Sample records for chilled ammonia process

  1. Improvement of General Electric’s Chilled Ammonia Process with the use of Membrane Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraskin, Dave; Dube, Sanjay; Baburao, Barath

    General Electric Environmental Control Solutions (formerly Alstom Power Environmental Control Systems) set out to complete the Phase 1 award requirements for a Phase II renewal application for their project selected under DOE-FOA-0001190 “Small and Large Scale Pilots for Reducing the Cost of CO 2 Capture and Compression”. The project focus was to implement several improvement concepts utilizing membrane technology at the recipient’s Chilled Ammonia Process (CAP) CO 2 capture large-scale pilot plant. The goal was to lower the overall cost of technology. During the development of costs for the preliminary techno-economic assessment (TEA), it became clear that the capital andmore » operating costs of this concept were not economically attractive. All work related to a Phase II renewal application at that point was halted as GE made the decision not to submit a Phase II renewal application. Discussions with DOE resulted in a path towards useful information produced from the design and cost work already completed on the project. With the reverse osmosis (RO) unit providing most of the cost issues, GE would provide a sensitivity analysis of the RO unit with respect to project cost. This information would be included with the Techno-Economic Analysis along with the Technology Gap Analysis.« less

  2. Quality and safety of fish curry processed by sous vide cook chilled and hot filled technology process during refrigerated storage.

    PubMed

    Shakila, R Jeya; Raj, B Edwin; Felix, N

    2012-06-01

    Fish curry, a traditional Indian dish was prepared from farmed fish Cobia (Rachycentron canadum), packaged by two different cook-chill processes namely, sous vide cook chilled and hot filled technology and held at 2 °C. Biochemical composition revealed that fish curry contained 5% protein and 6% fat. Omega-3 fatty acids, eicosapentaenoic acid (EPA) retained 55.44% while docosahexaenoic acid (DHA) retained 29% during cook-chilling process. The major fatty acids in fish curry were C18:2, C12:0, C16:0 and C18:1. Shelf-life of sous vide cook chilled and hot filled technology processed fish curry were 8 and 12 weeks, respectively. Total bacterial counts were detected after 4 weeks and 12 weeks in sous vide cook chilled and hot filled technology processes, respectively. Total staphylococci were detected in sous vide cook chilled and hot filled technology processed cobia fish curry after 4 and 12 weeks, respectively. Total bacilli, anaerobic sulfite reducing clostridia, Salmonella, and lactic acid bacteria were absent. Hot filled technology process was more efficient and could be applied for chilled fish curry preservation for 12 weeks without any safety problems.

  3. The Ammonia-Soda Process.

    ERIC Educational Resources Information Center

    Tingle, M.

    1979-01-01

    This article is a condensed version of a commentary written to accompany a set of slides which describes the ammonia-soda process used by the ammonia-soda plant at Northwich of the United Kingdom. (HM)

  4. Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production.

    PubMed

    Bals, Bryan; Wedding, Chris; Balan, Venkatesh; Sendich, Elizabeth; Dale, Bruce

    2011-01-01

    Ammonia fiber expansion (AFEX) pretreatment is an ammonia-based process for improving the susceptibility of lignocellulosic biomass to enzymatic attack. Four parameters--ammonia loading, water loading, reaction temperature, and residence time--can be varied in order to optimize AFEX pretreatment. The effect of these parameters on process economics of ethanol production was studied using a leading biorefinery model. Ammonia loading and residence time had the greatest impact on the economics of ethanol production, primarily due to processing costs for the chilled water condenser and the capital cost of the AFEX reactor. Water loading and reaction temperature had only modest impact on process economics. In addition, the impact of pretreatment conditions on makeup ammonia requirements was explored experimentally, which ranged from 15 to 25 g ammonia/kg biomass. Overall, pretreatment conditions can change the costs of ethanol production by up to 35 cents per gallon ethanol in an 850 ton/day refinery. By linking the results obtained from this Aspen model to experimental results for ethanol production and makeup ammonia recovery, this study can be used to create an economic optimum for AFEX pretreatment in contrast with simply maximizing fermentable sugar production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    NASA Astrophysics Data System (ADS)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  6. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    PubMed Central

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  8. Experimental research and numerical simulation on cryogenic line chill-down process

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon

    2018-01-01

    The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.

  9. Streamlined ammonia removal from wastewater using biological deammonification process

    USDA-ARS?s Scientific Manuscript database

    In this work we evaluated biological deammonification process to more economically remove ammonia from livestock wastewater. The process combines partial nitritation (PN) and anammox. The anammox is a biologically mediated reaction that oxidizes ammonia (NH4+) and releases di-nitrogen gas (N2) unde...

  10. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes

    NASA Astrophysics Data System (ADS)

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

  11. The Role of Left Hemispheric Structures for Emotional Processing as a Monitor of Bodily Reaction and Felt Chill - a Case-Control Functional Imaging Study.

    PubMed

    Grunkina, Viktoria; Holtz, Katharina; Klepzig, Kai; Neubert, Jörg; Horn, Ulrike; Domin, Martin; Hamm, Alfons O; Lotze, Martin

    2016-01-01

    Background: The particular function of the left anterior human insula on emotional arousal has been illustrated with several case studies. Only after left hemispheric insula lesions, patients lose their pleasure in habits such as listening to joyful music. In functional magnetic resonance imaging studies (fMRI) activation in the left anterior insula has been associated with both processing of emotional valence and arousal. Tight interactions with different areas of the prefrontal cortex are involved in bodily response monitoring and cognitive appraisal of a given stimulus. Therefore, a large left hemispheric lesion including the left insula should impair the bodily response of chill experience (objective chill response) but leave the cognitive aspects of chill processing (subjective chill response) unaffected. Methods: We investigated a patient (MC) with a complete left hemispheric media cerebral artery stroke, testing fMRI representation of pleasant (music) and unpleasant (harsh sounds) chill response. Results: Although chill response to both pleasant and unpleasant rated sounds was confirmed verbally at passages also rated as chilling by healthy participants, skin conductance response was almost absent in MC. For a healthy control (HC) objective and subjective chill response was positively associated. Bilateral prefrontal fMRI-response to chill stimuli was sustained in MC whereas insula activation restricted to the right hemisphere. Diffusion imaging together with lesion maps revealed that left lateral tracts were completely damaged but medial prefrontal structures were intact. Conclusion: With this case study we demonstrate how bodily response and cognitive appraisal are differentially participating in the internal monitor of chill response.

  12. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.

    PubMed

    Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank

    2017-05-01

    In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.

  13. Impact of broiler processing scalding and chilling profiles on carcass and breast meat yield.

    PubMed

    Buhr, R J; Walker, J M; Bourassa, D V; Caudill, A B; Kiepper, B H; Zhuang, H

    2014-06-01

    The effect of scalding and chilling procedures was evaluated on carcass and breast meat weight and yield in broilers. On 4 separate weeks (trials), broilers were subjected to feed withdrawal, weighed, and then stunned and bled in 4 sequential batches (n = 16 broilers/batch, 64 broilers/trial). In addition, breast skin was collected before scalding, after scalding, and after defeathering for proximate analysis. Each batch of 16 carcasses was subjected to either hard (60.0°C for 1.5 min) or soft (52.8°C for 3 min) immersion scalding. Following defeathering and evisceration, 8 carcasses/batch were air-chilled (0.5°C, 120 min, 86% RH) and 8 carcasses/batch were immersion water-chilled (water and ice 0.5°C, 40 min). Carcasses were reweighed individually following evisceration and following chilling. Breast meat was removed from the carcass and weighed within 4 h postmortem. There were significant (P < 0.05) differences among the trials for all weights and yields; however, postfeed withdrawal shackle weight and postscald-defeathered eviscerated weights did not differ between the scalding and chilling treatments. During air-chilling all carcasses lost weight, resulting in postchill carcass yield of 73.0% for soft-scalded and 71.3% for hard-scalded carcasses, a difference of 1.7%. During water-chilling all carcasses gained weight, resulting in heavier postchill carcass weights (2,031 g) than for air-chilled carcasses (1,899 g). Postchill carcass yields were correspondingly higher for water-chilled carcasses, 78.2% for soft-scalded and 76.1% for hard-scalded carcasses, a difference of 2.1%. Only in trials 1 and 4 was breast meat yield significantly lower for hard-scalded, air-chilled carcasses (16.1 and 17.5%) than the other treatments. Proximate analysis of skin sampled after scalding or defeathering did not differ significantly in moisture (P = 0.2530) or lipid (P = 0.6412) content compared with skin sampled before scalding. Skin protein content was significantly

  14. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  15. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  16. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    EPA Science Inventory

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,
    a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causes
    swelling and efficient delignification of biomass at high temperatures. The ARP
    process solubilizes abou...

  17. Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nørskov, Jens; Chen, Jingguang; Miranda, Raul

    Ammonia (NH 3) is essential to all life on our planet. Until about 100 years ago, NH 3 produced by reduction of dinitrogen (N 2) in air came almost exclusively from bacteria containing the enzyme nitrogenase.. DOE convened a roundtable of experts on February 18, 2016. Participants in the Roundtable discussions concluded that the scientific basis for sustainable processes for ammonia synthesis is currently lacking, and it needs to be enhanced substantially before it can form the foundation for alternative processes. The Roundtable Panel identified an overarching grand challenge and several additional scientific grand challenges and research opportunities: -Discovery ofmore » active, selective, scalable, long-lived catalysts for sustainable ammonia synthesis. -Development of relatively low pressure (<10 atm) and relatively low temperature (<200 C) thermal processes. -Integration of knowledge from nature (enzyme catalysis), molecular/homogeneous and heterogeneous catalysis. -Development of electrochemical and photochemical routes for N 2 reduction based on proton and electron transfer -Development of biochemical routes to N 2 reduction -Development of chemical looping (solar thermochemical) approaches -Identification of descriptors of catalytic activity using a combination of theory and experiments -Characterization of surface adsorbates and catalyst structures (chemical, physical and electronic) under conditions relevant to ammonia synthesis.« less

  18. Comparative transcriptome and lipidome analyses reveal molecular systems underlying chilling response in chilling-tolerant sorghums

    USDA-ARS?s Scientific Manuscript database

    Chilling temperatures are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum (Sorghum bicolor [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA ...

  19. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal.

    PubMed

    Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng

    2017-01-01

    Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.

  20. Removal of ammonia solutions used in catalytic wet oxidation processes.

    PubMed

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  1. TREATMENT OF AMMONIA PLANT PROCESS CONDENSATE EFFLUENT

    EPA Science Inventory

    The report gives results of an examination of contaminant content and selected treatment techniques for process condensate from seven different ammonia plants. Field tests were performed and data collected on an in-plant steam stripping column with vapor injection into the reform...

  2. Chilled storage of foods - principles

    USDA-ARS?s Scientific Manuscript database

    Chilled storage is the most common method for preserving perishable foods. The consumers’ increasing demand for convenient, minimally processed foods has caused food manufacturers to increase production of refrigerated foods worldwide. This book chapter reviews the development of using low tempera...

  3. Quality assessment of rainbow trout (Oncorhynchus mykiss) fillets during super chilling and chilled storage.

    PubMed

    Shen, Song; Jiang, Yan; Liu, Xiaochang; Luo, Yongkang; Gao, Liang

    2015-08-01

    In order to evaluate the effect of super chilling (-3 °C) and chilled (3 °C) storage on the quality of rainbow trout fillets, total volatile base nitrogen (TVB-N), drip loss, pH, electric conductivity (EC), total aerobic count (TAC), K and related values, adenosine triphosphate (ATP) and related compounds, color and sensory score were determined and correlation between these indicators were analyzed. According to the comprehensive evaluation of TAC, K value and sensory score, the limit for acceptability of rainbow trout fillets was 5 days at 3 °C and 11 days at -3 °C. Additionally, the correlation coefficients between TVB-N and other freshness indicators (TAC, K value, sensory score) were relatively low. TVB-N may be inadequate for evaluating freshness changes of rainbow trout fillets compared with other indicators. Among the K and related values, H value was a better freshness indicator in rainbow trout fillets during chilled and super chilling storage for its better correlation coefficients with other freshness indicators. Super chilling storage could extend the shelf life of rainbow trout fillets by 6 days compared to chilled storage.

  4. Identification of chilling and heat requirements of cherry trees--a statistical approach.

    PubMed

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. 'Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. 'Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package ('chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. 'Payne') at Davis, California.

  5. Identification of chilling and heat requirements of cherry trees—a statistical approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Kunz, Achim; Blanke, Michael M.

    2013-09-01

    Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. `Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. `Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (`chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. `Payne') at Davis, California.

  6. Chilling hours: Myths and facts

    Treesearch

    David B. South

    2013-01-01

    This paper is a critical review of over four decades of research on chilling with southern pine seedlings. For most pines, freeze tolerance, seed dormancy, and endodormancy of terminal buds are affected by natural chilling (0° to 8 °C [32 to 46 °F]). Unfortunately, in the field of reforestation, several myths have emerged regarding the importance of chilling. One myth...

  7. Process model for ammonia volatilization from anaerobic swine lagoons incorporating varying wind speeds and biogas bubbling

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization from treatment lagoons varies widely with the total ammonia concentration, pH, temperature, suspended solids, atmospheric ammonia concentration above the water surface, and wind speed. Ammonia emissions were estimated with a process-based mechanistic model integrating ammonia ...

  8. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.

    PubMed

    Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis

    2017-01-01

    Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  9. Modeling and Analysis of Chill and Fill Processes for the EDU Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.

    2015-01-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.

  10. Investigation of transient chill down phenomena in tubes using liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Sridharan, Arunkumar; Atrey, M. D.

    2017-12-01

    Chill down of cryogenic transfer lines is a crucial part of cryogenic propulsion as chill down ensures transfer of single phase fluid to the storage tanks of cryogenic engines. It also ensures single phase liquid flow at the start of the engine. Chill down time depends on several parameters such as length of the pipe, pipe diameter, orientation, mass flux etc. To understand the effect of these parameters, experiments are carried out in a set up designed and fabricated at Indian Institute of Technology Bombay using tubes of two different diameters. Experiments are conducted at different inlet pressures and mass flow rate values to understand their effect. Two different pipe sizes are taken to study the effect of variation in diameter on chill down time and quantity of cryogen required. Different orientations are taken to understand their effect on the chill down time, heat transfer coefficient and critical heat flux for the same inlet pressure and mass flux. Pipe inner wall temperature, heat transfer coefficient for different boiling regimes and critical heat flux are calculated based on measured outer surface temperature history for each case. A one dimensional energy conservation equation is solved for transient chill down process considering constant mass flux and inlet pressure to predict the chill down time. Temperature variation during chill down obtained from the numerical simulations are compared with the measured temperature history.

  11. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT FOR AMMONIA RECOVERY PROCESS

    EPA Science Inventory

    This Technology Verification report describes the nature and scope of an environmental evaluation of ThermoEnergy Corporation’s Ammonia Recovery Process (ARP) system. The information contained in this report represents data that were collected over a 3-month pilot study. The ti...

  13. Ammonia removal in the carbon contactor of a hybrid membrane process.

    PubMed

    Stoquart, Céline; Servais, Pierre; Barbeau, Benoit

    2014-12-15

    The hybrid membrane process (HMP) coupling powdered activated carbon (PAC) and low-pressure membrane filtration is emerging as a promising new option to remove dissolved contaminants from drinking water. Yet, defining optimal HMP operating conditions has not been confirmed. In this study, ammonia removal occurring in the PAC contactor of an HMP was simulated at lab-scale. Kinetics were monitored using three PAC concentrations (1-5-10 g L(-1)), three PAC ages (0-10-60 days), two temperatures (7-22 °C), in ambient influent condition (100 μg N-NH4 L(-1)) as well as with a simulated peak pollution scenario (1000 μg N-NH4L(-1)). The following conclusions were drawn: i) Using a colonized PAC in the HMP is essential to reach complete ammonia removal, ii) an older PAC offers a higher resilience to temperature decrease as well as lower operating costs; ii) PAC concentration inside the HMP reactor is not a key operating parameter as under the conditions tested, PAC colonization was not limited by the available surface; iii) ammonia flux limited biomass growth and iv) hydraulic retention time was a critical parameter. In the case of a peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed reaching a 50% ammonia removal. Finally, a kinetic model based on these experiments is proposed to predict ammonia removal occurring in the PAC reactor of the HMP. The model determines the relative importance of the adsorption and biological oxidation of ammonia on colonized PAC, and demonstrates the combined role of nitrification and residual adsorption capacity of colonized PAC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bacterial membranes: the effects of chill storage and food processing. An overview.

    PubMed

    Russell, Nicholas J

    2002-11-15

    The shelf life of food is extended by refrigeration because the metabolic processes of food-associated microorganisms are slowed by the lowered temperature. Nonetheless, cold-adapted psychrotrophic food-poisoning and food-spoilage bacteria remain a concern because they possess cold-adapted proteins and membrane lipids that facilitate growth at low temperatures. The use of membrane-disrupting novel preservation techniques, such as ultrasound, high hydrostatic pressure or pulsed electric field, offer the potential for an extension of shelf life. This review considers the interacting and potentially synergistic effects of chill storage or mild heat treatment on membrane properties, with the disruptive effects of membrane-targeted physical treatments.

  15. The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process.

    PubMed

    Hughes, R J; Nair, J; Ho, G

    2008-01-01

    This study was undertaken to assess the toxicity of ammonia/ammonium to key species within the vermifiltration process. The key species, the earthworm Eisenia fetida, was subjected to a series of tests in solid phase mesocosms and full-scale units. The solid phase tests showed a relatively low toxicity to ammonium with ammonium chloride having an LC50 for ammonium of 1.49 g/kg. Ammonium sulfate did not show an effect on mortality at 2 g/kg ammonium. The full-scale units showed that ammonia hydroxide can change the pH and concentration of ammonia in wastewater and while it caused some mortality to the worms its overall affect on system functioning was minimal with no significant difference in terms of worm survival found between treatments. The affect on nitrifying bacteria was also minimal with no linear trend shown with ammonia concentration. IWA Publishing 2008.

  16. Effect of temperature on enzymatic and physiological factors related to chilling injury in carambola fruit (Averrhoa carambola L.).

    PubMed

    Pérez-Tello, G O; Silva-Espinoza, B A; Vargas-Arispuro, I; Briceño-Torres, B O; Martinez-Tellez, M A

    2001-10-05

    Three groups of carambola fruits (Averrhoa carambola L.) were stored at 2 and 10 degrees C (85-90% relative humidity). The major physicochemical, physiological, and enzymatic responses of fruit were measured in each group over a 30-day period: chilling injury index (CII), decay (%), intracuticular waxes, cuticle permeability, pulp firmness, weight loss, sucrose, fructose and glucose contents, ion electrolyte leakage in pulp (%), ethylene and carbon dioxide production rates, and the activities of peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) enzymes. CII values were statistically different at 2 and 10 degrees C, showing high significance with respect to sucrose content and weight loss (P < 0.05). Chilling injury included darkened ribs and skin desiccation. According to the CI symptom development, a possible relationship of POD and PPO activities was found at 2 degrees C. A significant sucrose content increase was observed at 10 degrees C. CI symptoms were associated with POD and PAL activities. Copyright 2001 Academic Press.

  17. Mechanical properties of aluminium fused SiO2 particulate composites cast using metallic and non-metallic chills

    NASA Astrophysics Data System (ADS)

    Harshith, H. S.; Hemanth, Joel

    2018-04-01

    This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.

  18. Effects of chilling rate and spray-chilling on weight loss and tenderness in beef strip loin steaks.

    PubMed

    Prado, C S; de Felício, P E

    2010-10-01

    We evaluated the effects of chilling rate and the use of a spray-chilling system on the weight loss by evaporation on carcasses. We also evaluated the effects on meat purge in vacuum package, cooking losses, and on parameters related to the tenderness of strip loin steaks (M. longissimus lumborum). Forty non-castrated males of approximately 12 months old, finished in feed-lot were harvested in 16 Montana cattle (a composite breed), and 24 SimmentalxNellore crossbred cattle. After bleeding, the bodies were electrically stimulated and assigned to one of the four treatments: conventional air-chilling (CAC), conventional spray-chilling (CSC), slow air-chilling (SAC), and slow spray-chilling (SSC). Strip loin steaks (M. longissimus lumborum) of approximately 2.5 cm thick were removed, vacuum packed and aged for 7, 14, 30 or 60 days. Samples were analyzed for sarcomere length, myofibrillar fragmentation index, Warner-Bratzler shear force, and weight losses by purge and cooking. Spraying was efficient in reducing weight loss by evaporation (P<0.05). Effects of treatments and aging period on purge losses were observed, where samples from sprayed carcasses or aged cuts showed higher losses. Cooking losses were not affected either by spraying or aging. The slow chilling, with or without spraying, was more efficient in producing strip loin steaks with lower average shear force and longer sarcomere. The myofibrillar fragmentation index increased with aging time, but was not affected by carcasses spraying. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  19. Enhanced generation of perfluoroalkyl carboxylic acids (PFCAs) from fluorotelomer alcohols (FTOHs) via ammonia-oxidation process.

    PubMed

    Yu, Xiaolong; Nishimura, Fumitake; Hidaka, Taira

    2018-05-01

    With the phase-out of persistent, bioaccumalative, and toxic perfluoroalkyl carboxylic acids (PFCAs), it is needed to explore the potential release of PFCAs from precursors being emitted into the environment. Biotransformation of fluorotelomer alcohols (FTOHs) via biological processes in wastewater treatment plants (WWTPs) leads to discharge of PFCAs into receiving waters. However, the commonly existed microbial activity that can impact on FTOHs biodegradation in WWTPs remains unclear. The objective of present research was to explore the relationship between ammonia-oxidation process and the enhanced PFCAs generation from FTOHs biodegradation under aerobic activated sludge. The obtained results indicate that the cometabolism process performed by nitrifying microorganisms (NMs) was responsible for enhanced PFCAs generation. Among NMs, the ammonia-oxidation bacteria that can express non-specific enzyme of ammonia monooxygenases resulted in the enhanced PFCAs generation from FTOHs. Meanwhile, the different addition amount of ammonia contributed to different defluorination efficiency of FTOHs. The present study further correlated the enhanced PFCAs generation from FTOHs biodegradation with ammonia-oxidation process, which can provide practical information on effective management of PFCAs generation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Phosphatidylglycerol and Chilling Sensitivity in Plants

    PubMed Central

    Roughan, P. Grattan

    1985-01-01

    The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures. `Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment. Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol. Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus. PMID:16664127

  1. Diurnal Changes in the Chilling Sensitivity of Seedlings

    PubMed Central

    King, Ann I.; Reid, Michael S.; Patterson, Brian D.

    1982-01-01

    Seedlings of tomato (Lycopersicon esculentum, Mill.) varied diurnally in their sensitivity to chilling temperatures. If chilled near the end of the dark period when they were most sensitive, the time taken to kill half of the seedlings was approximately 3 days, whereas in samples taken 4 hours after the onset of dark, a period of 6 days of chilling was required. Sensitivity dropped rapidly after the onset of the light period. This rhythm was exogenously controlled by the diurnal changes in light, rather than in the temperature. The susceptibility of predawn seedlings could be reduced by exposure to light, by water stress, or by abscisic acid applied to the leaves. However, the subsequent changes in sensitivity to chilling did not correlate with stomatal aperture. Six other chilling-sensitive species showed similar diurnal changes in their chilling sensitivity. Images Fig. 2 PMID:16662448

  2. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; Fowley, M.

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reducemore » hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.« less

  3. Chilling response of plants: importance of galactolipase, free fatty acids and free radicals.

    PubMed

    Kaniuga, Z

    2008-03-01

    The chilling response of plants is complex and based on the interplay of two important metabolic processes--lipolytic degradation of membrane lipids and a set of oxidative reactions leading to lipid peroxidation and membrane damage evoked in chilling-sensitive (CS) plants subjected to low temperature and light. The effects of chilling of detached leaves and intact plants differ and are often neglected during experiments. In closely-related species, the activity of several constitutive enzymes (i.e. superoxide dismutase, ascorbate peroxidase and glutathione reductase) appears to be higher in chilling-tolerant (CT) than in CS species; while in several native, closely-related CS species, lipid acyl hydrolase (galactolipase) activity is higher than in CT species. Moreover, in chilling-insensitive (CI) plants, galactolipase activity is very low and is neither activated by detachment of leaves nor under stress conditions in growing plants. Dark and low-temperature treatments of detached leaves of CS species and post-chilling recovery of growing plants in the light activate galactolipase, which is responsible for the release of free fatty acids (FFA), the main substrates of peroxidation by lipoxygenase and free radicals. In several CS species, increased galactolipase activity is an important factor contributing to chilling susceptibility. Thus, it seems likely that enhancement of chilling tolerance may be achieved by genetically suppressing galactolipase in order to reduce both the degradation of chloroplast lipids and the level of released FFA, and thereby avoiding the deleterious action of their peroxidation products on plant tissues.

  4. Diurnal variation of wind-chill at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Balafoutis, Ch. J.

    1989-12-01

    The diurnal variations of wind-chill at Thessaloniki, Greece, are considered using hourly data from January 1960 to December 1977. This is the first attempt in Greece to describe bioclimatic conditions using wind-chill data. The hourly values of wind-chill were calculated by Siple-Passel's formula which still appears to be most widely used. The values of wind-chill are discussed in terms of Terjung's scale. Thessaloniki does not experience “frost-bite” conditions during the coldest months but does experience “warm” conditions during the summer period. A comparison of hourly and daily mean values show that the means do not indicate the real range of wind-chill during the day.

  5. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes.

    PubMed

    Zhao, Nannan; Li, Xiaohu; Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2018-03-01

    Ammonia monitoring is important to control anaerobic digestion (AD) process due to inhibition effect. Here, an electrolysis cell (EC) was integrated with a complete nitrification reactor as an alternative approach for online monitoring of ammonia during AD processes. The AD effluent was pumped into nitrification reactor to convert ammonia to nitrate, followed by the introduction of nitrate-rich effluent to EC cathode. It was first evaluated with synthetic ammonia-rich digesters and was observed that the current at 5 min were linearly corresponding to the ammonia levels (from 0 to 7.5 mM NH 4 + -N, R 2  = 0.9673). The linear relationship was always observed regardless of different wastewater pH and external voltage. Pre-removal of other electron acceptors from digestate at cathode could eliminate their disturbances to sensor performance. Finally, the accuracy of biosensor was verified with real digestate test. The simple and reliable biosensor showed great promising for online ammonia monitoring of AD processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    USDA-ARS?s Scientific Manuscript database

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  8. Involvement of Polyamines in the Chilling Tolerance of Cucumber Cultivars

    PubMed Central

    Shen, Wenyun; Nada, Kazuyoshi; Tachibana, Shoji

    2000-01-01

    The possible involvement of polyamines (PAs) in the chilling tolerance of cucumber (Cucumis sativus L. cv Jinchun No. 3 and cv Suyo) was investigated. Plants with the first expanded leaves were exposed to 3°C or 15°C in the dark for 24 h (chilling), and then transferred to 28°C/22°C under a 12-h photoperiod for another 24 h (rewarming). Chilling-tolerant cv Jinchun No. 3 showed a marked increase of free spermidine (Spd) in leaves, once during chilling and again during rewarming. Putrescine increased significantly during rewarming, but the increase of spermine was slight. Any of these PAs did not increase in chilling-sensitive cv Suyo during either period. PA-biosynthetic enzyme activities appear to mediate these differences between cultivars. Pretreatment of Spd to cv Suyo prevented chill-induced increases in the contents of hydrogen peroxide in leaves and activities of NADPH oxidases and NADPH-dependent superoxide generation in microsomes and alleviated chilling injury. Pretreatment of methylglyoxal-bis-(guanylhydrazone), a PA biosynthesis inhibitor, to chilled cv Jinchun No. 3 prevented Spd increase and enhanced microsomal NADPH oxidase activity and chilling injury. The results suggest that Spd plays important roles in chilling tolerance of cucumber, probably through prevention of chill-induced activation of NADPH oxidases in microsomes. PMID:10982456

  9. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    PubMed

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Boron nutrition and chilling tolerance of warm climate crop species.

    PubMed

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B

  11. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  12. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  13. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  14. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  15. 21 CFR 890.5940 - Chilling unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit. (a...

  16. Effect of dry-air chilling on sensory descriptive profiles of cooked broiler breast meat deboned four hours after the initiation of chilling

    USDA-ARS?s Scientific Manuscript database

    Air chilled chicken products are gaining popularity in the USA. It has been claimed that air chilling (AC) results in improved tenderness and flavor of broiler meat compared with immersion chilling (IC). However, there is a lack of published sensory study results to support the claims. The objecti...

  17. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  18. Developing a vacuum thermal stripping - acid absorption process for ammonia recovery from anaerobic digester effluent.

    PubMed

    Ukwuani, Anayo T; Tao, Wendong

    2016-12-01

    To prevent acetoclastic methanogens from ammonia inhibition in anaerobic digestion of protein-rich substrates, ammonia needs to be removed or recovered from digestate. This paper presents an innovative ammonia recovery process that couples vacuum thermal stripping with acid absorption. Ammonia is stripped out of digestate boiling at a temperature below the normal boiling point due to vacuum. Stripped ammonia is absorbed to a sulfuric acid solution, forming ammonium sulfate crystals as a marketable product. Three common types of digestate were found to have boiling point temperature-vacuum curves similar to water. Seven combinations of boiling temperature and vacuum (50 °C 16.6 kPa, 58 °C 20.0 kPa, 65 °C 25.1 kPa, 70 °C 33.6 kPa, 80 °C 54.0 kPa, 90 °C 74.2 kPa, and 100 °C 101.3 kPa) were tested for batch stripping of ammonia in dairy manure digestate. 93.3-99.9% of ammonia was stripped in 3 h. The Lewis-Whitman model fitted ammonia stripping process well. Ammonia mass transfer coefficient was significantly higher at boiling temperature 65-100 °C and vacuum pressure 25.1-101.3 kPa than 50-58 °C and 16.6-20.0 kPa. The low ammonia saturation concentrations (0-24 mg N/L) suggested a large driving force to strip ammonia. The optimum boiling point temperature - vacuum pressure for ammonia recovery in a recirculation line of a mesophilic digester was 65 °C and 25.1 kPa, at which the ammonia mass transfer coefficient was as high as 37.3 mm/h. Installation of a demister and liquid trap could avoid negative effects of higher stripping temperature and stronger vacuum on formation of ammonium sulfate crystals. Pilot tests demonstrated that high-purity ammonium sulfate crystals could be produced by controlling sulfuric acid content and maintaining acid solution saturated with ammonium sulfate. Although volatile organic compounds such as cyclohexene were found in the final acid solutions, no volatile organic compounds were found in the recovered

  19. Microbiological aspects of polyphosphate injection in the processing and chill storage of poultry.

    PubMed Central

    Mead, G. C.; Adams, B. W.

    1979-01-01

    During commercial processing of broiler chickens, injection of polyphosphate (Puron 604 or 6040) resulted in microorganisms being added to the deep breast muscle. The level of contamination was related to the microbiological condition of the injection solution. Injection of polyphosphate had no effect on the shelf-life of fresh chilled carcasses held at 1 degree of 10 degrees C but changes were observed in the growth rate of microorganisms in the deep muscle and in the composition of the muscle microflora following storage. Cross-contamination of carcasses and the transfer of organisms from the skin to the deep muscle during injection was demonstrated with a marker strain of Clostridium perfringens. However, both processes were influenced by the number of marker organisms applied initially to the skin. The above findings are discussed in relation to the possible behaviour of any food poisoning bacteria present. PMID:216743

  20. Microstructural Evolution in Intensively Melt Sheared Direct Chill Cast Al-Alloys

    NASA Astrophysics Data System (ADS)

    Jones, S.; Rao, A. K. Prasada; Patel, J. B.; Scamans, G. M.; Fan, Z.

    The work presented here introduces the novel melt conditioned direct chill casting (MC-DC) technology, where intensive melt shearing is applied to the conventional direct-chill casting process. MC-DC casting can successfully produce high quality Al-alloy billets. The results obtained from 80 mm diameter billets cast at speed of 200 mm/min show that MC-DC casting of Al-alloys, substantially refines the microstructure and reduces macro-segregation. In this paper, we present the preliminary results and discuss microstructural evolution during MC-DC casting of Al-alloys.

  1. Sweetgum Dormancy Release: Effects of Chilling, Photoperiod, and Genotype

    Treesearch

    Robert E. Farmer

    1968-01-01

    In L., 1200 to 1600 hours of chilling (3 D C) resulted in rapid resumption of growth under greenhouse forcing conditions. Long photoperiods were effective substitutes for chilling. Plants from southern Alabama (Lat. 31°) had a lower chilling requirement than those from western Tennessee (Lat. 36°). Growth rate of plants under...

  2. Process modeling of an advanced NH₃ abatement and recycling technology in the ammonia-based CO₂ capture process.

    PubMed

    Li, Kangkang; Yu, Hai; Tade, Moses; Feron, Paul; Yu, Jingwen; Wang, Shujuan

    2014-06-17

    An advanced NH3 abatement and recycling process that makes great use of the waste heat in flue gas was proposed to solve the problems of ammonia slip, NH3 makeup, and flue gas cooling in the ammonia-based CO2 capture process. The rigorous rate-based model, RateFrac in Aspen Plus, was thermodynamically and kinetically validated by experimental data from open literature and CSIRO pilot trials at Munmorah Power Station, Australia, respectively. After a thorough sensitivity analysis and process improvement, the NH3 recycling efficiency reached as high as 99.87%, and the NH3 exhaust concentration was only 15.4 ppmv. Most importantly, the energy consumption of the NH3 abatement and recycling system was only 59.34 kJ/kg CO2 of electricity. The evaluation of mass balance and temperature steady shows that this NH3 recovery process was technically effective and feasible. This process therefore is a promising prospect toward industrial application.

  3. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    PubMed

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  4. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community.

    PubMed

    Peng, Xuya; Zhang, ShangYi; Li, Lei; Zhao, Xiaofei; Ma, Yao; Shi, Dezhi

    2018-04-22

    A long-term high solids anaerobic digestion of food waste was conducted to identify microbial mechanisms of ammonia inhibition during digestion and to clarify correlations between ammonia accumulation, microbial community dynamics (diversity, composition, and interactions), and process stability. Results show that the effects of ammonia on process performance and microbial community were indirectly caused by volatile fatty acid accumulation. Excess free ammonia blocked acetate metabolism, leading to process instability. Accumulated acetate caused feedback inhibition at the acetogenesis stage, which resulted in considerable accumulation of propionate, valerate, and other long-chain fatty acids. This high concentration of volatile fatty acids reduced the abundance of syntrophic acetogenic bacteria and allowed hydrolytic fermentative bacteria to dominate. The normally interactive and orderly metabolic network was broken, which further exacerbated the process instability. These results improve the understanding of microbial mechanisms which contribute to process instability and provide guidance for the microbial management of anaerobic digesters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Ammonia Synthesis at Low Pressure.

    PubMed

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  6. An evaluation of the vapor phase catalytic ammonia removal process for use in a Mars transit vehicle.

    PubMed

    Flynn, M; Borchers, B

    1998-01-01

    This article describes the design specification of the Vapor Phase Catalytic Ammonia Removal (VPCAR) process and the relative benefits of its utilization in a Mars Transit Vehicle application. The VPCAR process is a wastewater treatment technology that combines distillation with high-temperature catalytic oxidation of volatile impurities such as ammonia and organic compounds.

  7. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia.

    PubMed

    Shrivastava, Jyotsna; Sinha, Amit Kumar; Datta, Surjya Narayan; Blust, Ronny; De Boeck, Gudrun

    2016-11-01

    We tested whether exposing fish to low ammonia concentrations induced acclimation processes and helped fish to tolerate subsequent (sub)lethal ammonia exposure by activating ammonia excretory pathways. Common carp (Cyprinus carpio) were pre-exposed to 0.27mM ammonia (∼10% 96h LC 50 ) for 3, 7 and 14days. Thereafter, each of these pre-exposed and parallel naïve groups were exposed to 1.35mM high environmental ammonia (HEA, ∼50% 96h LC 50 ) for 12h and 48h to assess the occurrence of ammonia acclimation based on sub-lethal end-points, and to lethal ammonia concentrations (2.7mM, 96h LC 50 ) in order to assess improved survival time. Results show that fish pre-exposed to ammonia for 3 and 7days had a longer survival time than the ammonia naïve fish. However, this effect disappeared after prolonged (14days) pre-exposure. Ammonia excretion rate (J amm ) was strongly inhibited (or even reversed) in the unacclimated groups during HEA. On the contrary, after 3days the pre-exposure fish maintained J amm while after 7days these pre-acclimated fish were able to increase J amm efficiently. Again, this effect disappeared after 14days of pre-acclimation. The efficient ammonia efflux in pre-acclimated fish was associated with the up-regulation of branchial mRNA expression of ammonia transporters and exchangers. Pre-exposure with ammonia for 3-7days stimulated an increment in the transcript level of gill Rhcg-a and Rhcg-b mRNA relative to the naïve control group and the up-regulation of these two Rhcg homologs was reinforced during subsequent HEA exposure. No effect of pre-exposure was noted for Rhbg. Relative to unacclimated fish, the transcript level of Na + /H + exchangers (NHE-3) was raised in 3-7days pre-acclimated fish and remained higher during the subsequent HEA exposure while gill H + -ATPase activities and mRNA levels were not affected by pre-acclimation episodes. Likewise, ammonia pre-acclimated fish with or without HEA exposure displayed pronounced up

  8. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  9. Chilling and heat requirements for flowering in temperate fruit trees.

    PubMed

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  10. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  11. 77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... and Chilled Atlantic Salmon From Norway Determination On the basis of the record \\1\\ developed in the... countervailing duty order and antidumping duty order on fresh and chilled Atlantic salmon from Norway would not... and Chilled Atlantic Salmon from Norway: Investigation Nos. 701-TA-302 and 731-TA-454 (Third Review...

  12. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    DOEpatents

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  13. Numerical investigations on the effect of slenderness ratio of matrix elements in cryogenic chill down process

    NASA Astrophysics Data System (ADS)

    Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.

    2017-02-01

    Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.

  14. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture.

    PubMed

    Malhautier, Luc; Gracian, Catherine; Roux, Jean-Claude; Fanlo, Jean-Louis; Le Cloirec, Pierre

    2003-01-01

    The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.

  15. Aquifer thermal-energy-storage costs with a seasonal-chill source

    NASA Astrophysics Data System (ADS)

    Brown, D. R.

    1983-01-01

    The cost of energy supplied by an aquifer thermal energy storage (ATES) ystem from a seasonal chill source was investigated. Costs were estimated for point demand and residential development ATES systems using the computer code AQUASTOR. AQUASTOR was developed at PNL specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on the costs of ATES delivered chill were: system size; well flow rate; transmission distance; source temperature; well depth; and cost of capital. The effects of each parameter are discussed. Two primary constraints of ATES chill systems are the extremely low energy density of the storage fluid and the prohibitive costs of lengthly pipelines for delivering chill to residential users. This economic analysis concludes that ATES-delivered chill will not be competitive for residential cooling applications. The otherwise marginal attractiveness of ATES chill systems vanishes under the extremely low load factors characteristic of residential cooling systems. (LCL)

  16. Preharvest temperature affects chilling injury in dessert bananas during storage.

    PubMed

    Bugaud, Christophe; Joannès-Dumec, Charlène; Louisor, Jacques; Tixier, Philippe; Salmon, Frédéric

    2016-05-01

    The effect of temperature on chilling injury during fruit growth was studied in a new banana hybrid CIRAD925 in which seasonal variability in chilling susceptibility was observed when fruits were stored at 13 °C. The relationship between the response to chilling (presence/absence) and the temperature during banana fruit growth was examined with a logistic regression model. An explanatory variable XN , P was defined as the mean temperature during a period, expressed in weeks, which began N week(s) after flowering and lasted P week(s). The model was calibrated with 143 bunches with a green life of 30 ± 5 days and validated with 156 bunches grown in six plots under different growing conditions. Chilling injury was best predicted by the mean temperature during the period beginning 1 week after flowering and lasting 5 weeks (X1,5 ). Above a mean temperature of 24.1 °C in the period concerned, banana fruits had a 95% probability of chilling injury at 13 °C. Below a temperature of 23.4 °C, banana fruits only had a 5% probability of chilling injury. The results provide a tool to predict chilling susceptibility in banana fruit whatever the thermal conditions in tropical regions. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees

    PubMed Central

    Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.

    2011-01-01

    Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649

  18. Climate change affects winter chill for temperate fruit and nut trees.

    PubMed

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  19. Impact of future warming on winter chilling in Australia.

    PubMed

    Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E W R

    2013-05-01

    Increases in temperature as a result of anthropogenically generated greenhouse gas (GHG) emissions are likely to impact key aspects of horticultural production. The potential effect of higher temperatures on fruit and nut trees' ability to break winter dormancy, which requires exposure to winter chilling temperatures, was considered. Three chill models (the 0-7.2°C, Modified Utah, and Dynamic models) were used to investigate changes in chill accumulation at 13 sites across Australia according to localised temperature change related to 1, 2 and 3°C increases in global average temperatures. This methodology avoids reliance on outcomes of future GHG emission pathways, which vary and are likely to change. Regional impacts and rates of decline in chilling differ among the chill models, with the 0-7.2°C model indicating the greatest reduction and the Dynamic model the slowest rate of decline. Elevated and high latitude eastern Australian sites were the least affected while the three more maritime, less elevated Western Australian locations were shown to bear the greatest impact from future warming.

  20. Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  1. Renal ammonia metabolism and transport.

    PubMed

    Weiner, I David; Verlander, Jill W

    2013-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.

  2. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

    PubMed

    Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

    2011-01-01

    The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage.

  3. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    PubMed

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-03-15

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  4. Sources of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Michaels, J. T.

    1982-01-01

    The information available on factors that influence emissions from the principal societal sources of ammonia to the atmosphere, namely combustion processes, volatilization of farm animal wastes, and volatilization of fertilizers, is reviewed. Emission factors are established for each major source of atmospheric ammonia. The factors are then multiplied by appropriate source characterization descriptors to obtain calculated fluxes of ammonia to the atmosphere on a state-by-state basis for the United States.

  5. Effects of chilling on protein synthesis in tomato suspension cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matadial, B.; Pauls, K.P.

    The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2{degrees}C but when cultures were transferred to 25{degree}C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. {sup 35}S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in {sup 35}S-methionine labelled proteins, betweenmore » chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25{degrees}C.« less

  6. Aesthetic Chills: Knowledge-Acquisition, Meaning-Making, and Aesthetic Emotions

    PubMed Central

    Schoeller, Felix; Perlovsky, Leonid

    2016-01-01

    This article addresses the relation between aesthetic emotions, knowledge-acquisition, and meaning-making. We briefly review theoretical foundations and present experimental data related to aesthetic chills. These results suggest that aesthetic chills are inhibited by exposing the subject to an incoherent prime prior to the chill-eliciting stimulation and that a meaningful prime makes the aesthetic experience more pleasurable than a neutral or an incoherent one. Aesthetic chills induced by narrative structures seem to be related to the pinnacle of the story, to have a significant calming effect and subjects describe a strong empathy for the characters. We discuss the relation between meaning-making and aesthetic emotions at the psychological, physiological, narratological, and mathematical levels and propose a series of hypotheses to be tested in future research. PMID:27540366

  7. The Full-Scale Implementation of an Innovative Biological Ammonia Treatment Process

    EPA Science Inventory

    Across the United States, high levels of ammonia in drinking water sources can be found, including small communities like Palo, Iowa (approximate population of 1,026). Although ammonia in water does not pose a direct health concern, ammonia nitrification can cause a number of iss...

  8. Chilling Out With Colds

    MedlinePlus

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  9. Tympanic temperature versus temporal temperature in patients with pyrexia and chills

    PubMed Central

    Yang, Wen-Chieh; Kuo, Huang-Tsung; Lin, Ching-Hsiao; Wu, Kang-Hsi; Chang, Yu-Jun; Chen, Chun-Yu; Wu, Han-Ping

    2016-01-01

    Abstract Accurate body temperature (BT) measurement is critical for immediate and correct estimation of core BT; measurement of changes in BT can provide physicians the initial information for selecting appropriate diagnostic approach and may prevent unnecessary diagnostic investigation. This study aimed to assess differences in tympanic and temporal temperatures among patients with fever in different conditions, especially in those with and without chills. This prospective study included patients from the emergency department between 2011 and 2012. All temperature measurements were obtained using tympanic thermometers and infrared skin thermometers. Differences in tympanic and temporal temperatures were analyzed according to 6 age groups, 5 ambient temperature groups, and 6 tympanic and temporal temperature subgroups. General linear model analysis and receiver operating characteristic curve analysis were used to estimate the differences in mean tympanic and temporal temperatures. Of the 710 patients enrolled, 246 had tympanic temperature more than 38.0°C, including 46 with chills (18.7%). Fourteen patients (3.0%) had chills and tympanic temperature less than 38°C. In the tympanic temperature subgroup of 39.0 to less than 39.5°C, approximately one-third of the patients had chills (32.3%). In the tympanic temperature subgroup of 38.0 to less than 39.0°C, the tympanic temperature was 0.4°C higher than the temporal temperature in patients without chills and 0.9°C higher in patients with chills. In the tympanic temperature subgroup of 39.0°C or more, tympanic temperature was 0.7°C higher than temporal temperature in patients without chills and 0.8°C higher in patients with chills. Temporal thermometer is more reliable in the age group of less than 1 year and 18 to less than 65 years. When the patients show tympanic temperature range of 38.0 to less than 39.0°C, 0.4°C should be added for patients without chills and 0.9°C for patients with chills to obtain

  10. Review of Options for Ammonia/Ammonium Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C. A.

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processesmore » and provides reasoning to not consider those processes further for this application.« less

  11. Music chills: The eye pupil as a mirror to music's soul.

    PubMed

    Laeng, Bruno; Eidet, Lise Mette; Sulutvedt, Unni; Panksepp, Jaak

    2016-08-01

    This study evaluated whether music-induced aesthetic "chill" responses, which typically correspond to peak emotional experiences, can be objectively monitored by degree of pupillary dilation. Participants listened to self-chosen songs versus control songs chosen by other participants. The experiment included an active condition where participants made key presses to indicate when experiencing chills and a passive condition (without key presses). Chills were reported more frequently for self-selected songs than control songs. Pupil diameter was concurrently measured by an eye-tracker while participants listened to each of the songs. Pupil size was larger within specific time-windows around the chill events, as monitored by key responses, than in comparison to pupil size observed during 'passive' song listening. In addition, there was a clear relationship between pupil diameter within the chills-related time-windows during both active and passive conditions, thus ruling out the possibility that chills-related pupil dilations were an artifact of making a manual response. These findings strongly suggest that music chills can be visible in the moment-to-moment changes in the size of pupillary responses and that a neuromodulatory role of the central norepinephrine system is thereby implicated in this phenomenon. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Converting Wind Energy to Ammonia at Lower Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mahdi; Reese, Michael; McCormick, Alon V.

    Renewable wind energy can be used to make ammonia. However, wind-generated ammonia costs about twice that made from a traditional fossil-fuel driven process. To reduce the production cost, we replace the conventional ammonia condensation with a selective absorber containing metal halides, e.g., calcium chloride, operating at near synthesis temperatures. With this reaction-absorption process, ammonia can be synthesized at 20 bar from air, water, and wind-generated electricity, with rates comparable to the conventional process running at 150–300 bar. In our reaction-absorption process, the rate of ammonia synthesis is now controlled not by the chemical reaction but largely by the pump usedmore » to recycle the unreacted gases. The results suggest an alternative route to distributed ammonia manufacture which can locally supply nitrogen fertilizer and also a method to capture stranded wind energy as a carbon-neutral liquid fuel.« less

  13. Converting Wind Energy to Ammonia at Lower Pressure

    DOE PAGES

    Malmali, Mahdi; Reese, Michael; McCormick, Alon V.; ...

    2017-11-07

    Renewable wind energy can be used to make ammonia. However, wind-generated ammonia costs about twice that made from a traditional fossil-fuel driven process. To reduce the production cost, we replace the conventional ammonia condensation with a selective absorber containing metal halides, e.g., calcium chloride, operating at near synthesis temperatures. With this reaction-absorption process, ammonia can be synthesized at 20 bar from air, water, and wind-generated electricity, with rates comparable to the conventional process running at 150–300 bar. In our reaction-absorption process, the rate of ammonia synthesis is now controlled not by the chemical reaction but largely by the pump usedmore » to recycle the unreacted gases. The results suggest an alternative route to distributed ammonia manufacture which can locally supply nitrogen fertilizer and also a method to capture stranded wind energy as a carbon-neutral liquid fuel.« less

  14. Windward Cooling: An Overlooked Factor in the Calculation of Wind Chill.

    NASA Astrophysics Data System (ADS)

    Osczevski, Randall J.

    2000-12-01

    Wind chill equivalent temperatures calculated from a recent vertical cylinder model of wind chill are several degrees colder than those calculated from a facial cooling model. The latter was based on experiments with a heated model of a face in a wind tunnel. Wind chill has sometimes been modeled as the overall heat transfer from the surface of a cylinder in cross flow, but such models average the cooling over the whole surface and thus minimize the effect of local cooling on the upwind side, particularly at low wind speeds. In this paper, a vertical cylinder model of wind chill has been modified so that just the cooling of its windward side is considered. Wind chill equivalent temperatures calculated with this new model compare favorably with those calculated by the facial cooling model.

  15. Effects of aluminum and copper chill on mechanical properties and microstructures of Cu-Zn-Al alloys with sand casting

    NASA Astrophysics Data System (ADS)

    Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena

    2018-04-01

    Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.

  16. An evaluation of the wind chill factor: its development and applicability.

    PubMed

    Bluestein, M

    1998-04-01

    The wind chill factor has become a standard meteorologic term in cold climates. Meteorologic charts provide wind chill temperatures meant to represent the hypothetical air temperature that would, under conditions of no wind, effect the same heat loss from unclothed human skin as does the actual combination of air temperature and wind velocity. As this wind chill factor has social and economic significance, an investigation was conducted on the development of this factor and its applicability based on modern heat transfer principles. The currently used wind chill factor was found to be based on a primitive study conducted by the U.S. Antarctic Service over 50 years ago. The resultant equation for the wind chill temperature assumes an unrealistic constant skin temperature and utilizes heat transfer coefficients that differ markedly from those obtained from equations of modern convective heat transfer methods. The combined effect of these two factors is to overestimate the effect of a given wind velocity and to predict a wind chill temperature that is too low.

  17. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    PubMed

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P < 0.05); T-128 and T-128 with chlorine were significantly more effective (P < 0.05) than the control or plain chlorine for control of Campylobacter. T-128 treatments were noted to have a pH of less than 4.0; an additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  18. Better Absorbents for Ammonia Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer

    Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less

  19. Better Absorbents for Ammonia Separation

    DOE PAGES

    Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer; ...

    2018-03-30

    Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less

  20. Chilling and cooking rate effects on some myofibrillar determinants of tenderness of beef.

    PubMed

    King, D A; Dikeman, M E; Wheeler, T L; Kastner, C L; Koohmaraie, M

    2003-06-01

    Our objectives were to examine the effects of prerigor excision and rapid chilling vs. conventional carcass chilling of two muscles on proteolysis and tenderness during the postmortem storage, as well as the effects of fast and slow rates of cooking on myofibrillar characteristics and tenderness. The longissimus thoracis (LT) and triceps brachii (TB), long head muscles were removed 45 min after exsanguination from the left side of 12 carcasses and chilled in an ice bath to induce cold shortening (excised, rapidly chilled). At 24 h postmortem, the corresponding muscles were removed from the right side (conventionally chilled). All muscles were cut into 2.54-cm-thick steaks and assigned to one of two postmortem times (1 or 14 d), and to raw and cooking treatments. Steaks were cooked at 260 degrees C (FAST) or 93 degrees C (SLOW) in a forced-air convection oven to an internal temperature of 70 degrees C. Cooking loss, cooking time, and Warner-Bratzler shear force (WBSF) were measured on cooked steaks. Sarcomere length (SL) and the extent of proteolysis of desmin were measured on raw and cooked steaks. As expected, the excised, rapidly chilled muscles had a much more rapid (P < 0.05) temperature decline than those that were conventionally chilled. The excised, rapidly chilled treatment resulted in shorter (P < 0.05) SL, and SL was shorter (P < 0.05) in LT than in TB steaks. Raw steaks had longer (P < 0.05) SL than cooked steaks, regardless of chilling treatment. The FAST cooking resulted in shorter (P < 0.05) SL than SLOW cooking in conventionally chilled steaks, but cooking rate had no effect (P > 0.05) on SL of rapidly chilled steaks. Generally, TB steaks required longer (P < 0.05) cooking times and had higher (P < 0.05) cooking losses than LT steaks, and FAST-cooked steaks had greater (P < 0.05) cooking losses than SLOW-cooked steaks. Rapidly chilled steaks had less (P < 0.05) degradation of desmin than conventionally chilled steaks (31 vs. 41%). Aging for 14 d

  1. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    PubMed Central

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  2. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process.

    PubMed

    Yoo, Chang Geun; Nghiem, Nhuan P; Hicks, Kevin B; Kim, Tae Hyun

    2011-11-01

    A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30-70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40-120°C) for 48-144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1g-ammonia+1.0 g-water per g biomass, 80°C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan+xylan in corn stover). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Characterization of four Paenibacillus species isolated from pasteurized, chilled ready-to-eat meals.

    PubMed

    Helmond, Mariette; Nierop Groot, Masja N; van Bokhorst-van de Veen, Hermien

    2017-07-03

    Food spoilage is often caused by microorganisms. The predominant spoilage microorganisms of pasteurized, chilled ready-to-eat (RTE) mixed rice-vegetable meals stored at 7°C were isolated and determined as Paenibacillus species. These sporeforming psychrotrophic bacteria are well adapted to grow in the starch-rich environment of pasteurized and chilled meals. Growth of the Paenibacillus isolates appeared to be delayed by decreased (<7°C) temperature or chilled temperature (7°C) combined with decreased pH (<5), increased sodium chloride (>5.5%, corresponding with an a w <0.934), or decreased a w (<0.931; using sucrose). To gain insight in the effect of the pasteurization processing of the meal on spore inactivation, heat-inactivation kinetics were determined and D-values were calculated. According to these kinetics, pasteurization up to 90°C, necessary for inactivation of vegetative spoilage microorganisms and pathogens, does not significantly contribute to the inactivation of Paenibacillus spores in the meals. Furthermore, outgrowth of pasteurized spores was determined in the mixed rice-vegetable meal at several temperatures; P. terrae FBR-61 and P. pabuli FBR-75 isolates did not substantially increase in numbers during storage at 2°C, but had a significant increase within a month of storage at 4°C or within several days at 22°C. Overall, this work shows the importance of Paenibacillus species as spoilage microorganisms of pasteurized, chilled RTE meals and that the meals' matrix, processing conditions, and storage temperature are important hurdles to control microbial meal spoilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  5. Incidence of chilling injury in fresh-cut 'Kent' mangoes

    USDA-ARS?s Scientific Manuscript database

    The preferred storage temperature for fresh-cut fruits in terms of visual quality retention is around 5 °C, which is considered to be a chilling temperature for chilling sensitive tropical fruits like mango (Mangifera indica L.). Changes in visual and compositional quality factors, aroma volatile pr...

  6. Technical and economical optimization of a full-scale poultry manure treatment process: total ammonia nitrogen balance.

    PubMed

    Alejo-Alvarez, Luz; Guzmán-Fierro, Víctor; Fernández, Katherina; Roeckel, Marlene

    2016-11-01

    A full-scale process for the treatment of 80 tons per day of poultry manure was designed and optimized. A total ammonia nitrogen (TAN) balance was performed at steady state, considering the stoichiometry and the kinetic data from the anaerobic digestion and the anaerobic ammonia oxidation. The equipment, reactor design, investment costs, and operational costs were considered. The volume and cost objective functions optimized the process in terms of three variables: the water recycle ratio, the protein conversion during AD, and the TAN conversion in the process. The processes were compared with and without water recycle; savings of 70% and 43% in the annual fresh water consumption and the heating costs, respectively, were achieved. The optimal process complies with the Chilean environmental legislation limit of 0.05 g total nitrogen/L.

  7. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes.

    PubMed

    Shi, Xuchuan; Lin, Jia; Zuo, Jiane; Li, Peng; Li, Xiaoxia; Guo, Xianglin

    2017-05-01

    The effect of free ammonia on volatile fatty acid (VFA) accumulation and process instability was studied using a lab-scale anaerobic digester fed by two typical bio-wastes: fruit and vegetable waste (FVW) and food waste (FW) at 35°C with an organic loading rate (OLR) of 3.0kg VS/(m 3 ·day). The inhibitory effects of free ammonia on methanogenesis were observed due to the low C/N ratio of each substrate (15.6 and 17.2, respectively). A high concentration of free ammonia inhibited methanogenesis resulting in the accumulation of VFAs and a low methane yield. In the inhibited state, acetate accumulated more quickly than propionate and was the main type of accumulated VFA. The co-accumulation of ammonia and VFAs led to an "inhibited steady state" and the ammonia was the main inhibitory substance that triggered the process perturbation. By statistical significance test and VFA fluctuation ratio analysis, the free ammonia inhibition threshold was identified as 45mg/L. Moreover, propionate, iso-butyrate and valerate were determined to be the three most sensitive VFA parameters that were subject to ammonia inhibition. Copyright © 2016. Published by Elsevier B.V.

  8. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE PAGES

    Misenheimer, Corey T.; Terry, Stephen D.

    2016-06-27

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  9. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misenheimer, Corey T.; Terry, Stephen D.

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  10. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx

    PubMed Central

    Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584

  11. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    PubMed

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  12. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    PubMed Central

    Harrington, Constance A.; Gould, Peter J.

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season and they exhibit a tradeoff between amount of forcing and chilling. That is, the parallel model of chilling and forcing was effective in predicting budburst and well chilled plants require less forcing for bud burst than plants which have received less chilling. Genotypes differed in the shape of the possibility line which describes the quantitative tradeoff between chilling and forcing units. Plants which have an obligate chilling requirement (Douglas-fir, western hemlock, western larch, pines, and true firs) and received no or very low levels of chilling did not burst bud normally even with long photoperiods. Pacific madrone and western redcedar benefited from chilling in terms of requiring less forcing to promote bud burst but many plants burst bud normally without chilling. Equations predicting budburst were developed for each species in our trials for a portion of western North America under current climatic conditions and for 2080. Mean winter temperature was predicted to increase 3.2–5.5°C and this change resulted in earlier predicted budburst for Douglas-fir throughout much of our study area (up to 74 days earlier) but later budburst in some southern portions of its current range (up to 48 days later) as insufficient chilling is predicted to occur. Other species all had earlier predicted dates of budburst by 2080 than currently. Recent warming trends have resulted in earlier budburst for some woody plant species; however, the substantial winter warming predicted by some climate models will reduce future chilling in some locations such that budburst will not consistently occur earlier. PMID

  13. Role of Rbp1 in the acquired chill-light tolerance of cyanobacteria.

    PubMed

    Tan, Xiaoming; Zhu, Tao; Shen, Si; Yin, Chuntao; Gao, Hong; Xu, Xudong

    2011-06-01

    Synechocystis sp. strain PCC 6803 cultured at 30°C losses viability quickly under chill (5°C)-light stress but becomes highly tolerant to the stress after conditioning at 15°C (Y. Yang, C. Yin, W. Li, and X. Xu, J. Bacteriol. 190:1554-1560, 2008). Hypothetically, certain factors induced during preconditioning are involved in acquisition of chill-light tolerance. In this study, Rbp1 (RNA-binding protein 1) rather than Rbp2 was found to be accumulated during preconditioning, and the accumulation of Rbp1 was correlated with the increase of chill-light tolerance. Inactivation of its encoding gene rbp1 led to a great reduction in the acquired chill-light tolerance, while ectopic expression of rbp1 enabled the cyanobacterium to survive the chill-light stress without preconditioning. Microarray analyses suggested that the Rbp1-dependent chill-light tolerance may not be based on its influence on mRNA abundance of certain genes. Similarly to that in Synechocystis, the Rbp1 homologue(s) can be accumulated in Microcystis cells collected from a subtropic lake in low-temperature seasons. Rbp1 is the first factor shown to be both accumulated early during preconditioning and directly involved in development of chill-light tolerance in Synechocystis. Its accumulation may greatly enhance the overwintering capability in certain groups of cyanobacteria.

  14. Effect of morphological changes in feather follicles of chicken carcasses after defeathering and chilling on the degree of skin contamination by Campylobacter species

    PubMed Central

    LATT, Khin Maung; URATA, Ayaka; SHINKI, Taisuke; SASAKI, Satomi; TANIGUCHI, Takako; MISAWA, Naoaki

    2017-01-01

    Campylobacter jejuni and C. coli are the leading causes of enteric infections in many developed countries. Healthy chickens are considered to act as reservoirs of campylobacters, as the organisms colonize the intestinal tract. Once infected birds enter a processing plant, contamination of chicken carcasses with campylobacters occurs over the entire skin during defeathering and evisceration due to leakage of crop and/or intestinal contents. Although the role of feather follicles in the contamination of chicken carcasses by campylobacters during processing is still debatable, it has been considered that the microorganisms would be entrapped and retained in the follicles due to the morphological changes resulting from defeathering and chilling. In the present study, we observed the morphology of feather follicles in chicken carcasses after defeathering and chilling. A total of 3,133 feather follicles were examined for morphological changes before and after chilling. Shortly after defeathering, most (91.5%) of the follicles were closed, whereas after chilling they were either closed (85.5%) or open (6%), although a small proportion of enlarged follicles became smaller or closed (2.6%). Moreover, 5.9% of the follicles that were slightly open became further enlarged after chilling. Furthermore, the proportion of enlarged feather follicles that became closed after chilling showed no discernible relationship with the degree of campylobacter contamination in different areas of the carcass skin, suggesting that campylobacters may not be confined to feather follicles as a result of the morphological changes attributable to defeathering and chilling. PMID:29151444

  15. Effect of morphological changes in feather follicles of chicken carcasses after defeathering and chilling on the degree of skin contamination by Campylobacter species.

    PubMed

    Latt, Khin Maung; Urata, Ayaka; Shinki, Taisuke; Sasaki, Satomi; Taniguchi, Takako; Misawa, Naoaki

    2018-01-01

    Campylobacter jejuni and C. coli are the leading causes of enteric infections in many developed countries. Healthy chickens are considered to act as reservoirs of campylobacters, as the organisms colonize the intestinal tract. Once infected birds enter a processing plant, contamination of chicken carcasses with campylobacters occurs over the entire skin during defeathering and evisceration due to leakage of crop and/or intestinal contents. Although the role of feather follicles in the contamination of chicken carcasses by campylobacters during processing is still debatable, it has been considered that the microorganisms would be entrapped and retained in the follicles due to the morphological changes resulting from defeathering and chilling. In the present study, we observed the morphology of feather follicles in chicken carcasses after defeathering and chilling. A total of 3,133 feather follicles were examined for morphological changes before and after chilling. Shortly after defeathering, most (91.5%) of the follicles were closed, whereas after chilling they were either closed (85.5%) or open (6%), although a small proportion of enlarged follicles became smaller or closed (2.6%). Moreover, 5.9% of the follicles that were slightly open became further enlarged after chilling. Furthermore, the proportion of enlarged feather follicles that became closed after chilling showed no discernible relationship with the degree of campylobacter contamination in different areas of the carcass skin, suggesting that campylobacters may not be confined to feather follicles as a result of the morphological changes attributable to defeathering and chilling.

  16. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  17. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammablemore » gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.« less

  18. An environmental friendly animal waste disposal process with ammonia recovery and energy production: Experimental study and economic analysis.

    PubMed

    Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa

    2017-10-01

    Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Growth of Salmonella on chilled meat.

    PubMed Central

    Mackey, B. M.; Roberts, T. A.; Mansfield, J.; Farkas, G.

    1980-01-01

    Growth rates of a mixture of Salmonella serotypes inoculated on beef from a commercial abattoir were measured at chill temperatures. The minimum recorded mean generation times were 8.1 h at 10 degrees C; 5.2 h at 12.5 degrees C and 2.9 h at 15 degrees C. Growth did not occur at 7-8 degrees C. From these data the maximum extent of growth of Salmonella during storage of meat for different times at chill temperatures was calculated. Criteria for deciding safe handling temperatures for meat are discussed. Maintaining an internal temperature below 10 degrees C during the boning operation would be sufficient to safeguard public health requirements. PMID:7052227

  20. Modeling and Test Data Analysis of a Tank Rapid Chill and Fill System for the Advanced Shuttle Upper Stage (ASUS) Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin; Hedayat, Ali; Holt, Kimberly A.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    The Advanced Shuttle Upper Stage (ASUS) concept addresses safety concerns associated .with cryogenic stages by launching empty, and filling on ascent. The ASUS employs a rapid chill and fill concept. A spray bar is used to completely chill the tank before fill, allowing the vent valve to be closed during the fill process. The first tests of this concept, using a flight size (not flight weight) tank. were conducted at Marshall Space Flight Center (MSFC) during the summer of 2000. The objectives of the testing were to: 1) demonstrate that a flight size tank could be filled in roughly 5 minutes to accommodate the shuttle ascent window, and 2) demonstrate a no-vent fill of the tank. A total of 12 tests were conducted. Models of the test facility fill and vent systems, as well as the tank, were constructed. The objective of achieving tank fill in 5 minutes was met during the test series. However, liquid began to accumulate in the tank before it was chilled. Since the tank was not chilled until the end of each test, vent valve closure during fill was not possible. Even though the chill and fill process did not occur as expected, reasonable model correlation with the test data was achieved.

  1. Performance of swine chilled during artificial rearing.

    PubMed

    Stanton, H C; Mueller, R L

    1977-07-01

    There were more deaths among neonatal swine artificially reared for 21 days in individual cages at 27.9 C than among pigs reared under similar conditions at thermoneutrality (34.6 C). Furthermore, these deaths occurred at a younger age in the chilled animals. Chilled swine gained less body weight than did warm pigs for the first 15 days of life, although the survivors of the 27.9 C environment weighed the same as warm survivors at 22 days of age. Plasma glucose, liver, and skeletal muscle glycogen concentrations were significantly lower in neonatal swine exposed to 27.9 C from 1 to 4 days of age. Plasma nonesterified fatty acids, glycerol, cholesterol, and triglyceride concentrations were not altered by chilling. However, these lipid variables were significantly higher in 4-day-old nursig pigs than in animals reared artificially for the same period on artificial food. Adrenal gland weights and adrenal medullary catecholamine-synthetic enzyme activities were not altered by exposure to 27.9 C in pigs 1 to 4 days of age.

  2. Alternative E ammonia feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, M.J.; Wright, R.A.

    1999-07-01

    Power plants are using more Ammonia for increasing precipitator and baghouse efficiency, for SCR and SNCR processes, and for controlling acid stack plumes and dewpoint corrosion. These simple systems inject ammonia and air into the furnace or the precipitator or baghouse inlet ductwork. The common feedstocks in use today are Anhydrous ammonia [NH{sub 3}] and Aqueous ammonia [NH{sub 4}OH], both defined as poison gases by US authorities and most Western nations. Storage and handling procedures for these products are strictly regulated. Wilhelm Environmental Technologies Inc. is developing use of solid, formed or prilled Urea [CO(NH{sub 2}){sub 2}] as the feedstock.more » When heated in moist air, Urea sublimes to ammonia [NH{sub 3}] and carbon dioxide [CO{sub 2}]. Urea is stored and handled without restrictions or environmental concerns. Urea is a more expensive feedstock than NH{sub 3}, but much less expensive than [NH{sub 4}OH]. The design, and operating results, of a pilot system at Jacksonville Electric St. John's River Plant [Unit 2] are described. The pilot plant successfully sublimed Urea up to 100 pounds/hour. Further testing is planned. Very large ammonia use may favor NH{sub 3}, but smaller quantities can be produced at attractive prices with Urea based ammonia systems. Storage costs are far less. Many fluidized-bed boilers can use pastille or solid urea metered directly into the existing cyclones for NO{sub x} control. This is more economical than aqueous ammonia or aqueous urea based technology.« less

  3. AMMONIUM DIURANATE PRECIPITATION WITH ANHYDROUS AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, L.C.; Grill, L.F.

    1959-03-01

    Ammonium diuranate has been precipitated from nitric acid solutions by the addition of anhydrpus ammonia on both laboratory and production scales. This process produced more dense and morc rapidly filtered precipitates than those formed by the addition of aqueous amonia or slurried calcium hydroxide. Thc filtrates from the anhydrous ammonia process were lower in uranium content than those obtained by the addition of the other reagents. Processing equipment and precipitate characteristics are discussed. (auth)

  4. Increasing chilling reduces heat requirement for floral budbreak in peach

    USDA-ARS?s Scientific Manuscript database

    Response to chilling temperatures is a critical factor in the suitability of peach [Prunus persica (L.) Batsch] cultivars to moderate climates such as in the southeastern United States. Time of bloom depends on the innate chilling requirement of the cultivar as well as the timing and quantity of co...

  5. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Temperatures and chilling and freezing procedures. 381.66 Section 381.66 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and...

  6. Long-term red meat preservation using chilled and frozen storage combinations: A review.

    PubMed

    Coombs, Cassius E O; Holman, Benjamin W B; Friend, Michael A; Hopkins, David L

    2017-03-01

    This paper reviews current literature relating to the effects of chilled and frozen storage on the quality characteristics of red meat (lamb and beef). These characteristics include tenderness (shear force), juiciness (fluid losses), flavour (lipid oxidation), colour and microbial loading. Research suggests that chilled storage of red meat can improve certain properties, such as shear force and species-specific flavour, to threshold levels before the effects on flavour and colour become deleterious, and key microbial species proliferate to spoilage levels. For frozen red meat, the negative effects upon quality traits are prevented when stored for shorter durations, although chilled storage conditions prior to freezing and retail display post-thawing can both positively and negatively affect these traits. Here, we review the effects of different chilled, frozen and combined chilled and frozen storage practices (particularly the chilled-then-frozen combination) on meat quality and spoilage traits, in order to contribute to superior management of these traits during product distribution. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Warming and Chilling: Assessing Aspects of Changing Plant Ecology with Continental-scale Phenology

    NASA Astrophysics Data System (ADS)

    Schwartz, M. D.; Hanes, J. M.

    2009-12-01

    Many recent ecological studies have concentrated on the direct impacts of climate warming, such as modifications to seasonal plant and animal life cycle events (phenology). There are many examples, with most indicating earlier onset of spring plant growth and delayed onset of autumn senescence. However, the implication of continued warming for plant species’ chilling requirements has received comparatively less attention. Temperate zone woody plants often require a certain level of cool season "chilling" (accumulated time at temperatures below a specific threshold) to break dormancy and prepare to respond to springtime warming. Thus, the potential impacts of insufficient chilling must be included in a comprehensive assessment of plant species' responses to climate warming. Vegetation phenological data, when collected for specific plant species at continental-scale, can be used to extract information relating to the combined impacts of reduced chilling and warming on plant species physiology. In a recent study, we demonstrated that common lilac first leaf and first bloom phenology (collected from multiple locations in the western United States and matched with air temperature records) can estimate the species' chilling requirement (in this case 1748 chilling hours, below a base temperature of 7.2°C) and highlight the changing impact of warming on the plant's phenological response in light of that requirement. Specifically, when chilling is above the requirement, lilac first leaf dates advance at a rate of -5.0 days per 100 hour chilling accumulation reduction, and lilac first bloom dates advance at a rate of -4.2 days per 100 hour chilling accumulation reduction. In contrast, when chilling is below the requirement, the lilac event dates advance at a much reduced rate of -1.6 days per 100 hour reduction for first leaf date and -2.2 days per 100 hour reduction for first bloom date. Overall, these encouraging results for common lilac suggest that similar continental

  8. Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon.

    PubMed

    Xue, Runmiao; Donovan, Ariel; Zhang, Haiting; Ma, Yinfa; Adams, Craig; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd; Shi, Honglan

    2018-02-01

    When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes. The test results indicate that Mordenite zeolite can remove ammonia and five of seven N-nitrosamine precursors efficiently by single step adsorption test. The practical applicability was evaluated by simulation of typical drinking water treatment processes using six-gang stirring system. The Mordenite zeolite was applied at the steps of lime softening, alum coagulation, and alum coagulation with powdered activated carbon (PAC) sorption. While the lime softening process resulted in poor zeolite performance, alum coagulation did not impact ammonia and N-nitrosamine precursor removal. During alum coagulation, more than 67% ammonia and 70%-100% N-nitrosamine precursors were removed by Mordenite zeolite (except 3-(dimethylaminomethyl)indole (DMAI) and 4-dimethylaminoantipyrine (DMAP)). PAC effectively removed DMAI and DMAP when added during alum coagulation. A combination of the zeolite and PAC selected efficiently removed ammonia and all tested seven N-nitrosamine precursors (dimethylamine (DMA), ethylmethylamine (EMA), diethylamine (DEA), dipropylamine (DPA), trimethylamine (TMA), DMAP, and DMAI) during the alum coagulation process. Copyright © 2017. Published by Elsevier B.V.

  9. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Temperatures and chilling and freezing... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and... temperature is reduced to 40 °F. or less, as provided in paragraph (b)(2) of this section unless such poultry...

  10. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Temperatures and chilling and freezing... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and... temperature is reduced to 40 °F. or less, as provided in paragraph (b)(2) of this section unless such poultry...

  11. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Temperatures and chilling and freezing... Procedures § 381.66 Temperatures and chilling and freezing procedures. (a) General. Temperatures and... temperature is reduced to 40 °F. or less, as provided in paragraph (b)(2) of this section unless such poultry...

  12. Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.

    PubMed

    Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali

    2012-07-01

    Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Human (13)N-ammonia PET studies: the importance of measuring (13)N-ammonia metabolites in blood.

    PubMed

    Keiding, Susanne; Sørensen, Michael; Munk, Ole Lajord; Bender, Dirk

    2010-03-01

    Dynamic (13)N-ammonia PET is used to assess ammonia metabolism in brain, liver and muscle based on kinetic modeling of metabolic pathways, using arterial blood (13)N-ammonia as input function. Rosenspire et al. (1990) introduced a solid phase extraction procedure for fractionation of (13)N-content in blood into (13)N-ammonia, (13)N-urea, (13)N-glutamine and (13)N-glutamate. Due to a radioactive half-life for (13)N of 10 min, the procedure is not suitable for blood samples taken beyond 5-7 min after tracer injection. By modifying Rosenspire's method, we established a method enabling analysis of up to 10 blood samples in the course of 30 min. The modified procedure was validated by HPLC and by 30-min reproducibility studies in humans examined by duplicate (13)N-ammonia injections with a 60-min interval. Blood data from a (13)N-ammonia brain PET study (from Keiding et al. 2006) showed: (1) time courses of (13)N-ammonia fractions could be described adequately by double exponential functions; (2) metabolic conversion of (13)N-ammonia to (13)N-metabolites were in the order: healthy subjects > cirrhotic patients without HE > cirrhotic patients with HE; (3) kinetics of initial tracer distribution in tissue can be assessed by using total (13)N-concentration in blood as input function, whereas assessment of metabolic processes requires (13)N-ammonia measurements.

  14. Tomato flavor changes at chilling and non-chilling temperatures as influenced by controlled atmospheres

    USDA-ARS?s Scientific Manuscript database

    Postharvest temperatures recommended as safe to avoid chilling injury (CI) based on lack of visible symptoms suppress tomato aroma development. We investigated how temperatures at or above the putative CI threshold of 12.5°C affected aroma of pink ‘Tasti Lee’ tomatoes and if controlled atmosphere (C...

  15. Chilling and chipping influence plant growth and reproduction of star-of-Bethlehem (Ornithogalum umbellatum)

    USDA-ARS?s Scientific Manuscript database

    Greenhouse studies were conducted on two southern Illinois star-of-Bethlehem biotypes to determine the influence of chilling and bulb chipping on plant growth and reproduction. Chilling was not required for leaf emergence of dormant bulbs, but an increase to 10 weeks of chilling proportionally delay...

  16. Ammonia blood test

    MedlinePlus

    Serum ammonia; Encephalopathy - ammonia; Cirrhosis - ammonia; Liver failure - ammonia ... Ammonia (NH3) is produced by cells throughout the body, especially the intestines, liver, and kidneys. Most of ...

  17. The effect of evaporative air chilling and storage temperature on quality and shelf life of fresh chicken carcasses.

    PubMed

    Mielnik, M B; Dainty, R H; Lundby, F; Mielnik, J

    1999-07-01

    The effect of evaporative air chilling on quality of fresh chicken carcasses was compared with air chilling as reference method. Cooling efficiency and total heat loss were significantly higher for evaporative air chilling. The chilling method was of great importance for weight loss. Chicken chilled in cold air lost considerably more weight than chicken cooled by evaporative air chilling; the difference was 1.8%. The chilling method also affected the skin color and the amount of moisture on skin surface. After evaporative air chilling, the chicken carcasses had a lighter color and more water on the back and under the wings. The moisture content in skin and meat, cooking loss, and pH were not affected by chilling method. Odor attributes of raw chicken and odor and flavor attributes of cooked chicken did not show any significant differences between the two chilling methods. The shelf life of chicken stored at 4 and -1 C were not affected significantly by chilling method. Storage time and temperature appeared to be the decisive factors for sensory and microbiological quality of fresh chicken carcasses.

  18. Effects of lactic acid and commercial chilling processes on survival of Salmonella, Yersinia enterocolitica, and Campylobacter coli in pork variety meats.

    PubMed

    King, Amanda M; Miller, Rhonda K; Castillo, Alejandro; Griffin, Davey B; Hardin, Margaret D

    2012-09-01

    Current industry chilling practices with and without the application of 2% L-lactic acid were compared for their effectiveness at reducing levels of Salmonella, Yersinia enterocolitica, and Campylobacter coli on pork variety meats. Pork variety meats (livers, intestines, hearts, and stomachs) were inoculated individually with one of the three pathogens and subjected to five different treatment combinations that included one or more of the following: water wash (25°C), lactic acid spray (2%, 40 to 50°C), chilling (4°C), and freezing (-15°C). Samples were analyzed before treatment, after each treatment step, and after 2, 4, and 6 months of frozen storage. Results showed that when a lactic acid spray was used in combination with water spray, immediate reductions were approximately 0.5 log CFU per sample of Salmonella, 0.8 log CFU per sample of Y. enterocolitica, and 1.1 log CFU per sample of C. coli. Chilling, both alone and in combination with spray treatments, had little effect on pathogens, while freezing resulted in additional 0.5-log CFU per sample reductions in levels of Salmonella and Y. enterocolitica, and an additional 1.0-log CFU per sample reduction in levels of C. coli. While reductions of at least 1 log CFU per sample were observed on variety meats treated with only a water wash and subsequently frozen, samples treated with lactic acid had greater additional reductions than those treated with only a water spray throughout frozen storage. The results of this study suggest that the use of lactic acid as a decontamination intervention, when used in combination with good manufacturing practices during processing, causes significant reductions in levels of Salmonella, Y. enterocolitica, and C. coli on pork variety meats.

  19. Analyses of rail chill effect

    DOT National Transportation Integrated Search

    1998-06-01

    The principles of heat transfer are applied to analyze the so-called "rail chill" effect, which refers to hear loss by conduction from a hot rail vehicle wheel through the contact area into a cold rail, the wheel having been heated by friction brakin...

  20. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  1. Ammonia in London: is it increasing and what is the relevance of urban ammonia for air quality impacts?

    NASA Astrophysics Data System (ADS)

    Braban, Christine; Tang, Sim; Poskitt, Janet; Van Dijk, Netty; Leeson, Sarah; Dragosits, Ulli; Hutchings, Torben; Twigg, Marsailidh; Di Marco, Chiara; Langford, Ben; Tremper, Anja; Nemitz, Eiko; Sutton, Mark

    2017-04-01

    Emissions of ammonia affect both rural and urban air quality primarily via reaction of ammonia in the atmosphere forming secondary ammonium salts in particulate matter (PM). Urban ammonia emissions come from a variety of sources including biological decomposition, human waste, industrial processes and combustion engines. In the UK, the only long-term urban ammonia measurement is a UK National Ammonia Monitoring Network site at London Cromwell Road, recording monthly average concentrations. Short term measurements have also been made in the past decade at Marylebone Road, North Kensington and on the BT Tower. Cromwell Road is a kerbside site operational since 1999. The Cromwell Road data indicates that ammonia concentrations may be increasing since 2010-2012 after a long period of decreasing. Data from the National Atmospheric Emissions Inventory indicates ammonia emissions from diesel fleet exhausts increasing over this time period but an overall net decrease in ammonia emissions. With changes in engine and exhaust technology to minimise pollutant emissions and the importance of ammonia as a precursor gas for secondary PM, there is a challenge to understand urban ammonia concentrations and subsequent impacts on urban air quality. In this paper the long term measurements are assessed in conjunction with the short-term measurements.The challenges to assess the relative importance of local versus long range ammonia emission are discussed.

  2. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099.

    PubMed

    Luedeling, Eike; Zhang, Minghua; Girvetz, Evan H

    2009-07-16

    Winter chill is one of the defining characteristics of a location's suitability for the production of many tree crops. We mapped and investigated observed historic and projected future changes in winter chill in California, quantified with two different chilling models (Chilling Hours, Dynamic Model). Based on hourly and daily temperature records, winter chill was modeled for two past temperature scenarios (1950 and 2000), and 18 future scenarios (average conditions during 2041-2060 and 2080-2099 under each of the B1, A1B and A2 IPCC greenhouse gas emissions scenarios, for the CSIRO-MK3, HadCM3 and MIROC climate models). For each scenario, 100 replications of the yearly temperature record were produced, using a stochastic weather generator. We then introduced and mapped a novel climatic statistic, "safe winter chill", the 10% quantile of the resulting chilling distributions. This metric can be interpreted as the amount of chilling that growers can safely expect under each scenario. Winter chill declined substantially for all emissions scenarios, with the area of safe winter chill for many tree species or cultivars decreasing 50-75% by mid-21st century, and 90-100% by late century. Both chilling models consistently projected climatic conditions by the middle to end of the 21st century that will no longer support some of the main tree crops currently grown in California, with the Chilling Hours Model projecting greater changes than the Dynamic Model. The tree crop industry in California will likely need to develop agricultural adaptation measures (e.g. low-chill varieties and dormancy-breaking chemicals) to cope with these projected changes. For some crops, production might no longer be possible.

  3. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOEpatents

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  4. Ultrafast dynamics of electrons in ammonia.

    PubMed

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  5. A study on the kinetic behavior of Listeria monocytogenes in ice cream stored under static and dynamic chilling and freezing conditions.

    PubMed

    Gougouli, M; Angelidis, A S; Koutsoumanis, K

    2008-02-01

    The kinetic behavior of Listeria monocytogenes in 2 commercial ice cream products (A and B) that were inoculated and stored under static chilling (4 to 16 degrees C), static freezing (-5 to -33 degrees C), dynamic chilling, and dynamic chilling-freezing conditions was studied, simulating conditions of the aging process and of normal or abuse conditions during distribution and storage. The ice cream products A and B had different compositions but similar pH (6.50 and 6.67, respectively) and water activity (0.957 and 0.965, respectively) values. For both chilling and freezing conditions, the kinetic behavior of the pathogen was similar in the 2 products, indicating that the pH and water activity, together with temperature, were the main factors controlling growth. Under chilling conditions, L. monocytogenes grew well at all temperatures tested. Under freezing conditions, no significant changes in the population of the pathogen were observed throughout a 90-d storage period for either of the inoculum levels tested (10(3) and 10(6) cfu/g). Growth data from chilled storage conditions were fitted to a mathematical model, and the calculated maximum specific growth rate was modeled as a function of temperature by using a square root model. The model was further validated under dynamic chilling and dynamic chilling-freezing conditions by using 4 different storage temperature scenarios. Under dynamic chilling conditions, the model accurately predicted the growth of the pathogen in both products, with 99.5% of the predictions lying within the +/- 20% relative error zone. The results from the chilling-freezing storage experiments showed that the pathogen was able to initiate growth within a very short time after a temperature upshift from freezing to chilling temperatures. This indicates that the freezing conditions did not cause a severe stress in L. monocytogenes cells capable of leading to a significant "additional" lag phase during the subsequent growth of the pathogen at

  6. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria.

    PubMed

    Sauder, Laura A; Ross, Ashley A; Neufeld, Josh D

    2016-04-01

    Differential inhibitors are important for measuring the relative contributions of microbial groups, such as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), to biogeochemical processes in environmental samples. In particular, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) represents a nitric oxide scavenger used for the specific inhibition of AOA, implicating nitric oxide as an intermediate of thaumarchaeotal ammonia oxidation. This study investigated four alternative nitric oxide scavengers for their ability to differentially inhibit AOA and AOB in comparison to PTIO. Caffeic acid, curcumin, methylene blue hydrate and trolox were tested onNitrosopumilus maritimus, two unpublished AOA representatives (AOA-6f and AOA-G6) as well as the AOB representative Nitrosomonas europaea All four scavengers inhibited ammonia oxidation by AOA at lower concentrations than for AOB. In particular, differential inhibition of AOA and AOB by caffeic acid (100 μM) and methylene blue hydrate (3 μM) was comparable to carboxy-PTIO (100 μM) in pure and enrichment culture incubations. However, when added to aquarium sponge biofilm microcosms, both scavengers were unable to inhibit ammonia oxidation consistently, likely due to degradation of the inhibitors themselves. This study provides evidence that a variety of nitric oxide scavengers result in differential inhibition of ammonia oxidation in AOA and AOB, and provides support to the proposed role of nitric oxide as a key intermediate in the thaumarchaeotal ammonia oxidation pathway. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.

    PubMed

    Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye

    2017-11-09

    Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.

  8. Transcriptomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity.

    PubMed

    Carvajal, F; Rosales, R; Palma, F; Manzano, S; Cañizares, J; Jamilena, M; Garrido, D

    2018-02-07

    Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop

  9. Two types of peak emotional responses to music: The psychophysiology of chills and tears

    PubMed Central

    Mori, Kazuma; Iwanaga, Makoto

    2017-01-01

    People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response. PMID:28387335

  10. The effects of different chilling methods on meat quality and calpain activity of pork muscle longissimus dorsi.

    PubMed

    Xu, Yang; Huang, Ji-Chao; Huang, Ming; Xu, Bao-Cai; Zhou, Guang-Hong

    2012-01-01

    The objective of this study was to investigate the effects of conventional chilling (0 to 4 °C), rapid chilling (RC, -20 °C for 30 min, followed by 0 to 4 °C), and short-duration chilling (0 to 4 °C for 30 min, followed by 25 °C) on meat quality and calpain activity of pork muscle longissimus dorsi (LD). The muscle quality characteristics pH, color, cooking loss, pressing loss and tenderness, and calpain activities were measured 0-, 3-, 12-, and 24-h postmortem. Results show that the RC resulted in a faster temperature decline of the muscle, and prevented the meat pH and Commission Internationale de l'Eclairage L* value from declining during postmortem aging. RC also reduced meat cooking loss and pressing loss compared with the other two chilling methods. However, the chilling methods did not significantly affect meat shear force. During the first 24-h postmortem, there was not a noticeable change in the activity of m-calpain. But μ-calpain activity decreased regardless of chilling method. In the rapidly chilled carcasses, μ-calpain activity remained the same 3- and 12-h postmortem. However, in the short-duration chilled and conventionally chilled carcasses, the activity was visibly reduced. At 24-h postmortem, no clear zones on the gel were observed in all three treatments. Conventional and RC methods are commonly used for pork in commercial practice nowadays. Compared with conventional chilling, the effect of RC on quality parameters of pork varies. In recent years, short-duration chilling (SC) is widely used in many Chinese pig slaughtering facilities. However, few researchers have studied the effect of SD on pork quality. Therefore, the present study investigated the effect of different chilling methods on functionalities or quality of chilled pork meat. © 2011 Institute of Food Technologists®

  11. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf.

    PubMed

    Hogewoning, Sander W; Harbinson, Jeremy

    2007-01-01

    The effect of chilling on photosystem II (PSII) efficiency was studied in the variegated leaves of Calathea makoyana, in order to gain insight into the causes of chilling-induced photoinhibition. Additionally, a relationship was revealed between (chilling) stress and variation in photosynthesis. Chilling treatments (5 degrees C and 10 degrees C) were performed for different durations (1-7 d) under a moderate irradiance (120 micromol m-2 s-1). The individual leaves were divided into a shaded zone and two illuminated, chilled zones. The leaf tip and sometimes the leaf base were not chilled. Measurements of the dark-adapted Fv/Fm were made on the different leaf zones at the end of the chilling treatment, and then for several days thereafter to monitor recovery. Chilling up to 7 d in the dark did not affect PSII efficiency and visual appearance, whereas chilling in the light caused severe photoinhibition, sometimes followed by leaf necrosis. Photoinhibition increased with the duration of the chilling period, whereas, remarkably, chilling temperature had no effect. In the unchilled leaf tip, photoinhibition also occurred, whereas in the unchilled leaf base it did not. Whatever the leaf zone, photoinhibition became permanent if the mean value dropped below 0.4, although chlorosis and necrosis were associated solely with chilled illuminated tissue. Starch accumulated in the unchilled leaf tip, in contrast to the adjacent chilled irradiated zone. This suggests that photoinhibition was due to a secondary effect in the unchilled leaf tip (sink limitation), whereas it was a direct effect of chilling and irradiance in the chilled illuminated zones. The PSII efficiency and its coefficient of variation showed a unique negative linearity across all leaf zones and different tissue types. The slope of this curve was steeper for chilled leaves than it was for healthy, non-stressed leaves, suggesting that the coefficient of variation may be an important tool for assessing stress in

  12. Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less

  13. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus

    PubMed Central

    MacMillan, Heath A.; Williams, Caroline M.; Staples, James F.; Sinclair, Brent J.

    2012-01-01

    The time required to recover from cold-induced paralysis (chill-coma) is a common measure of insect cold tolerance used to test central questions in thermal biology and predict the effects of climate change on insect populations. The onset of chill-coma in the fall field cricket (Gryllus pennsylvanicus, Orthoptera: Gryllidae) is accompanied by a progressive drift of Na+ and water from the hemolymph to the gut, but the physiological mechanisms underlying recovery from chill-coma are not understood for any insect. Using a combination of gravimetric methods and atomic absorption spectroscopy, we demonstrate that recovery from chill-coma involves a reestablishment of hemolymph ion content and volume driven by removal of Na+ and water from the gut. Recovery is associated with a transient elevation of metabolic rate, the time span of which increases with increasing cold exposure duration and closely matches the duration of complete osmotic recovery. Thus, complete recovery from chill-coma is metabolically costly and encompasses a longer period than is required for the recovery of muscle potentials and movement. These findings provide evidence that physiological mechanisms of hemolymph ion content and volume regulation, such as ion-motive ATPase activity, are instrumental in chill-coma recovery and may underlie natural variation in insect cold tolerance. PMID:23184963

  14. Chilling requirements for hatching of a New Zealand isolate of Nematodirus filicollis.

    PubMed

    Oliver, A-M B; Pomroy, W E; Ganesh, S; Leathwick, D M

    2016-08-15

    The eggs of some species of the parasitic nematode Nematodirus require a period of chilling before they can hatch; N. filicollis is one such species. This study investigated this requirement for chilling in a New Zealand strain of this species. Eggs of N. filicollis were extracted from lamb's faeces and incubated at 20°C to allow development to the third stage larvae within the egg. These eggs were then placed into tissue culture plates and incubated at: 2.7°C (±0.99), 3.6°C (±0.90), 4.7°C (±0.35), 6.4°C (±0.37), 8.0°C (±1.54) or 9.9°C (±0.14) for up to 224 days. At 14day intervals until day 84, then every 28 days, one plate was removed from each temperature and placed at 13.1°C (±0.44) for 14 days. Eggs were then assessed for hatching. From this data, chill units were calculated by subtracting the culture temperature from a constant threshold of 11°C and multiplying by the number of days for which the sample was cultured; then the Gompertz model fitted. Even though hatching overall was low, a greater proportion of eggs hatched with chill accumulation. Maximum hatching of eggs required 800-1000 chill units. Consequently in the field, more than one season of chilling would be required before hatching. As such a generation time could take more than one year to complete. This is different to the hatching dynamics of N. spathiger, the other main species found in New Zealand sheep, which does not display this requirement for chilling and hatches immediately once the third stage larvae are developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of ageing time on suckling lamb meat quality resulting from different carcass chilling regimes.

    PubMed

    Vieira, C; Fernández, A M

    2014-02-01

    The effect of ageing on suckling lamb carcasses subjected to three chilling treatments was studied: Conventional (2 °C for 24h), ultra-fast (-20 °C for 3.5h then 2 °C until 24h post mortem) and slow chilling (12 °C for 7h then 2 °C until 24h post mortem) treatments. Meat quality measurements were carried out in carcasses at 24h post mortem and also after 5 days of ageing. Carcass chilling losses were not affected by a chilling regime. Aged meat showed higher cooking losses than non-aged meat (p<0.05). Sarcomere length of ultra-fast t was shorter (p<0.05) than conventional and conventional was shorter than slow chilling treatment (p<0.05), at 24h and after 5 days of ageing. Conventional and ultra-fast chilling treatments resulted in higher shear force values at 24h post mortem (p<0.05) compared to slow treatment. All treatments improved sensory scores with ageing (p<0.05), but ultra-fast chilling treatment did not attain higher values as the other two treatments. © 2013.

  16. Methods of ammonia removal in anaerobic digestion: a review.

    PubMed

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.

  17. Chill-inducing music enhances altruism in humans.

    PubMed

    Fukui, Hajime; Toyoshima, Kumiko

    2014-01-01

    Music is a universal feature of human cultures, and it has both fascinated and troubled many researchers. In this paper we show through the dictator game (DG) that an individual's listening to preferred "chill-inducing" music may promote altruistic behavior that extends beyond the bounds of kin selection or reciprocal altruism. Participants were 22 undergraduate and postgraduate students who were divided into two groups, the in-group and the out-group, and they acted as dictators. The dictators listened to their own preferred "chill-inducing" music, to music they disliked, or to silence, and then played the DG. In this hypothetical experiment, the dictators were given real money (which they did not keep) and were asked to distribute it to the recipients, who were presented as stylized images of men and women displayed on a computer screen. The dictators played the DG both before and after listening to the music. Both male and female dictators gave more money after listening to their preferred music and less after listening to the music they disliked, whereas silence had no effect on the allocated amounts. The group to which the recipient belonged did not influence these trends. The results suggest that listening to preferred "chill-inducing" music promotes altruistic behavior.

  18. Chill-inducing music enhances altruism in humans

    PubMed Central

    Fukui, Hajime; Toyoshima, Kumiko

    2014-01-01

    Music is a universal feature of human cultures, and it has both fascinated and troubled many researchers. In this paper we show through the dictator game (DG) that an individual’s listening to preferred “chill-inducing” music may promote altruistic behavior that extends beyond the bounds of kin selection or reciprocal altruism. Participants were 22 undergraduate and postgraduate students who were divided into two groups, the in-group and the out-group, and they acted as dictators. The dictators listened to their own preferred “chill-inducing” music, to music they disliked, or to silence, and then played the DG. In this hypothetical experiment, the dictators were given real money (which they did not keep) and were asked to distribute it to the recipients, who were presented as stylized images of men and women displayed on a computer screen. The dictators played the DG both before and after listening to the music. Both male and female dictators gave more money after listening to their preferred music and less after listening to the music they disliked, whereas silence had no effect on the allocated amounts. The group to which the recipient belonged did not influence these trends. The results suggest that listening to preferred “chill-inducing” music promotes altruistic behavior. PMID:25389411

  19. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordalo, V.; Da Silveira, E. F.; Lv, X. Y.

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified aftermore » irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.« less

  20. Effect of high pressure treatment on microbiological quality of Indian white prawn (Fenneropenaeus indicus) during chilled storage.

    PubMed

    Ginson, J; Panda, Satyen Kumar; Bindu, J; Kamalakanth, C K; Srinivasa Gopal, T K

    2015-04-01

    High pressure treatment of 250 MPa for 6 min at 25 °C was applied to headless Indian white prawn (Fenneropenaeus indicus) to evaluate changes in microbiological characteristics of the species during chilled storage. Changes in load of mesophilic bacteria, psychrotrophic bacteria, proteolytic bacteria, Enterobacteriaceae, Pseudomonas spp., H2S producing bacteria, lactic acid bacteria, Brochothrix thermosphacta and yeast & mold were estimated in pressurized and un-pressurized samples during chilled storage. All microbes were reduced significantly after high pressure treatment and there was significant difference in microbial quality of control and high pressure treated samples in the entire duration of chilled storage (p < 0.05). There was delay in the growth of Enterobacteriaceae and H2S producing bacteria up to 6th and 9th day of storage, respectively in high pressure treated samples. In high pressure treated sample, no lag phase (λ) was observed for psychrotrophic bacteria, H2S producing bacteria, B. thermosphacta, Pseudomonas spp. and lactic acid bacteria; however, other bacteria showed a reduced lag phase during chilled storage. Kinetic parameter such as specific growth rate (μmax) in high pressure treated samples was significantly reduced in most of the bacterial groups except for psychrotrophic bacteria, Enterobacteriaceae and lactic acid bacteria. Mesophilic bacterial count of control samples crossed the marginal limit of acceptability on 12th day and unacceptable limit on 18th day of storage, whereas high pressure treated samples never breached the acceptability limit during entire duration of chilled storage. The present study indicated that application of high pressure processing can be used to improve microbial quality of Indian white prawn and extend the chilled storage life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.).

    PubMed

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  2. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Rattan, Usha Kumari; Singh, Anil Kumar

    2016-01-01

    Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association

  3. Nitrification resilience and community dynamics of ammonia-oxidizing bacteria with respect to ammonia loading shock in a nitrification reactor treating steel wastewater.

    PubMed

    Cho, Kyungjin; Shin, Seung Gu; Lee, Joonyeob; Koo, Taewoan; Kim, Woong; Hwang, Seokhwan

    2016-08-01

    The aim of this study was to investigate the nitrification resilience pattern and examine the key ammonia-oxidizing bacteria (AOB) with respect to ammonia loading shocks (ALSs) in a nitrification bioreactor treating steel wastewater. The perturbation experiments were conducted in a 4-L bioreactor operated in continuous mode with a hydraulic retention time of 10 d. Three sequential ALSs were given to the bioreactor (120, 180 and 180 mg total ammonia nitrogen (TAN)/L. When the first shock was given, the nitrification process completely recovered after 14 d of further operation. However, the resilience duration was significantly reduced to ∼1 d after the second and third ALSs. In the bioreactor, Nitrosomonas aestuarii dominated the other AOB species, Nitrosomonas europaea and N. nitrosa, throughout the process. In addition, the population of N. aestuarii increased with ammonia utilization following each ALS; i.e., this species responded to acute ammonia overloadings by contributing to ammonia oxidation. This finding suggests that N. aestuarii could be exploited to achieve stable nitrification in industrial wastewaters that contain high concentrations of ammonia. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Effects of broiler carcass scalding and chilling methods on quality of early-deboned breast fillets.

    PubMed

    Zhuang, Hong; Bowker, Brian C; Buhr, R Jeff; Bourassa, Dianna V; Kiepper, Brian H

    2013-05-01

    The impact of scalding and chilling methods on quality of broiler breast fillets (pectoralis major) was evaluated. In 4 replications, 6- to 7-wk-old male and female broilers were slaughtered and scalded either at 60°C for 1.5 min (hard scalding) or 52.8°C for 3 min (soft scalding). Following evisceration, the carcasses were either air-chilled (0.5°C, 120 min) or immersion-chilled in water and ice (79 L/carcass, 0.5°C, 40 min, air agitated). Breast fillets were removed from the carcass within 4 h postmortem. Quality attributes including fillet color (both dorsal-bone and ventral-skin sides), pH, total moisture content, water-holding capacity (drip loss and cook loss), and Warner-Bratzler shear force were determined. Significant interactions between replication and scalding were found for pH, ventral side redness (a*) value, and cook loss and between replication and chilling for pH and ventral side a* and yellowness (b*) values. There were no interactions (P > 0.05) between chilling and scalding methods for any of the measurements. Immersion chilling resulted in higher (P < 0.05) ventral side lightness (L*) values, dorsal side b* values, drip loss, cook loss, and shear force compared with air chilling. No significant differences (P > 0.05) between the 2 scalding methods were observed for any of the quality attributes. These results indicate that broiler carcass chilling method has a much greater impact on quality of breast meat than scalding method and that the influence of chilling on breast meat quality is independent of scalding treatment.

  5. Dual roles for hepatic lectin receptors in the clearance of chilled platelets.

    PubMed

    Rumjantseva, Viktoria; Grewal, Prabhjit K; Wandall, Hans H; Josefsson, Emma C; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D; Hartwig, John H; Hoffmeister, Karin M

    2009-11-01

    Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.

  6. Mathematical Modeling of Ammonia Electro-Oxidation on Polycrystalline Pt Deposited Electrodes

    NASA Astrophysics Data System (ADS)

    Diaz Aldana, Luis A.

    The ammonia electrolysis process has been proposed as a feasible way for electrochemical generation of fuel grade hydrogen (H2). Ammonia is identified as one of the most suitable energy carriers due to its high hydrogen density, and its safe and efficient distribution chain. Moreover, the fact that this process can be applied even at low ammonia concentration feedstock opens its application to wastewater treatment along with H 2 co-generation. In the ammonia electrolysis process, ammonia is electro-oxidized in the anode side to produce N2 while H2 is evolved from water reduction in the cathode. A thermodynamic energy requirement of just five percent of the energy used in hydrogen production from water electrolysis is expected from ammonia electrolysis. However, the absence of a complete understanding of the reaction mechanism and kinetics involved in the ammonia electro-oxidation has not yet allowed the full commercialization of this process. For that reason, a kinetic model that can be trusted in the design and scale up of the ammonia electrolyzer needs to be developed. This research focused on the elucidation of the reaction mechanism and kinetic parameters for the ammonia electro-oxidation. The definition of the most relevant elementary reactions steps was obtained through the parallel analysis of experimental data and the development of a mathematical model of the ammonia electro-oxidation in a well defined hydrodynamic system, such as the rotating disk electrode (RDE). Ammonia electro-oxidation to N 2 as final product was concluded to be a slow surface confined process where parallel reactions leading to the deactivation of the catalyst are present. Through the development of this work it was possible to define a reaction mechanism and values for the kinetic parameters for ammonia electro-oxidation that allow an accurate representation of the experimental observations on a RDE system. Additionally, the validity of the reaction mechanism and kinetic parameters

  7. Mathematical modelling of growth of Listeria  monocytogenes in raw chilled pork.

    PubMed

    Ye, K; Wang, K; Liu, M; Liu, J; Zhu, L; Zhou, G

    2017-04-01

    The aim of this study was to analyse the growth kinetics of Listeria monocytogenes in naturally contaminated chilled pork. A cocktail of 26 meat-borne L. monocytogenes was inoculated to raw or sterile chilled pork to observe its growth at 4, 10, 16, 22 and 28°C respectively. The growth data were fitted by the Baranyi model and Ratkowsky square-root model. Results showed that the Baranyi model and Ratkowsky square-root model could describe the growth characteristics of L. monocytogenes at different temperatures reasonably well in raw chilled pork (1·0 ≤ Bf ≤ Af ≤ 1·1). Compared with the growth of L. monocytogenes in sterile chilled pork, the background microflora had no impact on the growth parameters of L. monocytogenes, except for the lag phase at low temperature storage. The microbial predictive models developed in this study can be used to predict the growth of L. monocytogenes during natural spoilage, and construct quantitative risk assessments in chilled pork. This study simulated the actual growth of Listeria monocytogenes in chilled pork to the maximum extent, and described its growth characteristics of L. monocytogenes during natural spoilage. This study showed that the background microflora had no impact on the growth parameters of L. monocytogenes, except for the lag phase at low temperature storage. The models developed in this study can be used to predict the growth of L. monocytogenes during refrigerated storage. © 2017 The Society for Applied Microbiology.

  8. Recent Advances in Renal Ammonia Metabolism and Transport

    PubMed Central

    Weiner, I. David; Verlander, Jill W.

    2016-01-01

    Purpose of review The purpose of this review is to provide a succinct description of recent findings that advance our understanding of the fundamental renal process of ammonia metabolism and transport in conditions relevant to the clinician. Recent findings Recent studies advance our understanding of renal ammonia metabolism. Mechanisms through which chronic kidney disease and altered dietary protein intake alter ammonia excretion have been identified. Lithium, although it can acutely cause distal RTA, was shown with long-term use to increase urinary ammonia excretion, and this appeared to be mediated, at least in part, by increased Rhcg expression. Gene deletion studies showed that the ammonia recycling enzyme, glutamine synthetase, has a critical role in normal and acidosis-stimulated ammonia metabolism and that the proximal tubule basolateral bicarbonate transporter, NBCe1, is necessary for normal ammonia metabolism. Finally, our understanding of the molecular ammonia species, NH3 versus NH4+, transported by Rh glycoproteins continues to be advanced. Summary Fundamental studies have been recently published that advance our understanding of the regulation of ammonia metabolism in clinically important circumstances and our understanding of the mechanisms and regulation of proximal tubule ammonia generation and the mechanisms through which Rh glycoproteins contribute to ammonia secretion. PMID:27367914

  9. Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project.

    PubMed

    Carlin, F; Girardin, H; Peck, M W; Stringer, S C; Barker, G C; Martinez, A; Fernandez, A; Fernandez, P; Waites, W M; Movahedi, S; van Leusden, F; Nauta, M; Moezelaar, R; Torre, M D; Litman, S

    2000-09-25

    Vegetables are frequent ingredients of cooked chilled foods and are frequently contaminated with spore-forming bacteria (SFB). Therefore, risk assessment studies have been carried out, including the following: hazard identification and characterisation--from an extensive literature review and expertise of the participants, B. cereus and C. botulinum were identified as the main hazards; exposure assessment--consisting of determination of the prevalence of hazardous SFB in cooked chilled foods containing vegetables and in unprocessed vegetables, and identification of SFB representative of the bacterial community in cooked chilled foods containing vegetables, determination of heat-resistance parameters and factors affecting heat resistance of SFB, determination of the growth kinetics of SFB in vegetable substrate and of the influence of controlling factors, validation of previous work in complex food systems and by challenge testing and information about process and storage conditions of cooked chilled foods containing vegetables. The paper illustrates some original results obtained in the course of the project. The results and information collected from scientific literature or from the expertise of the participants are integrated into the microbial risk assessment, using both a Bayesian belief network approach and a process risk model approach, previously applied to other foodborne hazards.

  10. Changes in visual quality, physiological and biochemical parameters assessed during the postharvest storage at chilling or non-chilling temperatures of three sweet basil (Ocimum basilicum L.) cultivars.

    PubMed

    Fratianni, Florinda; Cefola, Maria; Pace, Bernardo; Cozzolino, Rosaria; De Giulio, Beatrice; Cozzolino, Autilia; d'Acierno, Antonio; Coppola, Raffaele; Logrieco, Antonio Francesco; Nazzaro, Filomena

    2017-08-15

    Leaves of three different sweet basil (Ocimum basilicum L.) cultivars (Italico a foglia larga, Cammeo, and Italiano classico) packed in macro-perforated polyethylene bags were stored at chilling (4°C) or non-chilling temperature (12°C) for 9days. During storage, visual quality, physiological (respiration rate, ethylene production, ammonium content) and chemical (antioxidant activity, total polyphenols and polyphenol profile) parameters were measured. Detached leaves stored at chilling temperature showed visual symptoms related to chilling injury, while ethylene production and ammonium content resulted associated to cultivar sensibility to damage at low temperature. Storage at 4°C caused a depletion in polyphenols content and antioxidant capability, which was preserved at 12°C. Regarding the polyphenols profile, stressful storage conditions did not enhance the phenolic metabolism. However, leaves stored at 12°C did not loss a significant amount of metabolites respect to fresh leaves, suggesting the possibility to extend the storability after the expiration date, for a possible recovery of bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 75 FR 32370 - Final Results of Antidumping Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway AGENCY: Import... Duty Changed Circumstances Review: Fresh and Chilled Atlantic Salmon from Norway SUMMARY: On August 5... antidumping order on fresh and chilled Atlantic Salmon from Norway and preliminarily determined that Nordic...

  13. Developmental stages of cultivated strawberry flowers in relation to chilling sensitivity

    PubMed Central

    Ariza, Maria Teresa; Soria, Carmen; Martínez-Ferri, Elsa

    2015-01-01

    Environmental factors affecting flower development may limit the yields of fruiting crops worldwide. In temperate regions, chilling temperatures during flower development can compromise fruit production, but their negative effects vary depending on the differing susceptibilities of each developmental stage. The cultivated strawberry (Fragaria× ananassa Duch.) is widely grown worldwide but financial returns are influenced by sudden shifts to chilling temperatures occurring during the cropping cycle. Despite this important limitation, knowledge of F.× ananassa flower development is lacking, in contrast to the diploid wild-type strawberry (F. vesca). In this study we describe steps in floral development of cultivated strawberry and define their vulnerability to chilling temperatures. To achieve this, flower buds from strawberry plants of cv. ‘Camarosa’ were labelled and monitored from bud initiation until anthesis. Description of morphological and functional changes during flower development was based on histological sections and scanning electron microscopy. To determine the impact of low temperatures at different developmental stages, plants carrying buds of different sizes were chilled at 2 °C for 24 h. Several parameters related to male and female gametophyte development were later evaluated in flowers as they approached anthesis. Fragaria× ananassa flower development was divided into 16 stages according to landmark events. These stages were similar to those documented for F. vesca but three new additional intermediate stages were described. Timing of developmental processes was achieved by correlating developmental staging with specific bud sizes and days before anthesis. Time to reach anthesis from early bud stages was 17–18 days. During this period, we detected four critical periods vulnerable to low temperatures. These were mostly related to male gametophyte development but also to injury to female organs at late developmental stages. These results

  14. Ammonia synthesis. Ammonia synthesis by N₂ and steam electrolysis in molten hydroxide suspensions of nanoscale Fe₂O₃.

    PubMed

    Licht, Stuart; Cui, Baochen; Wang, Baohui; Li, Fang-Fang; Lau, Jason; Liu, Shuzhi

    2014-08-08

    The Haber-Bosch process to produce ammonia for fertilizer currently relies on carbon-intensive steam reforming of methane as a hydrogen source. We present an electrochemical pathway in which ammonia is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe2O3. At 200°C in an electrolyte with a molar ratio of 0.5 NaOH/0.5 KOH, ammonia is produced at 1.2 volts (V) under 2 milliamperes per centimeter squared (mA cm(-2)) of applied current at coulombic efficiency of 35% (35% of the applied current results in the six-electron conversion of N2 and water to ammonia, and excess H2 is cogenerated with the ammonia). At 250°C and 25 bar of steam pressure, the electrolysis voltage necessary for 2 mA cm(-2) current density decreased to 1.0 V. Copyright © 2014, American Association for the Advancement of Science.

  15. Fractographic and three body abrasion behaviour of Al-Garnet-C hybrid chill cast composites

    NASA Astrophysics Data System (ADS)

    Bandekar, Nityanand; Prasad, M. G. Anantha

    2017-08-01

    Fractographic and tribological behaviour of hybrid composite of aluminum alloy LM13 matrix with garnet and carbon was investigated. Conventional stir casting technique was used to fabricate the composites with chill cast technique. Various chill materials like Copper, Steel, Iron and Silicon carbide were used to improve the directional solidification. The garnet being added ranges from 3 to 12 wt-% in steps of 3wt-% and constant 3wt-% of carbon. The experiment evaluates the mechanical, fractographic and three body abrasion behaviour of the hybrid composites for various parameters of load, garnet and chills. Microstructural characterization of the composite samples revealed a uniform distribution of reinforcements with minimum clustering. SEM was used for examine worn surfaces. The addition of garnet and carbon reinforcement decreases the wear rate of hybrid composites. Fracture behaviour showed the changes from ductile mode to brittle mode of failure. Further, directional chilling with copper chill improves the wear resistance of the composites.

  16. Ammonia emissions from land application of manures

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization can be a major nitrogen (N) loss process for surface-applied manures. There is concern that current manure management practices are contributing to ammonia losses in the Mid-Atlantic region with subsequent reductions in air quality and increases in N losses to streams and est...

  17. Changes in microbial communities and quality attributes of white muscle and dark muscle from common carp (Cyprinus carpio) during chilled and freeze-chilled storage.

    PubMed

    Li, Qian; Zhang, Longteng; Luo, Yongkang

    2018-08-01

    This study investigated sensory scores, quality attributes and microbial communities in white muscle and dark muscle of common carp (Cyprinus carpio) during chilled (4 °C) and freeze-chilled (-20 °C for 4 weeks prior to 4 °C) storage. Compared to the samples at the end of storage, fresh samples and frozen-thawed samples on day 0 showed greater bacterial diversity and more differences in microbiota. Initially, Aeromonas was the prevalent genus in fresh white muscle and dark muscle. As time progressed, Aeromonas followed by Pseudomonas predominated in white muscle, while Aeromonas, Pseudomonas, and Lactococcus dominated in dark muscle. Paenibacillus was identified as the largest population in frozen-thawed samples of both muscle types, but Pseudomonas increased dramatically to become dominant in the two spoiled samples. Volatile organic compounds (VOCs) of carp muscle consisted mainly of aldehydes and alcohols, and the percentage of ketones in both muscle types increased considerably after storage. Moreover, dark muscle showed more kinds of VOCs, and a slower rate of quality deterioration than white muscle. Based on sensory assessment, the shelf-life of white muscle and dark muscle of common carp for chilled storage was 8 days and 10 days, respectively, as well as 8 days together for freeze-chilled storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  19. Physiological girdling of pine trees via phloem chilling: proof of concept

    Treesearch

    Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder

    2007-01-01

    Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root– mycorrhizal–soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...

  20. Hybrid electrooxidation and adsorption process for the removal of ammonia in low concentration chloride wastewater.

    PubMed

    Ding, Jing; Zhao, Qing-Liang; Zhang, Jun; Jiang, Jun-Qiu; Li, Wei; Yu, Hang; Huang, Li-Kun; Zhang, Yun-Shu

    2017-02-01

    The ammonia removal performance of a hybrid electrooxidation and adsorption reactor (HEAR) is evaluated. The influences of current density, chloride concentration, and packing particles for ammonia removal in HEAR were investigated, and the performance of HEAR under serials circulation was studied. Results indicated that ammonia removal efficiency achieved around 70 % under the optimal condition after 30-min electrolysis. The optimal condition was determined as current density of 10 mA/cm 2 , Cl - /NH 4 + molar ratio of 1.8, and modified zeolites as particles. The ammonia adsorption kinetic and adsorption isotherm on zeolites fitted well with second-order kinetic and Langmuir isotherm model, respectively. Adsorption amount of ammonia on zeolites sampled at 30-min electrolysis achieved 2.4 mg/L, higher than 1.9 mg/L of zeolites at 20-min electrolysis, indicating that electrooxidation coupled with adsorption led to simultaneous ammonia removal and zeolite regeneration in HEAR. No decrease of ammonia removal efficiency was observed over several cycles with the electrooxidation treatment. The presence of free chlorine indicating ammonia removal in HEAR was due to the combined influence by adsorption and indirect electrooxidation. These results showed that HEAR was a prospective alternative as a tertiary treatment for wastewater with low chloride ions.

  1. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities

    PubMed Central

    Hussain, Hafiz A.; Hussain, Saddam; Khaliq, Abdul; Ashraf, Umair; Anjum, Shakeel A.; Men, Shengnan; Wang, Longchang

    2018-01-01

    Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors. PMID:29692787

  2. Diversity of low chill peaches from Asia, Brasil, Europe and the USA

    USDA-ARS?s Scientific Manuscript database

    One hundred fifty-five peach (Prunus persica) cultivars, from Asia, Brazil, Europe, and the USA, were examined using eleven SSRs to study the genetic relationships among low chill as compared to high chill peach germplasm. Data was analyzed by NTSYSpc to form a similarity matrix using Nei and Li’s ...

  3. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    PubMed

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  4. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals.

  5. ATMOSPHERIC AMMONIA EMISSIONS FROM THE LIVESTOCK SECTOR: DEVELOPMENT AND EVALUATION OF A PROCESS-BASED MODELING APPROACH

    EPA Science Inventory

    We propose multi-faceted research to enhance our understanding of NH3 emissions from livestock feeding operations. A process-based emissions modeling approach will be used, and we will investigate ammonia emissions from the scale of the individual farm out to impacts on region...

  6. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  7. Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit.

    PubMed

    He, Li-hong; Chen, Jian-ye; Kuang, Jian-fei; Lu, Wang-jin

    2012-07-01

    Banana fruit is highly susceptible to chilling injury. In previous research it was shown that heat pretreatment of banana fruit at 38 °C for 3 days before storage at a chilling temperature of 8 °C for 12 days prevented increases in visible chilling injury index, electrolyte leakage and malondialdehyde content and also decreases in lightness and chroma, indicating that heat pretreatment could effectively alleviate chilling injury of banana fruit. However, little is known about the role of small heat shock proteins (sHSPs) in postharvest chilling tolerance of banana fruit. In the present study, three cytosolic sHSP expression profiles in peel and pulp tissues of banana fruit during heat pretreatment and subsequent chilled storage (8 °C) were investigated in relation to heat pretreatment-induced chilling tolerance. Three full-length cDNAs of cytosolic sHSP genes, including two class I sHSP (CI sHSP) and one class II sHSP (CII sHSP) cDNAs, named Ma-CI sHSP1, Ma-CI sHSP2 and Ma-CII sHSP3 respectively, were isolated and characterised from harvested banana fruit. Accumulation of Ma-CI sHSP1 mRNA transcripts in peel and pulp tissues and Ma-CII sHSP3 mRNA transcripts in peel tissue increased during heat pretreatment. Expression of all three Ma-sHSP genes in peel and pulp tissues was induced during subsequent chilled storage. Furthermore, Ma-CI sHSP1 and Ma-CII sHSP3 mRNA transcripts in pulp tissue and Ma-CI sHSP2 mRNA transcripts in peel and pulp tissues were obviously enhanced by heat pretreatment at days 6 and 9 of subsequent chilled storage. These results suggested that heat pretreatment enhanced the expression of Ma-sHSPs, which might be involved in heat pretreatment-induced chilling tolerance of banana fruit. Copyright © 2012 Society of Chemical Industry.

  8. Recycling of Ammonia Wastewater During Vanadium Extraction from Shale

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-03-01

    In the vanadium metallurgical industry, massive amounts of ammonia hydroxide or ammonia salt are added during the precipitation process to obtain V2O5; therefore, wastewater containing a high level of NH4 + is generated, which poses a serious threat to environmental and hydrologic safety. In this article, a novel process was developed to recycle ammonia wastewater based on a combination of ammonia wastewater leaching and crystallization during vanadium extraction from shale. The effects of the NH4 + concentration, temperature, time and liquid-to-solid ratio on the leaching efficiencies of vanadium, aluminum and potassium were investigated, and the results showed that 93.2% of vanadium, 86.3% of aluminum and 96.8% of potassium can be leached from sulfation-roasted shale. Subsequently, 80.6% of NH4 + was separated from the leaching solution via cooling crystallization. Vanadium was recovered via a combined method of solvent extraction, precipitation and calcination. Therefore, ammonia wastewater was successfully recycled during vanadium extraction from shale.

  9. Numerical analysis of ammonia homogenization for selective catalytic reduction application.

    PubMed

    Baleta, Jakov; Martinjak, Matija; Vujanović, Milan; Pachler, Klaus; Wang, Jin; Duić, Neven

    2017-12-01

    Selective catalytic reduction based on urea water solution as ammonia precursor is a promising method for the NO x abatement form exhaust gasses of mobile diesel engine units. It consists of injecting the urea-water solution in the hot flue gas stream and reaction of its products with the NO x over the catalyst surface. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO x reductant, and isocyanic acid are generated. The uniformity of the ammonia before the catalyst as well as ammonia slip to the environment are important counteracting design requirements, optimization of which is crucial for development of efficient deNO x systems. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE ® , to simulate physical processes of all relevant phenomena occurring during the SCR process including chemical reactions taking part in the catalyst. First, mathematical models for description of SCR process are presented and afterwards, models are used on the 3D geometry of a real SCR reactor in order to predict ammonia generation, NO x reduction and resulting ammonia slip. Influence of the injection direction and droplet sizes was also investigated on the same geometry. The performed study indicates importance of droplet sizes on the SCR process and shows that counterflow injection is beneficial, especially in terms of minimizing harmful ammonia slip to environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Changes of Ammonia-Metabolizing Enzyme Activity and Gene Expression of Two Strains in Shrimp Litopenaeus vannamei Under Ammonia Stress

    PubMed Central

    Qiu, Liguo; Shi, Xiang; Yu, Simeng; Han, Qian; Diao, Xiaoping; Zhou, Hailong

    2018-01-01

    Ammonia stress can inhibit the survival and growth, and even cause mortality of shrimp. In this study, ammonia-metabolizing enzyme activities and gene expression were compared between two strains of L. vannamei under different ammonia-N (NH4+) concentrations (3.4, 13.8, and 24.6 mg/L). The results showed that elevated ammonia concentrations mainly increased glutamine synthetase (GSase) activities while inhibiting transglutaminase (TGase) activities in the muscle of both strains. Thus, we concluded that L. vannamei could accelerate the synthesis of glutamine from glutamate and NH4+ to alleviate ammonia stress. Compared with the muscle, the hepatopancreas plays a major role in ammonia stress and might be a target tissue to respond to the ammonia stress. Compared to the control group, the treatment of high ammonia concentrations reduced the hepatopancreas TGase (TG) gene expression and increased the gene expression rates of glutamate dehydrogenase-β (GDH-β) and GSase (GS) in both the muscle and the hepatopancreas of the two strains (p < 0.05). These genes (GDH-β and GS) in strain B were not only expressed earlier but also at levels higher than the expression range of strain A. At the gene level, strain B showed a more rapid and positive response than strain A. These data might help reveal the physiological responses mechanisms of shrimp adapt to ammonia stress and speed up the selective breeding process in L. vannamei. PMID:29628893

  11. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification

    USDA-ARS?s Scientific Manuscript database

    Chilling injury, as a physiological disorder in cucumbers, occurs after the fruit has been subjected to low temperatures. It is thus desirable to detect chilling injury at early stages and/or remove chilling injured cucumbers during sorting and grading. This research was aimed to apply hyperspectral...

  12. Historical trends in chill hour accumulation and peach bud response to hydrogen cyanamide

    USDA-ARS?s Scientific Manuscript database

    Long held records for (low) chill hour accumulation have recently been broken several times in the southeastern US peach (Prunus persica) production areas. Long term historical average chill hour accumulation through February 15th in middle Georgia has dropped significantly over the last 15 years. T...

  13. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    PubMed

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biogenic amine concentrations and evolution in "chilled" Canadian pork for the Japanese market.

    PubMed

    Ngapo, Tania M; Vachon, Lise

    2017-10-15

    The aim of this study was to evaluate concentrations and evolution of biogenic amines in Canadian pork destined for the Japanese market. At 48h post-mortem, export quality loins were aged at -1.7°C for 13, 28, 43 or 58d (chilled) or 4.0°C for 5d (fresh). Increasing concentrations of putrescine, spermine and spermidine were observed with chilled ageing period and were greater in chilled export (43d at -1.7°C) than domestic market (5d at 4.0°C) pork equivalents. Cadaverine was detected, but was not influenced by ageing conditions, and tyramine was only detected in some samples after 43days at -1.7°C. Individual biogenic amines were not correlated with their precursor amino acids. Biogenic amines in Canadian pork for the chilled export Japanese market were not in sufficiently high concentrations to pose a risk of intoxication. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Factors Driving Potential Ammonia Oxidation in Canadian Arctic Ecosystems: Does Spatial Scale Matter?

    PubMed Central

    Banerjee, Samiran

    2012-01-01

    Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570

  16. Georgia Institute of Technology chilled water system evaluation and master plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-15

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction inmore » the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.« less

  17. Chilling Affects Phytohormone and Post-Embryonic Development Pathways during Bud Break and Fruit Set in Apple (Malus domestica Borkh.)

    PubMed Central

    Kumar, Gulshan; Gupta, Khushboo; Pathania, Shivalika; Swarnkar, Mohit Kumar; Rattan, Usha Kumari; Singh, Gagandeep; Sharma, Ram Kumar; Singh, Anil Kumar

    2017-01-01

    The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for “post-embryonic development” GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break. PMID:28198417

  18. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  19. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Zhang, Y X; Yu, D; Tian, X L; Liu, C Y; Gai, S P; Zheng, G S

    2015-01-01

    Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. 76 FR 38698 - Fresh and Chilled Atlantic Salmon From Norway; Scheduling of Full Five-Year Reviews Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... and Chilled Atlantic Salmon From Norway; Scheduling of Full Five-Year Reviews Concerning the Countervailing Duty Order and Antidumping Duty Order on Fresh and Chilled Atlantic Salmon From Norway AGENCY... the antidumping duty order on fresh and chilled Atlantic salmon from Norway would be likely to lead to...

  1. Guns on Campus: A Chilling Effect

    ERIC Educational Resources Information Center

    Mash, Kenneth M.

    2013-01-01

    The author of this article observes that, while much has been written on the overall topic of safety with regard to allowing guns on college campuses, little has been said about how allowing the possession of deadly weapons can create a "chilling effect" on academic discussions. This article considers how some universities have…

  2. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    USDA-ARS?s Scientific Manuscript database

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing powe...

  3. Developing citizen science projects: Cut twigs for 'chilling' pupils

    NASA Astrophysics Data System (ADS)

    Menzel, Annette; Matiu, Michael; Laube, Julia

    2017-04-01

    Citizen science projects mainly involve two aims, science and education. Depending on the setting, either the data delivery part for answering questions raised by scientists or the educating part e.g. on scientific practices, crosscutting concepts, application of core science contents or awareness for environmental problems prevails. In this respect, spring phenology is a grateful topic because it addresses both aspects nearly symmetrically. In science, it remains unresolved which factors besides spring warming also trigger spring bud development, namely chilling / photoperiod / humidity / nutrient availability. The appearance of fresh leaves in spring has been fascinating for humans; it is linked to cultural heritage, festivals and has always attracted nature lovers, from young children to senior citizens. In our study, we set up a twig experiment to study the chilling effect on bud burst of Corylus avellana L. which was conducted by trained citizen scientists at their home. We asked the scientific question if the effects of chilling can be analysed by the twig method, and how sampling and experimental setting should be designed. Furthermore we tested if the twig method is feasible for citizen scientist projects, and report minimum requirements, successes and drawbacks.

  4. A retrospective study of artificial insemination of 251 mares using chilled and fixed time frozen-thawed semen.

    PubMed

    Crowe, C A M; Ravenhill, P J; Hepburn, R J; Shepherd, C H

    2008-09-01

    Historically, artificial insemination (AI) using frozen semen has been perceived to have poorer success rates and be more labour intensive than using chilled semen. A retrospective study was therefore conducted to compare the conception rate achieved by AI between chilled and frozen semen, using fixed time insemination protocols over 2 breeding seasons. Artificial insemination using chilled semen produces a higher conception rate than that achieved with frozen semen. Mares (n = 251) were inseminated with either chilled (n = 112) or frozen (n = 139) semen in the 2006 and 2007 northern hemisphere breeding season. Per rectum ultrasonography of the mare's reproductive tract determined the timing of insemination, and deslorelin acetate was used to induce ovulation. Chilled semen insemination was performed using a single preovulatory dose delivered into the uterine body. Frozen semen was administered as 2 doses (pre- and post ovulation) using a deep uterine insemination technique. Pregnancy was detected ultrasonographically at 15 days post insemination. Conception rates were compared using a Chi-squared test. Insemination with frozen semen produced a significantly (P = 0.022) higher seasonal conception rate (82.0%) than that achieved with chilled semen (69.6%). Insemination with frozen semen can achieve conception rates equal to those with chilled semen, enabling the mare owner a greater selection of stallions.

  5. Chilled water study EEAP program for Walter Reed Army Medical Center. Book 1. Final Submission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons.« less

  6. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.

    PubMed

    Guo, W L; Chen, R G; Gong, Z H; Yin, Y X; Ahmed, S S; He, Y M

    2012-11-28

    To elucidate how physiological and biochemical mechanisms of chilling stress are regulated by abscisic acid (ABA) pretreatment, pepper variety (cv. 'P70') seedlings were pretreated with 0.57 mM ABA for 72 h and then subjected to chilling stress at 10°/6°C (day/night). Chilling stress caused severe necrotic lesions on the leaves and increased malondialdehyde and H(2)O(2) levels. Activities of monodehydroascorbate reductase (DHAR), dehydroascorbate reductase, glutathione reductase, guaiacol peroxidase, ascorbate peroxidase, ascorbate, and glutathione increased due to chilling stress during the 72 h, while superoxide dismutase and catalase activities decreased during 24 h, suggesting that chilling stress activates the AsA-GSH cycle under catalase deactivation in pepper leaves. ABA pretreatment induced significant increases in the above-mentioned enzyme activities and progressive decreases in ascorbate and glutathione levels. On the other hand, ABA-pretreated seedlings under chilling stress increased superoxide dismutase and guaiacol peroxidase activities and lowered concentrations of other antioxidants compared with untreated chilling-stressed plants. These seedlings showed concomitant decreases in foliage damage symptoms, and levels of malondialdehyde and H(2)O(2). Induction of Mn-SOD and POD was observed in chilling-stressed plants treated with ABA. The expression of DHAR1 and DHAR2 was altered by chilling stress, but it was higher in the presence than in the absence of ABA at 24 h. Overall, the results indicate that exogenous application of ABA increases tolerance of plants to chilling-induced oxidative damage, mainly by enhancing superoxide dismutase and guaiacol peroxidase activities and related gene expression.

  7. Decision-relevant evaluation of climate models: A case study of chill hours in California

    NASA Astrophysics Data System (ADS)

    Jagannathan, K. A.; Jones, A. D.; Kerr, A. C.

    2017-12-01

    The past decade has seen a proliferation of different climate datasets with over 60 climate models currently in use. Comparative evaluation and validation of models can assist practitioners chose the most appropriate models for adaptation planning. However, such assessments are usually conducted for `climate metrics' such as seasonal temperature, while sectoral decisions are often based on `decision-relevant outcome metrics' such as growing degree days or chill hours. Since climate models predict different metrics with varying skill, the goal of this research is to conduct a bottom-up evaluation of model skill for `outcome-based' metrics. Using chill hours (number of hours in winter months where temperature is lesser than 45 deg F) in Fresno, CA as a case, we assess how well different GCMs predict the historical mean and slope of chill hours, and whether and to what extent projections differ based on model selection. We then compare our results with other climate-based evaluations of the region, to identify similarities and differences. For the model skill evaluation, historically observed chill hours were compared with simulations from 27 GCMs (and multiple ensembles). Model skill scores were generated based on a statistical hypothesis test of the comparative assessment. Future projections from RCP 8.5 runs were evaluated, and a simple bias correction was also conducted. Our analysis indicates that model skill in predicting chill hour slope is dependent on its skill in predicting mean chill hours, which results from the non-linear nature of the chill metric. However, there was no clear relationship between the models that performed well for the chill hour metric and those that performed well in other temperature-based evaluations (such winter minimum temperature or diurnal temperature range). Further, contrary to conclusions from other studies, we also found that the multi-model mean or large ensemble mean results may not always be most appropriate for this

  8. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    PubMed

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P < 0.05). Sensory evaluation and biochemical parameters revealed that the bacteriophage could extend the shelf life of chilled flounder fillets (from <4 to 14 days) with good esthetic quality, even at low temperature (4 °C). Furthermore, bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  9. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces.

    PubMed Central

    Smith, L T

    1996-01-01

    Listeria monocytogenes is a food-borne pathogen that is widely distributed in nature and is found in many kinds of fresh and processed foods. The pervasiveness of this organism is due, in part, to its ability to tolerate environments with elevated osmolarity and reduced temperatures. Previously, we showed that L. monocytogenes adapts to osmotic and chill stress by transporting the osmolyte glycine betaine from the environment and accumulating it intracellularly (R. Ko, L. T. Smith, and G. M. Smith, J. Bacteriol. 176:426-431, 1994). In the present study, the influence of various environmental conditions on the accumulation of glycine betaine and another osmolyte, carnitine, was investigated. Carnitine was shown to confer both chill and osmotic tolerance to the pathogen but was less effective than glycine betaine. The absolute amount of each osmolyte accumulated by the cell was dependent on the temperature, the osmolarity of the medium, and the phase of growth of the culture. L. monocytogenes also accumulated high levels of osmolytes when grown on a variety of processed meats at reduced temperatures. However, the contribution of carnitine to the total intracellular osmolyte concentration was much greater in samples grown on meat than in those grown in liquid media. While the amount of each osmolyte in meat was less than 1 nmol/mg (fresh weight), the overall levels of osmolytes in L. monocytogenes grown on meat were about the same as those in liquid samples, from about 200 to 1,000 nmol/mg of cell protein for each osmolyte. This finding suggests that the accumulation of osmolytes is as important in the survival of L. monocytogenes in meat as it is in liquid media. PMID:8795194

  10. Laboratory Studies of Ammonia Ices Relevant to the Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Meharchand, R. T.; Boulter, J. E.; Baer, C. E.; Kalogerakis, K. S.

    2004-12-01

    Ammonia ice condensation and cloud formation microphysics are topics of relevance for understanding the atmospheres of the giant planets. Ammonia ices are also considered important components of the icy satellites found in the outer solar system, and are thought to play an important role in their geological activity. Although observational evidence and thermochemical models suggest ammonia clouds in the Jovian atmosphere should be ubiquitous, less than only 1% of Jupiter's atmosphere appears covered by spectrally identifiable ammonia clouds, with a clear preference in turbulent regions.1,2 The paradox of the rather scarce spectroscopic signatures of ammonia clouds and their appearance in turbulent regions suggests that the nascent ammonia clouds may undergo processing that modifies their spectroscopic properties. No relevant laboratory experimental results are available to resolve this problem. Two possible sources of processing that have been suggested in the literature include photochemical solid-state modification (''tanning'') and coating of ammonia particles by other substances present in the stratospheric haze.2,3 We are performing laboratory investigations with the objective to provide information on the photophysical and chemical processes that control the optical properties of the Jovian ammonia clouds. In the experiments, thin ice films of ammonia are coated with organic molecules, such as saturated and aromatic hydrocarbons, and characterized by infrared spectroscopy. Preliminary results indicate suppression of the ammonia absorption feature at 2.7 μ m by a thin layer of hydrocarbons. The implications for the spectral signatures of ammonia clouds in the atmospheres of Jupiter and Saturn will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 is gratefully acknowledged. The participation of Rhiannon Meharchand and Christina Baer was made possible by the NSF Research Experiences for Undergraduates Program under grant

  11. Influence of chilling and drought on water relations and abscisic acid accumulation in bean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernieri, P.; Pardossi, A.; Tognoni, F.

    Intact bean seedlings were subjected to either chilling (4{degree}C) or drought stress. Leaf water relations and abscisic acid (ABA) content were monitored throughout a stress-recovery cycle. Chilling at low relative humidity (RH) and drought caused similar water deficits, as indicated by the decline in relative water content and water potentials, but they had different effects on ABA accumulation. There was a rapid increase in ABA levels in the leaves of water-deprived plants while only slight ABA accumulation was observed after 48 h of chilling (4{degree}C). After 24 h cold treatment there were large changes in turgor but no change inmore » ABA content. Plants chilled for 24 h accumulated ABA only when transferred to recovery conditions (20{degree}C, 90-95% RH, in the dark) to an extent that was related to the rate of leaf rehydration. When the chilling treatment was performed in a water-saturated atmosphere, plants did not suffer any water stress and ABA levels did not increase over a period of 48 h. However, when the chilling treatment lasted for a longer period (72 h), a significant increase in ABA levels was found also in the absence of water deficit. Experiments performed with leaf discs incubated in a mannitol solution (osmotic potential {minus}1{center dot}6 MPa) at different temperatures indicated that low temperature markedly inhibits ABA synthesis and that water stress induces increases in ABA content only at non-limiting warm temperatures.« less

  12. Low-temperature conditioning induces chilling tolerance in stored mango fruit.

    PubMed

    Zhang, Zhengke; Zhu, Qinggang; Hu, Meijiao; Gao, Zhaoyin; An, Feng; Li, Min; Jiang, Yueming

    2017-03-15

    In this study, mango fruit were pre-treated with low-temperature conditioning (LTC) at 12°C for 24h, followed by refrigeration at 5°C for 25days before removal to ambient temperature (25°C) to investigate the effects and possible mechanisms of LTC on chilling injury (CI). The results showed that LTC effectively suppressed the development of CI in mango fruit, accelerated softening, and increased the soluble solids and proline content. Furthermore, LTC reduced electrolyte leakage, and levels of malondialdehyde, O 2 - and H 2 O 2 , maintaining membrane integrity. To reveal the molecular regulation of LTC on chilling tolerance in mango fruit, a C-repeat/dehydration-responsive element binding factor (CBF) gene, MiCBF1, was identified and its expression in response to LTC was examined using RT-qPCR. LTC resulted in a higher MiCBF1 expression. These findings suggest that LTC enhances chilling tolerance in mango fruit by inducing a series of physiological and molecular responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin.

    PubMed

    Pazos, Manuel; Maestre, Rodrigo; Gallardo, José M; Medina, Isabel

    2013-01-01

    The present study investigates the susceptibility of individual myofibrillar proteins from mackerel (Scomber scombrus) mince to undergo carbonylation reactions during chilled storage, and the antioxidant capacity of (+)-catechin to prevent oxidative processes of proteins. The carbonylation of each particular protein was quantified by combining the labelling of protein carbonyls by fluorescein-5-thiosemicarbazide (FTSC) with 1-D or 2-D gel electrophoresis. Alpha skeletal actin, glycogen phosphorylase, unnamed protein product (UNP) similar to enolase, pyruvate kinase, isoforms of creatine kinase, aldolase A and an isoform of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) showed elevated oxidation in chilled non-supplemented mince. Myosin heavy chain (MHC) was not carbonylated in chilled muscle, but an extensive MHC degradation was observed in those samples. The supplementation of catechin reduced protein oxidation and lipid oxidation in a concentration-dependent manner: control>25>100≈200ppm. Therefore, the highest catechin concentrations (100 and 200ppm) exhibited the strongest antioxidant activity. Catechin (200ppm) reduced significantly carbonylation of protein spots identified as glycogen phosphorylase, pyruvate kinase muscle isozyme, isoforms of creatine kinase. Conversely, catechin was ineffective to inhibit the oxidation of actin and UNP similar to enolase. These results draw attention to the inefficiency of catechin to prevent actin oxidation, in contrast to the extremely high efficiency of catechin in inhibiting oxidation of lipids and other proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Anaerobic ammonia removal in presence of organic matter: a novel route.

    PubMed

    Sabumon, P C

    2007-10-01

    This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP=-248+/-25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO(2)(-), NO(3)(-) and SO(4)(2-)) studied, NO(2)(-) was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH(4)(+) to NO(3)(-), followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation.

  15. Combustion driven ammonia generation strategies for passive ammonia SCR system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toner, Joel G.; Narayanaswamy, Kushal; Szekely, Jr., Gerald A.

    A method for controlling ammonia generation in an exhaust gas feedstream output from an internal combustion engine equipped with an exhaust aftertreatment system including a first aftertreatment device includes executing an ammonia generation cycle to generate ammonia on the first aftertreatment device. A desired air-fuel ratio output from the engine and entering the exhaust aftertreatment system conducive for generating ammonia on the first aftertreatment device is determined. Operation of a selected combination of a plurality of cylinders of the engine is selectively altered to achieve the desired air-fuel ratio entering the exhaust aftertreatment system.

  16. Ammonia Transporters and Their Role in Acid-Base Balance

    PubMed Central

    2017-01-01

    Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport. PMID:28151423

  17. Surface water accumulation and subsquent drip loss for processed broiler carcasses subjected to a post-chill water dip or spray

    USDA-ARS?s Scientific Manuscript database

    To estimate the potential for residual antimicrobial solution carryover, surface water accumulation and loss was measured on post-chill carcasses that were either dipped or sprayed with water. For all experiments, broilers were slaughtered, soft scalded or hard scalded, defeathered, and eviscerated....

  18. Effect of cooled and chlorinated chiller water on Campylobacter and coliform counts on broiler carcasses during chilling at a middle-size poultry processing plant.

    PubMed

    Kameyama, Mitsuhiro; Chuma, Takehisa; Nishimoto, Tadahiro; Oniki, Hiroyuki; Yanagitani, Yasuo; Kanetou, Ryouichi; Gotou, Kouichi; Shahada, Francis; Iwata, Hiroyuki; Okamoto, Karoku

    2012-01-01

    To evaluate the effect of cooled and chlorinated chill water for Campylobacter and coliforms at a middle-size processing plant which was considered to be difficult for eliminate pathogenic bacteria on carcasses, following three conditions were examined; keeping temperature at < 20, < 10 and < 10°C, and chlorine concentration at < 50, < 50 and 50 to 70 ppm during processing in experiment 1, 2 and 3 respectively. Fifteen prechill and 15 postchill carcasses were examined in each experiment. In lower temperature of experiment 2, decreasing rate (%) of coliforms was significantly higher (P<0.01) than that in experiment 1. In higher chlorination of experiment 3, no Campylobacter was detected from all postchill carcasses.

  19. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance

    PubMed Central

    Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang

    2002-01-01

    Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572

  20. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing

    PubMed Central

    Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Zhang, Shilai; Zhang, Jing; Hu, Fengyi; Li, Zhikang

    2017-01-01

    Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional

  2. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing.

    PubMed

    Zhang, Ting; Huang, Liyu; Wang, Yinxiao; Wang, Wensheng; Zhao, Xiuqin; Zhang, Shilai; Zhang, Jing; Hu, Fengyi; Fu, Binying; Li, Zhikang

    2017-01-01

    Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional

  3. Tomato chilling injury threshold defined by the volatile profiles of pink harvested tomato fruit

    USDA-ARS?s Scientific Manuscript database

    Fresh tomato fruit show visible symptoms of chilling injury (CI) when stored at temperatures lower than the reported chilling threshold of 12.5°C. However, their sensitivity has been reported to decrease as they ripen. Volatile profiles change during ripening and are affected by physiological change...

  4. The clearance mechanism of chilled blood platelets.

    PubMed

    Hoffmeister, Karin M; Felbinger, Thomas W; Falet, Hervé; Denis, Cécile V; Bergmeier, Wolfgang; Mayadas, Tanya N; von Andrian, Ulrich H; Wagner, Denisa D; Stossel, Thomas P; Hartwig, John H

    2003-01-10

    Platelet transfusion is a very common lifesaving medical procedure. Not widely known is the fact that platelets, unlike other blood cells, rapidly leave the circulation if refrigerated prior to transfusion. This peculiarity requires blood services to store platelets at room temperature, limiting platelet supplies for clinical needs. Here, we describe the mechanism of this clearance system, a longstanding mystery. Chilling platelets clusters their von Willebrand (vWf) receptors, eliciting recognition of mouse and human platelets by hepatic macrophage complement type 3 (CR3) receptors. CR3-expressing but not CR3-deficient mice exposed to cold rapidly decrease platelet counts. Cooling primes platelets for activation. We propose that platelets are thermosensors, primed at peripheral sites where most injuries occurred throughout evolution. Clearance prevents pathologic thrombosis by primed platelets. Chilled platelets bind vWf and function normally in vitro and ex vivo after transfusion into CR3-deficient mice. Therefore, GPIb modification might permit cold platelet storage.

  5. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid*

    PubMed Central

    Kang, Guo-zhang; Wang, Zheng-xun; Xia, Kuai-fei; Sun, Gu-chou

    2007-01-01

    Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 °C) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 °C could be a type of stress. During 3 d of exposure to 7 °C chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion: SA could provide some protection for cell structure of chilling-stressed banana seedling. PMID:17444604

  6. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).

    PubMed

    Muthalif, M M; Rowland, L J

    1994-04-01

    The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins.

  7. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).

    PubMed Central

    Muthalif, M M; Rowland, L J

    1994-01-01

    The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins. PMID:8016270

  8. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....

  9. How does music arouse "chills"? Investigating strong emotions, combining psychological, physiological, and psychoacoustical methods.

    PubMed

    Grewe, Oliver; Nagel, Frederik; Kopiez, Reinhard; Altenmüller, Eckart

    2005-12-01

    Music can arouse ecstatic "chill" experiences defined as "goose pimples" and as "shivers down the spine." We recorded chills both via subjects' self-reports and physiological reactions, finding that they do not occur in a reflex-like manner, but as a result of attentive, experienced, and conscious musical enjoyment.

  10. Development of a Safety Monitoring and Assurance System for chilled food products.

    PubMed

    Koutsoumanis, K; Taoukis, P S; Nychas, G J E

    2005-04-15

    The principles of a novel chill chain management policy, coded Safety Monitoring and Assurance System (SMAS) for the optimisation of the distribution of chilled food products within the chill chain are developed. In this system, a new approach based on actual risk evaluation at important points of the chill chain is used in order to promote products to the next stage of distribution. This evaluation based on product's time-temperature history, variation in product's characteristics (e.g. a(w), pH, etc.), and the use of predictive models for the growth of food pathogens, allows to give priority to products in such a way that risk at consumption time is minimized. The effectiveness of SMAS was evaluated against the First In First Out (FIFO) approach, the current method for food distribution, in a case study on the risk of listeriosis of cooked ham using the Monte Carlo simulation technique. Furthermore, the two approaches were compared for their effect on the quality of the products in terms of remaining shelf life at the time of consumption. The results showed that following the SMAS approach the risk of listerisosis is significantly lower while the spoiled products at the time of consumption are significantly reduced compared to FIFO approach.

  11. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling

    PubMed Central

    Ding, Fei; Wang, Meiling; Liu, Bin; Zhang, Shuoxin

    2017-01-01

    Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F′v/F′m) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by

  12. Exogenous Melatonin Mitigates Photoinhibition by Accelerating Non-photochemical Quenching in Tomato Seedlings Exposed to Moderate Light during Chilling.

    PubMed

    Ding, Fei; Wang, Meiling; Liu, Bin; Zhang, Shuoxin

    2017-01-01

    Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F'v/F'm) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by

  13. Manufacture of a Polyaniline Nanofiber Ammonia Sensor Integrated with a Readout Circuit Using the CMOS-MEMS Technique

    PubMed Central

    Liu, Mao-Chen; Dai, Ching-Liang; Chan, Chih-Hua; Wu, Chyan-Chyi

    2009-01-01

    This study presents the fabrication of a polyaniline nanofiber ammonia sensor integrated with a readout circuit on a chip using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The micro ammonia sensor consists of a sensing resistor and an ammonia sensing film. Polyaniline prepared by a chemical polymerization method was adopted as the ammonia sensing film. The fabrication of the ammonia sensor needs a post-process to etch the sacrificial layers and to expose the sensing resistor, and then the ammonia sensing film is coated on the sensing resistor. The ammonia sensor, which is of resistive type, changes its resistance when the sensing film adsorbs or desorbs ammonia gas. A readout circuit is employed to convert the resistance of the ammonia sensor into the voltage output. Experimental results show that the sensitivity of the ammonia sensor is about 0.88 mV/ppm at room temperature. PMID:22399944

  14. Manufacture of a Polyaniline Nanofiber Ammonia Sensor Integrated with a Readout Circuit Using the CMOS-MEMS Technique.

    PubMed

    Liu, Mao-Chen; Dai, Ching-Liang; Chan, Chih-Hua; Wu, Chyan-Chyi

    2009-01-01

    This study presents the fabrication of a polyaniline nanofiber ammonia sensor integrated with a readout circuit on a chip using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The micro ammonia sensor consists of a sensing resistor and an ammonia sensing film. Polyaniline prepared by a chemical polymerization method was adopted as the ammonia sensing film. The fabrication of the ammonia sensor needs a post-process to etch the sacrificial layers and to expose the sensing resistor, and then the ammonia sensing film is coated on the sensing resistor. The ammonia sensor, which is of resistive type, changes its resistance when the sensing film adsorbs or desorbs ammonia gas. A readout circuit is employed to convert the resistance of the ammonia sensor into the voltage output. Experimental results show that the sensitivity of the ammonia sensor is about 0.88 mV/ppm at room temperature.

  15. Heat Transfer Characteristics of Fan Coil Unit (FCU) Under The Effect of Chilled Water Volume Flowrate

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Anakottapary, Daud Simon; Mulawarman, A. A. N. B.; Cipta Santosa, I. D. M.; Putu Sastra Negara, I.

    2018-01-01

    In this paper, the volume flowrate of chilled water in the water chiller simulation apparatus was optimized using experimental studied. The experimental analysis was performed on the fan coil unit (FCU) of the system. The chilled water flows in tube side and the air as a hot fluid flows throughout the tube and fin of FCU. The thermal performance and analysis of the heat transfer is examined using various chilled water flowrate e.g. 11, 12, 13, 14, 15 lpm. The effect of the flowrate to the important parameter such as LMTD temperature, heat absorb used for investigate the heat transfer characteristics. The result showed that the heat transfer characteristics has been increased with the increased of chilled water volume flowrate.

  16. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    PubMed

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  17. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    PubMed

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  18. Effect of different concentrations of egg yolk and virgin coconut oil in Tris-based extenders on chilled and frozen-thawed bull semen.

    PubMed

    Tarig, A A; Wahid, H; Rosnina, Y; Yimer, N; Goh, Y M; Baiee, F H; Khumran, A M; Salman, H; Ebrahimi, M

    2017-07-01

    The aim of this study was to evaluate the effects of 8% virgin coconut oil (VCO) combined with different percentages of egg yolk in Tris extender on the quality of chilled and frozen-thawed bull semen. A total of 24 ejaculates from four bulls were collected using an electroejaculator. Semen samples were diluted with 8% VCO in Tris extender which contained different concentrations 0% (control), 4%, 8%, 12%, 16% and 20% egg yolk. The diluted semen samples were divided into two fractions: one was chilled and stored at 4°C until evaluation after 24, 72, and 144h; the second fraction was processed by chilling for 3h at 4°C to equilibrate, then packaged in 0.25ml straws and frozen and stored in liquid nitrogen at -196°C until evaluation after 7 and 14 days. Both chilled and frozen semen samples were then thawed at 37°C and assessed for general motility using computer-assisted semen analysis (CASA), viability, acrosome integrity, and morphology (eosin-nigrosin), membrane integrity (hypo-osmotic swelling test) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). The results indicate treatments with 8%, 12%, 16% and 20% egg yolk with 8% VCO had greater sperm quality (P<0.05) as compared with the control. The treatment with 20% egg yolk had the greatest sperm quality (P<0.05) among the treated groups for both chilled and frozen-thawed semen. In conclusion, the use of 8% VCO combined with 20% egg yolk in a Tris-based extender enhanced the values for chilled and frozen-thawed quality variables of bull sperm. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions.

    PubMed

    Wang, Han; Zhang, Yifeng; Angelidaki, Irini

    2016-11-15

    Capturing of carbon dioxide by hydrogen derived from excess renewable energy (e.g., wind mills) to methane in a microbially catalyzed process offers an attractive technology for biogas production and upgrading. This bioconversion process is catalyzed by hydrogenotrophic methanogens, which are known to be sensitive to ammonia. In this study, the tolerance of the biogas process under supply of hydrogen, to ammonia toxicity was studied under mesophilic and thermophilic conditions. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH 4 + -N L -1 ) was 41.0% and 22.3% lower than that at low ammonia load (1 g NH 4 + -N L -1 ) in mesophilic and thermophilic condition, respectively. Meanwhile no significant effect on the biogas composition was observed. Moreover, we found that hydrogentrophic methanogens were more tolerant to the ammonia toxicity than acetoclastic methanogens in the hydrogen enriched biogas production and upgrading processes. The highest methane production yield was achieved under 0.5 atm hydrogen partial pressure in batch reactors at all the tested ammonia levels. Furthermore, the thermophilic methanogens at 0.5 atm of hydrogen partial pressure were more tolerant to high ammonia levels (≥5 g NH 4 + -N L -1 ), compared with mesophilic methanogens. The present study offers insight in developing resistant hydrogen enriched biogas production and upgrading processes treating ammonia-rich waste streams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Optimum Temperature for Storage of Fruit and Vegetables with Reference to Chilling Injury

    NASA Astrophysics Data System (ADS)

    Murata, Takao

    Cold storage is an important technique for preserving fresh fruit and vegetables. Deterioration due to ripening, senescence and microbiological disease can be retarded by storage at optimum temperature being slightly above the freezing point of tissues of fruit and vegetables. However, some fruit and vegetables having their origins in tropical or subtropical regions of the world are subject to chilling injury during transportation, storage and wholesale distribution at low temperature above freezing point, because they are usually sensitive to low temperature in the range of 15&digC to 0°C. This review will focus on the recent informations regarding chilling injury of fruit and vegetables, and summarize the optimum temperature for transportation and storage of fruit and vegetables in relation to chilling injury.

  1. Real-time trace ambient ammonia monitor for haze prevention

    NASA Astrophysics Data System (ADS)

    Nishimura, Katsumi; Sakaguchi, Yuhei; Crosson, Eric; Wahl, Edward; Rella, Chris

    2007-05-01

    In photolithography, haze prevention is of critical importance to integrated circuit chip manufacturers. Numerous studies have established that the presence of ammonia in the photolithography tool can cause haze to form on optical surfaces resulting in permanent damage to costly deep ultra-violet optics. Ammonia is emitted into wafer fab air by various semiconductor processes including coating steps in the track and CMP. The workers in the clean room also emit a significant amount of ammonia. Chemical filters are typically used to remove airborne contamination from critical locations but their lifetime and coverage cannot offer complete protection. Therefore, constant or periodic monitoring of airborne ammonia at parts-per-trillion (ppt) levels is critical to insure the integrity of the lithography process. Real time monitoring can insure that an accidental ammonia release in the clean room is detected before any optics is damaged. We have developed a transportable, highly accurate, highly specific, real-time trace gas monitor that detects ammonia using Cavity Ring-Down Spectroscopy (CRDS). The trace gas monitor requires no calibration gas standards, and can measure ammonia with 200 ppt sensitivity in five minutes with little or no baseline drift. In addition, the high spectral resolution of CRDS makes the analyzer less susceptible to interference from other gases when compared to other detection methods. In this paper we describe the monitor, focus on its performance, discuss the results of a careful comparison with ion chromatography (IC), and present field data measured inside the aligner and the reticule stocker at a semiconductor fab.

  2. Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia

    PubMed Central

    Quijada-Rodriguez, Alex R.; Treberg, Jason R.

    2015-01-01

    Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)−1·h−1 ammonia and 14.7 ± 1.9 nmol·gFW−1·h−1 urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na+/K+-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na+/K+-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na+/K+-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms. PMID:26180186

  3. Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia.

    PubMed

    Quijada-Rodriguez, Alex R; Treberg, Jason R; Weihrauch, Dirk

    2015-09-15

    Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)(-1)·h(-1) ammonia and 14.7 ± 1.9 nmol·gFW(-1)·h(-1) urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na(+)/K(+)-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na(+)/K(+)-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na(+)/K(+)-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms. Copyright © 2015 the American Physiological Society.

  4. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics.

    PubMed

    Brannelly, N T; Hamilton-Shield, J P; Killard, A J

    2016-11-01

    Ammonia is an important component of metabolism and is involved in many physiological processes. During normal physiology, levels of blood ammonia are between 11 and 50 µM. Elevated blood ammonia levels are associated with a variety of pathological conditions such as liver and kidney dysfunction, Reye's syndrome and a variety of inborn errors of metabolism including urea cycle disorders (UCD), organic acidaemias and hyperinsulinism/hyperammonaemia syndrome in which ammonia may reach levels in excess of 1 mM. It is highly neurotoxic and so effective measurement is critical for assessing and monitoring disease severity and treatment. Ammonia is also a potential biomarker in exercise physiology and studies of drug metabolism. Current ammonia testing is based on blood sampling, which is inconvenient and can be subject to significant analytical errors due to the quality of the sample draw, its handling and preparation for analysis. Blood ammonia is in gaseous equilibrium with the lungs. Recent research has demonstrated the potential use of breath ammonia as a non-invasive means of measuring systemic ammonia. This requires measurement of ammonia in real breath samples with associated temperature, humidity and gas characteristics at concentrations between 50 and several thousand parts per billion. This review explores the diagnostic applications of ammonia measurement and the impact that the move from blood to breath analysis could have on how these processes and diseases are studied and managed.

  5. Transcriptional Response of the Archaeal Ammonia Oxidizer Nitrosopumilus maritimus to Low and Environmentally Relevant Ammonia Concentrations

    PubMed Central

    Stahl, David A.

    2013-01-01

    The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment. PMID:23995944

  6. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation.

    PubMed

    Do, Hyojin; Lim, Juntaek; Shin, Seung Gu; Wu, Yi-Ju; Ahn, Johng-Hwa; Hwang, Seokhwan

    2008-11-01

    For biological nitrification, a set of experiments were carried out to approximate the response of lag period along with ammonia oxidation rate with respect to different concentrations of cyanide (CN-) and ammonia-oxidizing bacteria (AOB), and temperature variation in laboratory-scale batch reactors. The effects of simultaneous changes in these three factors on ammonia oxidation were quantitatively estimated and modeled using response surface analysis. The lag period and the ammonia oxidation rate responded differently to changes in the three factors. The lag period and the ammonia oxidation rate were significantly affected by the CN- and AOB concentrations, while temperature changes only affected the ammonia oxidation rate. The increase of AOB concentration and temperature alleviated the inhibition effect of cyanide on ammonia oxidation. The statistical method used in this study can be extended to estimate the quantitative effects of other environmental factors that can change simultaneously.

  7. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together.

    PubMed

    Lehtovirta-Morley, Laura E

    2018-05-01

    Ammonia oxidation is a fundamental core process in the global biogeochemical nitrogen cycle. Oxidation of ammonia (NH3) to nitrite (NO2 -) is the first and rate-limiting step in nitrification and is carried out by distinct groups of microorganisms. Ammonia oxidation is essential for nutrient turnover in most terrestrial, aquatic and engineered ecosystems and plays a major role, both directly and indirectly, in greenhouse gas production and environmental damage. Although ammonia oxidation has been studied for over a century, this research field has been galvanised in the past decade by the surprising discoveries of novel ammonia oxidising microorganisms. This review reflects on the ammonia oxidation research to date and discusses the major gaps remaining in our knowledge of the biology of ammonia oxidation.

  9. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  10. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling.

    PubMed

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.

  11. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling*#

    PubMed Central

    Diao, Qian-Nan; Song, Yong-Jun; Shi, Dong-Mei; Qi, Hong-Yan

    2016-01-01

    Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato’s response to chilling stress. PMID:27921397

  12. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  13. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacing measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  14. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing.

    PubMed

    Pan, Kai-Ling; Gao, Jing-Feng; Li, Hong-Yu; Fan, Xiao-Yan; Li, Ding-Chang; Jiang, Hao

    2018-05-01

    A full-scale wastewater treatment plant (WWTP) with three separate treatment processes was selected to investigate the effects of seasonality and treatment process on the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB). And then DNA-based stable isotope probing (DNA-SIP) was applied to explore the active ammonia oxidizers. The results of high-throughput sequencing indicated that treatment processes varied AOB communities rather than AOA communities. AOA slightly outnumbered AOB in most of the samples, whose abundance was significantly correlated with temperature. DNA-SIP results showed that the majority of AOB amoA gene was labeled by 13 C-substrate, while just a small amount of AOA amoA gene was labeled. As revealed by high-throughput sequencing of heavy DNA, Nitrosomonadaceae-like AOB, Nitrosomonas sp. NP1, Nitrosomonas oligotropha and Nitrosomonas marina were the active AOB, and Nitrososphaera viennensis dominated the active AOA. The results indicated that AOB, not AOA, dominated active ammonia oxidation in the test WWTP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    Treesearch

    Constance A. Harrington; Peter J. Gould

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season...

  16. Chills in Different Sensory Domains: Frisson Elicited by Acoustical, Visual, Tactile and Gustatory Stimuli

    ERIC Educational Resources Information Center

    Grewe, Oliver; Katzur, Bjorn; Kopiez, Reinhard; Altenmuller, Eckart

    2011-01-01

    "Chills" (frisson manifested as goose bumps or shivers) have been used in an increasing number of studies as indicators of emotions in response to music (e.g., Craig, 2005; Guhn, Hamm, & Zentner, 2007; McCrae, 2007; Panksepp, 1995; Sloboda, 1991). In this study we present evidence that chills can be induced through aural, visual, tactile, and…

  17. An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.

    PubMed

    Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D

    2017-02-01

    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.

  18. Modelling-based identification of factors influencing campylobacters in chicken broiler houses and on carcasses sampled after processing and chilling.

    PubMed

    Hutchison, M L; Taylor, M J; Tchòrzewska, M A; Ford, G; Madden, R H; Knowles, T G

    2017-05-01

    To identify production and processing practices that might reduce Campylobacter numbers contaminating chicken broiler carcasses. The numbers of campylobacters were determined on carcass neck skins after processing or in broiler house litter samples. Supplementary information that described farm layouts, farming conditions for individual flocks, the slaughterhouse layouts and operating conditions inside plants was collected, matched with each Campylobacter test result. Statistical models predicting the numbers of campylobacters on neck skins and in litter were constructed. Carcass microbial contamination was more strongly influenced by on-farm production practices compared with slaughterhouse activities. We observed correlations between the chilling, washing and defeathering stages of processing and the numbers of campylobacters on carcasses. There were factors on farm that also correlated with numbers of campylobacters in litter. These included bird gender, the exclusion of dogs from houses, beetle presence in the house litter and the materials used to construct the house frame. Changes in farming practices have greater potential for reducing chicken carcass microbial contamination compared with processing interventions. Routine commercial practices were identified that were correlated with lowered numbers of campylobacters. Consequently, these practices are likely to be both cost-effective and suitable for adoption into established farms and commercial processing. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  19. Intercellular Distribution of Glutathione Synthesis in Maize Leaves and Its Response to Short-Term Chilling1

    PubMed Central

    Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.

    2004-01-01

    To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902

  20. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.

    PubMed

    Granhus, Aksel; Fløistad, Inger Sundheim; Søgaard, Gunnhild

    2009-04-01

    In trees adapted to cold climates, conditions during autumn and winter may influence the subsequent timing of bud burst and hence tree survival during early spring frosts. We tested the effects of two temperatures during dormancy induction and mild spells (MS) during chilling on the timing of bud burst in three Picea abies (L.) Karst. provenances (58-66 degrees N). One-year-old seedlings were induced to become dormant at temperatures of 12 or 21 degrees C applied during 9 weeks of short days (12-h photoperiod). The seedlings were then moved to cold storage and given either continuous chilling at 0.7 degrees C (control), or chilling interrupted by one 14-day MS at either 8 or 12 degrees C. Interruptions with MS were staggered throughout the 175-day chilling period, resulting in 10 MS differing in date of onset. Subsets of seedlings were moved to forcing conditions (12-h photoperiod, 12 degrees C) throughout the chilling period, to assess dormancy status at different timings of the MS treatment. Finally, after 175 days of chilling, timing of bud burst was assessed in a 24-h photoperiod at 12 degrees C (control and MS-treated seedlings). The MS treatment did not significantly affect days to bud burst when given early (after 7-35 chilling days). When MS was given after 49 chilling days or later, the seedlings burst bud earlier than the controls, and the difference increased with increasing length of the chilling period given before the MS. The 12 degrees C MS treatment was more effective than the 8 degrees C MS treatment, and the difference remained constant after the seedlings had received 66 or more chilling days before the MS treatment was applied. In all provenances, a constant temperature of 21 degrees C during dormancy induction resulted in more dormant seedlings (delayed bud burst) than a constant temperature of 12 degrees C, but this did not delay the response to the MS treatment.

  1. Can chilling tolerance of C 4 photosynthesis in Miscanthus be transferred to sugarcane?

    DOE PAGES

    Glowacka, Katarzyna; Ahmed, Aasifuddin; Sharma, Shailendra; ...

    2015-07-29

    Our goal is to investigate whether chilling tolerance of C 4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO 2 uptake (A sat) and we measured the maximum operating efficiency of photosystem II (Ф PSII) in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers.

  2. Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage.

    PubMed

    Ganhão, Rui; Morcuende, David; Estévez, Mario

    2010-07-01

    The influence of protein oxidation, as measured by the dinitrophenylhydrazine (DNPH) method, on colour and texture changes during chill storage (2 degrees C, 12days) of cooked burger patties was studied. Extracts from arbutus-berries (Arbutus unedoL., AU), common hawthorns (Crataegus monogynaL., CM), dog roses (Rosa caninaL., RC) and elm-leaf blackberries (Rubus ulmifoliusSchott., RU) were prepared, added to burger patties (3% of total weight) and evaluated as inhibitors of protein oxidation and colour and texture changes. Negative (no added extract, C) and positive control (added quercetin; 230mg/kg, Q) groups were also considered. The significant increase of protein carbonyls during chill storage of control burger patties reflect the intense oxidative degradation of the muscle proteins. Concomitantly, an intense loss of redness and increase of hardness was found to take place in burger patties throughout refrigerated storage. Most fruit extracts as well as Q significantly reduced the formation of protein carbonyls and inhibited colour and texture deterioration during chill storage. Likely mechanisms through which protein oxidation could play a major role on colour and texture changes during chill storage of burger patties are discussed. Amongst the extracts, RC was most suitable for use as a functional ingredient in processed meats since it enhanced oxidative stability, colour and texture properties of burger patties with no apparent drawbacks. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Clinical utility of breath ammonia for evaluation of ammonia physiology in healthy and cirrhotic adults

    PubMed Central

    Spacek, Lisa A; Mudalel, Matthew; Tittel, Frank; Risby, Terence H; Solga, Steven F

    2016-01-01

    Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia. We measured breath ammonia in real time by quartz enhanced photoacoustic spectrometry and blood ammonia in 10 healthy and 10 cirrhotic participants. Each participant contributed 5 breath samples and blood for ammonia measurement within 1 h. We calculated the coefficient of variation (CV) for 5 breath ammonia values, reported medians of healthy and cirrhotic participants, and used scatterplots to display breath and blood ammonia. For healthy participants, mean age was 22 years (±4), 70% were men, and body mass index (BMI) was 27 (±5). For cirrhotic participants, mean age was 61 years (±8), 60% were men, and BMI was 31 (±7). Median blood ammonia for healthy participants was within normal range, 10 μmol L−1 (interquartile range (IQR), 3–18) versus 46 μmol L−1 (IQR, 23–66) for cirrhotic participants. Median breath ammonia was 379 pmol mL−1 CO2 (IQR, 265–765) for healthy versus 350 pmol mL−1 CO2 (IQR, 180–1013) for cirrhotic participants. CV was 17 ± 6%. There remains an important unmet need in the evaluation of systemic ammonia, and breath measurement continues to demonstrate promise to fulfill this need. Given the many differences between breath and blood ammonia measurement, we examined biological explanations for our findings in healthy and cirrhotic participants. We conclude that based upon these preliminary data breath may offer clinically important information this is not provided by blood ammonia. PMID:26658550

  4. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    PubMed

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pre-rigor temperature control of Chinese yellow cattle carcasses to 12-18 °C during chilling improves beef tenderness.

    PubMed

    Liu, Yuqing; Mao, Yanwei; Zhang, Yimin; Liang, Rongrong; Wang, Renhuan; Zhu, Lixian; Meng, Xianyong; Luo, Xin

    2015-02-01

    This study evaluates the effects of pre-rigor temperature control on quality traits of Chinese yellow cattle M. longissimus lumborum (LL). One stepwise chilling (SC) treatment was used on one half-carcass, involved a fast chilling (-11 ± 1 °C;0.5 m/s) for 2h, then the refrigeration was stopped to hold a core temperature of 12-18 °C until 10h postmortem, followed by a 1 ± 1 °C chilling (0.5 m/s) to 48h postmortem. The other half-carcass was conventional chilled at 1 ± 1 °C (0.5 m/s) until 48h as control chilling (CC). Quality attributes were evaluated at 1, 7 and 14 days. The SC treatment resulted in decreased WBSF and increased myofibril fragmentation index compared with control. SC-treated LL at 7d postmortem had a lower WBSF than those of CC-treated at 14d. This pre-rigor temperature controlled chilling is a realistic alternative for the beef industry in China to ensure adequate tenderness and shorten aging time.

  6. Effects of chronic ammonia exposure on ammonia metabolism and excretion in marine medaka Oryzias melastigma.

    PubMed

    Gao, Na; Zhu, Limei; Guo, Zhiqiang; Yi, Meisheng; Zhang, Li

    2017-06-01

    Ammonia is highly toxic to aquatic organisms, but whether ammonia excretion or ammonia metabolism to less toxic compounds is the major strategy for detoxification in marine fish against chronic ammonia exposure is unclear to date. In this study, we investigated the metabolism and excretion of ammonia in marine medaka Oryzias melastigma during chronic ammonia exposure. The fish were exposed to 0, 0.1, 0.3, 0.6, and 1.1 mmol l -1  NH 4 Cl spiked seawater for 8 weeks. Exposure of 0.3-1.1 mmol l -1  NH 4 Cl had deleterious effects on the fish, including significant reductions in growth, feed intake, and total protein content. However, the fish could take strategies to detoxify ammonia. The tissue ammonia (T Amm ) in the 0.3-1.1 mmol l -1  NH 4 Cl treatments was significantly higher than those in the 0 and 0.1 mmol l -1  NH 4 Cl treatments after 2 weeks of exposure, but it recovered with prolonged exposure time, ultimately reaching the control level after 8 weeks. The amino acid catabolic rate decreased to reduce the gross ammonia production with the increasing ambient ammonia concentration. The concentrations of most metabolites remained constant in the 0-0.6 mmol l -1  NH 4 Cl treatments, whereas 5 amino acids and 3 energy metabolism-related metabolites decreased in the 1.1 mmol l -1  NH 4 Cl treatment. J Amm steadily increased in ambient ammonia from 0 to 0.6 mmol l -1 and slightly decreased when the ambient ammonia concentration increased to 1.1 mmol l -1 . Overall, marine medaka cope with sublethal ammonia environment by regulating the tissue T Amm via reducing the ammonia production and increasing ammonia excretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formation of ammonia from dinitrogen under primordial conditions

    NASA Astrophysics Data System (ADS)

    Weigand, W.; Dörr, M.; Robl, C.; Kreisel, G.; Grunert, R.; Käßbohrer, J.; Brand, W.; Werner, R.; Popp, J.; Tarcea, N.

    2002-11-01

    Ammonia is one of the most largely industrially produced basic compounds, leading to a variety of important secondary products. In the chemical industry, ammonia is produced in large amounts via the HABER-BOSCH-process. In contrast to the industrial process, the nitrogenase enzyme operates in organisms under very mild conditions at atmospheric pressure and ambient temperature. In this article, we describe a method for the synthesis of ammonia from molecular nitrogen using H2S and freshly precipitated iron sulfide as a mediator thus serving as a primordial inorganic substitute for the enzyme nitrogenase. The reductand, as well as the reaction conditions (atmospheric nitrogen pressure and temperatures on the order of 70 - 80°C) are rather mild and therefore comparable to the biological processes. The driving force of the overall reaction is believed to be the oxidation of iron sulfide to iron disulfide, and the formation of hydrogen from H2S. The reactions reported in this article may support the theory of an archaic nitrogen-fixing Fe-S cluster.

  8. Development of a convenience and safety chilled sous vide fish dish: Diversification of aquacultural products.

    PubMed

    Espinosa, M C; López, G; Díaz, P; Linares, M B; Garrido, M D

    2016-04-01

    The dynamic expansion of the ready-to-eat seabream sector in its adaptation to new lifestyles has led to the search for new presentation formats in seabream (Sparus aurata). Green sauce (olive oil, wine vinegar, garlic, fresh parsley, black pepper, basil and salt) and 60 ℃ of cooking temperature were chosen by the panellists for the sous vide cooking process. Seabream fillet and sauce were packaged in polypropylene trays, cooked, chilled and stored at 2 ℃. Microbiological (total viable counts,Enterobacteriaceae,lactic acid bacteria, anaerobic psychrotrophic, moulds and yeasts, Salmonella and Listeria monocytogenes), chemical (pH and TBARs) and sensory parameters were determined at 0, 7, 17, 34, 48 and 62 days. In the conditions used, the microbiological counts remained stable, and Salmonella and Listeria monocytogenes were absent. The acidic sauce had a positive effect on the pH of the product, and low TBARs were obtained throughout storage. The processing conditions used in the present study allowed a chilled ready-to-eat seabream product of consistently high quality up to 62 days of storage to be obtained, representing an expansion of the products offered by the aquacultural industry. © The Author(s) 2015.

  9. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    PubMed Central

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C.; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  10. Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence.

    PubMed

    van Heerden, Philippus D R; Kiddle, Guy; Pellny, Till K; Mokwala, Phatlane W; Jordaan, Anine; Strauss, Abram J; de Beer, Misha; Schlüter, Urte; Kunert, Karl J; Foyer, Christine H

    2008-09-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.

  11. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions.

    PubMed

    Valenzuela, Juan Luis; Manzano, Susana; Palma, Francisco; Carvajal, Fátima; Garrido, Dolores; Jamilena, Manuel

    2017-07-08

    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits.

  12. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions

    PubMed Central

    Valenzuela, Juan Luis; Manzano, Susana; Palma, Francisco; Carvajal, Fátima; Jamilena, Manuel

    2017-01-01

    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits. PMID:28698472

  13. Impact of eliminating the carcass chilling step in the production of pre-cooked chicken breast meat

    USDA-ARS?s Scientific Manuscript database

    Pre-cooked chicken meat provides convenience to consumers and is growing in popularity globally. Poultry meat destined for pre-cooked meat products typically undergoes chilling on the carcass skeletal frame and deboning before cooking. However, compared to immersion chilling with antimicrobial, cook...

  14. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L.) fillets.

    PubMed

    Gaarder, M Ø; Bahuaud, D; Veiseth-Kent, E; Mørkøre, T; Thomassen, M S

    2012-05-01

    The aim of the present experiment was to measure the protease activities in ice-stored and super-chilled Atlantic salmon (Salmo salar) fillets, and the effect on texture. Pre-rigour fillets of Atlantic salmon were either super-chilled to a core temperature of -1.5°C or directly chilled on ice prior to 144h of ice storage. A significantly higher calpain activity was detected in the super-chilled fillets at 6h post-treatment compared to the ice-stored fillets and followed by a significant decrease below its initial level, while the calpastatin activity was significantly lower for the super-chilled fillets at all time points. The cathepsin B+L and B activities increased significantly with time post-treatment; however, no significant differences were observed at any time points between the two treatments. For the ice stored fillets, the cathepsin L activity decreased significantly from 6 to 24h post-treatment and thereafter increased significantly to 144h post-treatment. There was also a significantly lower cathepsin L activity in the super-chilled fillets at 0h post-treatment. No significant difference in breaking force was detected; however, a significant difference in maximum compression (Fmax) was detected at 24h post-treatment with lower Fmax in the super-chilled fillets. This experiment showed that super-chilling had a significant effect on the protease activities and the ATP degradation in salmon fillets. The observed difference in Fmax may be a result of these observed differences, and may indicate a softening of the super-chilled salmon muscle at 24h post-treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings.

    PubMed Central

    Anderson, M. D.; Prasad, T. K.; Stewart, C. R.

    1995-01-01

    The response of antioxidants to acclimation and chilling in various tissues of dark-grown maize (Zea mays L.) seedlings was examined in relation to chilling tolerance and protection from chilling-induced oxidative stress. Chilling caused an accumulation of H2O2 in both the coleoptile + leaf and the mesocotyl (but not roots), and acclimation prevented this accumulation. None of the antioxidant enzymes were significantly affected by acclimation or chilling in the coleoptile + leaf or root. However, elevated levels of glutathione in acclimated seedlings may contribute to an enhanced ability to scavenge H2O2 in the coleoptile + leaf. In the mesocotyl (visibly most susceptible to chilling), catalase3 was elevated in acclimated seedlings and may represent the first line of defense from mitochondria-generated H2O2. Nine of the most prominent peroxidase isozymes were induced by acclimation, two of which were located in the cell wall, suggesting a role in lignification. Lignin content was elevated in mesocotyls of acclimated seedlings, likely improving the mechanical strength of the mesocotyl. One cytosolic glutathione reductase isozyme was greatly decreased in acclimated seedlings, whereas two others were elevated, possibly resulting in improved effectiveness of the enzyme at low temperature. When taken together, these responses to acclimation illustrate the potential ways in which chilling tolerance may be improved in preemergent maize seedlings. PMID:12228666

  17. BENCH-SCALE EVALUATION OF AMMONIA REMOVAL FROM WASTEWATER BY STEAM STRIPPING

    EPA Science Inventory

    The purpose of the study was to generate laboratory data to support the development of wastewater discharge standards for ammonia in nonferrous metal winning processes. The objective was accomplished by studying ammonia removal from synthetically compounded 'wastewater' samples u...

  18. Convective and radiative components of wind chill in sheep: Estimation from meteorological records

    NASA Astrophysics Data System (ADS)

    Brown, D.; Mount, L. E.

    1987-06-01

    Wind chill is defined as the excess of sensible heat loss over what would occur at zero wind speed with other conditions unchanged. Wind chill can be broken down into a part that is determined by air temperature and a radiative part that comprises wind-dependent effects on additional long-wave radiative exchange and on solar radiation (by reducing solar warming). Radiative exchange and gain from solar radiation are affected by changes that are produced by wind in both surface and fleece insulations. Coefficients are derived for (a) converting the components of sensible heat exchange (air-temperature-dependent including both convective and associated long-wave radiative, additional long-wave radiative and solar) into the components of the total heat loss that are associated with wind and (b) for calculating equivalent air temperature changes. The coefficients contain terms only in wind speed, wetting of the fleece and fleece depth; these determine the external insulation. Calculation from standard meteorological records, using Plymouth and Aberdeen in 1973 as examples, indicate that in April September 1973 at Plymouth reduction in effective solar warming constituted 28% of the 24-h total wind chill, and 7% in the other months of the year combined; at Aberdeen the corresponding percentages were 25% and 6%. Mean hour-of-day estimates for the months of April and October showed that at midday reduction in solar warming due to wind rose to the order of half the air-temperature-dependent component of wind chill, with a much smaller effect in January. For about six hours at midday in July reduction in solar warming due to wind was similar in magnitude to the air-temperature-dependent component. It is concluded that realistic estimates of wind chill cannot be obtained unless the effect of solar radiation is taken into account. Failure to include solar radiation results not only in omitting solar warming but also in omitting the effects of wind in reducing that warming. The

  19. Removal of ammonia from urine vapor by a dual-catalyst system

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1977-01-01

    The feasibility of removing ammonia from urine vapor by a low-temperature dual-catalyst system has been demonstrated. The process is based on the catalytic oxidation of ammonia to a mixture of nitrogen, nitrous oxide, and water, followed by a catalytic decomposition of the nitrous oxide into its elements. Potential ammonia oxidation and nitrous oxide decomposition catalysts were first screened with artificial gas mixtures, then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual-catalyst bed arrangement was found that achieved the removal of ammonia and also organic carbon, and recovered water of good quality from urine vapor.

  20. Impact of dry chilling on the genetic diversity of Escherichia coli on beef carcasses and on the survival of E. coli and E. coli O157.

    PubMed

    Visvalingam, Jeyachchandran; Liu, Yang; Yang, Xianqin

    2017-03-06

    The objective of this study was to examine the effect of dry chilling on the genetic diversity of naturally occurring Escherichia coli on beef carcasses, and to examine whether two populations of E. coli recovered from carcasses during chilling and E. coli O157 differed in their response to desiccation. Isolates of E. coli were obtained from beef carcasses during a 67h dry chilling process and were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA). Ten E. coli genotypes found only at 0h (group A) and found more than once (group B), as well as five strains of E. coli O157 (group C) were inoculated on stainless steel coupons and their survival was examined after exposure to 75 and 100% relative humidity (RH) at 0 or 35°C for 67h. A total of 450 E. coli isolates were obtained, with 254, 49, 49, 51, 23, 20, and 4 from 0, 1, 2, 4, 6, 8 and 24h of chilling, respectively. No E. coli were recovered at 67h. MLVA of the isolates revealed 173 distinct genotypes. Genetic diversity of E. coli isolates, defined as ratio of the number of isolates to the number of genotypes, remained between 2.3 and 1.3 during the 24h of chilling. All strains inoculated on stainless steel coupons and exposed to 75% RH at 35°C were completely inactivated, irrespective of their groups. Inactivation of E. coli of the three groups was not significantly (P>0.05) different by exposure to 75% RH at 0°C. The findings indicate that the genetic diversity of E. coli on beef carcasses was not affected by dry chilling. In addition, inactivation of E. coli genotypes and E. coli O157 by desiccation on stainless steel simulating dry chilling conditions did not differ significantly (P>0.05). Thus, dry chilling may be used as an effective antimicrobial intervention for beef carcasses. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. Silver nanoparticle formation by femtosecond laser induced reduction of ammonia-containing AgNO3 solution

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Nakamura, T.; Sato, S.

    2017-04-01

    This paper reports the synthesis of silver colloids by femtosecond laser ablation of ammonia-containing AgNO3 solution. Effect of ammonia concentration in solution on the production of Ag nanoparticles was discussed. It is found that ammonia rules out significantly to the formation of Ag nanoparticles at which no Ag nanoparticle were formed in the solution without ammonia. Using the solution with the optimum ratio of ammonia to Ag+ ions, we further investigate the growth process of Ag nanoparticle by monitoring the evolution of its absorption spectra at 402 nm as a function of irradiation time. The result showed that the growth process was fit to the simple exponential function, and confirmed that the addition of ammonia alone to the metal ion system can boost the particle production by femtosecond laser.

  2. Biochemical, sensory and microbiological attributes of bream (Megalobrama amblycephala) during partial freezing and chilled storage.

    PubMed

    Song, Yongling; Luo, Yongkang; You, Juan; Shen, Huixing; Hu, Sumei

    2012-01-15

    Bream is one of the main farmed freshwater fish species in China. This study aimed to examine the nucleotide degradation of bream during partial freezing and chilled storage and to assess the possible usefulness of nucleotide ratios (K, Ki, H, P, Fr and G values) as freshness indices in comparison with sensory assessment and total viable counts. Total viable counts were 5.74 and 4.66 log(colony-forming units g(-1)) on the day of sensory rejection under chilled storage and partial freezing storage respectively. The inosine 5-monophosphate decrease and inosine increase were faster in chilled storage than in partial freezing storage. Hypoxanthine levels increased continuously with time under both storage regimes. Among the nucleotide ratios, the K, Ki, P, G and Fr values were superior to the H value and provided useful freshness indicators for both storage conditions. Bream in chilled storage were sensorially acceptable only up to 10 days, compared with 33 days for bream in partial freezing storage. Partial freezing delayed the nucleotide degradation of bream. Copyright © 2011 Society of Chemical Industry.

  3. Transcriptome Dynamics in Mango Fruit Peel Reveals Mechanisms of Chilling Stress

    PubMed Central

    Sivankalyani, Velu; Sela, Noa; Feygenberg, Oleg; Zemach, Hanita; Maurer, Dalia; Alkan, Noam

    2016-01-01

    Cold storage is considered the most effective method for prolonging fresh produce storage. However, subtropical fruit is sensitive to cold. Symptoms of chilling injury (CI) in mango include red and black spots that start from discolored lenticels and develop into pitting. The response of ‘Keitt’ mango fruit to chilling stress was monitored by transcriptomic, physiological, and microscopic analyses. Transcriptomic changes in the mango fruit peel were evaluated during optimal (12°C) and suboptimal (5°C) cold storage. Two days of chilling stress upregulated genes involved in the plant stress response, including those encoding transmembrane receptors, calcium-mediated signal transduction, NADPH oxidase, MAP kinases, and WRKYs, which can lead to cell death. Indeed, cell death was observed around the discolored lenticels after 19 days of cold storage at 5°C. Localized cell death and cuticular opening in the lumen of discolored lenticels were correlated with increased general decay during shelf-life storage, possibly due to fungal penetration. We also observed increased phenolics accumulation around the discolored lenticels, which was correlated with the biosynthesis of phenylpropanoids that were probably transported from the resin ducts. Increased lipid peroxidation was observed during CI by both the biochemical malondialdehyde method and a new non-destructive luminescent technology, correlated to upregulation of the α-linolenic acid oxidation pathway. Genes involved in sugar metabolism were also induced, possibly to maintain osmotic balance. This analysis provides an in-depth characterization of mango fruit response to chilling stress and could lead to the development of new tools, treatments and strategies to prolong cold storage of subtropical fruit. PMID:27812364

  4. α-Tocopherol Is Essential for Acquired Chill-Light Tolerance in the Cyanobacterium Synechocystis sp. Strain PCC 6803▿ †

    PubMed Central

    Yang, Yang; Yin, Chuntao; Li, Weizhi; Xu, Xudong

    2008-01-01

    Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates. PMID:18165303

  5. Adsorption of ammonia at GaN(0001) surface in the mixed ammonia/hydrogen ambient - a summary of ab initio data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempisty, Paweł; Krukowski, Stanisław; Interdisciplinary Centre for Materials Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warsaw

    Adsorption of ammonia at NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I), at the valence band maximum (VBM) for NH{sub 2} and H-covered surface (region II), and at the conduction band minimum (CBM) for NH{sub 3}-covered surface (region III). The electron counting rule (ECR) extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of themore » ECR in case of all mixed H-NH{sub 2}-NH{sub 3} coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN{sub 2} radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM) leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH{sub 2} radical at the surface and escape of H{sub 2} molecule. The process energy is close to 0.12 eV, thus not large, but the direct

  6. Study of removal of ammonia from urine vapor by dual catalyst

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1976-01-01

    The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.

  7. Effect of high pressure processing on textural and microbiological quality of pink perch (Nemipterus japonicus) sausage during chilled storage

    NASA Astrophysics Data System (ADS)

    Kunnath, Sarika; Panda, Satyen Kumar; Jaganath, Bindu; Gudipati, Venkateshwarlu

    2015-10-01

    The non-thermal high pressure (HP) processing was studied on fish sausage to enhance the quality during chilled storage. Pink perch (Nemipterus japonicus) sausages, packed in poly amide casing under vacuum were subjected to 400, 500 and 600 MPa pressures (dwell time: 10 min and ramp rate: 300 MPa/min) and compared with heat-set samples for physico-chemical and microbial quality parameters. Pressurized samples formed softer and glossier gels with a slight reduction in water-holding capacity. HP made the texture of sausage softer, cohesive and less chewy and gummier than heat-treated ones. Folding test seen higher acceptance values in samples treated at 500 and 600 MPa, during storage. Maximum log reduction in microbial count was observed in 600 MPa immediately, and significant difference in cooked and pressurized sausages was seen only up to 7th day. This revealed the potential application of HP in replacing conventional heat treatment for sausages preparation with enhanced shelf-life.

  8. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.

    PubMed

    Viherä-Aarnio, Anneli; Sutinen, Sirkka; Partanen, Jouni; Häkkinen, Risto

    2014-05-01

    The timing of budburst of temperate trees is known to be controlled by complicated interactions of temperature and photoperiod. To improve the phenological models of budburst, better knowledge of the internal bud development preceding budburst in relation to environmental cues is needed. We studied the effect of accumulated chilling and forcing temperatures on the internal development of vegetative buds preceding budburst in Norway spruce [Picea abies (L.) Karst.]. Branches from 17-year-old trees of southern Finnish origin were transferred eight times at 1- to 2-week intervals from October to December 2007 from the field at Punkaharju (61°48'N, 29°20'E) to the greenhouse with forcing conditions (day length 12 h, +20 °C). After seven different durations of forcing, the developmental phase and primordial shoot growth of the buds were analysed at the stereomicroscopic level. Air temperature was recorded hourly throughout the study period. The accumulated chilling unit sum had a significant effect on the temperature sum that was required to attain a certain developmental phase; a higher amount of chilling required a lower amount of forcing. The variation in the rate of development of different buds within each sample branch in relation to the chilling unit and forcing temperature sum was low. Regarding primordial shoot growth, there was also an inverse relation between accumulated chilling and forcing, i.e., a higher accumulated chilling unit sum before forcing required a lower temperature sum to initiate primordial shoot growth and resulted in a stronger effect of accumulated forcing. A second-order regression model with an interaction of chilling and forcing explained the variation of primordial shoot growth with high precision (R(2) = 0.88). However, further studies are required to determine the final parameter values to be used in phenological modelling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  9. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    PubMed Central

    Zhang, Bo; Tieman, Denise M.; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J.; Klee, Harry J.

    2016-01-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN. Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology. PMID:27791156

  10. The fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef.

    PubMed

    Reid, Rachael; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Bolton, Declan

    2017-04-01

    This study investigated the fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef. Beef samples were individually inoculated with S. Typhimurium ATCC 14028, S. Typhimurium 844, E. coli O157 EDL 933 or E. coli T13. Half the samples were subject to the same time-temperature chilling profile used for conventionally chilling beef carcasses while the other half was subject to hot boned conditions. The surface pH (5.5) and a w (0.95 to 0.97) were stable. S. Typhimurium and E. coli O157 counts, which decreased by up to 1.0 and 1.5log 10 cfucm -2 , respectively, were statistically similar (P>0.05), regardless of the chilling regime applied, with the exception of E. coli O157 EDL 933, where the counts on hot boned beef were significantly (P<0.05) higher. It was concluded that any decrease in pathogenic bacteria during beef chilling may be significantly (P<0.05) less for hot boned beef depending on the bacterial strain. Hot boning may therefore result in an increased risk to the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation.

    PubMed

    Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J

    2016-11-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.

  12. The Relationship between the Expression of Ethylene-Related Genes and Papaya Fruit Ripening Disorder Caused by Chilling Injury

    PubMed Central

    Zou, Yuan; Zhang, Lin; Rao, Shen; Zhu, Xiaoyang; Ye, Lanlan; Chen, Weixin; Li, Xueping

    2014-01-01

    Papaya (Carica papaya L.) is sensitive to low temperature and easy to be subjected to chilling injury, which causes fruit ripening disorder. This study aimed to investigate the relationship between the expression of genes related to ethylene and fruit ripening disorder caused by chilling injury. Papaya fruits were firstly stored at 7°C and 12°C for 25 and 30 days, respectively, then treated with exogenous ethylene and followed by ripening at 25°C for 5 days. Chilling injury symptoms such as pulp water soaking were observed in fruit stored at 7°C on 20 days, whereas the coloration and softening were completely blocked after 25 days, Large differences in the changes in the expression levels of twenty two genes involved in ethylene were seen during 7°C-storage with chilling injury. Those genes with altered expression could be divided into three groups: the group of genes that were up-regulated, including ACS1/2/3, EIN2, EIN3s/EIL1, CTR1/2/3, and ERF1/3/4; the group of genes that were down-regulated, including ACO3, ETR1, CTR4, EBF2, and ERF2; and the group of genes that were un-regulated, including ACO1/2, ERS, and EBF1. The results also showed that pulp firmness had a significantly positive correlation with the expression of ACS2, ACO1, CTR1/4, EIN3a/b, and EBF1/2 in fruit without chilling injury. This positive correlation was changed to negative one in fruit after storage at 7°C for 25 days with chilling injury. The coloring index displayed significantly negative correlations with the expression levels of ACS2, ACO1/2, CTR4, EIN3a/b, ERF3 in fruit without chilling injury, but these correlations were changed into the positive ones in fruit after storage at 7°C for 25 days with chilling injury. All together, these results indicate that these genes may play important roles in the abnormal softening and coloration with chilling injury in papaya. PMID:25542021

  13. A Simple Algorithm for Predicting Bacteremia Using Food Consumption and Shaking Chills: A Prospective Observational Study.

    PubMed

    Komatsu, Takayuki; Takahashi, Erika; Mishima, Kentaro; Toyoda, Takeo; Saitoh, Fumihiro; Yasuda, Akari; Matsuoka, Joe; Sugita, Manabu; Branch, Joel; Aoki, Makoto; Tierney, Lawrence; Inoue, Kenji

    2017-07-01

    Predicting the presence of true bacteremia based on clinical examination is unreliable. We aimed to construct a simple algorithm for predicting true bacteremia by using food consumption and shaking chills. A prospective multicenter observational study. Three hospital centers in a large Japanese city. In total, 1,943 hospitalized patients aged 14 to 96 years who underwent blood culture acquisitions between April 2013 and August 2014 were enrolled. Patients with anorexia-inducing conditions were excluded. We assessed the patients' oral food intake based on the meal immediately prior to the blood culture with definition as "normal food consumption" when >80% of a meal was consumed and "poor food consumption" when <80% was consumed. We also concurrently evaluated for a history of shaking chills. We calculated the statistical characteristics of food consumption and shaking chills for the presence of true bacteremia, and subsequently built the algorithm by using recursive partitioning analysis. Among 1,943 patients, 223 cases were true bacteremia. Among patients with normal food consumption, without shaking chills, the incidence of true bacteremia was 2.4% (13/552). Among patients with poor food consumption and shaking chills, the incidence of true bacteremia was 47.7% (51/107). The presence of poor food consumption had a sensitivity of 93.7% (95% confidence interval [CI], 89.4%-97.9%) for true bacteremia, and the absence of poor food consumption (ie, normal food consumption) had a negative likelihood ratio (LR) of 0.18 (95% CI, 0.17-0.19) for excluding true bacteremia, respectively. Conversely, the presence of the shaking chills had a specificity of 95.1% (95% CI, 90.7%-99.4%) and a positive LR of 4.78 (95% CI, 4.56-5.00) for true bacteremia. A 2-item screening checklist for food consumption and shaking chills had excellent statistical properties as a brief screening instrument for predicting true bacteremia. © 2017 Society of Hospital Medicine

  14. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.

    PubMed

    Morales Mora, M A; Vergara, C Pretelín; Leiva, M A; Martínez Delgadillo, S A; Rosa-Domínguez, E R

    2016-12-01

    Post-combustion CO 2 capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO 2 capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO 2 removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO 2 ) and the global warming (GW) impact. Also, the GW of the whole of a CO 2 -EOR project, from these two streams of captured CO 2 , was evaluated. Results show that 372,426 tCO 2 /year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO 2 or a GW impact of 0.22 kgCO 2e /kgCO 2 captured. GW performances are 297.6 kgCO 2e emitted/barrel (bbl) for scenario one, and 106.5 kgCO 2e emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO 2e /bbl and 0.33 tCO 2e /bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO 2 capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO 2 could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO 2, "CO 2 emission free" ammonia production could be achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor.

    PubMed

    Lauterböck, B; Ortner, M; Haider, R; Fuchs, W

    2012-10-01

    The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2011-01-01

    A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  17. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.

  18. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  19. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage.

    PubMed

    Rodríguez-Carpena, J G; Morcuende, D; Estévez, M

    2011-10-01

    Processing of avocados generates an important amount of by-products such as peels and seeds that are rich in bioactive substances with proven radical suppressing activities. The objective of this study was to evaluate the effectiveness of peel and seed extracts from two avocado varieties-'Hass' and 'Fuerte'-as inhibitors of lipid and protein oxidation and color deterioration of raw porcine patties during chilled storage (4 °C/15 days). Avocado extracts significantly (p<0.05) reduced the loss of redness and the increase of lightness during storage of porcine patties. 'Fuerte' extracts were more efficient at inhibiting discoloration of chilled patties than 'Hass' extracts. Patties treated with avocado extracts had significantly lower amounts of TBA-RS than control ones throughout the storage. 'Hass' avocado extracts significantly inhibited the formation of protein carbonyls in chilled patties at day 15. The present results highlight the potential usage of extracts from avocado by-products as ingredients for the production of muscle foods with enhanced quality traits. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate.

    PubMed

    Fotidis, Ioannis A; Wang, Han; Fiedel, Nicolai R; Luo, Gang; Karakashev, Dimitar B; Angelidaki, Irini

    2014-07-01

    Ammonia-rich substrates inhibit the anaerobic digestion (AD) process and constitute the main reason for low energy recovery in full-scale reactors. It is estimated that many full-scale AD reactors are operating in ammonia induced "inhibited steady-state" with significant losses of the potential biogas production yield. To date there are not any reliable methods to alleviate the ammonia toxicity effect or to efficiently digest ammonia-rich waste. In the current study, bioaugmentation as a possible method to alleviate ammonia toxicity effect in a mesophilic continuously stirred-tank reactor (CSTR) operating under "inhibited steady state" was tested. A fast growing hydrogenotrophic methanogen (i.e., Methanoculleus bourgensis MS2(T)) was bioaugmented in the CSTR reactor at high ammonia levels (5 g NH4(+)-N L(-1)). A second CSTR reactor was used as control with no bioaugmentation. The results derived from this study clearly demonstrated a 31.3% increase in methane production yield in the CSTR reactor, at steady-state, after bioaugmentation. Additionally, high-throughput 16S rRNA gene sequencing analysis showed a 5-fold increase in relative abundance of Methanoculleus spp. after bioaugmentation. On the contrary to all methods used today to alleviate ammonia toxicity effect, the tested bioaugmentation process performed without interrupting the continuous operation of the reactor and without replacing the ammonia-rich feedstock.

  1. Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit.

    PubMed

    Wang, Yunxiang; Gao, Lipu; Zhu, Benzhong; Zhu, Hongliang; Luo, Yunbo; Wang, Qing; Zuo, Jinhua

    2018-08-15

    Long-non-coding RNA (LncRNA) is a kind of non-coding endogenous RNA that plays essential roles in diverse biological processes and various stress responses. To identify and elucidate the intricate regulatory roles of lncRNAs in chilling injury in tomato fruit, deep sequencing and bioinformatics methods were performed here. After strict screening, a total of 1411 lncRNAs were identified. Among these lncRNAs, 239 of them were significantly differentially expressed. A large amount of target genes were identified and many of them were found to code chilling stress related proteins, including redox reaction related enzyme, important enzymes about cell wall degradation, membrane lipid peroxidation related enzymes, heat and cold shock protein, energy metabolism related enzymes, salicylic acid and abscisic acid metabolism related genes. Interestingly, 41 lncRNAs were found to be the precursor of 33 miRNAs, and 186 lncRNAs were targets of 45 miRNAs. These lncRNAs targeted by miRNAs might be potential ceRNAs. Particularly, a sophisticated regulatory model including miRNAs, lncRNAs and their targets was set up. This model revealed that some miRNAs and lncRNAs may be involved in chilling injury, which provided a new perspective of lncRNAs role. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Imagining Citizenship as Friendship in "The Big Chill"

    ERIC Educational Resources Information Center

    Kaplan, Michael

    2005-01-01

    This essay stages a theoretically driven critique of Lawrence Kasdan's film "The Big Chill" as a productive example of a constitutive contradiction animating the liberal political imaginary. In particular, it argues that liberalism relies irreducibly on an under-examined conception of friendship to supply its model of citizenship as a distinctive,…

  3. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    PubMed

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-05-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance.

    PubMed

    Ye, Fei; Ma, Mao-Hua; Op den Camp, Huub J M; Chatzinotas, Antonis; Li, Lei; Lv, Ming-Quan; Wu, Sheng-Jun; Wang, Yu

    2018-04-11

    Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH 4 + and Fe 2+ /Fe 3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem.

  5. CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia.

    PubMed

    Tomić, Željko; Kukučka, Miroslav; Stojanović, Nikoleta Kukučka; Kukučka, Andrej; Jokić, Aleksandar

    2016-10-14

    The adsorption characteristics of synthetic zeolite CR-100 in a fixed-bed system using continuous flow of groundwater containing elevated ammonia concentration were examined. The possibilities for adsorbent mass calculation throughout mass transfer zone using novel mathematical approach as well as zeolite adsorption capacity at every sampling point in time or effluent volume were determined. The investigated adsorption process consisted of three clearly separated steps indicated to sorption kinetics. The first step was characterized by decrease and small changes in effluent ammonia concentration vs. experiment time and quantity of adsorbed ammonia per mass unit of zeolite. The consequences of this phenomenon were showed in the plots of the Freundlich and the Langmuir isotherm models through a better linear correlation according as graphical points contingent to the first step were not accounted. The Temkin and the Dubinin-Radushkevich isotherm models showed the opposite tendency with better fitting for overall measurements. According to the obtained isotherms parameter data, the investigated process was found to be multilayer physicochemical adsorption, and also that synthetic zeolite CR-100 is a promising material for removal of ammonia from Northern Banat groundwater with an ammonia removal efficiency of 90%.

  6. Quality and sensory acceptability of a chilled functional apple ready-dessert.

    PubMed

    Keenan, D F; Brunton, N P; Gormley, T R; Butler, F

    2012-04-01

    An apple and dairy based ready-dessert with an added prebiotic was stored and chill temperatures and number of quality attributes were monitored during chill (4 °C) storage for 30 days. All ready-desserts were thermally processed by sous vide (P (90) > 10 min). The stability of the dairy component in ready-desserts was monitored by measuring volatile free fatty acids. Changes in these components were more evident in prebiotic-enriched samples compared to controls. However, no significant differences were observed over storage in control and prebiotic-enriched ready-desserts. This was supported by sensory analysis that showed no significant changes over storage in control or prebiotic-enriched samples. Of the other quality parameters, the addition of prebiotic inclusions resulted in lower L and b values and dry matter (p < 0.05), while increasing (p < 0.05) soluble solids content compared to control samples. Fluctuations in some of the quality parameters were also observed over storage. Rheological characteristics, i.e. flow behaviour (n), consistency index (K), storage (G'), loss (G″) and complex (G*) moduli were unaffected by prebiotic inclusion. However, storage affected the rheological characteristics of ready-desserts. A decrease (p < 0.05) in flow behaviour (n) led to concomitant increases in consistency index (K) and complex modulus (G*) values in control samples.

  7. Superchilling of muscle foods: Potential alternative for chilling and freezing.

    PubMed

    Banerjee, Rituparna; Maheswarappa, Naveena Basappa

    2017-12-05

    Superchilling is an attractive technique for preservation of muscle foods which freezes part of the water and insulate the food products from temperature fluctuations thereby enhancing the shelf-life during storage, transportation and retailing. Superchilling process synergistically improves the product shelf-life when used in combination with vacuum or modified atmospheric packaging. The shelf-life of muscle foods was reported to be increased by 1.5 to 4.0 times relative to traditional chilling technique. Advantages of superchilling and its ability to maintain the freshness of muscle foods over freezing has been discussed and its potential for Industrial application is highlighted. Present review also unravel the mechanistic bases for ice-crystal formation during superchilling and measures to ameliorate the drip loss. The future challenges especially automation in superchilling process for large scale Industrial application is presented.

  8. Ammonia toxicity: from head to toe?

    PubMed

    Dasarathy, Srinivasan; Mookerjee, Rajeshwar P; Rackayova, Veronika; Rangroo Thrane, Vinita; Vairappan, Balasubramaniyan; Ott, Peter; Rose, Christopher F

    2017-04-01

    Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.

  9. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms.

    PubMed

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-06-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH(4)(+)-N per gram of soil) and high (200 μg NH(4)(+)-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.

  10. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms

    PubMed Central

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-01-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil. PMID:21228892

  11. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    NASA Astrophysics Data System (ADS)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  12. Cold Stress Tolerance in Psychrotolerant Soil Bacteria and Their Conferred Chilling Resistance in Tomato (Solanum lycopersicum Mill.) under Low Temperatures

    PubMed Central

    Subramanian, Parthiban; Kim, Kiyoon; Krishnamoorthy, Ramasamy; Mageswari, Anbazhagan; Selvakumar, Gopal; Sa, Tongmin

    2016-01-01

    The present work aimed to study the culturable diversity of psychrotolerant bacteria persistent in soil under overwintering conditions, evaluate their ability to sustain plant growth and alleviate chilling stress in tomato. Psychrotolerant bacteria were isolated from agricultural field soil samples colleced during winter and then used to study chilling stress alleviation in tomato plants (Solanum lycopersicum cv Mill). Selective isolation after enrichment at 5°C yielded 40 bacterial isolates. Phylogenetic studies indicated their distribution in genera Arthrobacter, Flavimonas, Flavobacterium, Massilia, Pedobacter and Pseudomonas. Strains OS211, OB146, OB155 and OS261 consistently improved germination and plant growth when a chilling stress of 15°C was imposed and therefore were selected for pot experiments. Tomato plants treated with the selected four isolates exhibited significant tolerance to chilling as observed through reduction in membrane damage and activation of antioxidant enzymes along with proline synthesis in the leaves when exposed to chilling temperature conditions (15°C). Psychrotolerant physiology of the isolated bacteria combined with their ability to improve germination, plant growth and induce antioxidant capacity in tomato plants can be employed to protect plants against chilling stress. PMID:27580055

  13. Impact of Salinity Gradients on Ammonia Bioattenuation Processes in a Photosynthetic Wetland Biomat

    NASA Astrophysics Data System (ADS)

    Vega, M.; Jones, Z.; Sharp, J.

    2017-12-01

    Shallow, open water treatment wetlands may be able to offset challenges associated with the reclamation of impaired waters (e.g., membrane fouling, aeration costs, etc.) due to natural biogeochemical fluctuations produced by a benthic, photoactive biomat. This diatomaceous, redox-stratified biomat has demonstrated significant nitrate and trace organic removal from municipal wastewater streams and the microbial community has been thoroughly characterized. However, research is required to predict shifts in community structure and function in response to the excess salinity, ammonia, and metal gradients of impaired waters. Batch microcosm studies inoculating biomat from an active open water treatment wetland with incremental dilutions of hydraulic fracturing produced water were conducted in a light chamber with oscillating twelve-hour light and dark cycles to assess the effect of an impaired water matrix on biomat functionality. Diurnal photosynthetic signatures and ammonia removal kinetics were quantified in various experiments probing the effects of oscillating light conditions, biomat depth, water column isolation, nitrogen source, and salinity gradients in conjunction with phylogenetic profiles and morphological characterization. Diurnal pH and dissolved oxygen fluctuations were present at all produced water permutations, perhaps indicating stabilization of photosynthetic communities. Ammonia attenuation results suggest that the biomat is effective at removing ammonia, although first order rate constants decrease with increasing produced water abundance. Microbial community diversity appears to decrease with increasing salinity, and it is likely that these shifts correspond to variation in ecosystem function and thus treatment effectiveness. The application of shallow, open water treatment wetlands to remediate impaired waters has the potential to address societally relevant problems while discerning fundamental biogeochemical phenomena.

  14. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  15. Use of smart photochromic indicator for dynamic monitoring of the shelf life of chilled chicken based products.

    PubMed

    Brizio, Ana Paula Dutra Resem; Prentice, Carlos

    2014-03-01

    This study evaluated the applicability of a photochromic time temperature indicator (TTI) to monitor the time-temperature history and shelf life of chilled boneless chicken breast. The results showed that the smart indicator showed good reproducibility during the discoloring process in all the conditions investigated. The response was not only visibly interpretable but also well adaptable to measurement using appropriate equipment. For an activation configuration of 4 s of ultraviolet light (UV) per label, the TTI's rate of discoloration was similar to the quality loss of the meat samples analyzed. Thus, the photochromic label (4 s UV/label) attached to the samples set out to be a dynamic shelf-life label, assuring consumers the final point of quality of chilled boneless chicken breast in an easy and precise form, providing a reliable tool to monitor the supply chain of this product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit.

    PubMed

    Wu, Fuwang; Li, Qing; Yan, Huiling; Zhang, Dandan; Jiang, Guoxiang; Jiang, Yueming; Duan, Xuewu

    2016-09-09

    Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H₂O₂. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis.

  17. Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit

    PubMed Central

    Wu, Fuwang; Li, Qing; Yan, Huiling; Zhang, Dandan; Jiang, Guoxiang; Jiang, Yueming; Duan, Xuewu

    2016-01-01

    Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H2O2. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis. PMID:27618038

  18. Characteristics of high-quality Asian elephant (Elephas maximus) ejaculates and in vitro sperm quality after prolonged chilled storage and directional freezing.

    PubMed

    O'Brien, J K; Steinman, K J; Montano, G A; Love, C C; Saiers, R L; Robeck, T R

    2013-01-01

    The in vitro quality of spermatozoa from one elephant (Elephas maximus) was examined after chilled storage and directional freezing (DF). High-quality, non-contaminated ejaculates (77.6±6.0% progressive motility, 3.9±1.5 µg creatinine mL(-1) raw semen, 2.7±0.6% detached heads) were cryopreserved after 0 (0hStor), 12 (12hStor) and 24 h (24hStor) of chilled storage. At 0 h and 6h post-thawing, total motility, plasma membrane integrity, acrosome integrity, mitochondrial activity and normal morphology were similar (P>0.05) across treatments. In contrast, progressive motility, rapid velocity and several kinematic parameters were lower (P<0.05) for 24Stor compared with 0hStor at 0 h post-thaw. By 6 h post-thaw, amplitude of lateral head displacement and velocity parameters (average pathway, straight-line and curvilinear velocity) were lower (P<0.05) for 24hStor compared with 0hStor and 12hStor. DNA integrity was high and remained unchanged (P>0.05) across all groups and processing stages (1.6±0.6% of cells contained fragmented DNA). Results indicate that DF after up to 12 h of chilled storage results in a post-thaw sperm population of acceptable quality for artificial insemination. These findings have implications for the cryopreservation of sex-sorted spermatozoa, which typically undergo more than 12 h of chilled storage prior to sorting and preservation.

  19. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    USDA-ARS?s Scientific Manuscript database

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles...

  20. Growth of Organic Microspherules in Sugar-Ammonia Reactions

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2005-12-01

    Reaction of small sugars of less than four carbons with ammonia in water yielded organic microspherules generally less than ten microns in size. The time course of microspherule growth was examined for the D-erythrose-ammonia reaction that yielded microspherules attached to the glass walls of containers. Measurements were made of the elemental composition and infrared spectrum of the microspherule material. These viscose semi-solid microspherules are viewed as possible containers for prebiotic catalytic processes relevant to the origin of life.

  1. Ammonia Emissions from Agriculture in China

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, L.; Zhao, Y.; Huang, B.

    2016-12-01

    Ammonia (NH3) is an important alkaline pollutant in the atmosphere and it has various environmental and climatic effects. We will present an improved bottom-up estimate of ammonia emissions from agriculture in China at 0.5°×0.5° horizontal resolution and monthly variability. Ammonia emissions from fertilizer use are derived using data of crop planting area, fertilizer application time and rate for 18 main crops. Ammonia emission factors from fertilizer use are estimated as a function of soil properties such as soil pH, cation exchange capacity (CEC), and agricultural activity information such as crop type, fertilizer type, and application mode. We further consider ambient temperature and wind speed to account for the meteorological influences on ammonia emission factors of fertilizer use. We also estimate the ammonia emission from livestock over China using the mass-flow methodology. The derived ammonia emissions in China for the year 2005 are 4.55 Tg NH3 from fertilizer use and 6.96 Tg from livestock. Henan and Jiangsu provinces are the two largest emitting areas for ammonia from fertilizer use (470 Gg NH3 and 365 Gg NH3). Henan (621 Gg NH3) and Shandong (533 Gg NH3) have the largest ammonia emissions from livestock. Both ammonia emissions from fertilizer use and livestock have distinct seasonal variations; peaking in June for fertilizer use (822 Gg NH3) and in July for livestock (1244 Gg NH3), and are both lowest in January (80 Gg and 241 Gg, respectively). Combining with other ammonia source (eg. human waste and transport) estimates from the REAS v2.1 emission inventory, we show that total ammonia emissions in China for the year 2005 are 14.0 Tg NH3 a-1. Comparisons with satellite measurements of ammonia columns will also be presented.

  2. Applicability of Zeolite Based Systems for Ammonia Removal and Recovery From Wastewater.

    PubMed

    Das, Pallabi; Prasad, Bably; Singh, Krishna Kant Kumar

    2017-09-01

    Ammonia discharged in industrial effluents bears deleterious effects and necessitates remediation. Integrated systems devoted to recovery of ammonia in a useful form and remediation of the same addresses the challenges of waste management and its utilization. A comparative performance evaluation study was undertaken to access the suitability of different zeolite based systems (commercial zeolites and zeolites synthesized from fly ash) for removal of ammonia followed by its subsequent release. Four main parameters which were studied to evaluate the applicability of such systems for large scale usage are cost-effectiveness, ammonia removal efficiency, performance on regeneration, and ammonia release percentage. The results indicated that synthetic zeolites outperformed zeolites synthesized from fly ash, although the later proved to be more efficient in terms of total cost incurred. Process technology development in this direction will be a trade-of between cost and ammonia removal and release efficiencies.

  3. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Treesearch

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  4. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    PubMed

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  5. Significant reduction in the incidence of C5 palsy after cervical laminoplasty using chilled irrigation water.

    PubMed

    Takenaka, S; Hosono, N; Mukai, Y; Tateishi, K; Fuji, T

    2016-01-01

    The aim of this study was to determine whether chilled irrigation saline decreases the incidence of clinical upper limb palsy (ULP; a reduction of one grade or more on manual muscle testing; MMT), based on the idea that ULP results from thermal damage to the nerve roots by heat generated by friction during bone drilling. Irrigation saline for drilling was used at room temperature (RT, 25.6°C) in open-door laminoplasty in 400 patients (RT group) and chilled to a mean temperature of 12.1°C during operations for 400 patients (low-temperature (LT) group). We assessed deltoid, biceps, and triceps brachii muscle strength by MMT. ULP occurring within two days post-operatively was categorised as early-onset palsy. The incidence of ULP (4.0% vs 9.5%, p = 0.003), especially early-onset palsy (1.0% vs 5.5%, p < 0.001), was significantly lower for the LT group than for the RT group. Multivariate analysis indicated that RT irrigation saline use, concomitant foraminotomy, and opened side were significant predictors for ULP. Using chilled irrigation saline during bone drilling significantly decreased the ULP incidence, particularly the early-onset type, and shortened the recovery period for ULP. Chilled irrigation saline can thus be recommended as a simple method for preventing ULP. Chilled irrigation during laminoplasty reduces C5 palsy. ©2016 The British Editorial Society of Bone & Joint Surgery.

  6. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2015-07-23

    Clathrate hydrates and ice I are the most abundant crystals of water. The study of their nucleation, growth, and decomposition using molecular simulations requires an accurate and efficient algorithm that distinguishes water molecules that belong to each of these crystals and the liquid phase. Existing algorithms identify ice or clathrates, but not both. This poses a challenge for cases in which ice and hydrate coexist, such as in the synthesis of clathrates from ice and the formation of ice from clathrates during self-preservation of methane hydrates. Here we present an efficient algorithm for the identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in molecular simulations. CHILL+ uses the number of staggered and eclipsed water-water bonds to identify water molecules in cubic ice, hexagonal ice, and clathrate hydrate. CHILL+ is an extension of CHILL (Moore et al. Phys. Chem. Chem. Phys. 2010, 12, 4124-4134), which identifies hexagonal and cubic ice but not clathrates. In addition to the identification of hydrates, CHILL+ significantly improves the detection of hexagonal ice up to its melting point. We validate the use of CHILL+ for the identification of stacking faults in ice and the nucleation and growth of clathrate hydrates. To our knowledge, this is the first algorithm that allows for the simultaneous identification of ice and clathrate hydrates, and it does so in a way that is competitive with respect to existing methods used to identify any of these crystals.

  7. Ammonia Ice Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The top cloud layer on Jupiter is thought to consist of ammonia ice, but most of that ammonia 'hides' from spectrometers. It does not absorb light in the same way ammonia does. To many scientists, this implies that ammonia churned up from lower layers of the atmosphere 'ages' in some way after it condenses, possibly by being covered with a photochemically generated hydrocarbon mixture. The New Horizons Linear Etalon Imaging Spectral Array (LEISA), the half of the Ralph instrument that is able to 'see' in infrared wavelengths that are absorbed by ammonia ice, spotted these clouds and watched them evolve over five Jupiter days (about 40 Earth hours). In these images, spectroscopically identified fresh ammonia clouds are shown in bright blue. The largest cloud appeared as a localized source on day 1, intensified and broadened on day 2, became more diffuse on days 3 and 4, and disappeared on day 5. The diffusion seemed to follow the movement of a dark spot along the boundary of the oval region. Because the source of this ammonia lies deeper than the cloud, images like these can tell scientists much about the dynamics and heat conduction in Jupiter's lower atmosphere.

  8. Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes

    DOEpatents

    Zaczepinski, Sioma; Billimoria, Rustom M.; Tao, Frank; Lington, Christopher G.; Plumlee, Karl W.

    1984-01-01

    Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

  9. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    PubMed Central

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. PMID:22134644

  10. pH-dependent ammonia removal pathways in microbial fuel cell system.

    PubMed

    Kim, Taeyoung; An, Junyeong; Lee, Hyeryeong; Jang, Jae Kyung; Chang, In Seop

    2016-09-01

    In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0), MFC used an electrical energy of 27.4% and removed 23.3% of total ammonia by electrochemical pathway for 192h. At the identical pH condition, 36.1% of the total ammonia was also removed by the biological path suspected to be biological ammonia oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical removal efficiency decreased to less than 5.0%, while the biological removal efficiency highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Regulation of Respiration and the Oxygen Diffusion Barrier in Soybean Protect Symbiotic Nitrogen Fixation from Chilling-Induced Inhibition and Shoots from Premature Senescence1[W][OA

    PubMed Central

    van Heerden, Philippus D.R.; Kiddle, Guy; Pellny, Till K.; Mokwala, Phatlane W.; Jordaan, Anine; Strauss, Abram J.; de Beer, Misha; Schlüter, Urte; Kunert, Karl J.; Foyer, Christine H.

    2008-01-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7°C–15°C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT. PMID:18667725

  12. RNA Expression and Post-Transcriptional Editing Analyses of Cucumber Plastids Reveals Genetic Differences Associated with Chilling Tolerance

    USDA-ARS?s Scientific Manuscript database

    Tolerance to chilling injury in cucumber (Cucumis sativus L.) is associated with three plastomic single nucleotide polymorphisms (ptSNPs) at bp positions 4,813, 56,561, and 126,349 that are co-inherited. An understanding of the genetic expression of these ptSNPs as a response to chilling is critical...

  13. Summary Report: Pilot Study of an Innovative Biological Treatment Process for the Removal of Ammonia from a Small Drinking Water System

    EPA Science Inventory

    The use of biologically active filtration to oxidize ammonia as a full-scale drinking water treatment process has not been thoroughly considered in the United States. A number of concerns with biological water treatment exist including the potential release of excessive numbers o...

  14. Ammonia-water cation and ammonia dimer cation.

    PubMed

    Kim, Hahn; Lee, Han Myoung

    2009-06-25

    We have investigated the structure, interaction energy, electronic properties, and IR spectra of the ammonia-water cation (NH(3)H(2)O)(+) using density functional theory (DFT) and high-level ab initio theory. The ammonia-water cation has three minimum-energy structures of (a) H(2)NH(+)...OH(2), (b) H(3)N(+)...OH(2), and (c) H(3)NH(+)...OH. The lowest-energy structure is (a), followed by (c) and (b). The ammonia dimer cation has two minimum-energy structures [the lowest H(3)NH(+)...NH(2) structure and the second lowest (H(3)N...NH(3))(+) structure]. The minimum transition barrier for the interconversion between (a), (b), and (c) is approximately 6 kcal/mol. Most DFT calculations with various functionals, except a few cases, overstabilize the N...O and N...N binding, predicting different structures from Moller-Plesset second-order perturbation (MP2) theory and the most reliable complete basis set (CBS) limit of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. Thus, the validity test of the DFT functionals for these ionized molecular systems would be of importance.

  15. Atmospheric Ammonia Over China: Emission Estimates And Impact On Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D. K.

    2016-12-01

    Ammonia (NH3) in the atmosphere is an important precursor of aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. We use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. This is consistent with an improved bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical fertilizer application rates for different crop types. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to emissions of ammonia and nitrogen oxides, reflecting strong formation of aerosol nitrate in the cold seasons.

  16. Adaptation to altitude affects the senescence response to chilling in the perennial plant Arabis alpina

    PubMed Central

    Wingler, Astrid; Juvany, Marta; Cuthbert, Caroline; Munné-Bosch, Sergi

    2015-01-01

    In annual plants with determinate growth, sugar accumulation signals high carbon availability once growth has ceased, resulting in senescence-dependent nutrient recycling to the seeds. However, this senescence-inducing effect of sugars is abolished at cold temperature, where sugar accumulation is important for protection. Here, natural variation was exploited to analyse the effect of chilling on interactions between leaf senescence, sugars, and phytohormones in Arabis alpina, a perennial plant with indeterminate growth. Eight accessions of A. alpina originating from between 2090 and 3090 m above sea level in the French Alps were used to identify heritable adaptations in senescence, stress response, sugars, and phytohormones to altitude. Accessions from high altitudes showed an enhanced capacity for sucrose accumulation and a diminished loss of chlorophyll in response to chilling. At warm temperature, sucrose content was negatively correlated with chlorophyll content, and sucrose treatment induced leaf senescence. Chilling resulted in lower indole-3-acetic acid, but higher zeatin and jasmonic acid contents. Interactions between sugar and phytohormones included a positive correlation between sucrose and jasmonic acid contents that may be involved in promoting the stress-dependent decline in chlorophyll. These findings reveal regulatory interactions that underlie adaptation in the senescence and stress response to chilling. PMID:25371506

  17. Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia

    NASA Technical Reports Server (NTRS)

    Summers, D. P.

    1999-01-01

    An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.

  18. Nitrogen removal from digested slurries using a simplified ammonia stripping technique.

    PubMed

    Provolo, Giorgio; Perazzolo, Francesca; Mattachini, Gabriele; Finzi, Alberto; Naldi, Ezio; Riva, Elisabetta

    2017-11-01

    This study assessed a novel technique for removing nitrogen from digested organic waste based on a slow release of ammonia that was promoted by continuous mixing of the digestate and delivering a continuous air stream across the surface of the liquid. Three 10-day experiments were conducted using two 50-L reactors. In the first two, nitrogen removal efficiencies were evaluated from identical digestates maintained at different temperatures (30°C and 40°C). At the start of the first experiment, the digestates were adjusted to pH 9 using sodium hydroxide, while in the second experiment pH was not adjusted. The highest ammonia removal efficiency (87%) was obtained at 40°C with pH adjustment. However at 40°C without pH adjustment, removal efficiencies of 69% for ammonia and 47% for total nitrogen were obtained. In the third experiment two different digestates were tested at 50°C without pH adjustment. Although the initial chemical characteristics of the digestates were different in this experiment, the ammonia removal efficiencies were very similar (approximately 85%). Despite ammonia removal, the pH increased in all experiments, most likely due to carbon dioxide stripping that was promoted by temperature and mixing. The technique proved to be suitable for removing nitrogen following anaerobic digestion of livestock manure because effective removal was obtained at natural pH (≈8) and 40°C, common operating conditions at typical biogas plants that process manure. Furthermore, the electrical energy requirement to operate the process is limited (estimated to be 3.8kWhm -3 digestate). Further improvements may increase the efficiency and reduce the processing time of this treatment technique. Even without these advances slow-rate air stripping of ammonia is a viable option for reducing the environmental impact associated with animal manure management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 21 CFR 862.1065 - Ammonia test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ammonia test system. 862.1065 Section 862.1065....1065 Ammonia test system. (a) Identification. An ammonia test system is a device intended to measure ammonia levels in blood, serum, and plasma, Ammonia measurements are used in the diagnosis and treatment...

  20. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    PubMed

    Brearley, Matt B

    2017-12-01

    Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

  1. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  2. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  3. Study on ammonia slip detection in the harsh combustion environments using diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    You, Kun; Zhang, Yu-jun; Li, Hong-bin; He, Yin; Gao, Yan-wei; Wang, Li-ming; Liu, Wen-qing

    2016-10-01

    The emissions of NOX from Cement plant or Coal-fired power plant have serious pollution to the environment. In recent years, Selective Catalytic Reduction (SCR) is an effective means of reducing the emissions of NOX by injecting ammonia into the combustion flue gas, which ideally reacts with the NOX to produce harmless components (H2O and N2). The efficiency of SCR is determined by monitoring the ammonia slip of the flue exhaust outlet, excess ammonia injection can cause ammonia slip, which not only destroy the plant, but also increase the operating costs. In addition, ammonia is also pollution gases as NOX. The flue gas at the measurement point is high temperature, vibrate and high particle density processes in Cement plant primarily, such harsh conditions coupled with the highly reactive nature of ammonia, so it is difficult to reliable extractive low level analysis. The paper describes an in-situ Tunable Diode Laser analyzer for measuring ammonia slip in the combustion flue gas after SCR in Cement Plant or Coal-fired power plant. A correlation filtering algorithm is developed to select high-quality spectral absorption signal, which improve the accuracy of concentration inversion of analyzer. The paper also includes field test data on an actual Cement plant all day, and we compare the ammonia slip and NOX emissions of flue gas during actual production process, the results indicate that the measured values of the ammonia slip and NOX emissions present a good correlation and comply with the principle of SCR.

  4. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen.

    PubMed

    Levičnik-Höfferle, Spela; Nicol, Graeme W; Ausec, Luka; Mandić-Mulec, Ines; Prosser, James I

    2012-04-01

    Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Aquatic Life Criteria - Ammonia

    EPA Pesticide Factsheets

    Documents related to EPA's final 2013 Aquatic Life Ambient Water Quality Criteria for Ammonia (Freshwater). These documents pertain to the safe levels of Ammonia in water that should protect to the majority of species.

  6. Effect of 1-methylcyclopropene and modified atmosphere packaging on chilling injury, and antioxidative defensive mechanism of sweet pepper

    USDA-ARS?s Scientific Manuscript database

    Sweet peppers (Capsicum annuum L.) are chilling sensitive vegetable, and develop injury when stored at temperatures less than 7 C. This study was conducted to investigate the effect of 1-methylcyclopropene (1-MCP) (650 ppb) and modified atmosphere packaging (MAP) on chilling injuries of sweet pepper...

  7. Sensory, physical and chemical characteristics of cooked ham manufactured from rapidly chilled and earlier deboned M. semimembranosus.

    PubMed

    Tomović, Vladimir M; Jokanović, Marija R; Petrović, Ljiljana S; Tomović, Mila S; Tasić, Tatjana A; Ikonić, Predrag M; Sumić, Zdravko M; Sojić, Branislav V; Skaljac, Snežana B; Sošo, Milena M

    2013-01-01

    Effects of rapid chilling of carcasses (at -31°C in the first 3h of chilling, and then at 2-4°C) and earlier deboning (8h post-mortem), compared to rapid (till 24h post-mortem) and conventional chilling (at 2-4°C, till 24h post-mortem), on quality characteristics of pork M. semimebranosus and cooked ham were investigated. Quality measurements included pH value, colour (CIEL a b values) and total aerobic count of M. semimebranosus, as well as sensory (colour, juiciness, texture, and flavour), physical (pH value, colour - CIEL a b values and texture - Warner-Bratzler shear and penetration forces) and chemical (protein, total fat, and moisture content) characteristics of cooked ham. The cooked ham was manufactured from pieces of M. semimebranosus with ultimate lightness (CIEL value) lower than 50. Rapid chilling and earlier deboning significantly increased quantity of M. semimebranosus desirable for cooked ham manufacturing. Earlier start of pork fabrication did not affect important quality characteristics of cooked ham. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping.

    PubMed

    Yabu, Hironori; Sakai, Chikako; Fujiwara, Tomoko; Nishio, Naomichi; Nakashimada, Yutaka

    2011-03-01

    To avoid the inhibition of methane production by ammonia that occurs during the degradation of garbage, anaerobic digestion with prior ammonia production and subsequent stripping was investigated. In the ammonia production phase, the maximum ammonia concentration was approximately 2800 mg N/kg of total wet sludge in the range of 4 days of sludge retention time, indicating that only 43% of total nitrogen in the model garbage was converted to ammonia. The model garbage from which ammonia was produced and stripped was subjected to semi-continuous thermophilic dry anaerobic digestion over 180 days. The gas yield was in the range of 0.68 to 0.75 Nm(3)/kg volatile solid, and it decreased with the decrease of the sludge retention time. The ammonia-nitrogen concentration in the sludge was kept below 3000 mg N/kg total wet sludge. Microbial community structure analysis revealed that the phylum Firmicutes dominated in the ammonia production, but the community structure changed at different sludge retention times. In dry anaerobic digestion, the dominant bacteria shifted from the phylum Thermotogae to Firmicutes. The dominant archaeon was the genus Methanothermobacter, but the ratio of Methanosarcina increased during the process of dry anaerobic digestion. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. “Hayward”] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this “dilemma,” kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L−1, 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  10. Nitrogenase Inspired Peptide-Functionalized Catalyst for Efficient, Emission-Free Ammonia Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gellett, Wayne; Ayers, Katherine; Renner, Julie

    Ammonia production is one of the most important industrial processes in the world, as the major component of fertilizer to sustain higher food production. It is also one of the most energy intensive and carbon intensive chemical processes worldwide, primarily due to the steam methane reforming step to produce hydrogen for the reaction. Currently, ammonia is produced via the Haber Bosch process, which requires high temperature and pressure, and has low equilibrium efficiency. Due to these reaction conditions, the process is most economical at extremely large scale (100,000s of tons per day). In order to enable more distributed production scalesmore » which better match with renewable energy input and sustainable reactant sources, alternative methods of ammonia synthesis are needed, which scale more effectively and economically. One such approach is electrochemical synthesis based on ion exchange membrane cells. Peptide templating to form catalyst nanoparticles of controlled size, combined with peptide surface adsorbtion to model the nitrogenase active site, was used to develop novel catalyst materials and deposit them on electrodes.« less

  11. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China.

    PubMed

    Zhang, Chunlin; Geng, Xuesong; Wang, Hao; Zhou, Lei; Wang, Boguang

    2017-01-01

    Atmospheric ammonia (NH 3 ), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH 3  m -3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH 3 m -3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dual roles for hepatic lectin receptors in the clearance of chilled platelets

    PubMed Central

    Rumjantseva, Viktoria; Grewal, Prabhjit K.; Wandall, Hans H.; Josefsson, Emma C.; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D.; Hartwig, John H.; Hoffmeister, Karin M.

    2015-01-01

    Chilling rapidly (<4 h) clusters Glycoprotein - (GP)Ib receptors on blood platelets, and ß2-integrins of hepatic macrophages bind ßGlcNAc residues in the clusters leading to rapid clearance of acutely chilled platelets following transfusion. Although capping the ßGlcNAc moieties by galactosylation prevents clearance, this strategy is ineffective after prolonged (>24 h) refrigeration. We report here that prolonged refrigeration increases the density/concentration of exposed galactose residues such that hepatocytes become increasingly involved in the removal of platelets using their Ashwell-Morell receptors. Macrophages always rapidly remove a large fraction of transfused platelets (~40%). With platelet cooling, hepatocyte-dependent clearance further diminishes their recoveries following transfusion. PMID:19783995

  13. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol-1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10-5 mol m-2 s-1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  14. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    PubMed Central

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  15. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  16. 40 CFR 471.22 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants—subpart B—BAT. There shall be no...-pounds) of forged magnesium cooled with water Chromium 0.127 0.052 Zinc 0.422 0.177 Ammonia 38.5 17.0... forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  17. 40 CFR 471.22 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ammonia 9.95 4.37 Fluoride 4.44 1.97 (b) Forging spent lubricants—Subpart B—BAT. There shall be no...-pounds) of forged magnesium cooled with water Chromium 0.127 0.052 Zinc 0.422 0.177 Ammonia 38.5 17.0... forged Chromium 0.002 0.0007 Zinc 0.006 0.003 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  18. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glowacka, K; Adhikari, S; Peng, JH

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chillingmore » treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.« less

  19. CADDIS Volume 2. Sources, Stressors and Responses: Ammonia

    EPA Pesticide Factsheets

    Introduction to the ammonia module, when to list ammonia as a candidate cause, ways to measure ammonia, simple and detailed conceptual diagrams for ammonia, literature reviews and references for the ammonia module.

  20. Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei.

    PubMed

    Zeuthen, Thomas; Wu, Binghua; Pavlovic-Djuranovic, Slavica; Holm, Lars M; Uzcategui, Nestor L; Duszenko, Michael; Kun, Jürgen F J; Schultz, Joachim E; Beitz, Eric

    2006-09-01

    Plasmodium falciparum uses amino acids from haemoglobin degradation mainly for protein biosynthesis. Glutamine, however, is mostly oxidized to 2-oxoglutarate to restore NAD(P)H + H+. In this process two molecules of ammonia are released. We determined an ammonia production of 9 mmol h(-1) per litre of infected red blood cells in the early trophozoite stage. External application of ammonia yielded a cytotoxic IC50 concentration of 2.8 mM. As plasmodia cannot metabolize ammonia it must be exported. Yet, no biochemical or genomic evidences exist that plasmodia possess classical ammonium transporters. We expressed the P. falciparum aquaglyceroporin (PfAQP) in Xenopus laevis oocytes and examined whether it may serve as an exit pathway for ammonia. We show that injected oocytes: (i) acidify the medium due to ammonia uptake, (ii) take up [14C]methylamine and [14C]formamide, (iii) swell in solution with formamide and acetamide and (iv) display an ammonia-induced NH4+-dependent clamp current. Further, a yeast strain lacking the endogenous aquaglyceroporin (Fps1) is rescued by expression of PfAQP which provides for the efflux of toxic methylamine. Ammonia permeability was similarly established for the aquaglyceroporins from Toxoplasma gondii and Trypanosoma brucei. Apparently, these aquaglyceroporins are important for the release of ammonia derived from amino acid breakdown.

  1. Evaluation of integrated ammonia recovery technology and nutrient status with an in-vessel composting process for swine manure.

    PubMed

    Kim, Jung Kon; Lee, Dong Jun; Ravindran, Balsubramani; Jeong, Kwang-Hwa; Wong, Jonathan Woon-Chung; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Kwag, Jung-Hoon

    2017-12-01

    The study investigated the effect of different initial moisture (IM) content (55, 60, 65, and 70%) of composting mixtures (swine manure and sawdust) for the production of nutrient rich manure, and the recovery of ammonia through a condensation process using a vertical cylindrical in-vessel composter for 56days. The composting resulted in a significant reduction in C:N ratio and electrical conductivity (EC), with a slight increase in pH in all products. The NH 3 were emitted notably, and at the same time the NO 3 - -N concentration gradually increased with the reduction of NH 4 + -N in the composting mixtures. The overall results confirmed, the 65% IM showed the maximum nutritional yield, maturity and non-phytotoxic effects (Lycopersicon esculentum L.), with the results of ideal compost product in the following order of IM: 65%>60%>70%>55%. Finally, the recovered condensed ammonia contained considerable ammonium nitrogen concentrations and could be used as fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein

    USDA-ARS?s Scientific Manuscript database

    Temperature controls many processes of ammonia volatilization. For example, urea hydrolysis is an enzymatically catalyzed reaction described by the Arrhenius equation. Diet crude protein (CP) controls ammonia emission by affecting N excretion. Objectives were to use the Arrhenius equation to model a...

  3. The Big Chills

    NASA Astrophysics Data System (ADS)

    Bond, G. C.; Dwyer, G. S.; Bauch, H. A.

    2002-12-01

    At the end of the last glacial, the Earth's climate system abruptly shifted into the Younger Dryas, a 1500-year long cold snap known in the popular media as the Big Chill. Following an abrupt warming ending the Younger Dryas about 11,600 years ago, the climate system has remained in an interglacial state, thought to have been relatively stable and devoid, with possibly one or two exceptions, of abrupt climate change. A growing amount of evidence suggests that this benign view of interglacial climate is incorrect. High resolution records of North Atlantic ice rafted sediment, now regarded as evidence of extreme multiyear sea ice drift, reveal abrupt shifts on centennial and millennial time scales. These have been traced from the end of the Younger Dryas to the present, revealing evidence of significant climate variability through all of the last two millennia. Correlatives of these events have been found in drift ice records from the Arctic's Laptev Sea, in the isotopic composition of North Grip ice, and in dissolved K from the GISP2 ice core, attesting to their regional extent and imprint in proxies of very different origins. Measurements of Mg/Ca ratios in planktic foraminifera over the last two millennia in the eastern North Atlantic demonstrate that increases in drifting multiyear sea ice were accompanied by abrupt decreases in sea surface temperatures, especially during the Little Ice Age. Estimated rates of temperature change are on the order of two degrees centigrade, more than thirty percent of the regional glacial to interglacial change, within a few decades. When compared at the same resolution, these interglacial variations are as abrupt as the last glacial's Dansgaard-Oeschger cycles. The interglacial abrupt changes are especially striking because they occurred within the core of the warm North Atlantic Current. The changes may have been triggered by variations in solar irradiance, but if so their large magnitude and regional extent requires amplifying

  4. System Modeling for Ammonia Synthesis Energy Recovery System

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team

    2015-11-01

    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  5. THE FATE AND TRANSPORT OF AMMONIA AT THE LOCAL TO REGIONAL LEVEL

    EPA Science Inventory

    Air quality model results are developed and presented as to where ammonia goes once it is emitted. The ammonia budget is dissected in terms of dry and wet deposition and turbulent and wind transport. The domain of analysis is the eastern U.S. The CMAQ model is used with process ...

  6. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  7. External tank chill effect on the space transportation system launch pad environment

    NASA Technical Reports Server (NTRS)

    Ahmad, R. A.; Boraas, S.

    1991-01-01

    The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.

  8. Interannual variability of ammonia concentrations over the United States: sources and implications

    NASA Astrophysics Data System (ADS)

    Schiferl, Luke D.; Heald, Colette L.; Van Damme, Martin; Clarisse, Lieven; Clerbaux, Cathy; Coheur, Pierre-François; Nowak, John B.; Neuman, J. Andrew; Herndon, Scott C.; Roscioli, Joseph R.; Eilerman, Scott J.

    2016-09-01

    The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008-2012). We find that the model generally underrepresents the ammonia concentration near large source regions (by 26 % at surface sites) and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. This work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.

  9. 76 FR 45513 - Fresh and Chilled Atlantic Salmon From Norway: Preliminary Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Salmon From Norway: Preliminary Results of Full Third Sunset Review of Antidumping Duty Order AGENCY...) order on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff Act of..., the Department initiated the third sunset review of the AD order on fresh and chilled Atlantic salmon...

  10. ENGINEERING DESIGN CONFIGURATIONS FOR BIOLOGICAL AMMONIA REMOVAL

    EPA Science Inventory

    Many regions in the United States have excessive levels of nutrients including ammonia in their source waters. For example, farming and agricultural sources of ammonia in the Midwest contribute to relatively high levels of ammonia in many ground waters. Although ammonia in water ...

  11. Autotrophic ammonia oxidation by soil thaumarchaea.

    PubMed

    Zhang, Li-Mei; Offre, Pierre R; He, Ji-Zheng; Verhamme, Daniel T; Nicol, Graeme W; Prosser, James I

    2010-10-05

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of (13)C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in (13)C-labeled DNA, demonstrating inorganic CO(2) fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in (13)C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.

  12. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence

    PubMed Central

    Ismail, Abdelbagi M.; Hall, Anthony E.; Close, Timothy J.

    1999-01-01

    Dehydrins (DHNs, LEA D-11) are plant proteins present during environmental stresses associated with dehydration or low temperatures and during seed maturation. Functions of DHNs have not yet been defined. Earlier, we hypothesized that a ≈35-kDa DHN and membrane properties that reduce electrolyte leakage from seeds confer chilling tolerance during seedling emergence of cowpea (Vigna unguiculata L. Walp.) in an additive and independent manner. Evidence for this hypothesis was not rigorous because it was based on correlations of presence/absence of the DHN and slow electrolyte leakage with chilling tolerance in closely related cowpea lines that have some other genetic differences. Here, we provide more compelling genetic evidence for involvement of the DHN in chilling tolerance of cowpea. We developed near-isogenic lines by backcrossing. We isolated and determined the sequence of a cDNA corresponding to the ≈35-kDa DHN and used gene-specific oligonucleotides derived from it to test the genetic linkage between the DHN presence/absence trait and the DHN structural gene. We tested for association between the DHN presence/absence trait and both low-temperature seed emergence and electrolyte leakage. We show that allelic differences in the Dhn structural gene map to the same position as the DHN protein presence/absence trait and that the presence of the ≈35-kDa DHN is indeed associated with chilling tolerance during seedling emergence, independent of electrolyte leakage effects. Two types of allelic variation in the Dhn gene were identified in the protein-coding region, deletion of one Φ-segment from the DHN-negative lines and two single amino acid substitutions. PMID:10557361

  13. Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

    PubMed

    Claros, J; Jiménez, E; Borrás, L; Aguado, D; Seco, A; Ferrer, J; Serralta, J

    2010-01-01

    A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH3-N l(-1). The half saturation constant for free ammonia was determined (K(NH3)=0.32 mg NH3-N l(-1)). Activity decreased at TAN (total ammonium-nitrogen) concentration over 2,000 mg NH4-N l(-1). No free ammonia inhibition was detected. The effect of salinity was studied by adding different concentrations of different salts to the biomass. No significant differences were observed between the experiments carried out with a salt containing or not containing NH4. These results support that AOB are inhibited by salinity, not by free ammonia. A mathematical expression to represent this inhibition is proposed. To compare substrate affinity and salinity inhibitory effect on different AOB populations, similar experiments were carried out with biomass from a biological nutrient removal pilot plant. The AOB activity reached its maximum value at 0.008 mg NH3-N l(-1) and decreased at TAN concentration over 400 mg NH4-N l(-1). These differences can be explained by the different AOB predominating species: Nitrosomonas europaea and N. eutropha in the SHARON biomass and Nitrosomonas oligotropha in the pilot plant.

  14. Review of methods for determination of ammonia volatilization in farmland

    NASA Astrophysics Data System (ADS)

    Yang, J.; Jiao, Y.; Yang, W. Z.; Gu, P.; Bai, S. G.; Liu, L. J.

    2018-02-01

    Ammonia is one of the most abundant alkaline trace gases in the atmosphere, which is one of the important factors affecting atmospheric quality. Excessive application of nitrogen fertilizer is the main source of global ammonia emissions, which not only exacerbate greenhouse gas emissions, but also leads to eutrophication of water bodies. In this paper, the basic principle, the operation process, the advantages and disadvantages, and the previous research results of the method are summarized in detail, including the enclosure method, the venting method, the continuous airflow enclosure method, the wind tunnel method and the micro-meteorological method. So as to provide a theoretical basis for selecting the appropriate method for determination of ammonia volatilization.

  15. Development of Vapor-Phase Catalytic Ammonia Removal System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kiss, Mark; Borchers, Bruce; Tleimat, Badawi; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale; hide

    2007-01-01

    A report describes recent accomplishments of a continuing effort to develop the vapor-phase catalytic ammonia removal (VPCAR) process for recycling wastewater for consumption by humans aboard a spacecraft in transit to Mars.

  16. Spatial variability of chilling temperature in Turkey and its effect on human comfort

    NASA Astrophysics Data System (ADS)

    Toros, H.; Deniz, A.; Şaylan, L.; Şen, O.; Baloğlu, M.

    2005-03-01

    Air temperature, absolute humidity and wind speed are the most important meteorological parameters that affect human thermal comfort. Because of heat loss, the human body feels air temperatures different to actual temperatures. Wind speed is the most practical element for consideration in terms of human comfort. In winter, due to the strong wind speeds, the sensible temperature is generally colder than the air temperature. This uncomfortable condition can cause problems related to tourism, heating and cooling. In this study, the spatial and temporal distributions of cooling temperatures and Wind Chill Index (WCI) are analyzed for Turkey, and their effect on the human body is considered. In this paper, monthly cooling temperatures between October and March in the years 1929 to 1990 are calculated by using measured temperature and wind speed at 79 stations in Turkey. The influence of wind chill is especially observed in the regions of the Aegean, west and middle Black Sea and east and central Anatolia. The wind chill in these regions has an uncomfortable effect on the human body. Usually, the WCI value is higher in western, northern and central Anatolia than in other regions.

  17. 76 FR 70411 - Fresh and Chilled Atlantic Salmon From Norway: Final Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Salmon From Norway: Final Results of Full Third Sunset Review of Countervailing Duty Order AGENCY: Import... fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff Act of 1930, as... on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Act. See Sunset...

  18. 76 FR 70409 - Fresh and Chilled Atlantic Salmon From Norway: Final Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Salmon From Norway: Final Results of Full Third Sunset Review of Antidumping Duty Order AGENCY: Import... and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff Act of 1930, as... Department initiated the third sunset review of the AD order on fresh and chilled Atlantic salmon from Norway...

  19. 76 FR 37786 - Fresh and Chilled Atlantic Salmon From Norway: Preliminary Results of Full Third Sunset Review of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Salmon From Norway: Preliminary Results of Full Third Sunset Review of Countervailing Duty Order AGENCY... (CVD) order on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Tariff... the CVD order on fresh and chilled Atlantic salmon from Norway pursuant to section 751(c) of the Act...

  20. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  1. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.

    PubMed

    Garstka, Maciej; Venema, Jan Henk; Rumak, Izabela; Gieczewska, Katarzyna; Rosiak, Malgorzata; Koziol-Lipinska, Joanna; Kierdaszuk, Borys; Vredenberg, Wim J; Mostowska, Agnieszka

    2007-10-01

    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.

  2. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    PubMed

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C 6 and C 9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  3. Recovery of ammonia from swine manure using gas-permeable membranes: effect of aeration.

    PubMed

    García-González, M C; Vanotti, M B; Szogi, A A

    2015-04-01

    The gas-permeable membrane process can recover ammonia from manure, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4(+)) recovery rate that is normally carried out using an alkali. In this study a new strategy to avoid the use of alkali was tested applying low-rate aeration and nitrification inhibition. The wastewater used was raw swine manure with 2390 mg NH4(+)-N/L. Results showed that aeration increased pH above 8.5 allowing quick transformation of NH4(+) into gaseous ammonia (NH3) and efficient recovery by permeation through the submerged membrane. The overall NH4(+) recovery obtained with aeration was 98% and ammonia emissions losses were less than 1.5%. The new approach can substitute large amounts of alkali chemicals needed to obtain high NH4(+) recovery with important economic and environmental savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants

    PubMed Central

    Ding, Fei; Wang, Meiling; Zhang, Shuoxin; Ai, Xizhen

    2016-01-01

    Sedoheptulose-1, 7-bisphosphatase (SBPase) is an important enzyme involved in photosynthetic carbon fixation in the Calvin cycle. Here, we report the impact of changes in SBPase activity on photosynthesis, growth and development, and chilling tolerance in SBPase antisense and sense transgenic tomato (Solanum lycopersicum) plants. In transgenic plants with increased SBPase activity, photosynthetic rates were increased and in parallel an increase in sucrose and starch accumulation was evident. Total biomass and leaf area were increased in SBPase sense plants, while they were reduced in SBPase antisense plants compared with equivalent wild-type tomato plants. Under chilling stress, when compared with plants with decreased SBPase activity, tomato plants with increased SBPase activity were found to be more chilling tolerant as indicated by reduced electrolyte leakage, increased photosynthetic capacity, and elevated RuBP regeneration rate and quantum efficiency of photosystem II. Collectively, our data suggest that higher level of SBPase activity gives an advantage to photosynthesis, growth and chilling tolerance in tomato plants. This work also provides a case study that an individual enzyme in the Calvin cycle may serve as a useful target for genetic engineering to improve production and stress tolerance in crops. PMID:27586456

  5. Stability of gravimetrically prepared ammonia in nitrogen standards at 10 and 100 µmolmol-1

    NASA Astrophysics Data System (ADS)

    Amico di Meane, Elena; Ferracci, Valerio; Martin, Nicholas A.; Brewer, Paul J.; Worton, David R.

    2017-04-01

    Ammonia (NH3) is a well-known ambient pollutant which plays a key role in both atmospheric chemistry and biogeochemical processes occurring in a variety of ecosystems. Ammonia is emitted from intensive animal farming and certain industrial processes: once in the atmosphere, it contributes to the increasing ambient levels of particulate matter observed across Europe. As legislation is being implemented to curb ammonia emissions, it is crucial to achieve metrological traceability for ammonia measurements in ambient air to allow comparability of field measurements, ensure accuracy of emissions inventories and verify the effectiveness of emission ceiling policies. The development of stable and traceable gas standards for instrument calibration underpins all of the above. To address this requirement, a stability study on gravimetrically-prepared high-pressure ammonia mixtures in nitrogen was carried out for two years for two different cylinder types at two different concentrations: 10 and 100 ppm. New standards were prepared gravimetrically every three to six months for comparison to determine any variations due to instability. In the first type of cylinders ammonia appears stable at 100 ppm but shows degradation of about 2% at 10 ppm over the timescale of the stability study; on the other hand, the second type of cylinders exhibits good stability already at the 10 ppm level.

  6. Scale Rules for Macrosegregation during Direct-Chill Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Eskin, Dmitry G.; Du, Qiang; Katgerman, Laurens

    2008-05-01

    An analysis of published experimental and numerical results shows that there is a scaling relationship between the magnitude and direction of centerline segregation in direct-chill (DC) cast billets from aluminum alloys and the process parameters, i.e., billet diameter and casting speed. It seems that there is always a range of these process parameters where the centerline segregation is positive, and there is a threshold when the centerline segregation vanishes. Numerical simulations of macrosegregation during DC casting of a binary Al-Cu alloy were performed at different ratios of casting speed and billet diameter. The macrosegregation model takes into account only two mechanisms of macrosegregation, i.e., thermosolutal convection and shrinkage-induced flow. The results of these computer simulations fit well to the dependence obtained using numerous reference data. The results are discussed in terms of the contribution of different mechanisms of macrosegregation and the shape of the billet sump.

  7. 40 CFR 471.25 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  8. 40 CFR 471.25 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  9. 40 CFR 471.25 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  10. 40 CFR 471.25 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  11. 40 CFR 471.25 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million off-pounds) of magnesium rolled with emulsions Chromium 0.028 0.011 Zinc 0.076 0.032 Ammonia 9.95... forged magnesium cooled with water Chromium 0.107 0.044 Zinc 0.295 0.122 Ammonia 38.5 17.0 Fluoride 17.2... forged Chromium 0.002 0.0006 Zinc 0.004 0.002 Ammonia 0.532 0.234 Fluoride 0.238 0.106 (e) Direct chill...

  12. Atmospheric Amines and Ammonia Measured with a Chemical Ionization Mass Spectrometer (CIMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Y.; Kanawade, V. P.; de Gouw, J. A.

    We report ambient measurements of amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a Southeastern U.S. forest in Alabama and a moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioningmore » of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast U.S. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.« less

  13. Assessing Ammonia Treatment Options

    EPA Science Inventory

    This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...

  14. The history of aerobic ammonia oxidizers: from the first discoveries to today.

    PubMed

    Monteiro, Maria; Séneca, Joana; Magalhães, Catarina

    2014-07-01

    Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.

  15. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Kalogerakis, Konstantinos S.; Oza, A. U.; Marschall, J.; Wong, M. H.

    2006-09-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning") [2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  16. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Oza, A. U.; Marschall, J.; Wong, M. H.; Kalogerakis, K. S.

    2006-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning")[2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  17. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration

    USDA-ARS?s Scientific Manuscript database

    Gas-permeable membranes can recover ammonia from manure, reducing pollution whilst converting ammonia into ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali. In this study a new strategy to avoid the...

  18. Microbial quality of industrial liquid egg white: assumptions on spoiling issues in egg-based chilled desserts.

    PubMed

    Techer, Clarisse; Daoud, Amina; Madec, Marie-Noëlle; Gautier, Michel; Jan, Sophie; Baron, Florence

    2015-02-01

    As a 1st step, this study aimed at investigating the microbial quality of liquid egg white in a French egg processing company. Thirty raw and 33 pasteurized liquid egg white samples were analyzed. Pasteurization was globally found efficient on mesophilic contaminants (1.7 ± 1.6 and 0.8 ± 0.9 log CFU/mL in raw and pasteurized samples, respectively), including for the control of Salmonella. However, Gram-positive enterococci were still detected in the pasteurized samples. As a 2nd step, a representative bacterial collection was built for exploring the spoilage issue in egg-based chilled desserts. Custard cream was chosen as growth medium since this food is widely used for the production of French chilled desserts. All of the 166 isolates of the bacterial collection were shown to be able to grow and to induce spoilage of the custard cream at refrigeration temperature (10 °C). Several spoilage types were highlighted in the custard cream, on the basis of changes regarding pH, consistency, production of holes or gas. As a 3rd step, bacterial enzymatic activities were explored on custard cream-based agar media. The bacterial collection was reduced to 43 isolates, based on further selection regarding the genera and the spoilage types previously highlighted. Albeit to different degrees, all these isolates were able to produce proteases. A large part of these isolates also expressed lipolytic and amylolytic activities. This study emphasizes the need to control egg white contamination and especially with Gram-positive heat-resistant Enterococi, in order to guarantee the shelf life of egg-based chilled desserts. © 2015 Institute of Food Technologists®

  19. Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1

    PubMed Central

    Adlimoghaddam, Aida; Boeckstaens, Mélanie; Marini, Anna-Maria; Treberg, Jason R.; Brassinga, Ann-Karen C.; Weihrauch, Dirk

    2015-01-01

    ABSTRACT The soil-dwelling nematode Caenorhabditis elegans is a bacteriovorous animal, excreting the vast majority of its nitrogenous waste as ammonia (25.3±1.2 µmol gFW−1 day−1) and very little urea (0.21±0.004 µmol gFW−1 day−1). Although these roundworms have been used for decades as genetic model systems, very little is known about their strategy to eliminate the toxic waste product ammonia from their bodies into the environment. The current study provides evidence that ammonia is at least partially excreted via the hypodermis. Starvation reduced the ammonia excretion rates by more than half, whereas mRNA expression levels of the Rhesus protein CeRhr-2, V-type H+-ATPase (subunit A) and Na+/K+-ATPase (α-subunit) decreased correspondingly. Moreover, ammonia excretion rates were enhanced in media buffered to pH 5 and decreased at pH 9.5. Inhibitor experiments, combined with enzyme activity measurements and mRNA expression analyses, further suggested that the excretion mechanism involves the participation of the V-type H+-ATPase, carbonic anhydrase, Na+/K+-ATPase, and a functional microtubule network. These findings indicate that ammonia is excreted, not only by apical ammonia trapping, but also via vesicular transport and exocytosis. Exposure to 1 mmol l−1 NH4Cl caused a 10-fold increase in body ammonia and a tripling of ammonia excretion rates. Gene expression levels of CeRhr-1 and CeRhr-2, V-ATPase and Na+/K+-ATPase also increased significantly in response to 1 mmol l−1 NH4Cl. Importantly, a functional expression analysis showed, for the first time, ammonia transport capabilities for CeRhr-1 in a phylogenetically ancient invertebrate system, identifying these proteins as potential functional precursors to the vertebrate ammonia-transporting Rh-glycoproteins. PMID:25740900

  20. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process.

    PubMed

    Mahdy, Ahmed; Fotidis, Ioannis A; Mancini, Enrico; Ballesteros, Mercedes; González-Fernández, Cristina; Angelidaki, Irini

    2017-02-01

    This study investigated the ability of an ammonia-acclimatized inoculum to digest efficiently protein-rich microalgae for continuous 3rd generation biogas production. Moreover, we investigated whether increased C/N ratio could alleviate ammonia toxicity. The biochemical methane potential (BMP) of five different algae (Chlorella vulgaris)/manure (cattle) mixtures showed that the mixture of 80/20 (on VS basis) resulted in the highest BMP value (431mLCH 4 gVS -1 ), while the BMP of microalgae alone (100/0) was 415mLCH 4 gVS -1 . Subsequently, anaerobic digestion of those two substrates was tested in continuous stirred tank reactors (CSTR). Despite of the high ammonium levels (3.7-4.2g NH 4 + -NL -1 ), CSTR reactors using ammonia tolerant inoculum resulted in relatively high methane yields (i.e. 77.5% and 84% of the maximum expected, respectively). These results demonstrated that ammonia tolerant inocula could be a promising approach to successfully digest protein-rich microalgae and achieve a 3rd generation biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.).

    PubMed

    Bilska-Kos, Anna; Panek, Piotr; Szulc-Głaz, Anna; Ochodzki, Piotr; Cisło, Aneta; Zebrowski, Jacek

    2018-06-08

    Miscanthus × giganteus and Zea mays, closely-related C 4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO 2 assimilation and a clear decrease in F' v /F' m , F v /F m and ɸ PSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  3. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo tank...

  4. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo tank...

  5. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo tank...

  6. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo tank...

  7. 46 CFR 154.1760 - Liquid ammonia.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid ammonia. 154.1760 Section 154.1760 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR....1760 Liquid ammonia. The master shall ensure that no person sprays liquid ammonia into a cargo tank...

  8. Ammonia emissions from cattle feeding operations.

    USDA-ARS?s Scientific Manuscript database

    Ammonia is a colorless gas with an pungent odor that occurs naturally in trace amounts in the atmosphere, where it is the dominant base. Ammonia is produced during the decomposition of livestock manure. There is concern about atmospheric ammonia because of its potential effects on air quality, wat...

  9. [Microbial ecology of archaeal ammonia oxidation--a review].

    PubMed

    Jia, Zhongjun; Weng, Jiahua; Lin, Xiangui; Conrad, Ralf

    2010-04-01

    Bacteria have long been considered as the key driver of ammonia oxidation on earth. This concept has been challenged recently by the discovery of chemolithoautotrophic isolate of ammonia-oxidizing archaeon in marine. The relative contribution of bacteria and archaea to ammonia oxidation is essential for our understanding of global nitrogen cycle. Recent study suggested a key role of archaeal ammonia oxidation in the marine nitrogen cycle. Our work however revealed the predominace of bacterial ammonia oxidation in agricultural soil. From the biogeochemical perspective, here we summarized the discovery, progress and prospect of archaeal ammonia oxidation. Of great interest in the future would be to elucidate the metabolisms of ammonia-oxidizing archaeon in natural environment and the underlying mechanism that leads to the physiological divergence of ammonia oxidizers.

  10. Stabilities of protonated water-ammonia clusters

    NASA Astrophysics Data System (ADS)

    Sundén, A. E. K.; Støchkel, K.; Hvelplund, P.; Brøndsted Nielsen, S.; Dynefors, B.; Hansen, K.

    2018-05-01

    Branching ratios of water and ammonia evaporation have been measured for spontaneous evaporation from protonated mixed clusters H+(H2O)n(NH3)m in the size range 0 ≤ n ≤ 11 and 0 ≤ m ≤ 7. Mixed clusters evaporate water except for clusters containing six or more ammonia molecules, indicating the formation of a stable core of one ammonium ion surrounded by four ammonia molecules and a second shell consisting predominantly of water. We relate evaporative branching ratios to free energy differences between the products of competing channels and determine the free energy differences for clusters with up to seven ammonia molecules. Clusters containing up to five ammonia molecules show a very strong scaling of these free energy differences.

  11. Copper-induced ammonia N-H functionalization.

    PubMed

    Álvarez, María; Álvarez, Eleuterio; Fructos, Manuel R; Urbano, Juan; Pérez, Pedro J

    2016-10-07

    The activation of ammonia has been achieved with the aid of the Tp(Ms)Cu core (Tp(Ms) = hydrotris(3-mesityl-pyrazolyl)borate). Complexes of the general composition Tp(Ms)Cu(amine) (1-4) including the ammonia adduct Tp(Ms)Cu(NH3) (1) have been synthesized and fully spectroscopical- and structurally characterized. Coordinated ammonia in 1 has been reacted with Ph3CPF6 yielding Tp(Ms)Cu(NH2CPh3) (5) as a result of N-H cleavage and N-C bond formation. In a parallel manner the catalytic functionalization of ammonia with ethyl diazoacetate leading to glycinate derivatives has been developed with Tp(Ms)Cu(THF) as the catalyst, in the first example of this transformation with ammonia and a copper-based system.

  12. Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range.

    PubMed

    Dantec, Cécile F; Vitasse, Yann; Bonhomme, Marc; Louvet, Jean-Marc; Kremer, Antoine; Delzon, Sylvain

    2014-11-01

    With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.

  13. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate.

    PubMed

    Moestedt, Jan; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2016-03-01

    Biogas production from nitrogen-rich feedstock results in release of ammonia (NH3), causing inhibition of the microbial process. The reported threshold ammonia value for stable biogas production varies greatly between studies, probably because of differences in operating conditions. Moreover, it is often difficult to separate the effect of ammonia inhibition from that of organic loading rate (OLR), as these two factors are often interrelated. This study attempted to distinguish the effects of ammonia and OLR by analysis of two laboratory-scale biogas reactors operating with thin stillage and subjected to an increase in free ammonia (from 0.30 to 1.1 g L(-1)) either by addition of an external nitrogen source (urea) or by increasing the OLR (3.2-6.0 g volatile solids L(-1) d(-1)). The results showed that ammonia concentration was detrimental for process performance, with the threshold for stability in both processes identified as being about 1 g NH3-N L(-1), irrespective of OLR. Analysis of the methanogenic community showed limited differences between the two reactors on order level and a clear increase in the abundance of Methanomicrobiales, particularly Methanoculleus sp., in response to increasing ammonia concentration. Further comprehensive molecular analysis revealed that diverse Methanoculleus species dominated in the reactors at a given ammonia level at different OLR. The acetogenic community was clearly affected by both ammonia concentration and OLR, suggesting that the volatile fatty acid load in relation to the higher OLR was important for the dynamics of this community. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Processing of ammonia-containing ices by heavy ions and its relevance to outer Solar System surfaces

    NASA Astrophysics Data System (ADS)

    Pilling, Sergio; Seperuelo Duarte, Eduardo; da Silveira, Enio F.; Domaracka, Alicja; Balanzat, Emmanuel; Rothard, Hermann; Boduch, Philippe

    Ammonia-containing ices have been detected or postulated as important components of the icy surfaces of planetary satellites (e.g. Enceladus, Miranda), in the outer Solar System objects (e.g. Charon, Quaoar) and in Oort cloud comets. We present experimental studies of the interaction of heavy, highly-charged, and energetic ions with ammonia-containing ices (pure NH3 ; NH3 :CO; NH3 :H2 O and NH3 :H2 O:CO) in an attempt to simulate the physical chemistry induced by heavy-ion cosmic rays and heavy-ion solar wind particles at outer Solar System surfaces. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different ion fluences. The dissociation cross-section and sputtering yield of ammonia and other ice compounds have been determined. Half-life of frozen ammonia due to heavy ion bombardment at different Solar System surfaces has been estimated. Radiolysis products have been identified and their implications for the chemistry on outer Solar System surfaces are discussed.

  15. Localization, characterization and candidate gene discovery for genes controlling dormancy, chilling requirement, bloom time, and heat requirement in Prunus species.

    USDA-ARS?s Scientific Manuscript database

    Perennial fruiting trees require sustained exposure to low, near freezing, temperatures before vigorous floral and vegetative bud break is possible after the resumption of warm temperatures in the spring. The depth of dormancy, duration of chilling required (the chilling requirement, CR) blooming da...

  16. Incidence of Clostridium perfringens in commercially produced cured raw meat product mixtures and behavior in cooked products during chilling and refrigerated storage.

    PubMed

    Taormina, Peter J; Bartholomew, Gene W; Dorsa, Warren J

    2003-01-01

    A total of 445 whole-muscle and ground or emulsified raw pork, beef, and chicken product mixtures acquired from industry sources were monitored over a 10-month period for vegetative and spore forms of Clostridium perfringens. Black colonies that formed on Shahidi-Ferguson perfringens (SFP) agar after 24 h at 37 degrees C were considered presumptive positive. Samples that were positive after a 15-min heat shock at 75 degrees C were considered presumptive positive for spores. Of 194 cured whole-muscle samples, 1.6% were positive; spores were not detected from those samples. Populations of vegetative cells did not exceed 1.70 log10 CFU/g and averaged 1.56 log10 CFU/g. Of 152 cured ground or emulsified samples, 48.7% were positive, and 5.3% were positive for spores. Populations of vegetative cells did not exceed 2.72 log10 CFU/g and averaged 1.98 log10 CFU/g; spores did not exceed 2.00 log10 CFU/g and averaged 1.56 log10 CFU/g. Raw bologna (70% chicken), chunked ham with emulsion, and whole-muscle ham product mixtures were inoculated with C. perfringens spores (ATCC 12916, ATCC 3624, FD1041, and two product isolates) to ca. 3.0 log10 CFU/g before being subjected either to thermal processes mimicking cooking and chilling regimes determined by in-plant temperature probing or to cooking and extended chilling regimes. Populations of C. perfringens were recovered on SFP from each product at the peak cook temperatures, at 54.4, 26.7, and 7.2 degrees C, and after up to 14 days of storage under vacuum at 4.4 degrees C. In each product, populations remained relatively unchanged during chilling from 54.4 to 7.2 degrees C and declined slightly during refrigerated storage. These findings indicate processed meat products cured with sodium nitrite are not at risk for the growth of C. perfringens during extended chilling and cold storage.

  17. 9 CFR 381.66 - Temperatures and chilling and freezing procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Temperatures and chilling and freezing procedures. 381.66 Section 381.66 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND...

  18. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  19. Competition for ammonia influences the structure of chemotrophic communities in geothermal springs.

    PubMed

    Hamilton, Trinity L; Koonce, Evangeline; Howells, Alta; Havig, Jeff R; Jewell, Talia; de la Torre, José R; Peters, John W; Boyd, Eric S

    2014-01-01

    Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii" and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable of

  20. Competition for Ammonia Influences the Structure of Chemotrophic Communities in Geothermal Springs

    PubMed Central

    Hamilton, Trinity L.; Koonce, Evangeline; Howells, Alta; Havig, Jeff R.; Jewell, Talia; de la Torre, José R.; Peters, John W.

    2014-01-01

    Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes. Dominant small-subunit rRNA sequences in Perpetual Spouter source sediments are closely affiliated with the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” and the putatively nitrogen-fixing (diazotrophic) bacterium Thermocrinis albus, respectively, suggesting that these populations may interact at the level of the bioavailable N pool, specifically, ammonia. This hypothesis was evaluated by using a combination of geochemical, physiological, and transcriptomic analyses of sediment microcosms. Amendment of microcosms with allylthiourea, an inhibitor of ammonia oxidation, decreased rates of acetylene reduction (a proxy for N2 fixation) and nitrite production (a proxy for ammonia oxidation) and decreased transcript levels of structural genes involved in both nitrogen fixation (nifH) and ammonia oxidation (amoA). In contrast, amendment of microcosms with ammonia stimulated nitrite production and increased amoA transcript levels while it suppressed rates of acetylene reduction and decreased nifH transcript levels. Sequencing of amplified nifH and amoA transcripts from native sediments, as well as microcosms, at 2 and 4 h postamendment, indicates that the dominant and responsive populations involved in ammonia oxidation and N2 fixation are closely affiliated with Ca. Nitrosocaldus yellowstonii and T. albus, respectively. Collectively, these results suggest that ammonia-oxidizing archaea, such as Ca. Nitrosocaldus yellowstonii, have an apparent affinity for ammonia that is higher than that of the diazotrophs present in this ecosystem. Depletion of the bioavailable N pool through the activity of ammonia-oxidizing archaea likely represents a strong selective pressure for the inclusion of organisms capable

  1. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  2. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  3. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  4. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  5. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent by...

  6. A Cyanine Dye Encapsulated Porous Fibrous Mat for Naked-Eye Ammonia Sensing.

    PubMed

    Ji, Chendong; Ma, Lijing; Yin, Meizhen; Yang, Wantai; Pan, Kai

    2016-08-19

    Electrospun ultrathin fiber-based sensors are desirable because of their practicality and sensitivity. Ammonia-detection systems are in high demand in different areas, including the industrial and agricultural fields. However, current technologies rely on large and complex instruments that restrict their actual utilization. Herein, we report a flexible naked-eye ammonia sensor, the polylactic acid-cyanine (PLA-Cy) fibrous mat, which was fabricated by blending a carboxyl-functionalized cyanine dye (D1) into electospun PLA porous fibers. The sensing mat was shown to undergo a naked-eye-detectable color change from white to blue upon exposure to ammonia vapor. The mat showed high selectivity to ammonia gas with a detection limit of 3.3 ppm. Aggregated D1 was first encapsulated by PLA and was then ionized by NH3 . These mechanisms were examined by photophysical studies and scanning electron microscopy. The aggregation-deaggregation process of D1 in the PLA-Cy fibrous mat led to the color change. This work provides a facile method for the naked-eye detection of ammonia and a novel strategy for the use of organic dyes in ammonia sensing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  8. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  9. Infrared Spectroscopy of Ammonia - Hydrocarbon Ices Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Engel, P. A.; Kalogerakis, K. S.

    2005-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas.1,2 This discrepancy highlights an important gap in our understanding of ammonia and its spectral signatures in Jupiter's atmosphere. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning").2,3 We are performing laboratory experiments that investigate the above hypotheses. Thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light. These spectroscopic measurements aim to identify the photophysical and chemical processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. Our current results indicate a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hexane, cyclohexane, and benzene. Furthermore, strongest suppression is observed in the case of benzene, followed in magnitude by hexane and cyclohexane. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 is gratefully acknowledged. The participation of Patricia A. Engel was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  10. Ammonia synthesis using magnetic induction method (MIM)

    NASA Astrophysics Data System (ADS)

    Puspitasari, P.; Razak, J. Abd; Yahya, N.

    2012-09-01

    The most challenging issues for ammonia synthesis is to get the high yield. New approach of ammonia synthesis by using Magnetic Induction Method (MIM) and the Helmholtz Coils has been proposed. The ammonia detection was done by using Kjeldahl Method and FTIR. The system was designed by using Autocad software. The magnetic field of MIM was vary from 100mT-200mT and the magnetic field for the Helmholtz coils was 14mT. The FTIR result shows that ammonia has been successfully formed at stretching peaks 1097,1119,1162,1236, 1377, and 1464 cm-1. UV-VIS result shows the ammonia bond at 195nm of wavelength. The ammonia yield was increase to 244.72μmole/g.h by using the MIM and six pairs of Helmholtz coils. Therefore this new method will be a new promising method to achieve the high yield ammonia at ambient condition (at 25δC and 1atm), under the Magnetic Induction Method (MIM).

  11. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    PubMed

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  12. A mass transfer model of ammonia volatilization from anaerobic digestate.

    PubMed

    Whelan, M J; Everitt, T; Villa, R

    2010-10-01

    Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilization from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilization was approximately 5.2 g Nm(-2)week(-1). The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Ammonia-oxidizing archaea versus bacteria in two soil aquifer treatment systems.

    PubMed

    Ding, Kun; Wen, Xianghua; Li, Yuyang; Shen, Bo; Zhang, Bing

    2015-02-01

    So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95% ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70 ± 0.56 and 0.82 ± 0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.

  14. Effects of -1.5°C Super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor Fillets: Cathepsin activity, muscle histology, texture and liquid leakage.

    PubMed

    Bahuaud, D; Mørkøre, T; Langsrud, Ø; Sinnes, K; Veiseth, E; Ofstad, R; Thomassen, M S

    2008-11-15

    The aim of this study was to evaluate the impact of super-chilling on the quality of Atlantic salmon (Salmo salar) pre-rigor fillets. The fillets were kept for 45min in a super-chilling tunnel at -25°C with an air speed in the tunnel at 2.5m/s, to reach a fillet core temperature of -1.5°C, prior to ice storage in a cold room for 4 weeks. Super-chilling seemed to form intra- and extracellular ice crystals in the upper layer of the fillets and prevent myofibre contraction. Lysosome breakages followed by release of cathepsin B and L during storage and myofibre-myofibre detachments were accelerated in the super-chilled fillets. Super-chilling resulted in higher liquid leakage and increased myofibre breakages in the fillets, while texture values of fillets measured instrumentally were not affected by super-chilling one week after treatment. Optimisation of the super-chilling technique is needed to avoid the formation of ice crystals, which may cause irreversible destruction of the myofibres, in order to obtain high quality products. Copyright © 2008 Elsevier Ltd. All rights reserved.

  15. Ammonia chemistry in a flameless jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicalsmore » which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)« less

  16. Polyaniline-based optical ammonia detector

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  17. Satellite Observations of Tropospheric Ammonia

    NASA Astrophysics Data System (ADS)

    Shephard, M. W.; Luo, M.; Rinsland, C. P.; Cady-Pereira, K. E.; Beer, R.; Pinder, R. W.; Henze, D.; Payne, V. H.; Clough, S.; Rodgers, C. D.; Osterman, G. B.; Bowman, K. W.; Worden, H. M.

    2008-12-01

    Global high-spectral resolution (0.06 cm-1) nadir measurements from TES-Aura enable the simultaneous retrieval of a number of tropospheric pollutants and trace gases in addition to the TES standard operationally retrieved products (e.g. carbon monoxide, ozone). Ammonia (NH3) is one of the additional species that can be retrieved in conjunction with the TES standard products, and is important for local, regional, and global tropospheric chemistry studies. Ammonia emissions contribute significantly to several well-known environmental problems, yet the magnitude and seasonal/spatial variability of the emissions are poorly constrained. In the atmosphere, an important fraction of fine particulate matter is composed of ammonium nitrate and ammonium sulfate. These particles are statistically associated with health impacts. When deposited to ecosystems in excess, nitrogen, including ammonia can cause nutrient imbalances, change in ecosystem species composition, eutrophication, algal blooms and hypoxia. Ammonia is also challenging to measure in-situ. Observations of surface concentrations are rare and are particularly sparse in North America. Satellite observations of ammonia are therefore highly desirable. We recently demonstrated that tropospheric ammonia is detectable in the TES spectra and presented some corresponding preliminary retrievals over a very limited range of conditions (Beer et al., 2008). Presented here are results that expand upon these initial TES ammonia retrievals in order to evaluate/validate the retrieval results utilizing in-situ surface observations (e.g. LADCO, CASTNet, EPA /NC State) and chemical models (e.g. GEOS-Chem and CMAQ). We also present retrievals over regions of interest that have the potential to help further understand air quality and the active nitrogen cycle. Beer, R., M. W. Shephard, S. S. Kulawik, S. A. Clough, A. Eldering, K. W. Bowman, S. P. Sander, B. M. Fisher, V. H. Payne, M. Luo, G. B. Osterman, and J. R. Worden, First

  18. Enumeration of Escherichia coli in swab samples from pre- and post-chilled pork and lamb carcasses using 3M™ Petrifilm™ Select E. coli and Simplate® Coliforms/E. coli.

    PubMed

    Hauge, Sigrun J; Østensvik, Øyvin; Monshaugen, Marte; Røtterud, Ole-Johan; Nesbakken, Truls; Alvseike, Ole

    2017-08-01

    The aim of the study was to compare two analytical methods; 3M Petrifilm™ Select E. coli and SimPlate® Coliforms &E. coli, for detection and enumeration of E. coli using swab samples from naturally contaminated pork and lamb carcasses that were collected before and after chilling. Blast chilling was used for pork carcasses. Swab samples (n=180) were collected from 60 warm and 60 chilled pork carcasses, and 30 warm and 30 chilled lamb carcasses, and analysed in parallel. The concordance correlation coefficient between Petrifilm and SimPlate was 0.89 for pork and 0.81 for lamb carcasses. However, the correlation was higher for warm carcasses (0.90) than chilled carcasses (0.72). For chilled lamb carcasses, the correlation was only 0.50, and SimPlate gave slightly higher results than Petrifilm (P=0.09). Slower chilling gave slightly lesser agreement between methods than for blast chilling, however, both Petrifilm and SimPlate methodologies are suitable and recommended for use in small laboratories in abattoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch).

    PubMed

    Kanjana, Worarad; Suzuki, Tomohiro; Ishii, Kazuo; Kozaki, Toshinori; Iigo, Masayuki; Yamane, Kenji

    2016-08-08

    Ornamental peaches cv. 'Yaguchi' (Prunus persica (L.) Batsch) can be propagated via seeds. The establishment of efficient seed treatments for early germination and seedling growth is required to shorten nursery and breeding periods. It is important, therefore, to identify potential candidate genes responsible for the effects of rinsing and chilling on seed germination. We hypothesized that longer rinsing combined with chilling of seeds can alter the genes expression in related to dormancy and then raise the germination rate in the peach. To date, most molecular studies in peaches have involved structural genomics, and few transcriptome studies of seed germination have been conducted. In this study, we investigated the function of key seed dormancy-related genes using next-generation sequencing to profile the transcriptomes involved in seed dormancy in peaches. De novo assembly and analysis of the transcriptome identified differentially expressed and unique genes present in this fruit. De novo RNA-sequencing of peach was performed using the Illumina Miseq 2000 system. Paired-end sequence from mRNAs generated high quality sequence reads (9,049,964, 10,026,362 and 10,101,918 reads) from 'Yaguchi' peach seeds before rinsed (BR) and after rinsed for 2 or 7 days with a chilling period of 4 weeks (termed 2D4W and 7D4W), respectively. The germination rate of 7D4W was significantly higher than that of 2D4W. In total, we obtained 51,366 unique sequences. Differential expression analysis identified 7752, 8469 and 506 differentially expressed genes from BR vs 2D4W, BR vs 7D4W and 2D4W vs 7D4W libraries respectively, filtered based on p-value and an adjusted false discovery rate of less than 0.05. This study identified genes associated with the rinsing and chilling process that included those associated with phytohormones, the stress response and transcription factors. 7D4W treatment downregulated genes involved in ABA synthesis, catabolism and signaling pathways, which

  20. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature

    USDA-ARS?s Scientific Manuscript database

    Tomato fruits exposed to chilling temperatures suffer aroma loss prior to visual chilling injury (CI) symptoms. Methyl salicylate (MeSA) and methyl jasmonate (MeJA) treatments were reported to alleviate the development of visual CI, however, it is unknown if the treatments alleviate internal CI in t...

  1. Method for forming ammonia

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Zuck, Larry D.

    2008-08-19

    A method for forming ammonia is disclosed and which includes the steps of forming a plasma; providing a source of metal particles, and supplying the metal particles to the plasma to form metal nitride particles; and providing a substance, and reacting the metal nitride particles with the substance to produce ammonia, and an oxide byproduct.

  2. Ammonia concentration at emergence and its effects on the recovery of different species of entomopathogenic nematodes.

    PubMed

    San-Blas, Ernesto; Pirela, Deynireth; García, Dana; Portillo, Edgar

    2014-09-01

    The life cycle of entomopathogenic nematodes (EPN) occurs inside an insect cadaver and an accumulation of ammonia initiates as a consequence of the nematodes defecation. This accumulation reduces the food resources quality and creates a detrimental environment for nematodes. When a given ammonia concentration is reached, the nematodes start their emergence process, searching for a new host. In the present work, this parameter, ammonia triggering point (ATP) was measured in 7 Steinernema species/strains. The effect of different ammonia concentrations on the recovery process and their consequences in the nematodes survival were also investigated. The results indicate that ATP varies among nematode species; Steinernema glaseri showed the highest ATP of the evaluated species (1.98±2.6 mg of NH4-N*g of Galleria mellonella(-1)); whereas Steinernema riobrave presented the lowest ATP (1.16±0.1 mg of NH4-N*g of G. mellonella(-1)). On the other hand, the nematode emergence could be a repulsive response when ATP is reached. As the ammonia concentration increased the recovery percentage of Steinernema feltiae (Chile strain) dropped gradually from 79.4±11.9% in the control treatment to 0% when 1mg of NH4-N*ml of bacterial broth(-1) was added. It is possible, that emergence process could be a repulsive response of the nematodes due to ammonia concentration when is reaching the ATP. The role of ammonia inside the insect cadavers, might suggests connections with some stages of the EPN life cycle. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The responses of antioxidant system in bitter melon, sponge gourd, and winter squash under flooding and chilling stresses

    NASA Astrophysics Data System (ADS)

    Do, Tuong Ha; Nguyen, Hoang Chinh; Lin, Kuan-Hung

    2018-04-01

    The objective of this paper was to review the responses of antioxidant system and physiological parameters of bitter melon (BM), sponge gourd (SG), and winter squash (WS) under waterlogged and low temperature conditions. The BM and SG plants were subjected to 0-72 h flooding treatments, and BM and WS plants were exposed to chilling at 12/7 °C (day/night) for 0-72 h. Different genotypes responded differently to environmental stress according to their various antioxidant system and physiological parameters. Increased ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities provided SG and WS plants with increased waterlogging and chilling stress tolerance, respectively, compared to BM plants. The APX gene from SG and the SOD gene from WS were then cloned, and the regulation of APX and SOD gene expressions under flooding and chilling stress, respectively, were also measured. Increased expression of APX and SOD genes was accompanied by the increased activity of the enzyme involved in detoxifying reactive oxygen species (ROS) in response to those stresses. Both APX and SOD activities can be used for selecting BM lines with the best tolerances to water logging and chilling stresses.

  4. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.

    PubMed

    Holá, Dana; Kocová, Marie; Rothová, Olga; Wilhelmová, Nad'a; Benesová, Monika

    2007-07-01

    The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll content decreased in plants subjected to 3 or 4 weeks of chilling, but not in those subjected to 1 or 2 weeks of chilling. This decrease was more pronounced in inbreds compared to their hybrids. The activity of superoxide dismutase did not much change with the increasing length of chilling period in the inbreds but decreased in the hybrids, the glutathione reductase activity increased in both types of genotypes but more in the inbred lines, while for ascorbate peroxidase and catalase the changes in parents-hybrids relationship did not show any specific trend. The PS1 activity and the carotenoids' content was not much affected.

  5. Rapid-Chill Cryogenic Coaxial Direct-Acting Solenoid Valve

    NASA Technical Reports Server (NTRS)

    Richard, James; Castor, Jim; Sheller, Richard

    2006-01-01

    A commercially available cryogenic direct- acting solenoid valve has been modified to incorporate a rapid-chill feature. The net effect of the modifications is to divert some of the cryogenic liquid to the task of cooling the remainder of the cryogenic liquid that flows to the outlet. Among the modifications are the addition of several holes and a gallery into a valve-seat retainer and the addition of a narrow vent passage from the gallery to the atmosphere.

  6. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    PubMed

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Identification of reference genes for RT-qPCR analysis in peach genotypes with contrasting chilling requirements.

    PubMed

    Marini, N; Bevilacqua, C B; Büttow, M V; Raseira, M C B; Bonow, S

    2017-05-25

    Selecting and validating reference genes are the first steps in studying gene expression by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The present study aimed to evaluate the stability of five reference genes for the purpose of normalization when studying gene expression in various cultivars of Prunus persica with different chilling requirements. Flower bud tissues of nine peach genotypes from Embrapa's peach breeding program with different chilling requirements were used, and five candidate reference genes based on the RT-qPCR that were useful for studying the relative quantitative gene expression and stability were evaluated using geNorm, NormFinder, and bestKeeper software packages. The results indicated that among the genes tested, the most stable genes to be used as reference genes are Act and UBQ10. This study is the first survey of the stability of reference genes in peaches under chilling stress and provides guidelines for more accurate RT-qPCR results.

  8. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  9. Potential nitrous oxide yield of AOA vs. AOB and utilization of carbon and nitrogen in the ammonia oxidizing process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Ma, L.; Dai, M.; Tan, S.; Xia, X.; Liu, H.

    2016-12-01

    Nitrous oxide (N2O), a greenhouse gas, is a by-product during ammonia oxidation process, the production of which is often stimulated under low dissolved oxygen (DO) in the estuarine environment. The potential yield of N2O has been considered to be driven by ammonia-oxidizing bacteria (AOB) of Betaproteobacteria & Gammaproteobacteria and/or ammonia-oxidizing archaea (AOA) of Thaumarchaeota. In order to examine the relative importance of AOA and AOB in producing N2O and in modulating the potential N2O yield, arch-amoA, beta-amoA, gamma-amoA encoding for the alpha subunit of the ammonia monooxygenase (AMO) are used as biomarkers to identify the distributions and bioactivities of AOA and AOB in the Pearl River Estuary (PRE). Size fractionation experiments were conducted to distinguish AOA and AOB on particles in different size-fractions of > 3 μm, 0.45-3 μm, and 0.22-0.45 μm. Pure culture of N. maritimusSCM1 was studied as a model organism to identify the organic carbon production during ammonia oxidation by SCM1 strains. Our results show that AOA distributes largely in the free-living state and could adapt to very limited ammonia substrate and low saturation of DO; AOB mainly distributes at the particle-attached state under relative richer ammonia and high DO conditions; however, the RNA/DNA ratio of AOB was higher than that of AOA under the same conditions suggesting AOB is relatively more actively expressed. In the upper reach of PRE, the dominant microorganism in the water column was AOB and the in situ N2O/NH3 therein ranged 0.73-3.74 ‰. In the lower PRE, AOA was dominated, and the in situ N2O/NH3 was of 1.17- 7.32‰. At selected sites, we estimated isotope effect (e) of AOA (eDIC/bulk) as -23.94‰ and AOB (eDIC/bulk) as -56.6‰ to -44.8‰, which is consistent with the studies of pure cultures. The coefficient of C sequestration "k", defined as (C biomass / DIC in situ) / (N biomass / ammonia in situ) to differ the utilization of carbon and nitrogen, of

  10. Laser-based trace gas detection of ethane as a result of photo-oxidative damage in chilled cucumber leaves (invited)

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.

    2003-01-01

    At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.

  11. The Effects of Acute Copper and Ammonia Challenges on Ammonia and Urea Excretion by the Blue Crab Callinectes sapidus.

    PubMed

    Zimmer, Alex M; Jorge, Marianna Basso; Wood, Chris M; Martins, Camila M G; Bianchini, Adalto

    2017-04-01

    Copper (Cu) is a persistent environmental contaminant that elicits several physiological disturbances in aquatic organisms, including a disruption in ammonia regulation. We hypothesized that exposure to Cu in a model crustacean (blue crab, Callinectes sapidus) acclimated to brackish water (2 ppt) would lead to hyperammonemia by stimulating an increase in ammonia production and/or by inhibiting ammonia excretion. We further hypothesized that urea production would represent an ammonia detoxification strategy in response to Cu. In a pilot experiment, exposure to 0, 100, and 200 µg/L Cu for 6 h caused significant concentration-dependent increases in ammonia excretion (J amm ). Based on these results, an acute 24-h 100 µg/L Cu exposure was conducted and this similarly caused an overall stimulation of J amm during the 24-h period, indicative of an increase in ammonia production. Terminal haemolymph total ammonia content (T amm ) was unchanged, suggesting that while ammonia production was increased, there was no inhibition of the excretion mechanism. In support of our second hypothesis, urea excretion (J urea ) increased in response to Cu exposure; haemolymph [urea] was unaffected. This suggested that urea production also was increased. To further test the hypothesis that J urea increased to prevent hyperammonemia during Cu exposure, crabs were exposed to high environmental ammonia (HEA; 2.5 mmol/L NH 4 HCO 3 ) for 12 h in a separate experiment. This led to a fourfold increase in haemolymph T amm , whereas J urea increased only transiently and haemolymph [urea] was unchanged, indicating that urea production likely does not contribute to the attenuation of hyperammonemia in blue crabs. Overall, Cu exposure in blue crabs led to increased ammonia and urea production, which were both eliminated by excretion. These results may have important implications in aquaculture systems where crabs may be exposed to elevated Cu and/or ammonia.

  12. The Chilling Optimum of Idaho and Arizona Ponderosa Pine Buds

    Treesearch

    David L. Wenny; Daniel J. Swanson; R. Kasten Dumroese

    2002-01-01

    Ponderosa pine (Pinus ponderosa) seedlings from Idaho (var. ponderosa) and Arizona (var. scopulorum) grown in a container nursery received optimum chilling [2,010 hr (84 days) of temperatures below 5°C]. While seedlings were in the greenhouse, days required for 50% of the population to break bud were similar for both seed sources...

  13. Estimating ammonia volatilization and deposition from fertilized vegetation

    NASA Astrophysics Data System (ADS)

    Heuer, M. W.; Myles, L.

    2010-12-01

    Deposition of reactive nitrogen in the form of atmospheric ammonia (NH3) affects ecosystem dynamics. Large amounts of atmospheric ammonia can volatilize from fertilized vegetation and deposit to adjacent areas, contributing to changes in soil and plant chemistry. To study the air-surface exchange of ammonia, instrumentation was installed from February 15 through April 12, 2010 at an agricultural research area of managed crops and grassland near Knoxville, TN. A Picarro ammonia analyzer was deployed to measure ammonia at two heights (z = 0.5 m and 2 m) near a plot of winter wheat fertilized with urea. Integrated samples of ammonia were also collected with annular denuder systems at both heights. Concentrations from the Picarro averaged 3-4 ppb of ammonia, but increased by a factor of 20 during fertilization. Fluxes were derived from concurrent measurements of ammonia concentration and air temperature using the flux-gradient method.

  14. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    PubMed

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is

  15. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings

    PubMed Central

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling

  16. Ammonia

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 16 / 163Fa www.epa.gov / iris Toxicological Review of Ammonia Noncancer Inhalation [ CASRN 7664 - 41 - 7 ] September 2016 Integrated Risk Information System National Center for Environmental Assessment Office of Research and Development U.S . Environmental Protection Agency Washingto

  17. Ammonia gas permeability of meat packaging materials.

    PubMed

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P < 0.05) with increasing exposure times and ammonia concentrations. Average ammonia levels in the water were 7.77 ppm for MLP, 5.94 ppm for LDPE, and 0.89 ppm for V-PA/PE at 500 ppm exposure for 48 h at 21 ± 3 °C. Average pH values were 8.64 for MLP, 8.38 for LDPE, and 7.23 for V-PA/PE (unexposed ranged from 5.49 to 6.44) at 500 ppm exposure for 48 h. The results showed that temperature influenced ammonia permeability. Meat packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  18. Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity

    PubMed Central

    Halpin, Laura E.; Yamamoto, Bryan K.

    2012-01-01

    Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466, an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules. PMID:22993432

  19. Preparation of a Ammonia-Treated Lac Dye and Structure Elucidation of Its Main Component.

    PubMed

    Nishizaki, Yuzo; Ishizuki, Kyoko; Akiyama, Hiroshi; Tada, Atsuko; Sugimoto, Naoki; Sato, Kyoko

    2016-01-01

    Lac dye and cochineal extract contain laccaic acids and carminic acid as the main pigments, respectively. Both laccaic acids and carminic acid are anthraquinone derivatives. 4-Aminocarminic acid (acid-stable carmine), an illegal colorant, has been detected in several processed foods. 4-Aminocarminic acid is obtained by heating cochineal extract (carminic acid) in ammonia solution. We attempted to prepare ammonia-treated lac dye and to identify the structures of the main pigment components. Ammonia-treated lac dye showed acid stability similar to that of 4-aminocarminic acid. The structures of the main pigments in ammonia-treated lac dye were analyzed using LC/MS. One of the main pigments was isolated and identified as 4-aminolaccaic acid C using various NMR techniques, including 2D-INADEQUATE. These results indicated that ammonia-treatment of lac dye results in the generation of 4-aminolaccaic acids.

  20. IRIS Toxicological Review of Ammonia Noncancer Inhalation ...

    EPA Pesticide Factsheets

    In September 2016, EPA finalized the IRIS assessment of Ammonia (Noncancer Inhalation). The Toxicological Review was reviewed internally by EPA and by other federal agencies and White House Offices before public release in June 2016. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science discussion materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ammonia (Noncancer Inhalation) are posted on this site. Note: No major science comments were received on the Interagency Science Discussion Draft. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for ammonia. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.

  1. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.

    PubMed

    Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng

    2018-06-06

    Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.

  2. The Chemistry of Liquid Ammonia.

    ERIC Educational Resources Information Center

    Lagowski, J. J.

    1978-01-01

    The solvent and chemical properties of liquid ammonia are presented. In a certain sense, ammonia is a more versatile solvent than is water because of its ability to solubilize, without reaction, highly negative or reducing species. (Author/BB)

  3. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  4. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo.

    PubMed

    Limpiyakorn, Tawan; Shinohara, Yuko; Kurisu, Futoshi; Yagi, Osami

    2005-10-01

    We investigated ammonia-oxidizing bacteria in activated sludge collected from 12 sewage treatment systems, whose ammonia removal and treatment processes differed, during three different seasons. We used real-time PCR quantification to reveal total bacterial numbers and total ammonia oxidizer numbers, and used specific PCR followed by denaturing gel gradient electrophoresis, cloning, and sequencing of 16S rRNA genes to analyze ammonia-oxidizing bacterial communities. Total bacterial numbers and total ammonia oxidizer numbers were in the range of 1.6 x 10(12) - 2.4 x 10(13) and 1.0 x 10(9) - 9.2 x 10(10)cellsl(-1), respectively. Seasonal variation was observed in the total ammonia oxidizer numbers, but not in the ammonia-oxidizing bacterial communities. Members of the Nitrosomonas oligotropha cluster were found in all samples, and most sequences within this cluster grouped within two of the four sequence types identified. Members of the clusters of Nitrosomonas europaea-Nitrosococcus mobilis, Nitrosomonas cryotolerans, and unknown Nitrosomonas, occurred solely in one anaerobic/anoxic/aerobic (A2O) system. Members of the Nitrosomonas communis cluster occurred almost exclusively in association with A2O and anaerobic/aerobic systems. Solid residence time mainly influenced the total numbers of ammonia-oxidizing bacteria, whereas dissolved oxygen concentration primarily affected the ammonia-oxidizing activity per ammonia oxidizer cell.

  5. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia.

    PubMed

    Hangzo, Hnunlalliani; Banerjee, Bodhisattwa; Saha, Shrabani; Saha, Nirmalendu

    2017-02-01

    The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH 4 Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.

  6. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery.

    PubMed

    Stepiński, Dariusz

    2009-03-01

    The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.

  7. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    PubMed

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  8. Ammonia Excretion in an Osmoregulatory Syncytium Is Facilitated by AeAmt2, a Novel Ammonia Transporter in Aedes aegypti Larvae

    PubMed Central

    Durant, Andrea C.; Donini, Andrew

    2018-01-01

    The larvae of the mosquito Aedes aegypti inhabit ammonia rich septic tanks in tropical regions of the world that make extensive use of these systems, explaining the prevalence of disease during dry seasons. Since ammonia (NH3/NH4+) is toxic to animals, an understanding of the physiological mechanisms of ammonia excretion permitting the survival of A. aegypti larvae in high ammonia environments is important. We have characterized a novel ammonia transporter, AeAmt2, belonging to the Amt/MEP/Rh family of ammonia transporters. Based on the amino acid sequence, the predicted topology of AeAmt2 consists of 11 transmembrane helices with an extracellular N-terminus and a cytoplasmic C-terminus region. Alignment of the predicted AeAmt2 amino acid sequence with other Amt/MEP proteins from plants, bacteria, and yeast highlights the presence of conserved residues characteristic of ammonia conducting channels in this protein. AeAmt2 is expressed in the ionoregulatory anal papillae of A. aegypti larvae where it is localized to the apical membrane of the epithelium. dsRNA-mediated knockdown of AeAmt2 results in a significant decrease in NH4+ efflux from the anal papillae, suggesting a key role in facilitating ammonia excretion. The effect of high environmental ammonia (HEA) on expression of AeAmt2, along with previously characterized AeAmt1, AeRh50-1, and AeRh50-2 in the anal papillae was investigated. We show that changes in expression of ammonia transporters occur in response to acute and chronic exposure to HEA, which reflects the importance of these transporters in the physiology of life in high ammonia habitats. PMID:29695971

  9. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    NASA Astrophysics Data System (ADS)

    Anheier, N. C., Jr.; McDonald, C. E.; Cuta, J. M.; Cuta, F. M.; Olsen, K. B.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. Pacific Northwest Laboratory (PNL) researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH4(+)). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  10. Flexible ammonia handling strategies using both cutaneous and branchial epithelia in the highly ammonia-tolerant Pacific hagfish.

    PubMed

    Clifford, Alexander M; Weinrauch, Alyssa M; Edwards, Susan L; Wilkie, Michael P; Goss, Greg G

    2017-08-01

    Hagfish consume carrion, potentially exposing them to hypoxia, hypercapnia, and high environmental ammonia (HEA). We investigated branchial and cutaneous ammonia handling strategies by which Pacific hagfish ( Eptatretus stoutii ) tolerate and recover from high ammonia loading. Hagfish were exposed to HEA (20 mmol/l) for 48 h to elevate plasma total ammonia (T Amm ) levels before placement into divided chambers for a 4-h recovery period in ammonia-free seawater where ammonia excretion ( J Amm ) was measured independently in the anterior and posterior compartments. Localized HEA exposures were also conducted by subjecting hagfish to HEA in either the anterior or posterior compartments. During recovery, HEA-exposed animals increased J Amm in both compartments, with the posterior compartment comprising ~20% of the total J Amm compared with ~11% in non-HEA-exposed fish. Plasma T Amm increased substantially when whole hagfish and the posterior regions were exposed to HEA. Alternatively, plasma T Amm did not elevate after anterior localized HEA exposure. J Amm was concentration dependent (0.05-5 mmol/l) across excised skin patches at up to eightfold greater rates than in skin sections that were excised from HEA-exposed hagfish. Skin excised from more posterior regions displayed greater J Amm than those from more anterior regions. Immunohistochemistry with hagfish-specific anti-rhesus glycoprotein type c (α-hRhcg; ammonia transporter) antibody was characterized by staining on the basal aspect of hagfish epidermis while Western blotting demonstrated greater expression of Rhcg in more posterior skin sections. We conclude that cutaneous Rhcg proteins are involved in cutaneous ammonia excretion by Pacific hagfish and that this mechanism could be particularly important during feeding. Copyright © 2017 the American Physiological Society.

  11. Catalytic synthesis of ammonia-a "never-ending story"?

    PubMed

    Schlögl, Robert

    2003-05-09

    Nitrogen atoms are essential for the function of biological molecules and thus are and important component of fertilizers and medicaments. Bonds to nitrogen also find nonbiological uses in dyes, explosives, and resins. The synthesis of all these materials requires ammonia as an activated nitrogen building block. This situation is true for natural processes and the chemical industry. Knowledge of the various techniques for the preparation of ammonia is thus of fundamental importance for chemistry. The Haber-Bosch synthesis was the first heterogeneous catalytic system employed in the chemical industry and is still in use today. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research.

  12. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    PubMed Central

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2015-01-01

    Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane. PMID:28793453

  13. Crystal Structure of an Ammonia-Permeable Aquaporin

    PubMed Central

    Kirscht, Andreas; Kaptan, Shreyas S.; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L.; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-01-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365

  14. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    PubMed

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  15. Chirality dependent interaction of ammonia with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2018-04-01

    For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.

  16. Ammonia Sensing Behaviors of TiO2-PANI/PA6 Composite Nanofibers

    PubMed Central

    Wang, Qingqing; Dong, Xianjun; Pang, Zengyuan; Du, Yuanzhi; Xia, Xin; Wei, Qufu; Huang, Fenglin

    2012-01-01

    Titanium dioxide-polyaniline/polyamide 6 (TiO2-PANI/PA6) composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO2-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO2-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO2-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO2 had a great influence on both the morphology and the sensing property of TiO2-PANI/PA6 composite nanofibers. PMID:23235446

  17. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    PubMed

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  18. EFFECT OF DRY AIR CHILLING ON WARNER-BRATZLER SHEAR FORCE AND WATER-HOLDING CAPACITY OF BROILER MEAT DEBONED FOUR HOURS POSTMORTEM

    USDA-ARS?s Scientific Manuscript database

    TECHNICAL ABSTRACT Advantages of air chilling (AC) methods over immersion chilling (IC) methods in quality retention and improvement of deboned chicken breast meat depends on experimental conditions, such as deboning time. The objective of this study was to evaluate the effect of a dry-AC method on ...

  19. Detection of low-concentration ammonia using differential laser-induced fluorescence on vapochromic coordination polymers

    NASA Astrophysics Data System (ADS)

    Yin, Dawei; Chapman, Glenn H.; Stevens, David; Gray, Bonnie; Leznoff, Daniel

    2018-02-01

    The detection of ammonia in parts per millions range has been challenging in sensors research, and is of great importance for industrial applications. In previous literature, Vapochromic Coordination Polymers (VCP) were developed to achieve luminescence upon a targeted gas exposures. We investigate a specific VCP, Zn[Au(CN)2]2,as an ammonia sensing material. Upon high concentration ammonia exposure, the fluorescent peak under near-UV stimulation undergoes a spectral shift from 460nm to 520nm, while the intensity increases by 3 4X. However, at ammonia concentrations < 50ppm, the spectral shift becomes hidden within the overall changing fluorescent spectrum shape. Then simple methods, such as detecting the peak wavelength or subtracting post-exposure from pre-exposure spectrums do not work. We developed further excitation and data processing techniques to detect ammonia at lower concentrations. A low-cost 405nm blue-ray DVD laser diode was used as the excitation source, providing a narrow band-width (4nm) stimulation that is separated from the emission peak. We measured the emission using a portable spectrometer (Photon Control SPM-002), and processed the data by separating the spectrum into two regions; (A) from 425 nm to 460 nm and (B) from 460nm to 500nm. Next, the integrated emissions under both regions were computed, and the value of shorter wavelength region (A) was subtracted from the longer wavelength one (B). When exposed to ammonia, region (A) reduces overall intensity while region (B) increases, resulting a signal starting from negative value and gradually increases to positive values, enabling the detection of 5ppm ammonia in less than 30 seconds gas exposure.

  20. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  1. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils.

    PubMed

    Webster, Gordon; Embley, T Martin; Freitag, Thomas E; Smith, Zena; Prosser, James I

    2005-05-01

    Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.

  2. Effect of dietary protein restriction on renal ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  3. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

    PubMed Central

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar ‘SweetSunshine Williams’, the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars

  4. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress.

    PubMed

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.

  5. Ambient ammonia measurements using laser photo-acoustic spectroscopy

    NASA Technical Reports Server (NTRS)

    Aldridge, M. D., III; Copeland, G. E.; Harward, C. N.

    1981-01-01

    Ammonia concentrations reached minimal levels (approximately 0.1 ppb) in early winter, followed by a sudden later winter increase. A direct relationship between ambient ammonia levels and air temperature was inferred from the data (linear correlation coefficient r=0.53). Ammonia concentrations were determined to be directly related to the absolute humidity of the air (r=0.72); a weaker relationship between ammonia concentrations and relative humidity was discovered (r=0.37). The data also indicated that ammonia levels were generally higher within continental air masses than those of maritime origin. Soil parameters such as pH and moisture content were found to have a major bearing on the release of gaseous ammonia from soils in the region.

  6. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  7. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  8. [Ammonia as a cause for hepatic encephalopathy].

    PubMed

    Naimushin, Alexey; Livneh, Avi

    2010-02-01

    In a patient with cirrhosis of the liver, associated with hepatitis B virus, who was admitted for confusion and acute elevation of liver enzymes, a diagnosis of hepatic encephalopathy was made. A serum ammonia level of 54 (normal less than 33) microgram/liter, supported the diagnosis, but puzzled the medical staff regarding the possibility that ammonia may directly induce the confusion. While it is widely accepted that the ammonia level is a marker that usually parallels the amount of toxins and metabolites that bypasses the liver, its role in causing brain dysfunction is debated. However, since ammonia may directly hinder the metabolism of neuro-transmitters, and drugs and treatments specifically aimed at reducing ammonia levels may minimize the time interval for recovery from the acute brain insult, it is assumed that ammonia by itself had a role in bringing about the encephalopathy manifestations in our patients and other patients with cirrhosis of the liver.

  9. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice.

    PubMed

    Zheng, Guowei; Li, Lixia; Li, Weiqi

    2016-03-22

    Glycerolipids are the principal constituent of cellular membranes; remodelling of glycerolipids plays important roles in temperature adaptation in plants. Temperate plants can endure freezing stress, but even chilling at above-zero temperatures can induce death in tropical species. However, little is known about the differences in glycerolipid response to low temperatures between chilling-sensitive and freezing-tolerant plants. Using ESI-MS/MS-based lipidomic analysis, we compared the glycerolipidome of chilling (4 and 10 °C)-treated rice with that of freezing (-6 and -12 °C)-treated Arabidopsis, both immediately after these low-temperature treatments and after a subsequent recovery culture period. Arabidopsis is a 16:3 plant that harbours both eukaryotic and prokaryotic-type lipid synthesis pathways, while rice is an 18:3 plant that harbours only the eukaryotic lipid synthesis pathway. Arabidopsis contains higher levels of galactolipids than rice and has a higher double bond index (DBI). Arabidopsis contains lower levels of high melting point phosphatidylglycerol (PG) molecules and has a lower average acyl chain length (ACL). Marked phospholipid degradation occurred during the recovery culture period of non-lethal chilling treated rice, but did not occur in non-lethal freezing treated Arabidopsis. Glycerolipids with larger head groups were synthesized more in Arabidopsis than in rice at sub-lethal low-temperatures. Levels of phosphatidic acid (PA) and phosphatidylinositol (PI) rose in both plants after low-temperature treatment. The DBI and ACL of total lipids did not change during low-temperature treatment. A higher DBI and a lower ACL could make the membranes of Arabidopsis more fluid at low temperatures. The ability to synthesize glycerolipids containing a larger head group may correlate with low-temperature tolerance. The low-temperature-induced increase of PA may play a dual role in plant responses to low temperatures: as a lipid signal that initiates

  10. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    PubMed

    Huang, Xin; Zhu, Wei; Dai, Silan; Gai, Shupeng; Zheng, Guosheng; Zheng, Chengchao

    2008-09-01

    A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.

  11. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.

    1995-05-01

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation,more » sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.« less

  12. Rash, fever, and chills after intravenous fluorescein angiography.

    PubMed

    Johnson, R N; McDonald, H R; Schatz, H

    1998-12-01

    To report a previously unreported complication associated with intravenous injection of fluorescein dye. Case report. A 75-year-old man developed a unique complication after intravenous injection of fluorescein dye for angiography. Two hours after receiving an intravenous injection of fluorescein for angiography, the patient developed a fever, rash, and chills. Admission to a hospital and careful systemic evaluation determined that this reaction was a noninfectious allergic response to intravenous fluorescein dye injection. A delayed allergic response to intravenous fluorescein dye injection can occur.

  13. Ammonia in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Meier, R.; Eberhardt, P.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    In comet P/Halley the abundances of ammonia relative to water reported in the literature differ by about one order of magnitude from roughly 0.1% up to 2%. Different observational techniques seem to have inherent systematic errors. Using the ion mass channels m/q = 19 amu/e, 18 amu/e and 17 amu/e of the Neutral Mass Spectrometer experiment aboard the spacecraft Giotto, we derive a production rate of ammonia of (1.5(sub -0.7)(sup +0.5))% relative to water. Inside the contact surface we can explain our data by a nuclear source only. The uncertainty in our abundance of ammonia is primarily a result of uncertainties in some key reaction coefficients. We discuss in detail these reactions and the range of error indicated results from extreme assumptions in the rate coefficients. From our data, even in the worst case, we can exclude the ammonia abundance to be only of the order of a few per mill.

  14. USE OF ZEOLITE FOR REMOVING AMMONIA AND AMMONIA-CAUSED TOXCITY IN MARINE TOXICITY IDENTIFCATION EVALUATIONS (TIES)

    EPA Science Inventory

    Ammonia occurs in marine waters including effluents, receiving waters, and sediment interstitial waters. At sufficiently high concentrations, ammonia can be toxic to aquatic species. Toxicity identification evaluation (TIE) methods provide researchers with tools for identifyi...

  15. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...) Noncorrosive in the liquid and vapor phase to the ammonia tanks and piping. (b) Copper, copper alloys, and...

  16. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...) Noncorrosive in the liquid and vapor phase to the ammonia tanks and piping. (b) Copper, copper alloys, and...

  17. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...) Noncorrosive in the liquid and vapor phase to the ammonia tanks and piping. (b) Copper, copper alloys, and...

  18. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...) Noncorrosive in the liquid and vapor phase to the ammonia tanks and piping. (b) Copper, copper alloys, and...

  19. 46 CFR 151.50-32 - Ammonia, anhydrous.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-32 Ammonia, anhydrous. (a) The anhydrous ammonia tanks may be installed in the bulk liquid cargo tanks provided the liquid surrounding the...) Noncorrosive in the liquid and vapor phase to the ammonia tanks and piping. (b) Copper, copper alloys, and...

  20. Application of ultrasound in chicken breast during chilling by immersion promotes a fast and uniform cooling.

    PubMed

    Flores, Diego Rafael Martins; Brasil, Carla Cristina Bauermann; Campagnol, Paulo Cezar Bastianello; Jacob-Lopes, Eduardo; Zepka, Leila Queiroz; Wagner, Roger; Menezes, Cristiano Ragagnin; Barin, Juliano Smanioto; Flores, Erico Marlon Moraes; Cichoski, Alexandre José

    2018-07-01

    The initial objective of the study was to evaluate different operation modes (sweep and normal) and frequencies (25 and 130 kHz) of ultrasound in pre-chilling of breast chicken cylinders (BCC) immersed in water at 10 °C during 10 min. The second objective was to study the effect of the immersion time (5, 10, 15, 20, and 30 min) using the best operation mode and frequency obtained in the pre-chilling of the BCC in water at 10 °C. Pre-chilling was evaluated in both stages by infrared thermography, and the percentages of water absorption were determined in the second stage. The application of US at 130 kHz and normal operation mode provided a reduction of temperature on the surface of BBC higher (≈19.6%) than untreated samples. Also, compared to control, the US-treated samples in these conditions presented a more uniform cooling rate (≈22.3%) and higher water absorption (≈113%). Copyright © 2018 Elsevier Ltd. All rights reserved.