textures and the impact of alterations in rainfall distribution were also evaluated. A variation of about 10% in any of the soil physical textures resulted in a change in dry yield of 0.4 t ha-1. Changes in rainfall distribution

  17. Evaluation of the CENTURY model using long-term fertilization trials under corn-wheat cropping systems in the typical croplands of China.

    PubMed

    Cong, Rihuan; Wang, Xiujun; Xu, Minggang; Ogle, Stephen M; Parton, William J

    2014-01-01

    Soil organic matter models are widely used to study soil organic carbon (SOC) dynamics. Here, we used the CENTURY model to simulate SOC in wheat-corn cropping systems at three long-term fertilization trials. Our study indicates that CENTURY can simulate fertilization effects on SOC dynamics under different climate and soil conditions. The normalized root mean square error is less than 15% for all the treatments. Soil carbon presents various changes under different fertilization management. Treatment with straw return would enhance SOC to a relatively stable level whereas chemical fertilization affects SOC differently across the three sites. After running CENTURY over the period of 1990-2050, the SOC levels are predicted to increase from 31.8 to 52.1 Mg ha-1 across the three sites. We estimate that the carbon sequestration potential between 1990 and 2050 would be 9.4-35.7 Mg ha-1 under the current high manure application at the three sites. Analysis of SOC in each carbon pool indicates that long-term fertilization enhances the slow pool proportion but decreases the passive pool proportion. Model results suggest that change in the slow carbon pool is the major driver of the overall trends in SOC stocks under long-term fertilization.

  18. Evaluation of the CENTURY Model Using Long-Term Fertilization Trials under Corn-Wheat Cropping Systems in the Typical Croplands of China

    PubMed Central

    Cong, Rihuan; Wang, Xiujun; Xu, Minggang; Ogle, Stephen M.; Parton, William J.

    2014-01-01

    Soil organic matter models are widely used to study soil organic carbon (SOC) dynamics. Here, we used the CENTURY model to simulate SOC in wheat-corn cropping systems at three long-term fertilization trials. Our study indicates that CENTURY can simulate fertilization effects on SOC dynamics under different climate and soil conditions. The normalized root mean square error is less than 15% for all the treatments. Soil carbon presents various changes under different fertilization management. Treatment with straw return would enhance SOC to a relatively stable level whereas chemical fertilization affects SOC differently across the three sites. After running CENTURY over the period of 1990–2050, the SOC levels are predicted to increase from 31.8 to 52.1 Mg ha−1 across the three sites. We estimate that the carbon sequestration potential between 1990 and 2050 would be 9.4–35.7 Mg ha−1 under the current high manure application at the three sites. Analysis of SOC in each carbon pool indicates that long-term fertilization enhances the slow pool proportion but decreases the passive pool proportion. Model results suggest that change in the slow carbon pool is the major driver of the overall trends in SOC stocks under long-term fertilization. PMID:24751981

  19. Establishing alfalfa in silage corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to recent agricultural statistics, alfalfa was planted on 0.44 million acres and harvested from 2.2 million acres and silage corn was planted and harvested from 1.0 million acres per year in Wisconsin. Because both crops are often grown in rotation, alfalfa could be interseeded at corn pla...

  20. Corn yield and water use efficiency under contrasting irrigation application methods: an AquaCrop study contrasting subsurface drip and sprinkler irrigation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain corn (Zea mays, L.) is sensitive to soil water availability, which can be influenced by irrigation application method. Four facts motivate deficit irrigation of corn in this region. First, declining Ogallala aquifer well yields limit water availability and thus the area of land that can be irr...

  1. Risk Management of GM Crops

    EPA Science Inventory

    Driven by biofuel demand, a significant increase in GM corn acreage is anticipated for the 2007 growing season with future planted GM corn acreage approaching 80% of the corn crop by 2009. As demand increases, grower non-compliance with mandated planting requirements is likely to...

  2. Understanding successful resistance management: The European corn borer and Bt corn in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn that expresses toxins from Bacillus thuringiensis, referred to as Bt c...

  3. 7 CFR 407.11 - Area risk protection insurance for corn.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Area risk protection insurance for corn. 407.11... protection insurance for corn. The corn crop insurance provisions for Area Risk Protection Insurance for the... Insurance Corporation Area Risk Protection Insurance Corn Crop Insurance Provisions 1. Definitions...

  4. Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli.

    PubMed

    Ibrahim, Khalid E; Juvik, John A

    2009-06-10

    Among vegetables, sweet corn ( Zea mays L.) and broccoli ( Brassica oleracea L. ssp. italica) are important sources of dietary carotenoids and tocopherols. Because medical evidence suggests that carotenoid and tocopherol health-promoting activity acts in a dose-dependent manner, conventional breeding to develop elite sweet corn and broccoli germplasm with enhanced levels of these phytochemicals will potentially promote health among the consuming public. This investigation includes the quantitative analysis of carotenoid and tocopherol contents of 41 corn and 24 broccoli genotypes grown in multiple environments (years and seasons in one location) to partition the variation into genetic, environment, and genotype by environment interaction (GxE) components and measure the phenotypic stability of genotypes for these phytochemicals. The primary carotenoids and tocopherols in corn were lutein and gamma-tocopherol (65 and 73% of total carotenoid and tocopherol, respectively), whereas beta-carotene and alpha-tocopherol were dominant in broccoli (65 and 79% of total carotenoid and tocopherol, respectively). Partitioning of the variance indicated that genetic differences among the genotypes averaged for the primary compounds in corn (lutein, zeaxanthin, and alpha- and gamma-tocopherol) and broccoli (beta-carotene, lutein, and alpha- and gamma-tocopherol) accounted for the largest proportion of the variation (67 and 55% of total phenotypic variation averaged across the phytochemicals in sweet corn and broccoli, respectively). Stability analysis identified several corn (IL451b sh2 and IL2027-8 sh2) and broccoli ('Pirate' and 'Baccus') genotypes with relatively high mean concentrations for the various carotenoids and tocopherols that were comparatively stable across seasons and years. The results of this investigation suggest that sweet corn and broccoli germplasm with enhanced concentrations of carotenoids and tocopherols can be developed using conventional breeding protocols

  5. Effects of Pyramided Bt Corn and Blended Refuges on Western Corn Rootworm and Northern Corn Rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Keweshan, Ryan S; Head, Graham P; Gassmann, Aaron J

    2015-04-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments--1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge--on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot. However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence from pure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pest management strategy.

  6. Effects of Pyramided Bt Corn and Blended Refuges on Western Corn Rootworm and Northern Corn Rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Keweshan, Ryan S; Head, Graham P; Gassmann, Aaron J

    2015-04-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments--1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge--on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot. However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence from pure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pest management strategy. PMID:26470183

  7. Effects of changes in land use on soil physical properties and soil organic carbon content in a wheat-corn-sunflower crop sequence, in a loam soil of Argentina.

    NASA Astrophysics Data System (ADS)

    Aparicio, V.; Costa, J. L.

    2012-04-01

    The Argentinean Humid Pampas extend over about 60 million hectares, 90% of which are agricultural lands. The Southeast of the Buenos Aires Province is part of the Humid Pampas, it covers over 1,206,162 hectares, the mean annual temperature is 13.3 °C and the climate is sub-humid. At the present only 6% of the lands are used for pasture. The main activities are agriculture and cattle production. The main crops are wheat, sunflower, corn and soybean. The tillage systems used in the area are: moldboard plow (MP), chisel plow (CP) and no-till (NT). Excessive soil cultivation under MP generates decreases in the levels of soil organic carbon (SOC). The magnitude of such decrease depends on the intensity of the tillage system, the tillage timeliness and the amount and quality of the residues. Adopting NT may reduce the effects of intensive agriculture, through the maintenance and accumulation of SOC. However, there are evidences that, under NT, the bulk density (ρb) in the superficial layers of the soil increases. The soil compaction causes degradation of the soil structure, reduces the soil water availability and reduces the soil hydraulic conductivity. With this scenario and the tendency to increase the surface under NT in the Southeast Humid Pampas, we evaluated the evolution of some soil physical properties and the SOC in a 10-year experiment with a wheat-corn-sunflower rotation. The experiment was carried out in four localities at farmerś fields under three different tillage systems: MP, CP and NT in a randomized complete block design, considering each locality as a block. Each plot had 50 m in width by 100 m length and the treatments were: NT, MP and CP. The results of this experiment have allowed us to verify that: i) the wheat-corn-sunflower crop sequence showed a tendency to reduce the values of bulk density (ρb) but NT increased ρb in the superficial soil layers; ii) the more intensive the tillage system, the higher the change in the mean weight diameter

  8. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  9. CORN FLAVOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn is a large part of the modern diet through sweeteners, oil, processed foods, and animal-derived foods. In addition, corn is eaten directly in bread and cereal-type foods, snack foods, and foods made from masa flour. Corn gluten meal is a byproduct of grain processed by wet milling. Although pri...

  10. Corn oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn oil is a popular vegetable oil in the US and in many other countries. Because of its pleasant nutty flavor, its good stability, and its popularity for making margarines, corn oil has long been considered a premium vegetable oil. Among all of the vegetable oils, corn oil ranks tenth in terms of ...

  11. Within-Season Changes in the Residual Weed Community and Crop Tolerance to Interference over the Long Planting Season of Sweet Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet corn is planted over a long season to temporally extend the perishable supply of ears for fresh and processing markets. Most growers’ fields have weeds persisting to harvest (hereafter called residual weeds), and evidence suggests the crop’s ability to endure competitive stress from residual ...

  12. In-field rates of decomposition and microbial communities colonizing residues vary by depth of residue placement and plant part, but not by crop genotype for residues from two Cry1AB Bt corn hybrids and their non-transgenic i

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adoption of Bt corn has been largely overshadowed by concerns about their unintended effects on human health and the environment. Residues of transgenic Bt crops decomposed more slowly than their non-transgenic isolines in one laboratory study, although no mechanism to explain these observations...

  13. Less waste corn, more land in soybeans, and the switch to genetically modified crops: Trends with important implications for wildlife management

    USGS Publications Warehouse

    Krapu, G.L.; Brandt, D.A.; Cox, R.R.

    2004-01-01

    American agriculture has provided abundant high-energy foods for migratory and resident wildlife populations since the onset of modern wildlife management. Responding to anecdotal evidence that corn residues are declining in cropland, we remeasured waste corn post-harvest in the Central Platte River Valley (CPRV) of Nebraska during 1997 and 1998 to compare with 1978. Post-harvest waste corn averaged 2.6% and 1.8% of yield in 1997 and 1998, respectively. After accounting for a 20% increase in yield, waste corn in 1997 and 1998 was reduced 24% and 47% from 1978. We also evaluated use of soybeans by spring-staging sandhill cranes (Crus canadensis) and waterfowl during spring 1998 and 1999. Despite being widely available in the CPRV, soybeans did not occur in esophageal contents of sandhill cranes (n=174), northern pintails (Anas acuta, n=139), greater white-fronted geese (Anser albifrons, n=198), or lesser snow geese (Chen caerulescens, n=208) collected with food in their esophagi. Lack of soybean consumption by cranes and waterfowl in Nebraska in early spring builds upon previously published findings, suggesting that soybeans are poorly suited for meeting nutrient needs of wildlife requiring a high-energy diet. Given evidence that high-energy food and numerous populations of seed-eating species found on farmland are declining, and the enormous potential risk to game and nongame wildlife populations if high-energy foods were to become scarce, a comprehensive research effort to study the problem appears warranted. Provisions under the Conservation Security subtitle of The Farm Security and Rural Investment Act of 2002 offer a potential mechanism to encourage producers to manage cropland in ways that would replace part of the high-energy foods that have been lost to increasing efficiency of production agriculture.

  14. Large area application of a corn hazard model. [Soviet Union

    NASA Technical Reports Server (NTRS)

    Ashburn, P.; Taylor, T. W. (Principal Investigator)

    1981-01-01

    An application test of the crop calendar portion of a corn (maize) stress indicator model developed by the early warning, crop condition assessment component of AgRISTARS was performed over the corn for grain producing regions of the U.S.S.R. during the 1980 crop year using real data. Performance of the crop calendar submodel was favorable; efficiency gains in meteorological data analysis time were on a magnitude of 85 to 90 percent.

  15. Climate forecasts for corn producer decision making

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertai...

  16. [The Beca's in Chilean psychiatry].

    PubMed

    Escobar, E

    2000-07-01

    The Chilean psychiatrists, Manuel and Francisco Beca, father and son, who lived at the turn of the XIX century and in the first half of the XX respectively, dedicated their lives to the care of mental patients and to the teaching of psychiatry, contributing in their own way and time to the development of the specialty in Chile. Manuel Beca, a clinician, published the first mental patient statistics and Francisco, an academic, became professor of Psychiatry at the Catholic University. Although they dedicated themselves to different fields in the area of mental health, such as clinical research and teaching, both have outstanding merits to become a part of the historical memory of Chilean psychiatry. PMID:11050844

  17. [Tungiasis affects a chilean turist].

    PubMed

    Vergara M, Cristian; Barthel M, Elizabeth; Labarca M, Eduardo; Neira O, Patricia; Espinoza E, Roberto

    2009-06-01

    Tungiasis is a cutaneous ectoparasitosis caused by the female sand flea Tunga penetrans whose higher prevalence occurs in Sub-Saharan Africa, South América and the Caribbean. We report a case of a 23 year old chilean male who presented dermal lesions suggestive of tungiasis on his return from Brazil. The diagnosis was confirmed by biopsy, identifying the arthropod and an egg from one of the lesions. The natural history, co-morbidities and treatment options were reviewed. PMID:19621162

  18. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows:...

  19. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows:...

  20. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows:...

  1. 7 CFR 407.11 - Group risk plan for corn.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Group risk plan for corn. 407.11 Section 407.11..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.11 Group risk plan for corn. The provisions of the Group Risk Plan for Corn for the 2000 and succeeding crop years are as follows:...

  2. Effect of the addition of cattle slurry plus different types of livestock litter to an acid soil and on the production of grass and corn crops.

    PubMed

    Fernández-Sanjurjo, María J; Alvarez Rodríguez, Esperanza; Corti, Giuseppe

    2011-03-01

    The aim of the present study was to determine how the addition of cattle slurry (S), cattle slurry mixed with sawdust and lime (SL) or cattle slurry mixed with sawdust and crushed (2-4 mm) mussel shells (SM), coming from livestock litter affected the chemical properties of an acid soil and the production in a grass/corn rotation. Bulk and rhizospheric soil were analysed. With respect to the not-treated soil, all the treatments increased pH, exchangeable cations and ECEC, and decreased total N, organic C and exchangeable Al. The lowest variations were observed in S treated plots, while considerable variations occurred in the corn plots treated with SM. In this case, the soil pH reached values up to 6.7, in contrast with the S treated plots that reached pH 5.9. An increase in the concentrations of Ca, Mg and K was also observed. These effects were more evident in the rhizosphere than in the bulk. The addition of both lime and crushed shells increased production and quality of the yield. In SL and SM treated plots the total production of grass was 3.5 to 4-fold the production obtained in S plots. The total production of corn increased by 1095 kg ha(-1) in the SL-treated plots and 2559 kg ha(-1) in SM plots; almost all these increments of production were due to the augmented production of cob. We concluded that the use of crushed mussel shells can be recommended as livestock litter suitable to be distributed in acid soils.

  3. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  4. Production cost analysis and use of pesticides in the transgenic and conventional corn crop [Zea mays (L.)] in the valley of San Juan, Tolima.

    PubMed

    Méndez, Kelly Avila; Chaparro Giraldo, Alejandro; Moreno, Giovanni Reyes; Castro, Carlos Silva

    2011-01-01

    A survey of 10 producers of conventional corn (Hybrids PAC 105 and Maximus) and 10 producers of transgenic corn (Pioneer Hybrid 30T17) was carried out in the municipality of Valle de San Juan in the territorial division of Tolima (Colombia), in order to analyze the differences in production costs and environmental impacts of these two agricultural technologies.  The environmental impacts were determined by calculating the field "Environmental Index Quotient" (EIQ). In the production cost analysis, a difference of 15% was found in benefit of the transgenic technology. The structure of costs of the transgenic technology was benefited by the reduced use of pesticides (insecticides and herbicides). In regards to production, the transgenic technology showed a greater yield, 5.22 ton/ha in comparison to 4.25 ton/ha the conventional technology, thus a 22% difference in yield. Finally, the EIQ calculation showed quantitative differences of 196.12 for the conventional technology (EIQ insecticides 165.14 + EIQ herbicides 30.98), while the transgenic technology was of 4.24 (EIQ insecticides 0 + EIQ herbicides 4.24). These results show a minor environmental impact when using the transgenic technology in comparison to the conventional technology, in regards to the use of insecticides and herbicides in a temporal, spatial and genotypical context analysis. :

  5. Bats initiate vital agroecological interactions in corn.

    PubMed

    Maine, Josiah J; Boyles, Justin G

    2015-10-01

    In agroecosystems worldwide, bats are voracious predators of crop pests and may provide services to farmers worth billions of U.S. dollars. However, such valuations make untested assumptions about the ecological effect of bats in agroecosystems. Specifically, estimates of the value of pest suppression services assume bats consume sufficient numbers of crop pests to affect impact pest reproduction and subsequent damage to crops. Corn is an essential crop for farmers, and is grown on more than 150 million hectares worldwide. Using large exclosures in corn fields, we show that bats exert sufficient pressure on crop pests to suppress larval densities and damage in this cosmopolitan crop. In addition, we show that bats suppress pest-associated fungal growth and mycotoxin in corn. We estimate the suppression of herbivory by insectivorous bats is worth more than 1 billion USD globally on this crop alone, and bats may further benefit farmers by indirectly suppressing pest-associated fungal growth and toxic compounds on corn. Bats face a variety of threats globally, but their relevance as predators of insects in ubiquitous corn-dominated landscapes underlines the economic and ecological importance of conserving biodiversity.

  6. Bats initiate vital agroecological interactions in corn.

    PubMed

    Maine, Josiah J; Boyles, Justin G

    2015-10-01

    In agroecosystems worldwide, bats are voracious predators of crop pests and may provide services to farmers worth billions of U.S. dollars. However, such valuations make untested assumptions about the ecological effect of bats in agroecosystems. Specifically, estimates of the value of pest suppression services assume bats consume sufficient numbers of crop pests to affect impact pest reproduction and subsequent damage to crops. Corn is an essential crop for farmers, and is grown on more than 150 million hectares worldwide. Using large exclosures in corn fields, we show that bats exert sufficient pressure on crop pests to suppress larval densities and damage in this cosmopolitan crop. In addition, we show that bats suppress pest-associated fungal growth and mycotoxin in corn. We estimate the suppression of herbivory by insectivorous bats is worth more than 1 billion USD globally on this crop alone, and bats may further benefit farmers by indirectly suppressing pest-associated fungal growth and toxic compounds on corn. Bats face a variety of threats globally, but their relevance as predators of insects in ubiquitous corn-dominated landscapes underlines the economic and ecological importance of conserving biodiversity. PMID:26371304

  7. Bats initiate vital agroecological interactions in corn

    PubMed Central

    Maine, Josiah J.; Boyles, Justin G.

    2015-01-01

    In agroecosystems worldwide, bats are voracious predators of crop pests and may provide services to farmers worth billions of U.S. dollars. However, such valuations make untested assumptions about the ecological effect of bats in agroecosystems. Specifically, estimates of the value of pest suppression services assume bats consume sufficient numbers of crop pests to affect impact pest reproduction and subsequent damage to crops. Corn is an essential crop for farmers, and is grown on more than 150 million hectares worldwide. Using large exclosures in corn fields, we show that bats exert sufficient pressure on crop pests to suppress larval densities and damage in this cosmopolitan crop. In addition, we show that bats suppress pest-associated fungal growth and mycotoxin in corn. We estimate the suppression of herbivory by insectivorous bats is worth more than 1 billion USD globally on this crop alone, and bats may further benefit farmers by indirectly suppressing pest-associated fungal growth and toxic compounds on corn. Bats face a variety of threats globally, but their relevance as predators of insects in ubiquitous corn-dominated landscapes underlines the economic and ecological importance of conserving biodiversity. PMID:26371304

  8. Transgenic corn for control of the European corn borer and corn rootworms: a survey of Midwestern farmers' practices and perceptions.

    PubMed

    Wilson, Ted A; Rice, Marlin E; Tollefson, Jon J; Pilcher, Clinton D

    2005-04-01

    In 2001, a self-administered questionnaire was sent to 1000 corn, Zea mays L., farmers in each of five states (Illinois, Indiana, Iowa, Minnesota, and Nebraska) to evaluate their perceptions of transgenic corn designed to control the European corn borer, Ostrinia nubilalis (Hübner), and corn rootworms, Diabrotica spp. Respondents returned 1,313 surveys (26.2%). Farmers with small acreages planted a greater portion of their corn (54.5%) with transgenic corn for control of European corn borer than farmers with large farms (39.2%). The majority (75.2%) of farmers use crop rotation to control the corn rootworm. Nine insecticides comprised 92.2% of the commercial soil insecticides used for control of corn rootworm larvae. More than one-third of the farmers in Illinois (33.5%) and Indiana (39.4%) treated first-year corn for corn rootworm, primarily due to western corn rootworm egg laying in soybean, Glycine max (L.). When asked whether they would plant transgenic corn protected against the corn rootworm, 35.0% of farmers responded they would, whereas 40.5% said they were unsure. The two greatest farmer concerns about transgenic corn were the ability to sell harvested grain (59.3%) and additional technology fees (54.8%). Respondents indicated that less farmer exposure to insecticide (69.9%) and less insecticide in the environment (68.5%) were the primary benefits of transgenic corn. Farmers who had no concerns about transgenic corn for rootworm control were more likely to purchase the product (46.8%). The most common refuge-planting options farmers favored were adjacent fields (30.9%) and split fields (29.9%). Farmers (21.1%) observed a yield increase (23.7 bu/ha [9.6 bu/acre]) when using transgenic corn for European corn borer control compared with non-transgenic corn. These data can help in understanding farmers' knowledge and concerns regarding transgenic corn. This information may be of value to guide researchers, extension specialists, and policy makers in designing

  9. Increased Survival of Western Corn Rootworm on Transgenic Corn Within Three Generations of Onplant Greenhouse Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural industry has adopted a high dose/refuge strategy as a means of delaying the onset of insect resistance to transgenic crops. Recently, Bt corn products developed for control of western corn rootworm (WCR), Diabrotica virgifera virgifera, have been introduced with less than high-dose...

  10. Quantifying the impact of changes in crop area on evapotranspiration regimes in the US corn and soybean belts through phenological modeling and data assimilation

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2010-12-01

    In recent years, fluctuations in food, feed, and fuel prices have led to shifts in the area of cropland dedicated to maize and soybean cultivation in the Northern Great Plains. We report here on a modeling experiment that compares three different simulated scenarios for actual evapotranspiration (ETa) from maize-soybean dominated areas in North Dakota, South Dakota, Nebraska, Iowa, and Minnesota during the 2000-2009 growing seasons. Scenario 1 relies on MODIS-derived crop maps to provide a baseline of subpixel crop proportions; Scenario 2 increases the proportion of maize by to 100 percent; Scenario 3 substitutes grassland for half the maize. We use a simple soil water balance model of ETa linked to an empirically derived crop specific phenology model also capable of producing seasonal trajectories of canopy attributes. This coupled model has been successfully deployed using flux tower records from multiple locations in the central US. Forcing the coupled model using data from NLDAS, we derive seasonal trajectories of daily NDVI and ETa as well as phenological transition points for maize, soybean, and grassland for each scenario. Seasonal differences in ETa among the three scenarios underscore the importance of how land use modulates land surface phenologies and, in turn, water and energy balances.

  11. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  12. Corn earworm (Lepidoptera: Noctuidae) in northeastern field corn: infestation levels and the value of transgenic hybrids.

    PubMed

    Bohnenblust, Eric; Breining, Jim; Fleischer, Shelby; Roth, Gregory; Tooker, John

    2013-06-01

    Corn earworm, Helicoverpa zea (Boddie), is a polyphagous noctuid pest of agricultural crops across the United States that is gaining attention as a pest of field corn. Before the introduction of transgenic insect-resistant hybrids, this pest was largely ignored in field corn, but now many Bacillus thuringiensis (Bt) corn hybrids have activity against corn earworm. However, the value of control in the northeastern United States is unclear because the risk posed by corn earworm to field corn has not been well characterized. To understand the threat from corn earworm and the value of Bt hybrids in field corn, we assessed corn earworm injury in Bt and non-Bt hybrids at 16 sites across four maturity zones throughout Pennsylvania in 2010, and 10 sites in 2011. We also used corn earworm captures from the PestWatch pheromone trapping network to relate moth activity to larval damage in field corn. Corn earworm damage was less than one kernel per ear at 21 of 26 sites over both years, and the percentage of ears damaged was generally < 15%, much lower than in the southern United States where damage can be up to 30 kernels per ear. At sites with the highest damage levels, Bt hybrids suppressed corn earworm damage relative to non-Bt hybrids, but we found no differences among Bt traits. Cumulative moth captures through July effectively predicted damage at the end of the season. Currently, the additional benefit of corn earworm control provided by Bt hybrids is typically less than US$4.00/ha in northeastern field corn.

  13. Spatiotemporal distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in corn farmscapes.

    PubMed

    Cottrell, Ted E; Tillman, P Glynn

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States but little is known concerning its spatiotemporal distribution in corn cropping systems. Therefore, the spatiotemporal distribution of C. hilaris in farmscapes, when corn was adjacent to cotton, peanut, or both, was examined weekly. The spatial patterns of C. hilaris counts were analyzed using Spatial Analysis by Distance Indices methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops in corn-peanut-cotton farmscapes. This stink bug was detected in six of seven corn-cotton farmscapes, four of six corn-peanut farmscapes, and in both corn-peanut-cotton farmscapes. The frequency of C. hilaris in cotton (89.47%) was significantly higher than in peanut (7.02%) or corn (3.51%). This stink bug fed on noncrop hosts that grew in field borders adjacent to crops. The spatial distribution of C. hilaris in crops and the capture of C. hilaris adults and nymphs in pheromone-baited traps near noncrop hosts indicated that these hosts were sources of this stink bug dispersing into crops, primarily cotton. Significant aggregated spatial distributions were detected in cotton on some dates within corn-peanut-cotton farmscapes. Maps of local clustering indices depicted small patches of C. hilaris in cotton or cotton-sorghum at the peanut-cotton interface. Factors affecting the spatiotemporal dynamics of C. hilaris in corn farmscapes are discussed.

  14. Corns and calluses

    MedlinePlus

    Calluses and corns ... Corns and calluses are caused by pressure or friction on skin. A corn is thickened skin on the top or side ... the bunion because it rubs against the shoe. Corns and calluses are not serious problems.

  15. Blisters, Calluses, and Corns

    MedlinePlus

    ... Help White House Lunch Recipes Blisters, Calluses, and Corns KidsHealth > For Kids > Blisters, Calluses, and Corns Print ... used to all of that stress. What's a Corn? Like calluses, corns are also areas of hard, ...

  16. NASA Provides Assistance to Trapped Chilean Miners

    NASA Video Gallery

    Responding to a request received through the U.S. Department of State from the Chilean minister of health, NASA will provide advice in nutritional and behavioral sciences to assist miners trapped a...

  17. Characterization of Chilean hazel nut sweet cookies.

    PubMed

    Villarroel, M; Biolley, E; Bravo, S; Carrasco, P; Ríos, P

    1993-05-01

    A series of studies were carried out to test the effect of the incorporation of Chilean hazel nut flour in sweet cookies at the levels of 0%, 5%, 10%, 15% and 20%. The proximate chemical analysis of the different flour mixtures showed a regular increase from 7.2 to 12.2%, 14.5% to 18.8% and 1% to 2.2%, respectively, decreasing at the same time with the percentages of water and carbohydrates. Chemical amino acid scores of leucine and threonine in wheat flour improved with the incorporation of Chilean hazel nut flour. The farinographic evaluation made to the different blends showed several changes occurred with the incorporation of Chilean hazel nut flour to wheat flour. These included increase in water absorption, decrease in dough developing time and weakening of the dough. Sensory characteristics such as appearance, texture, flavor and also acceptability improved with the incorporation of Chilean hazel nut flour into the cookie formulas.

  18. Chilean Volcano: June 24-26

    NASA Video Gallery

    This GOES-13 satellite imagery shows the Chilean caldera still emitting a steady stream of ash, three weeks after the initial eruption on June 4, 2011. The cold winter wind from the south carries i...

  19. Selection of herbaceous energy crops for the western corn belt. Final report Part 1: Agronomic aspects, March 1, 1988--November 30, 1993

    SciTech Connect

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A.

    1994-05-01

    The relative high cost of energy derived from biomass is a major deterrent to greater use of biomass for energy production One of the most important methods of lowering the cost of dedicated biomass production is to increase the yield per unit of land area so that fixed costs can be applied to more tons of forage. For this study, the authors selected grass and legume crops with potential for high biomass yields and those that offer protection from soil erosion. The research reported here was conducted to identify those species and cultural practices that would result in high biomass yields for various land capabilities with acceptable and soil erosion potential. They also conducted research to determine if intercropping sorghum into alfalfa or reed canarygrass could increase biomass yields over alfalfa or reed canarygrass grown alone and still have the advantage for limiting soil erosion.

  20. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the U.S. Corn Belt

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu

    2014-12-01

    To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.

  1. Corn insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  2. Nitrogen fertilization affects corn cellulosic biomass and ethanol yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research results on the effects of N management on corn (Zea mays L.) grain production in high-yielding cropping systems are widely available, but information on its effects on cellulosic ethanol potential from corn stover and cobs is limited. Stover and cob biomass and respective ethanol yields all...

  3. Soil carbon and nitrogen dynamic after corn stover harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuel production from plant biomass seems to be a suitable solution to mitigate fossil fuel use and reduce greenhouse gas emissions. Corn (Zea mays) is a highly promising crop for biomass production. However, stover harvest could negatively impact soil properties. Changes in the quantity of corn r...

  4. Residue management, nitrogen, and carbon amendment effects on corn under full and limited irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn residue is a suitable feedstock for livestock forage and cellulosic ethanol. However, information about the response of the subsequent corn crop to residue removal in irrigated no-till continuous corn rotations is lacking. Subsequently, little is known regarding its response under limited irrig...

  5. Greenhouse-selected resistance to Cry3Bb1-producing corn in three western corn rootworm populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic corn producing the Bacillus thuringiensis (Bt) toxin Cry3Bb1 has been useful for controlling western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. However, rapid evolution of resistance by this beetle to Bt c...

  6. A re-examination of corn (Zea mays L.) ear volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helicoverpa zea (Boddie) is a major insect pest of corn and other agricultural crops. In corn adult moths commonly lay eggs on silk of ripening ears. After hatching, larvae feed on silk and developing kernels. This reduces crop quality and may increase fungal infection and mycotoxin production. Subs...

  7. Corn grain yield and soil properties after 10 years of broiler litter amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of broiler litter nutrients for crop production benefits crops, soils, and aids in disposing manure. Understanding corn (Zea mays L.) grain production and soil properties resulting from long-term poultry litter amendment helps establish a sustainable animal manure based corn production with low ...

  8. Challenges and opportunities for improved N management in corn following alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With some exceptions, the alfalfa nitrogen (N) credit usually eliminates the need for manure N and/or fertilizer N to economically optimize yield of the first corn crop following alfalfa. Alfalfa also can provide nearly one-half or more of the N requirement for the second corn crop following alfalfa...

  9. Agroecology of corn production in Tlaxcala, Mexico

    SciTech Connect

    Altieri, M.A.; Trujillo, J.

    1987-06-01

    The primary components of Tlaxcalan corn agriculture are described, including cropping patterns employed, resource management strategies, and interactions of human and biological factors. Tlaxcalan farmers grow corn in an array of polyculture and agroforestry designs that result in a series of ecological processes important for insect pest and soil fertility management. Measurements derived from a few selected fields show that trees integrated into cropping systems modify the aerial and soil environment of associated understory corn plants, influencing their growth and yields. With decreasing distance from trees, surface concentrations of most soil nutrients increase. Certain tree species affect corn yields more than others. Arthropod abundance also varies depending on their degree of association with one or more of the vegetational components of the system. Densities of predators and the corn pest Macrodactylus sp. depend greatly on the presence and phenology of adjacent alfalfa strips. Although the data were derived from nonreplicated fields, they nevertheless point out some important trends, information that can be used to design new crop association that will achieve sustained soil fertility and low pest potentials.

  10. Fostering Teaching Quality in Chilean Universities

    ERIC Educational Resources Information Center

    Guzman Cruzat, Jose Antonio

    2013-01-01

    This study aims to explain the strategies that have been carried out by three Chilean universities in order to advance the quality of their teaching. The studied institutions are the Universidad de los Andes, the Universidad de Talca and the Universidad Catolica de Chile. In each of these three cases the analysis included, both the policies…

  11. Examining Text Environments in Elementary Chilean Classrooms

    ERIC Educational Resources Information Center

    Orellana-Garcia, Pelusa; Sailors, Misty

    2016-01-01

    In this study, we examine the social practices related to literacy in classrooms in Chile in order to examine school-based literacy practices. We also examined the constraints and affordances literacy learning offered Chilean students. Through our case study and cross-case analysis, we discovered that although the classrooms contained an…

  12. Forms of Address in Chilean Spanish

    ERIC Educational Resources Information Center

    Bishop, Kelley; Michnowicz, Jim

    2010-01-01

    The present investigation examines possible social and linguistic factors that influence forms of address used in Chilean Spanish with various interlocutors. A characteristic of the Spanish of Chile is the use of a variety of forms of address for the second person singular, "tu", "vos", and "usted", with corresponding verb conjugations (Lipski…

  13. Chilean Universities and Institutional Quality Assurance Processes

    ERIC Educational Resources Information Center

    López, Daniel A.; Rojas, Maria J.; López, Boris A.; López, Daniel C.

    2015-01-01

    Purpose: The purpose of this paper is to conduct a quantitative analysis of the university accreditation processes in Chilean universities. The aim is to determine the effects of the different variables, especially the type of institutions (state- and privately owned, with and without state financial support) on the results obtained.…

  14. ICT & Learning in Chilean Schools: Lessons Learned

    ERIC Educational Resources Information Center

    Sanchez, Jaime; Salinas, Alvaro

    2008-01-01

    By the early nineties a Chilean network on computers and education for public schools had emerged. There were both high expectancies that technology could revolutionize education as well as divergent voices that doubted the real impact of technology on learning. This paper presents an evaluation of the Enlaces network, a national Information and…

  15. Greenhouse-Selected Resistance to Cry3Bb1-Producing Corn in Three Western Corn Rootworm Populations

    PubMed Central

    Meihls, Lisa N.; Higdon, Matthew L.; Ellersieck, Mark R.; Tabashnik, Bruce E.; Hibbard, Bruce E.

    2012-01-01

    Transgenic corn producing the Bacillus thuringiensis (Bt) toxin Cry3Bb1 has been useful for controlling western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. However, rapid evolution of resistance by this beetle to Bt corn producing Cry3Bb1 has been reported previously from the laboratory, greenhouse, and field. Here we selected in the greenhouse for resistance to Cry3Bb1 corn in three colonies of WCR derived from Kansas, Minnesota, and Wisconsin, respectively. Three generations of rearing on Cry3Bb1 corn significantly increased larval survival on Cry3Bb1 corn, resulting in similar survival in the greenhouse for selected colonies on Cry3Bb1 corn and isoline corn that does not produce Bt toxin. After four to seven generations of rearing on Cry3Bb1 corn, survival in the field on Cry3Bb1 corn relative to isoline corn more than doubled for selected colonies (72%) compared with control colonies (33%). For both selected and control colonies, survival in the field was significantly lower on Cry3Bb1 corn than on isoline corn. On isoline corn, most fitness components were similar for selected colonies and control colonies. However, fecundity was significantly lower for selected colonies than control colonies, indicating a fitness cost associated with resistance. The rapid evolution of resistance by western corn rootworm to Bt corn reported here and previously underlines the importance of effective resistance management for this pest. PMID:23284656

  16. [The Chilean Association of Biomedical Journal Editors].

    PubMed

    Reyes, H

    2001-01-01

    On September 29th, 2000, The Chilean Association of Biomedical Journal Editors was founded, sponsored by the "Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)" (the Governmental Agency promoting and funding scientific research and technological development in Chile) and the "Sociedad Médica de Santiago" (Chilean Society of Internal Medicine). The Association adopted the goals of the World Association of Medical Editors (WAME) and therefore it will foster "cooperation and communication among Editors of Chilean biomedical journals; to improve editorial standards, to promote professionalism in medical editing through education, self-criticism and self-regulation; and to encourage research on the principles and practice of medical editing". Twenty nine journals covering a closely similar number of different biomedical sciences, medical specialties, veterinary, dentistry and nursing, became Founding Members of the Association. A Governing Board was elected: President: Humberto Reyes, M.D. (Editor, Revista Médica de Chile); Vice-President: Mariano del Sol, M.D. (Editor, Revista Chilena de Anatomía); Secretary: Anna María Prat (CONICYT); Councilors: Manuel Krauskopff, Ph.D. (Editor, Biological Research) and Maritza Rahal, M.D. (Editor, Revista de Otorrinolaringología y Cirugía de Cabeza y Cuello). The Association will organize a Symposium on Biomedical Journal Editing and will spread information stimulating Chilean biomedical journals to become indexed in international databases and in SciELO-Chile, the main Chilean scientific website (www.scielo.cl).

  17. [Effects of phytase transgenic corn planting on soil nematode community].

    PubMed

    Zhao, Zong-Chao; Su, Ying; Mou, Wen-Ya; Liu, Man-Qiang; Chen, Xiao-Yun; Chen, Fa-Jun

    2014-04-01

    A healthy soil ecosystem is essential for nutrient cycling and energy conversion, and the impact of exogenous genes from genetically modified crops had aroused wide concerns. Phytase transgenic corn (i. e., the inbred line BVLA430101) was issued a bio-safety certificate on 27 September 2009 in China, which could improve the efficiency of feed utilization, reduce environmental pollution caused by animal manure. In this study, the abundance of trophic groups, community structure and ecological indices of soil nematodes were studied over the growing cycle of phytase transgenic corn (ab. transgenic corn) and control conventional parental corn (ab. control corn) in the field. Totally 29 and 26 nematode genera were isolated from transgenic corn and control corn fields, respectively. The abundances of bacterivores and omnivores-predators, the total number of soil nematodes, and the Shannon index (H) were significantly greater under transgenic corn than under control corn, while the opposite trend was found for the relative abundance of herbivores and the maturity index (Sigma MI) of soil nematodes. Repeated-measures analysis of variance (ANOVA) did not detect any significant effects of transgenic corn on the composition and abundance of nematode trophic groups and ecological indices of soil nematodes. Furthermore, the Student-T test showed that the abundances of bacterivores and omnivores-predators and the total number of soil nematodes during the milk-ripe stage were significant higher in the transgenic corn field than in the control corn field. The effects of transgenic corn planting on soil nematodes might be related to the increase in the nitrogen content of field soil under transgenic corn compared to control corn.

  18. [Effects of phytase transgenic corn planting on soil nematode community].

    PubMed

    Zhao, Zong-Chao; Su, Ying; Mou, Wen-Ya; Liu, Man-Qiang; Chen, Xiao-Yun; Chen, Fa-Jun

    2014-04-01

    A healthy soil ecosystem is essential for nutrient cycling and energy conversion, and the impact of exogenous genes from genetically modified crops had aroused wide concerns. Phytase transgenic corn (i. e., the inbred line BVLA430101) was issued a bio-safety certificate on 27 September 2009 in China, which could improve the efficiency of feed utilization, reduce environmental pollution caused by animal manure. In this study, the abundance of trophic groups, community structure and ecological indices of soil nematodes were studied over the growing cycle of phytase transgenic corn (ab. transgenic corn) and control conventional parental corn (ab. control corn) in the field. Totally 29 and 26 nematode genera were isolated from transgenic corn and control corn fields, respectively. The abundances of bacterivores and omnivores-predators, the total number of soil nematodes, and the Shannon index (H) were significantly greater under transgenic corn than under control corn, while the opposite trend was found for the relative abundance of herbivores and the maturity index (Sigma MI) of soil nematodes. Repeated-measures analysis of variance (ANOVA) did not detect any significant effects of transgenic corn on the composition and abundance of nematode trophic groups and ecological indices of soil nematodes. Furthermore, the Student-T test showed that the abundances of bacterivores and omnivores-predators and the total number of soil nematodes during the milk-ripe stage were significant higher in the transgenic corn field than in the control corn field. The effects of transgenic corn planting on soil nematodes might be related to the increase in the nitrogen content of field soil under transgenic corn compared to control corn. PMID:25011306

  19. Mealybug species from Chilean agricultural landscapes and main factors influencing the genetic structure of Pseudococcus viburni.

    PubMed

    Correa, Margarita C G; Lombaert, Eric; Malausa, Thibaut; Crochard, Didier; Alvear, Andrés; Zaviezo, Tania; Palero, Ferran

    2015-01-01

    The present study aimed to characterize the distribution of mealybug species along Chilean agro-ecosystems and to determine the relative impact of host plant, management strategy, geography and micro-environment on shaping the distribution and genetic structure of the obscure mealybug Pseudococcus viburni. An extensive survey was completed using DNA barcoding methods to identify Chilean mealybugs to the species level. Moreover, a fine-scale study of Ps. viburni genetic diversity and population structure was carried out, genotyping 529 Ps. viburni individuals with 21 microsatellite markers. Samples from 16 localities were analyzed using Bayesian and spatially-explicit methods and the genetic dataset was confronted to host-plant, management and environmental data. Chilean crops were found to be infested by Ps. viburni, Pseudococcus meridionalis, Pseudococcus longispinus and Planococcus citri, with Ps. viburni and Ps. meridionalis showing contrasting distribution and host-plant preference patterns. Ps. viburni samples presented low genetic diversity levels but high genetic differentiation. While no significant genetic variance could be assigned to host-plant or management strategy, climate and geography were found to correlate significantly with genetic differentiation levels. The genetic characterization of Ps. viburni within Chile will contribute to future studies tracing back the origin and improving the management of this worldwide invader. PMID:26559636

  20. Mealybug species from Chilean agricultural landscapes and main factors influencing the genetic structure of Pseudococcus viburni.

    PubMed

    Correa, Margarita C G; Lombaert, Eric; Malausa, Thibaut; Crochard, Didier; Alvear, Andrés; Zaviezo, Tania; Palero, Ferran

    2015-11-12

    The present study aimed to characterize the distribution of mealybug species along Chilean agro-ecosystems and to determine the relative impact of host plant, management strategy, geography and micro-environment on shaping the distribution and genetic structure of the obscure mealybug Pseudococcus viburni. An extensive survey was completed using DNA barcoding methods to identify Chilean mealybugs to the species level. Moreover, a fine-scale study of Ps. viburni genetic diversity and population structure was carried out, genotyping 529 Ps. viburni individuals with 21 microsatellite markers. Samples from 16 localities were analyzed using Bayesian and spatially-explicit methods and the genetic dataset was confronted to host-plant, management and environmental data. Chilean crops were found to be infested by Ps. viburni, Pseudococcus meridionalis, Pseudococcus longispinus and Planococcus citri, with Ps. viburni and Ps. meridionalis showing contrasting distribution and host-plant preference patterns. Ps. viburni samples presented low genetic diversity levels but high genetic differentiation. While no significant genetic variance could be assigned to host-plant or management strategy, climate and geography were found to correlate significantly with genetic differentiation levels. The genetic characterization of Ps. viburni within Chile will contribute to future studies tracing back the origin and improving the management of this worldwide invader.

  1. Mealybug species from Chilean agricultural landscapes and main factors influencing the genetic structure of Pseudococcus viburni

    PubMed Central

    Correa, Margarita C. G.; Lombaert, Eric; Malausa, Thibaut; Crochard, Didier; Alvear, Andrés; Zaviezo, Tania; Palero, Ferran

    2015-01-01

    The present study aimed to characterize the distribution of mealybug species along Chilean agro-ecosystems and to determine the relative impact of host plant, management strategy, geography and micro-environment on shaping the distribution and genetic structure of the obscure mealybug Pseudococcus viburni. An extensive survey was completed using DNA barcoding methods to identify Chilean mealybugs to the species level. Moreover, a fine-scale study of Ps. viburni genetic diversity and population structure was carried out, genotyping 529 Ps. viburni individuals with 21 microsatellite markers. Samples from 16 localities were analyzed using Bayesian and spatially-explicit methods and the genetic dataset was confronted to host-plant, management and environmental data. Chilean crops were found to be infested by Ps. viburni, Pseudococcus meridionalis, Pseudococcus longispinus and Planococcus citri, with Ps. viburni and Ps. meridionalis showing contrasting distribution and host-plant preference patterns. Ps. viburni samples presented low genetic diversity levels but high genetic differentiation. While no significant genetic variance could be assigned to host-plant or management strategy, climate and geography were found to correlate significantly with genetic differentiation levels. The genetic characterization of Ps. viburni within Chile will contribute to future studies tracing back the origin and improving the management of this worldwide invader. PMID:26559636

  2. Crop Yield Response to Increasing Biochar Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  3. A method for mapping corn using the US Geological Survey 1992 National Land Cover Dataset

    USGS Publications Warehouse

    Maxwell, S.K.; Nuckols, J.R.; Ward, M.H.

    2006-01-01

    Long-term exposure to elevated nitrate levels in community drinking water supplies has been associated with an elevated risk of several cancers including non-Hodgkin's lymphoma, colon cancer, and bladder cancer. To estimate human exposure to nitrate, specific crop type information is needed as fertilizer application rates vary widely by crop type. Corn requires the highest application of nitrogen fertilizer of crops grown in the Midwest US. We developed a method to refine the US Geological Survey National Land Cover Dataset (NLCD) (including map and original Landsat images) to distinguish corn from other crops. Overall average agreement between the resulting corn and other row crops class and ground reference data was 0.79 kappa coefficient with individual Landsat images ranging from 0.46 to 0.93 kappa. The highest accuracies occurred in Regions where corn was the single dominant crop (greater than 80.0%) and the crop vegetation conditions at the time of image acquisition were optimum for separation of corn from all other crops. Factors that resulted in lower accuracies included the accuracy of the NLCD map, accuracy of corn areal estimates, crop mixture, crop condition at the time of Landsat overpass, and Landsat scene anomalies. ?? 2006 Elsevier B.V. All rights reserved.

  4. Impact of drought genetics on irrigated corn production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn is the major irrigated crop in the High Plains of Colorado, Nebraska, and Kansas. Declining water levels in the High Plains Aquifer have reduced well capacity such that limited irrigation strategies must be employed. Crop breeding advances have led to the introduction of drought resistant hybri...

  5. Composition and abundance of stink bugs (Heteroptera: Pentatomidae) in corn.

    PubMed

    Tillman, P Glynn

    2010-12-01

    The species composition and abundance of stink bugs (Heteroptera: Pentatomidae) in corn, Zea mays L., was determined in this on-farm study in Georgia. Seven species of phytophagous stink bugs were found on corn with the predominant species being Nezara viridula (L.) and Euschistus servus (Say). All developmental stages of these two pests were found, indicating they were developing on the corn crop. The remaining five species, Oebalus pugnax pugnax (F.), Euschistus quadrator (Rolston), Euschistus tristigmus (Say), Euschistus ictericus (L.), and Acrosternum hilare (Say), were found in relatively low numbers. Adult N. viridula were parasitized by the tachinid parasitoid Trichopoda pennipes (F.). There was a pronounced edge effect in distribution of stink bugs in corn. Population dynamics of N. viridula and E. servus were different on early and late-planted corn. Oviposition by females of both stink bug species occurred in mid-to-late-May and again mid-to-late-June in corn, regardless of planting date. In early planted fields, if stink bug females oviposited on corn in mid-July, the resulting nymphs did not survive to the adult stage in corn because ears were close to physiological maturity and leaves were senescing. Density of stink bug adults in early planted corn was relatively low throughout the growing season. In late-planted corn, females of both stink bug species consistently laid eggs in mid-to-late-July on corn with developing ears. This habitat favored continued nymph development, and the resulting adult population reached high levels. These results indicate that corn management practices play a key role in the ecology of stink bugs in corn agroecosystems and provide information for designing management strategies to suppress stink bugs in farmscapes with corn.

  6. An assessment of Landsat data acquisition history on identification and area estimation of corn and soybeans

    USGS Publications Warehouse

    Hixson, M. M.; Bauer, M. E.; Scholz, Donna K.

    1982-01-01

    In the past decade, numerous studies have demonstrated the potential of satellite remote sensing for providing accurate timely crop area information. This study assessed the impact of Landsat data acquisition history on classification and area estimation accuracy of corn and soybeans in the U.S. Corn Belt. The results illustrate the importance of selecting Landsat acquisitions based on spectral differences in crops at certain development stages. Although early season information can provide estimates of total corn and soybean areas, acquisitions from about emergence and after tasseling of the corn seem to provide a minimal set for accurate identification of corn and soybeans in the U.S. Corn Belt. Additional acquisitions provide only marginally greater separability for corn and soybeans.

  7. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  8. Toxins in transgenic crop byproducts may affect headwater stream ecosystems.

    PubMed

    Rosi-Marshall, E J; Tank, J L; Royer, T V; Whiles, M R; Evans-White, M; Chambers, C; Griffiths, N A; Pokelsek, J; Stephen, M L

    2007-10-01

    Corn (Zea mays L.) that has been genetically engineered to produce the Cry1Ab protein (Bt corn) is resistant to lepidopteran pests. Bt corn is widely planted in the midwestern United States, often adjacent to headwater streams. We show that corn byproducts, such as pollen and detritus, enter headwater streams and are subject to storage, consumption, and transport to downstream water bodies. Laboratory feeding trials showed that consumption of Bt corn byproducts reduced growth and increased mortality of nontarget stream insects. Stream insects are important prey for aquatic and riparian predators, and widespread planting of Bt crops has unexpected ecosystem-scale consequences. PMID:17923672

  9. Research in satellite-aided crop inventory and monitoring

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Dragg, J. L.; Bizzell, R. M.; Trichel, M. C. (Principal Investigator)

    1982-01-01

    Automated information extraction procedures for analysis of multitemporal LANDSAT data in non-U.S. crop inventory and monitoring are reviewed. Experiments to develope and evaluate crop area estimation technologies for spring small grains, summer crops, corn, and soybeans are discussed.

  10. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues like corn stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn residue removal from a no-till, corn-soybean rotation on greenhouse gas (GHG...

  11. Reflectance and internal structure of leaves from several crops during a growing season.

    NASA Technical Reports Server (NTRS)

    Sinclair, T. R.; Hoffer, R. M.; Schreiber, M. M.

    1971-01-01

    Measurements of spectral reflectance characteristics during a growing season of leaves from six crops are reported. These crops include soybeans, wheat, oats, sorghum, corn, and sudangrass. The characteristics measured are related to changes in leaf structure and water content.

  12. Evaluation of the compositional and nutritional values of phytase transgenic corn to conventional corn in roosters.

    PubMed

    Gao, C Q; Ma, Q G; Ji, C; Luo, X G; Tang, H F; Wei, Y M

    2012-05-01

    Three experiments were conducted to evaluate the compositional and nutritional values of corn grains [phytase transgenic corn (PTC) and isogenic conventional corn (CC)] and compare the efficacy of corn-based phytase and extraneous microbial phytase for enhancing the utilization of phytate phosphorus (P) in single corn or corn-soybean mixed meals (corn:soybean = 2.5:1, wt:wt) fed to roosters. Following a 48-h fasting period, 16 roosters were given 50 g of each sample via crop intubation and excreta were collected for 48 h. Nitrogen-free and phosphorus-free diets were used to evaluate endogenous amino acid and endogenous P losses, respectively. Chemical composition was not different between PTC and CC, whereas the phytase content for PTC was greater than CC (8,047 vs. 37 FTU/kg of corn, DM basis; P < 0.001). No difference was observed in the TME and true amino acid availability values between the PTC and CC in roosters. The true P utilization for PTC was greater than CC (37.92 vs. 55.85%; P < 0.001), and CC and PTC contained 0.13 and 0.19% available P (AP, DM basis; P < 0.001), respectively. There was no difference in P utilization (72.76 vs. 70.23%; P > 0.05) between roosters fed PTC and extraneous microbial phytase in equivalent FTU/kg of diets. The results of this study indicated that the chemical composition, TME, and true amino acid availability in PTC are essentially equivalent to that in CC, and the true P utilization for roosters is higher in PTC than in CC. Corn expressing phytase is as efficacious as equivalent microbial phytase when supplemented in corn-soybean diets for chickens.

  13. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  14. PREFACE: XV Chilean Physics Symposium, 2006

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Moreno, José; Ávila, Ricardo; Cubillos, Karla

    2008-02-01

    The Chilean Physics Symposium is the main gathering of Physics in Chile, and its organization is one of the central activities of the Chilean Physical Society (Sociedad Chilena de Física, SOCHIFI). The Symposium assembles the largest number of Chilean and foreign physicists resident in the country. Recent advances in the various research areas in Physics are presented, by researchers from Universities and national research centres. At the same time this is an occasion for the participation of Physics students from both the pre- and post-graduate programs. The Symposium has gathered continuously every two years, since 1978. The organization of the XV symposium was in charge of the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission, and it took place on 15-17 November 2006, at La Reina Nuclear Studies Centre, in the city of Santiago, Chile. During this symposium the relation of research in Physics with education and with the productive sector in the country was also analysed. During the Symposium, 121 abstracts were submitted, from 255 authors. All authors were invited to submit articles for publication in the Symposium Proceedings. The articles received were reviewed by the Symposium Scientific Committee and by invited peers. The criteria for review focussed on the demand for a consistent piece of research, and a clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, 52 articles are presented in this issue. We would like to express our appreciation to their authors. Finally, my personal apology is in order regarding my delay in publishing these proceedings. A sequence of personal and professional highly demanding circumstances have been in the way. I would like to thank Journal of Physics: Conference Series for providing very fast publication of the proceedings, having published them online less than 4 weeks after my

  15. Fiscal year 1981 US corn and soybeans pilot preliminary experiment plan, phase 1

    NASA Technical Reports Server (NTRS)

    Livingston, G. P.; Nedelman, K. S.; Norwood, D. F.; Smith, J. H. (Principal Investigator)

    1981-01-01

    A draft of the preliminary experiment plan for the foreign commodity production forecasting project fiscal year 1981 is presented. This draft plan includes: definition of the phase 1 and 2 U.S. pilot objectives; the proposed experiment design to evaluate crop calendar, area estimation, and area aggregation components for corn and soybean technologies using 1978/1979 crop-year data; a description of individual sensitivity evaluations of the baseline corn and soybean segment classification procedure; and technology and data assessment in support of the corn and soybean estimation technology for use in the U.S. central corn belt.

  16. Reduced nitrogen losses following conversion of row crop agriculture to perennial biofuel crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2O emissions, and require large inputs of N fertilizer. Second generation cellulosic crops have the potential to reduce these N losses, and provide even greater biomass for conversion t...

  17. Language, Identity, Education, and Transmigration: Chilean Adolescents in Sweden

    ERIC Educational Resources Information Center

    King, Kendall; Ganuza, Natalie

    2005-01-01

    This article examines patterns of national, cultural, and linguistic identification among Chilean-Swedish transmigrant adolescents in and around Stockholm, Sweden. Drawing from ethnographic interviews and observations, analysis focuses on adolescents' (a) views on ethnic and national identity; (b) general perceptions of Chileans and Swedes; and…

  18. Some Thoughts on the Evaluation of the Chilean Voucher System

    ERIC Educational Resources Information Center

    Sapelli, Claudio

    2010-01-01

    Many papers describe the Chilean voucher system as the "textbook" voucher case. But this is mistaken and has prevented research to undertake the key question of how the particular design of the Chilean voucher system determines the results obtained in Chile. This also prevents discussion of how a voucher system with a different design could lead…

  19. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  20. Corn and soybean Landsat MSS classification performance as a function of scene characteristics

    NASA Technical Reports Server (NTRS)

    Batista, G. T.; Hixson, M. M.; Bauer, M. E.

    1982-01-01

    In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.

  1. Our Mother Corn.

    ERIC Educational Resources Information Center

    Mathers, Sherry; And Others

    Developed to provide an understanding of the magnitude of the role of corn, referred to as Mother Corn in the cultures of the Seneca, Pawnee, and Hopi tribes, the student text provides information on the tribes' basic lifestyles and the way they grew and used corn in three different parts of the United States. The section on the origin of corn…

  2. Soil C sequestration and agronomic yield of diverse crop rotations under no-till soil management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified crop rotations, which reduce risk associated with adoption of no-till soil management, may influence soil C sequestration and soil quality. This study measured effects of corn-soybean (C-S), corn-soybean-oat/pea hay (C-S-H), or corn-soybean-oat/pea hay-alfalfa-alfalfa (C-S-H-A-A) annual ...

  3. Research in satellite-aided crop forecasting

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Dragg, J. L.; Bizzell, R. M.; Trichel, M. C.

    1984-01-01

    Evaluations of remote sensing procedures developed specifically to estimate non-U.S. spring small grains area show accuracies of less than 10 percent relative difference to reference statistics for North Dakota in 1978 and good comparison with 9000 square miles of observations over four states and Saskatchewan, Canada during the years 1976-79. Processing a 5 x 6-nautical-mile sample site requires a few minutes manual time and a few minutes central processing unit time on an AS-3000 computer. Evaluations of summer crop, corn, and soybeans area estimates show unbiased summer crops estimates in the U.S. central corn belt but significant bias in one of two years for area estimates of corn and soybeans. Based on results to date, a highly automated corn/sorghum/soybean area estimation procedure should be achieved that is applicable to Argentina.

  4. Cultural and environmental influences on temporal-spectral development patterns of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    A technique for evaluating crop temporal-spectral development patterns is described and applied to the analysis of cropping practices and environmental conditions as they affect reflectance characteristics of corn and soybean canopies. Typical variations in field conditions are shown to exert significant influences on the spectral development patterns, and thereby to affect the separability of the two crops.

  5. Pollution Levels in Fog at the Chilean Coast

    NASA Astrophysics Data System (ADS)

    Sträter, E.; Klemm, O.; Westbeld, A.

    2010-07-01

    During July and August 2008 fog water was collected for chemical analysis in Patache, at the coast of northern Chile, 60 km south of Iquique (20°49’S, 70°09’W). Advective fog events occur regularly at the cliff in the coastal range at about 800 m above MSL. People collect these types of fog water at some places along the coast with Large Fog Collectors (LFC) for domestic use and for watering field crops. So far, no chemical analysis of fog water was performed in Patache. Pure fogwater samples (38 samples from 8 fog events) were taken by using a passive Scientific Cylindrical Fog Collector. Major ions and trace metals were quantified. The analyses indicate very high ionic concentrations (mean 3500 µeq/l) and very low pH values (mean 3.3). The mean H+-concentration represents 16 % of the total ionic equivalent concentration. Sulfate is the anion exhibiting the highest concentrations. A mean value of 880 µeq/l was found, which accounts for 24 % of the total mean concentration. In contrast to sulfate, nitrate shows only a low percentage of 8.1 %. Further major ions are sodium (20%) and chloride (19 %), which are typical seasalt ions in coastal fog. High correlations between the measured ions suggest a causal link between concentration in the fog samples and the liquid water content (LWC) of the cloud. The higher the liquid water content the lower are the ionic concentrations. Enrichment factors with sodium as reference ion were calculated to identify potential emission sources contributing to the observed pollutant levels. We found that K+, Na+, Mg2+ and Cl- mainly result from seaspray. Sulfate, however, is enriched by a factor of 13. The measured trace elements are highly enriched by factors up to hundreds of thousands (Zn: 50, Ni: 1800, As: 2400, Cd: 3900, Fe: 100000, Cu: 96000, Pb: 250000). A cluster analysis supports the conclusion that sulfate and the trace elements originate from anthropogenic activities. The sulfate cannot primarily originate from

  6. A method for sampling waste corn

    USGS Publications Warehouse

    Frederick, R.B.; Klaas, E.E.; Baldassarre, G.A.; Reinecke, K.J.

    1984-01-01

    Corn had become one of the most important wildlife food in the United States. It is eaten by a wide variety of animals, including white-tailed deer (Odocoileus virginianus ), raccoon (Procyon lotor ), ring-necked pheasant (Phasianus colchicus , wild turkey (Meleagris gallopavo ), and many species of aquatic birds. Damage to unharvested crops had been documented, but many birds and mammals eat waste grain after harvest and do not conflict with agriculture. A good method for measuring waste-corn availability can be essential to studies concerning food density and food and feeding habits of field-feeding wildlife. Previous methods were developed primarily for approximating losses due to harvest machinery. In this paper, a method is described for estimating the amount of waste corn potentially available to wildlife. Detection of temporal changes in food availability and differences caused by agricultural operations (e.g., recently harvested stubble fields vs. plowed fields) are discussed.

  7. Impacts of climate change on corn yield and the length of corn growing season in U.S. Corn Belt

    NASA Astrophysics Data System (ADS)

    Niyogi, D.; Liu, X.; Takle, E. S.; Anderson, C.; Andresen, J.; Alagarswamy, G.; Gramig, B. M.; Doering, O.

    2015-12-01

    This study is a result of a USDA sponsored project titled Useful to Usable (U2U): "Transforming Climate Variability and Change Information for Cereal Crop Producers". The objective of this project is to improve farm resilience and profitability in the U.S. Corn Belt region by transforming existing meteorological dataset into usable knowledge and tools for the agricultural community. In this study, we conducted the Hybrid-Maize corn growth simulation model at 18 sites across the U.S. Corn Belt with 5 CMIP5 (Coupled Model Intercomparison Project) climate models. The crop model was running for two time periods: 1981-2010 ('current') and 2041-2070 ('future'). We also developed a "delta" method, which combines the current climate variability with the "mean" model projected climate change. The results indicate that under the 'future' climate, growing degree days (GDD) projected corn growing season (from planting date reach to maturity required GDD) are shortened due to the increasing of mean temperature. Compare to the contemporary simulations, the shorter growing season under "future" scenario brings lower attainable yields if farmers using the same cultivar. This presentation will focus on the details about the model simulations, the interactive process employed in developing the simulations, the implications of the results, the uncertainties, and the lessons learned.

  8. Climate change impacts on dryland cropping systems in the central Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...

  9. Temporal spectral response of a corn canopy

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Kimes, D. S.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Techniques developed for the prediction of winter wheat yields from remotely sensed data indicating crop status over the growing season are tested for their applicability to corn. Ground-based spectral measurements in the Landsat Thematic Mapper bands 3 (0.62-0.69 microns), 4 (0.76-0.90 microns) and 5 (1.55-1.75 microns) were performed at one-week intervals throughout the growing season for 24 plots of corn, and analyzed to derive spectral ratios and normalized spectral differences of the IR and shortwave IR bands with the red. The ratios of the near IR and shortwave IR bands are found to provide the highest and most consistent correlations with corn yield and dry matter accumulation, however the value of band 5 could not be tested due to the absence of water stress conditions. Integration of spectral ratios over several dates improved the correlations over those of any single date by achieving a seasonal, rather than instantaneous, estimate of crop status. Results point to the desirability of further tests under other growth conditions to determine whether satellite-derived data will be useful in providing corn yield information.

  10. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.

    1981-01-01

    Progress and technical issues are reported in the development of corn/soybeans area estimation procedures for use on data from South America, with particular emphasis on Argentina. Aspects related to the supporting research section of the AgRISTARS Project discussed include: (1) multisegment corn/soybean estimation; (2) through the season separability of corn and soybeans within the U.S. corn belt; (3) TTS estimation; (4) insights derived from the baseline corn and soybean procedure; (5) small fields research; and (6) simulating the spectral appearance of wheat as a function of its growth and development. To assist the foreign commodity production forecasting, the performance of the baseline corn/soybean procedure was analyzed and the procedure modified. Fundamental limitations were found in the existing guidelines for discriminating these two crops. The temporal and spectral characteristics of corn and soybeans must be determined because other crops grow with them in Argentina. The state of software technology is assessed and the use of profile techniques for estimation is considered.

  11. The distribution of European corn borer (Lepidoptera: Crambidae) moths in pivot-irrigated corn.

    PubMed

    Merrill, Scott C; Walter, Shawn M; Peairs, Frank B; Schleip, Erin M

    2013-10-01

    The European corn borer, Ostrinia nubilalis (Hübner), is a damaging pest of numerous crops including corn, potato, and cotton. An understanding of the interaction between O. nubilalis and its spatial environment may aid in developing pest management strategy. Over a 2-yr period, approximately 8,000 pheromone trap catches of O. nubilalis were recorded on pivot-irrigated corn in northeastern Colorado. The highest weekly moth capture per pivot-irrigated field occurred on the week of 15 July 1997 at 1,803 moths captured. The lowest peak moth capture per pivot-irrigated field was recorded on the week of 4 June 1998 at 220 moths captured. Average trap catch per field ranged from approximately 1.6 moths captured per trap per week in 1997 to approximately 0.3 moths captured per trap per week in 1998. Using pheromone trap moth capture data, we developed a quantified understanding of the spatial distribution of adult male moths. Our findings suggest strong correlations between moth density and adjacent corn crops, prevailing wind direction, and an edge effect. In addition, directional component effects suggest that more moths were attracted to the southwestern portion of the crop, which has the greatest insolation potential. In addition to the tested predictor variables, we found a strong spatial autocorrelation signal indicating positive aggregations of these moths and that males from both inside and outside of the field are being attracted to within-field pheromone traps, which has implications for refuge strategy management.

  12. The distribution of European corn borer (Lepidoptera: Crambidae) moths in pivot-irrigated corn.

    PubMed

    Merrill, Scott C; Walter, Shawn M; Peairs, Frank B; Schleip, Erin M

    2013-10-01

    The European corn borer, Ostrinia nubilalis (Hübner), is a damaging pest of numerous crops including corn, potato, and cotton. An understanding of the interaction between O. nubilalis and its spatial environment may aid in developing pest management strategy. Over a 2-yr period, approximately 8,000 pheromone trap catches of O. nubilalis were recorded on pivot-irrigated corn in northeastern Colorado. The highest weekly moth capture per pivot-irrigated field occurred on the week of 15 July 1997 at 1,803 moths captured. The lowest peak moth capture per pivot-irrigated field was recorded on the week of 4 June 1998 at 220 moths captured. Average trap catch per field ranged from approximately 1.6 moths captured per trap per week in 1997 to approximately 0.3 moths captured per trap per week in 1998. Using pheromone trap moth capture data, we developed a quantified understanding of the spatial distribution of adult male moths. Our findings suggest strong correlations between moth density and adjacent corn crops, prevailing wind direction, and an edge effect. In addition, directional component effects suggest that more moths were attracted to the southwestern portion of the crop, which has the greatest insolation potential. In addition to the tested predictor variables, we found a strong spatial autocorrelation signal indicating positive aggregations of these moths and that males from both inside and outside of the field are being attracted to within-field pheromone traps, which has implications for refuge strategy management. PMID:24224250

  13. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  14. Weed manipulation for insect pest management in corn

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Whitcomb, W. H.

    1980-11-01

    Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.

  15. Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.

    PubMed

    Smith, Candice M; David, Mark B; Mitchell, Corey A; Masters, Michael D; Anderson-Teixeira, Kristina J; Bernacchi, Carl J; Delucia, Evan H

    2013-01-01

    Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and NO emissions; second-generation cellulosic crops have the potential to reduce these N losses. We measured N losses and cycling in establishing miscanthus (), switchgrass ( L. fertilized with 56 kg N ha yr), and mixed prairie, along with a corn ( L.)-corn-soybean [ (L.) Merr.] rotation (corn fertilized at 168-202 kg N ha). Nitrous oxide emissions, soil N mineralization, mid-profile nitrate leaching, and tile flow and nitrate concentrations were measured. Perennial crops quickly reduced nitrate leaching at a 50-cm soil depth as well as concentrations and loads from the tile systems (year 1 tile nitrate concentrations of 10-15 mg N L declined significantly by year 4 in all perennial crops to <0.6 mg N L, with losses of <0.8 kg N ha yr). Nitrous oxide emissions were 2.2 to 7.7 kg N ha yr in the corn-corn-soybean rotation but were <1.0 kg N ha yr by year 4 in the perennial crops. Overall N balances (atmospheric deposition + fertilization + soybean N fixation - harvest, leaching losses, and NO emissions) were positive for corn and soybean (22 kg N ha yr) as well as switchgrass (9.7 kg N ha yr) but were -18 and -29 kg N ha yr for prairie and miscanthus, respectively. Our results demonstrate rapid tightening of the N cycle as perennial biofuel crops established on a rich Mollisol soil.

  16. Simulated acid rain on crops

    SciTech Connect

    Plocher, M.D.; Perrigan, S.C.; Hevel, R.J.; Cooper, R.M.; Moss, D.N.

    1985-10-01

    In 1981, simulated H/sub 2/SO/sub 4/ acid rain was applied to alfalfa and tall fescue and a 2:1 ratio of H/sub 2/SO/sub 4/:HNO/sub 3/ acid rain was applied to alfalfa, tall fescue, barley, wheat, potato, tomato, radish, and corn crops growing in the open field at Corvallis, Oregon. Careful attention was given to effects of the acid rain on the appearance of the foliage, and the effects on yield were measured. Because the effect of pH 4.0 rain on corn yield was the only significant effect noted in the 1981 studies, in 1982, more-extensive studies of the effect of simulated H/sub 2/SO/sub 4//HNO/sub 3/ rain on corn were conducted. No significant effects of acid rain were found on foliage appearance, or on yield of grain or stover in the 1982 studies.

  17. Transgenic approaches to western corn rootworm control.

    PubMed

    Narva, Kenneth E; Siegfried, Blair D; Storer, Nicholas P

    2013-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is a significant corn pest throughout the United States corn belt. Rootworm larvae feed on corn roots causing yield losses and control expenditures that are estimated to exceed US$1 billion annually. Traditional management practices to control rootworms such as chemical insecticides or crop rotation have suffered reduced effectiveness due to the development of physiological and behavioral resistance. Transgenic maize expressing insecticidal proteins are very successful in protecting against rootworm damage and preserving corn yield potential. However, the high rate of grower adoption and early reliance on hybrids expressing a single mode of action and low-dose traits threatens the durability of commercialized transgenic rootworm technology for rootworm control. A summary of current transgenic approaches for rootworm control and the corresponding insect resistance management practices is included. An overview of potential new modes of action based on insecticidal proteins, and especially RNAi targeting mRNA coding for essential insect proteins is provided.

  18. Is the Chilean diet a Mediterranean-type diet?

    PubMed

    Rozowski, Jaime; Castillo, Oscar

    2004-01-01

    Food intake in Chile has changed markedly in the last decades, showing an increase in fat consumption and presently a small fruit and vegetables intake. A parallel is made between the Chilean and Mediterranean diet (mainly the one from Spain, Italy, and Greece), both currently and from 50 years ago. The main differences and similarities are based on food availability. Although Chilean diet seems to be approaching the traditional Mediterranean diet of the 60's, there is concern about changes that are moving away from Chilean traditional diet and towards a western one. A new food pyramid for Chile is proposed based on the traditional Mediterranean-type diet.

  19. The effects of bt corn on rusty crayfish (Orconectes rusticus) growth and survival.

    PubMed

    Linn, Matthew D; Moore, Paul A

    2014-10-01

    Bt crops are one of the most commonly used genetically modified crops worldwide. Bt crops contain a gene that is derived from the bacteria Bacillus thuringiensis, which produces the Cry1Ab toxin. Bt corn that contains the Cry1Ab toxin is used throughout the Midwest United States to control crop pests such as the European corn borer (Ostrinia nubilalis). Headwater streams in regions known for intensive agriculture receive Bt corn detritus after the fall harvest, which is then consumed by a diverse community of stream invertebrates. The rusty crayfish (Orconectes rusticus) is a common invertebrate detritivore in these headwater streams. Both isogenic and Bt corn were grown under the controlled environmental conditions of a greenhouse and, after senescence, were tested for nutritional equality. Rusty crayfish were exposed to one of several detrital treatments composed of Bt corn, Bt corn plus American sycamore (Platanus occidentalis), isogenic corn alone, isogenic corn plus P. occidentalis, or P. occidentalis alone for 8 weeks. Both strains of corn were grown under the controlled environmental conditions in a greenhouse and were tested for nutritional equality after senescence. Crayfish were housed in live streams with a water temperature of 12.8 °C and a 12:12 h light-to-dark photoperiod. Survival and growth of animals within each experimental treatment were monitored each week. After 8 weeks of exposure, there was no statistically significant difference in growth between crayfish in Bt and isogenic treatments. However, survivorship was 31 % lower in the Bt treatment compared with the isogenic treatment. These results suggest that the Bt corn and isogenic corn were of equivalent nutritional value but that Bt corn does have a toxic effect on rusty crayfish during long-term exposure.

  20. The effects of bt corn on rusty crayfish (Orconectes rusticus) growth and survival.

    PubMed

    Linn, Matthew D; Moore, Paul A

    2014-10-01

    Bt crops are one of the most commonly used genetically modified crops worldwide. Bt crops contain a gene that is derived from the bacteria Bacillus thuringiensis, which produces the Cry1Ab toxin. Bt corn that contains the Cry1Ab toxin is used throughout the Midwest United States to control crop pests such as the European corn borer (Ostrinia nubilalis). Headwater streams in regions known for intensive agriculture receive Bt corn detritus after the fall harvest, which is then consumed by a diverse community of stream invertebrates. The rusty crayfish (Orconectes rusticus) is a common invertebrate detritivore in these headwater streams. Both isogenic and Bt corn were grown under the controlled environmental conditions of a greenhouse and, after senescence, were tested for nutritional equality. Rusty crayfish were exposed to one of several detrital treatments composed of Bt corn, Bt corn plus American sycamore (Platanus occidentalis), isogenic corn alone, isogenic corn plus P. occidentalis, or P. occidentalis alone for 8 weeks. Both strains of corn were grown under the controlled environmental conditions in a greenhouse and were tested for nutritional equality after senescence. Crayfish were housed in live streams with a water temperature of 12.8 °C and a 12:12 h light-to-dark photoperiod. Survival and growth of animals within each experimental treatment were monitored each week. After 8 weeks of exposure, there was no statistically significant difference in growth between crayfish in Bt and isogenic treatments. However, survivorship was 31 % lower in the Bt treatment compared with the isogenic treatment. These results suggest that the Bt corn and isogenic corn were of equivalent nutritional value but that Bt corn does have a toxic effect on rusty crayfish during long-term exposure. PMID:25001246

  1. Anaerobic conversion of lignocellulosic corn fiber to butyric acid, a substrate for microbial butanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors, including sharply fluctuating fuel prices and questions regarding the sustainability of fuel produced from potential food crops, have bolstered interest in renewable fuels from alternative feedstocks. We tested pretreated and nonpretreated corn fiber for its susceptibility to hydrolys...

  2. Tightening the Corn Belt.

    ERIC Educational Resources Information Center

    Trisler, Carmen E.

    1995-01-01

    Presents an activity in which students: identify agricultural crops that are grown in Great Lakes states, understand how global climate change will affect these crops, hypothesize about crops that could replace these, compare the current crops' economic value with projected replacement crops, and analyze the impact of global climate on the…

  3. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Corn Farmscapes

    PubMed Central

    Cottrell, Ted E.; Tillman, P. Glynn

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States but little is known concerning its spatiotemporal distribution in corn cropping systems. Therefore, the spatiotemporal distribution of C. hilaris in farmscapes, when corn was adjacent to cotton, peanut, or both, was examined weekly. The spatial patterns of C. hilaris counts were analyzed using Spatial Analysis by Distance Indices methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops in corn–peanut–cotton farmscapes. This stink bug was detected in six of seven corn–cotton farmscapes, four of six corn–peanut farmscapes, and in both corn–peanut–cotton farmscapes. The frequency of C. hilaris in cotton (89.47%) was significantly higher than in peanut (7.02%) or corn (3.51%). This stink bug fed on noncrop hosts that grew in field borders adjacent to crops. The spatial distribution of C. hilaris in crops and the capture of C. hilaris adults and nymphs in pheromone-baited traps near noncrop hosts indicated that these hosts were sources of this stink bug dispersing into crops, primarily cotton. Significant aggregated spatial distributions were detected in cotton on some dates within corn–peanut–cotton farmscapes. Maps of local clustering indices depicted small patches of C. hilaris in cotton or cotton–sorghum at the peanut–cotton interface. Factors affecting the spatiotemporal dynamics of C. hilaris in corn farmscapes are discussed. PMID:25843581

  4. Economics of growth regulator treatment of alfalfa seed for interseeding into silage corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have focused on interseeding of alfalfa into corn for use as a temporary cover crop rather than as a means of jump-starting alfalfa production after corn. In ongoing field studies, we are evaluating whether plant growth regulators (PGR) may be used to aid the establishment of inters...

  5. Distributional patterns of fall armyworm parasitoids in a corn field and pasture field in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An assessment of parasitoids and their selective patterns among Spodoptera frugiperda corn and rice host strains was performed from August 2008-August 2010 in a corn crop and a grass pasture in northern Florida under different seasonal conditions (spring and fall). Sentinel larvae from our laborator...

  6. Prohexadione-calcium improves stand density and yield of alfalfa interseeded into silage corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interseeded alfalfa (Medicago sativa L.) could serve as a dual-purpose crop to provide groundcover for silage corn (Zea mays L.) and forage during subsequent years of production, but interspecific competition often leads to poor stands of alfalfa and unsatisfactory yields of corn. Four experiments e...

  7. Gas and Water Vapor Exchanges in Rainfed Corn-Soybean Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn and soybean production in the Midwestern United States represents one of the most intensive and extensive cropping systems in the world. It is critical to understand the dynamics of CO2 (carbon dioxide) and H2O (water) vapor exchanges above corn and soybean canopies in rainfed environments in o...

  8. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  9. Prohexadione-calcium responsive alfalfa varieties ensure success of corn-interseeded alfalfa production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent USDA-NASS data indicate alfalfa and corn were planted on about 0.8 and 1.9 million hectares per year, respectively, in the Northeast, Great Lakes, Upper Midwest, and Northern Mountain regions the USA. Because both crops are often grown in rotation, alfalfa could be interseeded at corn plantin...

  10. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  11. Late-season corn measurements to assess soil residual nitrate and nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of corn (Zea mays L.) nitrogen (N) management and soil residual nitrate (NO3-N) late in the growing season could provide important management information for subsequent small grain crops and about potential NO3-N loss. Our objective was to evaluate the ability of several late-season corn...

  12. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  13. Corn Storage Protein - A Molecular Genetic Model

    SciTech Connect

    Messing, Joachim

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  14. An evaluation of corn earworm damage and thresholds in soybean

    NASA Astrophysics Data System (ADS)

    Adams, Brian Patrick

    Interactions between corn earworm, Helicoverpa zea (Boddie), and soybean, Glycine max L. (Merrill), were investigated in the Mid-South to evaluate thresholds and damage levels. Field studies were conducted in both indeterminate and determinate modern cultivars to evaluate damage, critical injury levels, and soybean response to simulated corn earworm injury. Field studies were also conducted to evaluate the response of indeterminate cultivars to infestations of corn earworm. Field studies were also conducted to investigate the relationship between pyrethroid insecticide application and corn earworm oviposition in soybean. Results of field studies involving simulated corn earworm damage indicated the need for a dynamic threshold that becomes more conservative as soybean phenology progressed through the reproductive growth stages. This suggested that soybean was more tolerant to fruit loss during the earlier reproductive stages and was able to compensate for fruit loss better during this time than at later growth stages. Results of field studies involving infestations of corn earworm indicated that current thresholds are likely too liberal. This resulted in economic injury level tables being constructed based upon a range of crop values and control costs, however, a general action threshold was also recommended for indeterminate soybean in the Mid-South. Field study results investigating the relationship of pyrethroid application and corn earworm oviposition indicated that even in the presence of an insecticide, corn earworm prefers to oviposit in the upper portion of the canopy, as well as on the leaves as opposed to all other plant parts, consistent with all previous literature.

  15. Agronomic characterization of the Argentina Indicator Region. [U.S. corn belt and Argentine pampas

    NASA Technical Reports Server (NTRS)

    Hicks, D. R. (Principal Investigator)

    1982-01-01

    An overview of the Argentina indicator region including information on topography, climate, soils and vegetation is presented followed by a regionalization of crop livestock land use. Corn/soybean production and exports as well as agricultural practices are discussed. Similarities and differences in the physical agronomic scene, crop livestock land use and agricultural practices between the U.S. corn belt and the Argentine pampa are considered. The Argentine agricultural economy is described. Crop calendars for the Argentina indicator region, an accompanying description, notes on crop-livestock zones, wheat production, field size, and agricultural problems and practices are included.

  16. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  17. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  18. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  19. 'NASA Helps Chilean Miners' Tops This Week @NASA

    NASA Video Gallery

    NASA experts journeyed to Chile to assist the Chilean government on everything from what the trapped miners should eat and drink to how they could best adapt to their cramped, prolonged confinement...

  20. Effects of Field History on Corn Root Injury and Adult Abundance of Northern and Western Corn Rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-10-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith & Lawrence, are major pests of corn (Zea mays L.). Corn producing Bacillus thuringiensis (Bt) toxins are widely used to manage Diabrotica spp.; however, Bt resistance by D. v. virgifera has led to high levels of feeding injury in the field. We tested whether field history affected root injury and abundance of adult Diabrotica spp. In 2013 and 2014, four types of cornfields were sampled: 1) recently rotated fields, 2) continuous cornfields, 3) fields with a history of injury to Bt corn (past problem fields), and 4) fields with greater than one node of injury to Bt corn at the time of sampling (current problem fields). Data were collected on field history, root injury, and the abundance of adult Diabrotica spp. from each field. Root injury and the abundance of D. v. virgifera were significantly greater in current problem fields compared to the other field types, while D. barberi were significantly more abundant in recently rotated fields. Root injury and the abundance of D. v. virgifera did not differ among recently rotated fields, continuous cornfields, and past problem fields. Analysis of field history showed that recently rotated fields were characterized by significantly less Bt corn, soil-applied insecticides, and years planted to corn continuously. These results suggest that greater cropping practice diversity can reduce management inputs for Diabrotica spp.; however, its effects on resistance evolution remain undetermined.

  1. Nutrition education in Chilean primary schools.

    PubMed

    Olivares, Sonia; Zacarías, Isabel; Andrade, Margarita; Kain, Juliana; Lera, Lydia; Vio, Fernando; Morón, Cecilio

    2005-06-01

    The purpose of this study was to incorporate nutrition education in Chilean primary schools. The baseline information included nutritional status, food consumption and physical activity of 1701 children from 3rd to 7th grade in ten urban and rural schools. Main results showed a high prevalence of obesity (15.4%) and overweight (19.6%), low consumption of vegetables, fruits, and dairy products, high intake of snacks and a low level of physical activity, especially in girls. Because the Ministry of Education does not allow the incorporation of new programs into the curriculum, the educational strategy was based on the development of a text book, a teacher's guide, five practical guides for students from third to eighth grade and a CD-Rom. These materials were validated by 36 teachers in six schools through an educational intervention. Teachers and students considered the educational materials useful, motivational and easy to understand. This program is being implemented in 57 schools.

  2. Meteorological models for estimating phenology of corn

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Cochran, J. C.; Hollinger, S. E.

    1984-01-01

    Knowledge of when critical crop stages occur and how the environment affects them should provide useful information for crop management decisions and crop production models. Two sources of data were evaluated for predicting dates of silking and physiological maturity of corn (Zea mays L.). Initial evaluations were conducted using data of an adapted corn hybrid grown on a Typic Agriaquoll at the Purdue University Agronomy Farm. The second phase extended the analyses to large areas using data acquired by the Statistical Reporting Service of USDA for crop reporting districts (CRD) in Indiana and Iowa. Several thermal models were compared to calendar days for predicting dates of silking and physiological maturity. Mixed models which used a combination of thermal units to predict silking and days after silking to predict physiological maturity were also evaluated. At the Agronomy Farm the models were calibrated and tested on the same data. The thermal models were significantly less biased and more accurate than calendar days for predicting dates of silking. Differences among the thermal models were small. Significant improvements in both bias and accuracy were observed when the mixed models were used to predict dates of physiological maturity. The results indicate that statistical data for CRD can be used to evaluate models developed at agricultural experiment stations.

  3. Starlink corn: a risk analysis.

    PubMed Central

    Bucchini, Luca; Goldman, Lynn R

    2002-01-01

    Modern biotechnology has dramatically increased our ability to alter the agronomic traits of plants. Among the novel traits that biotechnology has made available, an important group includes Bacillus thuringiensis-derived insect resistance. This technology has been applied to potatoes, cotton, and corn. Benefits of Bt crops, and biotechnology generally, can be realized only if risks are assessed and managed properly. The case of Starlink corn, a plant modified with a gene that encodes the Bt protein Cry9c, was a severe test of U.S. regulatory agencies. The U.S. Environmental Protection Agency had restricted its use to animal feed due to concern about the potential for allergenicity. However, Starlink corn was later found throughout the human food supply, resulting in food recalls by the Food and Drug Administration and significant disruption of the food supply. Here we examine the regulatory history of Starlink, the assessment framework employed by the U.S. government, assumptions and information gaps, and the key elements of government efforts to manage the product. We explore the impacts on regulations, science, and society and conclude that only significant advances in our understanding of food allergies and improvements in monitoring and enforcement will avoid similar events in the future. Specifically, we need to develop a stronger fundamental basis for predicting allergic sensitization and reactions if novel proteins are to be introduced in this fashion. Mechanisms are needed to assure that worker and community aeroallergen risks are considered. Requirements are needed for the development of valid assays so that enforcement and post market surveillance activities can be conducted. PMID:11781159

  4. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  5. Landsat classification of Argentina summer crops

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Gargantini, C. E.; Redondo, F. V.

    1987-01-01

    A Landsat MSS and TM classification approach based on three features derived from the greenness profile has proved very effective in separating and identifying corn, soybeans, and other ground cover classes in the U.S. The objective of this study is to investigate the separation of summer crops in Argentina, one of the most important commodity exporters, using the same greenness profile features that have proved effective in the U.S. Corn Belt. The area chosen for study is a more complex cropping practice area located in the north-west corner of Buenos Aires province in Pampa Humeda, where corn, soybean, sorghum, sunflower, and pastures are cultivated. It is shown that the profile features can provide very effective separation, except in the case of corn from sorghum. Separation between corn and soybeans was found to be greater than in the U.S. This study suggests that the automatic, unsupervised classification approach developed in the U.S., with relatively minor modification, can be used for summer crop area estimation in Argentina.

  6. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection

    PubMed Central

    Meihls, Lisa N.; Higdon, Matthew L.; Siegfried, Blair D.; Miller, Nicholas J.; Sappington, Thomas W.; Ellersieck, Mark R.; Spencer, Terence A.; Hibbard, Bruce E.

    2008-01-01

    To delay evolution of insect resistance to transgenic crops producing Bacillus thuringiensis (Bt) toxins, nearby “refuges” of host plants not producing Bt toxins are required in many regions. Such refuges are expected to be most effective in slowing resistance when the toxin concentration in Bt crops is high enough to kill all or nearly all insects heterozygous for resistance. However, Bt corn, Zea mays, introduced recently does not meet this “high-dose” criterion for control of western corn rootworm (WCR), Diabrotica virgifera virgifera. A greenhouse method of rearing WCR on transgenic corn expressing the Cry3Bb1 protein was used in which approximately 25% of previously unexposed larvae survived relative to isoline survival (compared to 1–4% in the field). After three generations of full larval rearing on Bt corn (Constant-exposure colony), WCR larval survival was equivalent on Bt corn and isoline corn in greenhouse trials, and the LC50 was 22-fold greater for the Constant-exposure colony than for the Control colony in diet bioassays with Cry3Bb1 protein on artificial diet. After six generations of greenhouse selection, the ratio of larval recovery on Bt corn to isoline corn in the field was 11.7-fold greater for the Constant-exposure colony than the Control colony. Removal from selection for six generations did not decrease survival on Bt corn in the greenhouse. The results suggest that rapid response to selection is possible in the absence of mating with unexposed beetles, emphasizing the importance of effective refuges for resistance management. PMID:19047626

  7. Automated mapping of soybean and corn using phenology

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng; Hu, Lina; Yu, Le; Gong, Peng; Biging, Gregory S.

    2016-09-01

    For the two of the most important agricultural commodities, soybean and corn, remote sensing plays a substantial role in delivering timely information on the crop area for economic, environmental and policy studies. Traditional long-term mapping of soybean and corn is challenging as a result of the high cost of repeated training data collection, the inconsistency in image process and interpretation, and the difficulty of handling the inter-annual variability of weather and crop progress. In this study, we developed an automated approach to map soybean and corn in the state of Paraná, Brazil for crop years 2010-2015. The core of the approach is a decision tree classifier with rules manually built based on expert interaction for repeated use. The automated approach is advantageous for its capacity of multi-year mapping without the need to re-train or re-calibrate the classifier. Time series MODerate-resolution Imaging Spectroradiometer (MODIS) reflectance product (MCD43A4) were employed to derive vegetation phenology to identify soybean and corn based on crop calendar. To deal with the phenological similarity between soybean and corn, the surface reflectance of the shortwave infrared band scaled to a phenological stage was used to fully separate the two crops. Results suggested that the mapped areas of soybean and corn agreed with official statistics at the municipal level. The resultant map in the crop year 2012 was evaluated using an independent reference data set, and the overall accuracy and Kappa coefficient were 87.2% and 0.804 respectively. As a result of mixed pixel effect at the 500 m resolution, classification results were biased depending on topography. In the flat, broad and highly-cropped areas, uncultivated lands were likely to be identified as soybean or corn, causing over-estimation of cropland area. By contrast, scattered crop fields in mountainous regions with dense natural vegetation tend to be overlooked. For future mapping efforts, it has great

  8. Corn-based feedstock for biofuels: Implications for agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Tan, Z.

    2010-12-01

    Crop residue as a source of feedstock for biofuels production must retain ecosystem services and be sustainable. The challenge is to develop cropping system management strategies that balance the demand for increasing biofuel needs with ecosystem sustainability. This study was designed to evaluate impacts of changes in land use and management caused by corn-based biofuel production (grain, cob, stover) on soil fertility and ecosystem sustainability. Our specific goal was to investigate how the levels of corn residue removal influence current soil carbon and nutrient budgets and how these budgets are maintained under proposed production scenarios. Soil organic carbon (SOC), an important carbon component in the life cycle of biofuel production, is a sensitive indicator of cropping system sustainability. We used a soil carbon and nutrient balance approach developed from published field observations and a validated mechanistic model to analyze historical corn grain yields and fertilizer usage associated with various management practices at the county scale across the United States. Our analyses show that ecosystem carbon flux demonstrates significant spatial variability, relying heavily on the total biomass production level and residue harvest intensity; SOC budgets depend mainly on the proportion of residue removal, tillage type, and previous SOC stock level. Our results also indicate that corn cob removal for biofuel has little effect on soil carbon and nutrient balances under conventional management practices, while necessary irrigation can contribute greatly to corn-based biofuel production and ecosystem sustainability in the western side of the Great Plains and the eastern foothills of the Rocky Mountains.

  9. PRODUCING HIGH CORN YIELDS.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Coll. of Agriculture.

    RESOURCE MATERIAL ON CORN PRODUCTION FOR HIGH SCHOOL VOCATIONAL AGRICULTURE AND ADULT FARMER CLASSES WAS DESIGNED BY A STATE LEVEL GROUP OF SUBJECT MATTER SPECIALISTS, TEACHER EDUCATORS, SUPERVISORS, AND TEACHERS TO HELP SOLVE PROBLEMS THAT CONFRONT CORN PRODUCERS AT PLANTING TIME. THE SUBJECT MATTER CONCERNS PLANTING TIME, DEPTH, ROW WIDTH,…

  10. Herbicide-resistant crops, resistant weeds, and herbicide drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New herbicide-resistance traits in corn and soybean may bring new management challenges for fruit and vegetable growers in the Mid-Atlantic region. Herbicide-resistant crops are an important weed management technology in row crop agriculture that allow growers to apply an herbicide to control weed...

  11. Dynamic precision phenotyping reveals mechanism of crop tolerance to herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  12. Benefits of annual and perennial forages in row crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as corn and soybean stover dry weight, stover mineral concentrations, seed ...

  13. Crop identification using Landsat temporal-spectral profiles

    NASA Technical Reports Server (NTRS)

    Odenweller, J. B.; Johnson, K. I.

    1982-01-01

    The temporal-spectral profile is a detailed indicator of the physical state of a field through time. Characteristic profiles have been observed for a variety of crops and other cover classes from Landsat data in the United States Corn Belt. These profiles contain information to support crop identification at various levels.

  14. Insect Pests of Field Crops. MP-28.

    ERIC Educational Resources Information Center

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  15. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Corn Farmscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is an economic pest of cotton across the southeastern U.S., however, little is known concerning its spatial distribution in corn fields of this region. It is likely that the proximity of other adjacent row crops, i.e., cotton an...

  16. Phosphorus Removal By Silage Corn In Southern Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn silage is the predominant crop in Idaho used for recovering phosphorus (P) that has accumulated in soils from dairy manure applications. However, little is known about how much phosphorus and other nutrients are being recovered under Idaho conditions. The objective of the study is to estimate p...

  17. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the r...

  18. Long-term impacts of cropping systems and landscape positions on grain crop production on claypan soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  19. Long-term impacts of cropping systems and landscape positions on claypan-soil grain crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  20. Exergetic evaluation of corn-ethanol production in China

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Chen, B.; Ji, Xi; He, Y. F.; Chen, G. Q.

    2009-05-01

    The cumulative exergetic method is used in this study to identify the renewability of the total corn-ethanol production in China when capturing all natural nonrenewable resources consumed in the integrated process including agricultural crop production, corn transportation, industrial conversion and waste treatment. A modified exergy-based indicator is thereby proposed to quantify the renewability of corn-ethanol production process. For the conditions prevailing in China, the renewability indicator as suggested by Berthiaume et al. is calculated to be -4.58, denoting the production process is highly nonrenewable. In addition, a novel indicator is also presented to reveal the environmental cost-effectiveness of the corn-ethanol process as supplement to the renewability indicator. Finally, the sensitivity analysis shows that the defined system boundaries, electricity-generation structure of the country, and technological constraints and choices of production process influence the renewability evaluation results.

  1. New corn technology: scientists are all eyes and ears.

    PubMed Central

    Brown, K

    1999-01-01

    Corn and other crops contaminated with the fungus Aspergillus flavus give off a carcinogenic by-product called aflatoxin, which is blamed for high rates of liver cancer in Asia and Africa, where rice and corn are food staples. In the United States, aflatoxin's major threat is to farm animals, which can get sick or even die from consuming too much of the toxin. Scientists are working on ways to keep the deadly toxin out of the food supply. Two techniques under development identify aflatoxin-tainted corn by using infrared light to elicit telltale sounds and light from contaminated kernels. Other scientists hope to protect corn from A. flavus in the first place by designing genetically engineered aflatoxin-resistant grain species and by working with drugs such as oltipraz that reportedly detoxify aflatoxin already in the body. PMID:10504167

  2. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USGS Publications Warehouse

    Hively, Wells; Sjoerd Duiker,; Greg McCarty,; Prabhakara, Kusuma

    2015-01-01

    In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d’ Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery

  3. Impact of corn stover removal on soil microbial communities in no-till and conventional till continuous corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) residue, or stover, can be used as a dry forage replacement in beef cattle diets and is being considered as a feedstock for cellulosic biofuel production. The soil quality and crop productivity ramifications of removing stover, however, likely will depend on stover removal rate an...

  4. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Reule, Curtis A

    2008-01-01

    We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems. PMID:18574163

  5. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Reule, Curtis A

    2008-01-01

    We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems.

  6. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  7. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.; Pont, W.; Thelen, B.; Sellman, A.

    1981-01-01

    Accomplishments for a machine-oriented small grains labeler T&E, and for Argentina ground data collection are reported. Features of the small grains labeler include temporal-spectral profiles, which characterize continuous patterns of crop spectral development, and crop calendar shift estimation, which adjusts for planting date differences of fields within a crop type. Corn and soybean classification technology development for area estimation for foreign commodity production forecasting is reported. Presentations supporting quarterly project management reviews and a quarterly technical interchange meeting are also included.

  8. Results of Chilean water markets: Empirical research since 1990

    NASA Astrophysics Data System (ADS)

    Bauer, Carl J.

    2004-09-01

    Chile's free-market Water Code turned 20 years old in October 2001. This anniversary was an important milestone for both Chilean and international debates about water policy because Chile has become the world's leading example of the free-market approach to water law and water resources management, the textbook case of treating water rights not merely as private property but also as a fully marketable commodity. The predominant view outside of Chile is that Chilean water markets and the Chilean model of water management have been a success, and this perception has encouraged other countries to follow Chile's lead in water law reform. Much of the debate about Chilean water markets, however, has been based more on theoretical or political beliefs than on empirical study. This paper reverses that emphasis by reviewing the evolution of empirical research about these markets since 1990, when Chile returned to democratic government after 16 years of military rule. During the period since 1990, understanding of how Chilean water markets have worked in practice has gradually improved. There have been two major trends in this research: first, a gradual shift from exaggerated claims of the markets' success toward more balanced assessments of mixed results and, second, a heavy emphasis on the economics of water rights trading with very little attention given to the Water Code's impacts on social equity, river basin management, environmental protection, or resolution of water conflicts. The analysis in this study is qualitative and interdisciplinary, combining law, economics, and institutions.

  9. Closing the Carbon Budget in Perennial Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Anderson-Teixeira, K. J.; Bernacchi, C.; Hudiburg, T. W.; Masters, M. D.; DeLucia, E. H.

    2013-12-01

    At present, some 40% of corn grown in the United States, accounting for more than 26 million acres of farmland, is processed for bioethanol. Interest has arisen in converting biofuel production from corn grain ethanol to cellulosic ethanol, derived primarily from cellulose from dedicated energy crops. As many cellulosic biofuel feedstocks are perennial grasses, conversion from annual corn cropping to perennials represents a substantial change in farming practices with the potential to alter the plant-soil relationship in the Midwestern United States. Elimination of annual tillage preserves soils structure, conserving soil carbon and maintaining plant root systems. Five years of perennial grass establishment in former agricultural land in Illinois has shown a significant change in soil carbon pools and fluxes. Atmospheric carbon exchange monitoring combined with vegetation and soil sampling and respiration measurements confirm that in the first 3 years (establishment phase), perennial giant grasses Miscanthus x giganteus and Panicum virgatum rapidly increased belowground carbon allocation >400% and belowground biomass 400-750% compared to corn. Following establishment, perennial grasses maintained below- and aboveground annual biomass production, out-performing corn in both average and drought conditions. Here we offer a quantitative comparison of the carbon allocation pathways of corn and perennial biofuel crops in Midwestern landscapes, demonstrating the carbon benefits of perennial cropping through increased C allocation to root and rhizome structures. Long rotation periods in perennial grasses combined with annual carbon inputs to the soil system are expected to convert these agricultural soils from atmospheric carbon sources to carbon sinks.

  10. New industrial uses, new markets for US crops: Status of technology and commercial adoption

    SciTech Connect

    Harsch, J.

    1993-08-01

    ;Contents: Foreword: Agriculture at the Crossroads; Transforming the Vision Into Reality: How To Make It Happen; Castor and Lesquerella; Corn; Crambe and Industrial Rapeseed; Dairy Products; Diesel from Crops; Ethanol from Crops; Forest Byproducts; Guayule; Jojoba; Kenaf; Livestock Byproducts; Milkweed; Polymers from Crops; Soybeans; Taxol and Other Pharmaceuticals from Plants; Wheat; Afterword: The Opportunity is Now.

  11. 78 FR 38483 - Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    .... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24, 1983... the Federal Register at 76 FR 44200-44224. The public was afforded 60 days to submit comments after..., ARPI Corn Crop Insurance Provisions, ARPI Cotton Crop Insurance Provisions, ARPI Forage Crop...

  12. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

    PubMed

    Reddy, Krishna N; Bellaloui, Nacer; Zablotowicz, Robert M

    2010-03-24

    When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift.

  13. Fitness costs associated with Cry1F resistance in the European corn borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crops producing insecticidal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely planted in order to manage key insect pests. Bt crops can provide an effective tool for pest management; however, the evolution of Bt resistance can diminish this benefit. The European corn b...

  14. Development of a corn and soybean labeling procedure for use with profile parameter classification

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1982-01-01

    Some essential processes for the development of a green-number-based logic for identifying (labeling) crops in LANDSAT imagery are documented. The supporting data and subsequent conclusions that resulted from development of a specific labeling logic for corn and soybean crops in the United States are recorded.

  15. Kepler Corn Maze

    NASA Video Gallery

    The Dell'Osso Family Farm, located on the outskirts of Lathrop, California held the grand opening of their corn maze that was designed with a NASA theme. The maze is part of a nation-wide group of ...

  16. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  17. The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn.

    PubMed

    Harrigan, George G; Ridley, William P; Miller, Kathleen D; Sorbet, Roy; Riordan, Susan G; Nemeth, Margaret A; Reeves, William; Pester, Todd A

    2009-10-28

    MON 87460 contains a gene that expresses cold shock protein B (CSPB) from Bacillus subtilis. Expression of this gene confers a yield advantage when yield is limited by water availability. Compositional analyses of MON 87460 and a conventional corn variety with similar background genetics were conducted on forage and grain harvested from multiple replicated field sites across the United States during the 2006 growing season and across Chile during the 2006-2007 growing season. The U.S. field trials were conducted under typical agronomic practices, whereas the Chilean field trials incorporated a strip-plot design that included well-watered and water-limited treatments. Results demonstrated that levels of the components analyzed were comparable between MON 87460, the conventional control, and the commercially available corn hybrids.

  18. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  19. [Effects of different tillage and fertilization modes on the soil physical and chemical properties and crop yield under winter wheat/spring corn rotation on dryland of east Gansu, Northwest China].

    PubMed

    Zhang, Jian-jun; Wang, Yong; Fan, Ting-lu; Guo, Tian-wen; Zhao, Gang; Dang, Yi; Wang, Lei; Li, Shang-zhong

    2013-04-01

    Based on the 7-year field experiment on the dryland of east Gansu of Northwest China in 2005-2011, this paper analyzed the variations of soil moisture content, bulk density, and nutrients content at harvest time of winter wheat and of the grain yield under no-tillage and conventional tillage and five fertilization modes, and approached the effects of different tillage and fertilization modes on the soil water storage and conservation, soil fertility, and grain yield under winter wheat/ spring corn rotation. In 2011, the soil moisture content in 0-200 cm layer and the soil bulk density and soil organic matter and available nitrogen and phosphorus contents in 0-20 cm and 20-40 cm layers under different fertilization modes were higher under no-tillage than under conventional tillage. Under the same tillage modes, the contents of soil organic matter and available nitrogen and available phosphorus were higher under the combined application of organic and inorganic fertilizers, as compared with other fertilization modes. The soil available potassium content under different tillage and fertilization modes decreased with years. The grain yield under conventional tillage was higher than that under no-tillage. Under the same tillage modes, the grain yield was the highest under the combined application of organic and inorganic fertilizers, and the lowest under no fertilization. In sum, no-tillage had the superiority than conventional tillage in improving the soil water storage and conservation and soil fertility, and the combined application of organic and inorganic fertilizers under conventional tillage could obtain the best grain yield.

  20. AgRISTARS: Foreign commodity production forecasting. Corn/soybean decision logic development and testing

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Abotteen, K. M. (Principal Investigator)

    1980-01-01

    The development and testing of an analysis procedure which was developed to improve the consistency and objectively of crop identification using Landsat data is described. The procedure was developed to identify corn and soybean crops in the U.S. corn belt region. The procedure consists of a series of decision points arranged in a tree-like structure, the branches of which lead an analyst to crop labels. The specific decision logic is designed to maximize the objectively of the identification process and to promote the possibility of future automation. Significant results are summarized.

  1. Using Landsat digital data to detect moisture stress in corn-soybean growing regions

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1980-01-01

    As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.

  2. Recommended data sets, corn segments and spring wheat segments, for use in program development

    NASA Technical Reports Server (NTRS)

    Austin, W. W. (Principal Investigator)

    1981-01-01

    The sets of Large Area Crop Inventory Experiment sites, crop year 1978, which are recommended for use in the development and evaluation of classification techniques based on LANDSAT spectral data are presented. For each site, the following exists: (1) accuracy assessment digitized ground truth; (2) a minimum of 5 percent of the scene ground truth identified as corn or spring wheat; and (3) at least four acquisitions of acceptable data quality during the growing season of the crop of interest. The recommended data sets consist of 41 corn/soybean sites and 17 spring wheat sites.

  3. Agricultural fuel crops, 201-county Tennessee Valley region

    SciTech Connect

    Madewell, C.E.; D'Souza, G.E.; Esensoy, Y.; Broder, J.D.; Simpson, G.S.

    1983-11-01

    The main objective of the report is to identify and analyze the potential economic and environmental impacts arising from the supplementation of a conventional liquid fuels energy system utilizing fossil-derived fuels with a renewable liquid fuels energy source relying primarily on agricultural fuel crops. The scope of this study is limited to the 201 counties of the Tennessee Valley region. Corn and soybeans, the two predominant crops in this region, are used as surrogates around which certain scenarios are constructed to evaluate the impacts of agricultural fuel crops production. Corn and soybeans are believed to represent greatest regional impact cases. Further, this report presents a data base and inventory summary of the region's agricultural land resources, crops and crop residues, land use patterns, erosion problems, conservation needs, and land suitability and potential availability for fuel crop production. Also included is a profile of institutions associated with agricultural fuel crop production, together with functions and responsibilities. The study is multidisciplinary in nature and is part of the overall biomass integrated environmental assessment for the Tennessee Valley region. The report contains the following sections: (1) inventory summary of Tennessee Valley agricultural resources; crops and crop residues; land use; current erosion status; trends in crop and use and yields; land suitability and potential availability for fuel crops production; and background information on alcohol and major economic related factors; (2) economic and environmental impacts arising from production of corn for ethanol fuel; (3) crop residue availability in the Tennessee Valley; (4) an integrated environmental assessment of vegetable oil crops; and (5) profile of institutions associated with agricultural fuel crops production including policies, functions, and responsibilities. 87 references, 17 figures, 29 tables.

  4. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  5. Chilean Virtual Observatory services implementation for the ALMA public data

    NASA Astrophysics Data System (ADS)

    Antognini, Jonathan; Solar, Mauricio; Ibsen, Jorge; Araya, Mauricio; Nyman, Lars; Mardones, Diego; Valenzuela, Camilo; Ramirez, Patricio; Fernandez, Christopher; Garces, Mario

    2014-07-01

    The success of an observatory is usually measured by its impact in the scientific community, so a common objective is to provide transparent ways to access the generated data. The Chilean Virtual Observatory (ChiVO), started working in the implementation of a prototype, in collaboration with ALMA, considering the current needs of the Chilean astronomical community, in addition to the protocols and standards of IVOA, and the comparison of different existing data access toolkit services. Based on this efforts, a VO prototype was designed and implemented for the ALMA large scale of data.

  6. [Review of transgenic crop breeding in China].

    PubMed

    Huang, Dafang

    2015-06-01

    The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made. PMID:26672365

  7. Recent land use change in the Western Corn Belt threatens grasslands and wetlands.

    PubMed

    Wright, Christopher K; Wimberly, Michael C

    2013-03-01

    In the US Corn Belt, a recent doubling in commodity prices has created incentives for landowners to convert grassland to corn and soybean cropping. Here, we use land cover data from the National Agricultural Statistics Service Cropland Data Layer to assess grassland conversion from 2006 to 2011 in the Western Corn Belt (WCB): five states including North Dakota, South Dakota, Nebraska, Minnesota, and Iowa. Our analysis identifies areas with elevated rates of grass-to-corn/soy conversion (1.0-5.4% annually). Across the WCB, we found a net decline in grass-dominated land cover totaling nearly 530,000 ha. With respect to agronomic attributes of lands undergoing grassland conversion, corn/soy production is expanding onto marginal lands characterized by high erosion risk and vulnerability to drought. Grassland conversion is also concentrated in close proximity to wetlands, posing a threat to waterfowl breeding in the Prairie Pothole Region. Longer-term land cover trends from North Dakota and Iowa indicate that recent grassland conversion represents a persistent shift in land use rather than short-term variability in crop rotation patterns. Our results show that the WCB is rapidly moving down a pathway of increased corn and soybean cultivation. As a result, the window of opportunity for realizing the benefits of a biofuel industry based on perennial bioenergy crops, rather than corn ethanol and soy biodiesel, may be closing in the WCB.

  8. Recent land use change in the Western Corn Belt threatens grasslands and wetlands

    PubMed Central

    Wright, Christopher K.; Wimberly, Michael C.

    2013-01-01

    In the US Corn Belt, a recent doubling in commodity prices has created incentives for landowners to convert grassland to corn and soybean cropping. Here, we use land cover data from the National Agricultural Statistics Service Cropland Data Layer to assess grassland conversion from 2006 to 2011 in the Western Corn Belt (WCB): five states including North Dakota, South Dakota, Nebraska, Minnesota, and Iowa. Our analysis identifies areas with elevated rates of grass-to-corn/soy conversion (1.0–5.4% annually). Across the WCB, we found a net decline in grass-dominated land cover totaling nearly 530,000 ha. With respect to agronomic attributes of lands undergoing grassland conversion, corn/soy production is expanding onto marginal lands characterized by high erosion risk and vulnerability to drought. Grassland conversion is also concentrated in close proximity to wetlands, posing a threat to waterfowl breeding in the Prairie Pothole Region. Longer-term land cover trends from North Dakota and Iowa indicate that recent grassland conversion represents a persistent shift in land use rather than short-term variability in crop rotation patterns. Our results show that the WCB is rapidly moving down a pathway of increased corn and soybean cultivation. As a result, the window of opportunity for realizing the benefits of a biofuel industry based on perennial bioenergy crops, rather than corn ethanol and soy biodiesel, may be closing in the WCB. PMID:23431143

  9. Corn blight review: Sampling model and ground data measurements program

    NASA Technical Reports Server (NTRS)

    Allen, R. D.

    1972-01-01

    The sampling plan involved the selection of the study area, determination of the flightline and segment sample design within the study area, and determination of a field sample design. Initial interview survey data consisting of crop species acreage and land use were collected. On all corn fields, additional information such as seed type, row direction, population, planting date, ect. were also collected. From this information, sample corn fields were selected to be observed through the growing season on a biweekly basis by county extension personnel.

  10. 21 CFR 184.1321 - Corn gluten.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn gluten. 184.1321 Section 184.1321 Food and....1321 Corn gluten. (a) Corn gluten (CAS Reg. No. 66071-96-3), also known as corn gluten meal, is the principal protein component of corn endosperm. It consists mainly of zein and glutelin. Corn gluten is...

  11. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  12. Western corn rootworm (Coleoptera: Chrysomelidae) dispersal and adaptation to single-toxin transgenic corn deployed with block or blended refuge.

    PubMed

    Pan, Zaiqi; Onstad, David W; Nowatzki, Timothy M; Stanley, Bruce H; Meinke, Lance J; Flexner, J Lindsey

    2011-08-01

    A simulation model of the temporal and spatial dynamics and population genetics of western corn rootworm, Diabrotica virgifera virgifera LeConte, was created to evaluate the use of block refuges and seed blends in the management of resistance to transgenic insecticidal corn (Zea mays L.). This Bt corn expresses one transgenic corn event, DAS-59122-7, that produces a binary insecticidal protein toxin (Cry34Ab1/Cry35Ab1) and provides host-plant resistance. The model incorporates the latest information about larval and adult behavior. Results of this modeling effort indicate that the seed-blend scenarios in many cases produced equal or greater durability than block refuges that were relocated each year. Resistance evolved in the most likely scenarios in 10-16 yr. Our standard analysis presumed complete adoption of 59122 corn by all farmers in our hypothetical region, no crop rotation, and 100% compliance with Insect Resistant Management (IRM) regulations. As compliance levels declined, resistance evolved faster when block refuges were deployed. Seed treatments that killed the pest when applied to all seeds in a seed blend or just to seeds in Bt corn blocks delayed evolution of resistance. Greater control of the pest population by the seed treatment facilitated longer durability of the transgenic trait. Therefore, data support the concept that pyramiding a transgenic insecticidal trait with a highly efficacious insecticidal seed treatment can delay evolution of resistance.

  13. A mowing strategy to convert red clover to annual crops in organic farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers are interested in no-till cropping systems. In this study, we found that perennial clover can be converted to corn without tillage. Conversion tactics involved fall mowing in the third year of red clover, followed by between-row mowing of weeds and volunteer red clover in corn gr...

  14. The 2011 Chilean Student Movement against Neoliberal Educational Policies

    ERIC Educational Resources Information Center

    Bellei, Cristián; Cabalin, Cristian; Orellana, Víctor

    2014-01-01

    This paper analyses the 2011 Chilean student movement, the most relevant social mobilisation in Chile since the restoration of democracy in 1990. Based on available material and secondary sources, it describes the main features of this student movement, analyses the key components of the students' discourse and its relationship with the…

  15. Association between eating behavior scores and obesity in Chilean children

    PubMed Central

    2011-01-01

    Background Inadequate eating behavior and physical inactivity contribute to the current epidemic of childhood obesity. The aim of this study was to assess the association between eating behavior scores and childhood obesity in Chilean children. Design and methods We recruited 126 obese, 44 overweight and 124 normal-weight Chilean children (6-12 years-old; both genders) according to the International Obesity Task Force (IOTF) criteria. Eating behavior scores were calculated using the Child Eating Behavior Questionnaire (CEBQ). Factorial analysis in the culturally-adapted questionnaire for Chilean population was used to confirm the original eight-factor structure of CEBQ. The Cronbach's alpha statistic (>0.7 in most subscales) was used to assess internal consistency. Non-parametric methods were used to assess case-control associations. Results Eating behavior scores were strongly associated with childhood obesity in Chilean children. Childhood obesity was directly associated with high scores in the subscales "enjoyment of food" (P < 0.0001), "emotional overeating" (P < 0.001) and "food responsiveness" (P < 0.0001). Food-avoidant subscales "satiety responsiveness" and "slowness in eating" were inversely associated with childhood obesity (P < 0.001). There was a graded relation between the magnitude of these eating behavior scores across groups of normal-weight, overweight and obesity groups. Conclusion Our study shows a strong and graded association between specific eating behavior scores and childhood obesity in Chile. PMID:21985269

  16. Quality of Chilean Early Childhood Education from an International Perspective.

    ERIC Educational Resources Information Center

    Villalon, Malva; Suzuki, Emy; Herrera, Maria Olivia; Mathiesen, Maria Elena

    2002-01-01

    Assessed the quality of different types of early childhood care and education programs in Chile according to international standards. Recorded structural and process characteristics observed in the classrooms. Found that Chilean preschool programs showed a minimum level of quality, with a high proportion of centers in the inadequate range.…

  17. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    PubMed

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  18. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    PubMed

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement. PMID:24914780

  19. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses. PMID:26436280

  20. Subsurface Drainage Nitrate and Total Reactive Phosphorus Losses in Bioenergy-Based Prairies and Corn Systems.

    PubMed

    Daigh, Aaron L M; Zhou, Xiaobo; Helmers, Matthew J; Pederson, Carl H; Horton, Robert; Jarchow, Meghann; Liebman, Matt

    2015-09-01

    We compare subsurface-drainage NO-N and total reactive phosphorus (TRP) concentrations and yields of select bioenergy cropping systems and their rotational phases. Cropping systems evaluated were grain-harvested corn-soybean rotations, grain- and stover-harvested continuous corn systems with and without a cover crop, and annually harvested reconstructed prairies with and without the addition of N fertilizer in an Iowa field. Drainage was monitored when soils were unfrozen during 2010 through 2013. The corn-soybean rotations without residue removal and continuous corn with residue removal produced similar mean annual flow-weighted NO-N concentrations, ranging from 6 to 18.5 mg N L during the 4-yr study. In contrast, continuous corn with residue removal and with a cover crop had significantly lower NO-N concentrations of 5.6 mg N L when mean annual flow-weighted values were averaged across the 4 yr. Prairies systems with or without N fertilization produced significantly lower concentrations below <1 mg NO-N L than all the row crop systems throughout the study. Mean annual flow-weighted TRP concentrations and annual yields were generally low, with values <0.04 mg TRP L and <0.14 kg TRP ha, and were not significantly affected by any cropping systems or their rotational phases. Bioenergy-based prairies with or without N fertilization and continuous corn with stover removal and a cover crop have the potential to supply bioenergy feedstocks while minimizing NO-N losses to drainage waters. However, subsurface drainage TRP concentrations and yields in bioenergy systems will need further evaluation in areas prone to higher levels of P losses.

  1. Effect of winter cover crops on nematode population levels in north Florida.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  2. Trace Gas Exchange of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Graus, M.; Warneke, C.; Williams, E. J.; Lerner, B. M.; Gilman, J. B.; Li, R.; Eller, A. S.; Gray, C.; Fierer, N.; Fall, R.; Harley, P. C.; Roberts, J. M.; Yuan, B.; Qian, Y.; Westra, P.; Fryrear, C.; Collins, M.; Whitman, K.; De Gouw, J. A.

    2011-12-01

    In 2010 leaf level gas exchange and VOC fluxes from switchgrass and corn grown at the CSU horticultural farm in Ft Collins (CO) were measured using a PTR-MS coupled to a modified Li6400 cuvette system. Both species are C4 plants with corn currently being the dominant biofuel crop in the USA whilst switchgrass being a promising candidate for cellulosic fuel ethanol production. Amongst the strongest VOC emissions from both plants were methanol, acetic acid, acetaldehyde, acetone and toluene. The switchgrass VOC emissions compare reasonably well with the only published data measured from potted plants in a whole plant enclosure (Eller et al. 2011). VOC emission studies on corn are almost as scarce as those of switchgrass. Considering the acreage of corn grown in the USA every year, VOC flux measurements of this plant species are largely under-represented in the literature. The emission rates that do exist in the literature do not compare well with the numbers found in this study (e.g. Das et al. 2003; 35μg methanol per hour per gram biomass). To investigate the biosphere atmosphere exchange of corn fields in more detail the field campaign BioCORN 2011 was initiated. In summer 2011 an eddy covariance system was set up in a corn field at ARDEC (CSU, Ft Collins, CO) to investigate the energy flux and the trace gas exchange of the US' dominant biofuel crop. Besides energy flux, evapotranspiration and CO2 flux a comprehensive suite of volatile organic compounds and inorganic species (O3, NO, NO2, CO) are measured for virtual disjunct eddy covariance (vDEC) analysis and true eddy covariance (EC) fluxes, respectively. VOCs are monitored by PTR-MS and, for the first time, fluxes of formic acid are measured utilizing NI-CIMS data for vDEC analysis. Besides the EC approach leaf level flux measurements and soil flux measurements are performed using a GC-MS system (TACOH) coupled to a modified Li6400 system and to soil chambers, respectively. Ethanol and methanol are amongst the

  3. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product

    NASA Astrophysics Data System (ADS)

    Stern, Alan J.; Doraiswamy, Paul C.; Raymond Hunt, E.

    2012-01-01

    Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. In Iowa and much of the Midwestern United States (US), the typical management decision is to rotate corn and soybean crops for a single field; therefore, the land-cover changes each year even though the total area of agricultural land-use remains the same. The price for corn increased from 2001 to 2010, which increased corn production in Iowa. We tested the hypothesis that the production increase was the result of changes in crop rotation in Iowa using the annual remote sensing classification (the cropland data layer) produced by the United States Department of Agriculture, National Agricultural Statistics Service. It was found that the area planted in corn increased from 4.7 million hectares in 2001 to 5.7 million hectares in 2007, which was correlated with the market price for corn. At the county level, there were differences in how the increase in corn production was accomplished. Northern and central counties had little land to expand cultivation and generally increased corn production by converting to a corn-corn rotation from the standard corn-soybean rotation. Southern counties in Iowa increased corn production by expanding into land that was not under recent cultivation. These changes affect the amount of soil carbon sequestration.

  4. Zero-tillage and corn production in eastern Canada

    SciTech Connect

    Raghavan, G.S.V.; Taylor, F.; Negi, S.; Douglas, E.; McKyes, E.; Tessier, S.; Burrows, J.

    1981-01-01

    During the summer of 1979, a zero-tillage experiment was conducted in which corn (maize) was grown on 68 different plots representing different soil structural status. Sixty-four of the plots had been subjected to 16 different compaction and tillage treatments and corn grown on them. No machinery traffic had been introduced to these plots since the spring of 1978. Four new plots were established which had been subjected to conventional tillage methods, those being plowing in the fall of 1978 and disc harrowing in the spring of 1979. Corn was hand seeded into all the plots and the growth, development and yield of the crop measured. Several times over the growing season, soil dry bulk density, soil moisture content and soil temperature were measured. Observation of days to emerge, tassel and silk showed that the zero-till plots performed much better than the control plots.

  5. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%. PMID:18983094

  6. [Soil respiration variations in winter wheat field in different previous crops and its influencing factors].

    PubMed

    Hao, Wang-Lin; Liang, Yin-Li; Wu, Xing; Lin, Xing-Jun; Zhu, Yan-Li; Luo, An-Rong

    2011-11-01

    This study was to define the Variations of soil respiration, the response of influence factors to soil respiration and carbon sink in the total growing season, in winter wheat field of different previous crops. The results showed that: (1) as soil depth increases, the response of temperature to soil respiration rate also increased with a lag; (2) the soil respiration rate was quadric to soil moisture, phosphorus, potassium, soil urease activity, soil temperature, soil moisture as the main factors had an effect on soil respiration rate; soil temperature had the stronger effect on soil respiration rate when potassium had the weaker effect on soil respiration rate; (3) the average carbon emission rate in wheat filed of different previous crops showed as follow: Pepper of previous crops > celery of previous crops > corn of previous crops > eggplant of previous crops. The intensity of carbon "sink" displayed as follow: eggplant of previous crops > celery of previous crops > corn of previous crops > pepper of previous crops. As for the trials of this study, although the soil respiration rate is highest in the winter wheat filed of previous pepper, the amount of carbon fixed is the most. Its ratio of net primary productivity (NPP) and soil carbon release quantity was highest, so carbon sink was the strongest. If rotation planting was arranged according to the purpose of increasing carbon sink and reducing carbon emissions, pepper was relatively appropriate stubbles crop, followed by corn crop, celery and eggplant.

  7. Compositional analysis of genetically modified corn events (NK603, MON88017×MON810 and MON89034×MON88017) compared to conventional corn.

    PubMed

    Rayan, Ahmed M; Abbott, Louise C

    2015-06-01

    Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn.

  8. Economic impacts of ethanol fuels from crops

    SciTech Connect

    Hertzmark, D.; Ray, D.; Richardson, J.

    1981-08-01

    This paper presents selected results of simulations of agricultural production of ethanol feedstocks from grains and sugar crops. Production levels of up to 5 billion gallons per year were simulated using various combinations of corn, high energy sorghum, sweet sorghum, and sugar beets. Major results include (1) at up to 2 billion gallons per year of ethanol, impacts on the agricultural sector are mild; (2) beyond 2 billion gallons per year, diversification away from corn appears to be necessary to avoid major feed price inflation; (3) farm income unambiguously rises in response to higher crop prices; and (4) exports of food grains are affected differently by alternative feedstocks, and high-energy sorghum shows a good potential for competing with food grains.

  9. Integrating pasture-based livestock production with annual crop production on the Great Plains to reduce loss of grassland wildlife

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tallgrass prairie has been replaced by corn and soybeans and mixed-grass prairie is being replaced by various annual crops. Annual crop fields support vegetarian diets but not much wildlife. Alternatively, integrating pastured livestock farming with annual crops can provide wildlife habitat. For ...

  10. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  11. Arsenic accumulation in maize crop (Zea mays): a review.

    PubMed

    Rosas-Castor, J M; Guzmán-Mar, J L; Hernández-Ramírez, A; Garza-González, M T; Hinojosa-Reyes, L

    2014-08-01

    Arsenic (As) is a metalloid that may represent a serious environmental threat, due to its wide abundance and the high toxicity particularly of its inorganic forms. The use of arsenic-contaminated groundwater for irrigation purposes in crop fields elevates the arsenic concentration in topsoil and its phytoavailability for crops. The transfer of arsenic through the crops-soil-water system is one of the more important pathways of human exposure. According to the Food and Agriculture Organization of the United Nations, maize (Zea mays L.) is the most cultivated cereal in the world. This cereal constitutes a staple food for humans in the most of the developing countries in Latin America, Africa, and Asia. Thus, this review summarizes the existing literature concerning the conditions involved in agricultural soil that leads to As influx into maize crops and the uptake mechanisms, metabolism and phytotoxicity of As in corn plants. Additionally, the studies of the As accumulation in raw corn grain and corn food are summarized, and the As biotransfer into the human diet is highlighted. Due to high As levels found in editable plant part for livestock and humans, the As uptake by corn crop through water-soil-maize system may represent an important pathway of As exposure in countries with high maize consumption.

  12. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    PubMed

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area.

  13. [Effects of simulated acid rain on seed germination and seedling growth of different type corn Zea mays].

    PubMed

    Zhang, Hai-Yan

    2013-06-01

    Taking normal corn, waxy corn, pop corn, and sweet corn as test materials, this paper studied their seed germination and seedling growth under effects of simulated acid rain (pH 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0). Simulated acid rain at pH 2.0-5.0 had no significant effects on the seed germination and seedling growth, but at pH 1.0, the germination rate of normal corn, waxy corn, pop corn, and sweet corn was 91.3%, 68.7%, 27.5%, and 11.7%, respectively. As compared with those at pH 6.0 (CK), the germination rate, germination index, vigor index, germination velocity, shoot height, root length, shoot and root dry mass, and the transformation rate of stored substances at pH 1.0 had significant decrease, and the average germination time extended apparently. At pH 1.0, the effects of acid rain were greater at seedling growth stage than at germination stage, and greater on underground part than on aboveground part. Due to the differences in gene type, normal corn and waxy corn had the strongest capability against acid rain, followed by pop corn, and sweet corn. It was suggested that corn could be categorized as an acid rain-tolerant crop, the injury threshold value of acid rain was likely between pH 1.0 and pH 2.0, and normal corn and waxy corn would be prioritized for planting in acid rain-stricken area. PMID:24066549

  14. Sulfur dioxide and ozone effects on crops

    SciTech Connect

    Amundson, R.G. ); Kress, L. )

    1990-04-01

    In order to determine if exposure to O{sub 3} and SO{sub 2} in combination produce greater-than-additive effects on yields of economically important crops, corn, wheat, soybean, alfalfa, and a mixed forage crop of timothy and red clover were exposed to SO{sub 2} and O{sub 3} using open-top chambers in six separate experiments during three field seasons. In five of the six studies changes in physiology and/or growth were also assessed to help determine short-term responses of the plants to the exposures. Monitoring of several physiological responses of the crops provided a means of assessing short term effects of the SO{sub 2} exposures on the crops and helped in interpretation of the effects on yields. 4 refs., 46 figs., 49 tabs.

  15. Influence of soils on Landsat spectral signatures of corn

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Worcester, B. K.; Devries, M. E.

    1980-01-01

    Landsat data have been investigated extensively to determine crop types and acreage. However, confounding site factors have been found to reduce accuracy. Soils data in a small, contiguous area in southeast South Dakota were used to stratify Landsat data. A June 5 and July 29 CCT were used in a statistical analysis of corn training data. Significant soil parameters causing differences in study area soils were slope and parent material. Implication of the results is that, in this region, stratification of CCT data along parent material boundaries would improve corn classification accuracy. Research expanding on the interaction of soils and crops is both in progress and scheduled for additional studies in east central South Dakota.

  16. The state of genetically modified crop regulation in Canada.

    PubMed

    Smyth, Stuart J

    2014-07-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238

  17. The state of genetically modified crop regulation in Canada

    PubMed Central

    Smyth, Stuart J

    2014-01-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238

  18. The state of genetically modified crop regulation in Canada.

    PubMed

    Smyth, Stuart J

    2014-07-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence.

  19. Seismotectonic segmentation along the Chilean megathrust (Invited)

    NASA Astrophysics Data System (ADS)

    Melnick, D.; Moreno, M.

    2010-12-01

    This study focuses on understanding seismotectonic segmentation of megathrusts (MT). Recent research suggests elements associated to MT segmentation include: oceanic features, such as seamounts, seismic and aseismic ridges, and fracture zones; thickness and nature of trench sediments; and upper-plate heterogeneities as changes in density, lithology, and presence of splay faults or microplates, features usually manifested in coastline morphology. The 3500-km-long Chilean MT includes all these elements with various amplitudes under fairly constant kinematics and strike. Along the Nazca-South America boundary, the dense GPS network and knowledge of MT geometry allows inverting for the degree of interplate coupling or locking rate. Here we compare locking, historical MT ruptures, and long-term structure. Along-strike changes in locking rate occur at wavelengths of ~100-500 km, and locally correlate with historical ruptures as well as with lower and/or upper plate features, but without a clear systematic pattern. The transition between the 1960 M9.5 and 2010 M8.8 earthquake segments at Arauco (38.5S) has 100 km overlap deduced from land-level changes. Coherent deformation suggest this boundary has been stationary over 4 Myr, and is associated to margin-parallel collision of a forearc microplate along a Paleozoic shear zone. Seismically-active reverse splay faults bound the Peninsula and may absorb coseismic MT slip and stall rupture propagation. To the north, rupture of the 2010 M8.8 event stopped before the prominent J.Fernandez Ridge and its boundary may be associated to the Pichilemu fault, a steep oblique structure that generated a M6.9 aftershock. The change from accretionary to erosive character across this Ridge, from variable thickness of trench sediments, is manifested in narrowing of the coupling zone northwards and a small local decrease in locking rate. This local decrease is coincident with the Maipo orocline axis and a sharp bend in the orogen, which

  20. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  1. Satellite Data Inform Forecasts of Crop Growth

    NASA Technical Reports Server (NTRS)

    2015-01-01

    During a Stennis Space Center-led program called Ag 20/20, an engineering contractor developed models for using NASA satellite data to predict crop yield. The model was eventually sold to Genscape Inc., based in Louisville, Kentucky, which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.

  2. [Cultivation and environmental impacts of GMO crops].

    PubMed

    Pelletier, Georges

    2009-01-01

    Transgenic plant varieties are grown since 1996 on surfaces increasing each year. They covered 114 million hectares worldwide in 2007, which shows their success among the farmers in developed as well as developing countries, despite the propaganda campaigns of the environmental movements and advocates of decline. The first transgenic crops (soybean, corn, coton and rapeseed) offer benefits in terms of health, economy and environment. Europe and especially France, which reject this technology, sentence their research to death and penalize their agriculture.

  3. [Cultivation and environmental impacts of GMO crops].

    PubMed

    Pelletier, Georges

    2009-01-01

    Transgenic plant varieties are grown since 1996 on surfaces increasing each year. They covered 114 million hectares worldwide in 2007, which shows their success among the farmers in developed as well as developing countries, despite the propaganda campaigns of the environmental movements and advocates of decline. The first transgenic crops (soybean, corn, coton and rapeseed) offer benefits in terms of health, economy and environment. Europe and especially France, which reject this technology, sentence their research to death and penalize their agriculture. PMID:20122392

  4. Assessing corn water stress using spectral reflectance

    NASA Astrophysics Data System (ADS)

    Mefford, Brenna S.

    Multiple remote sensing techniques have been developed to identify crop water stress, but some methods may be difficult for farmers to apply. Unlike most techniques, shortwave vegetation indices can be calculated using satellite, aerial, or ground imagery from the green (525-600 nm), red (625-700 nm), and near infrared (750-900 nm) spectral bands. If vegetation indices can be used to monitor crop water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over irrigating. This study occurred in the 2013 growing season near Greeley, CO, where pressurized drip irrigation was used to irrigate twelve corn ( Zea mays L.) treatments of varying water deficit. Multispectral data was collected and four different vegetation indices were evaluated: Normalized Difference Vegetation Index (NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Normalized Difference Vegetation Index (GNDVI), and the Wide Dynamic Range Vegetation Index (WDRVI). The four vegetation indices were compared to corn water stress as indicated by the stress coefficient (Ks) and water deficit in the root zone, calculated by using a water balance that monitors crop evapotranspiration (ET), irrigation events, precipitation events, and deep percolation. ET for the water balance was calculated using two different methods for comparison purposes: (1) calculation of the stress coefficient (Ks) using FAO-56 standard procedures; (2) use of canopy temperature ratio (Tc ratio) of a stressed crop to a non-stressed crop to calculate Ks. It was found that obtaining Ks from Tc ratio is a viable option, and requires less data to obtain than Ks from FAO-56. In order to compare the indices to Ks, vegetation ratios were developed in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water

  5. Dominant Inheritance of Field-Evolved Resistance to Bt Corn in Busseolafusca

    PubMed Central

    Campagne, Pascal; Kruger, Marlene; Pasquet, Rémy; Le Ru, Bruno; Van den Berg, Johnnie

    2013-01-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the “high dose/refuge” strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the “high dose/refuge” strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseolafusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance. PMID:23844262

  6. Sugarcane and other crops as fuel feedstocks

    SciTech Connect

    Irvine, J.E.

    1980-07-01

    The use of sugarcane as a feedstock for fuel alcohol production in Brazil, and in Zimbabwe Rhodesia and Panama stimulated tremendous interest in the potential of agricultural crops for renewable energy sources. The cost of the feedstock is important. Corn, the current major agricultural feedstock in US fuel alcohol production, costs 60 to 80% of the selling price of the alcohol produced from it. Production costs for sugarcane and sugarbeets are higher than for corn. Sugarcane and sugarbeets, yield more fermentable carbohydrates per acre than any other crop. Sugarcane has the distinct advantage of containing a large amount of fiber in the harvested portion. The feedstock cost of sugarcane can be reduced by producing more cane per acre. Sweet sorghum has been discussed as a fuel crop. Cassana, the tapioca source, is thought to be a fuel crop of major potential. Feedstock cost can also be reduced through management decisions that reduce costly practices. Cultivation and fertilizer costs can be reduced. The operating cost of the processing plant is affected by the choice of crops grown for feedstock, both by their cost and by availability. (DP)

  7. Diversifying crops: the Nicaraguan experiment.

    PubMed

    Meyrat, A

    1992-01-01

    Over 1/2 of Nicaragua's population lives in the Pacific Plains where cotton has been grown intensively for 40 years. This single-crop economy has led to massive deforestation, wind and water erosion has affected the soil, and extensive use of pesticides has deposited excessive amounts of DDT in the breast milk of nursing mothers. After the downfall of the Somoza dictatorship the subsequent agrarian reform has been hampered by lack of information and training on sustainable methods of farming. The Pikin Guerrero project is a sustainable development experiment involving 2200 peasant families jointly run by the Nicaraguan Institute for Natural Resources and the Environment (IRENA) and the World Conservation Union (IUCN). The farmers grow corn and beans while exhausting the area's natural resources through forest clearing with the result of spreading erosion of fragile soils. 400 farmers have reshaped their production systems with the help of experts. Annual crops have become more diverse: yucca, 10 varieties of bean, 3 of pineapple, and 4 of corn, plus coffee, mango, bananas, and avocado. Soil conservation practices have been introduced, and farmers have built terraces. The initial pilot project comprised 5000 hectares, it is being expanded to cover another 10,000 hectares. The introduction of family planning to the local people is the next undertaking. PMID:12317702

  8. Life cycle assessment of fertilization of corn and corn-soybean rotations with Swine manure and synthetic fertilizer in iowa.

    PubMed

    Griffing, Evan Michael; Schauer, Richard Lynn; Rice, Charles W

    2014-03-01

    Life cycle assessment is the predominant method to compare energy and environmental impacts of agricultural production systems. In this life cycle study, we focused on the comparison of swine manure to synthetic fertilizer as nutrients for corn production in Iowa. Deep pit (DP) and anaerobic lagoon (AL) treatment systems were compared separately, and urea ammonium nitrate (UAN) was chosen as the representative synthetic fertilizer. The two functional units used were fertilization of 1000 kg of corn in a continuous corn system and fertilization of a crop yielding 1000 kg of corn and a crop yielding 298 kg of soybean in a 2-yr corn-soybean rotation. Iowa-specific versions of emission factors and energy use were used when available and compared with Intergovernmental Panel on Climate Change values. Manure was lower than synthetic fertilizer for abiotic depletion and about equal with respect to eutrophication. Synthetic fertilizer was lower than manure for global warming potential (GWP) and acidification. The choice of allocation method and life cycle boundary were important in understanding the context of these results. In the DP system, methane (CH) from housing was the largest contributor to the GWP, accounting for 60% of the total impact. When storage systems were compared, the DP system had 50% less GWP than the AL system. This comparison was due to reduction in CH emissions from the storage system and conservation of nitrogen. Nitrous oxide emissions were the biggest contributor to the GWP of UAN fertilization and the second biggest contributor to the GWP of manure. Monte Carlo and scenario analyses were used to test the robustness of the results and sensitivity to methodology and important impact factors. The available crop-land and associated plant nutrient needs in Iowa was compared with manure production for the current hog population. On a state- or county-wide level, there was generally an excess of available land. On a farm level, there is often an excess

  9. Cadmium distribution within corn plants as a function of cadmium loading of the soil

    SciTech Connect

    Re, M.; Garagiola, M.G.; Crovato, E.

    1983-02-01

    Corn is a widespread crop in some industrialized areas of Northern Italy and Europe where it serves for both animal and human nutrition. In the present paper we examined the distribution of Cd within corn plants grown under both hydroponic and field conditions. The results obtained show that Cd accumulation by different plant tissues may reach saturation without signs of phytotoxicity. Thus cadmium pollution can go undetected even when corn tissue is responsible for the entry of the metal into the food chain. Implications for human and animal nutrition are discussed.

  10. Economic impact of GM crops

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  11. Energy conservation of no-tillage production of corn

    SciTech Connect

    Frye, W.W.; Blevins, R.L.; Murdock, L.W.; Wells, K.L.

    1981-01-01

    The paper discusses the energy requirements for no-tillage production of corn as compared to conventional tillage. Emphasis is on energy conservation through nitrogen fertilizer management. Results with no-tillage research in Kentucky on differences in nitrogen efficiency with no-tillage compared to conventional tillage, use of legumes as cover crops for no-tillage, delayed application of nitrogen fertilizers, and use of a nitrification inhibitor are presented as potential energy conservation practices.

  12. Aerial Photography: Use in Detecting Simulated Insect Defoliation in Corn

    NASA Technical Reports Server (NTRS)

    Chiang, H. C.; Latham, R.; Meyer, M. P.

    1973-01-01

    Artificial defoliation in corn was used to explore the usefulness of aerial photography in detecting crop insect infestations. Defoliation on the top of plants was easily detected, while that on the base was less so. Aero infrared film with Wratten 89B filter gave the best results, and morning flights at the scale of 1:15840 are recommended. Row direction, plant growth stage, and time elapse since defoliation were not important factors.

  13. Mycotoxin reduction in Bt corn: potential economic, health, and regulatory impacts.

    PubMed

    Wu, Felicia

    2006-06-01

    Genetically modified (GM) Bt corn, through the pest protection that it confers, has lower levels of mycotoxins: toxic and carcinogenic chemicals produced as secondary metabolites of fungi that colonize crops. In some cases, the reduction of mycotoxins afforded by Bt corn is significant enough to have an economic impact, both in terms of domestic markets and international trade. In less developed countries where certain mycotoxins are significant contaminants of food, Bt corn adoption, by virtue of its mycotoxin reduction, may even improve human and animal health. This paper describes an integrated assessment model that analyzes the economic and health impacts of two mycotoxins in corn: fumonisin and aflatoxin. It was found that excessively strict standards of these two mycotoxins could result in global trade losses in the hundreds of millions US dollars annually, with the US, China, and Argentina suffering the greatest losses. The paper then discusses the evidence for Bt corn's lower levels of contamination of fumonisin and aflatoxin, and estimates economic impacts in the United States. A total benefit of Bt corn's reduction of fumonisin and aflatoxin in the US was estimated at 23 million dollars annually. Finally, the paper examines the potential policy impacts of Bt corn's mycotoxin reduction, on nations that are making a decision on whether to allow commercialization of this genetically modified crop.

  14. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  15. Alfalfa varieties differ markedly in seedling survival when interseeded into corn and treated with prohexadione-calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interseeded alfalfa could serve as a dual purpose crop for providing groundcover during silage corn production and forage during subsequent years of production, but this system has been unworkable because competition between the co-planted crops often leads to stand failure of interseeded alfalfa. R...

  16. Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal nitrogen fertilizer rate for corn can vary substantially within and among fields. Current N management practices do not address this variability. Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale. Our objective was...

  17. Effects of crop canopies on rain splash detachment.

    PubMed

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2 · h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields.

  18. Datasets for transcriptomic analyses of maize leaves in response to Asian corn borer feeding and/or jasmonic acid.

    PubMed

    Zhang, Yuliang; Huang, Qixing; Pennerman, Kayla K; Yu, Jiujiang; Liu, Zhixin; Guo, Anping; Yin, Guohua

    2016-06-01

    Corn is one of the most widely grown crops throughout the world. However, many corn fields develop pest problems such as corn borers every year that seriously affect its yield and quality. Corn's response to initial insect damage involves a variety of changes to the levels of defensive enzymes, toxins, and communicative volatiles. Such a dramatic change secondary metabolism necessitates the regulation of gene expression at the transcript level. In this paper, we summarized the datasets of the transcriptome of corn plants in response to corn stalk borers (Ostrinia furnacalis) and/or methyl jasmonate (MeJA). Altogether, 39, 636 genes were found to be differentially expressed. The sequencing data are available in the NCBI SRA database under accession number SRS965087. Our dataset will provide more scientific and valuable information for future work such as the study of the functions of important genes or proteins and develop new insect-resistant maize varieties. PMID:27408913

  19. Assessing Corn Stover Composition and Sources of Variability via NIRS

    SciTech Connect

    Templeton, D. W.; Sluiter, A. D.; Hayward, T. K.; Hames, B. R.; Thomas, S. R.

    2009-01-01

    Corn stover, the above-ground, non-grain portion of the crop, is a large, currently available source of biomass that potentially could be collected as a biofuels feedstock. Biomass conversion process economics are directly affected by the overall biochemical conversion yield, which is assumed to be proportional to the carbohydrate content of the feedstock materials used in the process. Variability in the feedstock carbohydrate levels affects the maximum theoretical biofuels yield and may influence the optimum pretreatment or saccharification conditions. The aim of this study is to assess the extent to which commercial hybrid corn stover composition varies and begin to partition the variation among genetic, environmental, or annual influences. A rapid compositional analysis method using near-infrared spectroscopy/partial least squares multivariate modeling (NIR/PLS) was used to evaluate compositional variation among 508 commercial hybrid corn stover samples collected from 47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests. The major components of the corn stover, reported as average (standard deviation) % dry weight, whole biomass basis, were glucan 31.9 (2.0), xylan 18.9 (1.3), solubles composite 17.9 (4.1), and lignin (corrected for protein) 13.3 (1.1). We observed wide variability in the major corn stover components. Much of the variation observed in the structural components (on a whole biomass basis) is due to the large variation found in the soluble components. Analysis of variance (ANOVA) showed that the harvest year had the strongest effect on corn stover compositional variation, followed by location and then variety. The NIR/PLS rapid analysis method used here is well suited to testing large numbers of samples, as tested in this study, and will support feedstock improvement and biofuels process research.

  20. High speed measurement of corn seed viability using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Ambrose, Ashabahebwa; Kandpal, Lalit Mohan; Kim, Moon S.; Lee, Wang-Hee; Cho, Byoung-Kwan

    2016-03-01

    Corn is one of the most cultivated crops all over world as food for humans as well as animals. Optimized agronomic practices and improved technological interventions during planting, harvesting and post-harvest handling are critical to improving the quantity and quality of corn production. Seed germination and vigor are the primary determinants of high yield notwithstanding any other factors that may play during the growth period. Seed viability may be lost during storage due to unfavorable conditions e.g. moisture content and temperatures, or physical damage during mechanical processing e.g. shelling, or over heating during drying. It is therefore vital for seed companies and farmers to test and ascertain seed viability to avoid losses of any kind. This study aimed at investigating the possibility of using hyperspectral imaging (HSI) technique to discriminate viable and nonviable corn seeds. A group of corn samples were heat treated by using microwave process while a group of seeds were kept as control group (untreated). The hyperspectral images of corn seeds of both groups were captured between 400 and 2500 nm wave range. Partial least squares discriminant analysis (PLS-DA) was built for the classification of aged (heat treated) and normal (untreated) corn seeds. The model showed highest classification accuracy of 97.6% (calibration) and 95.6% (prediction) in the SWIR region of the HSI. Furthermore, the PLS-DA and binary images were capable to provide the visual information of treated and untreated corn seeds. The overall results suggest that HSI technique is accurate for classification of viable and non-viable seeds with non-destructive manner.

  1. The Chilean health system: 20 years of reforms.

    PubMed

    Manuel, Annick

    2002-01-01

    The Chilean health care system has been intensively reformed in the past 20 years. Reforms under the Pinochet government (1973-1990) aimed mainly at the decentralization of the system and the development of a private sector. Decentralization involved both a deconcentration process and the devolution of primary health care to municipalities. The democratic governments after 1990 chose to preserve the core organization but introduced reforms intended to correct the system's failures and to increase both efficiency and equity. The present article briefly explains the current organization of the Chilean health care system. It also reviews the different reforms introduced in the past 20 years, from the Pinochet regime to the democratic governments. Finally, a brief discussion describes the strengths and weaknesses of the system, as well as the challenges it currently faces.

  2. Genetic structure characterization of Chileans reflects historical immigration patterns.

    PubMed

    Eyheramendy, Susana; Martinez, Felipe I; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M

    2015-01-01

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography. PMID:25778948

  3. Genetic structure characterization of Chileans reflects historical immigration patterns.

    PubMed

    Eyheramendy, Susana; Martinez, Felipe I; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M

    2015-03-17

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography.

  4. Genetic structure characterization of Chileans reflects historical immigration patterns

    PubMed Central

    Eyheramendy, Susana; Martinez, Felipe I.; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M.

    2015-01-01

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography. PMID:25778948

  5. An assessment of Landsat data acquisition history on identification and area estimation of corn and soybeans

    NASA Technical Reports Server (NTRS)

    Hixson, M. M.; Bauer, M. E.; Scholz, D. K.

    1980-01-01

    During the past decade, numerous studies have demonstrated the potential of satellite remote sensing for providing accurate and timely crop area information. This study assessed the impact of Landsat data acquisition history on classification and area estimation accuracy of corn and soybeans. Multitemporally registered Landsat MSS data from four acquisitions during the 1978 growing season were used in classification of eight sample segments in the U.S. Corn Belt. The results illustrate the importance of selecting Landsat acquisitions based on spectral differences in crops at certain growth stages.

  6. 21 CFR 184.1321 - Corn gluten.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Corn gluten. 184.1321 Section 184.1321 Food and... Substances Affirmed as GRAS § 184.1321 Corn gluten. (a) Corn gluten (CAS Reg. No. 66071-96-3), also known as corn gluten meal, is the principal protein component of corn endosperm. It consists mainly of zein...

  7. 21 CFR 184.1321 - Corn gluten.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Corn gluten. 184.1321 Section 184.1321 Food and... Substances Affirmed as GRAS § 184.1321 Corn gluten. (a) Corn gluten (CAS Reg. No. 66071-96-3), also known as corn gluten meal, is the principal protein component of corn endosperm. It consists mainly of zein...

  8. 21 CFR 184.1321 - Corn gluten.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Corn gluten. 184.1321 Section 184.1321 Food and... Substances Affirmed as GRAS § 184.1321 Corn gluten. (a) Corn gluten (CAS Reg. No. 66071-96-3), also known as corn gluten meal, is the principal protein component of corn endosperm. It consists mainly of zein...

  9. 21 CFR 184.1321 - Corn gluten.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corn gluten. 184.1321 Section 184.1321 Food and... Substances Affirmed as GRAS § 184.1321 Corn gluten. (a) Corn gluten (CAS Reg. No. 66071-96-3), also known as corn gluten meal, is the principal protein component of corn endosperm. It consists mainly of zein...

  10. [Minimum legal drinking age in the Chilean context].

    PubMed

    Ramírez, Jorge; Heller, Nereida

    2016-01-01

    Alcohol consumption is harmful to minors. One of the most wide ly accepted measures for the prevention of harm associated with alcohol consumption for young people is to establish a minimum legal drinking age. This document presents the evidence available on this policy, offers a condensed analysis of its characteristics in the United States of America, describes current consumption patterns of Chilean youth, and proposes concrete solutions to be implemented. PMID:26998989

  11. Prevalence of Astrovirus Infection among Chilean Children with Acute Gastroenteritis

    PubMed Central

    Gaggero, Aldo; O’Ryan, Miguel; Noel, Jacqueline S.; Glass, Roger I.; Monroe, Stephan S.; Mamani, Nora; Prado, Valeria; Avendaño, Luis F.

    1998-01-01

    The frequency of astrovirus infection in 456 Chilean children with diarrhea was determined by enzyme-linked immunosorbent assay, reverse transcriptase PCR, and cell culture. Astrovirus was detected in 16.5% of rotavirus-negative and 7% of rotavirus-positive samples obtained from emergency rooms or hospitals and in 11% of samples from day care centers. HAst-1 was the predominant serotype identified. PMID:9817899

  12. Women and changes in the Chilean economy: some questions.

    PubMed

    Smiaroski, M S

    1996-10-01

    The author argues that a new development model that encourages greater participation of women in the work force in domestic piecework, temporary work, and subcontracting may further lead to the exploitation of women in Chile. The importance of women in economic development in Chile should be based on building skills, providing support child care services, reorienting women's education, and tax incentives. Chile over the past decade has achieved relatively stable economic growth and increased employment of women. During 1990-93 the growth of women in the work force increased at a rate of 16.8%, while men's presence increased by only 9.8%. The Chilean economy is based on a sophisticated modern sector and a labor-intensive informal sector. The Chilean model of development relies on cheap, flexible labor and a government approval of this model. Increased participation of women in the labor force is usually perceived as increased economic empowerment. A 1994 Oxfam study found that women were being forced into the labor market due to declines in family income and low wages. 46% of men and women received wages that did not cover basic necessities. The Chilean labor market is gender-stratified. Men are paid better than women for the same work. Men are in more permanent positions. Labor laws are either inadequate or violated, particularly for hours of work and overtime pay and conditions of employment and benefits. Traditional female jobs are those that rely on women's natural attributes. These unskilled attributes are rewarded with low wages. Little opportunity is provided for upgrading skills or acquiring new skills. Some women turn down advancement because of a lack of role models. Women have little opportunity to develop their self-image as workers. Poor self-images affect women's work attitudes and motivation. Some firms use competition between women to boost production. Chilean women remain in subordinate roles.

  13. 21 CFR 184.1262 - Corn silk and corn silk extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn silk and corn silk extract. 184.1262 Section... Affirmed as GRAS § 184.1262 Corn silk and corn silk extract. (a) Corn silk is the fresh styles and stigmas of Zea mays L. collected when the corn is in milk. The filaments are extracted with dilute ethanol...

  14. [ANTHROPOMETRIC CHILEAN TABLE TENNIS PLAYERS OF COMPETITIVE FEATURES].

    PubMed

    Yáñez Sepúlveda, Rodrigo; Barraza, Fernando; Rosales Soto, Giovanni; Báez, Eduardo; Tuesta, Marcelo

    2015-10-01

    The aim of the study was to characterize the anthropometric profile and somatotype of a sample of 50 players table tennis competitive with an average age 21.6 (± 3.1) years belonging to the Chilean team and institutions of higher education in the region of Valparaiso. The evaluation was conducted under the protocol marking the International Society for the Advancement of Kinanthropometry (ISAK) for the measurement procedure 25 restricted profile variables described by Drinkwater, Norton and Olds. Order to determine the body composition, fat, muscle, bone, skin and tissue residual was considered, using the equations proposed by Kerr. The body shape is characterized through somatotype method proposed by Carter. The sample was divided into 4 groups; Chilean Selection, Traditional Private Universities, State Universities and Private Universities Traditional Nontraditional. Regarding body composition; the Chilean team has the highest values of muscle tissue (45.6 ± 1.7%) and the lowest values of adipose tissue (25.2 ± 1.8%), also presenting lesser value in the Σ 6 skinfolds (mm) . The results showed no significant differences between groups in the aforementioned variables. In general somatotype compared by analyzing SANOVA no significant differences between groups (p = 0.409) was observed. The results show a biotype with such a characterization of endo-mesomorph with average values (4,1-4,9-1,8). This study provides updated data biotypological reference for this sport that can be used for decision-making.

  15. [ANTHROPOMETRIC CHILEAN TABLE TENNIS PLAYERS OF COMPETITIVE FEATURES].

    PubMed

    Yáñez Sepúlveda, Rodrigo; Barraza, Fernando; Rosales Soto, Giovanni; Báez, Eduardo; Tuesta, Marcelo

    2015-01-01

    The aim of the study was to characterize the anthropometric profile and somatotype of a sample of 50 players table tennis competitive with an average age 21.6 (± 3.1) years belonging to the Chilean team and institutions of higher education in the region of Valparaiso. The evaluation was conducted under the protocol marking the International Society for the Advancement of Kinanthropometry (ISAK) for the measurement procedure 25 restricted profile variables described by Drinkwater, Norton and Olds. Order to determine the body composition, fat, muscle, bone, skin and tissue residual was considered, using the equations proposed by Kerr. The body shape is characterized through somatotype method proposed by Carter. The sample was divided into 4 groups; Chilean Selection, Traditional Private Universities, State Universities and Private Universities Traditional Nontraditional. Regarding body composition; the Chilean team has the highest values of muscle tissue (45.6 ± 1.7%) and the lowest values of adipose tissue (25.2 ± 1.8%), also presenting lesser value in the Σ 6 skinfolds (mm) . The results showed no significant differences between groups in the aforementioned variables. In general somatotype compared by analyzing SANOVA no significant differences between groups (p = 0.409) was observed. The results show a biotype with such a characterization of endo-mesomorph with average values (4,1-4,9-1,8). This study provides updated data biotypological reference for this sport that can be used for decision-making. PMID:26545537

  16. Effect of cropping systems on adsorption of metals by soils: I. Single-metal adsorption

    SciTech Connect

    Basta, N.T.; Tabatabai, M.A. )

    1992-02-01

    The effect of long-term cropping systems on adsorption of metals was studied for soils obtained from two sites, Clarion-Webster Research Center (CWRC site) at Kanawha and Galva-Primghar Research Center (GPRC site) at Sutherland, under long-term rotation experiments in Iowa. Each experiment consisted of three cropping systems: continuous corn (CCCC), corn-soybean-corn-soybean (CSCS), and corn-oats-meadow-meadow (COMM), and treated with (+N) and without (0 N) ammoniacal fertilizer. In general, CSCS and COMM cropping systems did not significantly affect the metal adsorption maxima of soils obtained from both sites. Cadmium, Cu, and Pb adsorption were significantly correlated with pH and percentage base saturation for soils from both sites.

  17. Soil microbial community response to corn stover harvesting under rain-fed, no-till conditions at multiple U.S. locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting of corn stover for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decrea...

  18. An agricultural drought risk-assessment model for corn and soybeans

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Hubbard, Kenneth G.; Wilhite, Donald A.

    2004-05-01

    An agricultural drought risk-assessment model was developed for Nebraska, USA, for corn and soybeans on the basis of variables derived from the standardized precipitation index and crop-specific drought index using multivariate techniques. This model can be used to assess real-time agricultural drought risk for specific crops at critical times before and during the growing season by retaining previous, and adding current, weather information as the crops pass through the various development stages. This model will be helpful to decision makers, ranging from agricultural producers to policy makers and from local to national levels.The results of the model validation using three different datasets show that the risk-assessment accuracy improves as the crop develops. At the end of April, before corn is planted, the average assessment accuracy rate of drought risks on final yield is 60%. At the beginning of July, when corn is at the vegetative stage, the average assessment accuracy rate reaches 76%. In late July, when corn is at the ovule stage, the rate increases to 85%. The rates are 89% in the second half of August and the end of September, when corn is at the reproduction and ripening stages respectively. The model assessment accuracy for soybeans is lower than that for corn at the same growth stages because weather has less impact on soybeans than on corn. A reliable assessment, with 80% assessment accuracy rate, begins at mid-August, when soybeans are at pod formation stage. In early September and October, when soybeans are at pod fill and ripening stages respectively, the model is able to assess risks on soybean yield with 83% and 81% accuracy rates respectively.

  19. Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping

    EPA Science Inventory

    This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...

  20. Nitrogen accumulation profiles of selected grain and vegetable crops: A bibliography (1940-1992)

    SciTech Connect

    Meischen, S.J.; Byrd, K.R.

    1994-10-01

    A bibliography of nitrogen accumulation profile data for 25 vegetable and grain crops reported between 1940 and 1992 is presented. The selected crops are asparagus, broccoli, brussels sprouts, cabbage, carrots, cauliflower, celery, corn, cotton, cucumber, field bean, field pea, garlic, lettuce, onions, and peppers.

  1. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  2. 1978 Insect Pest Management Guide: Commercial Vegetable Crops and Greenhouse Vegetables. Circular 897.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)

  3. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting winter cover crops such as winter rye after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems. Because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and ma...

  4. Common waterhemp growth and fecundity as influenced by emergence date and competing crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common waterhemp (Amarathus rudis Sauer) has become problematic in glyphosate-tolerant crops. Dry weight and seed production of this weed at different times of emergence and alone or in crops (corn, Zea mays L., and soybean, Glycine max [L.] Merr.) were examined in 2001 and 2002 in Morris, MN. Later...

  5. The benefits of herbicide-resistant crops.

    PubMed

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture.

  6. Southeast Growers Can use Furrow Diking to Stabilize Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability has a large bearing on crop fate. In 2 years of research at NPRL, research with furrow dikes has shown positive results with peanut, cotton, and corn. The equipment necessary for furrow diking is not expensive and can be attached to common cultivation equipment or planters. Fur...

  7. Surprising yields with no-till cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers using no-till practices have observed that crop yields can greatly exceed expectations based on nutrient and water supply. For example, Ralph Holzwarth, who farms near Gettysburg, SD, has averaged 150 bu/ac of corn on his farm for the past 6 years. We were surprised with this yield, as c...

  8. PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING

    EPA Science Inventory

    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...

  9. A NEW APPROACH TO PIP CROP MONITORING USING REMOTE SENSING

    EPA Science Inventory

    Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...

  10. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems.

    PubMed

    Alluvione, Francesco; Halvorson, Ardell D; Del Grosso, Stephen J

    2009-01-01

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO(2)) and methane (CH(4)) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris L.); 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation under NT soil management [corn-barley (NT-CB); continuous corn (NT-CC); corn-dry bean (NT-CDb)] on CO(2) and CH(4) flux from a clay loam soil. Carbon dioxide and CH(4) fluxes were monitored one to three times per week using vented nonsteady state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO(2) emissions relative to CT (NT: 2.08 Mg CO(2)-C ha(-1); CT: 2.41 Mg CO(2)-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO(2) fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO(2)-C ha(-1)d(-1) respectively). Growing season CH(4) emissions were higher in NT (20.2 g CH(4) ha(-1)) than in CT (1.2 g CH(4) ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH(4) flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH(4) oxidation capacity of this clay loam soil relative to CT plowed and fertilized soil.

  11. Crop Change Assessment Using Polarimetric RADARSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Shang, Jiali; Vachon, Paris W.; McNairn, Heather

    2011-03-01

    This paper studies the feasibility of monitoring crop growth cycles based on a temporal variation analysis of three elementary radar scattering mechanisms. Crop changes are assessed using RADARSAT-2 polarimetric data. The polarimetric SAR (PolSAR) analysis is based on the Pauli decomposition. Multi-temporal analysis is applied to RGB images constructed using surface scattering, double bounce and volume scattering. The crops studied in this paper are corn, cereals and soybeans. Each crop has unique physical structural characteristics and responds differently to these scattering mechanisms. By monitoring the significant changes that occur in these scattering mechanisms, the crop growth to harvest cycle can be observed and the harvest time can be estimated. In addition, a Maximum Likelihood Classification was performed on the RADARSAT-2 data to produce a crop map. An overall classification accuracy of 85% was achieved.

  12. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation.

    PubMed

    Uellendahl, H; Wang, G; Møller, H B; Jørgensen, U; Skiadas, I V; Gavala, H N; Ahring, B K

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops. The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy crops competitive to the use of corn and this combination will make the production of biogas from energy crops more sustainable. PMID:19029727

  13. Chilean Student Movements: Sustained Struggle to Transform a Market-Oriented Educational System

    ERIC Educational Resources Information Center

    Bellei, Cristian; Cabalin, Cristian

    2013-01-01

    During the last decade, Chilean society was shaken by sharply critical and powerful student movements: secondary students led the 2006 "Penguin Revolution" and university students led the 2011 "Chilean Winter." This article describes and analyzes these student movements to illustrate how students can be highly relevant…

  14. Chilean Family Reminiscing about Emotions and Its Relation to Children's Self-Regulation Skills

    ERIC Educational Resources Information Center

    Leyva, Diana; Nolivos, Virginia

    2015-01-01

    Research Findings: This study examined the relation between Chilean parents' narrative participatory styles (i.e., the way in which parents scaffold children's participation in conversations) and children's self-regulation skills. A total of 210 low-income Chilean parent-child dyads participated in the study. Dyads were videotaped talking about a…

  15. A temporal/spectral analysis of small grain crops and confusion crops. [North Dakota

    NASA Technical Reports Server (NTRS)

    Johnson, W. R. (Principal Investigator)

    1981-01-01

    Spectral data from the LANDSAT-2 satellite were used to study the growth cycles of fields of wheat, barley, alfalfa, corn, sunflowers, soybeans, rye, flax, oats, millet, grass, and hay. Signatures of pastures, trees, and idle fallow were also studied. The growth cycles were portrayed in the form of temporal plots of the greeness-brightness transformation vector applied to average channel pixel values within the fields, all of which were in three counties in North Dakota. The plots of each crop reveal characteristics which can be used in crop classification procedures.

  16. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  17. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  18. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  19. A comprehensive data processing plan for crop calendar MSS signature development from satellite imagery: Crop identification using vegetation phenology

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A. (Principal Investigator); Carlyle, S. M.; Haralick, R. M.; Yokoyama, R.

    1978-01-01

    The author has identified the following significant results. The phenological method of crop identification involves the creation of crop signatures which characterize multispectral observations as phenological growth states. The phenological signature models spectral reflectance explicitly as a function of crop maturity rather than as a function of date. A correspondence of time to growth state is established which minimizes the smallest difference between the given multispectral multitemporal vector and a category mean vector. The application of the method to the identification of winter wheat and corn shows (1) the method is capable of discriminating crop type with about the same degree of accuracy as more traditional classifiers; (2) the use of LANDSAT observations on two or more dates yields better results than the use of a single observation; and (3) some potential is demonstrated for labeling the degree of maturity of the crop, as well as the crop type.

  20. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.

  1. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system. PMID:17964144

  2. Crop scientists break down barriers at Ames meeting

    SciTech Connect

    Moffat, A.S.

    1992-09-04

    For years, crop science has been balkanized, with specialists in rice, corn, and soy beans, for example, working on their commodities and attending their own meetings. But at the First International Crop Science Congress, held in July in Ames, Iowa-an 8-day event 3 years in the making-the discipline displayed a new found hybrid vigor. More than 1000 researchers of various persuasions, including plant molecular biology, classical plant breeding, agronomy, and soil science, representing 85 countries, shared their expertise in basic and applied studies. Here are a couple of proposals for expanding world food production and another that shows the diverse roles crops can play.

  3. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  4. Genetically modified crops: Brazilian law and overview.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; dos Santos, O J A P; Alves, D P; Brasileiro, B P; Peternelli, L A

    2014-07-07

    In Brazil, the first genetically modified (GM) crop was released in 1998, and it is estimated that 84, 78, and 50% of crop areas containing soybean, corn, and cotton, respectively, were transgenic in 2012. This intense and rapid adoption rate confirms that the choice to use technology has been the main factor in developing national agriculture. Thus, this review focuses on understanding these dynamics in the context of farmers, trade relations, and legislation. To accomplish this goal, a survey was conducted using the database of the National Cultivar Registry and the National Service for Plant Variety Protection of the Ministry of Agriculture, Livestock and Supply [Ministério da Agricultura, Pecuária e Abastecimento (MAPA)] between 1998 and October 13, 2013. To date, 36 events have been released: five for soybeans, 18 for corn, 12 for cotton, and one for beans. From these events, 1395 cultivars have been developed and registered: 582 for soybean, 783 for corn and 30 for cotton. Monsanto owns 73.05% of the technologies used to develop these cultivars, while the Dow AgroScience - DuPont partnership and Syngenta have 16.34 and 4.37% ownership, respectively. Thus, the provision of transgenic seeds by these companies is an oligopoly supported by legislation. Moreover, there has been a rapid replacement of conventional crops by GM crops, whose technologies belong almost exclusively to four multinational companies, with the major ownership by Monsanto. These results reflect a warning to the government of the increased dependence on multinational corporations for key agricultural commodities.

  5. Genetically modified crops: Brazilian law and overview.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; dos Santos, O J A P; Alves, D P; Brasileiro, B P; Peternelli, L A

    2014-01-01

    In Brazil, the first genetically modified (GM) crop was released in 1998, and it is estimated that 84, 78, and 50% of crop areas containing soybean, corn, and cotton, respectively, were transgenic in 2012. This intense and rapid adoption rate confirms that the choice to use technology has been the main factor in developing national agriculture. Thus, this review focuses on understanding these dynamics in the context of farmers, trade relations, and legislation. To accomplish this goal, a survey was conducted using the database of the National Cultivar Registry and the National Service for Plant Variety Protection of the Ministry of Agriculture, Livestock and Supply [Ministério da Agricultura, Pecuária e Abastecimento (MAPA)] between 1998 and October 13, 2013. To date, 36 events have been released: five for soybeans, 18 for corn, 12 for cotton, and one for beans. From these events, 1395 cultivars have been developed and registered: 582 for soybean, 783 for corn and 30 for cotton. Monsanto owns 73.05% of the technologies used to develop these cultivars, while the Dow AgroScience - DuPont partnership and Syngenta have 16.34 and 4.37% ownership, respectively. Thus, the provision of transgenic seeds by these companies is an oligopoly supported by legislation. Moreover, there has been a rapid replacement of conventional crops by GM crops, whose technologies belong almost exclusively to four multinational companies, with the major ownership by Monsanto. These results reflect a warning to the government of the increased dependence on multinational corporations for key agricultural commodities. PMID:25061747

  6. Seeding date affects fall growth of winter canola (Brassica napus L. ‘Baldur’) and its performance as a winter cover crop in central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, interest has increased in finding non-grass cover crop species that could be planted after soybean (Glycine max (L) Merr.) and before corn (Zea mays L.) in Iowa crop rotations. In this study, we investigate the use of winter canola (Brassica napus L.) as an alternative cover crop fo...

  7. Hazardous waste management in Chilean main industry: an overview.

    PubMed

    Navia, Rodrigo; Bezama, Alberto

    2008-10-01

    The new "Hazardous Waste Management Regulation" was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a "Hazardous Waste Management Plan" if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory. PMID:18337002

  8. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato.

    PubMed

    Cevallos-Casals, Bolívar A; Cisneros-Zevallos, Luis

    2003-05-21

    Stoichiometric and kinetic values of phenolics against DPPH (2,2-diphenyl-1-picrylhydrazyl) were determined for Andean purple corn (Zea mays L.) and red sweetpotato (Ipomoea batatas). Both crops had higher antioxidant capacity and antiradical kinetics than blueberries and higher or similar anthocyanin and phenolic contents. The second-order rate constant (k(2)) was 1.56, 1.12, 0.57, and 0.26 (mg antiradical/mL)(-1) s(-1) for red sweetpotato, Trolox, purple corn, and blueberry, respectively. On the molar basis of active hydroxyl groups, k(2)' showed the same order as for k(2). Corn cob and sweetpotato endodermis contributed the most in phenolic compounds and antioxidant capacity. Both crops studied can be considered as excellent novel sources of natural antioxidants for the functional food and dietary supplement markets. PMID:12744660

  9. Formation of Aspergillus flavus sclerotia on corn grown under different drought stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a major producer of carcinogenic aflatoxins worldwide in corn, peanuts, tree nuts, cottonseed, spices and other crops. Many countries have strict limits on the amount of aflatoxins permitted in human commodities and animal feed. Sclerotia produced by A. flavus serve several f...

  10. Alfalfa N credits to second-year corn larger than expected

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa can provide substantial amounts of nitrogen (N) to the first crop that follows it. Recent field research on first-year corn confirms that it is highly likely that grain yields will not improve with added fertilizer N, except on very sandy and very clayey soils. It is less clear how much fert...

  11. Corn yield response to reduced water use at different growth stages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop an efficient water use strategy for crop irrigation, we need to know how much water can be reduced without decreasing yield. A study was designed to determine corn growth stages at which water could be reduced without affecting grain yield, and at what soil moisture level water deficit st...

  12. Nitrate loss in subsurface drainage and corn yield as affected by timing of sidedress nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using chlorophyll meters, crop sensors, or aerial photography to fine-tune sidedress N application rates have been proposed for optimizing and perhaps reducing overall N fertilizer use on corn (Zea mays L.) and thereby improving water quality by reducing NO3 losses to surface and ground waters. Howe...

  13. Corn yield under subirrigation and future climate scenarios in the Maumee river basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...

  14. Change in Surface Soil Carbon Under Rotated Corn in Eastern South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified crop rotation may reduce fertilizer nitrogen (N) input for corn (Zea mays L.) and increase soil organic carbon (SOC) storage. Objectives were to determine effect of rotation and N on soil C sequestration. The experiment was started in 1990 on a Barnes sandy clay loam near Brookings, SD. ...

  15. Cotton response to chicken litter in rotation with corn in clayey soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter has proven to be an effective cotton fertilizer under conventional and no-till systems in silt loam soils in Mississippi. It may also prove to be a valuable fertilizer in heavier soils where cotton (Gossypium hirsutum L.) is typically rotated with corn (Zea mays L.) or other crops. T...

  16. Impacts of corn residue grazing and baling on wind erosion potential in a semiarid environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Implications of corn (Zea mays L.) residue grazing and baling on wind erosion in integrated crop-livestock systems are not well understood. We studied: 1) soil properties affecting wind erosion potential including dry aggregate-size distribution, geometric mean diameter (GMDA), geometric standard de...

  17. No-till corn response and soil nutrient concentrations from subsurface banding of poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...

  18. Corn response and soil nutrient concentration from subsurface application of poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...

  19. Residue harvest effects on irrigated, no-till corn yield and nitrogen response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) residue harvest is common in Nebraska, primarily for feeding of beef cattle. Applied N immobilization is expected to be less with residue harvest due to reduced microbial activity for digestion of high CN organic material. Residue reduction may affect subsequent crop yield and res...

  20. Residue harvest effects on corn response to applied N and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) residue harvest is common in Nebraska, primarily for feeding of beef cattle. Applied N immobilization is expected to be less with residue harvest due to reduced microbial activity for digestion of high CN organic material. Residue reduction may affect subsequent crop yield and res...

  1. Extracted sweet corn tassels as a renewable alternative to peat in greenhouse substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops. Sphagnum peat moss is a primary constituent of these substrates and its harvest from endangered ecosystems has become a worldwide concern. Ethanol-extracted, coarse-ground corn (Zea mays L. ‘Sil...

  2. Corn response to enhanced-efficiency nitrogen fertilizers and poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is one of the most important nutrients and costly input for crop production. Farmers are looking for better management practice to enhance production and reduce environmental impact. A 3-yr field study was established to examine corn (Zea mays L.) grain yield and nutrient uptake resulting f...

  3. Enhancing forage yields and soil conservation by interseeding alfalfa into silage corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent field studies have identified prohexadione-calcium (PHD) as an effective plant growth regulator for enhancing the establishment of alfalfa interseeded into corn as a dual-purpose cover and forage crop. Foliar applications of PHD on seedlings doubled or tripled stand survival of interseeded al...

  4. Opportunities exist to improve alfalfa and manure nitrogen crediting in corn following alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey was conducted in 2012 to evaluate the acceptance of fertilizer and manure N extension N rate guidelines for corn (Zea mays L.) grown as the first (AC) and second (ACC) crop following alfalfa (Medicago sativa L.) during 2009 to 2011 in Minnesota. There were 421 valid responses for AC and 273...

  5. Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn

    SciTech Connect

    Boonserm, P.

    1985-01-01

    On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

  6. Vertical distribution of corn stover dry mass grown at several U.S. locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn stover is a likely non-food agricultural feedstock for production of renewable liquid fuels, biopower and other bioproducts. Crop residues serve multiple soil functions such as erosion control and carbon and nutrient cycling. The Revised Universal Soil Loss Equation version 2 (RUSLE2) and the W...

  7. Emergence of polymer-coated corn and soybean influenced by tillage and sowing date

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early establishment of crops is vital for maximizing production in the northern US Corn Belt. No tillage often delays soil warming, thus sowing too early may compromise seed viability due to prolonged exposure to cold soil. Coating seed with a temperature-activated polymer may circumvent the adverse...

  8. Relationships among phenotypic traits of sweet corn and tolerance to crowding stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crowding stress tolerance is defined as the extent to which the crop maintains yield per unit area as plant population density increases beyond standard levels. Sweet corn (Zea mays L.) hybrids grown for processing vary widely in tolerance to crowding stress; however, the mechanisms involved in crow...

  9. Using an active sensor to make in-season nitrogen recommendations for corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An active crop canopy reflectance sensor could increase N-use efficiency in corn (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season application. Our objective was to evaluate the success of using an active sensor ...

  10. No-till corn response to subsurface application of poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...

  11. Diurnal activities of the brown stink bug (Hemiptera: Pentatomidae) in and near tasseling corn fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for effective management of the brown stink bug, Euschistus servus, in corn and other crops has been increasing in recent years. To identify when and where the stink bugs are most likely to occur for targeted insecticide application, diurnal activities of stink bugs in and near the field...

  12. First report of Lance Nematode (Hoplolaimus magnistylus) on corn, soybean and cotton in Tennessee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lance nematode, Hoplolaimus galeatus, has been reported in Tennessee on field crops, forage pastures, home gardens, woody ornamentals, turf, and commercial vegetables across the state. In May 2011, another lance nematodes, H. magnistylus, was recovered from corn, cotton and soybean fields in west Te...

  13. Predictors of HIV enacted stigma among Chilean women

    PubMed Central

    Cianelli, Rosina; Villlegas, Natalia; De Oliveira, Giovanna; Hires, Kimberly; Gattamorta, Karina; Ferrer, Lilian; Peragallo, Nilda

    2015-01-01

    Aims and objectives To investigate if socio-demographic factors, religiosity, HIV-related knowledge, Marianismo, history of having been tested for HIV, knowing someone who died of AIDS and HIV risk perception were predictive factors to HIV enacted stigma predictors among Chilean women. Background HIV infection is the number one cause of death among women during their reproductive years. In Chile, studies with people living with HIV demonstrate the existence of HIV-related stigma. However, limited evidence is available about the underlying causes of HIV enacted stigma that results in stigmatisation and discrimination. Design The current cross-sectional study is a secondary analysis of data collected to assess the impact of an HIV prevention intervention (Mano a Mano-Mujer) designed for Chilean women. A quasi-experimental design was used in the original study. Methods This study was conducted in two communities in Santiago, Chile. The sample for this study consisted of 496 Chileans between ages 18–49. Descriptive statistics and multiple regression were used for the analysis. Results Participants in the study reported high levels (77·8%) of HIV enacted stigma. Higher levels of HIV-related knowledge were associated with lower levels of HIV enacted stigma. Women with higher education had lower levels of HIV enacted stigma than women with elementary education. In addition, greater levels of marianismo (cultural belief that women should be passive, faithful, and devoted to family) were associated with higher HIV enacted stigma scores. Conclusions The findings reflected the presence of HIV enacted stigma among Chilean women. Identifying the significant predictors of HIV enacted stigma can help the nursing community to design HIV prevention interventions that include the reduction in HIV enacted stigma. HIV evidence-based prevention interventions should incorporate contents related to stigma to contribute to prevent HIV enacted stigma at individual and community levels

  14. Self-selection and moral hazard in Chilean health insurance.

    PubMed

    Sapelli, Claudio; Vial, Bernardita

    2003-05-01

    We study the existence of self-selection and moral hazard in the Chilean health insurance industry. Dependent workers must purchase health insurance either from one public or several private insurance providers. For them, we analyze the relationship between health care services utilization and the choice of either private or public insurance. In the case of independent workers, where there is no mandate, we analyze the relationship between utilization and the decision to voluntarily purchase health insurance. The results show self-selection against insurance companies for independent workers, and against public insurance for dependent workers. Moral hazard is negligible in the case of hospitalization, but for medical visits, it is quantitatively important.

  15. Effects of Climate Change on Regional Crop Production in Eastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ross, S. T.; Mangan, J. M.

    2009-12-01

    Regional climate changes can significantly alter crop yields for agriculturally important areas. Berks County, PA, is an agrarian community whose crop production is typical of southeastern Pennsylvania, with corn as a major crop. Mean annual temperatures in Pennsylvania are predicted to increase by 4 degrees C and precipitation is expected to increase 5% by 2100. We examined changes in 20th Century Berks County crop yields, particularly corn, in response to yearly variations in temperature and precipitation. Crop yields for corn are predicted by models to increase up to a 29 degrees C threshold, beyond which yields will significantly decrease. This study quantifies the effects of recent climate change on Berks County crop production and predicts potential changes for the future. It is important to consider regional climate change effects if we are to fully understand the impacts of global change on food crop production. This study also incorporates anecdotal data from farmers to note their perceptions of crop productivity as related to environmental changes and to determine other factors that may affect farming practices and crop yields.

  16. Analysis of the profile characteristics of corn and soybeans using field reflectance data

    NASA Technical Reports Server (NTRS)

    Crist, E. P.

    1982-01-01

    The typical patterns of spectral development (profiles) for corn and soybeans are presented, based on field-collected reflectance data transformed to correspond to LANDSAT-MSS Tasseled Cap coordinates. Reasonable variations in field conditions and cultural practices are shown to significantly influence profile features. The separability of the two crops is determined to be primarily related to the maximum value of the reflectance equivalent of Greenness, and to the plateau effect seen in corn Greenness profiles. The impact of changes in conditions on separability is described. In addition, association is made between profile features and stages of development for corn and soybeans. Corn is shown to peak at a stage well before tasseling or maximum LAI, while the characteristics of the soybean profile are shown to be unrelated to any particular stage of development.

  17. Management of corn leafhopper (Homoptera: Cicadellidae) and corn stunt disease in sweet corn using reflective mulch.

    PubMed

    Summers, C G; Stapleton, J J

    2002-04-01

    Plastic reflective mulches significantly reduced populations of corn leafhopper, Dalbulus maidis (DeLong & Wolcott), adults and the incidence of corn stunt disease caused by Spiroplasma kunkelii (CSS) in late planted sweet corn (Zea mays L.). The reflective mulches were more effective than were either foliar or soil applied insecticides in managing both the leafhopper and the pathogen it transmits. Yields of marketable ears were 1.5 to 2 times greater in reflective mulch plots than from fallow plots. This was due to larger ears (individual ear weight and length) rather than an increase in the number of ears. The use of reflective mulches provides an alternative strategy to insecticides in the management of both D. maidis and corn stunt disease. Such a strategy may prove useful to growers in Latin America and to limited resource growers and organic growers in the United States who wish to grow corn without the use of insecticides. PMID:12020008

  18. Firewood crops

    SciTech Connect

    Not Available

    1980-01-01

    This report does not suggest a solution to the entire firewood crisis but examines one part of the solution: the selection of species suitable for deliberate cultivation as firewood crops in developing countries. Primary emphasis is placed on species suitable for growing firewood for individual family needs. However, species suited to plantation cultivation for fueling small industrial factories, electric generators, and crop dryers are also considered. Most of the plants are little known in traditional forest production. Some are woody shrubs rather than forest trees, but even these may meet many requirements for small-scale village use. Particular attention was paid to multi-purpose plants that have uses in addition to providing fuel, plants that adapt well to different sites and require little care, plants for problem environments and plants not consumed by goats and wildlife. Special consideration was given to nitrogen-fixing ability, rapid growth, ability to coppice, ability to produce wood of high calorific value that burns without sparks or toxic smoke and ability to grow successfully in a wide range of environments. After an introduction on wood as fuel, more than 60 fuel-wood species for humid tropical, tropical highland and arid and semi-arid regions are presented. The data on existing plants cover their major attributes, description, distribution, use as fuelwood, yield, other uses, environmental requirements, establishment, pest and diseases and limitations. Appendices include technologies for improving the efficiency of fuelwood use, case studies from Ethiopia and the Republic of Korea and a master list of firewood species.

  19. Do Sesamia nonagrioides (Lepidoptera; Noctuidae) Gravid Females Discriminate Between Bt or Multivitamin Corn Varieties? Role of Olfactory and Visual Cues

    PubMed Central

    Cruz, Diego; Eizaguirre, Matilde

    2015-01-01

    The Mediterranean corn borer, Sesamia nonagrioides Lefèbvre, is a key pest of corn and a main target of Bacillus thuringiensis (Bt) corn in Northeast Spain. Trends for future biotechnology crops indicate that Bt, non-Bt, and stacked corn varieties with metabolic pathways for vitamin-increased traits could coexist in same region. Knowledge of the oviposition response of gravid females of S. nonagrioides to these different varieties could be extremely important for managing strategies aimed for delaying resistance development. In dual-choice assays, we examined the host preference of gravid females of S. nonagrioides for four corn varieties: a new transgenic corn with increased vitamin levels, its near isogenic counterpart (M37W), a Bt corn plant, and its near isogenic counterpart. Olfactory cues were the predominant ones when gravid females looked for a suitable host to lay eggs, and no synergistic effects were observed when both visual and olfactory cues were present. When the plant was visible, the females preferred the odors emitted by the nontransgenic to its multivitamin transgenic counterpart and when they only could detect the volatiles they also preferred the nontransgenic M37W variety to the Bt corn variety. If gravid females are less attracted to corn with an increased level of vitamins, this could impact insect resistance management and the value of refuge plants, if such traits are stacked with an insect resistance trait. PMID:25843586

  20. Do Sesamia nonagrioides (Lepidoptera; Noctuidae) gravid females discriminate between Bt or multivitamin corn varieties? Role of olfactory and visual cues.

    PubMed

    Cruz, Diego; Eizaguirre, Matilde

    2015-01-01

    The Mediterranean corn borer, Sesamia nonagrioides Lefèbvre, is a key pest of corn and a main target of Bacillus thuringiensis (Bt) corn in Northeast Spain. Trends for future biotechnology crops indicate that Bt, non-Bt, and stacked corn varieties with metabolic pathways for vitamin-increased traits could coexist in same region. Knowledge of the oviposition response of gravid females of S. nonagrioides to these different varieties could be extremely important for managing strategies aimed for delaying resistance development. In dual-choice assays, we examined the host preference of gravid females of S. nonagrioides for four corn varieties: a new transgenic corn with increased vitamin levels, its near isogenic counterpart (M37W), a Bt corn plant, and its near isogenic counterpart. Olfactory cues were the predominant ones when gravid females looked for a suitable host to lay eggs, and no synergistic effects were observed when both visual and olfactory cues were present. When the plant was visible, the females preferred the odors emitted by the nontransgenic to its multivitamin transgenic counterpart and when they only could detect the volatiles they also preferred the nontransgenic M37W variety to the Bt corn variety. If gravid females are less attracted to corn with an increased level of vitamins, this could impact insect resistance management and the value of refuge plants, if such traits are stacked with an insect resistance trait. PMID:25843586

  1. Diallel analysis of corn for special use as corn grits: determining the main genetic effects for corn gritting ability.

    PubMed

    Conrado, T V; Scapim, C A; Bignotto, L S; Pinto, R J B; Freitas, I L J; Amaral, A T; Pinheiro, A C

    2014-01-01

    Corn grits are used for various purposes such as flakes, snacks, livestock feed, hominy, extruded products, beer, etc. The grit size proportion varies according to the hybrid, and thus, once the use of the grits is linked to the particle size, determining the genetic effects is essential to develop hybrids for any specific use. For this purpose a complete diallel series of crosses, involving eight parents, was performed near Maringá, PR, Brazil. The objective of this study was to evaluate the general (GCA) and specific (SCA) combining abilities of 28 progeny for selection of hybrids for breeding programs and extraction of inbred lines for hybrid development. The response variables, such as plant height, ear insertion height, crop stand, grain yield, and grits, small grits and bran production, were gauged and appraised for each of the 28 progeny. The trait effects and GCA were significant for all response variables, while for SCA, only grain yield and crop stand showed significance (P < 0.05), according to Griffing (1955) analysis. A significant weak negative partial correlation was found between grain yield and grits conversion. In relation to the hybrid selection for breeding programs, the parent IAC Nelore was highly recommended for recurrent selection and the hybrids IPR 119 x HT 392 and IAC Nelore x HD 332 for the extraction of pure lines for hybrid development. PMID:25177935

  2. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  3. Characterization of Corn Grains for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives of this study were to understand how the composition of corn kernels and starch structure affect enzyme hydrolysis of starch in dry-grind corn and ethanol yield from yeast fermentation. Four selected corn inbred lines were used in this study. Starch in uncooked dry-grind corn samples sh...

  4. 21 CFR 184.1865 - Corn syrup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn syrup. 184.1865 Section 184.1865 Food and....1865 Corn syrup. (a) Corn syrup, commonly called “glucose sirup” or “glucose syrup,” is obtained by partial hydrolysis of corn starch with safe and suitable acids or enzymes. It may also occur in...

  5. Corn Culture: A Story of Intelligent Design

    ERIC Educational Resources Information Center

    Todd, Jude

    2008-01-01

    Scientists are not sure of how corn was created. There were two competing genetic theories about how corn came to be. One theory maintains that corn had been teased out of a wheatlike grass called teosinte (genus Zea), and the other contends that one now-extinct ancestor of corn had crossed with another grass, "Tripsacum," several millennia ago.…

  6. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  7. Ethanol extraction of phytosterols from corn fiber

    DOEpatents

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  8. Adjacent Habitat Influence on Stink Bug (Hemiptera: Pentatomidae) Densities and the Associated Damage at Field Corn and Soybean Edges

    PubMed Central

    Venugopal, P. Dilip; Coffey, Peter L.; Dively, Galen P.; Lamp, William O.

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields. PMID:25295593

  9. Antimicrobial activity of submerged cultures of Chilean basidiomycetes.

    PubMed

    Aqueveque, Pedro; Anke, Timm; Saéz, Katia; Silva, Mario; Becerra, José

    2010-10-01

    This study is part of a screening program aimed at searching for bioactive metabolites from Chilean basidiomycetes. Submerged cultivation of fungal mycelia in liquid media was evaluated for antimicrobial activity. A total of 148 strains were obtained in vitro. The extracts produced from submerged cultures were evaluated against bacteria and fungi. In the primary antimicrobial assay, approximately 60% of the extracts presented positive biological activity. The highest frequencies of active strains were from the orders Agaricales (31.0%), Polyporales (20.6%), Sterales (18.3%), Boletales (11.4%), and Cortinariales (9.1%). Antifungal activity was more pronounced than antibacterial activity. Twelve extracts that exhibited strong antimicrobial activity showed minimum inhibitory concentration (MIC) values of 50 µL/mL against Bacillus brevis and 25∼50 µL/mL against Penicillium notatum and Paecilomyces variotii. The biological activity of some strains did not vary considerably, regardless of the substrate or collection site whereas, for others, it showed marked variations. Differences in antimicrobial activities observed in the different fungal genera suggested that the ability to produce bioactive compounds is not homogenously distributed among basidiomycetes. The information obtained from this study reveals that Chilean basidiomycetes are able to generate small and/or large variations in the normal pathway of compounds production. Thus, it is necessary to evaluate this biological and chemical wealth, which could be an unsuspected reservoir of new and potentially useful molecules.

  10. Positive discrimination in education: Its justification and a Chilean example

    NASA Astrophysics Data System (ADS)

    Garcia-Huidobro, Juan Eduardo S.

    1994-05-01

    Educational policies in Latin America have centred on two main issues: raising the quality of education, and improving the equity of its distribution. Access to schooling was until recently at the heart of the debate, the degree of justice of the educational systems being measured by their capacity to enrol and retain the population. Attention is now concentrated on the strength of the cultural resources offered by schools and the effectiveness of provision. Learning is the priority of education policy. This article develops the theme of equity, examining the concept and describing a programme which focuses on improving the equity of the Chilean educational system. It is suggested that educational equity should no longer mean equality of access but equality of results. A just system therefore needs to concentrate on raising the quality of schools serving the poorest sectors of society. The Chilean "900 Schools Programme" is an example. Its aim was to raise levels of achievement by improving the learning of poor children from 1st to 4th grade in reading, writing and mathematics. To do so, it improved the school environment, textbooks and methodologies, and offered support to children outside school hours by the work of community monitors.

  11. Grandparenting and psychosocial health among older Chileans: A longitudinal analysis

    PubMed Central

    Grundy, Emily M.; Albala, Cecilia; Allen, Elizabeth; Dangour, Alan D.; Elbourne, Diana; Uauy, Ricardo

    2012-01-01

    Objectives: To investigate factors associated with Chilean grandparents’ provision of help to grandchildren and associations between provision of such help and grandparents’ mental well-being two years later. Methods: Data are drawn from a representative sample of 2000 people aged 66–68 resident in low- or middle-income areas of Santiago who were surveyed in 2005 and re-interviewed two years later. Multivariable analyses were used to investigate factors associated with provision of help to grandchildren at baseline and associations between providing such help and life satisfaction, SF36-Mental Component Summary scores, and depression two years later. Results: 41% of grandparents lived with one or more grandchildren and over half provided four or more hours per week of help to grandchildren. Models controlling for baseline mental health, grandchild characteristics, marital and household characteristics, socio-economic status and functional health showed that grandfathers who provided four or more hours per week of help to grandchildren had better life satisfaction two years later and that those providing material help had higher SF36 MCS scores at follow-up. Grandmothers providing four or more hours of help a week had lower risks of depression. Conclusion: Older Chileans make important contributions to their families through the provision of help to grandchildren and these appear to have some benefits for their own psychosocial health. Gender differences in the pattern of associations may reflect differences in overall family responsibilities and merit further investigation. PMID:22690765

  12. Diagravitropism in corn roots.

    PubMed

    Leopold, A C; Wettlaufer, S H

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  13. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  14. Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.).

    PubMed

    Herman, Rod A; Phillips, Amy M; Collins, Randy A; Tagliani, Laura A; Claussen, Fred A; Graham, Christopher D; Bickers, Brenda L; Harris, Travis A; Prochaska, Lee M

    2004-05-01

    Maize (Zea mays L.) plants have been transformed to express a Cry1F insecticidal crystal protein originally isolated from Bacillus thuringiensis Berliner. This protein controls lepidopteran pests of maize, including the European corn borer, Ostrinia nubilalis (Hübner). As part of the safety assessment for crops containing transgenes, a compositional analysis of the food and feed is conducted. This analysis is designed to detect unintended changes in the nutrient and antinutrient content of the raw commodities produced by the crop due to the insertion of the genes into the genomic DNA of the plant (pleotropic effects). Samples of transgenic and nontransgenic maize forage and grain were collected from six field sites located in the U.S. and Canada. Forage samples were analyzed for proximates and minerals, and grain was further analyzed for fatty acids, amino acids, vitamins, secondary metabolites, and antinutrients. Results demonstrated that maize expressing the Cry1F protein was equivalent to nontransgenic maize with respect to these important components. Comparison of the variability within the nontransgenic and transgenic hybrid, as compared to composition values reported in the literature, suggest that factors other than transgenes may contribute more substantially to the composition of crops.

  15. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  16. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  17. Generating crop calendars with Web search data

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; See, Linda; Fritz, Steffen; Verheijen, Frank G. A.; Khabarov, Nikolay; Obersteiner, Michael

    2012-06-01

    This paper demonstrates the potential of using Web search volumes for generating crop specific planting and harvesting dates in the USA integrating climatic, social and technological factors affecting crop calendars. Using Google Insights for Search, clear peaks in volume occur at times of planting and harvest at the national level, which were used to derive corn specific planting and harvesting dates at a weekly resolution. Disaggregated to state level, search volumes for corn planting generally are in agreement with planting dates from a global crop calendar dataset. However, harvest dates were less discriminatory at the state level, indicating that peaks in search volume may be blurred by broader searches on harvest as a time of cultural events. The timing of other agricultural activities such as purchase of seed and response to weed and pest infestation was also investigated. These results highlight the future potential of using Web search data to derive planting dates in countries where the data are sparse or unreliable, once sufficient search volumes are realized, as well as the potential for monitoring in real time the response of farmers to climate change over the coming decades. Other potential applications of search volume data of relevance to agronomy are also discussed.

  18. Report on the 2010 Chilean earthquake and tsunami response

    USGS Publications Warehouse

    ,

    2011-01-01

    In July 2010, in an effort to reduce future catastrophic natural disaster losses for California, the American Red Cross coordinated and sent a delegation of 20 multidisciplinary experts on earthquake response and recovery to Chile. The primary goal was to understand how the Chilean society and relevant organizations responded to the magnitude 8.8 Maule earthquake that struck the region on February 27, 2010, as well as how an application of these lessons could better prepare California communities, response partners and state emergency partners for a comparable situation. Similarities in building codes, socioeconomic conditions, and broad extent of the strong shaking make the Chilean earthquake a very close analog to the impact of future great earthquakes on California. To withstand and recover from natural and human-caused disasters, it is essential for citizens and communities to work together to anticipate threats, limit effects, and rapidly restore functionality after a crisis. The delegation was hosted by the Chilean Red Cross and received extensive briefings from both national and local Red Cross officials. During nine days in Chile, the delegation also met with officials at the national, regional, and local government levels. Technical briefings were received from the President’s Emergency Committee, emergency managers from ONEMI (comparable to FEMA), structural engineers, a seismologist, hospital administrators, firefighters, and the United Nations team in Chile. Cities visited include Santiago, Talca, Constitución, Concepción, Talcahuano, Tumbes, and Cauquenes. The American Red Cross Multidisciplinary Team consisted of subject matter experts, who carried out special investigations in five Teams on the (1) science and engineering findings, (2) medical services, (3) emergency services, (4) volunteer management, and (5) executive and management issues (see appendix A for a full list of participants and their titles and teams). While developing this

  19. Corn tassel detection based on image processing

    NASA Astrophysics Data System (ADS)

    Tang, Wenbing; Zhang, Yane; Zhang, Dongxing; Yang, Wei; Li, Minzan

    2012-01-01

    Machine vision has been widely applied in facility agriculture, and played an important role in obtaining environment information. In this paper, it is studied that application of image processing to recognize and locate corn tassel for corn detasseling machine. The corn tassel identification and location method was studied based on image processing and automated technology guidance information was provided for the actual production of corn emasculation operation. The system is the application of image processing to recognize and locate corn tassel for corn detasseling machine. According to the color characteristic of corn tassel, image processing techniques was applied to identify corn tassel of the images under HSI color space and Image segmentation was applied to extract the part of corn tassel, the feature of corn tassel was analyzed and extracted. Firstly, a series of preprocessing procedures were done. Then, an image segmentation algorithm based on HSI color space was develop to extract corn tassel from background and region growing method was proposed to recognize the corn tassel. The results show that this method could be effective for extracting corn tassel parts from the collected picture and can be used for corn tassel location information; this result could provide theoretical basis guidance for corn intelligent detasseling machine.

  20. Supporting Climatic Trends of Corn and Soybean Production in the USA

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cherkauer, K. A.; Verdin, J. P.

    2010-12-01

    The United States of America (USA) is a major source of corn and soybeans, producing about 39 percent of the world’s corn and 50 percent of world’s soybean supply. The north central states, including parts of the Midwestern US and the Great Plains form what is commonly described as the “Corn Belt” and consist of the most productive grain growing region in the United States. Changes in climate, including precipitation and temperature, are being observed throughout the world, and the Corn Belt region of the US is not immune posing a potential threat to global food security. We conducted a retrospective analysis of observed climate variables and crop production statistics to evaluate if observed climatic trends are having a positive or negative effect on corn and soybean production in the US. We selected climate indices based on gridded daily precipitation, maximum and minimum air temperature data from the National Climatic Data Center (NCDC) for the period of 1920-2009 and for 13 states in the Corn Belt region. We used the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) for different periods overlapping the important seasons for crop growths, such as the planting (April-May), grain-filling (June-August), and harvesting (September -October) seasons. We estimated the seasonal average of maximum and minimum daily temperatures to identify the historic trends and variability in air temperature during the key crop-growth seasons. Extreme warm temperatures can affect crop growth and yields adversely; therefore, cumulative maximum air temperature above the 90th percentiles (e.g. Cumulative Heat Index) was estimated for each growing period. We evaluated historic trends and variability of areal extents of severe or extreme droughts along with the areal extents facing the high cumulative heat stress. Our results showed that climatic extremes (e.g. droughts and heat stress) that occurred during the period of June

  1. Current and potential U.S. Corn Stover Supplies

    SciTech Connect

    Graham, Robin Lambert; Nelson, R; Perlack, Robert D; Sheehan, J.; Wright, Lynn L

    2007-01-01

    Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along the Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.

  2. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  3. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  4. County-Level Crop Yield Prediction Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wagstaff, K. L.; Roper, A.; Lane, T.

    2007-12-01

    Early estimates of crop yield, particularly at a fine scale, can inform precision agriculture efforts. The USDA National Agricultural Statistics Service (NASS) currently provides estimates of yield on a monthly basis for each state. These estimates are based on phone interviews with farmers and in-situ examination of randomly selected plots. We seek to provide predictions at a much higher spatial resolution, on a more frequent basis, using remote sensing observations. We use publicly available data from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on the Aqua and Terra spacecraft. These observations have a spatial resolution of 250 m and consist of two spectral bands (red and infra-red) with a repeat period of 8 days. As part of the HARVIST (Heterogeneous Agricultural Research Via Interactive, Scalable Technology) project, we have created statistical crop yield models using historical MODIS data combined with the per-county yield reported by the USDA at the end of the growing season. In our approach, we analyze 100 randomly selected historical pixels from each county to generate a yield prediction for the county as a whole. We construct a time series for each pixel that consists of its NDVI (Normalized Difference Vegetation Index) value observed during each 8-day time period to date. We then cluster all pixels together to identify groups of distinct elements (different crops, bodies of water, urban areas, desert, etc.) and create a regression model for each one. For each crop of interest, the model that best predicts that crop's historical yield is selected. These models can then be applied to data from subsequent years to generate predictions for the future. We applied this approach to data from California and Kansas for corn and wheat. We found that, in general, the yield prediction error decreased as the harvest time approached. In California, distinctly different models were selected to predict corn and wheat, permitting specialization

  5. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due

  6. Evolution of Resistance by Helicoverpa zea (Lepidoptera: Noctuidae) Infesting Insecticidal Crops in the Southern United States

    PubMed Central

    Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura

    2016-01-01

    We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533

  7. Evaluation of results of US corn and soybeans exploratory experiment: Classification procedures verification test. [Missouri, Iowa, Indiana, and Illinois

    NASA Technical Reports Server (NTRS)

    Carnes, J. G.; Baird, J. E. (Principal Investigator)

    1980-01-01

    The classification procedure utilized in making crop proportion estimates for corn and soybeans using remotely sensed data was evaluated. The procedure was derived during the transition year of the Large Area Crop Inventory Experiment. Analysis of variance techniques were applied to classifications performed by 3 groups of analysts who processed 25 segments selected from 4 agrophysical units (APU's). Group and APU effects were assessed to determine factors which affected the quality of the classifications. The classification results were studied to determine the effectiveness of the procedure in producing corn and soybeans proportion estimates.

  8. Effects of a Resistant Corn Hybrid and Fenamiphos on Meloidogyne incognita in a Corn-Squash Rotation.

    PubMed

    Johnson, A W; Sumner, D R; Windham, G L; Williams, W P

    1999-06-01

    The efficacy of a double-cross corn (Zea mays) hybrid (Old Raccoon selection X T216) X (Tebeau selection X Mp 307) resistant to Meloidogyne incognita as a rotational crop, and fenamiphos treatment for management of root-knot nematode (M. incognita race 1) in squash (Cucurbita pepo var. melopepo) was evaluated in field tests during 1996 and 1997. Numbers of M. incognita in the soil and root-gall indices were lower on the resistant hybrid than on a commercial cultivar DeKalb DK-683. Treatment means across both corn entries had lower root-gall indices following fenamiphos treatment. In soil collected 2 September 1997, there were more colony-forming units (cfu) per gram of oven-dried soil of Pythium spp. from plots planted to DK-683 treated with fenamiphos than in untreated plots (88 vs. 59 cfu). Some corn plots had individual plants with 10% to 15% of the crown and brace roots decayed, but no differences due to fenamiphos treatment. Lodging of stalks was 40% to 50% more in the double-cross hybrid than in DK-683. Yield was greater from DK-683 than the double-cross hybrid. Based on cultivar means across fenamiphos treatments and fenamiphos treatment means across cultivars, root-gall indices and yield of squash were significantly lower following the double cross hybrid than DK-683 and in fenamiphos-treated plots than in untreated plots of squash. Yield of squash was not affected by at-planting treatment with fenamiphos on the preceding crops of corn. Nematode resistance must be transferred into the elite materials of commercial seed companies to reach its full potential as a nematode management strategy.

  9. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops is an effective method to reduce both nitrogen leaching and sedimentation into waterways. Winter cover crops are planted post-harvest on corn and soybean fields to scavenge residual nitrogen that remains in the soil, and to meet soil erosion guidelines, providing positive water...

  10. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  11. Field pennycress: A new oilseed crop for the production of biofuels, lubricants, and high-quality proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) has numerous positive attributes that make it a very promising industrial oilseed crop. Its short growing season makes it suitable as an off-season crop between corn and soybean production in most of the upper Midwestern U.S. Fall planting of pennycress may also...

  12. A novel integrated cropping system for efficient grain production, improved soil quality, and enhanced beneficial arthropod communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity by using broad strips (corridors or skip rows) that promote highly efficient use of solar radiation and ambient carbon dioxide by C-4 plants including corn. Field trials in 2013 and 2014 showed that yields of selected c...

  13. Potential economic losses to the US corn industry from aflatoxin contamination.

    PubMed

    Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606

  14. Does Integration Help Adapt to Climate Change? Case of Increased US Corn Yield Volatility

    NASA Astrophysics Data System (ADS)

    Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.

    2012-12-01

    In absence of of new crop varieties or significant shifts in the geography of corn production, US national corn yields variation could double by the year 2040 as a result of climate change and without adaptation this could lead the variability in US corn prices to quadruple (Diffenbaugh et al. 2012). In addition to climate induced price changes, analysis of recent commodity price spikes suggests that interventionist trade policies are partly to blame. Assuming we cannot much influence the future climate outcome, what policies can we undertake to adapt better? Can we use markets to blunt this edge? Diffenbaugh et al. find that sale of corn- ethanol for use in liquid fuel, when governed by quotas such as US Renewable Fuel Standard (RFS), could make US corn prices even more variable; in contrast the same food-fuel market link (we refer to it as intersectoral link) may well dampen price volatility when the sale of corn to ethanol industry is driven by higher future oil prices. The latter however comes at the cost of exposing corn prices to the greater volatility in oil markets. Similarly intervention in corn trade can make US corn prices less or more volatile by distorting international corn price transmission. A negative US corn yield shock shows that domestic corn supply falls and domestic prices to go up irrespective of whether or not markets are integrated. How much the prices go up depends on how much demand adjusts to accommodate the supply shock. Based on the forgoing analysis, one should expect that demand would adjust more readily when markets are integrated and therefore reduce the resulting price fluctuation. Simulation results confirm this response of corn markets. In terms of relative comparisons however a policy driven intersectoral integration is least effective and prices rise much more. Similarly, a positive world oil price shock makes the US oil imports expensive and with oil being used to produce gasoline blends, it increases the price of gasoline

  15. Corn yield estimation in Serbia using MODIS 13Q1 product

    NASA Astrophysics Data System (ADS)

    Govedarica, Miro; Jovanović, Dušan; Sabo, Filip

    2015-06-01

    The aim of our study was to verify the accuracy and the usability of Moderate resolution imaging spectroradiometer (MODIS) 13Q1 product for corn yield estimation on a local level for 2014 year. Product 13Q1 consists of Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) 16-day composites with 250 m spatial resolution. The estimation is based on ground truth data (sowing structures for 8 years) which was provided by local agricultural organization in Vojvodina, Serbia. The indices were used in linear regression, where the average yield for corn was the dependent variable, NDVI and EVI were independent variables. Average corn yield was estimated approximately 15 days before the beginning of the harvest and compared with official results. Depending on the used linear method, relative errors ranged from 0.6 % to 7.4 %. Overall, coefficients of determination (R2) ranged from 0.66 to 0.75 and were significant at 0.05. The smallest difference between official results for corn yield and our estimate when using NDVI was 0.59 t/ha, when using EVI the smallest difference was 0.07 t/ha. Paper showed that NDVI and EVI from MODIS follow linear relationship with average corn yield and can be used in estimation of crop yields in Serbia and also that EVI produces better prediction results than NDVI. The crop yield estimation can be used for similar cultivated plants in Serbia and for longer period dataset.

  16. Parameterization and application of the AquaCrop model for simulating bioenergy crops in Oklahoma

    NASA Astrophysics Data System (ADS)

    Bilga, Navneet Kaur

    The objective of this study was to parameterize the AquaCrop model for two bioenergy crops, switchgrass and forage sorghum, using field measurements from Stillwater, Oklahoma in 2011. The parameterized model was then validated for additional sites at Chickasha and Woodward, Oklahoma. After parameterization at Stillwater, the simulated canopy cover closely matched the measured canopy cover dynamics with a RMSE of 6% in switchgrass and 5% in forage sorghum. The water stress thresholds for canopy expansion and stomatal conductance were similar for switchgrass and forage sorghum, but senescence was induced at 35% available water depletion for forage sorghum compared to 85% for switchgrass. The maximum rooting depth of switchgrass was estimated at 190 cm and that of forage sorghum at 120 cm. The normalized water productivity of switchgrass was found to be 14 g m-2, approximately half that of forage sorghum which was 27 g m-2. The parameterized model reasonably simulated soil water depletion at Stillwater (RMSE < 34 mm) and canopy cover at Chickasha and Woodward (RMSE < 11%) for both crops. This calibrated model was then used to predict ethanol yields as a simulation study at Goodwell, Oklahoma. The corn, forage sorghum and switchgrass were simulated using AquaCrop five water levels: rainfed with initial soil moisture conditions of 60% available water capacity, 80% available water capacity, 100% available water capacity, and irrigation treatments at 70% allowable depletion, and at 50% allowable depletion. The simulation study was done over a period of ten years 2002-2011 to assess the long term performance. County average yields were consistent with simulated grain yields for corn under irrigated and rainfed conditions. Forage sorghum produced 30 % higher theoretical ethanol yields than corn under irrigated environments but not under rainfed environments. Switchgrass did not produce significantly higher theoretical ethanol yields than corn at any water level. Based on

  17. Environmental Impacts of Stover Removal in the Corn Belt

    SciTech Connect

    Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David Muth

    2012-08-01

    When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into simple profit maximization model to show these tradeoffs.

  18. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize.

    PubMed

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Clifton, Eric H; Dunbar, Mike W; Hoffmann, Amanda M; Ingber, David A; Keweshan, Ryan S

    2014-04-01

    The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin.

  19. Implications of Transgenic Corn Cultivation on the Ecology of Agricultural Streams

    NASA Astrophysics Data System (ADS)

    Vantull, L.; Swan, C.

    2005-05-01

    Corn has been genetically-modified by introducing a gene that codes for a toxic protein from a bacterium, Bacillus thuringiensis (Bt), into corn DNA. Genetically-modified crops provide internal resistance to herbivorous pests like the European Corn Borer (Ostrina nubilalis). With the use of transgenic crops on the rise, research is being done to consider its environmental effects on non-target taxa and ecosystems. Stream ecosystems occupy topographic low points in the landscape and thus are affected by agricultural land use. In many temperate streams, the main energy source is from terrestrial organic detritus, mostly in the form of dead leaves and wood, delivered via wind or natural leaf fall. Stream insects consume this material, contributing to organic matter breakdown and creating biomass for predators. With the heightened practice of no-till agriculture, crop detritus remaining on fields as a by-product of harvesting has been documented to enter adjacent streams. Given insect larvae are critical to the transformation of energy from detritus to higher trophic levels, we explored the implications of detritus containing Bt on both insect performance and litter decay in six streams. The presence of Bt in senesced corn leaf litter resulted in significant reductions in both insect feeding rate and organic matter breakdown. Furthermore, colonization of corn litter containing Bt by detritivorous insects was significantly reduced when compared to non-Bt isoline litter controls. We conclude that detritus generated from harvesting transgenic corn negatively impacts insect feeding behavior and colonization dynamics, and may contribute substantially to the reduction of organic matter breakdown rates in agricultural streams.

  20. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize

    PubMed Central

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Clifton, Eric H.; Dunbar, Mike W.; Hoffmann, Amanda M.; Ingber, David A.; Keweshan, Ryan S.

    2014-01-01

    The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin. PMID:24639498

  1. Carbon Corn: Development of a sustainable agroecosystem

    NASA Astrophysics Data System (ADS)

    Wacha, K. M.; Papanicolaou, T.

    2009-12-01

    Corn is a valuable commodity to our society that not only provides a vital food source, but can increase the sustainability of our agroecosystem. This includes ethanol/biodiesel production through biomass collection of stover and residue, monitoring storage of carbon in the soil for commodity exchange, and decreasing the erosion-induced spread of pollutants by increasing organic matter content in the soil. In our study, the CENTURY5 model was used to simulate a wide range of crop rotations and tillage practices at the Clear Creek watershed located in South Amana, Iowa. In addition, sediment budget data were created from the Watershed Erosion Prediction Project (WEPP) model based on simulations ran for the same watershed. The numerical field experiments were conducted within the watershed in constructed corn plots that mimicked common farm practices. This included row spacing, seed planting depth, fertilizer applications of nitrogen, phosphorus and potash, and tillage. Data recorded during the experimental time-line included canopy height, vegetation cover, temperature, residue and soil moisture content. Base measurements of organic material levels and the pH of the soil were also taken. Present work consists of conducting rainfall experiments at the plot-scale using the Norton Ladder Rainfall Simulator and analyzing how changes in the soil micro-topography and residue cover affect the re-distribution of the organic carbon in the soil. Micro-topography will be obtained by scanning the bed surface with a state-of-the-art laser system with a spatial resolution of 0.5 mm. Erosion amounts and residue estimations will be verified with CENTURY5 and WEPP models. Results from this study will advance our knowledge in sustainable agroecosystems at the plot scale and allow us to scale up to watershed levels, providing estimations of carbon storage, biomass production, and erosion at a larger global stage.

  2. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  3. "How and when Chilean Pharmacology started to be experimental and became a science".

    PubMed

    Bustos, Gonzalo; Renard, Georgina M; Noriega, Viviana; Sotomayor-Zárate, Ramón

    2015-11-01

    Pharmacology in Chile has about 75 years of history and from its beginning until today has grown exponentially. Today, pharmacology is taught in the biomedical careers of the main Chilean universities and research centers in pharmacology are in the north, central and south of Chile. This editorial offers an overview of the main milestones that have led to the consolidation of Chilean pharmacology in Latin America and the world.

  4. Tectonics of the Argentine and Chilean Andes: An introduction

    NASA Astrophysics Data System (ADS)

    Folguera, Andrés; Alvarado, Patricia; Arriagada, César; Ramos, Victor A.

    2015-12-01

    This Special Issue gathers a series of contributions derived from presentations at the 19° Congreso Geológico Argentino held in Córdoba in 2-6 June 2014. Specific subjects cover a wide variety of topics and regions of the Argentine and Chilean Andes, varying from sedimentological analyses and U/Pb dating of detrital zircons in different rocks to determine source areas for different times and regions along the southern Andes; satellite gravity data for monitoring earthquakes at the subduction zone to understand their complex rupture structure; fission track data from the Andes to the foreland region; use of seismic tomographies and conventional seismic reflection data for analyzing crustal structure; to paleomagnetic data and structural and morphological analyses (Fig. 1).

  5. IATROGENIC MICROCHIP ARTERIAL EMBOLISM IN A CHILEAN FLAMINGO (PHOENICOPTERUS CHILENSIS).

    PubMed

    Olds, June E; Ewing, Jacob; Arruda, Paulo; Kuyper, Jennifer; Riedesel, Elizabeth; Miles, Kristina M

    2016-06-01

    Aberrant microchip migration has been reported in domestic animal species, but in most cases, this migration is atraumatic to the patient. Reports of microchip-associated trauma and sarcoma development also have been reported in a variety of mammal species. This report describes accidental arterial microchip insertion causing obstruction of the iliac artery in a Chilean flamingo (Phoenicopterus chilensis). Diagnostic imaging included digital radiography and pre- and post-contrast computed tomography to determine the location of the microchip. Surgical removal of the microchip was attempted; however, the flamingo died intraoperatively. Postmortem evaluation found trauma to the epicardium, without penetration of the ventricle. The descending aorta was found traumatized and identified as the most likely insertion point leading to the embolism.

  6. [Sodium and potassium content of various Chilean foods].

    PubMed

    Alvarez de Araya, C; Farah, M; Zuccarelli, M T; Masson, L

    1981-03-01

    Sodium and potassium contents of 40 high-protein dietary products were determined in order to complete the Table de Composición Química se Alimentos Chilenos (Chemical Composition Table of Chilean Foods). These cations' level must be strictly controlled in diets of many renal and heart patients. In Chile, Nutritionists who are in charge of preparing these diets, do not have a national composition table related to the sodium and potassium content for most of the food products. Samples of fluid cow's milk, dried milk with different fat contents, some cheeses, hen eggs, bovine entrails, some meat derivates and several meat cuts, including bovine, pork, lamb and chicken were studied.

  7. Chilean prosopis mesocarp flour: phenolic profiling and antioxidant activity.

    PubMed

    Schmeda-Hirschmann, Guillermo; Quispe, Cristina; Soriano, Maria Del Pilar C; Theoduloz, Cristina; Jiménez-Aspée, Felipe; Pérez, Maria Jorgelina; Cuello, Ana Soledad; Isla, Maria Inés

    2015-04-17

    In South America, the mesocarp flour of Prosopis species plays a prominent role as a food resource in arid areas. The aim of this work was the characterization of the phenolic antioxidants occurring in the pod mesocarp flour of Chilean Prosopis. Samples were collected in the Copiapo, Huasco and Elqui valleys from the north of Chile. The samples of P. chilensis flour exhibited a total phenolic content ranging between 0.82-2.57 g gallic acid equivalents/100 g fresh flour weight. The highest antioxidant activity, measured by the DPPH assay, was observed for samples from the Huasco valley. HPLC-MS/MS analysis allowed the tentative identification of eight anthocyanins and 13 phenolic compounds including flavonol glycosides, C-glycosyl flavones and ellagic acid derivatives. The antioxidant activity and the phenolic composition in the flour suggest that this ancient South American resource may have potential as a functional food.

  8. IATROGENIC MICROCHIP ARTERIAL EMBOLISM IN A CHILEAN FLAMINGO (PHOENICOPTERUS CHILENSIS).

    PubMed

    Olds, June E; Ewing, Jacob; Arruda, Paulo; Kuyper, Jennifer; Riedesel, Elizabeth; Miles, Kristina M

    2016-06-01

    Aberrant microchip migration has been reported in domestic animal species, but in most cases, this migration is atraumatic to the patient. Reports of microchip-associated trauma and sarcoma development also have been reported in a variety of mammal species. This report describes accidental arterial microchip insertion causing obstruction of the iliac artery in a Chilean flamingo (Phoenicopterus chilensis). Diagnostic imaging included digital radiography and pre- and post-contrast computed tomography to determine the location of the microchip. Surgical removal of the microchip was attempted; however, the flamingo died intraoperatively. Postmortem evaluation found trauma to the epicardium, without penetration of the ventricle. The descending aorta was found traumatized and identified as the most likely insertion point leading to the embolism. PMID:27468052

  9. Chilean prosopis mesocarp flour: phenolic profiling and antioxidant activity.

    PubMed

    Schmeda-Hirschmann, Guillermo; Quispe, Cristina; Soriano, Maria Del Pilar C; Theoduloz, Cristina; Jiménez-Aspée, Felipe; Pérez, Maria Jorgelina; Cuello, Ana Soledad; Isla, Maria Inés

    2015-01-01

    In South America, the mesocarp flour of Prosopis species plays a prominent role as a food resource in arid areas. The aim of this work was the characterization of the phenolic antioxidants occurring in the pod mesocarp flour of Chilean Prosopis. Samples were collected in the Copiapo, Huasco and Elqui valleys from the north of Chile. The samples of P. chilensis flour exhibited a total phenolic content ranging between 0.82-2.57 g gallic acid equivalents/100 g fresh flour weight. The highest antioxidant activity, measured by the DPPH assay, was observed for samples from the Huasco valley. HPLC-MS/MS analysis allowed the tentative identification of eight anthocyanins and 13 phenolic compounds including flavonol glycosides, C-glycosyl flavones and ellagic acid derivatives. The antioxidant activity and the phenolic composition in the flour suggest that this ancient South American resource may have potential as a functional food. PMID:25898415

  10. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    PubMed

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  11. Effects of Crop Canopies on Rain Splash Detachment

    PubMed Central

    Ma, Bo; Yu, Xiaoling; Ma, Fan; Li, Zhanbin; Wu, Faqi

    2014-01-01

    Crops are one of the main factors affecting soil erosion in sloping fields. To determine the characteristics of splash erosion under crop canopies, corn, soybean, millet, and winter wheat were collected, and the relationship among splash erosion, rainfall intensity, and throughfall intensity under different crop canopies was analyzed through artificial rainfall experiments. The results showed that, the mean splash detachment rate on the ground surface was 390.12 g/m2·h, which was lower by 67.81% than that on bare land. The inhibiting effects of crops on splash erosion increased as the crops grew, and the ability of the four crops to inhibit splash erosion was in the order of winter wheat>corn>soybeans>millet. An increase in rainfall intensity could significantly enhance the occurrence of splash erosion, but the ability of crops to inhibit splash erosion was 13% greater in cases of higher rainfall intensity. The throughfall intensity under crop canopies was positively related to the splash detachment rate, and this relationship was more significant when the rainfall intensity was 40 mm/h. Splash erosion tended to occur intensively in the central row of croplands as the crop grew, and the non-uniformity of splash erosion was substantial, with splash erosion occurring mainly between the rows and in the region directly under the leaf margin. This study has provided a theoretical basis for describing the erosion mechanisms of cropland and for assisting soil erosion prediction as well as irrigation and fertilizer management in cultivated fields. PMID:24992386

  12. Bayesian spatiotemporal interpolation of rainfall in the Central Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ossa-Moreno, Juan; Keir, Greg; McIntyre, Neil

    2016-04-01

    Water availability in the populous and economically significant Central Chilean region is governed by complex interactions between precipitation, temperature, snow and glacier melt, and streamflow. Streamflow prediction at daily time scales depends strongly on accurate estimations of precipitation in this predominantly dry region, particularly during the winter period. This can be difficult as gauged rainfall records are scarce, especially in the higher elevation regions of the Chilean Andes, and topographic influences on rainfall are not well understood. Remotely sensed precipitation and topographic products can be used to construct spatiotemporal multivariate regression models to estimate rainfall at ungauged locations. However, classical estimation methods such as kriging cannot easily accommodate the complicated statistical features of the data, including many 'no rainfall' observations, as well as non-normality, non-stationarity, and temporal autocorrelation. We use a separable space-time model to predict rainfall using the R-INLA package for computationally efficient Bayesian inference, using the gridded CHIRPS satellite-based rainfall dataset and digital elevation models as covariates. We jointly model both the probability of rainfall occurrence on a given day (using a binomial likelihood) as well as amount (using a gamma likelihood or similar). Correlation in space and time is modelled using a Gaussian Markov Random Field (GMRF) with a Matérn spatial covariance function which can evolve over time according to an autoregressive model if desired. It is possible to evaluate the GMRF at relatively coarse temporal resolution to speed up computations, but still produce daily rainfall predictions. We describe the process of model selection and inference using an information criterion approach, which we use to objectively select from competing models with various combinations of temporal smoothing, likelihoods, and autoregressive model orders.

  13. VOCALS-CUpEx: the Chilean Upwelling Experiment

    NASA Astrophysics Data System (ADS)

    Garreaud, R. D.; Rutllant, J. A.; Muñoz, R. C.; Rahn, D. A.; Ramos, M.; Figueroa, D.

    2010-11-01

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30° S was not sampled during VOCALS-REx. This area not only marks the poleward edge of the subtropical stratocumulus cloud regime (thus acting as a source of transient disturbances) but is also one of the most active upwelling centers and source of surface ocean kinetic energy along the Chilean coast. To fill such an observational gap, a small, brief, but highly focused field experiment was conducted in late spring 2009 in the near-shore region around 30° S. The Chilean Upwelling Experiment (CUpEx) was endorsed by VOCALS as a regional component. CUpEx included long-term monitoring, an intensive two-week field campaign and off-shore research flights. Our goal was to obtain an atmospheric/oceanic dataset with enough temporal and spatial coverage to be able to document (a) the mean diurnal cycles of the lower-troposphere and upper-ocean in a region of complex topography and coastline geometry, and (b) the ocean-atmosphere response to the rapid changes in coastal winds from strong, upwelling-favorable southerly winds to relaxed southerlies or even downwelling-favorable northerlies. In this paper we describe the measurement platforms and sampling strategy, and provide an observational overview, highlighting some key mean and transient features.

  14. VOCALS-CUpEx: the Chilean Upwelling Experiment

    NASA Astrophysics Data System (ADS)

    Garreaud, R. D.; Rutllant, J. A.; Muñoz, R. C.; Rahn, D. A.; Ramos, M.; Figueroa, D.

    2011-03-01

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30° S was not sampled during VOCALS-REx. This area not only marks the poleward edge of the subtropical stratocumulus cloud regime (thus acting as a source of transient disturbances) but is also one of the most active upwelling centers and source of surface ocean kinetic energy along the Chilean coast. To fill such an observational gap, a small, brief, but highly focused field experiment was conducted in late spring 2009 in the near-shore region around 30° S. The Chilean Upwelling Experiment (CUpEx) was endorsed by VOCALS as a regional component. CUpEx included long-term monitoring, an intensive two-week field campaign and off-shore research flights. Our goal was to obtain an atmospheric/oceanic dataset with enough temporal and spatial coverage to be able to document (a) the mean diurnal cycles of the lower-troposphere and upper-ocean in a region of complex topography and coastline geometry, and (b) the ocean-atmosphere response to the rapid changes in coastal winds from strong, upwelling-favorable equatorward flow (southerly winds) to downwelling-favorable poleward flow (northerly winds). In this paper we describe the measurement platforms and sampling strategy, and provide an observational overview, highlighting some key mean-state and transient features.

  15. Twilight vertical migrations of zooplankton in a Chilean fjord

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Castro, Leonardo; Cáceres, Mario; Pizarro, Oscar

    2014-12-01

    Time series of acoustic backscatter and vertical velocity profiles were obtained at three sites along a Chilean fjord with the purpose of determining dominant structures of vertical migrations of the sound scattering layer. Ancillary data obtained with stratified net samples indicated that the sound scattering layer may have been dominated by euphausiids and decapods. Therefore, distributions of acoustic backscatter anomalies and vertical velocities were attributed to vertical migrations of predominantly these organisms. Migration patterns were dominated by twilight excursions in which organisms swam toward the water surface at sunset, spent <0.5 h at a depth near the pycnocline (∼10 m) and then swam downward to depths between ∼20 and ∼60 m. After congregating at those depths during night-time, organisms swam upward again toward the pycnocline at sunrise, spent <1 h near the pycnocline and swam downward to their day-time depths (>100 m). This migration strategy can also be termed 'semidiel migration' as two double excursions were linked to light levels. The reasons for this twilight migration remain uncertain. But it is possible that the up and down motion around sunset was related to predation avoidance, hunger-satiation state, ontogeny, seaward transport evasion, or reaction to the environmental shock from the pycnocline, or a combination of all or some of them. In contrast, the sunrise double excursion was probably linked to feeding requirements by organisms that need to spend the day at great depth with no food available. This study demonstrated the existence of semidiel patterns throughout the fjord and through prolonged periods. In addition, identification of this pattern by acoustic backscatter was complemented by direct vertical velocity measurements. It is proposed that twilight vertical migration is a common strategy in Chilean fjords.

  16. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  17. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.

    PubMed

    Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet

    2013-02-19

    There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result

  18. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology. PMID:23748420

  19. WSR-88D doppler radar detection of corn earworm moth migration

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  20. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.

    PubMed

    Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet

    2013-02-19

    There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result