Science.gov

Sample records for chimeric antibodies expressed

  1. Mouse x pig chimeric antibodies expressed in Baculovirus retain the same properties of their parent antibodies.

    PubMed

    Jar, Ana M; Osorio, Fernando A; López, Osvaldo J

    2009-01-01

    The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse x pig anti-PRRSV antibodies. We cloned the constant regions of gamma-1 and gamma-2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western-blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs.

  2. Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector.

    PubMed Central

    Casadei, J; Powell, M J; Kenten, J H

    1990-01-01

    A fusion protein has been expressed from the relevant genes in mammalian cells consisting of the photoprotein aequorin and an anti-4-hydroxy-3-nitrophenacetyl antibody gene. This chimeric antibody has allowed the development of a sensitive luminescent immunoassay. Initially the cDNA of the photoprotein aequorin from Aequorea victoria was cloned and expressed in Escherichia coli. The gene was expressed as apoaequorin and, by using luciferin isolated from Renilla reniformis, its activity was found essentially identical to native aequorin. The aequorin gene was subcloned into a mammalian expression vector to produce a fusion protein directing secretion of apoaequorin; the aequorin gene was fused to the 3' terminus of an immunoglobulin heavy-chain gene that directed expression of an anti-4-hydroxy-3-nitrophenacetyl antibody. The gene fusion contained the variable region, the constant region domain 1, and part of domain 2 for the IgG2b mouse immunoglobulin, followed by the aequorin gene. Transfection of the chimeric gene into a cell line expressing the complementary lambda 1 light chain, J558L, allowed recovery of a chimeric antibody with binding specificity for the 4-hydroxy-3-nitrophenacetyl group and the related 4-hydroxy-3-iodo-5-nitrophenacetyl hapten. The Ca2(+)-dependent bioluminescent activity of aequorin was also recovered. Images PMID:2315301

  3. Immunotherapy for cancer: construction, expression and functional characterization of chimeric antibodies.

    PubMed

    Motmans, K; Thirion, S; Heyligen, H; Janssens, J; Raus, J; Vandevyver, C

    1996-12-01

    Monoclonal antibodies (Mabs) are a potential key component for the treatment of cancer, because of their specificity and multiple effector functions. Hybridoma technology and progress in genetic engineering made it possible to customize antibody molecules, rendering them more suitable for selective application. A widely used technique is the construction of mouse-human hybrid molecules by recombinant DNA techniques. These so-called chimeric antibodies contain the murine variable (V) regions fused to the human constant (C) regions. In this report, a general approach is described for the production of chimeric antibodies. The gene segments encoding the murine variable heavy and light chain are isolated by the polymerase chain reaction and cloned into expression vectors containing the human gamma 1 heavy chain gene and the human K light chain gene, respectively. Subsequently, these constructs are transfected into a non-Ig-producing murine hybridoma, eg SP2/0 cells. The in vitro study of the functional characteristics and biological properties of the thus obtained chimeric antibodies are discussed.

  4. Reconstruction and expression of chimeric anti-HBx antibody in Escherichia coli.

    PubMed

    Zhou, G; Liu, K D; Tang, Z Y; Chen, Y H; Wu, X F; Schroeder, C H

    1997-01-01

    The variable regions of murine monoclonal anti-HBx immunoglobulin and the constant region of human antibody were cloned by reverse transcript-polymerase chain reaction (RT-PCR). The heavy-chain and light-chain variable regions were connected and coexpressed with human constant region C-r3 and C-k3 in the reconstructed vector of E. coli. The products showed high specificity and binding ability with HBx. Which is closely associated with hepatocarcinogenesis. This makes it possible to humanize the mouse monoclonal antibodies and express the fusion protein in E.coli for potential radioimmunotherapy in patients with hepatocellular carcinoma.

  5. Chimeric human/murine monoclonal IgM antibodies to HIV-1 Nef antigen expressed on chronically infected cells.

    PubMed

    Kawai, Masahiro; He, Lianying; Kawamura, Takeshi; Omoto, Shinya; Fujii, Yoichi R; Okada, Noriko

    2003-01-01

    Human IgM antibody (Ab) to gangliosides induced cytolysis of HIV-1-infected cells by homologous human complement. We expected that any human IgM Ab reactive with HIV-1 infected cells could cause complement-mediated cytolysis. The trans-chromosome mouse (TC mouse) contains human chromosomes harboring genes responsible for immunoglobulin production. Spleen cells from TC mice immunized with recombinant Nef were fused with mouse myeloma cells to generate hybridomas, and we selected those that produced human mu-chain-positive Abs reactive with Nef fixed on an ELISA plate. However, the L-chain of the monoclonal Abs (mAbs) were murine lambda in type and were chimeric, and we could not succeed in obtaining mAb with human mu- and human kappa-chains. The chimeric mAbs reacted with the HIV-1 infected cells as seen with flow cytometric analysis, and the surface expression of Nef was also detectable on chronically infected OM10.1 cells which had no detectable gp120. However, although the reaction of the chimeric IgM mAb with HIV-1-infected MOLT4 cells induced C3 deposition on cell surfaces on incubation with fresh human serum, the cells remained unlysed, as determined by 51Cr release assay. The amount of Nef antigen on the cells might not have been high enough to overcome the function of HRF20 (CD59) that restricts formation of membrane attack complexes of homologous complement. However, combination of anti-Nef IgM mAb with other IgM mAbs reactive with the surface of HIV-1-infected cells may induce a synergistic effect in complement mediated cytolysis.

  6. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses

    PubMed Central

    Dunkel, Amber; Shen, Shixue; LaBranche, Celia C.; Montefiori, David

    2015-01-01

    Abstract We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>107 focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both “free” and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines

  7. [Construction of a recombinant baculovirus transfer vector with two promoters expressing the anti-human CD28 chimeric antibody by using TP-PCR method].

    PubMed

    Zhu, Yan; Chen, Yong-Jing; Qiu, Yu-Hua; Zheng, Feng-Feng; Zhu, Jiang

    2005-09-01

    CD28, a cell surface glycoprotein, predominantly expressed on T cells, belongs to the Ig superfamily and provides critical co-stimulatory signals. The data which have published indicate that the monoclonal antibody against CD28 can decrease curative effects when it was applied in vivo for a long time. In order to avoid the human-anti-mouse action, anti-CD28 mAb must be humanized before it can be used in clinical study. Chimeric antibody, consisting of variable regions of mouse antibody and the constant regions of human IgG1, is often chosen by designers in generating humanized antibody. In this study, to prepare the anti-human CD28 chimeric antibody, the genes coding variable regions of anti-CD28 mAb and the constant regions of human IgG1 were cloned by PCR method. Then, the target genes were assembled by TP-PCR, a novel method developed for fusing genes without designing endonuclease sites at the both end of the target genes, and inserted into the baculovirus transfer vector pAcUW3 respectively. Thus, the recombinant baculovirus transfer vector with two strong promoters, ph and p10 was successfully constructed, which can express two different foreign genes at the same time. The recombinant vector was identified by the methods of restriction digesting, electrophoresis, PCR amplification and further verified by DNA sequence analysis. This work will contribute to expressing the chimeric CD28 antibody in insect cells.

  8. Human antibody expression in transgenic rats: comparison of chimeric IgH loci with human VH, D and JH but bearing different rat C-gene regions.

    PubMed

    Ma, Biao; Osborn, Michael J; Avis, Suzanne; Ouisse, Laure-Hélène; Ménoret, Séverine; Anegon, Ignacio; Buelow, Roland; Brüggemann, Marianne

    2013-12-31

    Expression of human antibody repertoires in transgenic animals has been accomplished by introducing large human Ig loci into mice and, more recently, a chimeric IgH locus into rats. With human VH, D and JH genes linked to the rat C-region antibody expression was significantly increased, similar to wild-type levels not found with fully human constructs. Here we compare four rat-lines containing the same human VH-region (comprising 22 VHs, all Ds and all JHs in natural configuration) but linked to different rat CH-genes and regulatory sequences. The endogenous IgH locus was silenced by zinc-finger nucleases. After breeding, all lines produced exclusively chimeric human H-chain with near normal IgM levels. However, in two lines poor IgG expression and inefficient immune responses were observed, implying that high expression, class-switching and hypermutation are linked to optimal enhancer function provided by the large regulatory region at the 3' end of the IgH locus. Furthermore, exclusion of Cδ and its downstream interval region may assist recombination. Highly diverse IgG and immune responses similar to normal rats were identified in two strains carrying diverse and differently spaced C-genes.

  9. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    PubMed

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  10. Recombinant Mouse-Human Chimeric Antibodies as Calibrators in Immunoassays That Measure Antibodies to Toxoplasma gondii

    PubMed Central

    Hackett, John; Hoff-Velk, Jane; Golden, Alan; Brashear, Jeff; Robinson, John; Rapp, Margaret; Klass, Michael; Ostrow, David H.; Mandecki, Wlodek

    1998-01-01

    In the present study, we examined the feasibility of using recombinant antibodies containing murine variable regions and human constant regions as calibrators or controls in immunoassays. As a model system, we chose the Abbott IMx Toxo immunoglobulin M (IgM) and Toxo IgG assays designed to detect antibodies to Toxoplasma gondii. Two mouse monoclonal antibodies were selected based on their reactivity to the T. gondii antigens P30 and P66. Heavy- and light-chain variable-region genes were cloned from both hybridomas and transferred into immunoglobulin expression vectors containing human kappa and IgG1 or IgM constant regions. The constructs were stably transfected into Sp2/0-Ag14 cells. In the IMx Toxo IgG assay, immunoreactivity of the anti-P30 chimeric IgG1 antibody paralleled that of the positive human plasma-derived assay calibrators. Signal generated with the anti-P66 chimeric IgG1 antibody was observed to plateau below the maximal reactivity observed for the assay calibrator. Examination of the IgM chimeric antibodies in the IMx Toxo IgM assay revealed that both the anti-P30 and anti-P66 antibodies matched the assay index calibrator manufactured with human Toxo IgM-positive plasma. When evaluated with patient samples, the correlation between results obtained with the chimeric antibody calibrators and the positive human plasma calibrators was ≥0.985. These data demonstrate that chimeric mouse-human antibodies are a viable alternative to high-titer positive human plasma for the manufacture of calibrators and controls for diagnostic assays. PMID:9574691

  11. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells.

    PubMed Central

    Liu, A Y; Robinson, R R; Hellström, K E; Murray, E D; Chang, C P; Hellström, I

    1987-01-01

    A chimeric mouse-human antibody has been created that recognizes an antigen found on the surface of cells from many carcinomas. Immunoglobulin constant (C) domains of the mouse monoclonal antibody L6, C gamma 2a and C kappa, were substituted by the human C gamma 1 and C kappa by recombining cDNA modules encoding variable or C domains. The cDNA constructs were transfected into lymphoid cells for antibody production. The chimeric antibody and mouse L6 antibody bound to carcinoma cells with equal affinity and mediated complement-dependent cytolysis. In the presence of human effector cells, the chimeric antibody gave antibody-dependent cellular cytotoxicity at 100 times lower concentration than that needed for the mouse L6 antibody. The chimeric antibody, but not the mouse L6 antibody, is effective against a melanoma line expressing small amounts of the L6 antigen. The findings point to the usefulness of the chimeric antibody approach for obtaining agents with strong antitumor activity for possible therapeutic use in man. PMID:3106970

  12. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  13. Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma.

    PubMed Central

    Luiten, R. M.; Coney, L. R.; Fleuren, G. J.; Warnaar, S. O.; Litvinov, S. V.

    1996-01-01

    The monoclonal antibody (MAb) G250 binds to a tumour-associated antigen, expressed in renal cell carcinoma (RCC), which has been demonstrated to be a suitable target for antibody-mediated immunotherapy. A bispecific antibody having both G250 and anti-CD3 specificity can cross-link G250 antigen-expressing RCC target cells with T cells and can mediate lysis of such targets. Therapy studies with murine antibodies are limited by immune responses to the antibodies injected (HAMA response), which can be decreased by using chimeric antibodies. We generated a chimeric bispecific G250/anti CD3 MAb by transfecting chimeric genes of heavy and light chains for both the G250 MAb and the anti-CD3 MAb into a myeloma cell line. Cytotoxicity assays revealed that the chimeric bispecific MAb was capable of mediating lysis of RCC cell lines by cloned human CD8+T cells or by IL-2-stimulated peripheral blood lymphocytes (PBLs). Lysis mediated by the MAb was specific for target cells that expressed the G250 antigen and was effective at concentrations as low as 0.01 microgram ml-1. The chimeric bispecific G250/anti-CD3 MAb produced may be an effective adjuvant to the currently used IL-2-based therapy of advanced renal cell arcinoma. Images Figure 7 PMID:8795576

  14. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains.

    PubMed

    Nagashima, Hiroaki; Ootsubo, Michiko; Fukazawa, Mizuki; Motoi, Sotaro; Konakahara, Shu; Masuho, Yasuhiko

    2011-04-01

    We previously reported that chimeric monoclonal antibodies (mAbs) with tandemly repeated Fc domains, which were developed by introducing tandem repeats of Fc domains downstream of 2 Fab domains, augmented binding avidities for all Fcγ receptors, resulting in enhanced antibody (Ab)-dependent cellular cytotoxicity. Here we investigated regarding Ab-dependent cellular phagocytosis (ADCP) mediated by these chimeric mAbs, which is considered one of the most important mechanisms that kills tumor cells, using two-color flow cytometric methods. ADCP mediated by T3-Ab, a chimeric mAb with 3 tandemly repeated Fc domains, was 5 times more potent than that by native anti-CD20 M-Ab (M-Ab hereafter). Furthermore, T3-Ab-mediated ADCP was resistant to competitive inhibition by intravenous Ig (IVIG), although M-Ab-mediated ADCP decreased in the presence of IVIG. An Fcγ receptor-blocking study demonstrated that T3-Ab mediated ADCP via both FcγRIA and FcγRIIA, whereas M-Ab mediated ADCP exclusively via FcγRIA. These results suggest that chimeric mAbs with tandemly repeated Fc domains enhance ADCP as well as ADCC, and that Fc multimerization may significantly enhance the efficacy of therapeutic Abs.

  15. Expression studies of catalytic antibodies

    SciTech Connect

    Ulrich, H.D.; Patten, P.A.; Yang, P.L.

    1995-12-05

    We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived form a number of catalytic antibodies. Expression yields of eight hybridoma-and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high-density fermentation. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies. 41 refs., 4 figs., 1 tab.

  16. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    PubMed

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  17. Production of a neutralizing mouse-human chimeric antibody against botulinum neurotoxin serotype E.

    PubMed

    Mukamoto, Masafumi; Maeda, Hiroaki; Kohda, Tomoko; Nozaki, Chikateru; Takahashi, Motohide; Kozaki, Shunji

    2013-01-01

    A mouse-human chimeric antibody that can neutralize botulinum neurotoxin serotype E (BoNT/E) was developed. Variable regions of heavy and light chains obtained using a mouse hybridoma clone (E9-4) cDNA, which was selected on the basis of neutralizing activity against BoNT/E, were fused with the upstream regions of the constant counterparts of human kappa light and gamma 1 heavy chain genes, respectively. CHO-DG44 cells were transfected with these plasmids and a mouse-human chimeric antibody (EC94) was purified to examine binding and neutralizing activity against BoNT/E. EC94 exhibited the same levels of binding activities against BoNT/E as those of a parent mouse monoclonal antibody and neutralized more than 4,000 LD(50)/mg antibody. This chimeric antibody seems to be a useful candidate for infant botulism in which the use of passive immunotherapy is not planned so as to avoid serious events such as anaphylactic shock. We designed shuffling chimeric antibodies with replacement of V(H) or V(L) of EC94 with that of a chimeric antibody (AC24) that possessed neutralizing activity against BoNT/A. These shuffling antibodies did not exhibit neutralizing activity against either BoNT/E or BoNT/A.

  18. Plant-based Production of Two Chimeric Monoclonal IgG Antibodies Directed against Immunodominant Epitopes of Vibrio cholerae Lipopolysaccharide

    PubMed Central

    Levinson, Kara J.; Giffen, Samantha R.; Pauly, Michael H.; Kim, Do H.; Bohorov, Ognian; Bohorova, Natasha; Whaley, Kevin J.; Zeitlin, Larry; Mantis, Nicholas J.

    2015-01-01

    We have produced and characterized two chimeric IgG1 monoclonal antibodies that bind different immunodominant epitopes on Vibrio cholerae lipopolysaccharide (LPS). MAb 2D6 IgG1 recognizes Ogawa O-polysaccharide antigen, while mAb ZAC-3 IgG1 recognizes core/lipid A moiety of Ogawa and Inaba LPS. Both antibodies were expressed using a Nicotiana benthamiana-based rapid antibody-manufacturing platform (RAMP) and evaluated in vitro for activities associated with immunity to V. cholerae, including vibriocidal activity, bacterial agglutination and motility arrest. PMID:25865265

  19. Plant-based production of two chimeric monoclonal IgG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide.

    PubMed

    Levinson, Kara J; Giffen, Samantha R; Pauly, Michael H; Kim, Do H; Bohorov, Ognian; Bohorova, Natasha; Whaley, Kevin J; Zeitlin, Larry; Mantis, Nicholas J

    2015-07-01

    We have produced and characterized two chimeric human IgG1 monoclonal antibodies that bind different immunodominant epitopes on Vibrio cholerae lipopolysaccharide (LPS). MAb 2D6 IgG1 recognizes Ogawa O-polysaccharide antigen, while mAb ZAC-3 IgG1 recognizes core/lipid A moiety of Ogawa and Inaba LPS. Both antibodies were expressed using a Nicotiana benthamiana-based rapid antibody-manufacturing platform (RAMP) and evaluated in vitro for activities associated with immunity to V. cholerae, including vibriocidal activity, bacterial agglutination and motility arrest.

  20. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    SciTech Connect

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai . E-mail: zhikaixu@fmmu.edu.cn

    2007-03-23

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice.

  1. A human/murine chimeric fab antibody neutralizes anthrax lethal toxin in vitro.

    PubMed

    Ding, Guipeng; Chen, Ximin; Zhu, Jin; Duesbery, Nicholas S; Cheng, Xunjia; Cao, Brian

    2013-01-01

    Human anthrax infection caused by exposure to Bacillus anthracis cannot always be treated by antibiotics. This is mostly because of the effect of the remaining anthrax toxin in the body. Lethal factor (LF) is a component of lethal toxin (LeTx), which is the major virulence of anthrax toxin. A murine IgG monoclonal antibody (mAb) against LF with blocking activity (coded LF8) was produced in a previous study. In this report, a human/murine chimeric Fab mAb (coded LF8-Fab) was developed from LF8 by inserting murine variable regions into human constant regions using antibody engineering to reduce the incompatibility of the murine antibody for human use. The LF8-Fab expressed in Escherichia coli could specifically identify LF with an affinity of 3.46 × 10(7) L/mol and could neutralize LeTx with an EC50 of 85  μ g/mL. Even after LeTx challenge at various time points, the LF8-Fab demonstrated protection of J774A.1 cells in vitro. The results suggest that the LF8-Fab might be further characterized and potentially be used for clinical applications against anthrax infection.

  2. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    PubMed Central

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  3. Production and Characterisation of a Neutralising Chimeric Antibody against Botulinum Neurotoxin A

    PubMed Central

    Prigent, Julie; Mazuet, Christelle; Boquet, Didier; Lamourette, Patricia; Volland, Hervé; Popoff, Michel R.; Créminon, Christophe; Simon, Stéphanie

    2010-01-01

    Botulinum neurotoxins, produced by Clostridium botulinum bacteria, are the causative agent of botulism. This disease only affects a few hundred people each year, thus ranking it among the orphan diseases. However, botulinum toxin type A (BoNT/A) is the most potent toxin known to man. Due to their potency and ease of production, these toxins were classified by the Centers for Disease Control and Prevention (CDC) as Category A biothreat agents. For several biothreat agents, like BoNT/A, passive immunotherapy remains the only possible effective treatment allowing in vivo neutralization, despite possible major side effects. Recently, several mouse monoclonal antibodies directed against a recombinant fragment of BoNT/A were produced in our laboratory and most efficiently neutralised the neurotoxin. In the present work, the most powerful one, TA12, was selected for chimerisation. The variable regions of this antibody were thus cloned and fused with the constant counterparts of human IgG1 (kappa light and gamma 1 heavy chains). Chimeric antibody production was evaluated in mammalian myeloma cells (SP2/0-Ag14) and insect cells (Sf9). After purifying the recombinant antibody by affinity chromatography, the biochemical properties of chimeric and mouse antibody were compared. Both have the same very low affinity constant (close to 10 pM) and the chimeric antibody exhibited a similar capacity to its parent counterpart in neutralising the toxin in vivo. Its strong affinity and high neutralising potency make this chimeric antibody interesting for immunotherapy treatment in humans in cases of poisoning, particularly as there is a probable limitation of the immunological side effects observed with classical polyclonal antisera from heterologous species. PMID:20967241

  4. A Novel Chimeric Anti-PA Neutralizing Antibody for Postexposure Prophylaxis and Treatment of Anthrax.

    PubMed

    Xiong, Siping; Tang, Qi; Liang, Xudong; Zhou, Tingting; Yang, Jin; Liu, Peng; Chen, Ya; Wang, Changjun; Feng, Zhenqing; Zhu, Jin

    2015-07-02

    Anthrax is a highly lethal infectious disease caused by the bacterium Bacillus anthracis, and the associated shock is closely related to the lethal toxin (LeTx) produced by the bacterium. The central role played by the 63 kDa protective antigen (PA63) region of LeTx in the pathophysiology of anthrax makes it an excellent therapeutic target. In the present study, a human/murine chimeric IgG mAb, hmPA6, was developed by inserting murine antibody variable regions into human constant regions using antibody engineering technology. hmPA6 expressed in 293F cells could neutralize LeTx both in vitro and in vivo. At a dose of 0.3 mg/kg, it could protect all tested rats from a lethal dose of LeTx. Even administration of 0.6 mg/kg hmPA6 48 h before LeTx challenge protected all tested rats. The results indicate that hmPA6 is a potential candidate for clinical application in anthrax treatment.

  5. High avidity chimeric monoclonal antibodies against the extracellular domains of human aquaporin‐4 competing with the neuromyelitis optica autoantibody, NMO‐IgG

    PubMed Central

    Miyazaki‐Komine, Kaori; Takai, Yoshiki; Huang, Ping; Kusano‐Arai, Osamu; Iwanari, Hiroko; Misu, Tatsuro; Koda, Katsushi; Mitomo, Katsuyuki; Sakihama, Toshiko; Toyama, Yoshiaki; Fujihara, Kazuo; Hamakubo, Takao; Yasui, Masato

    2015-01-01

    Background and Purpose Most of the cases of neuromyelitis optica (NMO) are characterized by the presence of an autoantibody, NMO‐IgG, which recognizes the extracellular domains of the water channel, aquaporin‐4. Binding of NMO‐IgG to aquaporin‐4 expressed in end‐feet of astrocytes leads to complement‐dependent disruption of astrocytes followed by demyelination. One therapeutic option for NMO is to prevent the binding of NMO‐IgG to aquaporin‐4, using high‐avidity, non‐pathogenic–chimeric, monoclonal antibodies to this water channel. We describe here the development of such antibodies. Experimental Approach cDNAs encoding variable regions of heavy and light chains of monoclonal antibodies against the extracellular domains of human aquaporin‐4 were cloned from hybridoma total RNA and fused to those encoding constant regions of human IgG1 and Igκ respectively. Then mammalian expression vectors were constructed to establish stable cell lines secreting mature chimeric antibodies. Key Results Original monoclonal antibodies showed high avidity binding to human aquaporin‐4, as determined by ELISA. Live imaging using Alexa‐Fluor‐555‐labelled antibodies revealed that the antibody D15107 more rapidly bound to cells expressing human aquaporin‐4 than others and strongly enhanced endocytosis of this water channel, while D12092 also bound rapidly to human aquaporin‐4 but enhanced endocytosis to a lesser degree. Chimeric D15107 prevented complement‐dependent cytotoxicity induced by NMO‐IgG from patient sera in vitro. Conclusions and Implications We have established non‐pathogenic, high‐avidity, chimeric antibodies against the extracellular domains of human aquaporin‐4, which provide a novel therapeutic option for preventing the progress and recurrence of NMO/NMO spectrum disorders. PMID:26398585

  6. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines.

    PubMed

    Ye, Ling; Wen, Zhiyuan; Dong, Ke; Wang, Xi; Bu, Zhigao; Zhang, Huizhong; Compans, Richard W; Yang, Chinglai

    2011-01-01

    Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.

  7. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors

    PubMed Central

    Dickmeis, Christina; Honickel, Mareike Michaela Antonia; Fischer, Rainer; Commandeur, Ulrich

    2015-01-01

    We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles. PMID:26636076

  8. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    PubMed Central

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated the effects of two fusion tags, that is, thioredoxin (Trx) and 6x-His tags, and various expression conditions, on the expression of p28-NRC chimeric protein. Materials and Methods: In order to express the chimeric protein with only 6x-His tag, pET28 expression plasmid was used. Cloning in pET32 expression plasmid was performed to add both Trx and 6x-His tags to the chimeric protein. Expression of the chimeric protein with both plasmids was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis following optimization of expression conditions and host strains. Results: Expression of the chimeric protein in pET28a was performed. However, expression yield of the chimeric protein was low. Optimization of culture conditions and host strains led to reasonable expression yield of the toxic chimeric protein in pET32a vector. In cases of both plasmids, approximately 10 kDa deviation of the apparent molecular weight from the theoretical one was seen in SDS-PAGE of purified chimeric proteins. Conclusions: The study leads to proper expression and purification yield of p28-NRC chimeric protein with Trx tag following optimizing culture conditions and host strains. PMID:27169101

  9. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    PubMed Central

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis

    2013-01-01

    A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536

  10. A novel chimeric MOMP antigen expressed in Escherichia coli, Arabidopsis thaliana, and Daucus carota as a potential Chlamydia trachomatis vaccine candidate.

    PubMed

    Kalbina, Irina; Wallin, Anita; Lindh, Ingrid; Engström, Peter; Andersson, Sören; Strid, Ke

    2011-12-01

    The major outer membrane protein (MOMP) of Chlamydia trachomatis is a highly antigenic and hydrophobic transmembrane protein. Our attempts to express the full-length protein in a soluble form in Escherichia coli and in transgenic plants failed. A chimeric gene construct of C. trachomatis serovar E MOMP was designed in order to increase solubility of the MOMP protein but with retained antigenicity. The designed construct was successfully expressed in E. coli, in Arabidopsis thaliana, and in Daucus carota. The chimeric MOMP expressed in and purified from E. coli was used as antigen for production of antibodies in rabbits. The anti-chimeric MOMP antibodies recognized the corresponding protein in both E. coli and in transgenic plants, as well as in inactivated C. trachomatis elementary bodies. Transgenic Arabidopsis and carrots were characterized for the number of MOMP chimeric genetic inserts and for protein expression. Stable integration of the transgene and the corresponding protein expression were demonstrated in Arabidopsis plants over at least six generations. Transgenic carrots showed a high level of expression of the chimeric MOMP - up to 3% of TSP.

  11. The Use of Chimeric Virus-like Particles Harbouring a Segment of Hantavirus Gc Glycoprotein to Generate a Broadly-Reactive Hantavirus-Specific Monoclonal Antibody

    PubMed Central

    Zvirbliene, Aurelija; Kucinskaite-Kodze, Indre; Razanskiene, Ausra; Petraityte-Burneikiene, Rasa; Klempa, Boris; Ulrich, Rainer G.; Gedvilaite, Alma

    2014-01-01

    Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80–89) or site #4 (aa 280–289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications. PMID:24513568

  12. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody.

    PubMed

    Zvirbliene, Aurelija; Kucinskaite-Kodze, Indre; Razanskiene, Ausra; Petraityte-Burneikiene, Rasa; Klempa, Boris; Ulrich, Rainer G; Gedvilaite, Alma

    2014-02-07

    Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.

  13. Eliciting neutralizing antibodies against the membrane proximal external region of HIV-1 Env by chimeric live attenuated influenza A virus vaccines.

    PubMed

    Zang, Yang; Du, Dongchuan; Li, Na; Su, Weiheng; Liu, Xintao; Zhang, Yan; Nie, Jianhui; Wang, Youchun; Kong, Wei; Jiang, Chunlai

    2015-07-31

    Despite significant efforts directed toward research on HIV-1 vaccines, a truly effective immunogen has not been achieved. However, the broadly neutralizing antibodies (BnAbs) 2F5 and 4E10, targeting the highly conserved membrane proximal external region (MPER) of HIV-1, are two promising tools for vaccine development. Here we engrafted the MPER into the linker domain between the trimeric core structure and the transmembrane domain of influenza A virus HA2 to investigate the potential of such chimeric viruses to elicit HIV-1 neutralizing antibodies. In the context of proliferating attenuated influenza A viruses, these HIV-1 neutralizing antibody epitopes could be continuously expressed and mimicked their native conformation to induce humoral immune responses. While MPER-specific antibodies could be detected in serum of guinea pigs vaccinated with the chimeric viruses, they exhibited only weakly neutralizing activities. These antisera from vaccinated animals neutralized viruses of clades B and BC (tier 1), but not of clades AE (tier 1) and C (tier 2). These results suggest that influenza A virus can be used as a vehicle for displaying MPER and inducing BnAbs, but it provides limited protection against HIV-1 infection. In the future development of HIV-1 vaccines by rational design, a more effective live virus vector or multiple antigens should be chosen to facilitate the process of neutralizing antibody maturation.

  14. Treatment of vitiligo with a chimeric monoclonal antibody to CD20: a pilot study.

    PubMed

    Ruiz-Argüelles, A; García-Carrasco, M; Jimenez-Brito, G; Sánchez-Sosa, S; Pérez-Romano, B; Garcés-Eisele, J; Camacho-Alarcón, C; Reyes-Núñez, V; Sandoval-Cruz, M; Mendoza-Pinto, C; López-Colombo, A

    2013-11-01

    Five patients with active disseminated vitiligo were given 1g of a chimeric (murine/human) monoclonal antibody to CD20 in a single intravenous infusion and followed-up for 6 months. Three of the patients showed an overt clinical and histological improvement of the disease, one presented slight improvement and the remaining patient showed no changes. Improvement was neither associated with changes in laboratory parameters nor to a specific human leucocyte antigen D-related (HLA-DR) phenotype. We believe that these preliminary results are encouraging, and further clinical trials should be undertaken. An important aim should be the finding of a marker with a good response to this therapeutic approach.

  15. Treatment of vitiligo with a chimeric monoclonal antibody to CD20: a pilot study

    PubMed Central

    Ruiz-Argüelles, A; García-Carrasco, M; Jimenez-Brito, G; Sánchez-Sosa, S; Pérez-Romano, B; Garcés-Eisele, J; Camacho-Alarcón, C; Reyes-Núñez, V; Sandoval-Cruz, M; Mendoza-Pinto, C; López-Colombo, A

    2013-01-01

    Five patients with active disseminated vitiligo were given 1 g of a chimeric (murine/human) monoclonal antibody to CD20 in a single intravenous infusion and followed-up for 6 months. Three of the patients showed an overt clinical and histological improvement of the disease, one presented slight improvement and the remaining patient showed no changes. Improvement was neither associated with changes in laboratory parameters nor to a specific human leucocyte antigen D-related (HLA-DR) phenotype. We believe that these preliminary results are encouraging, and further clinical trials should be undertaken. An important aim should be the finding of a marker with a good response to this therapeutic approach. PMID:23815517

  16. First human study of a chimeric anti-methamphetamine monoclonal antibody in healthy volunteers.

    PubMed

    Stevens, Misty W; Henry, Ralph L; Owens, S Michael; Schutz, Ralph; Gentry, W Brooks

    2014-01-01

    This first-in-human study examined the safety and pharmacokinetics of ch-mAb7F9, an anti-methamphetamine monoclonal antibody, in healthy volunteers. Single, escalating doses of ch-mAb7F9 over the range of 0.2 to 20 mg/kg were administered to 42 subjects who were followed for 147 d. Safety was measured by physical examinations, adverse events, vital signs, electrocardiograms, and clinical laboratory testing. Serum ch-mAb7F9 concentration and immunogenicity analyses were performed. There were no serious adverse reactions or discontinuations from the study due to adverse events. No trends emerged in the frequency, relatedness, or severity of adverse events with increased dose or between active and placebo treated subjects. Ch-mAb7F9 displayed expected IgG pharmacokinetic parameters, including a half-life of 17-19 d in the 3 highest dose groups and volume of distribution of 5-6 L, suggesting the antibody is confined primarily to the vascular compartment. Four (12.5%) of the 32 subjects receiving ch-mAb7F9 were confirmed to have developed a human anti-chimeric antibody response by the end of the study; however, this response did not appear to be dose related. Overall, no apparent safety or tolerability concerns were identified; a maximum tolerated dose was not reached in this Phase 1 study. Ch-mAb7F9 therefore appears safe for human administration.

  17. Structure-based affinity maturation of a chimeric anti-ricin antibody C4C13.

    PubMed

    Luo, Longlong; Luo, Qun; Guo, Leiming; Lv, Ming; Lin, Zhou; Geng, Jing; Li, Xinying; Li, Yan; Shen, Beifen; Qiao, Chunxia; Feng, Jiannan

    2014-01-01

    Ricin is a highly lethal toxin. Anti-ricin chimeric monoclonal antibody (mAb) C4C13 was prepared in our lab; however, its binding affinity was much weaker than that of the parent antibody 4C13. In this study, based on the computer-guided homology modeling and conformational optimization methods, the 3-D structure of C4C13 variable regions Fv was constructed and optimized. Using molecular docking and dynamics simulation methods, the 3-D complex structure of ricin and C4C13 Fv was obtained. Considering the orientation property, surface electrostatic distribution, residues chemical and physical character and intermolecular hydrogen bond, the binding mode and key residues were predicted. According to C4C13 Fv fragment and ricin complementary binding surface, electrostatic attraction periphery and van der Waals interaction interface, three mutants (i.e., M1 (N(H102)F, W(H103)Y); M2 (W(H103)Y) and M3 (R(L90)G)) were designed, in which M1 and M2 were predicted to possess higher antigen-binding activity than C4C13, while M3 was weaker. The relative affinity assays by ELISA showed that M1 and M2 mutations had higher affinity (9.6 and 18.3 nmol/L) than C4C13 (130 nmol/L) and M3 had weaker affinity (234.5 nmol/L) than C4C13. The results showed that the modeling complex structure of the antigen (ricin) and antibody (C4C13) is reasonable. Our work offered affinity maturated antibodies by site mutations, which were beneficial for valuable anti-ricin antibody design and preparation in future.

  18. Performance Assessment of Four Chimeric Trypanosoma cruzi Antigens Based on Antigen-Antibody Detection for Diagnosis of Chronic Chagas Disease

    PubMed Central

    Zanchin, Nilson Ivo Tonin; Brasil, Tatiana de Arruda Campos; Foti, Leonardo; de Souza, Wayner Vieira; Silva, Edmilson Domingos; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2016-01-01

    The performance of serologic tests in chronic Chagas disease diagnosis largely depends on the type and quality of the antigen preparations that are used for detection of anti-Trypanosoma cruzi antibodies. Whole-cell T. cruzi extracts or recombinant proteins have shown variation in the performance and cross-reactivity. Synthetic chimeric proteins comprising fragments of repetitive amino acids of several different proteins have been shown to improve assay performances to detect Chagasic infections. Here, we describe the production of four chimeric T. cruzi proteins and the assessment of their performance for diagnostic purposes. Circular Dichroism spectra indicated the absence of well-defined secondary structures, while polydispersity evaluated by Dynamic Light Scattering revealed only minor aggregates in 50 mM carbonate-bicarbonate (pH 9.6), demonstrating that it is an appropriate buffering system for sensitizing microplates. Serum samples from T. cruzi-infected and non-infected individuals were used to assess the performance of these antigens for detecting antibodies against T. cruzi, using both enzyme-linked immunosorbent assay and a liquid bead array platform. Performance parameters (AUC, sensitivity, specificity, accuracy and J index) showed high diagnostic accuracy for all chimeric proteins for detection of specific anti-T. cruzi antibodies and differentiated seropositive individuals from those who were seronegative. Our data suggest that these four chimeric proteins are eligible for phase II studies. PMID:27517281

  19. Production and Characterization of a Set of Mouse-Human Chimeric Immunoglobulin G (IgG) Subclass and IgA Monoclonal Antibodies with Identical Variable Regions Specific for Pseudomonas aeruginosa Serogroup O6 Lipopolysaccharide

    PubMed Central

    Preston, Michael J.; Gerçeker, A. Alev; Reff, Mitchell E.; Pier, Gerald B.

    1998-01-01

    The heavy- and light-chain variable regions from a murine monoclonal antibody that recognize Pseudomonas aeruginosa serogroup O6 lipopolysaccharide (LPS) were used to generate a series of chimeric mouse-human monoclonal antibodies with identical variable regions. The murine variable-region gene segments were cloned into an immunoglobulin (Ig) cDNA expression vector that contained the human kappa light-chain and IgG1 constant regions. The IgG1 heavy-chain constant region was then replaced with the human IgG2, IgG3, IgG4, or IgA1 heavy-chain constant region. The five different expression vectors were transfected into Chinese hamster ovary cells for antibody production. The chimeric antibodies exhibited immunoreactivity and affinity similar to that of the parental murine IgG antibody toward whole cells of a serogroup O6 strain. In vitro complement deposition assays demonstrated that the chimeric IgG4 and IgA antibodies did not mediate the deposition of complement component C3 onto the surface of either purified LPS or whole bacteria. The chimeric IgG1 and IgG3 antibodies were similar in their ability to deposit C3 onto the surface of both bacteria and LPS, while IgG2 antibody was more effective at depositing C3 onto the surface of bacteria than onto purified LPS. The pattern of opsonophagocytic activity of the chimeric monoclonal antibodies was similar to that of complement deposition onto bacterial cells in that the chimeric IgG1 and IgG3 had the highest opsonic activity. Although IgG2 deposited more C3 onto the bacterial surface than did IgG4 or IgA, all three of these isotypes had low opsonic activity against the serogroup O6 target strain. This series of related antibodies will help reveal functional differences in efficacy among protective antibodies to P. aeruginosa and will be critical for defining the optimal formulation of either a vaccine for active immunization or a polyclonal intravenous IgG or monoclonal antibody cocktail for passive immunotherapy. PMID

  20. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    PubMed

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  1. Design and Development of Therapies using Chimeric Antigen Receptor-Expressing T cells

    PubMed Central

    Dotti, Gianpietro; Gottschalk, Stephen; Savoldo, Barbara; Brenner, Malcolm K

    2013-01-01

    Summary Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking and effector functions of a T-cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CART cells. Our review then describes our own and other investigators’ work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained. PMID:24329793

  2. Expression of recombinant antibodies.

    PubMed

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  3. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  4. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    PubMed

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR(+) T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+) tumor targets. This clone can be used to detect CD19-specific CAR(+) T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR(+) T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  5. A nontoxic chimeric enterotoxin adjuvant induces protective immunity in both mucosal and systemic compartments with reduced IgE antibodies.

    PubMed

    Kweon, Mi-Na; Yamamoto, Masafumi; Watanabe, Fumiko; Tamura, Shinichi; Van Ginkel, Frederik W; Miyauchi, Akira; Takagi, Hiroaki; Takeda, Yoshifumi; Hamabata, Takashi; Fujihashi, Kohtaro; McGhee, Jerry R; Kiyono, Hiroshi

    2002-11-01

    A novel nontoxic form of chimeric mucosal adjuvant that combines the A subunit of mutant cholera toxin E112K with the pentameric B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli was constructed by use of the Brevibacillus choshinensis expression system (mCTA/LTB). Nasal immunization of mice with tetanus toxoid (TT) plus mCTA/LTB elicited significant TT-specific immunoglobulin A responses in mucosal compartments and induced high serum immunoglobulin G and immunoglobulin A anti-TT antibody responses. Although TT plus native CT induced high total and TT-specific immunoglobulin E responses, use of the chimera molecule as mucosal adjuvant did not. Furthermore, all mice immunized with TT plus mCTA/LTB were protected from lethal systemic challenge with tetanus toxin. Importantly, the mice were completely protected from influenza virus infection after nasal immunization with inactivated influenza vaccine together with mCTA/LTB. These results show that B. choshinensis-derived mCTA/LTB is an effective and safe mucosal adjuvant for the induction of protective immunity against potent bacterial exotoxin and influenza virus infection.

  6. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  7. Effect of VK framework-1 glycosylation on the binding affinity of lymphoma-specific murine and chimeric LL2 antibodies and its potential use as a novel conjugation site.

    PubMed

    Leung, S O; Dion, A S; Pellegrini, M C; Losman, M J; Grebenau, R C; Goldenberg, D M; Hansen, H J

    1995-02-08

    A potential asparagine (Asn)-linked glycosylation site was identified in the VK FRI sequence of an anti-B lymphoma monoclonal antibody (MAb), LL2.SDS-PAGE analysis and endo-F treatment of both murine and chimeric LL2 antibodies indicated that this site was glycosylated; however, no differences in the binding affinity to Raji cells were observed between the native murine LL2 and the endo-F-deglycosylated murine LL2 antibodies. Elimination of the glycosylation site from the chimeric LL2 antibody was accomplished by an Asn to Gln mutation in the tri-acceptor site found in the light chain. The resultant aglycosylated chimeric LL2 exhibited a similar Raji cell binding affinity to that of the glycosylated form. The results are in agreement with computer modeling studies which suggested the lack of interactions between the oligosaccharide moiety and the CDRs. The finding is interesting because it enables a wider choice of human framework sequences, which in most cases do not have a corresponding glycosylation site, for the humanization of the LL2 VK domain, as well as a greater latitude of host expression systems. Most importantly, the LL2 VK carbohydrate moiety might be used as a novel conjugation site for drugs and radionuclides without compromising the immunoreactivity of the antibody.

  8. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG2a, lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG1) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  9. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    PubMed

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system.

  10. Seroepidemiology of Human Papillomavirus 16 (HPV16) L2 and Generation of L2-Specific Human Chimeric Monoclonal Antibodies

    PubMed Central

    Wang, Joshua W.; Jagu, Subhashini; Wu, Wai-Hong; Viscidi, Raphael P.; Macgregor-Das, Anne; Fogel, Jessica M.; Kwak, Kihyuck; Daayana, Sai; Kitchener, Henry; Stern, Peter L.; Gravitt, Patti E.; Trimble, Cornelia L.

    2015-01-01

    Presently, the seroprevalence of human papillomavirus (HPV) minor capsid antigen L2-reactive antibody is not well understood, and no serologic standard exists for L2-specific neutralizing antibodies. Therefore, we screened a total of 1,078 serum samples for HPV16 L2 reactivity, and these were obtained from four prior clinical studies: a population-based (n = 880) surveillance study with a high-risk HPV DNA prevalence of 10.8%, a cohort study of women (n = 160) with high-grade cervical intraepithelial neoplasia (CIN), and two phase II trials in women with high-grade vulvar intraepithelial neoplasia (VIN) receiving imiquimod therapy combined with either photodynamic therapy (PDT) (n = 19) or vaccination with a fusion protein comprising HPV16 L2, E7, and E6 (TA-CIN) (n = 19). Sera were screened sequentially by HPV16 L2 enzyme-linked immunosorbent assay (ELISA) and then Western blot. Seven of the 1,078 serum samples tested had L2-specific antibodies, but none were detectably neutralizing for HPV16. To develop a standard, we substituted human IgG1 sequences into conserved regions of two rodent monoclonal antibodies (MAbs) specific for neutralizing epitopes at HPV16 L2 residues 17 to 36 and 58 to 64, creating JWW-1 and JWW-2, respectively. These chimeric MAbs retained neutralizing activity and together reacted with 33/34 clinically relevant HPV types tested. In conclusion, our inability to identify an HPV16 L2-specific neutralizing antibody response even in the sera of patients with active genital HPV disease suggests the subdominance of L2 protective epitopes and the value of the chimeric MAbs JWW-1 and JWW-2 as standards for immunoassays to measure L2-specific human antibodies. PMID:25972404

  11. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    PubMed

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  12. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  13. Evaluation of chimeric DNA vaccines consisting of premembrane and envelope genes of Japanese encephalitis and dengue viruses as a strategy for reducing induction of dengue virus infection-enhancing antibody response.

    PubMed

    Sjatha, Fithriyah; Kuwahara, Miwa; Sudiro, T Mirawati; Kameoka, Masanori; Konishi, Eiji

    2014-02-01

    Neutralizing antibodies induced by dengue virus (DENV) infection show viral infection-enhancing activities at sub-neutralizing doses. On the other hand, preimmunity against Japanese encephalitis virus (JEV), a congener of DENV, does not increase the severity of DENV infection. Several studies have demonstrated that neutralizing epitopes in the genus Flavivirus are mainly located in domain III (DIII) of the envelope (E) protein. In this study, chimeric premembrane and envelope (prM-E) gene-based expression plasmids of JEV and DENV1 with DIII substitution of each virus were constructed for use as DNA vaccines and their immunogenicity evaluated. Sera from C3H/He and ICR mice immunized with a chimeric gene containing DENV1 DIII on a JEV prM-E gene backbone showed high neutralizing antibody titers with less DENV infection-enhancing activity. Our results confirm the applicability of this approach as a new dengue vaccine development strategy.

  14. Chimeric Virus-Like Particle Vaccines Displaying Conserved Enterovirus 71 Epitopes Elicit Protective Neutralizing Antibodies in Mice through Divergent Mechanisms

    PubMed Central

    Ye, Xiaohua; Ku, Zhiqiang; Liu, Qingwei; Wang, Xiaoli; Shi, Jinping; Zhang, Yunfang; Kong, Liangliang; Cong, Yao

    2014-01-01

    Enterovirus 71 (EV71) is a major causative agent of hand, food, and mouth disease, which frequently occurs in young children. Since there are 11 subgenotypes (A, B1 to B5, and C1 to C5) within EV71, an EV71 vaccine capable of protecting against all of these subgenotypes is desirable. We report here the vaccine potential and protective mechanism of two chimeric virus-like particles (VLPs) presenting conserved neutralizing epitopes of EV71. We show that fusions of hepatitis B core antigen (HBc) with the SP55 or SP70 epitope of EV71, designated HBcSP55 and HBcSP70, respectively, can be rapidly generated and self-assembled into VLPs with the epitopes displayed on the surface. Immunization with the chimeric VLPs induced carrier- and epitope-specific antibody responses in mice. Anti-HBcSP55 and anti-HBcSP70 sera, but not anti-HBc sera, were able to neutralize in vitro multiple genotypes and strains of EV71. Importantly, passive immunization with anti-HBcSP55 or anti-HBcSP70 sera protected neonatal mice against lethal EV71 infections. Interestingly, anti-HBcSP70 sera could inhibit EV71 attachment to susceptible cells, whereas anti-HBcSP55 sera could not. However, both antisera were able to neutralize EV71 infection in vitro at the postattachment stage. The divergent mechanism of neutralization and protection conferred by anti-SP70 and anti-SP55 sera is in part attributed to their respective ability to bind authentic viral particles. Collectively, our study not only demonstrates that chimeric VLPs displaying the SP55 and SP70 epitopes are promising candidates for a broad-spectrum EV71 vaccine but also reveals distinct mechanisms of neutralization by the SP55- and SP70-targeted antibodies. PMID:24131712

  15. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma

    PubMed Central

    Eger, Christin; Siebert, Nikolai; Seidel, Diana; Zumpe, Maxi; Jüttner, Madlen; Brandt, Sven; Müller, Hans-Peter; Lode, Holger N.

    2016-01-01

    Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB

  16. A recombinant chimeric La Crosse virus expressing the surface glycoproteins of Jamestown Canyon virus is immunogenic and protective against challenge with either parental virus in mice or monkeys.

    PubMed

    Bennett, R S; Gresko, A K; Nelson, J T; Murphy, B R; Whitehead, S S

    2012-01-01

    La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD₅₀) values of 0.1 and 0.5 log₁₀ PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 10³ PFU. Parenteral vaccination of mice with 10¹ or 10³ PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.

  17. Constant domains influence binding of mouse–human chimeric antibodies to the capsular polypeptide of Bacillus anthracis

    PubMed Central

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-01-01

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct “rim” quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse–human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared “puffy” in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site. PMID:23863605

  18. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis.

    PubMed

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-08-15

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct "rim" quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse-human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared "puffy" in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site.

  19. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression.

    PubMed

    Tanaka, Yuri; Oshima, Yoshimi; Yamamura, Tomomichi; Sugiyama, Masao; Mitsuda, Nobutaka; Ohtsubo, Norihiro; Ohme-Takagi, Masaru; Terakawa, Teruhiko

    2013-01-01

    Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabidopsis thaliana showed similar effects on flower organ specification. Simultaneous expression of CpAG1-SRDX and CpAG2-SRDX in cyclamen induced rose-like, multi-petal flowers, a potentially valuable trait in commercial ornamental varieties. Expression of CpAG2-SRDX in a cyclamen mutant lacking expression of CpAG1 more effectively produced multi-petal flowers. Here, we controlled the number of petals in cyclamen by simple genetic engineering with a chimeric repressor. This strategy may be applicable useful for other ornamental plants with two distinct AG orthologues.

  20. Differential effect of isotype on efficacy of anti-tumor necrosis factor alpha chimeric antibodies in experimental septic shock

    PubMed Central

    1994-01-01

    Immune complexes containing human gamma (g)1 or murine g2a antibodies generate secondary effector mechanisms via Fc receptor binding or complement activation, whereas those containing human g4 or murine g1 antibodies generally do not. Therefore, isotype selection of therapeutic antibodies may have important clinical consequences. In a rabbit model of human tumor necrosis factor (rhuTNF)-induced pyrexia, a murine/human chimeric g4 anti-human TNF-alpha monoclonal antibody (mAb) (cCB0011) showed a dose-dependent inhibition of pyrexia, whereas a g1 isotype variant of the same mAb gave a marked pyrexia that was seen at all doses indicative of an immune complex-mediated response. To investigate whether isotype difference could influence mAb efficacy in pathological disease states, hamster/murine chimeric g1 and g2a anti- murine TNF-alpha mAbs (TN3g1, TN3g2a) were studied in experimental shock in mice and rats. In lipopolysaccharide-induced shock in mice, treatment with TN3g1 mAb at 30 and 3 mg/kg resulted in 90% survival by 72 h (p < or = 0.004), and prolonged survival to 45 h (p < or = 0.05), respectively, compared with 100% mortality by 27 h in controls. In contrast, a g2a isotype variant of the same mAb (30 mg/kg) resulted in only 10% survival by 72 h (p < or = 0.05). In a neutropenic sepsis model in rats there was greater survival in animals receiving the g1 isotype of TN3 compared with g2a isotype variant (70 vs. 27%; p < or = 0.005) with 100% mortality in the controls. These differences were not due to the pharmacokinetic profiles of the mAbs. In models of experimental shock antibody isotype can affect outcome with inactive isotypes (human g4 and murine g1) being more efficacious than active isotypes (human g1 and murine g2a). PMID:8113678

  1. Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum.

    PubMed

    Dubois, Mathieu; Fenaille, François; Clement, Gilles; Lechmann, Martin; Tabet, Jean-Claude; Ezan, Eric; Becher, François

    2008-03-01

    In this study, we show that liquid chromatography coupled with tandem mass spectrometry provides a sensitive, specific, and accurate absolute quantification of Erbitux, a human:murine chimeric mAb used for the treatment of colorectal cancer. Micrometric magnetized beads, functionalized with soluble epidermal growth factor receptor (sEGFR), the pharmacological target of Erbitux, were used for specific immunocapture of Erbitux allowing assessment of the antibody's biological potency and sample purification. Following digestion with trypsin, specific peptides from light and heavy chains were monitored in the selected reaction monitoring (SRM) mode. Assay variability below 20% was provided through optimization of the digestion step and rigorous monitoring of the whole analytical process using an appropriate internal standard. The 20 ng/mL lower limit of quantification was similar to that of ELISA methods. These results show that this mass spectrometric approach is a potential alternative for pharmacokinetic evaluation of mAbs during clinical development.

  2. Emotion processing in chimeric faces: hemispheric asymmetries in expression and recognition of emotions.

    PubMed

    Indersmitten, Tim; Gur, Ruben C

    2003-05-01

    Since the discovery of facial asymmetries in emotional expressions of humans and other primates, hypotheses have related the greater left-hemiface intensity to right-hemispheric dominance in emotion processing. However, the difficulty of creating true frontal views of facial expressions in two-dimensional photographs has confounded efforts to better understand the phenomenon. We have recently described a method for obtaining three-dimensional photographs of posed and evoked emotional expressions and used these stimuli to investigate both intensity of expression and accuracy of recognizing emotion in chimeric faces constructed from only left- or right-side composites. The participant population included 38 (19 male, 19 female) African-American, Caucasian, and Asian adults. They were presented with chimeric composites generated from faces of eight actors and eight actresses showing four emotions: happiness, sadness, anger, and fear, each in posed and evoked conditions. We replicated the finding that emotions are expressed more intensely in the left hemiface for all emotions and conditions, with the exception of evoked anger, which was expressed more intensely in the right hemiface. In contrast, the results indicated that emotional expressions are recognized more efficiently in the right hemiface, indicating that the right hemiface expresses emotions more accurately. The double dissociation between the laterality of expression intensity and that of recognition efficiency supports the notion that the two kinds of processes may have distinct neural substrates. Evoked anger is uniquely expressed more intensely and accurately on the side of the face that projects to the viewer's right hemisphere, dominant in emotion recognition.

  3. Isolation and characterization of chimeric human Fc-expressing proteins using protein a membrane adsorbers and a streamlined workflow.

    PubMed

    Burdick, Monica M; Reynolds, Nathan M; Martin, Eric W; Hawes, Jacquelyn V; Carlson, Grady E; Cuckler, Chaz M; Bates, Michael C; Barthel, Steven R; Dimitroff, Charles J

    2014-01-08

    Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization

  4. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  5. The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity

    PubMed Central

    Ogasawara, Satoshi; Fujii, Yuki; Oki, Hiroharu; Fukayama, Masashi; Nishioka, Yasuhiko; Kaneko, Mika K.

    2015-01-01

    Podoplanin (PDPN/Aggrus/T1α) binds to C-type lectin-like receptor-2 (CLEC-2) and induces platelet aggregation. PDPN is associated with malignant progression, tumor metastasis, and poor prognosis in several types of cancer. Although many anti-human PDPN (hPDPN) monoclonal antibodies (mAbs), such as D2-40 and NZ-1, have been established, these epitopes are limited to the platelet aggregation-stimulating (PLAG) domain (amino acids 29-54) of hPDPN. Recently, we developed a novel mouse anti-hPDPN mAb, LpMab-7, which is more sensitive than D2-40 and NZ-1, using the Cancer-specific mAb (CasMab) method. The epitope of LpMab-7 was shown to be entirely different from that of NZ-1, a neutralizing mAb against the PLAG domain according to an inhibition assay and lectin microarray analysis. In the present study, we produced a mouse-human chimeric anti-hPDPN mAb, chLpMab-7. ChLpMab-7 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, chLpMab-7 inhibited the growth of hPDPN-expressing tumors in vivo. Although chLpMab-7 recognizes a non-PLAG domain of hPDPN, it suppressed the hematogenous metastasis of hPDPN-expressing tumors. These results indicated that chLpMab-7 suppressed tumor development and hematogenous metastasis in a neutralization-independent manner. In conclusion, hPDPN shows promise as a target in the development of a novel antibody-based therapy. PMID:26416352

  6. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles

    PubMed Central

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A.; Gulati, Ashutosh; Murthy, Mathur R. N.; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S.

    2016-01-01

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies. PMID:26905902

  7. Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes.

    PubMed

    Jindou, Sadanari; Ito, Yuki; Mito, Natsumi; Uematsu, Keiji; Hosoda, Akifumi; Tamura, Hiroto

    2014-07-18

    Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like complex of two ethylene-generating enzymes from tomato using cohesin-dockerins from the bacteria Clostridium thermocellum and Acetivibrio cellulolyticus. This complex was transformed into Escherichia coli to analyze kinetic parameters and enzyme complex formation and into the cyanobacterium Synechococcus elongatus PCC 7942, which was then grown with and without 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Only at minimal protein expression levels (without IPTG), the chimeric complex produced 3.7 times more ethylene in vivo than did uncomplexed enzymes. Thus, cyanobacteria can be used to sustainably generate ethylene, and the synthetic enzyme complex greatly enhanced production efficiency. Artificial synthetic enzyme complexes hold great promise for improving the production efficiency of other industrial compounds.

  8. Clinical effects of a chimeric anti-EpCAM monoclonal antibody in combination with granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma.

    PubMed

    Liljefors, Maria; Nilsson, Bo; Fagerberg, Jan; Ragnhammar, Peter; Mellstedt, Håkan; Frödin, Jan-Erik

    2005-06-01

    The EpCAM antigen is highly expressed on colorectal carcinoma (CRC) cells. Murine anti-EpCAM MAb (anti-EpCAM mMAb) alone or in combination with cytokines may induce clinical responses including long-lasting complete remissions (CR) in patients with metastatic disease. The chimeric variant of anti-EpCAM MAb (anti-EpCAM cMAb) interacts more efficiently with human effector cells (ADCC) than the murine counterpart in the killing of colorectal carcinoma cells in vitro, an important mechanism of action for antibody in vivo. Granulocyte-macrophage colony-stimulating factor (GM-CSF) augments immune effector cell functions in vivo and may enhance the therapeutic effect of MAbs. In this study, the therapeutic efficacy of the combination of anti-EpCAM cMAb and GM-CSF was evaluated in 24 patients with metastatic CRC. GM-CSF was given s.c. once daily for 10 consecutive days and on day 3, anti-EpCAM cMAb was given i.v. A treatment cycle was repeated every 4th week. Five patients achieved stable disease > 3 months (overall response rate 21%). Responding patients survived significantly longer than non-responding patients (p = 0.030). The frequency of patients with an immediate-type allergic reaction (ITAR) against anti-EpCAM cMAb at the 1st, 2nd, 3rd and 4th treatment cycles was as 13%, 29%, 25% and 19% respectively. Compared to a previous study where anti-EpCAM mMAb was used in a similar treatment regimen, the present protocol did not augment the overall or progression-free survival. The overall response rate was also similar to anti-EpCAM mMAb treated patients (6/22, 27%), but the anti-EpCAM mMAb treatment protocol induced two CR, one MR and three SD. Further studies are warranted to establish the role of EpCAM as a target for antibody therapy, specifically the significance of chimeric or humanized anti-EpCAM MAbs.

  9. The Chimeric Protein Domain III-Capsid of Dengue Virus Serotype 2 (DEN-2) Successfully Boosts Neutralizing Antibodies Generated in Monkeys upon Infection with DEN-2▿

    PubMed Central

    Valdés, Iris; Gil, Lázaro; Romero, Yaremis; Castro, Jorge; Puente, Pedro; Lazo, Laura; Marcos, Ernesto; Guzmán, María G.; Guillén, Gerardo; Hermida, Lisset

    2011-01-01

    Use of a heterologous prime-boost strategy based on a combination of nonreplicative immunogens and candidate attenuated virus vaccines against dengue virus in the same schedule is an attractive approach. These combinations may result in a condensed immunization regime for humans, thus reducing the number of doses with attenuated virus and the time spacing. The present work deals with the evaluation of the heterologous prime-boost strategy combining a novel chimeric protein (domain III-capsid) of dengue virus serotype 2 (DEN-2) and the infective homologous virus in the same immunization schedule in monkeys. Primed monkeys received one dose of infective DEN-2 and were then vaccinated with the recombinant protein. We found that animals developed a neutralizing antibody response after the infective dose and were notably boosted with a second dose of the chimeric protein 3 months later. The neutralizing antibodies induced were long lasting, and animals also showed the ability to induce a specific cellular response 6 months after the booster dose. As a conclusion, we can state that the domain III region, when it is properly presented as a fusion protein to the immune system, is able to recall the neutralizing antibody response elicited following homologous virus infection in monkeys. Further prime-boost approaches can be performed in a condensed regime combining the chimeric domain III-capsid protein and candidate live attenuated vaccines against DEN-2. PMID:21209159

  10. Design, expression and characterization of a single chain anti-CD20 antibody; a germline humanized antibody derived from Rituximab.

    PubMed

    Ahmadzadeh, Vahideh; Farajnia, Safar; Hosseinpour Feizi, Mohammad Ali; Khavarinejad, Ramazan Ali

    2014-10-01

    CD20 is a B cell lineage specific surface antigen involved in various B cell malignancies. So far, several murine and chimeric antibodies have been produced against this antigen among which Rituximab is a commercially approved antibody widely used in treatment of cancers associated with CD20 overexpression. The current study reports the production and characterization of a humanized single chain version of Rituximab through CDR grafting method. For either heavy or light chain variable domains, a human antibody with the highest sequence homology to Rituximab was selected from human germline sequences and used as framework donors. Vernier zone residues in framework regions were replaced with those of Rituximab to retain the antigen binding affinity of parental antibody. The reactivity of humanized single chain antibody with CD20 was examined by ELISA and dot blot assays. The ability of antibody to suppress the growth of CD20 overexpressing Raji cells was tested by MTT assay. Analysis of reactivity with CD20 antigen revealed that the humanized single chain antibody reacted to the target antigen with high affinity. Proliferation inhibition assay showed that humanized scFv could suppress the proliferation of Raji cells efficiently in a dose-dependent manner. This successful production of a humanized scFv with the ability to inhibit growth of CD20-expressing cancer cell may provide a promising alternative strategy for CD20 targeted therapy.

  11. Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C-staphylococcus A protein.

    PubMed

    Cao, Haiyan; Zhang, Guo-Rong; Geller, Alfred I

    2010-09-10

    Because of the heterogeneous cellular composition of the brain, and especially the forebrain, cell type-specific expression will benefit many potential applications of direct gene transfer. The two prevalent approaches for achieving cell type-specific expression are using a cell type-specific promoter or targeting gene transfer to a specific cell type. Targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors modifies glycoprotein C (gC) to replace the heparin binding domain, which binds to many cell types, with a binding activity for a specific cell surface protein. We previously reported targeted gene transfer to nigrostriatal neurons using chimeric gC-glial cell line-derived neurotrophic factor or gC-brain-derived neurotrophic factor protein. Unfortunately, this approach is limited to cells that express the cognate receptor for either neurotrophic factor. Thus, a general strategy for targeting gene transfer to many different types of neurons is desirable. Antibody-mediated targeted gene transfer has been developed for targeting specific virus vectors to specific peripheral cell types; a specific vector particle protein is modified to contain the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. Here, we report antibody-mediated targeted gene transfer of HSV-1 vectors to a specific type of forebrain neuron. We constructed a chimeric gC-ZZ protein, and showed this protein is incorporated into vector particles and binds Ig G. Complexes of these vector particles and an antibody to the NMDA receptor NR1 subunit supported targeted gene transfer to NR1-containing neocortical neurons in the rat brain, with long-term (2 months) expression.

  12. Targeting arterial wall sulfated glycosaminoglycans in rabbit atherosclerosis with a mouse/human chimeric antibody.

    PubMed

    Soto, Yosdel; Mesa, Niurka; Alfonso, Yumisley; Pérez, Arlenis; Batlle, Fernando; Griñán, Tania; Pino, Adonis; Viera, Justo; Frómeta, Milagros; Brito, Victor; Olivera, Armando; Zayas, Francisco; Vázquez, Ana M

    2014-01-01

    The progression of atherosclerosis is favored by increasing amounts of chondroitin sulfate proteoglycans in the artery wall. We previously reported the reactivity of chP3R99 monoclonal antibody (mAb) with sulfated glycosaminoglycans and its association with the anti-atherogenic properties displayed. Now, we evaluated the accumulation of this mAb in atherosclerotic lesions and its potential use as a probe for specific in vivo detection of the disease. Atherosclerosis was induced in NZW rabbits (n = 14) by the administration of Lipofundin 20% using PBS-receiving animals as control (n = 8). Accumulation of chP3R99 mAb in atherosclerotic lesions was assessed either by immunofluorescence detection of human IgG in fresh-frozen sections of aorta, or by immunoscintigraphy followed by biodistribution of the radiotracer upon administration of (99m)Tc-chP3R99 mAb. Immunofluorescence studies revealed the presence of chP3R99 mAb in atherosclerotic lesions 24 h after intravenous administration, whereas planar images showed an evident accumulation of (99m)Tc-chP3R99 mAb in atherosclerotic rabbit carotids. Accordingly, (99m)Tc-chP3R99 mAb uptake by lesioned aortic arch and thoracic segment was increased 5.6-fold over controls and it was 3.9-folds higher in carotids, in agreement with immunoscintigrams. Moreover, the deposition of (99m)Tc-chP3R99 mAb in the artery wall was associated both with the presence and size of the lesions in the different portions of evaluated arteries and was greater than in non-targeted organs. In conclusion, chP3R99 mAb preferentially accumulates in arterial atherosclerotic lesions supporting the potential use of this anti-glycosaminoglycans antibody for diagnosis and treatment of atherosclerosis.

  13. A tool kit for rapid cloning and expression of recombinant antibodies

    PubMed Central

    Dodev, Tihomir S.; Karagiannis, Panagiotis; Gilbert, Amy E.; Josephs, Debra H.; Bowen, Holly; James, Louisa K.; Bax, Heather J.; Beavil, Rebecca; Pang, Marie O.; Gould, Hannah J.; Karagiannis, Sophia N.; Beavil, Andrew J.

    2014-01-01

    Over the last four decades, molecular cloning has evolved tremendously. Efficient products allowing assembly of multiple DNA fragments have become available. However, cost-effective tools for engineering antibodies of different specificities, isotypes and species are still needed for many research and clinical applications in academia. Here, we report a method for one-step assembly of antibody heavy- and light-chain DNAs into a single mammalian expression vector, starting from DNAs encoding the desired variable and constant regions, which allows antibodies of different isotypes and specificity to be rapidly generated. As a proof of principle we have cloned, expressed and characterized functional recombinant tumor-associated antigen-specific chimeric IgE/κ and IgG1/κ, as well as recombinant grass pollen allergen Phl p 7 specific fully human IgE/λ and IgG4/λ antibodies. This method utilizing the antibody expression vectors, available at Addgene, has many applications, including the potential to support simultaneous processing of antibody panels, to facilitate mechanistic studies of antigen-antibody interactions and to conduct early evaluations of antibody functions. PMID:25073855

  14. 78 FR 13691 - Prospective Grant of Exclusive License: The Development of m971 and m972 Chimeric Antigen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... m971 and m972 Chimeric Antigen Receptors (CARs) for the Treatment of B Cell Malignancies AGENCY... worldwide, and the field of use may be limited to: Treatment of B cell malignancies that express CD22 on their cell surface using chimeric antigen receptors which contain the m971 or m972 antibody...

  15. A Chimeric HIV-1 Envelope Glycoprotein Trimer with an Embedded Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Domain Induces Enhanced Antibody and T Cell Responses*

    PubMed Central

    van Montfort, Thijs; Melchers, Mark; Isik, Gözde; Menis, Sergey; Huang, Po-Ssu; Matthews, Katie; Michael, Elizabeth; Berkhout, Ben; Schief, William R.; Moore, John P.; Sanders, Rogier W.

    2011-01-01

    An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric EnvGM-CSF enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines. PMID:21515681

  16. Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1

    SciTech Connect

    Pancera, Marie; McLellan, Jason S.; Wu, Xueling; Zhu, Jiang; Changela, Anita; Schmidt, Stephen D.; Yang, Yongping; Zhou, Tongqing; Phogat, Sanjay; Mascola, John R.; Kwong, Peter D.

    2010-11-03

    HIV-1 resists neutralization by most antibodies. Two somatically related human antibodies, PG9 and PG16, however, each neutralize 70 to 80% of circulating HIV-1 isolates. Here we present the structure of the antigen-binding fragment of PG16 in monoclinic and orthorhombic lattices at 2.4 and 4.0 {angstrom}, respectively, and use a combination of structural analysis, paratope dissection, and neutralization assessment to determine the functional relevance of three unusual PG9/PG16 features: N-linked glycosylation, extensive affinity maturation, and a heavy chain-third complementarity-determining region (CDR H3) that is one of the longest observed in human antibodies. Glycosylation extended off the side of the light chain variable domain and was not required for neutralization. The CDR H3 formed an axe-shaped subdomain, which comprised 42% of the CDR surface, with the axe head looming {approx}20 {angstrom} above the other combining loops. Comprehensive sets of chimeric swaps between PG9 and PG16 of light chain, heavy chain, and CDR H3 were employed to decipher structure-function relationships. Chimeric swaps generally complemented functionally, with differences in PG9/PG16 neutralization related primarily to residue differences in CDR H3. Meanwhile, chimeric reversions to genomic V genes showed isolate-dependent effects, with affinity maturation playing a significant role in augmenting neutralization breadth (P = 0.036) and potency (P < 0.0001). The structural and functional details of extraordinary CDR H3 and extensive affinity maturation provide insights into the neutralization mechanism of and the elicitation pathway for broadly neutralizing antibodies like PG9 and PG16.

  17. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  18. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    PubMed

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  19. Antibody-Independent Protection against Rotavirus Infection of Mice Stimulated by Intranasal Immunization with Chimeric VP4 or VP6 Protein

    PubMed Central

    Choi, Anthony H.-C.; Basu, Mitali; McNeal, Monica M.; Clements, John D.; Ward, Richard L.

    1999-01-01

    This study was to determine whether individual rotavirus capsid proteins could stimulate protection against rotavirus shedding in an adult mouse model. BALB/c mice were intranasally or intramuscularly administered purified Escherichia coli-expressed murine rotavirus strain EDIM VP4, VP6, or truncated VP7 (TrVP7) protein fused to the 42.7-kDa maltose-binding protein (MBP). One month after the last immunization, mice were challenged with EDIM and shedding of rotavirus antigen was measured. When three 9-μg doses of one of the three rotavirus proteins fused to MBP were administered intramuscularly with the saponin adjuvant QS-21, serum rotavirus immunoglobulin G (IgG) was induced by each protein. Following EDIM challenge, shedding was significantly (P = 0.02) reduced (i.e., 38%) in MBP::VP6-immunized mice only. Three 9-μg doses of chimeric MBP::VP6 or MBP::TrVP7 administered intranasally with attenuated E. coli heat-labile toxin LT(R192G) also induced serum rotavirus IgG, but MBP::VP4 immunization stimulated no detectable rotavirus antibody. No protection against EDIM shedding was observed in the MBP::TrVP7-immunized mice. However, shedding was reduced 93 to 100% following MBP::VP6 inoculation and 56% following MBP::VP4 immunization relative to that of controls (P = <0.001). Substitution of cholera toxin for LT(R192G) as the adjuvant, reduction of the number of doses to 1, and challenge of the mice 3 months after the last immunization did not reduce the level of protection stimulated by intranasal administration of MBP::VP6. When MBP::VP6 was administered intranasally to B-cell-deficient μMt mice that made no rotavirus antibody, shedding was still reduced to <1% of that of controls. These results show that mice can be protected against rotavirus shedding by intranasal administration of individual rotavirus proteins and that this protection can occur independently of rotavirus antibody. PMID:10438847

  20. Vector-Mediated In Vivo Antibody Expression.

    PubMed

    Schnepp, Bruce C; Johnson, Philip R

    2014-08-01

    This article focuses on a novel vaccine strategy known as vector-mediated antibody gene transfer, with a particular focus on human immunodeficiency virus (HIV). This strategy provides a solution to the problem of current vaccines that fail to generate neutralizing antibodies to prevent HIV-1 infection and AIDS. Antibody gene transfer allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein. This approach uses recombinant adeno-associated viral (rAAV) vectors, which have been shown to transduce muscle with high efficiency and direct the long-term expression of a variety of transgenes, to deliver the gene encoding a broadly neutralizing antibody into the muscle. Following rAAV vector gene delivery, the broadly neutralizing antibodies are endogenously synthesized in myofibers and passively distributed to the circulatory system. This is an improvement over classical passive immunization strategies that administer antibody proteins to the host to provide protection from infection. Vector-mediated gene transfer studies in mice and monkeys with anti-HIV and simian immunodeficiency virus (SIV)-neutralizing antibodies demonstrated long-lasting neutralizing activity in serum with complete protection against intravenous challenge with virulent HIV and SIV. These results indicate that existing potent anti-HIV antibodies can be rapidly moved into the clinic. However, this methodology need not be confined to HIV. The general strategy of vector-mediated antibody gene transfer can be applied to other difficult vaccine targets such as hepatitis C virus, malaria, respiratory syncytial virus, and tuberculosis.

  1. The cytotoxicity and microdosimetry of astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro.

    PubMed

    Larsen, R H; Akabani, G; Welsh, P; Zalutsky, M R

    1998-02-01

    The cytotoxicity of alpha-particle-emitting endoradiotherapeutic compounds is of increasing interest because clinical evaluation of these potential therapeutic agents is commencing. Astatine-211 is a radionuclide with a 7.2-h half-life that emits 5.87 and 7.45 MeV alpha particles. In the present work, we have investigated the in vitro cytotoxicity of 211At-labeled chimeric monoclonal antibodies (mAbs) in monolayers of D-247 MG human glioma cells and SK-MEL-28 human melanoma cells. The mAbs studied were 81C6, reactive with the extracellular matrix antigen tenascin, Mel-14, directed against the cell membrane antigen proteoglycan chondroitin sulfate, and a nonspecific control mAb, TPS3.2. Cell uptake increased as a function of activity concentration after a 1-h exposure to the 211At-labeled mAbs. The retention of activity was also measured to calculate cumulative activity associated with the cells and the medium. The clonogenic survival as a function of activity concentration was linear in all cases with no detectable shoulder. Microdosimetric analyses were performed based on measured cell geometry, cumulative activity and Monte Carlo transport of alpha particles. Using 18 kBq/ml activity concentration and 1 h of incubation, a two to five times higher activity bound to the microcolonies was found for the specific mAbs compared to the nonspecific mAb. These calculations indicated that a survival fraction of 0.37 was achieved with 0.24-0.28 Gy for D-247 MG cells and 0.27-0.29 Gy for SK-MEL-28 cells. The microdosimetric cell sensitivity, z0, for D-247 MG cells was significantly lower than for SK-MEL-28 cells (0.08 compared to 0.15 Gy). For both cell lines, reduction in survival to 0.37 required an average of only 1-2 alpha-particle hits to the cell nucleus.

  2. Characterization of NoV P particle-based chimeric protein vaccines developed from two different expression systems.

    PubMed

    Fu, Lu; Jin, Hao; Yu, Yongjiao; Yu, Bin; Zhang, Haihong; Wu, Jiaxin; Yin, Yuhe; Yu, Xianghui; Wu, Hui; Kong, Wei

    2017-02-01

    The Norovirus (NoV) P domain, with three surface loops for foreign antigen insertion, has been demonstrated as an excellent platform for antigen presentation and novel vaccine development. The P domain alone can self-assemble into a P dimer, 12-mer small particle or 24-mer P particle, and vaccines based on those particles may elicit different levels of immunogenicity. Currently, P particles are generally produced in soluble expression systems in Escherichia coli, mainly in the 24-mer form. However, the low yield of the soluble protein has hindered further clinical applications of P particle-based protein vaccines. In this study, we inserted the Alzheimer's disease (AD) immunogen Aβ1-6 into the three loops of the P particle to generate an AD protein vaccine. To increase the yield of this chimeric protein, we tested the generation of proteins in a soluble expression system and an inclusion body expression system separately in E. coli. The result showed that the inclusion body expression system could greatly enhance the product yield of the chimeric protein compared with the soluble expression system. The refolded protein from the inclusion bodies was mainly in the 12-mer form, while the protein generated from the soluble supernatant was mainly in the 24-mer form. Moreover, the immunogenicity of soluble proteins was significantly stronger than that of the refolded proteins. Thus, comparisons between the two expression methods suggested that the soluble expression system generated chimeric P particles with better immunogenicity, while inclusion body expression system yielded more P particle proteins.

  3. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    SciTech Connect

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P. )

    1991-03-19

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with ({sup 3}H)glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Gal{beta}1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked {alpha}1-6 to the asparagine-linked N-acetylglucosamine.

  4. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    NASA Astrophysics Data System (ADS)

    Maawy, Ali A.; Hiroshima, Yukihiko; Kaushal, Sharmeela; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2013-12-01

    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model.

  5. In Vitro Generation of Human NK cells Expressing Chimeric Antigen Receptor through Differentiation of Gene-Modified Hematopoietic Stem Cells

    PubMed Central

    Lowe, Emily; Truscott, Laurel C.; De Oliveira, Satiro N.

    2016-01-01

    Summary NK cells represent a very promising source for adoptive cellular approaches for cancer immunotherapy, and extensive research has been conducted, including clinical trials. Gene modification of NK cells can direct their specificity and enhance their function, but the efficiency of gene transfer techniques is very limited. Here we describe two protocols designed to generate mature human NK cells from gene-modified hematopoietic stem cells. These protocols use chimeric antigen receptor as the transgene, but could potentially be modified for the expression any particular transgene in human NK cells. PMID:27177671

  6. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    SciTech Connect

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai . E-mail: chyang@emory.edu

    2006-08-15

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV.

  7. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.

    PubMed

    Espinosa, Diego A; Yadava, Anjali; Angov, Evelina; Maurizio, Paul L; Ockenhouse, Christian F; Zavala, Fidel

    2013-08-01

    The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.

  8. Porcine circovirus type 2 protective epitope densely carried by chimeric papaya ringspot virus-like particles expressed in E. coli as a cost-effective vaccine manufacture alternative.

    PubMed

    Aguilera, Brenda Eugenia; Chávez-Calvillo, Gabriela; Elizondo-Quiroga, Darwin; Jimenez-García, Mónica Noemí; Carrillo-Tripp, Mauricio; Silva-Rosales, Laura; Hernández-Gutiérrez, Rodolfo; Gutiérrez-Ortega, Abel

    2016-03-11

    Porcine circovirus type 2 (PCV2) still represents a major problem to the swine industry worldwide, causing high mortality rates in infected animals. Virus-like particles (VLPs) have gained attention for vaccine development, serving both as scaffolds for epitope expression and immune response enhancers. The commercial subunit vaccines against PCV2 consist of VLPs formed by the self-assembly of PCV2 capsid protein (CP) expressed in the baculovirus vector system. In this work, a PCV2 protective epitope was inserted into three different regions of papaya ringspot virus (PRSV) CP, namely, the N- and C-termini and a predicted antigenic region located near the N-terminus. Wild-type and chimeric CPs were modeled in silico, expressed in E. coli, purified and visualized by transmission electron microscopy. This is the first report that shows the formation of chimeric VLPs using PRSV as epitope-presentation scaffold. Moreover, it was found that PCV2 epitope localization strongly influences VLP length. Also, the estimated yields of the chimeric VLPs at a small-scale level ranged between 65 and 80 mg/l of culture medium. Finally, the three chimeric VLPs induced high levels of IgG against the PCV2 epitope in immunized BALB/c mice, suggesting that these chimeric VLPs can be used for swine immunoprophylaxis against PCV2. This article is protected by copyright. All rights reserved.

  9. Dystrophic Muscle in Mice Chimeric for Expression of α5 Integrin

    PubMed Central

    Taverna, Daniela; Disatnik, Marie-Helene; Rayburn, Helen; Bronson, Roderick T.; Yang, Joy; Rando, Thomas A.; Hynes, Richard O.

    1998-01-01

    α5-deficient mice die early in embryogenesis (Yang et al., 1993). To study the functions of α5 integrin later in mouse embryogenesis and during adult life we generated α5 −/−;+/+ chimeric mice. These animals contain α5-negative and positive cells randomly distributed. Analysis of the chimerism by glucose- 6-phosphate isomerase (GPI) assay revealed that α5 −/− cells contributed to all the tissues analyzed. High contributions were observed in the skeletal muscle. The perinatal survival of the mutant chimeras was lower than for the controls, however the subsequent life span of the survivors was only slightly reduced compared with controls (Taverna et al., 1998). Histological analysis of α5 −/−;+/+ mice from late embryogenesis to adult life revealed an alteration in the skeletal muscle structure resembling a typical muscle dystrophy. Giant fibers, increased numbers of nuclei per fiber with altered position and size, vacuoli and signs of muscle degeneration–regeneration were observed in head, thorax and limb muscles. Electron microscopy showed an increase in the number of mitochondria in some muscle fibers of the mutant mice. Increased apoptosis and immunoreactivity for tenascin-C were observed in mutant muscle fibers. All the alterations were already visible at late stages of embryogenesis. The number of altered muscle fibers varied in different animals and muscles and was often increased in high percentage chimeric animals. Differentiation of α5 −/− ES cells or myoblasts showed that in vitro differentiation into myotubes was achieved normally. However proper adhesion and survival of myoblasts on fibronectin was impaired. Our data suggest that a novel form of muscle dystrophy in mice is α5-integrin-dependent. PMID:9813102

  10. Expression level of a chimeric kinase governs entry into sporulation in Bacillus subtilis.

    PubMed

    Eswaramoorthy, Prahathees; Dravis, Ashlee; Devi, Seram Nganbiton; Vishnoi, Monika; Dao, Hoang-Anh; Fujita, Masaya

    2011-11-01

    Upon starvation, Bacillus subtilis cells switch from growth to sporulation. It is believed that the N-terminal sensor domain of the cytoplasmic histidine kinase KinA is responsible for detection of the sporulation-specific signal(s) that appears to be produced only under starvation conditions. Following the sensing of the signal, KinA triggers autophosphorylation of the catalytic histidine residue in the C-terminal domain to transmit the phosphate moiety, via phosphorelay, to the master regulator for sporulation, Spo0A. However, there is no direct evidence to support the function of the sensor domain, because the specific signal(s) has never been found. To investigate the role of the N-terminal sensor domain, we replaced the endogenous three-PAS repeat in the N-terminal domain of KinA with a two-PAS repeat derived from Escherichia coli and examined the function of the resulting chimeric protein. Despite the introduction of a foreign domain, we found that the resulting chimeric protein, in a concentration-dependent manner, triggered sporulation by activating Spo0A through phosphorelay, irrespective of nutrient availability. Further, by using chemical cross-linking, we showed that the chimeric protein exists predominantly as a tetramer, mediated by the N-terminal domain, as was found for KinA. These results suggest that tetramer formation mediated by the N-terminal domain, regardless of the origin of the protein, is important and sufficient for the kinase activity catalyzed by the C-terminal domain. Taken together with our previous observations, we propose that the primary role of the N-terminal domain of KinA is to form a functional tetramer, but not for sensing an unknown signal.

  11. The construction and expression of chimeric urokinase-type plasminogen activator genes containing kringle domains of human plasminogen.

    PubMed

    Boutaud, A; Castellino, F J

    1993-06-01

    A series of chimeric urokinase-type plasminogen activator (uPA) genes, which contain combinations of kringle domains of human plasminogen (HPg) in place of the uPA kringle (KuPA), has been constructed and expressed. Some of the resulting recombinant (r) variant uPA chimeras contain modules that potentially mediate the macroscopic binding of HPg to its activation effectors, fibrin(ogen) and 6-aminohexanoic acid (EACA). Such binding sites are not possessed by KuPA, but are present in certain of the HPg kringles, viz., kringle 1 (K1HPg), kringle 4 (K4HPg), and kringle 5 (K5HPg). The recombinant (r) chimeras constructed included molecules with replacements of KuPA with K1HPg (r-[KuPA-->K1HPg]uPA), and with KuPA replaced by double kringle combinations of K1HPgK4HPg (r-[KuPA-->K1HPgK4HPg]uPA), K2HPgK3HPg (r-[KuPA-->K2HPgK3HPg]uPA), and K4HPgK5HPg (r-[KuPA-->K4HPgK5HPg]uPA). All of these variant genes, along with their wild-type (wt) r-uPA counterparts, were expressed in human kidney 293 cells. In cases wherein EACA-binding kringles from HPg have been placed in uPA, this property has been retained in the chimeric molecule and employed as an essential part of the purification procedures for the variants. The steady state amidolytic activity of two-chain (tc) wtr-uPA toward the chromogenic substrate, H-D-pyroglutamyl-Gly-L-Arg-p-nitroanilide (S2444), is characterized by a kcat/KM (pH 7.4, 37 degrees C) of 120 s-1 mM-1. This value ranges from 92 s-1 mM-1 (tcr-[KuPA-->K1HPg]uPA) to 166 s-1 mM-1 (tcr-[KuPA-->K1HPgK4HPg]uPA) for each of the variants, demonstrating that the catalytic efficiency of the active site is altered only in a small way by changes in the noncatalytic domain of uPA. Small differences are also observed in the abilities of these tcr variants to interact with the fast-acting plasma inhibitor of uPA, viz., plasminogen activator inhibitor-1 (PAI-1). The second-order rate constant for the interaction of PAI-1 with tcr-uPA, 0.46 x 10(7) M-1s-1 (pH 7.4, 10 degrees

  12. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.

    PubMed

    Zarinpanjeh, Nasim; Motallebi, Mostafa; Zamani, Mohammad Reza; Ziaei, Mahboobeh

    2016-11-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the major fungal diseases of Brassica napus L. To develop resistance against this fungal disease, the defensin gene from Raphanus sativus and chimeric chit42 from Trichoderma atroviride with a C-terminal fused chitin-binding domain from Serratia marcescens were co-expressed in canola via Agrobacterium-mediated transformation. Twenty transformants were confirmed to carry the two transgenes as detected by polymerase chain reaction (PCR), with 4.8 % transformation efficiency. The chitinase activity of PCR-positive transgenic plants were measured in the presence of colloidal chitin, and five transgenic lines showing the highest chitinase activity were selected for checking the copy number of the transgenes through Southern blot hybridisation. Two plants carried a single copy of the transgenes, while the remainder carried either two or three copies of the transgenes. The antifungal activity of two transgenic lines that carried a single copy of the transgenes (T4 and T10) was studied by a radial diffusion assay. It was observed that the constitutive expression of these transgenes in the T4 and T10 transgenic lines suppressed the growth of S. sclerotiorum by 49 % and 47 %, respectively. The two transgenic lines were then let to self-pollinate to produce the T2 generation. Greenhouse bioassays were performed on the transgenic T2 young leaves by challenging with S. sclerotiorum and the results revealed that the expression of defensin and chimeric chitinase from a heterologous source in canola demonstrated enhanced resistance against sclerotinia stem rot disease.

  13. Collagen Sponge Functionalized with Chimeric Anti-BMP-2 Monoclonal Antibody Mediates Repair of Critical-Size Mandibular Continuity Defects in a Nonhuman Primate Model

    PubMed Central

    Xie, Yilin; Su, Yingying; Tang, Jianxia; Goh, Bee Tin; Saigo, Leonardo; Zhang, Chunmei; Wang, Jinsong; Khojasteh, Arash; Wang, Songlin

    2017-01-01

    Antibody-mediated osseous regeneration (AMOR) has been introduced by our research group as a tissue engineering approach to capture of endogenous growth factors through the application of specific monoclonal antibodies (mAbs) immobilized on a scaffold. Specifically, anti-Bone Morphogenetic Protein- (BMP-) 2 mAbs have been demonstrated to be efficacious in mediating bone repair in a number of bone defects. The present study sought to investigate the application of AMOR for repair of mandibular continuity defect in nonhuman primates. Critical-sized mandibular continuity defects were created in Macaca fascicularis locally implanted with absorbable collagen sponges (ACS) functionalized with chimeric anti-BMP-2 mAb or isotype control mAb. 2D and 3D analysis of cone beam computed tomography (CBCT) imaging demonstrated increased bone density and volume observed within mandibular continuity defects implanted with collagen scaffolds functionalized with anti-BMP-2 mAb, compared with isotype-matched control mAb. Both CBCT imaging and histologic examination demonstrated de novo bone formation that was in direct apposition to the margins of the resected bone. It is hypothesized that bone injury may be necessary for AMOR. This is evidenced by de novo bone formation adjacent to resected bone margins, which may be the source of endogenous BMPs captured by anti-BMP-2 mAb, in turn mediating bone repair.

  14. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors

    PubMed Central

    Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E.; Laskowski, Tamara; McNamara, George; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR’s in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  15. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    PubMed

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.

  16. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    PubMed

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants.

  17. Chimeric, divalent and tetravalent anti-CD19 monoclonal antibodies with potent in vitro and in vivo antitumor activity against human B-cell lymphoma and pre-B acute lymphoblastic leukemia cell lines.

    PubMed

    Liu, Xiao-Yun; Pop, Laurentiu M; Tsai, Lydia; Pop, Iliodora V; Vitetta, Ellen S

    2011-07-15

    CD19 is an attractive therapeutic target for treating human B-cell tumors. In our study, chimeric (c) divalent (cHD37) and tetravalent (cHD37-DcVV) anti-CD19 monoclonal antibodies (MAbs) were constructed, expressed and evaluated for their binding to human 19-positive (CD19(+)) tumor cell lines. They were also tested for proapoptotic activity and the ability to mediate effector functions. The antitumor activity of these MAbs was further tested in mice xenografted with the CD19(+) Burkitt's lymphoma cell line, Daudi or the pre-B acute lymphoblastic leukemia (ALL) cell line, NALM-6. The cHD37 and cHD37-DcVV MAbs exhibited specific binding and comparable proapoptotic activity on CD19(+) tumor cell lines in vitro. In addition, the cHD37 and cHD37-DcVV MAbs were similar in their ability to mediate antibody-dependent cell-mediated phagocytosis (ADCP). However, the tetravalent cHD37-DcVV MAb bound more avidly, had a slower dissociation rate, and did not internalize as well. It also had enhanced antibody-dependent cellular cytotoxicity (ADCC) with human but not murine effector cells. The cHD37 and cHD37-DcVV MAbs exhibited comparable affinity for the human neonatal Fc receptor (FcRn) and similar pharmacokinetics (PKs) in mice. Moreover, all the HD37 constructs were similar in extending the survival of mice xenografted with Daudi or NALM-6 tumor cells. Therefore, the cHD37 and cHD37-DcVV MAbs have potent antitumor activity and should be further developed for use in humans. Although not evident in mice, due to its increased ability to mediate ADCC with human but not mouse effector cells, the cHD37-DcVV MAb should have superior therapeutic efficacy in humans.

  18. Regulated expression of the feline panleukopenia virus P38 promoter on extrachromosomal FPV/EBV chimeric plasmids.

    PubMed Central

    Clemens, D L; Carlson, J O

    1989-01-01

    Feline panleukopenia virus/Epstein-Barr virus (FPV/EBV) chimeric expression plasmids were constructed to study regulation of the structural protein gene of the parvovirus, FPV, in a homologous cell culture system. Detection and quantitation of activity from the native FPV promoter, P38, was facilitated by fusing the Escherichia coli lacZ gene with the FPV structural protein gene. Feline cell lines which stably maintained these plasmids extrachromosomally were established. Constitutive beta-galactosidase activity was low but increased up to 40-fold after infection with FPV. Expression of beta-galactosidase was only detected when the FPV/lacZ gene was oriented in the same transcriptional direction as the Epstein-Barr virus gene coding for EBNA-1. When a small open reading frame upstream of the FPV/lacZ initiation codon was deleted, beta-galactosidase expression increased another 4.7- to 26-fold. These changes in beta-galactosidase activity indicate that expression of the FPV structural protein gene is regulated both transcriptionally and posttranscriptionally. Images PMID:2542586

  19. Reverse Genetics System for Uukuniemi Virus (Bunyaviridae): RNA Polymerase I-Catalyzed Expression of Chimeric Viral RNAs

    PubMed Central

    Flick, Ramon; Pettersson, Ralf F.

    2001-01-01

    We describe here the development of a reverse genetics system for the phlebovirus Uukuniemi virus, a member of the Bunyaviridae family, by using RNA polymerase I (pol I)-mediated transcription. Complementary DNAs containing the coding sequence for either chloramphenicol acetyltransferase (CAT) or green fluorescent protein (GFP) (both in antisense orientation) were flanked by the 5′- and 3′-terminal untranslated regions of the Uukuniemi virus sense or complementary RNA derived from the medium-sized (M) RNA segment. This chimeric cDNA (pol I expression cassette) was cloned between the murine pol I promoter and terminator and the plasmid transfected into BHK-21 cells. When such cells were either superinfected with Uukuniemi virus or cotransfected with expression plasmids encoding the L (RNA polymerase), N (nucleoprotein), and NSs (nonstructural protein) viral proteins, strong CAT activity or GFP expression was observed. CAT activity was consistently stronger in cells expressing L plus N than following superinfection. No activity was seen without superinfection, nor was activity detected when either the L or N expression plasmid was omitted. Omitting NSs expression had no effect on CAT activity or GFP expression, indicating that this protein is not needed for viral RNA replication or transcription. CAT activity could be serially passaged to fresh cultures by transferring medium from CAT-expressing cells, indicating that recombinant virus containing the reporter construct had been produced. In summary, we demonstrate that the RNA pol I system, originally developed for influenza virus, which replicates in the nucleus, has strong potential for the development of an efficient reverse genetics system also for Bunyaviridae members, which replicate in the cytoplasm. PMID:11160662

  20. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  1. Antitumor activity of chimeric immunoreceptor gene-modified Tc1 and Th1 cells against autologous carcinoembryonic antigen-expressing colon cancer cells.

    PubMed

    Sasaki, Takeshi; Ikeda, Hiroaki; Sato, Masayoshi; Ohkuri, Takayuki; Abe, Hiroyuki; Kuroki, Masahide; Onodera, Masafumi; Miyamoto, Masaki; Kondo, Satoshi; Nishimura, Takashi

    2006-09-01

    To generate tumor-specific and interferon (IFN)-gamma-producing Tc1 and Th1 cells applicable for many cancer patients, we previously developed a protocol for generating carcinoembryonic antigen (CEA)-specific Tc1 and Th1 cells from healthy human T cells by transduction with a lentivirus containing a chimeric immunoglobulin T-cell receptor (cIgTCR) gene composed of single-chain variable fragments from an anti-CEA-specific monoclonal antibody fused to an intracellular signaling domain of CD28 and CD3zeta. These cells, designated Tc1-T and Th1-T bodies, respectively, showed strong antitumor activity against CEA-expressing tumor cells in RAG2-/- mice when both of them were transferred. However, it remains unclear whether it is possible to generate Tc1-T and Th1-T bodies from cancer patients with defective T-cell function because of significant immunosuppression. Here, we prepared Tc1-T and Th1-T bodies from T cells of a colon cancer patient, and asked whether these T bodies can exert effective T-cell function against autologous tumor cells. These T bodies showed high cytotoxicity and produced IFN-gamma in response to CEA-expressing autologous tumor cells, even in the presence of soluble CEA. It was also demonstrated that Th1-T bodies supported the survival of Tc1-T bodies through cell-to-cell interactions. Furthermore, our protocol utilized retrovirus for cIgTCR transduction to achieve better induction efficiency compared to lentivirus-mediated transduction. Taken together, our findings here indicate that retrovirally transduced Tc1-T and Th1-T bodies will become a promising strategy for adoptive immunotherapy of human cancer.

  2. Introduction, stable integration, and controlled expression of a chimeric adenovirus gene whose product is toxic to the recipient human cell.

    PubMed Central

    Klessig, D F; Brough, D E; Cleghon, V

    1984-01-01

    The DNA-binding protein (DBP) encoded by human adenoviruses is a multifunctional polypeptide which plays a central role in regulating the expression of the viral genes. To gain a better understanding of the relationships between the various functions provided by DBP, an extensive collection of DBP mutants is essential. To this end we have constructed several permissive human cell lines which contain and express the DBP gene at high levels to allow propagation of otherwise lethal, nonrecoverable mutants of DBP. Because DBP is toxic to human cells, cell lines were constructed by using a vector in which the DBP gene is under the control of the dexamethasone-inducible promoter of the mouse mammary tumor virus. The low basal levels of DBP synthesis in the absence of dexamethasone allows isolation and propagation of these cells. Addition of dexamethasone enhances DBP production 50- to 200-fold, and within 8 h its synthesis from the single integrated copy of the chimeric gene is 5 to 15% of that observed during peak DBP synthesis in infected human cells in which hundreds of copies of the DBP gene serve as templates. At the nonpermissive temperature, adenovirus mutants with ts lesions in the DBP gene replicate their DNAs, express their late genes, and form infectious viral particles in these DBP+ cell lines but not in the parental HeLa cells. Images PMID:6542172

  3. Repeated infusions of infliximab, a chimeric anti-TNFα monoclonal antibody, in patients with active spondyloarthropathy: one year follow up

    PubMed Central

    Kruithof, E; Van den Bosch, F; Baeten, D; Herssens, A; De Keyser, F; Mielants, H; Veys, E

    2002-01-01

    Background: In a pilot study, the anti-tumour necrosis factor α monoclonal antibody, infliximab, induced a rapid and significant improvement in global, peripheral, and axial disease manifestations of patients with active spondyloarthropathy. Objective: To determine whether repeated infusions of infliximab would effectively and safely maintain the observed effect. Methods: Safety and efficacy of a maintenance regimen (5 mg/kg infliximab every 14 weeks) was evaluated using the measurements reported in the pilot study. Of the 21 patients, 19 completed the one year follow up for efficacy; two patients changed to another dosing regimen after week 12 owing to partial lack of efficacy. However, they are still being followed up for safety analysis. Results: After each re-treatment a sustained significant decrease of all disease manifestations was observed. Before re-treatment, symptoms recurred in 3/19 (16%) at week 20, in 13/19 (68%) at week 34, and in 15/19 (79%) at week 48. No withdrawals due to adverse events occurred. Twelve minor infectious episodes were observed. Twelve patients (57%) developed antinuclear antibodies; in four of them (19%) anti-dsDNA antibodies were detected. However, no lupus-like symptoms occurred. Conclusion: In this open study of infliximab in patients with active spondyloarthropathy, the significant improvement of all disease manifestations was maintained over a one year follow up period without major adverse events. Although recurrence of symptoms was noted in a rising number of patients before each re-treatment, no loss of efficacy was observed after re-treatment. PMID:11830424

  4. Targeting vaccinia virus-expressed secretory beta subunit of human chorionic gonadotropin to the cell surface induces antibodies.

    PubMed Central

    Srinivasan, J; Singh, O; Chakrabarti, S; Talwar, G P

    1995-01-01

    We carried out experiments designed to study the effect of a protein's localization on its immunogenicity. A novel cell-surface protein was generated from a small, glycosylated secretory protein. The DNA sequence encoding the entire precursor of the human chorionic gonadotropin beta (beta hCG) subunit was fused in the correct reading frame to the DNA sequence encoding the transmembrane and cytoplasmic domains of vesicular stomatitis virus glycoprotein. This chimeric gene was introduced into the vaccinia virus genome to generate a recombinant virus. The recombinant virus, when used to infect animal cells, expressed a 135-amino-acid beta hCG subunit anchored in cellular membranes by the 48 carboxy-terminal amino acids of vesicular stomatitis virus glycoprotein. The immunogenicity of this recombinant virus with respect to its ability to generate anti-hCG antibodies was compared with that of a second recombinant vaccinia virus expressing the native secretory form of beta hCG. All animals immunized with the vaccinia virus expressing beta hCG on the cell surface elicited high titers of anti-hCG antibodies. Even after a single immunization with the recombinant vaccinia virus, the anti-hCG antibody titers persisted for a long period of time (more than 6 months). None of the animals immunized with vaccinia virus expressing the native secretory form of beta hCG showed any hCG-specific antibody response. PMID:7591154

  5. Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses.

    PubMed

    Brandler, Samantha; Ruffie, Claude; Najburg, Valérie; Frenkiel, Marie-Pascale; Bedouelle, Hughes; Desprès, Philippe; Tangy, Frédéric

    2010-09-24

    Dengue disease is an increasing global health problem that threatens one-third of the world's population. To control this emerging arbovirus, an efficient preventive vaccine is still needed. Because four serotypes of dengue virus (DV) coexist and antibody-dependent enhanced infection may occur, most strategies developed so far rely on the administration of tetravalent formulations of four live attenuated or chimeric viruses. Here, we evaluated a new strategy based on the expression of a single minimal tetravalent DV antigen by a single replicating viral vector derived from pediatric live-attenuated measles vaccine (MV). We generated a recombinant MV vector expressing a DV construct composed of the four envelope domain III (EDIII) from the four DV serotypes fused with the ectodomain of the membrane protein (ectoM). After two injections in mice susceptible to MV infection, the recombinant vector induced neutralizing antibodies against the four serotypes of dengue virus. When immunized mice were further inoculated with live DV from each serotype, a strong memory neutralizing response was raised against all four serotypes. A combined measles-dengue vaccine might be attractive to immunize infants against both diseases where they co-exist.

  6. Chimeric hepatitis B virus (HBV)/hepatitis C virus (HCV) subviral envelope particles induce efficient anti-HCV antibody production in animals pre-immunized with HBV vaccine.

    PubMed

    Beaumont, Elodie; Roingeard, Philippe

    2015-02-18

    The development of an effective, affordable prophylactic vaccine against hepatitis C virus (HCV) remains a medical priority. The recently described chimeric HBV-HCV subviral envelope particles could potentially be used for this purpose, as they could be produced by industrial procedures adapted from those established for the hepatitis B virus (HBV) vaccine. We show here, in an animal model, that pre-existing immunity acquired through HBV vaccination does not influence the immunogenicity of the HCV E2 protein presented by these chimeric particles. Thus, these chimeric HBV-HCV subviral envelope particles could potentially be used as a booster in individuals previously vaccinated against HBV, to induce protective immunity to HCV.

  7. Construction and Evaluation of a Maize Chimeric Promoter with Activity in Kernel Endosperm and Embryo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chimeric promoters contain DNA sequences from different promoters. Chimeric promoters are developed to increase the level of recombinant protein expression, precisely control transgene activity, or to escape homology-based gene silencing. Sets of chimeric promoters, each containing different lengt...

  8. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.)

    PubMed Central

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet’s salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na+/H+ antiporter and H+-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na+ and K+ in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na+-toxicity for plants. PMID:26284097

  9. Preserved Activity of CD20-Specific Chimeric Antigen Receptor-Expressing T Cells in the Presence of Rituximab.

    PubMed

    Rufener, Gregory A; Press, Oliver W; Olsen, Philip; Lee, Sang Yun; Jensen, Michael C; Gopal, Ajay K; Pender, Barbara; Budde, Lihua E; Rossow, Jeffrey K; Green, Damian J; Maloney, David G; Riddell, Stanley R; Till, Brian G

    2016-06-01

    CD20 is an attractive immunotherapy target for B-cell non-Hodgkin lymphomas, and adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) targeting CD20 is a promising strategy. A theoretical limitation is that residual serum rituximab might block CAR binding to CD20 and thereby impede T cell-mediated anti-lymphoma responses. The activity of CD20 CAR-modified T cells in the presence of various concentrations of rituximab was tested in vitro and in vivo CAR-binding sites on CD20(+) tumor cells were blocked by rituximab in a dose-dependent fashion, although at 37°C blockade was incomplete at concentrations up to 200 μg/mL. T cells with CD20 CARs also exhibited modest dose-dependent reductions in cytokine secretion and cytotoxicity, but not proliferation, against lymphoma cell lines. At rituximab concentrations of 100 μg/mL, CAR T cells retained ≥50% of baseline activity against targets with high CD20 expression, but were more strongly inhibited when target cells expressed low CD20. In a murine xenograft model using a rituximab-refractory lymphoma cell line, rituximab did not impair CAR T-cell activity, and tumors were eradicated in >85% of mice. Clinical residual rituximab serum concentrations were measured in 103 lymphoma patients after rituximab therapy, with the median level found to be only 38 μg/mL (interquartile range, 19-72 μg/mL). Thus, despite modest functional impairment in vitro, the in vivo activity of CD20-targeted CAR T cells remains intact at clinically relevant levels of rituximab, making use of these T cells clinically feasible. Cancer Immunol Res; 4(6); 509-19. ©2016 AACR

  10. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    SciTech Connect

    Xu, Yu; Liu, Zhengchun; Kong, Haiyan; Sun, Wenjie; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; and others

    2011-09-09

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  11. Flow cytometric evaluation of red blood cell chimerism after bone marrow transplantation in Iranian patients: a preliminary study.

    PubMed

    Shaiegan, Mojgan; Hadjati, Esmerdis; Aghaiipour, Mahnaz; Iravani, Masoud; David, Gaelle; Bernard, Daniel

    2006-10-01

    The aim of this study was to evaluate mixed red cells population and red blood cell chimerism after hematopoietic stem cell transplantation. Red blood cell chimerism after hematopoietic stem cell transplantation was analyzed using a series of fluorescein isothiocyanate-conjugated monoclonal antibodies (BioAtlantic, France) directed against ABH, Rh (D, C, E, c, e), Kell, Duffy, Kidd, and Ss antigens on blood samples of 14 patients with hematologic disorders undergoing hematopoietic stem cell transplantation, by flow cytometric method on days 15, 30, and 60 after transplantation. All patients showed expression of donor red cell antigens within days 15 - 30 after hematopoietic stem cell transplantation. Graft versus host disease and ABO incompatibility did not affect the expression of chimerism. Flow cytometric analysis is a simple, accurate, and valuable test which is of significant help in monitoring chimerism in allogeneic hematopoietic stem cell transplantation.

  12. Phase I study of chimeric anti-CD20 monoclonal antibody in Chinese patients with CD20-positive non-Hodgkin's lymphoma

    PubMed Central

    Gui, Lin; Han, Xiaohong; He, Xiaohui; Song, Yuanyuan; Yao, Jiarui; Yang, Jianliang; Liu, Peng; Qin, Yan; Zhang, Shuxiang; Zhang, Weijing; Gai, Wenlin; Xie, Liangzhi

    2016-01-01

    Objective: This study was designed to determine the safety, pharmacokinetics and biologic effects of a human-mouse chimeric anti-CD20 monoclonal antibody (SCT400) in Chinese patients with CD20-positive B-cell non-Hodgkin's lymphoma (CD20+ B-cell NHL). SCT400 has an identical amino acid sequence as rituximab, with the exception of one amino acid in the CH1 domain of the heavy chain, which is common in Asians. Methods: Fifteen patients with CD20+ B-cell NHL received dose-escalating SCT400 infusions (250 mg/m2: n=3; 375 mg/m2: n=9; 500 mg/m2: n=3) once weekly for 4 consecutive weeks with a 24-week follow-up period. The data of all patients were collected for pharmacokinetics and pharmacodynamics analyses. Results: No dose-limiting toxicities were observed. Most drug-related adverse events were grade 1 or 2. Two patients had grade 3 or 4 neutropenia. Under premedication, the drug-related infusion reaction was mild. A rapid, profound and durable depletion of circulating B cells was observed in all dose groups without significant effects on T cell count, natural killer (NK) cell count or immunoglobulin levels. No patient developed anti-SCT400 antibodies during the course of the study. SCT400 serum half-life (T1/2), maximum concentration (Cmax) and area under the curve (AUC) generally increased between the first and fourth infusions (P<0.05). At the 375 mg/m2 dose, the T1/2 was 122.5±46.7 h vs. 197.0±75.0 h, respectively, and the Cmax was 200.6±20.2 g/mL vs. 339.1±71.0 g/mL, respectively. From 250 mg/m2 to 500 mg/m2, the Cmax and AUC increased significantly in a dose-dependent manner (P<0.05). Patients with a high tumor burden had markedly lower serum SCT400 concentrations compared with those without or with a low tumor burden. Of the 9 assessable patients, 1 achieved complete response and 2 achieved partial responses. Conclusions: SCT400 is well-tolerated and has encouraging preliminary efficacy in Chinese patients with CD20+ B-cell NHL. PMID:27199517

  13. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition.

    PubMed

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew; Powell, Daniel J

    2013-03-01

    NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4(+) and CD8(+) NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer.

  14. Chimeric NKG2D CAR-Expressing T Cell-Mediated Attack of Human Ovarian Cancer Is Enhanced by Histone Deacetylase Inhibition

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew

    2013-01-01

    Abstract NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4+ and CD8+ NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer. PMID:23297870

  15. Construction, expression and characterization of a chimeric multi-domain protein mediating specific DNA transfer.

    PubMed

    Gao, Peng; Li, Xiao; Liu, Yanjing; Liu, Yan; Kan, Shifu; Jin, Jing; Wang, Shuqi; Yuan, Changji; Jin, Ningyi

    2010-12-01

    The delivery of plasmid DNA to target cells using a simple, defined, non-viral system is an area of intense research in gene therapy. Here, we describe a novel DNA carrier protein termed TG, consisting of the DNA-binding domain of the yeast transcriptional activator GAL4 and human immunodeficiency virus type 1 Tat protein, which can transfer modified naked plasmid DNA into target cells to express foreign genes of interest. The TG protein was expressed in Escherichia coli (E. coli), refolded and purified on an immobilized Ni(2+) affinity chromatography column. SDS-PAGE and Western blotting revealed that the fusion protein was highly expressed with a yield of approximately 275 mg/L. We also constructed the pIRES-UAS-EGFP DNA vector, consisting of upstream activating sequences (UASs) for the specific binding of the DNA-binding protein and the enhanced green fluorescent protein (EGFP) gene. The TG protein could bind specifically to pIRES-UAS-EGFP, forming a complex which could efficiently transfect target cells and result in detectable EGFP protein expression. Thus, these results provide a basis for development of efficient non-viral DNA transfer vectors for further improvements of gene therapy strategies.

  16. Leaf proteome analysis of transgenic plants expressing antiviral antibodies.

    PubMed

    Di Carli, Mariasole; Villani, Maria Elena; Renzone, Giovanni; Nardi, Luca; Pasquo, Alessandra; Franconi, Rosella; Scaloni, Andrea; Benvenuto, Eugenio; Desiderio, Angiola

    2009-02-01

    The expression of exogenous antibodies in plant is an effective strategy to confer protection against viral infection or to produce molecules with pharmaceutical interest. However, the acceptance of the transgenic technology to obtain self-protecting plants depends on the assessment of their substantial equivalence compared to non-modified crops with an established history of safe use. In fact, the possibility exists that the introduction of transgenes in plants may alter expression of endogenous genes and/or normal production of metabolites. In this study, we investigated whether the expression in plant of recombinant antibodies directed against viral proteins may influence the host leaf proteome. Two transgenic plant models, generated by Agrobacterium tumefaciens-mediated transformation, were analyzed for this purpose, namely, Lycopersicon esculentum cv. MicroTom and Nicotiana benthamiana, expressing recombinant antibodies against cucumber mosaic virus and tomato spotted wilt virus, respectively. To obtain a significant representation of plant proteomes, optimized extraction procedures have been devised for each plant species. The proteome repertoire of antibody-expressing and control plants was compared by 2-DE associated to DIGE technology. Among the 2000 spots detected within the gels, about 10 resulted differentially expressed in each transgenic model and were identified by MALDI-TOF PMF and muLC-ESI-IT-MS/MS procedures. Protein variations were restricted to a limited number of defined differences with an average ratio below 2.4. Most of the differentially expressed proteins were related to photosynthesis or defense function. The overall results suggest that the expression of recombinant antibodies in both systems does not significantly alter the leaf proteomic profile, contributing to assess the biosafety of resistant plants expressing antiviral antibodies.

  17. Expression of human antibodies in eukaryotic micro-algae.

    PubMed

    Mayfield, Stephen P; Franklin, Scott E

    2005-03-07

    Protein based therapeutics have enjoyed great success over the past decade. Unfortunately, with this clinical success comes a heavy price tag, owing to the inherently high costs of capitalization and production using mammalian cell fermentation. To address this problem, we have begun developing a system for the expression of recombinant proteins in the unicellular eukaryotic green algae, Chlamydomonas reinhardtii, leading to the production of human IgA single chain antibodies. The expression of human monoclonal antibodies in C. reinhardtii offers an attractive alternative to traditional mammalian based expression systems for several reasons, including an ability to rapidly obtain stable plastid and nuclear transformants, coupled with inherently low costs of capitalization and production.

  18. Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer.

    PubMed

    Gheybi, Elaheh; Amani, Jafar; Salmanian, Ali Hatef; Mashayekhi, Farhad; Khodi, Samaneh

    2014-11-01

    Breast cancer is the most common cancer among women in the world. One of the approaches for diagnosis of breast cancer is detection of its tumor-associated markers. Mucin 1 (MUC1), a tumor-associated antigen, is a transmembrane glycoprotein expressed by normal epithelial cells and overexpressed by carcinomas of epithelial origin. Also, human epidermal growth factor receptor-2 (HER2/erbB-2) belongs to the one of four members of tyrosin kinase type 1 family in which overexpression of HER2 is associated with malignancy in breast cancer. This study was aimed to bioinformatics analysis and designing a recombinant chimeric protein containing MUC1 and HER2 antigens to express in prokaryotic host (Escherichia coli) as breast cancer diagnosis tools. The immunogenic sequences of MUC1 and HER2 were extracted and fused together by a linker. The chimeric construct was analyzed by bioinformatics softwares. The optimization and purification, evaluation of the expression of chimeric protein was performed using Western blotting, ELISA, and immunohistochemistry. The results showed that the chimeric construct was stable and immunogenic domains were exposed. The pET-28a vector containing chimeric gene had high level of protein expression. The recombinant chimeric protein was confirmed using Western blotting, and it was investigated using ELISA and IHC. Then, the MUC1 and HER2 combined peptides can be used as coating antigens in ELISA for detection of antibodies against MUC1 or HER2 in human serum.

  19. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.

    PubMed

    Oren, Ravit; Hod-Marco, Moran; Haus-Cohen, Maya; Thomas, Sharyn; Blat, Dan; Duvshani, Nerri; Denkberg, Galit; Elbaz, Yael; Benchetrit, Fabrice; Eshhar, Zelig; Stauss, Hans; Reiter, Yoram

    2014-12-01

    Adoptive transfer of Ag-specific T lymphocytes is an attractive form of immunotherapy for cancers. However, acquiring sufficient numbers of host-derived tumor-specific T lymphocytes by selection and expansion is challenging, as these cells may be rare or anergic. Using engineered T cells can overcome this difficulty. Such engineered cells can be generated using a chimeric Ag receptor based on common formats composed from Ag-recognition elements such as αβ-TCR genes with the desired specificity, or Ab variable domain fragments fused with T cell-signaling moieties. Combining these recognition elements are Abs that recognize peptide-MHC. Such TCR-like Abs mimic the fine specificity of TCRs and exhibit both the binding properties and kinetics of high-affinity Abs. In this study, we compared the functional properties of engineered T cells expressing a native low affinity αβ-TCR chains or high affinity TCR-like Ab-based CAR targeting the same specificity. We isolated high-affinity TCR-like Abs recognizing HLA-A2-WT1Db126 complexes and constructed CAR that was transduced into T cells. Comparative analysis revealed major differences in function and specificity of such CAR-T cells or native TCR toward the same antigenic complex. Whereas the native low-affinity αβ-TCR maintained potent cytotoxic activity and specificity, the high-affinity TCR-like Ab CAR exhibited reduced activity and loss of specificity. These results suggest an upper affinity threshold for TCR-based recognition to mediate effective functional outcomes of engineered T cells. The rational design of TCRs and TCR-based constructs may need to be optimized up to a given affinity threshold to achieve optimal T cell function.

  20. PreC and C Regions of Woodchuck Hepatitis Virus Facilitate Persistent Expression of Surface Antigen of Chimeric WHV-HBV Virus in the Hydrodynamic Injection BALB/c Mouse Model

    PubMed Central

    Wu, Weimin; Liu, Yan; Lin, Yong; Pan, Danzhen; Yang, Dongliang; Lu, Mengji; Xu, Yang

    2017-01-01

    In the hydrodynamic injection (HI) BALB/c mouse model with the overlength viral genome, we have found that woodchuck hepatitis virus (WHV) could persist for a prolonged period of time (up to 45 weeks), while hepatitis B virus (HBV) was mostly cleared at week four. In this study, we constructed a series of chimeric genomes based on HBV and WHV, in which the individual sequences of a 1.3-fold overlength HBV genome in pBS-HBV1.3 were replaced by their counterparts from WHV. After HI with the WHV-HBV chimeric constructs in BALB/c mice, serum viral antigen, viral DNA (vDNA), and intrahepatic viral antigen expression were analyzed to evaluate the persistence of the chimeric genomes. Interestingly, we found that HI with three chimeric WHV-HBV genomes resulted in persistent antigenemia in mice. All of the persistent chimeric genomes contained the preC region and the part of the C region encoding the N-terminal 1–145 amino acids of the WHV genome. These results indicated that the preC region and the N-terminal part of the C region of the WHV genome may play a role in the persistent antigenemia. The chimeric WHV-HBV genomes were able to stably express viral antigens in the liver and could be further used to express hepadnaviral antigens to study their pathogenic potential. PMID:28230775

  1. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D.

    PubMed

    Wang, Zhongjuan; Guo, Linghua; Song, Yuan; Zhang, Yinsheng; Lin, Dandan; Hu, Bo; Mei, Yu; Sandikin, Dedy; Liu, Haiyan

    2017-04-01

    The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent immunosuppressive cytokine that can suppress NK cell function. To convert the suppressive signal induced by TGF-β to an activating signal, we genetically modified NK-92 cells to express a chimeric receptor with TGF-β type II receptor extracellular and transmembrane domains and the intracellular domain of NK cell-activating receptor NKG2D (TN chimeric receptor). NK-92 cells expressing TN receptors were resistant to TGF-β-induced suppressive signaling and did not down-regulate NKG2D. These modified NK-92 cells had higher killing capacity and interferon γ (IFN-γ) production against tumor cells compared with the control cells and their cytotoxicity could be further enhanced by TGF-β. More interestingly, the NK-92 cells expressing TN receptors were better chemo-attracted to the tumor cells expressing TGF-β. The presence of these modified NK-92 cells significantly inhibited the differentiation of human naïve CD4(+) T cells to regulatory T cells. NK-92-TN cells could also inhibit tumor growth in vivo in a hepatocellular carcinoma xenograft tumor model. Therefore, TN chimeric receptors can be a novel strategy to augment anti-tumor efficacy in NK cell adoptive therapy.

  2. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum cv. Xanthi.

    PubMed

    Dobhal, S; Chaudhary, V K; Singh, A; Pandey, D; Kumar, A; Agrawal, S

    2013-12-01

    Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.

  3. In-silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli

    PubMed Central

    Novinrooz, Aytak; Zahraei Salehi, Taghi; Firouzi, Roya; Arabshahi, Sina; Derakhshandeh, Abdollah

    2017-01-01

    E. coli O157:H7, one of the major EHEC serotypes, is capable of developing bloody diarrhea, hemorrhagic colitis (HC), and fatal hemolytic uremic syndrome (HUS) and is accompanied by high annual economic loss worldwide. Due to the increased risk of HC and HUS development following antibiotic therapy, the prevention of infections caused by this pathogen is considered to be one of the most effective ways of avoiding the consequences of this infection. The main aim of the present study was to design, express, and purify a novel chimeric protein to develope human vaccine candidate against E. coli O157:H7 containing loop 2–4 of E. coli O157:H7, outer membrane protein A (OmpA), and B subunit of E. coli heat labile enterotoxin (LTB) which are connected by a flexible peptide linker. Several online databases and bioinformatics software were utilized to choose the peptide linker among 537 analyzed linkers, design the chimeric protein, and optimize the codon of the relative gene encoding this protein. Subsequently, the recombinant gene encoding OmpA-LTB was synthesized and cloned into pET-24a (+) expression vector and transferred to E. coli BL21(DE3) cells. The expression of OmpA-LTB chimeric protein was then carried out by induction of cultured E. coli Bl21 (DE3) cells with 1mM isopropyl-β-D-thiogalactopyranoside (IPTG). The purification of OmpA-LTB was then performed by nickel affinity chromatography. Expression and purification were analyzed by sodium dodecyl sulphate poly acrylamide gel electrophoresis. Moreover, the identity of the expressed protein was analyzed by western blotting. SDS-PAGE and western immunoblotting confirmed the successful expression of a 27 KDa recombinant protein after 24 hours at 37°C post-IPTG induction. OmpA-LTB was then successfully purified, using nickel affinity chromatography under denaturing conditions. The yield of purification was 12 mg per liter of culture media. Ultimately, we constructed the successful design and efficient expression

  4. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease.

    PubMed

    Ellebrecht, Christoph T; Bhoj, Vijay G; Nace, Arben; Choi, Eun Jung; Mao, Xuming; Cho, Michael Jeffrey; Di Zenzo, Giovanni; Lanzavecchia, Antonio; Seykora, John T; Cotsarelis, George; Milone, Michael C; Payne, Aimee S

    2016-07-08

    Ideally, therapy for autoimmune diseases should eliminate pathogenic autoimmune cells while sparing protective immunity, but feasible strategies for such an approach have been elusive. Here, we show that in the antibody-mediated autoimmune disease pemphigus vulgaris (PV), autoantigen-based chimeric immunoreceptors can direct T cells to kill autoreactive B lymphocytes through the specificity of the B cell receptor (BCR). We engineered human T cells to express a chimeric autoantibody receptor (CAAR), consisting of the PV autoantigen, desmoglein (Dsg) 3, fused to CD137-CD3ζ signaling domains. Dsg3 CAAR-T cells exhibit specific cytotoxicity against cells expressing anti-Dsg3 BCRs in vitro and expand, persist, and specifically eliminate Dsg3-specific B cells in vivo. CAAR-T cells may provide an effective and universal strategy for specific targeting of autoreactive B cells in antibody-mediated autoimmune disease.

  5. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells.

  6. Tissue-specific expressed antibody variable gene repertoires.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Finn, Jessica A; McKinney, Brett A; Crowe, James E

    2014-01-01

    Recent developments in genetic technologies allow deep analysis of the sequence diversity of immune repertoires, but little work has been reported on the architecture of immune repertoires in mucosal tissues. Antibodies are the key to prevention of infections at the mucosal surface, but it is currently unclear whether the B cell repertoire at mucosal surfaces reflects the dominant antibodies found in the systemic compartment or whether mucosal tissues harbor unique repertoires. We examined the expressed antibody variable gene repertoires from 10 different human tissues using RNA samples derived from a large number of individuals. The results revealed that mucosal tissues such as stomach, intestine and lung possess unique antibody gene repertoires that differed substantially from those found in lymphoid tissues or peripheral blood. Mutation frequency analysis of mucosal tissue repertoires revealed that they were highly mutated, with little evidence for the presence of naïve B cells, in contrast to blood. Mucosal tissue repertoires possessed longer heavy chain complementarity determining region 3 loops than lymphoid tissue repertoires. We also noted a large increase in frequency of both insertions and deletions in the small intestine antibody repertoire. These data suggest that mucosal immune repertoires are distinct in many ways from the systemic compartment.

  7. Induction of Pluripotent Protective Immunity Following Immunisation with a Chimeric Vaccine against Human Cytomegalovirus

    PubMed Central

    Zhong, Jie; Rist, Michael; Cooper, Leanne; Smith, Corey; Khanna, Rajiv

    2008-01-01

    Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV) disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8+ and CD4+ T-cells which co-expressed IFN-γ and TNF-α, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8+ and CD4+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings. PMID:18806877

  8. Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo.

    PubMed

    Chen, Joy; Peterson, Kenneth R; Iancu-Rubin, Camelia; Bieker, James J

    2010-09-28

    Pharmacological treatments designed to reactivate fetal γ-globin can lead to an effective and successful clinical outcome in patients with hemoglobinopathies. However, new approaches remain highly desired because such treatments are not equally effective for all patients, and toxicity issues remain. We have taken a systematic approach to develop an embedded chimeric peptide nucleic acid (PNA) that effectively enters the cell and the nucleus, binds to its target site at the human fetal γ-globin promoter, and reactivates this transcript in adult transgenic mouse bone marrow and human primary peripheral blood cells. In vitro and in vivo DNA-binding assays in conjunction with live-cell imaging have been used to establish and optimize chimeric PNA design parameters that lead to successful gene activation. Our final molecule contains a specific γ-promoter-binding PNA sequence embedded within two amino acid motifs: one leads to efficient cell/nuclear entry, and the other generates transcriptional reactivation of the target. These embedded PNAs overcome previous limitations and are generally applicable to the design of in vivo transcriptional activation reagents that can be directed to any promoter region of interest and are of direct relevance to clinical applications that would benefit from such a need.

  9. Expression of recombinant vaccines and antibodies in plants.

    PubMed

    Ko, Kisung

    2014-06-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants.

  10. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  11. EASE vectors for rapid stable expression of recombinant antibodies.

    PubMed

    Aldrich, Teri L; Viaje, Aurora; Morris, Arvia E

    2003-01-01

    Over the past 10 years, monoclonal antibodies and antibody fragments have become an increasingly important source of therapeutic molecules in the biotechnology industry. Drug development strategies rely on screening large numbers of candidate molecules in search of an optimized drug candidate. This strategy requires efficient production of ten to a few hundred milligrams of candidate molecules for screening in bioassays and animal models. Typically, this amount of recombinant protein expression involves large numbers of transient transfections or cloning of a recombinant cell line. Both of these approaches are time-consuming and labor-intensive. In this report, we describe the application of an EASE vector system that is capable of generating stable pools of transfected Chinese hamster ovary cells. These pooled populations of cells produce high quantities of antibody candidates without labor-intensive cloning in a 3-5 week time frame. When an optimal drug candidate has been selected, pools generated with EASE-containing vectors can also be used in subsequent cloning steps to make cell lines with improved expression levels. We demonstrate that EASE increases expression in nonamplified pools in addition to increasing amplification and viability of clonal cell lines generated with the EASE-containing vectors compared with pools and cell lines generated without EASE.

  12. Construction and evaluation of a chimeric protein made from Fasciola hepatica leucine aminopeptidase and cathepsin L1.

    PubMed

    Hernández-Guzmán, K; Sahagún-Ruiz, A; Vallecillo, A J; Cruz-Mendoza, I; Quiroz-Romero, H

    2016-01-01

    Leucine aminopeptidase (LAP) and cathepsin L1 (CL1) are important enzymes for the pathogenesis and physiology of Fasciola hepatica. These enzymes were analysed in silico to design a chimeric protein containing the most antigenic sequences of LAP (GenBank; AAV59016.1; amino acids 192-281) and CL1 (GenBank CAC12806.1; amino acids 173-309). The cloned 681-bp chimeric fragment (rFhLAP-CL1) contains 270 bp from LAP and 411 bp from CL1, comprising three epitopes, DGRVVHLKY (amino acids 54-62) from LAP, VTGYYTVHSGSEVELKNLV (amino acids 119-137) and YQSQTCLPF (amino acids 161-169) from CL1. The ~25 kDa rFhLAP-CL1 chimeric protein was expressed from the pET15b plasmid in the Rosetta (DE3) Escherichia coli strain. The chimeric protein rFhLAP-CL1, which showed antigenic and immunogenic properties, was recognized in Western blot assays using F. hepatica-positive bovine sera, and induced strong, specific antibody responses following immunization in rabbits. The newly generated chimeric protein may be used as a diagnostic tool for detection of antibodies against F. hepatica in bovine sera and as an immunogen to induce protection against bovine fasciolosis.

  13. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development

    PubMed Central

    1995-01-01

    The ability of SV40 T antigen to cause abnormalities in cartilage development in transgenic mice and chimeras has been tested. The cis- regulatory elements of the COL2A1 gene were used to target expression of SV40 T antigen to differentiating chondrocytes in transgenic mice and chimeras derived from embryonal stem (ES) cells bearing the same transgene. The major phenotypic consequences of transgenic (pAL21) expression are malformed skeleton, disproportionate dwarfism, and perinatal/neonatal death. Expression of T antigen was tissue specific and in the main characteristic of the mouse alpha 1(II) collagen gene. Chondrocyte densities and levels of alpha 1(II) collagen mRNAs were reduced in the transgenic mice. Islands of cells which express cartilage characteristic genes such as type IIB procollagen, long form alpha 1(IX) collagen, alpha 2(XI) collagen, and aggrecan were found in the articular and growth cartilages of pAL21 chimeric fetuses and neonates. But these cells, which were expressing T antigen, were not properly organized into columns of proliferating chondrocytes. Levels of alpha 1(II) collagen mRNA were reduced in these chondrocytes. In addition, these cells did not express type X collagen, a marker for hypertrophic chondrocytes. The skeletal abnormality in pAL21 mice may therefore be due to a retardation of chondrocyte maturation or an impaired ability of chondrocytes to complete terminal differentiation and an associated paucity of some cartilage matrix components. PMID:7822417

  14. Development of a Novel Antibody-Drug Conjugate for the Potential Treatment of Ovarian, Lung, and Renal Cell Carcinoma Expressing TIM-1.

    PubMed

    Thomas, Lawrence J; Vitale, Laura; O'Neill, Thomas; Dolnick, Ree Y; Wallace, Paul K; Minderman, Hans; Gergel, Lauren E; Forsberg, Eric M; Boyer, James M; Storey, James R; Pilsmaker, Catherine D; Hammond, Russell A; Widger, Jenifer; Sundarapandiyan, Karuna; Crocker, Andrea; Marsh, Henry C; Keler, Tibor

    2016-12-01

    T-cell immunoglobulin and mucin domain 1 (TIM-1) is a type I transmembrane protein that was originally described as kidney injury molecule 1 (KIM-1) due to its elevated expression in kidney and urine after renal injury. TIM-1 expression is also upregulated in several human cancers, most notably in renal and ovarian carcinomas, but has very restricted expression in healthy tissues, thus representing a promising target for antibody-mediated therapy. To this end, we have developed a fully human monoclonal IgG1 antibody specific for the extracellular domain of TIM-1. This antibody was shown to bind purified recombinant chimeric TIM-1-Fc protein and TIM-1 expressed on a variety of transformed cell lines, including Caki-1 (human renal clear cell carcinoma), IGROV-1 (human ovarian adenocarcinoma), and A549 (human lung carcinoma). Internalization studies using confocal microscopy revealed the antibody was rapidly internalized by cells in vitro, and internalization was confirmed by quantitative imaging flow cytometry. An antibody-drug conjugate (ADC) was produced with the anti-TIM-1 antibody covalently linked to the potent cytotoxin, monomethyl auristatin E (MMAE), and designated CDX-014. The ADC was shown to exhibit in vitro cytostatic or cytotoxic activity against a variety of TIM-1-expressing cell lines, but not on TIM-1-negative cell lines. Using the Caki-1, IGROV-1, and A549 xenograft mouse models, CDX-014 showed significant antitumor activity in a clinically relevant dose range. Safety evaluation in nonhuman primates has demonstrated a good profile and led to the initiation of clinical studies of CDX-014 in renal cell carcinoma and potentially other TIM-1-expressing tumors. Mol Cancer Ther; 15(12); 2946-54. ©2016 AACR.

  15. The expression of a chimeric Phaseolus vulgaris nodulin 30-GUS gene is restricted to the rhizobially infected cells in transgenic Lotus corniculatus nodules.

    PubMed

    Carsolio, C; Campos, F; Sánchez, F; Rocha-Sosa, M

    1994-12-01

    In Phaseolus vulgaris there is a nodulin family, Npv30, of ca. 30 kDa, as detected in an in vitro translation assay [2]. We isolated a gene (npv30-1) for one of the members of this family. The nucleotide sequence of the promoter of npv30-1 contains nodule-specific motifs common to other late nodulin genes. The promoter was fused to the GUS reporter gene; this chimeric fusion was introduced into Lotus corniculatus via Agrobacterium rhizogenes transformation. GUS activity was only detected in the infected cells of the nodules of transgenic plants. By contrast, the expression of a 35S-GUS construct was restricted to the uninfected cells and the vascular tissue.

  16. Half molecular exchange of IgGs in the blood of healthy humans: chimeric lambda-kappa-immunoglobulins containing HL fragments of antibodies of different subclasses (IgG1-IgG4).

    PubMed

    Sedykh, Sergey E; Lekchnov, Evgenii A; Prince, Viktor V; Buneva, Valentina N; Nevinsky, Georgy A

    2016-10-20

    In the classic paradigm, immunoglobulins represent products of clonal B cell populations, each producing antibodies recognizing a single antigen (monospecific). There is a common belief that IgGs in mammalian biological fluids are monospecific molecules having stable structures and two identical antigen-binding sites. But the issue concerning the possibility of exchange by HL-fragments between the antibody molecules in human blood is still unexplored. Different physico-chemical and immunological methods for analysis of half-molecule exchange between human blood IgGs were used. Using eighteen blood samples of healthy humans we have shown unexpected results for the first time: blood antibodies undergo extensive post-transcriptional half-molecule exchange and IgG pools on average consist of 62.4 ± 6.5% IgGs containing kappa light chains (kappa-kappa-IgGs), 29.8.6 ± 5.4% lambda light chains (lambda-lambda-IgGs), and 8.8 ± 2.7% (range 2.6-16.8%) IgGs containing both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained on average (%): IgG1 (36.0 and 32.3), IgG2 (50.9 and 51.4), IgG3 (9.7 and 9.9), and IgG4 (6.5 and 5.7), while chimeric kappa-lambda-IgGs consisted of (%): 25.5 ± 4.2 IgG1, 50.8 ± 3.9 IgG2, 9.1 ± 2.1 IgG3, and 14.5 ± 2.2 IgG4. Our unexpected data are indicative of the possibility of half-molecule exchange between blood IgGs of various subclasses, raised against different antigens. The existence of blood chimeric bifunctional IgGs with different binding sites destroys the classic paradigm. Due to the phenomenon of polyspecificity and cross-reactivity of bifunctional IgGs containing HL-fragments of different types to different antigens, such IgGs may be important in human blood for widening their different biological functions.

  17. Secretion of a chimeric T-cell receptor-immunoglobulin protein.

    PubMed Central

    Gascoigne, N R; Goodnow, C C; Dudzik, K I; Oi, V T; Davis, M M

    1987-01-01

    To produce sufficient quantities of soluble T-cell receptor protein for detailed biochemical and biophysical analyses we have explored the use of immunoglobulin--T-cell receptor gene fusions. In this report we describe a chimeric gene construct containing a T-cell receptor alpha-chain variable (V) domain and the constant (C) region coding sequences of an immunoglobulin gamma 2a molecule. Cells transfected with the chimeric gene synthesize a stable protein product that expresses immunoglobulin and T-cell receptor antigenic determinants as well as protein A binding sites. We show that the determinant recognized by the anticlonotypic antibody A2B4.2 resides on the V alpha domain of the T-cell receptor. The chimeric protein associates with a normal lambda light chain to form an apparently normal tetrameric (H2L2, where H = heavy and L = light) immunoglobulin molecule that is secreted. Also of potential significance is the fact that a T-cell receptor V beta gene in the same construct is neither assembled nor secreted with the lambda light chain, and when expressed with a C kappa region it does not assemble with the chimeric V alpha C gamma 2a protein mentioned above. This indicates that not all T-cell receptor V regions are similar enough to immunoglobulin V regions for them to be completely interchangeable. Images PMID:3472243

  18. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    PubMed

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.

  19. Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-10-01

    Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and p<0.001 for the 750 dyes). Human pancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (p<0.001 for the 650 dyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.

  20. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    SciTech Connect

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-03-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.

  1. The Nuclear Gene Rf3 Affects the Expression of the Mitochondrial Chimeric Sequence R Implicated in S-Type Male Sterility in Maize

    PubMed Central

    Zabala, G.; Gabay-Laughnan, S.; Laughnan, J. R.

    1997-01-01

    The mitochondrial genomes of maize plants exhibiting S-type cytoplasmic male sterility (cms-S) contain a repeated DNA region designated R. This region was found to be rearranged in the mitochondria of all cms-S cytoplasmically revertant fertile plants in all nuclear backgrounds analyzed. A 1.6-kb mRNA transcribed from the R region in mitochondria of sterile plants was absent from all cytoplasmic revertants examined. The nuclear gene Rf3, which suppresses the cms-S phenotype, was found to have a specific effect on the expression of the R sequence; the abundance of the major R transcripts, including the cms-S-specific 1.6-kb mRNA, is decreased in mitochondria of restored plants. Nucleotide sequence analysis of R has revealed similarities to the R1 plasmid found in some South American maize races with RU cytoplasm, to the M1 plasmid found in one source of Zea luxurians teosinte, to the atp9 mitochondrial gene and its 3' flanking sequence, and also to a region 3' to the orf221 gene. The derived amino acid sequence of the R region predicts two open reading frames (ORFs). These ORFs contain the similarities to R1, M1, atp9 and orf221. The present report reveals the chimeric nature of the R region, describes the complex effect of Rf3 on the expression of the R sequence and implicates R in the sterile phenotype of cms-S maize. PMID:9335619

  2. A Chimeric HS4-SAR Insulator (IS2) That Prevents Silencing and Enhances Expression of Lentiviral Vectors in Pluripotent Stem Cells

    PubMed Central

    Gutierrez-Guerrero, Alejandra; Cobo, Marién; Muñoz, Pilar

    2014-01-01

    Chromatin insulators, such as the chicken β-globin locus control region hypersensitive site 4 (HS4), and scaffold/matrix attachment regions (SARs/MARs) have been incorporated separately or in combination into retroviral vectors (RVs) in order to increase transgene expression levels, avoid silencing and reduce expression variability. However, their incorporation into RVs either produces a reduction on titer and/or expression levels or do not have sufficient effect on stem cells. In order to develop an improved insulator we decided to combine SAR elements with HS4 insulators. We designed several synthetic shorter SAR elements containing 4 or 5 MAR/SARs recognition signatures (MRS) and studied their effects on a lentiviral vector (LV) expressing eGFP through the SFFV promoter (SE). A 388 bp SAR element containing 5 MRS, named SAR2, was as efficient or superior to the other SARs analyzed. SAR2 enhanced transgene expression and reduced silencing and variability on human embryonic stem cells (hESCs). We next compared the effect of different HS4-based insulators, the HS4-Core (250 bp), the HS4-Ext (400 bp) and the HS4-650 (650 bp). All HS4 elements reduced silencing and expression variability but they also had a negative effect on transgene expression levels and titer. In general, the HS4-650 element had a better overall effect. Based on these data we developed a chimeric insulator, IS2, combining the SAR2 and the HS4-650. When incorporated into the 3′ LTR of the SE LV, the IS2 element was able to enhance expression, avoid silencing and reduce variability of expression on hESCs. Importantly, these effects were maintained after differentiation of the transduced hESCs toward the hematopoietic linage. Neither the HS4-650 nor the SAR2 elements had these effects. The IS2 element is therefore a novel insulator that confers expression stability and enhances expression of LVs on stem cells. PMID:24400083

  3. Transcriptome Sequencing for the Detection of Chimeric Transcripts.

    PubMed

    Chu, Hsueh-Ting

    2016-01-01

    The occurrence of chimeric transcripts has been reported in many cancer cells and seen as potential biomarkers and therapeutic targets. Modern high-throughput sequencing technologies offer a way to investigate individual chimeric transcripts and the systematic information of associated gene expressions about underlying genome structural variations and genomic interactions. The detection methods of finding chimeric transcripts from massive amount of short read sequence data are discussed here. Both assembly-based and alignment-based methods are used for the investigation of chimeric transcripts.

  4. Hepatitis C virus dynamics and cellular gene expression in uPA-SCID chimeric mice with humanized livers during intravenous silibinin monotherapy

    SciTech Connect

    DebRoy, Swati; Hiraga, Nobuhiko; Imamura, Michio; Hayes, C. Nelson; Akamatsu, Sakura; Canini, Laetitia; Perelson, Alan S.; Pohl, Ralf T.; Persiani, Stefano; Uprichard, Susan L.; Tateno, Chise; Dahari, Harel; Chayama, Kazuaki

    2016-06-08

    Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. In this paper, to elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. Finally, the results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.

  5. Hepatitis C virus dynamics and cellular gene expression in uPA-SCID chimeric mice with humanized livers during intravenous silibinin monotherapy

    DOE PAGES

    DebRoy, Swati; Hiraga, Nobuhiko; Imamura, Michio; ...

    2016-06-08

    Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. In this paper, to elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albuminmore » (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. Finally, the results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.« less

  6. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  7. Multimodal imaging and detection strategy with 124 I-labeled chimeric monoclonal antibody cG250 for accurate localization and confirmation of extent of disease during laparoscopic and open surgical resection of clear cell renal cell carcinoma.

    PubMed

    Povoski, Stephen P; Hall, Nathan C; Murrey, Douglas A; Sharp, David S; Hitchcock, Charles L; Mojzisik, Cathy M; Bahnson, Eamonn E; Knopp, Michael V; Martin, Edward W; Bahnson, Robert R

    2013-02-01

    Renal cell carcinoma (RCC) accounts for approximately 85% to 90% of all primary kidney malignancies, with clear cell RCC (ccRCC) constituting approximately 70% to 85% of all RCCs. This study describes an innovative multimodal imaging and detection strategy that uses (124)I-labeled chimeric monoclonal antibody G250 ((124)I-cG250) for accurate preoperative and intraoperative localization and confirmation of extent of disease for both laparoscopic and open surgical resection of ccRCC. Two cases presented herein highlight how this technology can potentially guide complete surgical resection and confirm complete removal of all diseased tissues. This innovative (124)I-cG250 (ie, (124)I-girentuximab) multimodal imaging and detection approach, which would be clinically very useful to urologic surgeons, urologic medical oncologists, nuclear medicine physicians, radiologists, and pathologists who are involved in the care of ccRCC patients, holds great potential for improving the diagnostic accuracy, operative planning and approach, verification of disease resection, and monitoring for evidence of disease recurrence in ccRCC patients.

  8. Human placenta: relative content of antibodies of different classes and subclasses (IgG1-IgG4) containing lambda- and kappa-light chains and chimeric lambda-kappa-immunoglobulins.

    PubMed

    Lekchnov, Evgenii A; Sedykh, Sergey E; Dmitrenok, Pavel S; Buneva, Valentina N; Nevinsky, Georgy A

    2015-06-01

    The specific organ placenta is much more than a filter: it is an organ that protects, feeds and regulates the growth of the embryo. Affinity chromatography, ELISA, SDS-PAGE and matrix-assisted laser desorption ionization mass spectrometry were used. Using 10 intact human placentas deprived of blood, a quantitative analysis of average relative content [% of total immunoglobulins (Igs)] was carried out for the first time: (92.7), IgA (2.4), IgM (2.5), kappa-antibodies (51.4), lambda-antibodies (48.6), IgG1 (47.0), IgG2 (39.5), IgG3 (8.8) and IgG4 (4.3). It was shown for the first time that placenta contains sIgA (2.5%). In the classic paradigm, Igs represent products of clonal B-cell populations, each producing antibodies recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, similarly to human milk Igs, placenta antibodies undergo extensive half-molecule exchange and the IgG pool consists of 43.5 ± 15.0% kappa-kappa-IgGs and 41.6 ± 17.0% lambda-lambda-IgGs, while 15.0 ± 4.0% of the IgGs contained both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained, respectively (%): IgG1 (47.7 and 34.4), IgG2 (36.3 and 44.5), IgG3 (7.4 and 11.8) and IgG4 (7.5 and 9.1), while chimeric kappa-lambda-IgGs consisted of (%): 43.5 IgG1, 41.0 IgG2, 5.6 IgG3 and 7.9 IgG4. Our data are indicative of the possibility of half-molecule exchange between placenta IgGs of various subclasses, raised against different antigens, which explains a very well-known polyspecificity and cross-reactivity of different human IgGs.

  9. Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A.

    PubMed

    Doering, Christopher B; Denning, Gabriela; Dooriss, Kerry; Gangadharan, Bagirath; Johnston, Jennifer M; Kerstann, Keith W; McCarty, David A; Spencer, H Trent

    2009-07-01

    Human coagulation factor VIII (fVIII) is inefficiently biosynthesized in vitro and has proven difficult to express at therapeutic levels using available clinical gene-transfer technologies. Recently, we showed that a porcine and certain hybrid human/porcine fVIII transgenes demonstrate up to 100-fold greater expression than human fVIII. In this study, we extend these results to describe the use of a humanized, high-expression, hybrid human/porcine fVIII transgene that is 89% identical to human fVIII and was delivered by lentiviral vectors (LVs) to hematopoietic stem cells for gene therapy of hemophilia A. Recombinant human immunodeficiency virus-based vectors encoding the fVIII chimera efficiently transduced human embryonic kidney (HEK)-293T cells. Cells transduced with hybrid human/porcine fVIII encoding vectors expressed fVIII at levels 6- to 100-fold greater than cells transduced with vectors encoding human fVIII. Transplantation of transduced hematopoietic stem and progenitor cells into hemophilia A mice resulted in long-term fVIII expression at therapeutic levels despite <5% genetically modified blood mononuclear cells. Furthermore, the simian immunodeficiency virus (SIV) -derived vector effectively transduced the human hematopoietic cell lines K562, EU1, U.937, and Jurkat as well as the nonhematopoietic cell lines, HEK-293T and HeLa. All cell lines expressed hybrid human/porcine fVIII, albeit at varying levels with the K562 cells expressing the highest level of the hematopoietic cell lines. From these studies, we conclude that humanized high-expression hybrid fVIII transgenes can be utilized in gene therapy applications for hemophilia A to significantly increase fVIII expression levels compared to what has been previously achieved.

  10. Bispecific T-cells Expressing Polyclonal Repertoire of Endogenous γδ T-cell Receptors and Introduced CD19-specific Chimeric Antigen Receptor

    PubMed Central

    Deniger, Drew C; Switzer, Kirsten; Mi, Tiejuan; Maiti, Sourindra; Hurton, Lenka; Singh, Harjeet; Huls, Helen; Olivares, Simon; Lee, Dean A; Champlin, Richard E; Cooper, Laurence JN

    2013-01-01

    Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR+γδ T cells were expanded on CD19+ artificial antigen-presenting cells (aAPC), which resulted in >109 CAR+γδ T cells from <106 total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR+γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19+ tumor cell lines compared with CARnegγδ T cells. CD19+ leukemia xenografts in mice were reduced with CAR+γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells. PMID:23295945

  11. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  12. Transgenic tobacco plants expressing a dimeric single-chain variable fragment (scfv) antibody against Salmonella enterica serotype Paratyphi B.

    PubMed

    Makvandi-Nejad, Shokouh; McLean, Michael D; Hirama, Tomoko; Almquist, Kurt C; Mackenzie, C Roger; Hall, J Christopher

    2005-10-01

    Transgenic tobacco plants were produced that express an anti-Salmonella enterica single-chain variable fragment (scFv) antibody that binds to the lipopolysaccharide (LPS) of S. enterica Paratyphi B. The coding sequence of this scFv was optimized for expression in tobacco, synthesized and subsequently placed behind three different promoters: an enhanced tobacco constitutive ubiquitous promoter (EntCUP4), and single- and double-enhancer versions of the Cauliflower Mosaic Virus 35S promoter (CaMV 35S). These chimeric genes were introduced into Nicotiana tabacum cv. 81V9 by Agrobacterium-mediated transformation and 50 primary transgenic (T(0)) plants per construct were produced. Among these plants, 23 were selected for the ability to express active scFv as determined by enzyme-linked immunosorbent assay (ELISA) using S. enterica LPS as antigen. Expanded bed adsorption-immobilized metal affinity chromatography (EBA-IMAC) was used to purify 41.7 mug of scFv/g from leaf tissue. Gel filtration and surface plasmon resonance (SPR) analyses demonstrated that the purified scFv was active as a dimer or higher-order multimer. In order to identify T(1) plants suitable for development of homozygous lines with heritable scFv expression, kanamycin-resistance segregation analyses were performed to determine the number of T-DNA loci in each T(0) plant, and quantitative ELISA and immunoblot analyses were used to compare expression of active and total anti-Salmonella scFv, respectively, in the T(1) generation. As S. enterica causes millions of enteric fevers and hundreds of thousands of deaths worldwide each year, large-scale production and purification of this scFv will have potential for uses in diagnosis and detection, as a therapeutic agent, and in applications such as water system purification.

  13. A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug‐induced liver injury and postinjury inflammation in mice

    PubMed Central

    Lea, Jonathan D.; Sowinska, Agnieszka; Ottosson, Lars; Fürst, Camilla Melin; Steen, Johanna; Aulin, Cecilia; Clarke, Joanna I.; Kipar, Anja; Klevenvall, Lena; Yang, Huan; Palmblad, Karin; Park, B. Kevin; Tracey, Kevin J.; Blom, Anna M.; Andersson, Ulf

    2016-01-01

    Acetaminophen (APAP) overdoses are of major clinical concern. Growing evidence underlines a pathogenic contribution of sterile postinjury inflammation in APAP‐induced acute liver injury (APAP‐ALI) and justifies development of anti‐inflammatory therapies with therapeutic efficacy beyond the therapeutic window of the only current treatment option, N‐acetylcysteine (NAC). The inflammatory mediator, high mobility group box 1 (HMGB1), is a key regulator of a range of liver injury conditions and is elevated in clinical and preclinical APAP‐ALI. The anti‐HMGB1 antibody (m2G7) is therapeutically beneficial in multiple inflammatory conditions, and anti‐HMGB1 polyclonal antibody treatment improves survival in a model of APAP‐ALI. Herein, we developed and investigated the therapeutic efficacy of a partly humanized anti‐HMGB1 monoclonal antibody (mAb; h2G7) and identified its mechanism of action in preclinical APAP‐ALI. The mouse anti‐HMGB1 mAb (m2G7) was partly humanized (h2G7) by merging variable domains of m2G7 with human antibody‐Fc backbones. Effector function‐deficient variants of h2G7 were assessed in comparison with h2G7 in vitro and in preclinical APAP‐ALI. h2G7 retained identical antigen specificity and comparable affinity as m2G7. 2G7 treatments significantly attenuated APAP‐induced serum elevations of alanine aminotransferase and microRNA‐122 and completely abrogated markers of APAP‐induced inflammation (tumor necrosis factor, monocyte chemoattractant protein 1, and chemokine [C‐X‐C motif] ligand 1) with prolonged therapeutic efficacy as compared to NAC. Removal of complement and/or Fc receptor binding did not affect h2G7 efficacy. Conclusion: This is the first report describing the generation of a partly humanized HMGB1‐neutralizing antibody with validated therapeutic efficacy and with a prolonged therapeutic window, as compared to NAC, in APAP‐ALI. The therapeutic effect was mediated by HMGB1 neutralization and

  14. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  15. Structural defect linked to nonrandom mutations in the matrix gene of biken strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes.

    PubMed Central

    Ayata, M; Hirano, A; Wong, T C

    1989-01-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 Mr protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations in both the amino and carboxy regions. A surprising number of mutations in both the coding and noncoding regions of the Biken M gene were identical to those in an independently isolated SSPE virus strain with a similar defect. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general. Images PMID:2915379

  16. Expression, purification and characterization of the recombinant chimeric IgE Fc-fragment opossum-human-opossum (OSO), an active immunotherapeutic vaccine component.

    PubMed

    Xu, Bingze; Lundgren, Mats; Magnusson, Ann-Christine; Fuentes, Alexis

    2010-11-01

    The active vaccine component recombinant chimeric IgE Fc-fragment opossum-human-opossum (OSO) has been expressed in CHO-K1 cells. It contains two identical polypeptide chains with 338 amino acid residues in each chain connected by two disulfide bridges. The cell lines were adapted to suspension culture in a serum-free medium. An expression level of 60 mg/L was obtained after 8 days in a shaking flask at a temperature of 31.5 degrees C. The OSO protein has been purified to homogeneity by a combination of three chromatographic steps. Virus inactivation and reduction by solvent detergent treatment and nano-filtration were included in the process. The residual host cell protein content was less than 50 ng/mg OSO as analyzed by ELISA. Purity was analyzed by SDS-PAGE under reducing and non-reducing conditions and was estimated by densitometry to be above 99.0%. The dimer content was less than 0.1% as estimated by analytical size exclusion chromatography. The molecular mass, as estimated by SDS-PAGE, is 90 kDa. A value of around 74 kDa was calculated from its amino acid composition. This indicates that the protein is heavily glycosylated containing around 18% carbohydrate. Isoelectric focusing in polyacrylamide gel disclosed a ladder type band pattern with pI values in the pH-range 7.0-8.3, indicating a variation in the sialic acid content. The OSO protein is not stable at temperatures above 40 degrees C and at pH values below 4 indicating that virus inactivation by incubating the protein solution at higher temperature or at lower pH is not possible.

  17. Immunization of N terminus of enterovirus 71 VP4 elicits cross-protective antibody responses

    PubMed Central

    2013-01-01

    Background Enterovirus 71 (EV71) is major cause of hand, foot and mouth disease. Large epidemics of EV71 infection have been recently reported in the Asian-Pacific region. Currently, no vaccine is available to prevent EV71 infection. Results The peptide (VP4N20) consisting of the first 20 amino acids at the N-terminal of VP4 of EV71 genotype C4 were fused to hepatitis B core (HBcAg) protein. Expression of fusion proteins in E. coli resulted in the formation of chimeric virus-like particles (VLPs). Mice immunized with the chimeric VLPs elicited anti-VP4N20 antibody response. In vitro microneutralization experiments showed that anti-chimeric VLPs sera were able to neutralize not only EV71 of genotype C4 but also EV71 of genotype A. Neonatal mice model confirmed the neutralizing ability of anti-chimeric VLPs sera. Eiptope mapping led to the identification of a “core sequence” responsible for antibody recognition within the peptide. Conclusions Immunization of chimeric VLPs is able to elicit antibodies displaying a broad neutralizing activity against different genotypes of EV71 in vitro. The “core sequence” of EV71-VP4 is highly conserved across EV71 genotypes. The chimeric VLPs have a great potential to be a novel vaccine candidate with a broad cross-protection against different EV71 genotypes. PMID:24320792

  18. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus

    PubMed Central

    Marcobal, Angela; Liu, Xiaowen; Zhang, Wenlei; Dimitrov, Antony S.; Jia, Letong; Lee, Peter P.; Fouts, Timothy R.; Parks, Thomas P.

    2016-01-01

    Abstract Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission. PMID:26950606

  19. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    PubMed

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  20. An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Noguchi, Keiichi; Kondo, Akihiko; Yohda, Masafumi

    2012-12-01

    The goal of this work was to improve the bioluminescence-based signaling assay system to create a practical application of a biomimetic odor sensor using an engineered yeast-expressing olfactory receptors (ORs). Using the yeast endogenous pheromone receptor (Ste2p) as a model GPCR, we determined the suitable promoters for the firefly luciferase (luc) reporter and GPCR genes. Additionally, we deleted some genes to further improve the sensitivity of the luc reporter assay. By replacing the endogenous yeast G-protein α-subunit (Gpa1p) with the olfactory-specific Gα(olf), the optimized yeast strain successfully transduced signal through both OR and yeast Ste2p. Our results will assist the development of a bioluminescence-based odor-sensing system using OR-expressing yeast.

  1. Expression of antibodies using single open reading frame (sORF) vector design

    PubMed Central

    Gion, Wendy R.; Davis-Taber, Rachel A.; Regier, Dean A.; Fung, Emma; Medina, Limary; Santora, Ling C.; Bose, Sahana; Ivanov, Alexander V.; Perilli-Palmer, Barbara A.; Chumsae, Chris M.; Matuck, Joseph G.; Kunes, Yune Z.; Carson, Gerald R.

    2013-01-01

    Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-frame intein gene. A single mRNA and subsequent polypeptide are produced upon transient and stable transfection into HEK293 and CHO cells, respectively. Heavy and light chains are separated by the autocatalytic action of the intein and antibody processing proceeds to produce active, secreted antibody. Here, we report advances in sORF technology toward establishment of a viable manufacturing platform for therapeutic antibodies in CHO cells. Increasing expression levels and improving antibody processing by intein and signal peptide selection are discussed. PMID:23774760

  2. Antigenicity of a Bacterially Expressed Triple Chimeric Antigen of Plasmodium falciparum AARP, MSP-311 and MSP-119: PfAMSP-Fu35

    PubMed Central

    Pandey, Alok Kumar; Chauhan, Virander S.

    2016-01-01

    Development of fusion chimeras as potential vaccine candidates is considered as an attractive strategy to generate effective immune responses to more than one antigen using a single construct. Here, we described the design, production, purification and antigenicity of a fusion chimera (PfAMSP-Fu35), comprised of immunologically relevant regions of three vaccine target malaria antigens, PfAARP, PfMSP-3 and PfMSP-1. The recombinant PfAMSP-Fu35 is expressed as a soluble protein and purified to homogeneity with ease at a yield of ~ 7 mg L-1. Conformational integrity of the C-terminal fragment of PfMSP-1, PfMSP-119 was retained in the fusion chimera as shown by ELISA with conformation sensitive monoclonal antibodies. High titre antibodies were raised to the fusion protein and to all the three individual components in mice and rabbits upon immunization with fusion chimera in two different adjuvant formulations. The sera against PfAMSP-Fu35 recognized native parasite proteins corresponding to the three components of the fusion chimera. As shown by invasion inhibition assay and antibody mediated cellular inhibition assay, antibodies purified from the PfAMSP-Fu35 immunized serum successfully and efficiently inhibited parasite invasion in P. falciparum 3D7 in vitro both directly and in monocyte dependent manner. However, the invasion inhibitory activity of anti-AMSP-Fu35 antibody is not significantly enhanced as expected as compared to a previously described two component fusion chimera, MSP-Fu24. Therefore, it may not be of much merit to consider AMSP-Fu35 as a vaccine candidate for preclinical development. PMID:27798691

  3. Antibodies against HLA-DP recognize broadly expressed epitopes.

    PubMed

    Simmons, Daimon P; Kafetzi, Maria L; Wood, Isabelle; Macaskill, Peter C; Milford, Edgar L; Guleria, Indira

    2016-12-01

    HLA matching and avoidance of pre-transplant donor-specific antibodies are important in selection of donors for solid organ transplant. Solid phase testing with single antigen beads allows resolution of antibody reactivity to the level of the allele. Single antigen bead testing results at a large transplant center were reviewed to identify selective reactivity patterns of anti-HLA antibodies. Many HLA-DP antibodies were identified in the context of other HLA antibodies, but some sera had antibodies against only HLA-DP. B cell flow crossmatch testing was positive for 2 out of 9 sera with HLA-DP antibodies. Many patterns of reactivity corresponded to epitopes in hypervariable regions C and F of DPB1, but some matched epitopes in other regions or DPA1. Through analysis of single antigen bead testing from a large number of patients, we report that anti-HLA-DP antibodies predominantly recognize broadly cross-reactive epitopes. The United Network for Organ Sharing has mandated HLA-DP typing on all deceased kidney donors, and HLA-DP epitopes should be considered as the major antigens for avoidance of pre-transplant donor-specific antibodies.

  4. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer.

    PubMed

    Feng, Kaichao; Guo, Yelei; Dai, Hanren; Wang, Yao; Li, Xiang; Jia, Hejin; Han, Weidong

    2016-05-01

    The successes achieved by chimeric antigen receptor-modified T (CAR-T) cells in hematological malignancies raised the possibility of their use in non-small lung cancer (NSCLC). In this phase I clinical study (NCT01869166), patients with epidermal growth factor receptor (EGFR)-positive (>50% expression), relapsed/refractory NSCLC received escalating doses of EGFR-targeted CAR-T cell infusions. The EGFR-targeted CAR-T cells were generated from peripheral blood after a 10 to 13-day in vitro expansion. Serum cytokines in peripheral blood and copy numbers of CAR-EGFR transgene in peripheral blood and in tissue biopsy were monitored periodically. Clinical responses were evaluated with RECIST1.1 and immune- related response criteria, and adverse events were graded with CTCAE 4.0. The EGFR-targeted CAR-T cell infusions were well-tolerated without severe toxicity. Of 11 evaluable patients, two patients obtained partial response and five had stable disease for two to eight months. The median dose of transfused CAR(+) T cells was 0.97×10(7) cells kg(-1) (interquartile range (IQR), 0.45 to 1.09×10(7) cells kg(-1)). Pathological eradication of EGFR positive tumor cells after EGFR-targeted CAR-T cell treatment can be observed in tumor biopsies, along with the CAR-EGFR gene detected in tumor-infiltrating T cells in all four biopsied patients. The EGFR-targeted CAR-T cell therapy is safe and feasible for EGFR-positive advanced relapsed/refractory NSCLC.

  5. Chimeric Pestivirus Experimental Vaccines.

    PubMed

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  6. Characterization of a monoclonal antibody against CREPT, a novel protein highly expressed in tumors.

    PubMed

    Ren, Fangli; Wang, Ruoke; Zhang, Yanquan; Liu, Chunxiao; Wang, Yinyin; Hu, Jim; Zhang, Linqi; Chang, Zhijie

    2014-12-01

    CREPT (cell-cycle related and expression-elevated protein in tumor), a novel gene also called RPRD1B and C20ORF77, was recently identified to promote tumorigenesis through up-regulation of the expression of genes related to cell cycle. The previous study demonstrated that CREPT is highly expressed in a variety of tumors and enhances the expression of Cyclin D1 by promoting the formation of a chromatin loop. To study the correlation of CREPT expression with clinical factors in different tumors, we generated a monoclonal antibody (3E10) using purified recombinant human GST-CREPT protein as an antigen. In this study, we characterized the specificity of the monoclonal antibody and cloned the gene encoding the antibody for preparation of industrial production. Our results showed that the monoclonal antibody 3E10 was sensitive and specific to recognize human endogenous CREPT protein. We have mapped the epitope of the antibody and cloned the variable region sequence of the gene encoding the antibody. We confirmed that the cloned gene produced an equivalent antibody as that produced by the original hybridoma. This study provided a basis for large-scale production of the CREPT antibody, which will be useful for the study of the role of CREPT in different tumors.

  7. Characterization of a Monoclonal Antibody Against CREPT, a Novel Protein Highly Expressed in Tumors

    PubMed Central

    Ren, Fangli; Wang, Ruoke; Zhang, Yanquan; Liu, Chunxiao; Wang, Yinyin; Hu, Jim; Zhang, Linqi

    2014-01-01

    CREPT (cell-cycle related and expression-elevated protein in tumor), a novel gene also called RPRD1B and C20ORF77, was recently identified to promote tumorigenesis through up-regulation of the expression of genes related to cell cycle. The previous study demonstrated that CREPT is highly expressed in a variety of tumors and enhances the expression of Cyclin D1 by promoting the formation of a chromatin loop. To study the correlation of CREPT expression with clinical factors in different tumors, we generated a monoclonal antibody (3E10) using purified recombinant human GST-CREPT protein as an antigen. In this study, we characterized the specificity of the monoclonal antibody and cloned the gene encoding the antibody for preparation of industrial production. Our results showed that the monoclonal antibody 3E10 was sensitive and specific to recognize human endogenous CREPT protein. We have mapped the epitope of the antibody and cloned the variable region sequence of the gene encoding the antibody. We confirmed that the cloned gene produced an equivalent antibody as that produced by the original hybridoma. This study provided a basis for large-scale production of the CREPT antibody, which will be useful for the study of the role of CREPT in different tumors. PMID:25545209

  8. Expression of a functional single-chain antibody via Corynebacterium pseudodiphtheriticum.

    PubMed

    Sundaram, R K; Hurwitz, I; Matthews, S; Hoy, E; Kurapati, S; Crawford, C; Sundaram, P; Durvasula, R V

    2008-07-01

    Antibody-based therapeutics are effective against conditions ranging from acute infections to malignancy. They may prove crucial in combating bioterrorism and responding to drug-resistant and emerging pathogens. At present the cost of producing therapeutic monoclonal antibodies is between $1,000 to $6,000 per gram. The need to administer antibodies parenterally at frequent intervals further drives the cost of this treatment. Here we present an antibody delivery system, termed paratransgenesis, with the potential to overcome these limitations. The paratransgenic approach involves genetically transforming a commensal or symbiont bacterium to express foreign molecules that target pathogens. We describe transformation of Corynebacterium pseudodiptheriticum, a commensal bacterium found in the human respiratory tract, to express a murine single-chain antibody binding progesterone. The antibody was functional and bound specifically to progesterone in a concentration-dependent manner. This marker antibody system is the precursor to development of expression systems producing recombinant humanized single-chain antibodies. Studies are in progress evaluating fitness, transgene stablility, and pathogenecity of the genetically engineered C. pseudodiptheriticum. We anticipate developing a repertoire of expressed molecules targeting infectious agents and surface epitopes of pulmonary mass lesions. If expression systems for anti-pathogen molecules in C. pseudodiptheriticum and other respiratory commensal bacteria can be optimized, these bacteria have the potential for a range of therapeutic and prophylactic applications.

  9. Role of plant expression systems in antibody production for passive immunization.

    PubMed

    Virdi, Vikram; Depicker, Ann

    2013-01-01

    Passive immunization is a method to achieve immediate protection against infectious agents by administering pathogen-specific antibodies. It has proven to be lifesaving for many acute infections, and it is now also used for cancer treatment. Passive immunization therapies, however, are extremely expensive because they require large amounts of specific antibodies that are produced predominantly in mammalian expression systems. The cost for manufacturing plant-made antibodies is estimated to be comparatively low since plant production systems require relatively less capital investments. In addition, they are not prone to mammalian pathogens, which also eases downstream processing along with making it a safe expression system. Moreover, some of the recent developments in transient expression have enabled rapid, cGMP (current Good Manufacturing Practices) compliant manufacturing of antibodies. Whether lower production costs will be reflected in a lower market price for purified antibodies will be known when more plant-produced antibodies come to the market. Promisingly, the current molecular techniques in the field of in planta expression have enabled high-level production of a variety of antibodies in different plant organs, like roots/tubers/fruits, leaves and seeds, of a variety of plants, like potato, tobacco, maize, rice, tomato and pea, providing a very wide range of possible plant-based passive immunization therapies. For instance, the production of antibodies in edible tissues would allow for a unique, convenient, needle-less, oral passive immunization at the gastric mucosal surface. The technological advances, together with the innate capacity of plant tissues to assemble complex antibodies, will enable carving a niche in the antibody market. This non-exhaustive review aims to shed light on the role of plants as a flexible expression system for passive immunotherapy, which we envisage to progress alongside the conventional production platforms to manufacture

  10. Evaluation of Trichodysplasia Spinulosa-Associated Polyomavirus Capsid Protein as a New Carrier for Construction of Chimeric Virus-Like Particles Harboring Foreign Epitopes

    PubMed Central

    Gedvilaite, Alma; Kucinskaite-Kodze, Indre; Lasickiene, Rita; Timinskas, Albertas; Vaitiekaite, Ausra; Ziogiene, Danguole; Zvirbliene, Aurelija

    2015-01-01

    Recombinant virus-like particles (VLPs) represent a promising tool for protein engineering. Recently, trichodysplasia spinulosa-associated polyomavirus (TSPyV) viral protein 1 (VP1) was efficiently produced in yeast expression system and shown to self-assemble to VLPs. In the current study, TSPyV VP1 protein was exploited as a carrier for construction of chimeric VLPs harboring selected B and T cell-specific epitopes and evaluated in comparison to hamster polyomavirus VP1 protein. Chimeric VLPs with inserted either hepatitis B virus preS1 epitope DPAFR or a universal T cell-specific epitope AKFVAAWTLKAAA were produced in yeast Saccharomyces cerevisiae. Target epitopes were incorporated either at the HI or BC loop of the VP1 protein. The insertion sites were selected based on molecular models of TSPyV VP1 protein. The surface exposure of the insert positions was confirmed using a collection of monoclonal antibodies raised against the intact TSPyV VP1 protein. All generated chimeric proteins were capable to self-assemble to VLPs, which induced a strong immune response in mice. The chimeric VLPs also activated dendritic cells and T cells as demonstrated by analysis of cell surface markers and cytokine production profiles in spleen cell cultures. In conclusion, TSPyV VP1 protein represents a new potential carrier for construction of chimeric VLPs harboring target epitopes. PMID:26230706

  11. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft.

    PubMed

    Mohiuddin, Muhammad M; Singh, Avneesh K; Corcoran, Philip C; Thomas, Marvin L; Clark, Tannia; Lewis, Billeta G; Hoyt, Robert F; Eckhaus, Michael; Pierson, Richard N; Belli, Aaron J; Wolf, Eckhard; Klymiuk, Nikolai; Phelps, Carol; Reimann, Keith A; Ayares, David; Horvath, Keith A

    2016-04-05

    Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and αCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed αCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of αCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days.

  12. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft

    PubMed Central

    Mohiuddin, Muhammad M.; Singh, Avneesh K.; Corcoran, Philip C.; Thomas III, Marvin L.; Clark, Tannia; Lewis, Billeta G.; Hoyt, Robert F.; Eckhaus, Michael; Pierson III, Richard N.; Belli, Aaron J.; Wolf, Eckhard; Klymiuk, Nikolai; Phelps, Carol; Reimann, Keith A.; Ayares, David; Horvath, Keith A.

    2016-01-01

    Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and αCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed αCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of αCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days. PMID:27045379

  13. Immunoreactivity evaluation of a new recombinant chimeric protein against Brucella in the murine model

    PubMed Central

    Abdollahi, Abbas; Mansouri, Shahla; Amani, Jafar; Fasihi-Ramandi, Mahdi; Moradi, Mohammad

    2016-01-01

    Background and Objectives: Brucellosis is an important health problem in developing countries and no vaccine is available for the prevention of infection in humans. Because of clinically infectious diseases and their economic consequences in human and animals, designing a proper vaccine against Brucella is desirable. In this study, we evaluated the immune responses induced by a designed recombinant chimera protein in murine model. Materials and Methods: Three immunodominant antigens of Brucella have been characterized as potential immunogenic and protective antigens including: trigger factor (TF), Omp31 and Bp26 were fused together by EAAAK linkers to produce a chimera (structure were designed in silico), which was synthesized, cloned, and expressed in E. coli BL21 (DE3). The purification of recombinant protein was performed using Ni-NTA agarose. SDS-PAGE and anti-His antibody was used for confirmation purified protein (Western blot). BALB/c immunization was performed by purified protein and adjuvant, and sera antibody levels were measured by ELISA. otted. Results: SDS-PAGE and Western blotting results indicated the similarity of in silico designing and in vitro experiments. ELISA result proved that the immunized sera of mice contain high levels of antibodies (IgG) against recombinant chimeric protein. Conclusion: The recombinant chimeric protein could be a potential antigen candidate for the development of a subunit vaccine against Brucella. PMID:27928487

  14. Expression of crossreactive idiotypes by human antibodies specific for the capsular polysaccharide of Hemophilus influenzae B.

    PubMed Central

    Lucas, A H

    1988-01-01

    Human antibodies specific, for polyribosyl-ribitol-phosphate (PRP), the capsular polysaccharide of Hemophilus influenzae b, were studied using idiotypic analysis. Antisera were prepared against purified F(ab')2 anti-PRP from two unrelated adults, H.H. and P.T. After repeated absorption with IgG myeloma proteins and with PRP-absorbed normal human Ig and donor Ig, anti-idiotypic (anti-Id) sera were obtained that specifically reacted with anti-PRP antibodies. Anti-IdHH and anti-IdPT reciprocally crossreacted with H.H. and P.T. anti-PRP antibodies and F(ab')2 fragments, and also reacted with the serum anti-PRP antibodies from three additional adults unrelated to P.T. and H.H. Both anti-Id sera partially inhibited anti-PRP paratopes but not anti-tetanus toxoid paratopes. PRP did not inhibit anti-Id recognition of shared or crossreactive idiotypic (CRI) determinants. Naturally occurring and PRP immunization-induced anti-PRP antibodies expressed CRI. While CRI titer increased after immunization, the increase was usually less than the rise in total anti-PRP antibody. Quantitative differences in CRI expression were also apparent between natural and immunization-induced H.H. and P.T. anti-PRP antibodies as shown by their differential inhibitability by anti-Id. Our data demonstrate that anti-PRP antibodies from five unrelated adults express CRI determinants that are probably distant from the PRP combining site. Naturally occurring and immunization-induced anti-PRP antibodies share CRI and therefore appear to be clonally related, although immunization apparently induces the expression CRI-negative antibodies as well. These results, taken with previous studies showing restricted and identical anti-PRP isoelectric focusing spectrotypes in unrelated adults, suggest that some PRP-specific V domains are structurally conserved and probably germ-line encoded. PMID:3257499

  15. Chimeric plantibody passively protects mice against aerosolized ricin challenge.

    PubMed

    Sully, Erin K; Whaley, Kevin J; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H; Pauly, Michael H; Velasco, Jesus; Hiatt, Ernie; Morton, Josh; Swope, Kelsi; Roy, Chad J; Zeitlin, Larry; Mantis, Nicholas J

    2014-05-01

    Recent incidents in the United States and abroad have heightened concerns about the use of ricin toxin as a bioterrorism agent. In this study, we produced, using a robust plant-based platform, four chimeric toxin-neutralizing monoclonal antibodies that were then evaluated for the ability to passively protect mice from a lethal-dose ricin challenge. The most effective antibody, c-PB10, was further evaluated in mice as a therapeutic following ricin exposure by injection and inhalation.

  16. [Expression and purification of GST-CML28 fusion protein and preparation of its polyclonal antibody].

    PubMed

    Mao, Xia; Zhang, Bing; Bai, Xue-Ling; Liu, Long-Long; Zhang, Dong-Hua

    2012-12-01

    This study was aimed to investigate the expression of GST-CML28 in Escherichia Coli and to prepare its antibody. The constructed recombinant expression vectors CML28-pGEX-3X were transformed into Escherichia Coli BL21 under IPTG induction. The protein was abstracted from the transformers, and purified by a GSTrap FF column. The rabbits were immunized by the purified fusion protein to produce serum with anti-CML28 antibody. The serum was purified by chromatographic column stuffed with glutathione Sephamse 4B to get the antibody. The specific antibody against CML28 was further identified by ELISA, Western blot, immunohistochemistry and quantum dot luminescence. The results indicated that GST-CML28 fusion protein was expressed in Escherichia coli and its specific polyclonal antibody was obtained. It is concluded that the anti-CML28 polyclonal antibodies with high titer and specificity are successfully prepared. These antibodies provide an useful experimental tool to profoundly research the physiological significance and biological function of the CML28 gene.

  17. Immunodiagnosis of Citrus leprosis virus C using a polyclonal antibody to an expressed putative coat protein.

    PubMed

    Choudhary, Nandlal; Roy, Avijit; Guillermo, Leon M; Picton, D D; Wei, G; Nakhla, M K; Levy, L; Brlansky, R H

    2013-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent for citrus leprosis disease, is present in South and Central America and is a threat for introduction into the U.S. citrus industry. A specific, inexpensive and reliable antibody based detection system is needed for the rapid identification of CiLV-C. The CiLV-C is very labile and has not been purified in sufficient amount for antibody production. The p29 gene of CiLV-C genome that codes for the putative coat protein (PCP) was codon optimized for expression in Escherichia coli and synthesized in vitro. The optimized gene was sub-cloned into the bacterial expression vector pDEST17 and transferred into E. coli BL21AI competent cells. The expression of PCP containing N-terminal His-tag was optimized by induction with l-arabinose. Induced cells were disrupted by sonication and expressed PCP was purified by affinity chromatography using Ni-NTA agarose. The purified expressed PCP was then used as an immunogen for injections into rabbits to produce polyclonal antibody (PAb). The PAb specific to the expressed PCP was identified using Western blotting. The antibody was successfully used to detect CiLV-C in the symptomatic CiLV-C infected tissues using double antibody sandwich-enzyme-linked-immunosorbent (DAS-ELISA), indirect ELISA and dot-blot immunoassay (DBIA) formats.

  18. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation.

    PubMed

    Kettleborough, C A; Saldanha, J; Heath, V J; Morrison, C J; Bendig, M M

    1991-10-01

    A mouse monoclonal antibody (mAb 425) with therapeutic potential was 'humanized' in two ways. Firstly the mouse variable regions from mAb 425 were spliced onto human constant regions to create a chimeric 425 antibody. Secondly, the mouse complementarity-determining regions (CDRs) from mAb 425 were grafted into human variable regions, which were then joined to human constant regions, to create a reshaped human 425 antibody. Using a molecular model of the mouse mAb 425 variable regions, framework residues (FRs) that might be critical for antigen-binding were identified. To test the importance of these residues, nine versions of the reshaped human 425 heavy chain variable (VH) regions and two versions of the reshaped human 425 light chain variable (VL) regions were designed and constructed. The recombinant DNAs coding for the chimeric and reshaped human light and heavy chains were co-expressed transiently in COS cells. In antigen-binding assays and competition-binding assays, the reshaped human antibodies were compared with mouse 425 antibody and to chimeric 425 antibody. The different versions of 425-reshaped human antibody showed a wide range of avidities for antigen, indicating that substitutions at certain positions in the human FRs significantly influenced binding to antigen. Why certain individual FR residues influence antigen-binding is discussed. One version of reshaped human 425 antibody bound to antigen with an avidity approaching that of the mouse 425 antibody.

  19. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    PubMed Central

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Methods: In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. Results: The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni–NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. Conclusion: The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure. PMID:27123423

  20. Human papillomavirus type 16 (HPV-16) genomes integrated in head and neck cancers and in HPV-16-immortalized human keratinocyte clones express chimeric virus-cell mRNAs similar to those found in cervical cancers.

    PubMed

    Lace, Michael J; Anson, James R; Klussmann, Jens P; Wang, Dong Hong; Smith, Elaine M; Haugen, Thomas H; Turek, Lubomir P

    2011-02-01

    Many human papillomavirus (HPV)-positive high-grade lesions and cancers of the uterine cervix harbor integrated HPV genomes expressing the E6 and E7 oncogenes from chimeric virus-cell mRNAs, but less is known about HPV integration in head and neck cancer (HNC). Here we compared viral DNA status and E6-E7 mRNA sequences in HPV-16-positive HNC tumors to those in independent human keratinocyte cell clones derived from primary tonsillar or foreskin epithelia immortalized with HPV-16 genomes. Three of nine HNC tumors and epithelial clones containing unintegrated HPV-16 genomes expressed mRNAs spliced from HPV-16 SD880 to SA3358 and terminating at the viral early gene p(A) signal. In contrast, most integrated HPV genomes in six HNCs and a set of 31 keratinocyte clones expressed HPV-16 major early promoter (MEP)-initiated mRNAs spliced from viral SD880 directly to diverse cellular sequences, with a minority spliced to SA3358 followed by a cellular DNA junction. Sequence analysis of chimeric virus-cell mRNAs from HNC tumors and keratinocyte clones identified viral integration sites in a variety of chromosomes, with some located in or near growth control genes, including the c-myc protooncogene and the gene encoding FAP-1 phosphatase. Taken together, these findings support the hypothesis that HPV integration in cancers is a stochastic process resulting in clonal selection of aggressively expanding cells with altered gene expression of integrated HPV genomes and potential perturbations of cellular genes at or near viral integration sites. Furthermore, our results demonstrate that this selection also takes place and can be studied in primary human keratinocytes in culture.

  1. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes

    PubMed Central

    van der Geld, Ymke M; Hellmark, Thomas; Selga, Daina; Heeringa, Peter; Huitema, Minke G; Limburg, Pieter C; Kallenberg, Cees G M

    2007-01-01

    Aim In this study, we employed chimeric human/mouse Proteinase 3 (PR3) proteins as tools to induce an autoantibody response to PR3 in rats and mice. Method Rats and mice were immunised with recombinant human PR3 (HPR3), recombinant murine PR3 (mPR3), single chimeric human/mouse PR3 (HHm, HmH, mHH, mmH, mHm, Hmm) or pools of chimeric proteins. Antibodies to mPR3 and HPR3 were measured by ELISA. Antibodies to rat PR3 were determined by indirect immunofluorescence (IIF) on rat white blood cells. Urinalysis was performed by dipstick analysis. Kidney and lung tissue was obtained for pathological examination. Results In mice, immunisation with the chimeric human/mouse PR3 Hmm led to an autoantibody response to mPR3. Rats immunised with the chimeric human/mouse PR3 Hmm, HmH and mmH, or a pool of the chimeric human/mouse PR3 proteins, produced antibodies selectively binding to rat granulocytes as detected by IIF. No gross pathological abnormalities could be detected in kidney or lungs of mice or rats immunised with chimeric human/mouse PR3. Conclusion Immunisation with chimeric human/mouse proteins induces autoantibodies to PR3 in rats and mice. Chimeric proteins can be instrumental in developing experimental models for autoimmune diseases. PMID:17644551

  2. Femtosecond spectroscopy probes the folding quality of antibody fragments expressed as GFP fusions in the cytoplasm

    SciTech Connect

    Didier, P.; Weiss, E.; Sibler, A.-P.; Philibert, P.; Martineau, P.; Bigot, J.-Y.; Guidoni, L.

    2008-02-22

    Time-resolved femtosecond spectroscopy can improve the application of green fluorescent proteins (GFPs) as protein-folding reporters. The study of ultrafast excited-state dynamics (ESD) of GFP fused to single chain variable fragment (scFv) antibody fragments, allowed us to define and measure an empirical parameter that only depends on the folding quality (FQ) of the fusion. This method has been applied to the analysis of genetic fusions expressed in the bacterial cytoplasm and allowed us to distinguish folded and thus functional antibody fragments (high FQ) with respect to misfolded antibody fragments. Moreover, these findings were strongly correlated to the behavior of the same scFvs expressed in animal cells. This method is based on the sensitivity of the ESD to the modifications in the tertiary structure of the GFP induced by the aggregation state of the fusion partner. This approach may be applicable to the study of the FQ of polypeptides over-expressed under reducing conditions.

  3. AAV-directed persistent expression of a gene encoding anti-nicotine antibody for smoking cessation.

    PubMed

    Hicks, Martin J; Rosenberg, Jonathan B; De, Bishnu P; Pagovich, Odelya E; Young, Colin N; Qiu, Jian-ping; Kaminsky, Stephen M; Hackett, Neil R; Worgall, Stefan; Janda, Kim D; Davisson, Robin L; Crystal, Ronald G

    2012-06-27

    Current strategies to help tobacco smokers quit have limited success as a result of the addictive properties of the nicotine in cigarette smoke. We hypothesized that a single administration of an adeno-associated virus (AAV) gene transfer vector expressing high levels of an anti-nicotine antibody would persistently prevent nicotine from reaching its receptors in the brain. To test this hypothesis, we constructed an AAVrh.10 vector that expressed a full-length, high-affinity, anti-nicotine antibody derived from the Fab fragment of the anti-nicotine monoclonal antibody NIC9D9 (AAVantiNic). In mice treated with this vector, blood concentrations of the anti-nicotine antibody were dose-dependent, and the antibody showed high specificity and affinity for nicotine. The antibody shielded the brain from systemically administered nicotine, reducing brain nicotine concentrations to 15% of those in naïve mice. The amount of nicotine sequestered in the serum of vector-treated mice was more than seven times greater than that in untreated mice, with 83% of serum nicotine bound to immunoglobulin G. Treatment with the AAVantiNic vector blocked nicotine-mediated alterations in arterial blood pressure, heart rate, and locomotor activity. In summary, a single administration of a gene transfer vector expressing a high-affinity anti-nicotine monoclonal antibody elicited persistent (18 weeks), high titers of an anti-nicotine antibody that obviated the physiologic effects of nicotine. If this degree of efficacy translates to humans, AAVantiNic could be an effective preventative therapy for nicotine addiction.

  4. Cloning, expression and polyclonal antibody preparation of the asialoglycoprotein receptor of Marmota himalayan.

    PubMed

    Yang, Yan; Huang, Huang; Zhang, Zhenghua; Wang, Baoju; Tian, Yongjun; Lu, Mengji; Yang, Dongliang

    2007-08-01

    The objective of this study is to express the carbohydrate recognition domain (CRD) of the asialoglycoprotein receptor (ASGPR) H1 and H2 subunits of Marmota himalayan in vitro, and develop polyclonal antibodies against the recombinant proteins. RT-PCR was used to amplify ASGPR CRDH1 and CRDH2 from the liver tissue of Marmota himalayan. The products of amplification were subcloned into prokaryotic expression vector pRSET-B, and expressed in E.coli BL21(DE3)plysS. The recombinant proteins were purified using Ni-NTA spin column. The purified proteins were inoculated into BALB/c mice to develop polyclonal antibodies. The sensitivity and specificity of antibodies were evaluated by enzyme-linked immunosorbent assay (ELISA), Western blotting and immunohistochemical staining (IHC). The polyclonal antibodies showed high sensitivity and specificity against both denaturated and native ASGPR proteins. We successfully amplified and expressed the ASGPR CRDs of Marmota himalayan. The nucleic sequences of ASGPR CRDH1 and CRDH2 of Marmota himalayan have been submitted to Genbank and the sequence ID are DQ 845465 and DQ845466, respectively. The proteins and antibodies prepared can be used for targeting gene therapy in a new animal model-Marmota Himalayan-for the research of infectious diseases of hepatitis viruses and liver cancer treatment.

  5. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis

    PubMed Central

    Dolzhikova, Inna V.; Shcherbinin, Dmitry N.; Zubkova, Olga V.; Ivanova, Tatiana I.; Tukhvatulin, Amir I.; Shmarov, Maxim M.; Logunov, Denis Y.; Naroditsky, Boris S.; Gintsburg, Aleksandr L.

    2016-01-01

    Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection. PMID:26962869

  6. Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies.

    PubMed

    Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Zhang, Kai; Batt, Micheal; Fitchett, Jonathan R; He, Dongmei; Rick, Heather L; Conner, Elaine M; Demarest, Stephen J

    2015-01-01

    Immunoglobulins and T cell receptors (TCRs) share common sequences and structures. With the goal of creating novel bispecific antibodies (BsAbs), we generated chimeric molecules, denoted IgG_TCRs, where the Fv regions of several antibodies were fused to the constant domains of the α/β TCR. Replacing CH1 with Cα and CL with Cβ, respectively, was essential for achieving at least partial heavy chain/light chain assembly. Further optimization of the linker regions between the variable and constant domains, as well as replacement of the large FG loop of Cβ with a canonical β-turn, was necessary to consistently obtain full heavy chain/light chain assembly. The optimized IgG_TCR molecules were evaluated biophysically and shown to maintain the binding properties of their parental antibodies. A few BsAbs were generated by co-expressing native Fabs and IgG_TCR Fabs within the same molecular construct. We demonstrate that the IgG_TCR designs steered each of the light chains within the constructs to specifically pair with their cognate heavy chain counterparts. We did find that even with complete constant domain specificity between the CH1/CL and Cα/Cβ domains of the Fabs, strong variable domain interactions can dominate the pairing specificity and induce some mispairing. Overall, the IgG_TCR designs described here are a first step toward the generation of novel BsAbs that may be directed toward the treatment of multi-faceted and complex diseases.

  7. Preparation of Polyclonal Antibody and Expression Analysis of GR in Tomato

    NASA Astrophysics Data System (ADS)

    Xie, Yuanhong; Zhu, Benzhong; Luo, Yunbo; Chen, Xiangning; Zhang, Hongxing

    The fruit ripening of Green-ripe (Gr) mutant tomato was inhibited dramatically. To determine the expression patterns of Gr in tomato, we first produced the polyclonal antibody of Gr protein. RT-PCR was used to amplify the Gr gene from green ripe tomato fruit. And the PCR product was subcloned into prokaryotic protein expression vectors pET-30a to generate recombinant plasmid. The Gr protein was induced by IPTG in BL21 (DE3) and purified by Ni-NTA agarose column. The anti-Gr serum was produced by immunizing rabbits, and the titer of the anti-Gr serum was above 5000 by ELISA analysis. Purified by the DEAE-52 ion-column, the high purification level of anti-Gr polyclonal antibody was obtained. Furthermore, RT-CPR was used in the RNA level to demonstrate that the expression of Gr gene was specialized in some cultures of tomato. For example, the expressions of Gr were higher in seed, flower and green ripe fruit than others, and the expression level were reduced by exogenous ethylene treatment in the flower and green ripe fruit. Moreover, Polyclonal antibody of Gr was used to investigate the expression pattern of Gr in protein level by the Western blotting. Our results show that the expression level of Gr in protein level was complied with the expressions in RNA. So, we suggested that the regulation of Gr was transcriptional.

  8. Evaluation of a chimeric multi-epitope-based DNA vaccine against subgroup J avian leukosis virus in chickens.

    PubMed

    Xu, Qingqing; Cui, Ning; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Shen, Zhiqiang; Zhao, Xiaomin

    2016-07-19

    The prokaryotic expressed recombinant chimeric multi-epitope protein X (rCMEPX) had been evaluated with good immunogenicity and protective efficacy against subgroup J avian leukosis virus (ALV-J) in our previous study. In the present research, we cloned the chimeric multi-epitope gene X into the eukaryotic expression vector pVAX1 to evaluate its potency as a DNA vaccine. The purified recombinant gp85 protein and rCMEPX were used as positive controls and a DNA prime-protein boost strategy was also studied. Six experimental groups of 7-day-old chickens (20 per group) were immunized intramuscularly three times at 2weeks interval with PBS, gp85, rCMEPX, pVAX1, pVAX-X and pVAX-X+rCMEPX respectively. The antibody titers and cellular immune responses were assayed after immunization. The efficacy of immunoprotection against the challenge of ALV-J NX0101 strain was also examined. The results showed that the DNA vaccine could elicit both neutralizing antibodies and cellular responses. Immune-challenge experiments showed good protection efficacy against ALV-J infection. Particularly, the regimen involving one priming pVAX-X and twice recombinant rCMEPX boosting, induced the highest antibody titers in all immunized groups. Our results suggest that the constructed chimeric multi-epitope DNA has potential for a candidate vaccine against ALV-J when used in proper prime-boost combinations. The data presented here may provide an alternative strategy for vaccine design in chicken ALV-J prevention.

  9. Spontaneous reversal of acquired autoimmune dysfibrinogenemia probably due to an antiidiotypic antibody directed to an interspecies cross-reactive idiotype expressed on antifibrinogen antibodies.

    PubMed Central

    Ruiz-Arguelles, A

    1988-01-01

    A young man with a long history of abnormal bleeding was seen in January 1985. Coagulation tests showed dysfibrinogenemia and an antifibrinogen autoantibody was demonstrable in his serum. This antibody, when purified, was capable of inhibiting the polymerization of normal fibrin monomers, apparently through binding to the alpha fibrinogen chain. 6 mo later the patient was asymptomatic, coagulation tests were normal, and the antifibrinogen autoantibody was barely detectable. At this time, affinity-purified autologous and rabbit antifibrinogen antibodies were capable of absorbing an IgG kappa antibody from the patient's serum, which reacted indistinctly with both autologous and xenogeneic antifibrinogen antibodies in enzyme immunoassays. It has been concluded that the patient's dysfibrinogenemia was the result of an antifibrinogen autoantibody, and that later on an anti-idiotype antibody, which binds an interspecies cross-reactive idiotype expressed on anti-human fibrinogen antibodies, inhibited the production of the antifibrinogen autoantibody which led to the remission of the disorder. Images PMID:3262127

  10. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    PubMed

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  11. [Cloning and expression of VLRB of Lampetra japonica and generation of the corresponding monoclonal antibodies].

    PubMed

    Wu, Fen-Fang; Ma, Ning; Chen, Li-Yong; Su, Peng; Li, Qing-Wei

    2012-04-01

    The agnathans (lampreys and hagfishes) are representatives of the jawless vertebrates. The receptor molecules of adaptive immune system in lampreys are different from the antigen receptors in mammal vertebrates. The unique receptor molecules of lampreys are known as variable lymphocyte receptors (VLR). There are three types of VLRs in lampreys, VLRA, VLRB, and VLRC. Multimeric antigen-specific VLRB antibodies are secreted by VLRB+ lymphocytes and constitute the major components of the humoral arm of the lamprey adaptive immune system. Oligomeric VLRB antibodies are composed of four or five disulfide-linked dimeric subunits, which are similar to IgM antibodies in structure and function. In this study, the conservative c-terminal of Lampetra japonica VLRB was cloned and expressed in BL21 E. coli. The recombinant VLRB protein was purified by Ni2+ affinity chromatography column. After Balb/c mice immunity, cell fusion, the positive clones were screened by indirect enzyme-linked immunosorbent assay (ELISA). Finally, the hybridoma cells that produced specific anti-VLRB monoclonal antibodies were obtained. In order to get a large number of antibodies against VLRB, the hybridoma cells were injected into the abdominal cavity of Balb/c mice and the antibodies were purified by protein G sepharose. The results of ELISA indicated that the valence of anti-VLRB antibodies was 1:40000. Western blotting assay showed that the antibodies were able to detect both recombinant VLRB and secreted VLRB in lamprey sera. Flow cytometry analysis also revealed the existence of VLRB on the surface of lymphocytes. In summary, the anti-VLRB monoclonal antibodies provided a major tool for studying lamprey adaptive immune system.

  12. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    PubMed

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  13. Integrative Expression System for Delivery of Antibody Fragments by Lactobacilli▿ †

    PubMed Central

    Martín, M. Cruz; Pant, Neha; Ladero, Victor; Günaydın, Gökçe; Andersen, Kasper Krogh; Álvarez, Beatriz; Martínez, Noelia; Alvarez, Miguel A.; Hammarström, Lennart; Marcotte, Harold

    2011-01-01

    A series of expression cassettes which mediate secretion or surface display of antibody fragments was stably integrated in the chromosome of Lactobacillus paracasei. L. paracasei producing surface-anchored variable domain of llama heavy chain (VHH) (ARP1) directed against rotavirus showed efficient binding to rotavirus and protection in the mouse model of rotavirus infection. PMID:21257814

  14. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells.

    PubMed

    Ram, Sripad; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2.

  15. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody.

    PubMed

    Iwama, Shintaro; De Remigis, Alessandra; Callahan, Margaret K; Slovin, Susan F; Wolchok, Jedd D; Caturegli, Patrizio

    2014-04-02

    Hypophysitis is a chronic inflammation of the pituitary gland of unknown (primary forms) or recognizable (secondary forms) etiology, such as the use of ipilimumab in cancer immunotherapy. Ipilimumab, which blocks the T cell inhibitory molecule CTLA-4 (cytotoxic T lymphocyte antigen-4), induces hypophysitis in about 4% of patients through unknown mechanisms. We first established a model of secondary hypophysitis by repeated injections of a CTLA-4 blocking antibody into SJL/J or C57BL/6J mice, and showed that they developed lymphocytic infiltration of the pituitary gland and circulating pituitary antibodies. We next assessed the prevalence of pituitary antibodies in a cohort of 20 patients with advanced melanoma or prostate cancer, 7 with a clinical diagnosis of hypophysitis, before and after ipilimumab administration. Pituitary antibodies, negative at baseline, developed in the 7 patients with hypophysitis but not in the 13 without it; these antibodies predominantly recognized thyrotropin-, follicle-stimulating hormone-, and corticotropin-secreting cells. We then hypothesized that the injected CTLA-4 antibody could cause pituitary toxicity if bound to CTLA-4 antigen expressed "ectopically" on pituitary endocrine cells. Pituitary glands indeed expressed CTLA-4 at both RNA and protein levels, particularly in a subset of prolactin- and thyrotropin-secreting cells. Notably, these cells became the site of complement activation, featuring deposition of C3d and C4d components and an inflammatory cascade akin to that seen in type II hypersensitivity. In summary, the study offers a mechanism to explain the pituitary toxicity observed in patients receiving ipilimumab, and highlights the utility of measuring pituitary antibodies in this form of secondary hypophysitis.

  16. Induction of type I interferon secretion through recombinant Newcastle disease virus expressing measles virus hemagglutinin stimulates antibody secretion in the presence of maternal antibodies.

    PubMed

    Kim, Dhohyung; Martinez-Sobrido, Luis; Choi, Changsun; Petroff, Natasha; García-Sastre, Adolfo; Niewiesk, Stefan; Carsillo, Thomas

    2011-01-01

    Measles virus (MV) vaccine effectively protects seronegative individuals against infection. However, inhibition of vaccine-induced seroconversion by maternal antibodies after vaccination remains a problem, as it leaves infants susceptible to MV infection. In cotton rats, passive transfer of MV-specific IgG mimics maternal antibodies and inhibits vaccine-induced seroconversion. Here, we report that immunization in the presence of passively transferred IgG inhibits the secretion of neutralizing antibodies but not the generation of MV-specific B cells. This finding suggested that MV-specific B cells require an additional stimulus to mature into antibody-secreting plasma cells. In order to provide such a stimulus, we generated a recombinant Newcastle disease virus (NDV) expressing the MV hemagglutinin (NDV-H). In contrast to MV, NDV-H induced high levels of type I interferon in plasmacytoid dendritic cells and in lung tissue. In cotton rats immunized with NDV-H, neutralizing antibodies were also generated in the presence of passively transferred antibodies. In the latter case, however, the level and kinetics of antibody generation were reduced. In vitro, alpha interferon stimulated the activation of MV-specific B cells from MV-immune spleen cells. NDV infection (which induces alpha interferon) had the same effect, and stimulation could be abrogated by antibodies neutralizing alpha interferon, but not interleukin 6 (IL-6). In vivo, coapplication of UV-inactivated MV with NDV led to increased MV-specific antibody production in the presence and absence of passively transferred antibodies. These data indicate that MV-specific B cells are being generated after immunization in the presence of maternal antibodies and that the provision of alpha interferon as an additional signal leads to antibody secretion.

  17. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    PubMed

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP.

  18. Production of Polyclonal Antibody against Grapevine fanleaf virus Movement Protein Expressed in Escherichia coli

    PubMed Central

    Koolivand, Davoud; Bashir, Nemat Sokhandan; Behjatnia, Seyed Aliakbar; Joozani, Raziallah Jafari

    2016-01-01

    The genomic region of Grapevine fanleaf virus (GFLV) encoding the movement protein (MP) was cloned into pET21a and transformed into Escherichia coli strain BL21 (DE3) to express the protein. Induction was made with a wide range of isopropyl-β-D-thiogalactopyranoside (IPTG) concentrations (1, 1.5, and 2 mM) each for duration of 4, 6, or 16 h. However, the highest expression level was achieved with 1 mM IPTG for 4 h. Identity of the expressed protein was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blotting. The expressed 41 kDa protein was purified under denaturing condition by affinity chromatography, reconfirmed by Western blotting and plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) before being used as a recombinant antigen to raise polyclonal antibodies in rabbits. Purified anti-GFLV MP immunoglobulines (IgGs) and conjugated IgGs detected the expressed MP and GFLV virions in infected grapevines when used in PTA-ELISA, double antibody sandwich-ELISA, and Western blotting. This is the first report on the production of anti-GFLV MP polyclonal antibodies and application for the virus detection. PMID:27721695

  19. Prism adaptation changes perceptual awareness for chimeric visual objects but not for chimeric faces in spatial neglect after right-hemisphere stroke.

    PubMed

    Sarri, Margarita; Kalra, Lalit; Greenwood, Richard; Driver, Jon

    2006-06-01

    Prism adaptation can ameliorate some symptoms of left spatial neglect after right-hemisphere stroke. The mechanisms behind this remain unclear. Prism therapy may increase exploration towards the contralesional side, yet without improving perceptual awareness, as apparently for the left side of chimeric face stimuli (Ferber et al. 2003). However, other prism studies suggest that perceptual awareness might be improved (e.g., Maravita et al., 2003). We tested the impact of prism therapy on visual awareness for the left side of chimeric objects as well as chimeric faces, in three neglect patients. Prism therapy dramatically improved awareness for the identity of the left side of chimeric non-face objects, but had no effect on judging expressions for chimeric faces. The latter may thus be unique in showing no prism benefit.

  20. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    PubMed

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  1. Engineered antibodies take center stage.

    PubMed

    Huston, J S; George, A J

    2001-01-01

    The start of the post-genomic era provides a useful juncture for reflection on the state of antibody engineering, which will be a critical technology for relating function and pathology to genomic sequence in biology and medicine. The phenomenal progress in deciphering the human genome has given significant impetus to the application of engineered antibodies in proteomics. Thus, advances in phage display antibody libraries can now help to define novel gene function and the measurement of abnormal protein expression in pathological states. Furthermore, intrabody and antibody engineering provide vehicles for the development of molecular medicines of the future. In addition to these new directions, antibody engineering has begun to show concrete success in its long-term efforts to develop targeted immunotherapies for cancer and other diseases. The cornerstones of clinical development are the detailed academic clinical trials that continue to push the boundaries of engineered antibodies into the real world. The field displays a healthy impatience for practical results, as research accelerates with concerted efforts to transfer preclinical insights into clinical trials. Growing private and governmental expenditures will lead to the rapid expansion of life-saving immunotherapeutic agents. The present review developed from our effort to report on the 11th Annual International Conference on Antibody Engineering (3-6 December 2000). This annual meeting is a forum for discussions on the latest advances in antibody engineering groups from around the world, and now includes the broader agenda of engineering in molecular immunology. In bringing scientists together to exchange ideas at this open forum, new collaborations and the threads of new discoveries are woven. For example, Professors Gerhard Wagner (Harvard Medical School), Dennis Burton (Scripps Research Institute), and Peter Hudson (CSIRO, Melbourne, Australia) gave exciting insights on structural immunobiology that had

  2. VH gene expression is restricted in anti-IgG antibodies from MRL autoimmune mice

    PubMed Central

    1986-01-01

    Antibodies directed against IgG and DNA are found in the sera of autoimmune MRL/Mp lpr/lpr mice. Little is known of the molecular mechanisms underlying expression of such autoantibodies. We have investigated the binding diversity and pattern of VH gene expression in a panel of murine anti-IgG antibodies. We constructed eight hybridoma clones secreting IgM antibodies that bound to mouse IgG by using spleen cells from MRL/Mp lpr/lpr mice varying in age from 4 to 15 wk; one clone was derived from a 32-wk-old MRL +/+ mouse. The monoclonal IgM products exhibited varying binding specificities for intact mouse IgG, fragments of mouse IgG [Fc, Fab, (Fab')2], and heterologous IgG. Two of these antibodies crossreacted with B and/or Z DNA. Probes from seven of eight identified mouse VH gene families (7183, S107, Q52, J558, J606, 36-60, and 3609) were hybridized under high-stringency conditions with cytoplasmic RNA blots from each clone. Six clones hybridized only with the probe from the five-member 36-60 family. The remaining three clones crosshybridized with the 36-60 probe and the probe from the 60 member J558 family, perhaps reflecting somatic mutation from the original germline VH gene resulting in recognition by a probe from another family, in addition to the probe from the original germline family. Our results indicate that spontaneous MRL lpr/lpr anti-IgG antibodies are encoded predominantly by the 36-60 VH gene family and imply a nonrandom selection of this VH gene family in the production of these antibodies. PMID:3093628

  3. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  4. Effect of antibodies on the expression of Plasmodium falciparum circumsporozoite protein gene.

    PubMed

    Jesuíno, B S; Casimiro, C; do Rosário, V E; Silveira, H

    2006-01-01

    Antibodies are known to play an important role in the control of malaria infection. However, they can modulate parasite development enhancing infection. The effect of anti-Plasmodium antibodies on the expression of circumsporozoite protein gene (csp) was investigated. Plasmodium falciparum 3D7 in vitro cultures were submitted to: i) anti- circumsporozoite protein monoclonal antibody (anti-CSP-mAb) [1microg/ml, 0.1microg/ml, 0.01microg/ml and 0.001microg/ml] and ii) purified IgG Fab fragment from a pool of malaria patients [1mg/ml and 1microg/ml]; and compared to control cultures. After 24h the number of ring infected erythrocytes was determined in order to calculate invasion efficacy. At 48h culture supernatant was collected, and the amount of circumsporozoite protein determined by ELISA, parasitaemia was calculated and cells were processed for RNA preparation. Expression of csp gene was quantified using Real time RT-PCR. There was an increase in parasite growth when treated with lower anti-CSP-mAb concentration, which was associated with lower csp expression, while 1mug/ml anti-CSP-mAb treatment presented a growth inhibitory effect accompanied by high csp expression.

  5. Effect of antibodies on the expression of Plasmodium falciparum circumsporozoite protein gene

    PubMed Central

    Jesuíno, B S; Casimiro, C; do Rosário, V E; Silveira, H

    2006-01-01

    Antibodies are known to play an important role in the control of malaria infection. However, they can modulate parasite development enhancing infection. The effect of anti-Plasmodium antibodies on the expression of circumsporozoite protein gene (csp) was investigated. Plasmodium falciparum 3D7 in vitro cultures were submitted to: i) anti- circumsporozoite protein monoclonal antibody (anti-CSP-mAb) [1μg/ml, 0.1μg/ml, 0.01μg/ml and 0.001μg/ml] and ii) purified IgG Fab fragment from a pool of malaria patients [1mg/ml and 1μg/ml]; and compared to control cultures. After 24h the number of ring infected erythrocytes was determined in order to calculate invasion efficacy. At 48h culture supernatant was collected, and the amount of circumsporozoite protein determined by ELISA, parasitaemia was calculated and cells were processed for RNA preparation. Expression of csp gene was quantified using Real time RT-PCR. There was an increase in parasite growth when treated with lower anti-CSP-mAb concentration, which was associated with lower csp expression, while 1μg/ml anti-CSP-mAb treatment presented a growth inhibitory effect accompanied by high csp expression. PMID:16421624

  6. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery.

    PubMed

    Chicoine, L G; Montgomery, C L; Bremer, W G; Shontz, K M; Griffin, D A; Heller, K N; Lewis, S; Malik, V; Grose, W E; Shilling, C J; Campbell, K J; Preston, T J; Coley, B D; Martin, P T; Walker, C M; Clark, K R; Sahenk, Z; Mendell, J R; Rodino-Klapac, L R

    2014-02-01

    Duchenne muscular dystrophy is a monogenic disease potentially treatable by gene replacement. Use of recombinant adeno-associated virus (AAV) will ultimately require a vascular approach to broadly transduce muscle cells. We tested the impact of preexisting AAV antibodies on microdystrophin expression following vascular delivery to nonhuman primates. Rhesus macaques were treated by isolated limb perfusion using a fluoroscopically guided catheter. In addition to serostatus stratification, the animals were placed into one of the three immune suppression groups: no immune suppression, prednisone, and triple immune suppression (prednisone, tacrolimus, and mycophenolate mofetil). The animals were analyzed for transgene expression at 3 or 6 months. Microdystrophin expression was visualized in AAV, rhesus serotype 74 sero-negative animals (mean: 48.0 ± 20.8%) that was attenuated in sero-positive animals (19.6 ± 18.7%). Immunosuppression did not affect transgene expression. Importantly, removal of AAV binding antibodies by plasmapheresis in AAV sero-positive animals resulted in high-level transduction (60.8 ± 18.0%), which is comparable with that of AAV sero-negative animals (53.7 ± 7.6%), whereas non-pheresed sero-positive animals demonstrated significantly lower transduction levels (10.1 ± 6.0%). These data support the hypothesis that removal of AAV binding antibodies by plasmapheresis permits successful and sustained gene transfer in the presence of preexisting immunity (natural infection) to AAV.

  7. Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation, and function

    PubMed Central

    Gomes, Ivone; Gupta, Achla; Bushlin, Ittai; Devi, Lakshmi A.

    2014-01-01

    Over the last decade an increasing number of studies have focused on the ability of G protein-coupled receptors to form heteromers and explored how receptor heteromerization modulates the binding, signaling and trafficking properties of individual receptors. Most of these studies were carried out in heterologous cells expressing epitope tagged receptors. Very little information is available about the in vivo physiological role of G protein-coupled receptor heteromers due to a lack of tools to detect their presence in endogenous tissue. Recent advances such as the generation of mouse models expressing fluorescently labeled receptors, of TAT based peptides that can disrupt a given heteromer pair, or of heteromer-selective antibodies that recognize the heteromer in endogenous tissue have begun to elucidate the physiological and pathological roles of receptor heteromers. In this review we have focused on heteromer-selective antibodies and describe how a subtractive immunization strategy can be successfully used to generate antibodies that selectively recognize a desired heteromer pair. We also describe the uses of these antibodies to detect the presence of heteromers, to study their properties in endogenous tissues, and to monitor changes in heteromer levels under pathological conditions. Together, these findings suggest that G protein-coupled receptor heteromers represent unique targets for the development of drugs with reduced side-effects. PMID:25520661

  8. A recombinant chimeric protein containing B chains of ricin and abrin is an effective vaccine candidate.

    PubMed

    Wang, Junhong; Gao, Shan; Zhang, Tao; Kang, Lin; Cao, Wuchun; Xu, Na; Liu, Wensen; Wang, Jinglin

    2014-01-01

    Both ricin toxin (RT) and abrin toxin (AT) are 2 important toxin agents as potantial bioweapons. A dual subunit vaccine against RT and AT exposure is a promising option for developing prophylactic vaccination. In this study, we constructed a dual vaccine with RT B chain and AT B chain named RTB-ATB. The RTB-ATB chimeric protein was expressed in Escherichia coli (E. coli), and the purified protein was used to evaluate the immune response by a 2 × 2 × 2 × 2 factorial design. The main effects included dose of RTB-ATB, route of immunization injection, immunization time interval, and dose of native toxins challenge. For 2 × LD(50) challenge of RT or AT, 100% of the RTB-ATB immunized mice survived and regained or exceeded their initial weights within 10 days. For 4 × LD(50) challenge, different routes of immunization injection caused significant difference (P < 0.05), intraperitoneal (i.p.) administration of immunogen protected mice better than the subcutaneous (s.c.) administration. In conclusion, when administered i.p. to mice with 25 μg per mouse and immunization time interval Π in the absence of adjuvant, the chimeric protein elicited a stronger immune response and protected the animals from a dose of native toxins which was 4 times higher than their LD(50) in unvaccinated mice. Besides, the RTB-ATB chimeric protein could induce specific neutralizing antibodies against these 2 toxins. We anticipate that this study will open new possibilities in the preparation of RTB-ATB dual subunit vaccine against the exposure to deadly RT and AT.

  9. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria.

    PubMed

    Robinson, Michael-Paul; Ke, Na; Lobstein, Julie; Peterson, Cristen; Szkodny, Alana; Mansell, Thomas J; Tuckey, Corinna; Riggs, Paul D; Colussi, Paul A; Noren, Christopher J; Taron, Christopher H; DeLisa, Matthew P; Berkmen, Mehmet

    2015-08-27

    Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named 'cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation.

  10. Epitope expression in nine commercial kits for the determination of anti-thyroid peroxidase (TPO) antibodies.

    PubMed

    Whitham, K; Patel, D; Ward, A M

    1999-01-01

    Anti-thyroid peroxidase (TPO) antibodies, from patients with autoimmune disease, bind predominantly to two neighbouring, non-identical, conformational domains referred to as domains A and B. In recent years a number of ELISA assays have been developed for the detection of anti-TPO antibodies, however, considerable variation between the different commercial assay kits has been documented in inter-laboratory surveys (UK NEQAS). This investigation assessed the differences between nine commercial ELISA assays currently available in the UK. The anti-TPO kits varied in terms of their imprecision and accuracy and in the density of coated antigen. Recombinant antigen containing kits demonstrated partial destruction of the B epitope, possibly due to the close proximity of both epitope regions in the recombinant molecule. None of the kits expressed only one epitope although there were differences in the degrees of expression of each epitope. Clinicians should be aware of the variability of the numbers generated, when interpreting test results.

  11. Construction and expression of single-chain Fv antibody against human bladder carcinoma.

    PubMed

    Yu, L Z; Xiao, S; Huang, H L; Gu, Z; Gu, F L; Guo, Y L

    1996-01-01

    We designed two sets of oligonucleotide primers to amplify the immunoglobulin heavy- and light-chain variable-region genes from genomic DNA by polymerase chain reaction (PCR). The genomic DNA was extracted from hybridoma BDI-1 cells, which secreted a monoclonal antibody (mAb) against human bladder carcinoma. The primers contained special restriction sites that allowed the variable-region genes to be easily cloned for sequencing and expression. The recombinants were sequenced by Sanger's method. It was proved that the full lengths of the VH and VK genes were 366 and 324 bp, respectively. Compared with other published sequences, the VH gene was a member of mouse heavy-chain VH subgroup II and originated from the rearrangement of VH, Dsp2.2 and JH4. The VK gene was VK subgroup IV and from VK and JK4. The VH and VK genes was inserted expression vector pWAI80. By inducement, the ScFv antibodies were expressed and secreted from Escherichia coli. Binding activities against the bladder carcinoma cells were detected. We suggest that ScFv antibody recognized the antigen specifically.

  12. Chimeric Genes as a Source of Rapid Evolution in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Hartl, Daniel L.

    2012-01-01

    Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (dS < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster. PMID:21771717

  13. Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo.

    PubMed

    Ni, Zhenya; Knorr, David A; Bendzick, Laura; Allred, Jeremy; Kaufman, Dan S

    2014-04-01

    Cell-based immunotherapy has been gaining interest as an improved means to treat human immunodeficiency virus (HIV)/AIDS. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) could become a potential resource. Our previous studies have shown hESC and iPSC-derived natural killer (NK) cells can inhibit HIV-infected targets in vitro. Here, we advance those studies by expressing a HIV chimeric receptor combining the extracellular portion of CD4 to the CD3ζ intracellular signaling chain. We hypothesized that expression of this CD4ζ receptor would more efficiently direct hESC- and iPSC-derived NK cells to target HIV-infected cells. In vitro studies showed the CD4ζ expressing hESC- and iPSC-NK cells inhibited HIV replication in CD4+ T-cells more efficiently than their unmodified counterparts. We then evaluated CD4ζ expressing hESC (CD4ζ-hESC)- and iPSC-NK cells in vivo anti-HIV activity using a humanized mouse model. We demonstrated significant suppression of HIV replication in mice treated with both CD4ζ-modified and -unmodified hESC-/iPSC-NK cells compared with control mice. However, we did not observe significantly increased efficacy of CD4ζ expression in suppression of HIV infection. These studies indicate that hESC/iPSC-based immunotherapy can be used as a unique resource to target HIV/AIDS.

  14. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    PubMed Central

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  15. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors.

    PubMed

    Chatterjee, Samit; Lesniak, Wojciech G; Gabrielson, Matthew; Lisok, Ala; Wharram, Bryan; Sysa-Shah, Polina; Azad, Babak Behnam; Pomper, Martin G; Nimmagadda, Sridhar

    2016-03-01

    Antibodies targeting the PD-1/PD-L1 immune checkpoint lead to tumor regression and improved survival in several cancers. PD-L1 expression in tumors may be predictive of response to checkpoint blockade therapy. Because tissue samples might not always be available to guide therapy, we developed and evaluated a humanized antibody for non-invasive imaging of PD-L1 expression in tumors. Radiolabeled [111In]PD-L1-mAb and near-infrared dye conjugated NIR-PD-L1-mAb imaging agents were developed using the mouse and human cross-reactive PD-L1 antibody MPDL3280A. We tested specificity of [111In]PD-L1-mAb and NIR-PD-L1-mAb in cell lines and in tumors with varying levels of PD-L1 expression. We performed SPECT/CT imaging, biodistribution and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-PDL1) and in controls (CHO). Results were confirmed in triple negative breast cancer (TNBC) (MDAMB231 and SUM149) and non-small cell lung cancer (NSCLC) (H2444 and H1155) xenografts with varying levels of PD-L1 expression. There was specific binding of [111In]PD-L1-mAb and NIR-PD-L1-mAb to tumor cells in vitro, correlating with PD-L1 expression levels. In mice bearing subcutaneous and orthotopic tumors, there was specific and persistent high accumulation of signal intensity in PD-L1 positive tumors (CHO-PDL1, MDAMB231, H2444) but not in controls. These results demonstrate that [111In]PD-L1-mAb and NIR-PD-L1-mAb can detect graded levels of PD-L1 expression in human tumor xenografts in vivo. As a humanized antibody, these findings suggest clinical translation of radiolabeled versions of MPDL3280A for imaging. Specificity of NIR-PD-L1-mAb indicates the potential for optical imaging of PD-L1 expression in tumors in relevant pre-clinical as well as clinical settings.

  16. Chimeric enzymes with improved cellulase activities

    DOEpatents

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  17. Antibody discovery: sourcing of monoclonal antibody variable domains.

    PubMed

    Strohl, William R

    2014-03-01

    Historically, antibody variable domains for therapeutic antibodies have been sourced primarily from the mouse IgG repertoire, and typically either chimerized or humanized. More recently, human antibodies from transgenic mice producing human IgG, phage display libraries, and directly from human B lymphocytes have been used more broadly as sources of antibody variable domains for therapeutic antibodies. Of the total 36 antibodies approved by major maket regulatory agencies, the variable domain sequences of 26 originate from the mouse. Of these, four are marketed as murine antibodies (of which one is a mouse-rat hybrid IgG antibody), six are mouse-human chimeric antibodies, and 16 are humanized. Ten marketed antibodies have originated from human antibody genes, three isolated from phage libraries of human antibody genes and seven from transgenic mice producing human antibodies. Five antibodies currently in clinical trials have been sourced from camelids, as well as two from non-human primates, one from rat, and one from rabbit. Additional sources of antibody variable domains that may soon find their way into the clinic are potential antibodies from sharks and chickens. Finally, the various methods for retrieval of antibodies from humans, mouse and other sources, including various display technologies and amplification directly from B cells, are described.

  18. Human lymphocyte markers defined by antibodies derived from somatic cell hybrids. II. A hybridoma secreting antibody against an antigen expressed by human B and null lymphocytes.

    PubMed

    Beckman, I G; Bradley, J; Brooks, D A; Kupa, A; McNamara, P J; Thomas, M E; Zola, H

    1980-06-01

    A hybridoma (FMC4) has been derived which secretes antibody showing selective reaction with human B lymphocytes, monocytes and some null lymphocytes. Few, if any, T lymphocytes in normal blood are stained, although stimulation of lymphocytes with PHA leads to an increase in the proportion of cells reacting with the hybridoma antibody. The antibody reacts with B and null lymphoblastoid cell lines but not with T cell lines. B chronic lymphocytic leukaemia (CLL) cells but not T-CLLs are stained and null-type acute lymphoblastic leukaemia (ALL) cells but not T-type ALL also react. Normal blood myeloid cells do not react with FMC4 supernatant whilst some myeloid leukaemias do. The expression of the antigen reacting with FMC4 supernatant suggests that FMC4 may secrete an antibody against the human equivalent of the Ia antigen.

  19. Human lymphocyte markers defined by antibodies derived from somatic cell hybrids. II. A hybridoma secreting antibody against an antigen expressed by human B and null lymphocytes.

    PubMed Central

    Beckman, I G; Bradley, J; Brooks, D A; Kupa, A; McNamara, P J; Thomas, M E; Zola, H

    1980-01-01

    A hybridoma (FMC4) has been derived which secretes antibody showing selective reaction with human B lymphocytes, monocytes and some null lymphocytes. Few, if any, T lymphocytes in normal blood are stained, although stimulation of lymphocytes with PHA leads to an increase in the proportion of cells reacting with the hybridoma antibody. The antibody reacts with B and null lymphoblastoid cell lines but not with T cell lines. B chronic lymphocytic leukaemia (CLL) cells but not T-CLLs are stained and null-type acute lymphoblastic leukaemia (ALL) cells but not T-type ALL also react. Normal blood myeloid cells do not react with FMC4 supernatant whilst some myeloid leukaemias do. The expression of the antigen reacting with FMC4 supernatant suggests that FMC4 may secrete an antibody against the human equivalent of the Ia antigen. PMID:6968260

  20. Global selection of Plasmodium falciparum virulence antigen expression by host antibodies

    PubMed Central

    Abdi, Abdirahman I.; Warimwe, George M.; Muthui, Michelle K.; Kivisi, Cheryl A.; Kiragu, Esther W.; Fegan, Gregory W.; Bull, Peter C.

    2016-01-01

    Parasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. PfEMP1 is encoded by a large multi-gene family called var. Mutually-exclusive transcriptional switching between var genes allows parasites to escape host antibodies. This study examined in detail the patterns of expression of var in a well-characterized sample of parasites from Kenyan Children. Instead of observing clear inverse relationships between the expression of broad sub-classes of PfEMP1, we found that expression of different PfEMP1 groups vary relatively independently. Parasite adaptation to host antibodies also appears to involve a general reduction in detectable var gene expression. We suggest that parasites switch both between different PfEMP1 variants and between high and low expression states. Such a strategy could provide a means of avoiding immunological detection and promoting survival under high levels of host immunity. PMID:26804201

  1. [New antibodies in cancer treatment].

    PubMed

    Pestalozzi, B C; Knuth, A

    2004-09-22

    Since the development of hybridoma technology in 1975 monoclonal antibodies with pre-defined specificity can be produced. Only twenty years later did it become possible to make therapeutic use of monoclonal antibodies in oncology. To this end it was necessary to attach the antigen-binding site of a mouse antibody onto the scaffold of a human antibody molecule. Such chimeric or "humanized" antibodies may be used in passive immunotherapy without eliciting an immune response. Rituximab and trastuzumab are such humanized antibodies. They are used today routinely in the treatment of malignant lymphoma and breast cancer, respectively. These antibodies are usually used in combination with conventional cytostatic anticancer drugs.

  2. EXPRESSION OF CYP4F2 IN HUMAN LIVER AND KIDNEY: ASSESSMENT USING TARGETED PEPTIDE ANTIBODIES

    PubMed Central

    Hirani, Vandana; Yarovoy, Anton; Kozeska, Anita; Magnusson, Ronald P.; Lasker, Jerome M.

    2008-01-01

    P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61–74 (WGHQGMVNPTEEG) and 65–77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly-variable CYP4F2 expression in liver (16.4 ± 18.6 pmol/mg microsomal protein; n = 29) and kidney cortex (3.9 ± 3.8 pmol/mg; n = 10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r ≥ 0.63; p < 0.05) with leukotriene B4 and arachidonate ω-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate ω-hydroxylase in human liver. PMID:18662666

  3. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    PubMed

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.

  4. Non-viral adeno-associated virus-based platform for stable expression of antibody combination therapeutics

    PubMed Central

    Wilmes, Gwendolyn M; Carey, Kimberly L; Hicks, Stuart W; Russell, Hugh H; Stevenson, Jesse A; Kocjan, Paulina; Lutz, Stephen R; Quesenberry, Rachel S; Shulga-Morskoy, Sergey V; Lewis, Megan E; Clark, Ethan; Medik, Violetta; Cooper, Anthony B; Reczek, Elizabeth E

    2014-01-01

    Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures. PMID:24758837

  5. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  6. Comparison of different blood sample processing methods for sensitive detection of low level chimerism by RHD real-time PCR assay.

    PubMed

    Javadi, Ahmad; Verduin, Esther P; Brand, Anneke; Schonewille, Henk

    2013-01-01

    The rhesus D blood group, which is expressed on the red blood cells (RBC) of 85% of the Caucasian population, is one of the most immunogenic RBC antigens, inducing D antibody formation in up to 20-80% of D-negative transfusion recipients and about 10% of pregnancies at risk. Pregnancy-induced D-antibodies can persist for many years, but the mechanisms underlying this persistence are unclear. The LOTUS study, a long-term follow-up study of mothers from severely affected children with hemolytic disease of the fetus and newborn investigates, among other endpoints, whether persistent feto-maternal chimerism is associated with long-term maternal anti-D persistence. We questioned which blood sample processing method should be used to detect low levels of RHD chimerism with the highest sensitivity and specificity using qPCR. After optimization of primer and probe concentrations for singleplex RHD exon 5 and 7 qPCR, sensitivity, specificity and efficiency of RHD and DYS1 qPCR were investigated in artificial chimeric samples. Sensitivity of DYS1 was one log higher (0.0001%) in enriched mononuclear cell fractions as compared with whole blood. Comparable linear sensitivity (0.007%) and mean efficiency (84-99%) for RHD qPCR were observed in all samples regardless whether whole blood or pre- or post-mixing of cellular fractions had been used. We conclude that RHD chimerism using singleplex exon 5 and 7 qPCR is linearly detectable down to 1.0 GE, without an advantage of fraction enrichment.

  7. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer.

    PubMed

    Wang, G; Qiu, J; Wang, R; Krause, A; Boyer, J L; Hackett, N R; Crystal, R G

    2010-08-01

    Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody (mAb) directed against an extracellular region of the human epidermal growth-factor receptor type 2 (HER2) protein. We hypothesized that a single adeno-associated virus (AAV)-mediated genetic delivery of an anti-HER2 antibody should be effective in mediating long-term production of anti-HER2 and in suppressing the growth of human tumors in a xenograft model in nude mice. The adeno-associated virus gene transfer vector AAVrh.10alphaHER2 was constructed based on a non-human primate AAV serotype rh.10 to express the complementary DNAs for the heavy and light chains of mAb 4D5, the murine precursor to trastuzumab. The data show that genetically transferred anti-HER2 selectively bound human HER2 protein and suppressed the proliferation of HER2(+) tumor cell lines. A single administration of AAVrh.10alphaHER2 provided long-term therapeutic levels of anti-HER2 antibody expression without inducing an anti-idiotype response, suppressed the growth of HER2(+) tumors and increased the survival of tumor bearing mice. In the context that trastuzumab therapy requires frequent and repeated administration, this strategy might be developed as an alternate platform for delivery of anti-HER2 therapy.

  8. Chimerism in transfusion medicine

    PubMed Central

    Brunker, Patricia AR

    2013-01-01

    Transfusion therapy is complicated by the production of alloantibodies to antigens present in the donor and lacking in the recipient through the poorly-understood but likely multi-factorial process of alloimmunization. The low prevalence of alloimmunization in transfused patients (6.1%)1 suggests that processes central to immunologic tolerance may be operating in the vast majority of transfused patients who do not produce alloantibodies. Using RhD as a prototype, evidence is reviewed that the ability to make antibodies to red blood cell (RBC) antigens may result in part from immunologic tolerance acquired in utero. These ideas are extended to other examples of maternal microchimerism (MMc) of other non-inherited maternal antigens (NIMA). An evolutionary argument is offered that multi-generational immunity supports the hypothesis that MMc may partly explain the “non-responder” phenotype in RBC alloimmunization. PMID:24196285

  9. Production of cocktail of polyclonal antibodies using bacterial expressed recombinant protein for multiple virus detection.

    PubMed

    Kapoor, Reetika; Mandal, Bikash; Paul, Prabir Kumar; Chigurupati, Phaneendra; Jain, Rakesh Kumar

    2014-02-01

    Cocktail of polyclonal antibodies (PAb) were produced that will help in multiple virus detection and overcome the limitation of individual virus purification, protein expression and purification as well as immunization in multiple rabbits. A dual fusion construct was developed using conserved coat protein (CP) sequences of Cucumber mosaic virus (CMV) and Papaya ringspot virus (PRSV) in an expression vector, pET-28a(+). The fusion protein (∼40kDa) was expressed in Escherichia coli and purified. Likewise, a triple fusion construct was developed by fusing conserved CP sequences of CMV and PRSV with conserved nucleocapsid protein (N) sequence of Groundnut bud necrosis virus (GBNV) and expressed as a fusion protein (∼50kDa) in pET-28a(+). PAb made separately to each of these three viruses recognized the double and triple fusion proteins in Western blot indicating retention of desired epitopes for binding with target antibodies. The fusion proteins (∼40kDa and ∼50kDa) were used to produce cocktail of PAb by immunizing rabbits, which simultaneously detected natural infection of CMV and PRSV or CMV, PRSV and GBNV in Cucurbitaceous, Solanaceous and other hosts in DAC-ELISA. This is the first report on production of a cocktail of PAb to recombinant fusion protein of two or three distinct viruses.

  10. Tissue-specific expression and dietary regulation of chimeric mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase/human growth hormone gene in transgenic mice.

    PubMed

    Serra, D; Fillat, C; Matas, R; Bosch, F; Hegardt, F G

    1996-03-29

    We have studied the role of the mitochondrial 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) synthase gene in regulating ketogenesis. The gene exhibits expression in various tissues and it is regulated in a tissue-specific manner. To investigate the underlying mechanisms of this expression, we linked a 1148-base-pair portion of the mitochondrial HMG-CoA synthase promoter to the human growth hormone (hGH) gene and analyzed the expression of the hGH reporter gene in transgenic mice. mRNA levels of hGH were observed in liver, testis, ovary, stomach, colon, cecum, brown adipose tissue, spleen, adrenal glands, and mammary glands from adult mice, and also in liver and stomach, duodenum, jejunum, brown adipose tissue, and heart of suckling mice. There was no expression either in kidney or in any other nonketogenic tissue. The comparison between these data and those of the endogenous mitochondrial HMG-CoA synthase gene suggests that the 1148 base pairs of the promoter contain the elements necessary for expression in liver and testis, but an enhancer is necessary for full expression in intestine of suckling animals and that a silencer prevents expression in stomach, brown adipose tissue, spleen, adrenal glands, and mammary glands in wild type adult mice. In starvation, transgenic mice showed higher expression in liver than did wild type. Both refeeding and insulin injection reduced the expression. Fat diets, composed in each case of different fatty acids, produced similar expression levels, respectively, to those found in wild type animals, suggesting that long-, medium-, and short-chain fatty acids may exert a positive influence on the transcription rate in this 1148-base-pair portion of the promoter. The ketogenic capacity of liver and the blood ketone body levels were equal in transgenic mice and in nontransgenic mice.

  11. Molecular characterization of antibodies bearing Id-460. II. Molecular basis for Id-460 expression

    PubMed Central

    1985-01-01

    Id-460+ immunoglobulins can be induced in vivo by immunization with dinitrophenyl (DNP) or P. pneumotropica and form two nonoverlapping groups of antibodies with respect to antigen binding specificity. In this study, using Id-460+ antibodies of differing antigen binding specificities, we compared on the molecular genetic level the five gene segment combinations (VH, DH, JH, VL, and JL) that encode the variable regions of these idiotype-positive immunoglobulins. The Id-460 determinant appears to be a conformational or combinatorial determinant encoded by VH460 and VK1 crosshybridizing genes. DH, JH, and JK gene segments appear to have no measurable effect upon expression of Id-460. Finally, antigen binding specificity does not appear to simply localize to any particular gene segment but may in part be the result of somatic mutation and/or VDJH junctional sequences, whose length correlates roughly with antigen binding specificity. PMID:3932578

  12. Expression, purification of IL-38 in Escherichia coli and production of polyclonal antibodies.

    PubMed

    Hu, Zhonglan; Chen, Zhenyu; Huang, Nongyu; Teng, Xiu; Zhang, Jun; Wang, Zhen; Wei, Xiaoqiong; Qin, Ke; Liu, Xiao; Wu, Xueping; Tang, Huan; Zhu, Xiaofeng; Cui, Kaijun; Li, Jiong

    2015-03-01

    Members of the interleukin-1 (IL-1) family play important roles in inflammation and host defense against pathogens. Here, we describe a novel member of the IL-1 family, interleukin-38 (IL-38, IL-1F10, or IL-1HY2), which was discovered in 2001. Although the functional role of IL-38 remains unclear, recent reports show that IL-38 binds to the IL-36 receptor (IL-36R) which is also targeted by the IL-36 receptor antagonist (IL-36Ra). Consequently, these two molecules have similar effects on immune cells. Here, we describe the expression of soluble and active recombinant IL-38 in Escherichia coli (E. coli). The IL-38 gene sequence was optimized for expression in E. coli and then cloned into a pEHISTEV expression vector, which has an N-terminal 6-His affinity tag under control of the T7 lac strong promoter. Optimization of culture conditions allowed induction of the recombinant fusion protein with 0.1 mM isopropyl β-D-1-thio galactoside (IPTG) at 37°C for 4h. The recombinant fusion protein was purified using an Ni affinity column and was further digested with TEV protease; the cleaved protein was purified by molecular-exclusion chromatography. Next, we measured IL-38 binding ability using functional ELISA. The purified proteins were used to immunize a New Zealand white rabbit four times to enable the production of polyclonal antibodies. The specificity of the prepared polyclonal antibodies was determined using Western blot, and the results showed they have high specificity against IL-38. Here, we describe the development of an effective and reliable method to express and purify IL-38 and anti-IL-38 antibodies. This will enable the function and structure of IL-38 to be determined.

  13. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.

    PubMed

    Wang, Haiying; Sun, Xingmin; Zhang, Yongrong; Li, Shan; Chen, Kevin; Shi, Lianfa; Nie, Weijia; Kumar, Raj; Tzipori, Saul; Wang, Jufang; Savidge, Tor; Feng, Hanping

    2012-08-01

    The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.

  14. Intracellular Reprogramming of Expression, Glycosylation, and Function of a Plant-Derived Antiviral Therapeutic Monoclonal Antibody

    PubMed Central

    Lee, Kyung-Jin; Kim, Young-Kwan; So, Yang-Kang; Ryu, Jae-Sung; Oh, Seung-Han; Han, Yeon-Soo; Ko, Kinarm; Choo, Young-Kug; Park, Sung-Joo; Brodzik, Robert; Lee, Kyoung-Ki; Oh, Doo-Byoung; Hwang, Kyung-A; Koprowski, Hilary; Lee, Yong Seong; Ko, Kisung

    2013-01-01

    Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAbPs), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAbP SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAbP SO57 with KDEL (mAbPK) were significantly higher than those of mAbP SO57 without KDEL (mAbP) regardless of the transcription level. The Fc domains of both purified mAbP and mAbPK and hybridoma-derived mAb (mAbH) had similar levels of binding activity to the FcγRI receptor (CD64). The mAbPK had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAbP had mainly Golgi type glycans (96.8%) similar to those seen with mAbH. Confocal analysis showed that the mAbPK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAbP with KDEL in the ER. Both mAbP and mAbPK disappeared with similar trends to mAbH in BALB/c mice. In addition, mAbPK was as effective as mAbH at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAbP by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant. PMID:23967055

  15. A Comparative Antibody Analysis of Pannexin1 Expression in Four Rat Brain Regions Reveals Varying Subcellular Localizations

    PubMed Central

    Cone, Angela C.; Ambrosi, Cinzia; Scemes, Eliana; Martone, Maryann E.; Sosinsky, Gina E.

    2012-01-01

    Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus, and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on-line viewing, and

  16. Immune deficiency enhances expression of recombinant human antibody in mice after nonviral in vivo gene transfer.

    PubMed

    Kitaguchi, Kohji; Toda, Mikako; Takekoshi, Masataka; Maeda, Fumiko; Muramatsu, Tatsuo; Murai, Atsushi

    2005-10-01

    A cDNA encoding human antibody against hepatitis B virus was expressed in normal and severe combined immune deficiency (SCID) mice to clarify whether or not host immune status affects circulating levels of the recombinant human antibody (RhAb) after nonviral in vivo gene transfer. For transferring genes, either electroporation (EP) or hydrodynamics-based transfection (HD) was employed. The former was applied to the leg muscle to express the gene, while the latter primarily targeted foreign gene expression in the liver. The expressed RhAb was secreted into the blood circulation, and its existence was assayed by ELISA. Prior to the investigation of host immune status, suitable forms of plasmid expression vectors and types of electrodes were determined in normal mice. Results showed that the vector encoding both the light and heavy chains driven by the CMV promoter had the highest plasma RhAb concentrations, and a pair of pincette-type electrodes conferred the best performance. In both EP and HD, the SCID state showed an increased and prolonged RhAb production in the blood circulation due probably to suppressed recognition of RhAb as a foreign protein to the host animal. The difference in gene transfer methods demonstrated a characteristic pattern: an early and sharp rise followed by a relatively rapid decrease in HD, in contrast to a gradual rise followed by a plateau level maintained in EP. As a result, with the same amount of gene transferred, the plasma RhAb concentrations for the first 7 or 8 weeks were higher in HD than EP, while the reverse was true for the latter period. Multiple gene transfer contributed to maintaining and prolonging high RhAb concentrations in plasma by both methods with similar characteristic patterns accompanying the respective gene transfer method. These results suggest the importance of host immunological potency for maintaining plasma RhAb concentrations if these gene transfer technologies are used for clinical and therapeutic purposes.

  17. Effects of platelet glycoprotein IIb/IIIa receptor blockade by a chimeric monoclonal antibody (abciximab) on acute and six-month outcomes after percutaneous transluminal coronary angioplasty for acute myocardial infarction. EPIC investigators.

    PubMed

    Lefkovits, J; Ivanhoe, R J; Califf, R M; Bergelson, B A; Anderson, K M; Stoner, G L; Weisman, H F; Topol, E J

    1996-05-15

    Percutaneous transluminal coronary angioplasty (PTCA) for acute myocardial infarction is an attractive alternative to thrombolysis, but is still limited by recurrent ischemia and restenosis. We determined whether adjunctive platelet glycoprotein IIb/IIIa receptor blockade improved outcomes in patients undergoing direct and rescue PTCA in the Evaluation of c7E3 for Prevention of Ischemic Complications (EPIC) trial. Of the 2,099 patients undergoing percutaneous intervention who randomly received chimeric 7E3 Fab (c7E3) as a bolus, a bolus and 12-hour infusion, or placebo, 42 underwent direct PTCA for acute myocardial infarction and 22 patients had rescue PTCA after failed thrombolysis. The primary composite end point comprised death, reinfarction, repeat intervention, or bypass surgery. Outcomes were assessed at 30 days and 6 months. Baseline characteristics were similar in direct and rescue PTCA patients. Pooling the 2 groups, c7E3 bolus and infusion reduced the primary composite end point by 83% (26.1% placebo vs 4.5% c7E3 bolus and infusion, p = 0.06). No reinfarctions or repeat urgent interventions occurred in c7E3 bolus and infusion patients at 30 days, although there was a trend toward more deaths in c7E3-treated patients. Major bleeding was increased with c7E3 (24% vs 13%, p = 0.28). At 6 months, ischemic events were reduced from 47.8% with placebo to 4.5% with c7E3 bolus and infusion (p = 0.002), particularly reinfarction (p = 0.05) and repeat revascularization (p = 0.002). We conclude that adjunctive c7E3 therapy during direct and rescue PTCA decreased acute ischemic events and clinical restenosis in the EPIC trial. These data provide initial evidence of benefit for glycoprotein IIb/IIIa receptor blockade during PTCA for acute myocardial infarction.

  18. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    PubMed

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  19. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells.

    PubMed

    Cordeiro, Nelia; Wijkhuisen, Anne; Savatier, Alexandra; Moulharat, Natacha; Ferry, Gilles; Léonetti, Michel

    2016-01-01

    Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.

  20. Structure of idiotopes associated with antiphenylarsonate antibodies expressing an intrastrain crossreactive idiotype

    PubMed Central

    1989-01-01

    We have explored the structural basis of idiotopes associated with the major idiotype (CRIA) of A/J anti-p-azobenzenearsonate antibodies, with emphasis on the regions of contact with anti-idiotypic antibody. The analysis was facilitated by a recent description of the three- demensional structure of the Fab portion of a CRIA-related antibody molecule. Direct binding measurements failed to reveal idiotopes associated exclusively with the L chain. However, the L chain participated in the formation of approximately 80% of the idiotopes recognized by polyclonal anti-Id. This indicates that multiple complementarity-determining regions (CDRs) participate in the formation of idiotopes. The affinity of anti-Id for CDRs on L chains must be appreciable but insufficient to permit direct binding (i.e., less than approximately 10(4) M-1). Approximately 20-35% of polyclonal anti-Id reacted with high affinity with H chains recombined with non-CRIA- related L chains. This interaction was found to involve the D region as well as one or both CDRs in the VH segment, again indicating the contribution of multiple CDRs. It is suggested that a typical idiotope may be similar in size to that of protein epitopes whose three- dimensional structures are known; such epitopes comprise a substantial fraction of the surface area occupied by the CDRs of an antibody. The expression of an idiotope recognized by the mAb AD8, which interacts with the VH segment, was found to be unaffected by major changes in the neighboring D and VL regions. This observation is relevant to efforts to predict three-dimensional structure from the amino acid sequence of CRIA+ molecules. PMID:2507724

  1. Analysis of HPV-1 E4 gene expression using epitope-defined antibodies.

    PubMed Central

    Doorbar, J; Evans, H S; Coneron, I; Crawford, L V; Gallimore, P H

    1988-01-01

    Six monoclonal antibodies (mAbs) have been raised against the E4 proteins of HPV-1. Five of these were found to recognize denaturation-resistant epitopes as determined by Western blotting--and their binding sites were identified by determining their reactivity against a panel of bacterial E4--beta-galactosidase fusion proteins which contained progressive deletions at the C-terminal end of the E4 region. The five mAbs were found to bind to four distinct sites. By using these epitope-defined mAbs, along with anti-peptide antibodies raised against putative N- and C-terminal E4 sequences, we have determined the relationships between the eight distinct polypeptides (mol. wt 10/11 kd, 16/17 kd, 21/23 kd and 32/34 kd) previously shown to be expressed from the E4 gene of HPV-1 in productively infected papillomas. The 17 kd E4 polypeptide appears to be the product of a spliced mRNA encoding five amino acids from open reading frame (ORF) E1 joined onto 120 from the E4 ORF. The 16 kd and 10/11 kd proteins, which may be derived from this, lack sequences (approximately 15 and 70 amino acids respectively) encoded by the 5' end of the E4 gene. The 32/34 kd proteins were detected by all antibodies which reacted with the 16/17 kd polypeptides, suggesting that they represent dimers of the latter species. The 21/23 kd polypeptides, however, do not appear to be simple dimers of the 10/11 kd protein as previously predicted, and reacted with antibodies whose epitopes mapped in the N-terminal half of the E4 protein.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2456213

  2. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    SciTech Connect

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie; Garnier, Celine; Guiguen, Francois; Jin Yuhuai; Narayan, Opendra; Chebloune, Yahia . E-mail: ychebloune@kumc.edu

    2007-08-01

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef. We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes.

  3. Expression of POTE protein in human testis detected by novel monoclonal antibodies.

    PubMed

    Ise, Tomoko; Das, Sudipto; Nagata, Satoshi; Maeda, Hiroshi; Lee, Yoomi; Onda, Masanori; Anver, Miriam R; Bera, Tapan K; Pastan, Ira

    2008-01-25

    The POTE gene family is composed of 13 highly homologous paralogs preferentially expressed in prostate, ovary, testis, and placenta. We produced 10 monoclonal antibodies (MAbs) against three representative POTE paralogs: POTE-21, POTE-2gammaC, and POTE-22. One reacted with all three paralogs, six MAbs reacted with POTE-2gammaC and POTE-22, and three MAbs were specific to POTE-21. Epitopes of all 10 MAbs were located in the cysteine-rich repeats (CRRs) motifs located at the N-terminus of each POTE paralog. Testing the reactivity of each MAb with 12 different CRRs revealed slight differences among the antigenic determinants, which accounts for differences in cross-reactivity. Using MAbs HP8 and PG5 we were able to detect a POTE-actin fusion protein in human testis by immunoprecipitation followed by Western blotting. By immunohistochemistry we demonstrated that the POTE protein is expressed in primary spermatocytes, implying a role in spermatogenesis.

  4. Expression of POTE protein in human testis detected by novel monoclonal antibodies

    SciTech Connect

    Ise, Tomoko; Das, Sudipto; Nagata, Satoshi; Maeda, Hiroshi; Lee, Yoomi; Onda, Masanori; Anver, Miriam R.; Pastan, Ira

    2008-01-25

    The POTE gene family is composed of 13 highly homologous paralogs preferentially expressed in prostate, ovary, testis, and placenta. We produced 10 monoclonal antibodies (MAbs) against three representative POTE paralogs: POTE-21, POTE-2{gamma}C, and POTE-22. One reacted with all three paralogs, six MAbs reacted with POTE-2{gamma}C and POTE-22, and three MAbs were specific to POTE-21. Epitopes of all 10 MAbs were located in the cysteine-rich repeats (CRRs) motifs located at the N-terminus of each POTE paralog. Testing the reactivity of each MAb with 12 different CRRs revealed slight differences among the antigenic determinants, which accounts for differences in cross-reactivity. Using MAbs HP8 and PG5 we were able to detect a POTE-actin fusion protein in human testis by immunoprecipitation followed by Western blotting. By immunohistochemistry we demonstrated that the POTE protein is expressed in primary spermatocytes, implying a role in spermatogenesis.

  5. PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody.

    PubMed

    Gargouri-Bouzid, Radhia; Jaoua, Leïla; Rouis, Souad; Saïdi, Mohamed Najib; Bouaziz, Donia; Ellouz, Radhouane

    2006-06-01

    A synthetic gene encoding a single chain Fv fragment of an antibody directed against the nuclear inclusion a (NIa) protein of potato virus Y (PVY) was used to transform two commercial potato cultivars (Claustar and BF15). The NIa protease forms the nuclear inclusion body A and acts as the major protease in the cleavage of the viral polyprotein into functional proteins. Immunoblot analysis showed that most of the resulting transgenic plants accumulate high levels of the transgenic protein. Furthermore, a majority of the selected transgenic lines showed an efficient and complete protection against the challenge virus after mechanical inoculation with PVYO strain. Two transgenic lines showed an incomplete resistance with delayed appearance of symptoms accompanied by low virus titers, whereas one line developed symptoms during the first days after inoculation but recovered rapidly, leading to a low virus accumulation rate. These results confirm that expression of scFv antibody is able to inhibit a crucial step in the virus multiplication, such as polyprotein cleavage is a powerful strategy for engineered virus resistance. It can lead to a complete resistance that was not obtained previously by expression of scFv directed against the viral coat protein.

  6. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting.

  7. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    SciTech Connect

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  8. Mechanisms of tolerance induced via mixed chimerism.

    PubMed

    Sykes, Megan

    2007-05-01

    Mixed hematopoietic chimerism provides a powerful means of inducing robust, donor-specific tolerance. In this article, the minimal requirements for achieving mixed chimerism, the development of new reagents that promote its achievement, and the mechanisms by which peripheral and intrathymic tolerance are achieved via mixed chimerism are discussed. An emerging understanding of these mechanisms, along with the development of new immunosuppressive reagents, is allowing advancement toward clinical application of this approach.

  9. Construction of a mouse Aos1-Uba2 chimeric SUMO-E1 enzyme, mAU, and its expression in baculovirus-insect cells

    PubMed Central

    Nakayama, Tomofumi; Yuasa, Eri; Kanemaru, Ayumi; Saito, Masayuki; Saitoh, Hisato

    2014-01-01

    Small ubiquitin-related modifier (SUMO) is a highly conserved protein that is covalently attached to target proteins. This posttranslational modification, designated SUMOylation, is a major protein-conjugation-driven strategy designed to regulate structure and function of cellular proteins. SUMOylation consists of an enzymatic cascade involving the E1-activating enzyme and the E2-conjugating enzyme. The SUMO-E1 enzyme consists of two subunits, a heterodimer of activation of Smt3p 1 (Aos1) and ubiquitin activating enzyme 2 (Uba2), which resembles the N- and C-terminal halves of ubiquitin E1 (Uba1). Herein, we describe the rational design of a single polypeptide version of SUMO-E1, a chimera of mouse Aos1 and Uba2 subunits, termed mAU, in which the functional domains appear to be arranged in a fashion similar to Uba1. We also describe the construction of a mAU plasmid for expression in a baculovirus-insect cell system and present an in situ SUMOylation assay using the recombinant mAU. Our results showed that mAU has SUMO-E1 activity, thereby indicating that mAU can be expressed in baculovirus-insect cells and represents a suitable source of SUMO-E1. PMID:24637489

  10. Mimicry of erythropoietin and interleukin-6 signalling by an antibody/cytokine receptor chimera in murine myeloid 32D cells.

    PubMed

    Kawahara, Masahiro; Ueda, Hiroshi; Tsumoto, Kouhei; Kumagai, Izumi; Nagamune, Teruyuki

    2007-04-01

    We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.

  11. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

    PubMed Central

    Kochenderfer, James N.; Dudley, Mark E.; Kassim, Sadik H.; Somerville, Robert P.T.; Carpenter, Robert O.; Stetler-Stevenson, Maryalice; Yang, James C.; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Raffeld, Mark; Feldman, Steven; Lu, Lily; Li, Yong F.; Ngo, Lien T.; Goy, Andre; Feldman, Tatyana; Spaner, David E.; Wang, Michael L.; Chen, Clara C.; Kranick, Sarah M.; Nath, Avindra; Nathan, Debbie-Ann N.; Morton, Kathleen E.; Toomey, Mary Ann; Rosenberg, Steven A.

    2015-01-01

    Purpose T cells can be genetically modified to express an anti-CD19 chimeric antigen receptor (CAR). We assessed the safety and efficacy of administering autologous anti-CD19 CAR T cells to patients with advanced CD19+ B-cell malignancies. Patients and Methods We treated 15 patients with advanced B-cell malignancies. Nine patients had diffuse large B-cell lymphoma (DLBCL), two had indolent lymphomas, and four had chronic lymphocytic leukemia. Patients received a conditioning chemotherapy regimen of cyclophosphamide and fludarabine followed by a single infusion of anti-CD19 CAR T cells. Results Of 15 patients, eight achieved complete remissions (CRs), four achieved partial remissions, one had stable lymphoma, and two were not evaluable for response. CRs were obtained by four of seven evaluable patients with chemotherapy-refractory DLBCL; three of these four CRs are ongoing, with durations ranging from 9 to 22 months. Acute toxicities including fever, hypotension, delirium, and other neurologic toxicities occurred in some patients after infusion of anti-CD19 CAR T cells; these toxicities resolved within 3 weeks after cell infusion. One patient died suddenly as a result of an unknown cause 16 days after cell infusion. CAR T cells were detected in the blood of patients at peak levels, ranging from nine to 777 CAR-positive T cells/μL. Conclusion This is the first report to our knowledge of successful treatment of DLBCL with anti-CD19 CAR T cells. These results demonstrate the feasibility and effectiveness of treating chemotherapy-refractory B-cell malignancies with anti-CD19 CAR T cells. The numerous remissions obtained provide strong support for further development of this approach. PMID:25154820

  12. Human/mouse chimeric monoclonal antibodies with human IgG1, IgG2, IgG3 and IgG4 constant domains: electron microscopic and hydrodynamic characterization.

    PubMed

    Phillips, M L; Tao, M H; Morrison, S L; Schumaker, V N

    1994-10-01

    The unique structure of the human IgG3 constant region with its greatly extended hinge can clearly be seen in electron micrographs, which compare a series of recombinant proteins with the same murine anti-dansyl variable domain but constant domains from human IgG1, IgG2, IgG3 and IgG4. The hinge region of IgG3 was found to be very long, with some measurements extending to 100 A. It exhibited considerable flexibility allowing the Fc to be displaced far toward either side. Upon addition of bivalent hapten, all of the monoclonal antibodies formed complexes. IgG1, IgG3 and IgG4 formed circular dimers, composed of two antibodies forming a ring-shaped complex, presumably through the binding of two bivalent haptens. IgG2, on the other hand, showed a distribution of complexes which was noticeably different from the other subclasses. Some circular dimers, some linear dimers and a large amount of monomer were seen. This was interpreted in terms of an energy barrier to ring closure arising from the orientation of the Fab arms of IgG2 probably leading to linear dimers as the predominate complex seen with the analytical ultracentrifuge. A substantial number of these dimers probably dissociated upon dilution for examination in the electron microscope. The distribution of the angles between the Fab arms of the monoclonal antibodies forming the circular dimers has been measured for the different subclasses. Most were open at wide angles (> 100 degrees) but some formed very shallow angles, with the Fab arms being nearly parallel to each other. The free energy for this transition was calculated from the ratio of open/closed angles, and it was found to be proportional to the length of the upper hinge of the monoclonal antibody, in agreement with previous nanosecond depolarization results (Dangl et al., Eur. molec. Biol. Org. J. 7, 1989-1994, 1988).

  13. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies.

    PubMed

    Maggi, Maristella; Scotti, Claudia

    2017-02-15

    Single domain antibodies (sdAbs) are small antigen-binding domains derived from naturally occurring, heavy chain-only immunoglobulins isolated from camelid and sharks. They maintain the same binding capability of full-length IgGs but with improved thermal stability and permeability, which justifies their scientific, medical and industrial interest. Several described recombinant forms of sdAbs have been produced in different hosts and with different strategies. Here we present an optimized method for a time-saving, high yield production and extraction of a poly-histidine-tagged sdAb from Escherichia coli classical inclusion bodies. Protein expression and extraction were attempted using 4 different methods (e.g. autoinducing or IPTG-induced soluble expression, non-classical and classical inclusion bodies). The best method resulted to be expression in classical inclusion bodies and urea-mediated protein extraction which yielded 60-70 mg/l bacterial culture. The method we here describe can be of general interest for an enhanced and efficient heterologous expression of sdAbs for research and industrial purposes.

  14. Antithyroglobulin antibody

    MedlinePlus

    Thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Hypothyroidism - thyroglobulin antibody; Thyroiditis - thyroglobulin antibody; Graves disease - thyroglobulin antibody; Underactive thyroid - thyroglobulin antibody

  15. A chimeric multi-epitope DNA vaccine elicited specific antibody response against severe acute respiratory syndrome-associated coronavirus which attenuated the virulence of SARS-CoV in vitro.

    PubMed

    Wang, Xiaohua; Xu, Wei; Tong, Deyan; Ni, Jing; Gao, Haifeng; Wang, Ying; Chu, Yiwei; Li, Pingping; Yang, Xiaoming; Xiong, Sidong

    2008-08-15

    Epitope-based vaccines designed to induce antibody responses specific for severe acute respiratory syndrome-associated coronavirus (SARS-CoV) are being developed as a means for increasing vaccine potency. In this study, we identified four B cell epitopes from the spike (S) and membrane (M) protein through bioinformatics analysis and constructed a multi-epitope DNA vaccine. Intramuscular immunization of mice with this vaccine was sufficient to induce specific prime as well as a long-term memory humoral immune response to at least two candidate epitopes, S(437-459) and M(1-20). A DNA prime-protein boost strategy greatly enhanced the antibody generation and the immune sera not only reacted with the lysates of SARS-CoV-infected Vero cells but also neutralized the cytopathic effect of SARS by 75% at 1:160 dilution. The novel immunogenic S protein peptide revealed in this study provides new target for SARS vaccine design; and our work indicated multi-epitope DNA vaccine as an effective means for eliciting polyvalent humoral immune response against SARS-CoV.

  16. Development of a flatfish-specific enzyme-linked immunosorbent assay for Fsh using a recombinant chimeric gonadotropin.

    PubMed

    Chauvigné, François; Verdura, Sara; Mazón, María José; Boj, Mónica; Zanuy, Silvia; Gómez, Ana; Cerdà, Joan

    2015-09-15

    In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh β subunit (Fshβ) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshβ-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshβ subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.

  17. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality.

    PubMed

    Louie, Salina; Haley, Benjamin; Marshall, Brett; Heidersbach, Amy; Yim, Mandy; Brozynski, Martina; Tang, Danming; Lam, Cynthia; Petryniak, Bronislawa; Shaw, David; Shim, Jeongsup; Miller, Aaron; Lowe, John B; Snedecor, Brad; Misaghi, Shahram

    2017-03-01

    During antibody dependent cell cytotoxicity (ADCC) the target cells are killed by monocytes and natural killer cells. ADCC is enhanced when the antibody heavy chain's core N-linked glycan lacks the fucose molecule(s). Several strategies have been utilized to generate fully afucosylated antibodies. A commonly used and efficient approach has been knocking out the FUT8 gene of the Chinese hamster ovary (CHO) host cells, which results in expression of antibody molecules with fully afucosylated glycans. However, a major drawback of the FUT8-KO host is the requirement for undertaking two separate cell line development (CLD) efforts in order to obtain both primarily fucosylated and fully afucosylated antibody species for comparative studies in vitro and in vivo. Even more challenging is obtaining primarily fucosylated and FUT8-KO clones with similar enough product quality attributes to ensure that any observed ADCC advantage(s) can be strictly attributed to afucosylation. Here, we report generation and use of a FX knockout (FXKO) CHO host cell line that is capable of expressing antibody molecules with either primarily fucosylated or fully afucosylated glycan profiles with otherwise similar product quality attributes, depending on addition of fucose to the cell culture media. Hence, the FXKO host not only obviates the requirement for undertaking two separate CLD efforts, but it also averts the need for screening many colonies to identify clones with comparable product qualities. Finally, FXKO clones can express antibodies with the desired ratio of primarily fucosylated to afucosylated glycans when fucose is titrated into the production media, to allow achieving intended levels of FcγRIII-binding and ADCC for an antibody. Biotechnol. Bioeng. 2017;114: 632-644. © 2016 Wiley Periodicals, Inc.

  18. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells.

    PubMed

    Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven C L; Gagnon, Peter; Bi, Xuezhi; Yang, Yuansheng

    2015-01-01

    Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing.

  19. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system.

    PubMed

    Mizukami, Makoto; Tokunaga, Hiroko; Onishi, Hiromasa; Ueno, Yohei; Hanagata, Hiroshi; Miyazaki, Nobuo; Kiyose, Norihiko; Ito, Yuji; Ishibashi, Matsujiro; Hagihara, Yoshihisa; Arakawa, Tsutomu; Miyauchi, Akira; Tokunaga, Masao

    2015-01-01

    Anti-IZUMO1PFF VHH (variable domain of camelid heavy chain antibody) clones, N6 and N15, from immunized alpaca (Lama pacos) phage library were efficiently expressed and their VHH products were secreted into the culture medium of Brevibacillus choshinensis HPD31-SP3, e.g., at a level of 26-95mg in 100ml conventional flask culture. With a 3-L scale fed-batch culture for 65h, the N15 VHH protein with C-terminal His-tag was produced at ∼3g/l culture medium. The N6 and N15 proteins were easily purified to apparent homogeneity by cation exchange and Ni-affinity chromatographies. Both proteins showed specific antigen-binding activity by ELISA and high antigen binding affinity, KD=6.0-8.6nM, by surface plasmon resonance analysis. Size exclusion chromatography-multi-angle laser light scattering analysis revealed that N6 and N15 proteins purified were exclusively monomeric form in phosphate buffered saline. CD spectrum showed beta-sheet rich structure, consistent with a typical antibody structure and also suggested aromatic-aromatic interactions, as indicated by a positive peak at 232nm. Thermal melting analysis of the N15 protein with C-terminal His-tag demonstrated a clear thermal transition with a Tm at 67°C. The heat-denatured sample recovered antigen binding activity upon cooling, indicating a reversible denaturation.

  20. Expression of basal cell marker revealed by RAM11 antibody during epithelial regeneration in rabbits.

    PubMed

    Lis, Grzegorz J; Jasek, Ewa; Litwin, Jan A; Gajda, Mariusz; Zarzecka, Joanna; Cichocki, Tadeusz

    2010-01-01

    RAM11 is a mouse monoclonal anti-rabbit macrophage antibody recognizing connective tissue and vascular macrophages. Our previous report showed that RAM11 reacted with basal cells of stratified squamous epithelia of rabbit skin, oral mucosa and esophagus. The aim of the present study was to follow the appearance of RAM11 immunoreactivity in basal cells of regenerating oral epithelium in rabbits. No RAM11 immunostaining was observed in the regenerating epithelium examined on days 1 and 3 of wound healing. A weak immunofluorescence first appeared on day 7 in single basal cells and 32% of RAM11- positive basal cells were observed on day 14. These findings indicate that expression of the antigen recognized by RAM11 antibody is a transient event in the differentiation of oral keratinocytes which not always occurs during epithelial repair, although it is a constant feature of epithelial turnover in mature epithelium. Therefore this antigen can be regarded as basal cell marker only in mature stratified squamous epithelia.

  1. Characterization of mechanical properties of transgenic tobacco roots expressing a recombinant monoclonal antibody against tooth decay.

    PubMed

    Hassan, Sally; Liu, Wei; Ma, Julian K-C; Thomas, Colin R; Keshavarz-Moore, Eli

    2008-07-01

    In this article, we describe a new approach that allows the determination of the magnitude of force required to break single plant roots. Roots were taken from transgenic tobacco plants, expressing a secreted monoclonal antibody. They were divided into four key developmental stages. A novel micromanipulation technique was used to pull to breakage, single tobacco roots in buffer in order to determine their breaking force. A characteristic uniform step-wise increase in the force up to a peak force for breakage was observed. The mean breaking force and mean work done were 101mN and 97microJ per root respectively. However, there was a significant increase in breaking force from the youngest white roots to the oldest, dark red-brown roots. We speculate that this was due to increasing lignin deposition with root stage of development (shown by phloroglucinol staining). No significant differences between fresh root mass, original root length, or mean root diameter for any of the root categories were found, displaying their uniformity, which would be beneficial for bioprocessing. In addition, no significant difference in antibody yield from the different root categories was found. These data show that it is possible to characterise the force requirements for root breakage and should assist in the optimisation of recombinant protein extraction from these roots.

  2. Use of expression mutants and monoclonal antibodies to map the erythrocyte Ca2+ pump.

    PubMed

    Adamo, H P; Caride, A J; Penniston, J T

    1992-07-15

    Deletion and truncation mutants of the human erythrocyte Ca2+ pump (hPMCA4b) were expressed in COS-1 cells. The reactivity patterns of these mutants with seven monoclonal antibodies were examined. Of the seven, six (JA9, JA3, 1G4, 4A4, 3E10 and 5F10) react from the cytoplasmic side. JA9 and JA3 reacted near the NH2 terminus and the COOH terminus of the molecule, respectively. 5F10 and 3E10 recognized portions of the large hydrophilic region in the middle of the protein. The epitopes of 1G4 and 4A4 were discontinuous and included residues from the long hydrophilic domain and residues between the proposed transmembrane domains M2 and M3. Antibody 1B10, which reacts from the extracellular side, recognized the COOH-terminal half of the molecule. These results show that the NH2 terminus, the COOH terminus, the region between M2 and M3, and the large hydrophilic region are all on the cytoplasmic side. This means that there are an even number of membrane crossings in both the NH2-terminal and the COOH-terminal halves. Between residues 75 and 300 there must be at least two membrane crossings, and there are at least two membrane crossings in the COOH-terminal half of the molecule.

  3. Expression of HIV-1 broadly neutralizing antibodies mediated by recombinant adeno-associated virus 8 in vitro and in vivo.

    PubMed

    Yu, Yongjiao; Fu, Lu; Jiang, Xiaoyu; Guan, Shanshan; Kuai, Ziyu; Kong, Wei; Shi, Yuhua; Shan, Yaming

    2016-12-01

    Despite unremitting efforts since the discovery of human immunodeficiency virus type 1 (HIV-1), an effective vaccine has not been generated. Viral vector-mediated transfer for expression of HIV-1 broadly neutralizing antibodies (BnAbs) is an attractive strategy. In this study, a recombinant adeno-associated virus 8 (rAAV8) vector was used to encode full-length antibodies against HIV-1 in 293T cells and Balb/c mice after gene transfer. The 10E8 or NIH45-46 BnAb was expressed from a single open reading frame by linking the heavy and light chains with a furin cleavage and a 2A self-processing peptide (F2A). The results showed that the BnAbs could be expressed in the 293T cell culture medium. A single intramuscular injection of rAAV8 led to long-term expression of BnAbs in Balb/c mice. The expressed antibodies in the supernatant of 293T cells and in Balb/c mice showed neutralization effects against HIV-1 pseudoviruses. Combined immunization of rAAV8 expressing 10E8 and rAAV8 expressing NIH45-46 in Balb/c mice could increase these neutralization effects on strains of HIV-1 sensitive to 10E8 or NIH45-46 antibody compared with a single injection of rAAV8 expressing either antibody alone. Therefore, the combined immunization may be a potential vaccine approach against HIV-1.

  4. [Targeted Delivery of Quantum Dots to HER2-Expressing Tumor Using Recombinant Antibodies].

    PubMed

    Balalaeva, I V; Zdobnova, T A; Sokolova, E A; Deyev, S M

    2015-01-01

    Targeted delivery of semiconductor quantum dots (Q Ds) to tumors overexpressing HER2 cancer marker has been. demonstrated on immunocompromised mice bearing human breast cancer xenografts. To obtain targeted QDs complexes we applied the approach based on the use of protein adaptor system, RNAase barnase and its inhibitor barstar. Specific binding to target cancer marker was achieved through bivalent fusion protein containing two fragments of4D5scFv recombinant antibody and a fragment of barnase. QDs were conjugated to barstar, and final assembly of targeted complexes was obtained through non-covalent specific interaction of barstar, attached to QD, and barnase, that is part of the recombinant targeting protein. The efficient delivery of QDs to HER2-expressing tumor demonstrates the possibilities and prospects of the approach for targeted delivery of nanoparticles to cancer cells in vivo as the way to improve the efficiency of diagnosis and promote development of therapies based on the use of nanoparticles.

  5. Immunogenicity and efficacy of chimeric dengue vaccine (DENVax) formulations in interferon-deficient AG129 mice.

    PubMed

    Brewoo, Joseph N; Kinney, Richard M; Powell, Tim D; Arguello, John J; Silengo, Shawn J; Partidos, Charalambos D; Huang, Claire Y-H; Stinchcomb, Dan T; Osorio, Jorge E

    2012-02-14

    Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.

  6. Reduction of malaria transmission by transgenic mosquitoes expressing an antisporozoite antibody in their salivary glands.

    PubMed

    Sumitani, M; Kasashima, K; Yamamoto, D S; Yagi, K; Yuda, M; Matsuoka, H; Yoshida, S

    2013-02-01

    We have previously developed a robust salivary gland-specific expression system in transgenic Anopheles stephensi mosquitoes. To establish transgenic mosquito lines refractory to Plasmodium falciparum using this system, we generated a transgenic mosquito harbouring the gene encoding an anti-P. falciparum circumsporozoite protein (PfCSP) single-chain antibody (scFv) fused to DsRed in a secretory form (mDsRed-2A10 scFv). Fluorescence microscopy showed that the mDsRed-2A10 scFv was localized in the secretory cavities and ducts of the salivary glands in a secreted form. To evaluate P. falciparum transmission-blocking in a rodent malaria model, a transgenic Plasmodium berghei line expressing PfCSP in place of PbCSP (PfCSP/Pb) was constructed. The PfCSP/Pb parasites were able to bind to the mDsRed-2A10 scFv in the salivary glands of the transgenic mosquitoes. Importantly, the infectivity of the transgenic mosquitoes to mice was strongly impaired, indicating that the parasites had been inactivated. These results suggest that salivary gland-specific expression of antisporozoite molecules could be a promising strategy for blocking malaria transmission to humans.

  7. Many commercially available antibodies for detection of CHOP expression as a marker of endoplasmic reticulum stress fail specificity evaluation.

    PubMed

    Haataja, Leena; Gurlo, Tatyana; Huang, Chang-Jiang; Butler, Peter C

    2008-01-01

    Endoplasmic reticulum (ER) stress contributes to beta cell death in type 2 diabetes (T2DM). ER stress is characterized by increased level of ER stress markers such as C/EBP homologous protein (CHOP). Activation of CHOP leads to its translocation into the nucleus, where it induces cell death. We previously reported nuclear CHOP in pancreatic sections from T2DM, but not T1DM, and in human islet amyloid polypeptide (IAPP) transgenic rodent pancreatic sections. These studies underscore the importance of studying nuclear CHOP. We have observed inconsistency in the detection of CHOP antibodies reported in the literature and also in our own experiments. To investigate the specificity of CHOP antibodies, we first induced ER stress by tunicamycin in rat insulinoma (INS) cells and prepared nuclear and cytoplasmic fractions. Then we examined CHOP expression by Western blotting and immunocytochemistry using seven commercially available CHOP antibodies in INS cells and human IAPP (h-IAPP) transgenic rodent pancreatic tissue. These studies show that three commercially available CHOP antibodies out of seven tested were non-specific. In conclusion, we give recommendations for CHOP antibody selection and methods to verify CHOP antibody specificity. Also, we propose that the authors report the catalog and lot numbers of the CHOP antibodies used.

  8. Novel in-ovo chimeric recombinant Newcastle disease vaccine protects against both Newcastle disease and infectious bursal disease.

    PubMed

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Wen, Zhiyuan; Feng, Qiulin; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Bu, Zhigao

    2014-03-14

    Development of a safe and efficient in-ovo vaccine against Newcastle disease (NDV) and very virulent infectious bursal disease virus (vvIBDV) is of great importance. In this study, a chimeric NDV LaSota virus with the L gene of Clone-30 (rLaC30L) was used to generate a recombinant chimeric virus expressing the VP2 protein of vvIBDV (rLaC30L-VP2). The safety and efficacy of rLaC30L-VP2 in-ovo vaccination was then evaluated in 18-day-old special pathogen free (SPF) chicken embryos and commercial broiler embryos for prevention of NDV and vvIBDV. Hatchability and global survival rate of the hatched birds was not affected by in-ovo rLaC30L-VP2 vaccination. However, rLaC30L-VP2 in-ovo vaccination induced significant anti-IBDV and anti-NDV antibodies in SPF birds and commercial broilers, and 100% of vaccinated chickens were protected against a lethal NDV challenge. In-ovo rLaC30L-VP2 vaccination also provided resistance against vvIBDV challenge in a significant amount of animals. These results suggest that rLaC30L-VP2 is a safe and efficient bivalent live in-ovo vaccine against NDV and vvIBDV.

  9. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    PubMed

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  10. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  11. [Molecular cloning, prokaryotic expression and double-antibody sandwich ELISA development of 17β-hsd10 in mouse].

    PubMed

    Liu, Chuanzhi; Niu, Yingying; Chen, Yuan'an; Wu, Cheng; Yu, Yuanhua

    2014-11-01

    We expressed 17-hydroxysteroid dehydrogenase10 (17β-hsd10) recombinant protein, prepared anti-17β- hsd10 polyclonal antibodies and established sandwich enzyme linked immunosorbent assay (ELISA) test for detection of 17β-hsd10. RT-PCR was used to get the gene of 17β-hsd10 of mouse liver, and a prokaryotic protein expression system pET 15b-17β-hsd10/Escherichia coli BL21 (DE3) which induced with isopropyl-1-thio-β-galactopyranoside (IPTG) for recombinant protein expression was constructed subsequently. The target protein purified using His-Binding-resin column was used to immunize BALB/c mice and rabbits, serum total IgGs from immunized animals were purified by ammonium sulfate precipitation method. We established a Double-antibody Sandwich enzyme linked immunosorbent assay about 17β-hsd10 using the two antibodies we prepared. We got the concentration of 1.5 mg/mL of 17β-hsd10 protein with molecular weight of 29.5 kDa, and polyclonal antibodies from mouse and rabbit with the tite 1.25 x 10(4) and 2.5 x 10(4) respectively. The concentration of 0.1 g/mL of 17β-hsd10 can be detected by the Double-antibody Sandwich ELISA we established, and the assay was sensitive and specific. It can be widely used in clinical and experimental study.

  12. DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses.

    PubMed

    Bolesta, Elizabeth; Kowalczyk, Aleksandra; Wierzbicki, Andrzej; Rotkiewicz, Piotr; Bambach, Barbara; Tsao, Chun-Yen; Horwacik, Irena; Kolinski, Andrzej; Rokita, Hanna; Brecher, Martin; Wang, Xinhui; Ferrone, Soldano; Kozbor, Danuta

    2005-04-15

    The GD2 ganglioside expressed on neuroectodermally derived tumors, including neuroblastoma and melanoma, is weakly immunogenic in tumor-bearing patients and induces predominantly immunoglobulin (Ig)-M antibody responses in the immunized host. Here, we investigated whether interconversion of GD2 into a peptide mimetic form would induce GD2 cross-reactive IgG antibody responses in mice. Screening of the X(15) phage display peptide library with the anti-GD2 monoclonal antibody (mAb) 14G2a led to isolation of mimetic peptide 47, which inhibited the binding of 14G2a antibody to GD2-positive tumor cells. The peptide was also recognized by GD2-specific serum antibodies from a patient with neuroblastoma, suggesting that it bears an internal image of GD2 ganglioside expressed on the tumor cells. The molecular basis for antigenicity of the GD2 mimetic peptide, established by molecular modeling and mutagenesis studies, led to the generation of a 47-LDA mutant with an increased mimicry to GD2. Immunization of mice with peptide 47-LDA-encoded plasmid DNA elicited GD2 cross-reactive IgG antibody responses, which were increased on subsequent boost with GD2 ganglioside. The vaccine-induced antibodies recognized GD2-positive tumor cells, mediated complement-dependent cytotoxicity, and exhibited protection against s.c. human GD2-positive melanoma growth in the severe combined immunodeficient mouse xenograft model. The results from our studies provide insights into approaches for boosting GD2 cross-reactive IgG antibody responses by minigene vaccination with a protective epitope of GD2 ganglioside.

  13. 4-1BB chimeric antigen receptors.

    PubMed

    Campana, Dario; Schwarz, Herbert; Imai, Chihaya

    2014-01-01

    In addition to T-cell receptor signals, T lymphocytes require costimulatory signals for robust activation. Among these, those mediated by 4-1BB (CD137, TNFRSF9) are critical for tumor immunity. 4-1BB is expressed in T-cell receptor-activated lymphocytes as well as natural killer cells and other hematopoietic and nonhematopoietic cells. 4-1BB ligation induces a signaling cascade that results in cytokine production, expression of antiapoptotic molecules, and enhanced immune responses. In line with the described function of 4-1BB, its addition to CD3ζ chimeric antigen receptors (CARs) increases their capacity to provoke T-cell expansion and antitumor activity. The results of preclinical studies with 4-1BB CARs have been corroborated by encouraging results from clinical trials. Advantages and disadvantages of 4-1BB CARs versus CARs bearing other costimulatory components remain to be fully elucidated. In this review, we discuss the properties of 4-1BB, the design of 4-1BB CARs, and the function of T lymphocytes and natural killer cells expressing them.

  14. Development of new versions of anti-human CD34 monoclonal antibodies with potentially reduced immunogenicity

    SciTech Connect

    Qian Weizhu; Wang Ling; Li Bohua; Wang Hao; Hou Sheng; Hong Xueyu; Zhang Dapeng; Guo Yajun

    2008-03-07

    Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application.

  15. CHIMERIC SINDBIS/EASTERN EQUINE ENCEPHALITIS VACCINE CANDIDATES ARE HIGHLY ATTENUATED AND IMMUNOGENIC IN MICE

    PubMed Central

    Wang, Eryu; Petrakova, Olga; Adams, A. Paige; Aguilar, Patricia V.; Kang, Wenli; Paessler, Slobodan; Volk, Sara M.; Frolov, Ilya; Weaver, Scott C.

    2007-01-01

    We developed chimeric Sindbis (SINV)/Eastern equine encephalitis (EEEV) viruses and investigated their potential for use as live virus vaccines against EEEV. One vaccine candidate contained structural protein genes from a typical North American EEEV strain, while the other had structural proteins from a naturally attenuated Brazilian isolate. Both chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in mice. Vaccinated mice did not develop detectable disease or viremia, but developed high titers of neutralizing antibodies. Upon challenge with EEEV, mice vaccinated with >104PFU of the chimeric viruses were completely protected from disease. These findings support the potential use of these SIN/EEEV chimeras as safe and effective vaccines. PMID:17904699

  16. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase

    SciTech Connect

    Duan, Hongying; Takagi, Akira; Kayano, Hidekazu; Koyama, Isamu; Morisseau, Christophe; Hammock, Bruce D.; Akatsuka, Toshitaka

    2012-04-01

    In a previous study, we developed five kinds of monoclonal antibodies against different portions of human mEH: three, anti-N-terminal; one, anti-C-terminal; one, anti-conformational epitope. Using them, we stained the intact and the permeabilized human cells of various kinds and performed flow cytometric analysis. Primary hepatocytes and peripheral blood mononuclear cells (PBMC) showed remarkable differences. On the surface, hepatocytes exhibited 4 out of 5 epitopes whereas PBMC did not show any of the epitopes. mEH was detected inside both cell types, but the most prominent expression was observed for the conformational epitope in the hepatocytes and the two N-terminal epitopes in PBMC. These differences were also observed between hepatocyte-derived cell lines and mononuclear cell-derived cell lines. In addition, among each group, there were several differences which may be related to the cultivation, the degree of differentiation, or the original cell subsets. We also noted that two glioblastoma cell lines reveal marked expression of the conformational epitope on the surface which seemed to correlate with the brain tumor-associated antigen reported elsewhere. Several cell lines also underwent selective permeabilization before flow cytometric analysis, and we noticed that the topological orientation of mEH on the ER membrane in those cells was in accordance with the previous report. However, the orientation on the cell surface was inconsistent with the report and had a great variation between the cells. These findings show the multiple mode of expression of mEH which may be possibly related to the multiple roles that mEH plays in different cells. -- Highlights: ► We examine expression of five mEH epitopes in human cells. ► Remarkable differences exist between hepatocytes and PBMC. ► mEH expression in cell lines differs depending on several factors. ► Some glioblastoma cell lines reveal marked surface expression of mEH. ► Topology of mEH on the cell

  17. Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study.

    PubMed

    Marusic, Carla; Vitale, Alessandro; Pedrazzini, Emanuela; Donini, Marcello; Frigerio, Lorenzo; Bock, Ralph; Dix, Philip J; McCabe, Matthew S; Bellucci, Michele; Benvenuto, Eugenio

    2009-08-01

    The first evidence that plants represent a valid, safe and cost-effective alternative to traditional expression systems for large-scale production of antigens and antibodies was described more than 10 years ago. Since then, considerable improvements have been made to increase the yield of plant-produced proteins. These include the use of signal sequences to target proteins to different cellular compartments, plastid transformation to achieve high transgene dosage, codon usage optimization to boost gene expression, and protein fusions to improve recombinant protein stability and accumulation. Thus, several HIV/SIV antigens and neutralizing anti-HIV antibodies have recently been successfully expressed in plants by stable nuclear or plastid transformation, and by transient expression systems based on plant virus vectors or Agrobacterium-mediated infection. The current article gives an overview of plant expressed HIV antigens and antibodies and provides an account of the use of different strategies aimed at increasing the expression of the accessory multifunctional HIV-1 Nef protein in transgenic plants.

  18. Preparation of Polyclonal Antibody Specific for BRD7 and Detection of Its Expression Pattern in the Human Fetus

    PubMed Central

    Liu, Huaying; Li, Xiaoling; Niu, Zhaoxia; Zhang, Liming; Zhou, Ming; Huang, He; He, Jiajin; Zhang, Wenling; Xiao, Lan; Tang, Yunlian; Wang, Li; Li, Guiyuan

    2008-01-01

    BRD7 is a novel bromodomain gene. It plays critical role in cell growth, cell cycle progression, and signal-dependent gene expression. Overexpression of the BRD7 gene in nasopharyngeal carcinoma cells is effective to inhibit cell growth and cell cycle progression from G1 to S phase. However, little is known about its bio-functions because of the unavailability of a specific BRD7 antibody. In this study, for the first time, we generated a highly specific BRD7 antibody. It is able to specifically recognize recombinant GST-BRD7N protein with a molecular mass of 65 kDa and recognize BRD7-Myc and endogenously expressed BRD7 protein with an approximate molecular mass of 75 kDa, which corresponds well with the calculated molecular mass of the BRD7 protein. More importantly, with these antisera, we analyzed BRD7 distribution in the human fetus by Western blot and immunohistochemistry assays. Obvious nuclear expression of BRD7 protein presents in human cerebellum, pancreas, intestines, liver, and kidney. Cardiomyocyte shows high cytoplasm expression of the BRD7 protein. Weak nuclear expression of the BRD7 protein is found in human cerebrum, lung, and stomach. These data may help to further study the cellular role of the BRD7 gene. In particular, the prepared BRD7 antibody will be helpful for studying the bio-functions of endogenously expressed BRD7 protein. (J Histochem Cytochem 56:531–538, 2008) PMID:18071067

  19. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs.

    PubMed

    Blignaut, Belinda; Visser, Nico; Theron, Jacques; Rieder, Elizabeth; Maree, Francois F

    2011-04-01

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.

  20. Rapid High-Level Production of Functional HIV Broadly Neutralizing Monoclonal Antibodies in Transient Plant Expression Systems

    PubMed Central

    Rosenberg, Yvonne; Sack, Markus; Montefiori, David; Forthal, Donald; Mao, Lingjun; -Abanto, Segundo Hernandez; Urban, Lori; Landucci, Gary; Fischer, Rainer; Jiang, Xiaoming

    2013-01-01

    Passive immunotherapy using anti-HIV broadly neutralizing monoclonal antibodies (mAbs) has shown promise as an HIV treatment, reducing mother-to-child-transmission (MTCT) of simian/human immunodeficiency virus (SHIV) in non-human primates and decreasing viral rebound in patients who ceased receiving anti-viral drugs. In addition, a cocktail of potent mAbs may be useful as mucosal microbicides and provide an effective therapy for post-exposure prophylaxis. However, even highly neutralizing HIV mAbs used today may lose their effectiveness if resistance occurs, requiring the rapid production of new or engineered mAbs on an ongoing basis in order to counteract the viral resistance or the spread of a certain HIV-1 clade in a particular region or patient. Plant-based expression systems are fast, inexpensive and scalable and are becoming increasingly popular for the production of proteins and monoclonal antibodies. In the present study, Agrobacterium-mediated transient transfection of plants, utilizing two species of Nicotiana, have been tested to rapidly produce high levels of an HIV 89.6PΔ140env and several well-studied anti-HIV neutralizing monoclonal antibodies (b12, 2G12, 2F5, 4E10, m43, VRC01) or a single chain antibody construct (m9), for evaluation in cell-based viral inhibition assays. The protein-A purified plant-derived antibodies were intact, efficiently bound HIV envelope, and were equivalent to, or in one case better than, their counterparts produced in mammalian CHO or HEK-293 cells in both neutralization and antibody dependent viral inhibition assays. These data indicate that transient plant-based transient expression systems are very adaptable and could rapidly generate high levels of newly identified functional recombinant HIV neutralizing antibodies when required. In addition, they warrant detailed cost-benefit analysis of prolonged incubation in plants to further increase mAb production. PMID:23533588

  1. Interleukin 2-Bax: a novel prototype of human chimeric proteins for targeted therapy.

    PubMed

    Aqeilan, R; Yarkoni, S; Lorberboum-Galski, H

    1999-08-27

    During the past few years many chimeric proteins have been developed to target and kill cells expressing specific surface molecules. Generally, these molecules carry a bacterial or plant toxin that destroys the unwanted cells. The major obstacle in the clinical application of such chimeras is their immunogenicity and non-specific toxicity. We have developed a new generation of chimeric proteins, taking advantage of apoptosis-inducing proteins, such as the human Bax protein, as novel killing components. The first prototype chimeric protein, IL2-Bax, directed toward IL2R-expressing cells, was constructed, expressed in Escherichia coli and partially purified. IL2-Bax increased the population of apoptotic cells in a variety of target T cell lines, as well as in human fresh PHA-activated lymphocytes, in a dose-dependent manner and had no effect on cells lacking IL2R expression. The IL2-Bax chimera represents an innovative approach for constructing chimeric proteins comprising a molecule that binds a specific cell type and an apoptosis-inducing protein. Such new chimeric proteins could be used for targeted treatment of human diseases.

  2. Harnessing gene conversion in chicken B cells to create a human antibody sequence repertoire.

    PubMed

    Schusser, Benjamin; Yi, Henry; Collarini, Ellen J; Izquierdo, Shelley Mettler; Harriman, William D; Etches, Robert J; Leighton, Philip A

    2013-01-01

    Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens.

  3. Chimeric transcripts resulting from complex duplications in chromosome Xq28.

    PubMed

    Zuccherato, Luciana W; Alleva, Benjamin; Whiters, Marjorie A; Carvalho, Claudia M B; Lupski, James R

    2016-02-01

    Gene fusions have been observed in somatic alterations in cancer and in schizophrenia. However, the underlying mechanism(s) for their formation are poorly understood. We experimentally demonstrated the expression of splicing variants of in silico predicted chimeric genes F8/CSAG1 and BCAP31/TEX28 in two individuals with de novo complex genomic rearrangements of Xq28; F8/CSAG1 includes exonization of an ERVL-MaLR intronic repetitive element. We provide evidence that replicative repair may contribute to exon shuffling processes and diversify the repertoire of expressed transcripts.

  4. Idiotype connectance in the immune system. I. Expression of a cross- reactive idiotype on induced anti-p-azophenylarsonate antibodies and on endogenous antibodies not specific for arsonate

    PubMed Central

    1983-01-01

    A new cross-reactive idiotope family (CRIAD8) is described that contains subpopulations of antibodies binding to different epitopes. One subpopulation occurs naturally in normal sera from strain A mice, is found mainly on IgG2 and IgG3 subclasses, does not bind p- azobenzenearsonate (ABA)+, does not express CRI5Ci, and can be selectively stimulated by low doses of antiidiotype antibody (AD8). The second subpopulation is not found in normal serum, binds ABA, is found on all IgG subclasses, expresses CRI5Ci, and is selectively stimulated by ABA-conjugated proteins. Since CRIAD8 was found on both subpopulations of antibody, and since each subpopulation could be selectively expanded, it was possible to study the effect that expansion of the ABA- CRIAD8+ set had on subsequent responses elicited by ABA-keyhole limpet hemocyanin (KLH) in the ABA+ CRIAD8+ set. In these experiments, prior immunization with AD8 restricted the subsequent response of the ABA+ CRIAD8+ set to ABA-KLH. Furthermore, only those doses of AD8 that stimulated the ABA-CRIAD8+ set reduced the responsiveness of the ABA+ CRIAD8+ set to ABA-KLH, suggesting that the two phenomena are causally related. These findings argue that CRIAD8 correlates well with a regulatory idiotope and that immune responses by lymphocyte clones that have different antigen-binding specificities can affect one another as a result of their sharing such an idiotope. These results strongly favor a network organization of the immune system. PMID:6403653

  5. Recombinant proteinase 3 produced in different expression systems: recognition by anti-PR3 antibodies.

    PubMed

    van der Geld, Y M; Oost-Kort, W; Limburg, P C; Specks, U; Kallenberg, C G

    2000-10-20

    all anti-PR3 mAbs. In conclusion, rPR3 expressed in insect cells, HMC-1 and 293 cells is recognized by anti-PR3 antibodies, whereas conformational epitopes recognized by anti-PR3 mAbs and PR3-ANCA are not well preserved on rPR3 expressed in E. coli or P. pastoris.

  6. Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris.

    PubMed

    Aw, Rochelle; McKay, Paul F; Shattock, Robin J; Polizzi, Karen M

    2017-12-01

    The use of the recombinant expression platform Pichia pastoris to produce pharmaceutically important proteins has been investigated over the past 30 years. Compared to mammalian cultures, expression in P. pastoris is cheaper and faster, potentially leading to decreased costs and process development times. Product yields depend on a number of factors including the secretion signal chosen for expression, which can influence the host cell response to recombinant protein production. VRC01, a broadly neutralising anti-HIV antibody, was expressed in P. pastoris, using the methanol inducible AOX1 promoter for both the heavy and light chains. Titre reached up to 3.05 μg mL(-1) in small scale expression. VRC01 was expressed using both the α-mating factor signal peptide from Saccharomyces cerevisiae and the murine IgG1 signal peptide. Surprisingly, using the murine IgG1 signal peptide resulted in higher yield of antibody capable of binding gp140 antigen. Furthermore, we evaluated levels of secretory stress compared to the untransformed wild-type strain and show a reduced level of secretory stress in the murine IgG1 signal peptide strains versus those containing the α-MF signal peptide. As bottlenecks in the secretory pathway are often the limiting factor in protein secretion, reduced levels of secretory stress and the higher yield of functional antibody suggest the murine IgG1 signal peptide may lead to better protein folding and secretion. This work indicates the possibilities for utilising the murine IgG1 signal peptide for a range of antibodies, resulting in high yields and reduced cellular stress.

  7. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease.

    PubMed

    Naglik, Julian R; Fostira, Florentia; Ruprai, Jasmeet; Staab, Janet F; Challacombe, Stephen J; Sundstrom, Paula

    2006-10-01

    In vivo expression of the developmentally regulated Candida albicans hyphal wall protein 1 (HWP1) gene was analysed in human subjects who were culture positive for C. albicans and had oral symptoms (n=40) or were asymptomatic (n=29), or had vaginal symptoms (n=40) or were asymptomatic (n=29). HWP1 mRNA was present regardless of symptoms, implicating hyphal and possibly pseudohyphal forms in mucosal carriage as well as disease. As expected, in control subjects without oral symptoms (n=10) and without vaginal symptoms (n=10) who were culture negative in oral and vaginal samples, HWP1 mRNA was not detected. However, exposure to Hwp1 in healthy culture-negative controls, as well as in oral candidiasis and asymptomatic mucosal infections, was shown by the existence of local salivary and systemic adaptive antibody responses to Hwp1. The results are consistent with a role for Hwp1 in gastrointestinal colonization as well as in mucosal symptomatic and asymptomatic infections. Overall, Hwp1 and hyphal growth forms appear to be important factors in benign and invasive interactions of C. albicans with human hosts.

  8. Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis.

    PubMed

    Vrolix, Kathleen; Niks, Erik H; Le Panse, Rozen; van Ostaijen-Ten Dam, Monique M; Muris, Anne-Hilde; Jol-van der Zijde, Cornelia M; van Tol, Maarten J D; Losen, Mario; Molenaar, Peter C; van Zoelen, Everardus J J; Berrih-Aknin, Sonia; De Baets, Marc H; Verschuuren, Jan J G M; Martínez-Martínez, Pilar

    2011-03-01

    In myasthenia gravis (MG), the neuromuscular transmission is impaired mainly by auto-antibodies against the acetylcholine receptor (AChR) or MuSK. In about 5% of the MG patients, however, the auto-antigen is still unknown. We investigated whether these idiopathic MG patients (iMG) have auto-antibodies against ErbB proteins, which influence the AChR density at the NMJ. Our results show reduced mRNA expression levels of ErbB4 in thymus tissue of iMG patients compared to AChR-MG and non-MG patients, but we could not detect anti-ErbB antibodies in sera of iMG patients. Therefore, our results do not support a role for ErbB receptors as auto-antigens in iMG patients.

  9. Spatiotemporal Expression Patterns and Antibody Reactivity of Taeniidae Endophilin B1

    PubMed Central

    Ahn, Chun-Seob; Bae, Young-An; Kim, Seon-Hee; Kim, Jeong-Geun; Yu, Jae-Ran; Yang, Hyun-Jong; Eom, Keeseon S.; Wang, Hu; Kang, Insug; Yang, Yichao

    2016-01-01

    Larval Taeniidae, such as metacestodes of Taenia solium, Echinococcus granulosus, and Echinococcus multilocularis, produce chronic and fatal helminthic diseases. Proper identification of these zoonotic cestodiases is often challenging and is hampered in some clinical settings. Endophilin B1 plays critical roles in the maintenance of membrane contours and endocytosis. We isolated proteins homologous to endophilin B1 from T. solium, Taenia saginata, and Taenia asiatica. The three Taeniidae endophilin B1 proteins shared 92.9 to 96.6% sequence identity. They harbored a Bin1/amphiphysin/Rvs (BAR) domain and residues for a dimeric interface but lacked a SRC homology 3 (SH3) domain. Endophilin B1 showed a unique immunological profile and was abundantly expressed in the tegumental syncytium of Taeniidae metacestodes and adults. Bacterially expressed recombinant T. solium endophilin B1 (rTsMEndoB1) demonstrated a sensitivity of 79.7% (345/433 cases) for serodiagnosis of larval Taeniidae infections. The protein showed strong immune recognition patterns against sera from patients with chronic neurocysticercosis, cystic echinococcosis, or advanced-stage alveolar echinococcosis. Adult Taeniidae infections exhibited moderate degrees of positive antibody responses (65.7% [23/35 samples]). rTsMEndoB1 showed some cross-reactivity with sera from patients infected with Diphyllobothriidae (23.6% [25/106 samples]) but not with sera from patients with other parasitic diseases or normal controls. The specificity was 91.7% (256/301 samples). The positive and negative predictive values were 93.6% and 73.4%, respectively. Our results demonstrate that Taeniidae endophilin B1 may be involved in the control of membrane dynamics, thus contributing to shaping and maintaining the tegumental curvature. rTsMEndoB1 may be useful for large-scale screening, as well as for individual diagnosis and follow-up surveillance of Taeniidae infections. PMID:27487955

  10. Polymorphic expression of a human superficial bladder tumor antigen defined by mouse monoclonal antibodies.

    PubMed Central

    Fradet, Y; Islam, N; Boucher, L; Parent-Vaugeois, C; Tardif, M

    1987-01-01

    Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up. Images PMID:3313389

  11. Expression and production of llama variable heavy-chain antibody fragments (V(HH)s) by Aspergillus awamori.

    PubMed

    Joosten, Vivi; Gouka, Robin J; van den Hondel, Cees A M J J; Verrips, C Theo; Lokman, B Christien

    2005-01-01

    We report the expression and production of llama variable heavy-chain antibody fragments (V(HH)s) by Aspergillus awamori. Fragments encoding V(HH)s were cloned in a suitable Aspergillus expression vector and transformants secreting V(HH) fragments were analysed for integrated gene copy-numbers, mRNA levels and protein production. Functional V(HH)s were detected in the culture medium, indicating the feasibility of producing this type of protein in a fungal expression system. Secreted V(HH)s were subjected to (extracellular) degradation, which could be partially prevented by the addition of BSA to the culture medium.

  12. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5.

    PubMed

    Yang, Jie; Guo, Shi-Ying; Pan, Fei-Yan; Geng, Hui-Xia; Gong, Yi; Lou, Dan; Shu, Yong-Qian; Li, Chao-Jun

    2007-05-01

    Rab GTPases, which belong to the Ras superfamily, represent a group of small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. We first identified mRabL5 (GenBank Accession No. NP_080349), a novel Mus musculus Rab-like protein, present as a Golgi-associated protein. Here we presented the results of the cloning, prokaryotic expression, purification, and polyclonal antibody production of the novel Rab-like protein. In order to obtain a specific antibody against mRabL5, we prepared two GST fusion proteins, full-length mRabL5 GST fusion protein and mRabL5 C terminus GST fusion protein, to immunize rabbits. Western blot analysis showed that both antibodies prepared against full length of mRabL5 and its C terminus, respectively, can recognize mRabL5 protein. Immunofluorescence of mRabL5 in NIH3T3 cells using the two antibodies showed its perinuclear clustering distribution pattern. The polyclonal antibodies preparation against mRabL5 provided a good tool for us to study the functional involvement of mRabL5.

  13. Syngeneic Transplants with Modified Chimeric Hematopoietic Tumors.

    PubMed

    Hemann, Michael

    2015-08-03

    This protocol describes strategies to rapidly transduce tumor cells ex vivo and then transplant modified cells into immunocompetent-recipient mice. Inherent in the definition of a bona fide murine hematopoietic malignancy, unlike a myelo- or lympho-proliferative disease, is the ability to transplant tumors and give rise to a malignancy in recipient animals. This characteristic of hematopoietic disease makes these tumors a tractable model for examining the role of specific genes in tumor growth, dissemination, or therapeutic response. Additionally, because of the systemic nature of hematopoietic malignancies, transplanted tumors are frequently pathologically indistinguishable from donor malignancies-allowing one to perform decisive therapy studies on large cohorts of transplant recipients. Finally, following ex vivo manipulation, transplanted tumors can be made chimeric for the presence of defined retrovirally induced alterations. Thus, these malignancies can be made to resemble genetically heterogeneous human tumors that are in the process of acquiring new capabilities. In these experiments, fluorescent markers serve as a surrogate marker for the expression of a defined alteration, and the change in the percentage of fluorescent cells in a tumor population over time or in response to therapy can be used to gauge the impact of specific alterations on tumor behavior.

  14. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp

    PubMed Central

    Wang, Rongzhi; Xiang, Shuangshuang; Feng, Youjun; Srinivas, Swaminath; Zhang, Yonghui; Lin, Mingshen; Wang, Shihua

    2013-01-01

    Single-chain variable fragment (scFv) is a class of engineered antibodies generated by the fusion of the heavy (VH) and light chains (VL) of immunoglobulins through a short polypeptide linker. ScFv play a critical role in therapy and diagnosis of human diseases, and may in fact also be developed into a potential diagnostic and/or therapeutic agent. However, the fact that current scFv antibodies have poor stability, low solubility, and affinity, seriously limits their diagnostic and clinical implication. Here we have developed four different expression vectors, and evaluated their abilities to express a soluble scFv protein. The solubility and binding activity of the purified proteins were determined using both SDS-PAGE and ELISA. Amongst the four purified proteins, the Skp co-expressed scFv showed the highest solubility, and the binding activity to antigen TLH was 3-4 fold higher than the other three purified scFv. In fact, this scFv is specific for TLH and does not cross-react with other TLH-associated proteins and could be used to detect TLH directly in real samples. These results suggest that the pACYC-Duet-skp co-expression vector might be a useful tool for the production of soluble and functional scFv antibody. PMID:24224158

  15. Method of rapid production of hybridomas expressing monoclonal antibodies on the cell surface

    DOEpatents

    Meagher, Richard B.; Laterza, Vince

    2006-12-12

    The present invention relates to genetically altered hybridomas, myelomas and B cells. The invention also relates to utilizing genetically altered hybridomas, myelomas and B cells in methods of making monoclonal antibodies. The present invention also provides populations of hybridomas and B cells that can be utilized to make a monoclonal antibody of interest.

  16. CHO expression of a novel human recombinant IgG1 anti-RhD antibody isolated by phage display.

    PubMed

    Miescher, S; Zahn-Zabal, M; De Jesus, M; Moudry, R; Fisch, I; Vogel, M; Kobr, M; Imboden, M A; Kragten, E; Bichler, J; Mermod, N; Stadler, B M; Amstutz, H; Wurm, F

    2000-10-01

    Replacement of the hyperimmune anti-Rhesus (Rh) D immunoglobulin, currently used to prevent haemolytic disease of the newborn, by fully recombinant human anti-RhD antibodies would solve the current logistic problems associated with supply and demand. The combination of phage display repertoire cloning with precise selection procedures enables isolation of specific genes that can then be inserted into mammalian expression systems allowing production of large quantities of recombinant human proteins. With the aim of selecting high-affinity anti-RhD antibodies, two human Fab libraries were constructed from a hyperimmune donor. Use of a new phage panning procedure involving bromelin-treated red blood cells enabled the isolation of two high-affinity Fab-expressing phage clones. LD-6-3 and LD-6-33, specific for RhD. These showed a novel reaction pattern by recognizing the D variants D(III), D(IVa), D(IVb), D(Va), D(VI) types I and II. D(VII), Rh33 and DFR. Full-length immunoglobulin molecules were constructed by cloning the variable regions into expression vectors containing genomic DNA encoding the immunoglobulin constant regions. We describe the first, stable, suspension growth-adapted Chinese hamster ovary (CHO) cell line producing a high affinity recombinant human IgG1 anti-RhD antibody adapted to pilot-scale production. Evaluation of the Fc region of this recombinant antibody by either chemiluminescence or antibody-dependent cell cytotoxicity (ADCC) assays demonstrated macrophage activation and lysis of red blood cells by human lymphocytes. A consistent source of recombinant human anti-RhD immunoglobulin produced by CHO cells is expected to meet the stringent safety and regulatory requirements for prophylactic application.

  17. Recombinant Pvs48/45 Antigen Expressed in E. coli Generates Antibodies that Block Malaria Transmission in Anopheles albimanus Mosquitoes

    PubMed Central

    Arévalo-Herrera, Myriam; Vallejo, Andrés F.; Rubiano, Kelly; Solarte, Yezid; Marin, Catherin; Castellanos, Angélica; Céspedes, Nora; Herrera, Sócrates

    2015-01-01

    Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential. PMID:25775466

  18. Recombinant Pvs48/45 antigen expressed in E. coli generates antibodies that block malaria transmission in Anopheles albimanus mosquitoes.

    PubMed

    Arévalo-Herrera, Myriam; Vallejo, Andrés F; Rubiano, Kelly; Solarte, Yezid; Marin, Catherin; Castellanos, Angélica; Céspedes, Nora; Herrera, Sócrates

    2015-01-01

    Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.

  19. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system

    PubMed Central

    Xu, Yiren; Lee, John; Tran, Cuong; Heibeck, Tyler H; Wang, Willie D; Yang, Junhao; Stafford, Ryan L; Steiner, Alexander R; Sato, Aaron K; Hallam, Trevor J; Yin, Gang

    2015-01-01

    Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer. PMID:25427258

  20. The Cloning and Expression of Human Monoclonal Antibodies: Implications for Allergen Immunotherapy.

    PubMed

    James, Louisa K

    2016-02-01

    Allergic responses are dependent on the highly specific effector functions of IgE antibodies. Conversely, antibodies that block the activity of IgE can mediate tolerance to allergen. Technologies that harness the unparalleled specificity of antibody responses have revolutionized the way that we diagnose and treat human disease. This area of research continues to advance at a rapid pace and has had a significant impact on our understanding of allergic disease. This review will present an overview of humoral responses and provide an up-to-date summary of technologies used in the generation of human monoclonal antibodies. The impact that monoclonal antibodies have on allergic disease will be discussed, with a particular focus on allergen immunotherapy, which remains the only form of treatment that can modulate the underlying immune mechanisms and induce long-term clinical tolerance.

  1. Expression, purification, and characterization of anti-plumbagin single-chain variable fragment antibody in Sf9 insect cell.

    PubMed

    Sakamoto, Seiichi; Taura, Futoshi; Tsuchihashi, Ryota; Putalun, Waraporn; Kinjo, Junei; Tanaka, Hiroyuki; Morimoto, Satoshi

    2010-12-01

    Plumbagin (PL; 5-hydroxy-2-methyl-1, 4-naphthoquinone) is an important secondary metabolite, mainly produced in the Plumbago zeylanica L. (Plumbaginaceae). A single-chain variable fragment (scFv) antibody, fusion of the variable regions of the heavy chain and light chain of immunoglobulin against PL (PL-scFv) was expressed by Bac-to-Bac Baculovirus Expression System using Spodoptera frugiperda (Sf9) insect cells and characterized to investigate potential use of PL-scFv as a tool for plant immunomodulation. Functional PL-scFv expressed in the Sf9 insect cells were purified using cation exchange chromatography followed by immobilized metal ion affinity chromatography (IMAC). The yields of the purified PL-scFv in the culture supernatant and Sf9 insect cells were 2.0 mg and 5.2 mg per 1 liter of Sf9 culture medium, respectively. Recombinant purified PL-scFv was then characterized by the indirect competitive enzyme-linked immunosorbent assay (ELISA). The cross-reactivity and sensitivity of PL-scFv expressed in Sf9 insect cells were compared with PL-scFv expressed in Escherichia coli and its parental anti-plumbagin monoclonal antibody (MAb 3A3) secreted from hybridoma cells. Intriguingly, the specificity of the PL-scFv expressed in Sf9 insect cells was found to be different from that expressed in E. coli and parental MAb 3A3, although the detectable level (0.2-25 μg/mL) was the same in ELISA using each antibody. Even more interestingly, the characteristics of PL-scFv, which have wide cross-reactivity against 1,4-napththoquinone, suggest its potential use as a tool for plant immunomodulation not only for breeding Plumbaginacea family containing PL but also for breeding other medicinal plants containing bioactive naphthoquinones.

  2. Structure-Function Analysis of Peroxisomal ATP-binding Cassette Transporters Using Chimeric Dimers*

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; Van Roermund, Carlo W.; Lopez, Tatiana E.; Dias, Alexandre M. M.; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J.; Trompier, Doriane; Savary, Stéphane

    2014-01-01

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters. PMID:25043761

  3. Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease

    PubMed Central

    Sun, Baodong; Li, Songtao; Bird, Andrew; Yi, Haiqing; Kemper, Alex; Koeberl, Dwight D.

    2013-01-01

    BACKGROUND Lysosomal storage disorders such as Pompe disease can be more effectively treated, if immune tolerance to enzyme or gene replacement therapy can be achieved. Alternatively, immune responses against acid α-glucosidase (GAA) might be evaded in Pompe disease through muscle-specific expression of GAA with adeno-associated virus (AAV) vectors. METHODS An AAV vector containing the MHCK7 regulatory cassette to drive muscle-specific GAA expression was administered to GAA knockout (KO) mice, immune tolerant GAA-KO mice, and mannose-6-phosphate deficient GAA-KO mice. GAA activity and glycogen content were analyzed in striated muscle to determine biochemical efficacy. RESULTS The biochemical efficacy from GAA expression was slightly reduced in GAA-KO mice, as demonstrated by higher residual glycogen content in skeletal muscles. Next immune tolerance to GAA was induced in GAA-KO mice by co-administration of a second AAV vector encoding liver-specific GAA along with the AAV vector encoding muscle-specific GAA. Antibody formation was prevented by liver-specific GAA, and the biochemical efficacy of GAA expression was improved in absence of antibodies as evidenced by significantly reduced glycogen content in the diaphragm. Efficacy was reduced in old GAA-KO mice despite the absence of antibodies. The greatest impact upon gene therapy was observed in GAA-KO mice lacking the mannose-6-phosphate receptor in muscle. The clearance of stored glycogen was markedly impaired despite high GAA expression in receptor-deficient Pompe disease mice. CONCLUSIONS Overall, antibody formation had a subtle effect upon efficacy, while the absence of mannose-6-phosphate receptors markedly impaired muscle-targeted gene therapy in murine Pompe disease. PMID:20967919

  4. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

    PubMed

    Fagerberg, Linn; Hallström, Björn M; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie; Takanen, Jenny Ottosson; Berling, Holger; Tegel, Hanna; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M; Lindskog, Cecilia; Danielsson, Frida; Mardinoglu, Adil; Sivertsson, Asa; von Feilitzen, Kalle; Forsberg, Mattias; Zwahlen, Martin; Olsson, IngMarie; Navani, Sanjay; Huss, Mikael; Nielsen, Jens; Ponten, Fredrik; Uhlén, Mathias

    2014-02-01

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  5. Reversible heat-induced inactivation of chimeric beta-glucuronidase in transgenic plants.

    PubMed

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-05-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to beta-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5'-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions.

  6. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.

    PubMed

    Brar, Hargeet K; Bhattacharyya, Madan K

    2012-06-01

    Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.

  7. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis.

    PubMed

    Kajikawa, Akinobu; Satoh, Eiichi; Leer, Rob J; Yamamoto, Shigeki; Igimi, Shizunobu

    2007-05-04

    A recombinant Lactobacillus casei expressing a flagellar antigen from Salmonella enterica serovar Enteritidis was constructed and evaluated as a mucosal vaccine. Intragastric immunization of the recombinant strain conferred protective immunity against Salmonella infection in mice. This immunization did not result in antigen-specific antibody in either feces or sera but induced the release of IFN-gamma on restimulation of primed lymphocytes ex vivo. The results suggested that the protective efficacy provided by flagellin-expressing L. casei is mainly attributable to cell-mediated immune responses. In addition, an adjuvant-type effect of the antigen delivery system with L. casei was also observed.

  8. Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells.

    PubMed

    Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig

    2014-05-01

    Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.

  9. Transient and stable CHO expression, purification and characterization of novel hetero-dimeric bispecific IgG antibodies.

    PubMed

    Rajendra, Yashas; Peery, Robert B; Hougland, Maria D; Barnard, Gavin C; Wu, Xiufeng; Fitchett, Jonathan R; Bacica, Michael; Demarest, Stephen J

    2016-12-15

    IgG bispecific antibodies (BsAbs) represent one of the preferred formats for bispecific antibody therapeutics due to their native-like IgG properties and their monovalent binding to each target. Most reported studies utilized transient expression in HEK293 cells to produce BsAbs. However, the expression of biotherapeutic molecules using stable CHO cell lines is commonly used for biopharmaceutical manufacturing. Unfortunately, limited information is available in the scientific literature on the expression of BsAbs in CHO cell lines. In this study we describe an alternative approach to express the multiple components of IgG BsAbs using a single plasmid vector (quad vector). This single plasmid vector contains both heavy chain genes and both light chain genes required for the expression and assembly of the IgG BsAb, along with a selectable marker. We expressed, purified, and characterized four different IgG BsAbs or "hetero-mAbs" using transient CHO expression and stable CHO minipools. Transient CHO titers ranged from 90 to 160 mg/L. Stable CHO titers ranged from 0.4 to 2.3 g/L. Following a simple Protein A purification step, the percentage of correctly paired BsAbs ranged from 74% to 98% as determined by mass spectrometry. We also found that information generated from transient CHO expression was similar to information generated using stable CHO minipools. In conclusion, the quad vector approach represents a simple, but effective, alternative approach for the generation of IgG BsAbs in both transient CHO and stable CHO expression systems. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016.

  10. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy.

  11. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    PubMed Central

    Dai, Hanren; Wang, Yao; Lu, Xuechun

    2016-01-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  12. Neuroantibodies: molecular cloning of a monoclonal antibody against substance P for expression in the central nervous system.

    PubMed Central

    Piccioli, P; Ruberti, F; Biocca, S; Di Luzio, A; Werge, T M; Bradbury, A; Cattaneo, A

    1991-01-01

    We present a strategy to study functional and/or developmental processes occurring in the nervous system, as well as in other systems, of mice. This strategy is based on the local expression of specific monoclonal antibodies (mAbs) by cells of the nervous system. As an application of this strategy, we report the cloning of the anti-substance P rat mAb NC1/34HL. Functional substance P-binding antibodies were reconstituted from the cloned variable domains by using vectors for expression in myeloma cells. With these and other vectors a general system for the cloning and expression of mAbs under a series of promoters (of the rat VGF8a gene, the neurofilament light-chain gene, and the methallothionein gene) has been created. The activity of these plasmids was confirmed by expressing the recombinant NC1/34HL mAb in GH3 pituitary cells, PC12 pheochromocytoma cells, and COS cells. DNA from the described constructs can be used to target the expression of the NC1/34HL mAb to the central nervous system of transgenic mice. This procedure will allow us to perturb substance P activity in a controlled way in order to dissect its multiple roles. Images PMID:1712102

  13. A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing.

    PubMed

    Prapa, Malvina; Caldrer, Sara; Spano, Carlotta; Bestagno, Marco; Golinelli, Giulia; Grisendi, Giulia; Petrachi, Tiziana; Conte, Pierfranco; Horwitz, Edwin M; Campana, Dario; Paolucci, Paolo; Dominici, Massimo

    2015-09-22

    Chimeric antigen receptor (CAR)-expressing T cells are a promising therapeutic option for patients with cancer. We developed a new CAR directed against the disialoganglioside GD2, a surface molecule expressed in neuroblastoma and in other neuroectoderm-derived neoplasms. The anti-GD2 single-chain variable fragment (scFv) derived from a murine antibody of IgM class was linked, via a human CD8α hinge-transmembrane domain, to the signaling domains of the costimulatory molecules 4-1BB (CD137) and CD3-ζ. The receptor was expressed in T lymphocytes by retroviral transduction and anti-tumor activities were assessed by targeting GD2-positive neuroblastoma cells using in vitro cytotoxicity assays and a xenograft model. Transduced T cells expressed high levels of anti-GD2 CAR and exerted a robust and specific anti-tumor activity in 4- and 48-hour cultures with neuroblastoma cells. Cytotoxicity was associated with the release of pro-apoptotic molecules such as TRAIL and IFN-γ. These results were confirmed in a xenograft model, where anti-GD2 CAR T cells infiltrating tumors and persisting into blood circulation induced massive apoptosis of neuroblastoma cells and completely abrogated tumor growth. This anti-GD2 CAR represents a powerful new tool to redirect T cells against GD2. The preclinical results of this study warrant clinical testing of this approach in neuroblastoma and other GD2-positive malignancies.

  14. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    PubMed

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.

  15. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  16. Production of human or humanized antibodies in mice.

    PubMed

    Laffleur, Brice; Pascal, Virginie; Sirac, Christophe; Cogné, Michel

    2012-01-01

    Mice are widely available laboratory animals that can easily be used for the production of antibodies against a broad range of antigens, using well-defined immunization protocols. Such an approach allows optimal in vivo affinity maturation of the humoral response. In addition, high-affinity antibodies arising in this context can readily be further characterized and produced as monoclonals after immortalizing and selecting specific antibody-producing cells through hybridoma derivation. Using such conventional strategies combined with mice that are either genetically engineered to carry humanized immunoglobulin (Ig) genes or engrafted with a human immune system, it is thus easy to obtain and immortalize clones that produce either fully human Ig or antibodies associating variable (V) domains with selected antigen specificities to customized human-like constant regions, with defined effector functions. In some instances, where there is a need for in vivo functional assays of a single antibody with a known specificity, it might be of interest to transiently express that gene in mice by in vivo gene transfer. This approach allows a rapid functional assay. More commonly, mice are used to obtain a diversified repertoire of antibody specificities after immunization by producing antibody molecules in the mouse B cell lineage from mouse strains with transgene Ig genes which are of human, humanized, or chimeric origin. After in vivo maturation of the immune response, this will lead to the secretion of antibodies with optimized antigen binding sites, associated to the desired human constant domains. This chapter focuses on two simple methods: (1) to obtain such humanized Ig mice and (2) to transiently express a human Ig gene in mice using hydrodynamics-based transfection.

  17. Recombinant Adeno-Associated Virus-Mediated Expression of Methamphetamine Antibody Attenuates Methamphetamine-Induced Hyperactivity in Mice.

    PubMed

    Chen, Yun-Hsiang; Wu, Kuo-Jen; Wu, Kuang-Lun; Wu, Kun-Lieh; Tsai, Ho-Min; Chen, Mao-Liang; Chen, Yi-Wei; Hsieh, Wei; Lin, Chun-Ming; Wang, Yun

    2017-04-07

    Methamphetamine (Meth) is one of the most frequently abused drugs worldwide. Recent studies have indicated that antibodies with high affinity for Meth reduce its pharmacological effects. The purpose of this study was to develop a technique for virus-based passive immunization against Meth effects. We generated a recombinant adeno-associated virus serotype-8 vector (AAV-MethAb) carrying the gene for a Meth-specific monoclonal antibody (MethAb). Infection of 293 cells with AAV-MethAb resulted in the expression and secretion of antibodies which bind to Meth. The viral vector was then examined in adult ICR mice. Systemic administration of AAV-MethAb resulted in long-term expression of MethAb in the serum for up to 29 weeks. Serum collected from the animals receiving AAV-MethAb retained a high specificity for (+)-Meth. Animals were challenged with Meth five weeks after viral injection. Meth levels in the brain and serum were reduced while Meth-induced locomotor activity was significantly attenuated. In conclusion, AAV-MethAb administration effectively depletes Meth from brain and serum while reducing the behavioral response to Meth, and thus is a potential therapeutic approach for Meth abuse.

  18. Recombinant Adeno-Associated Virus-Mediated Expression of Methamphetamine Antibody Attenuates Methamphetamine-Induced Hyperactivity in Mice

    PubMed Central

    Chen, Yun-Hsiang; Wu, Kuo-Jen; Wu, Kuang-Lun; Wu, Kun-Lieh; Tsai, Ho-Min; Chen, Mao-Liang; Chen, Yi-Wei; Hsieh, Wei; Lin, Chun-Ming; Wang, Yun

    2017-01-01

    Methamphetamine (Meth) is one of the most frequently abused drugs worldwide. Recent studies have indicated that antibodies with high affinity for Meth reduce its pharmacological effects. The purpose of this study was to develop a technique for virus-based passive immunization against Meth effects. We generated a recombinant adeno-associated virus serotype-8 vector (AAV-MethAb) carrying the gene for a Meth-specific monoclonal antibody (MethAb). Infection of 293 cells with AAV-MethAb resulted in the expression and secretion of antibodies which bind to Meth. The viral vector was then examined in adult ICR mice. Systemic administration of AAV-MethAb resulted in long-term expression of MethAb in the serum for up to 29 weeks. Serum collected from the animals receiving AAV-MethAb retained a high specificity for (+)-Meth. Animals were challenged with Meth five weeks after viral injection. Meth levels in the brain and serum were reduced while Meth-induced locomotor activity was significantly attenuated. In conclusion, AAV-MethAb administration effectively depletes Meth from brain and serum while reducing the behavioral response to Meth, and thus is a potential therapeutic approach for Meth abuse. PMID:28387350

  19. DIFFERENTIATION AND FUNCTIONAL EXPRESSION OF POTENTIAL ANTIBODY-PRODUCING CELLS IN THE PRESENCE OF CHLORAMPHENICOL

    PubMed Central

    Schoenberg, Melvin D.; Moore, Richard D.; Weisberger, Austin S.

    1967-01-01

    Rabbits were immunized with diphtheria toxoid combined with complete Freund's adjuvant. Half of the animals were started on intramuscular injections of chloramphenicol 24 hr before the injection of the antigens. There was a general depression of protein synthesis in the immune system in the presence of chloramphenicol, but a greater effect on the synthesis of antibody than on the synthesis of proteins necessary for reproduction and maturation. In contrast to the finding of antibody in cells of the spleen and in the circulation of the control animals, those animals receiving chloramphenicol did not have measurable circulating antibody, and their spleens contained only a few cells with intracytoplasmic antibody late in the course of the experiment. Cytologically there was maturation of potential antibody-producing cells in the red pulp and nonfollicular white pulp of the spleen while the animals were receiving chloramphenicol. These cells developed more slowly, and were fewer and smaller than those of the control animals. They had numerous small, electron-opaque particles in their cytoplasm early in development. Ribosomes were synthesized, though fewer in number. The endoplasmic reticulum formed more slowly. PMID:10976231

  20. The present state of the art in expression, production and characterization of monoclonal antibodies.

    PubMed

    Gaughan, Christopher L

    2016-02-01

    Monoclonal antibodies (MAb's) have become one the most powerful therapeutic and diagnostic tools in modern medicine. Some estimates target the worldwide market of MAb's on the order of $125 billion in the next four years. Recent advances in molecular biology, immunology, and development of robust production platforms will drive the development of more MAb's suitable to treat an ever increasing number of disease states. This circumstance combined with the fact that many of the original antibody therapies from the 1980 s and 1990 s will soon be coming off patent will attract a great deal of investment in the development of larger industrial facilities to increase monoclonal antibody to meet increasing demand. In this review, the present state of the science that underlies the development of new antibodies therapies in Chinese hamster ovary cells combined with a description of the present challenges facing the industry in terms of the limitations of output and compliance with current good manufacturing practices and FDA regulations. Also addressed are future challenges to overcome production bottlenecks, description of critical quality control attributes particular to antibodies, and detailed treatment of scale-up considerations.

  1. Human papillomavirus 16 L1-E7 chimeric virus like particles show prophylactic and therapeutic efficacy in murine model of cervical cancer.

    PubMed

    Sharma, Chandresh; Dey, Bindu; Wahiduzzaman, Mohammed; Singh, Neeta

    2012-08-03

    Cervical cancer is found to be associated with human papillomavirus (HPV) infection, with HPV16 being the most prevalent. An effective vaccine against HPV can thus, be instrumental in controlling cervical cancer. An ideal HPV vaccine should aim to generate both humoral immune response to prevent new infection as well as cell-mediated immunity to eliminate established infection. In this study, we have generated a potential preventive and therapeutic candidate vaccine against HPV16. We expressed and purified recombinant HPV16 L1(ΔN26)-E7(ΔC38) protein in E. coli which was assembled into chimeric virus like particles (CVLPs) in vitro. These CVLPs were able to induce neutralizing antibodies and trigger cell-mediated immune response, in murine model of cervical cancer, exhibiting antitumor efficacy. Hence, this study has aimed to provide a vaccine candidate possessing both, prophylactic and therapeutic efficacy against HPV16 associated cervical cancer.

  2. Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile.

    PubMed

    Numata, K; Muro, M; Akutsu, N; Nosoh, Y; Yamagishi, A; Oshima, T

    1995-01-01

    Chimeric isopropylmalate dehydrogenases were constructed by connecting the genes isolated from an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis. These genes were expressed in Escherichia coli. The enzymes were purified and analysed. Enzymes of T.thermophilus and B.subtilis and chimeric enzymes showed similar enzymological characteristics except for thermal stability. The stability of each enzyme was approximately proportional to the content of the amino acid sequence from the T.thermophilus enzyme. The results suggested that amino acid residues contributing the thermal stability distribute themselves, in general, evenly at least in the N-terminal half of the amino acid sequence of T.thermophilus isopropylmalate dehydrogenase.

  3. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2

    PubMed Central

    Boswell, C Andrew; Mundo, Eduardo E; Firestein, Ron; Zhang, Crystal; Mao, Weiguang; Gill, Herman; Young, Cynthia; Ljumanovic, Nina; Stainton, Shannon; Ulufatu, Sheila; Fourie, Aimee; Kozak, Katherine R; Fuji, Reina; Polakis, Paul; Khawli, Leslie A; Lin, Kedan

    2013-01-01

    Background and Purpose The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. Experimental Approach A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography – X-ray computed tomography imaging and immunohistochemistry. Key Results The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. Conclusions and Implications Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues. PMID:22889168

  4. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    PubMed

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation.

  5. A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus.

    PubMed

    Bouaziz, Donia; Ayadi, Malika; Bidani, Amira; Rouis, Souad; Nouri-Ellouz, Oumèma; Jellouli, Raïda; Drira, Noureddine; Gargouri-Bouzid, Radhia

    2009-04-01

    The expression of recombinant antibodies in transgenic plants has been proved to be an efficient approach for large-scale production. However, the stability of these molecules and their accumulation level depend on their molecular properties and cellular targeting. The expression of single-domain antibody fragment (VH) can be advantageous since it offers small length, high expression, solubility and stability. It can therefore be preferred to other antibody derivatives avoiding the expression difficulties related to immunoglobulin domain folding via the formation of disulfide bridge. This report describes the production of transgenic potato plants expressing a VH antibody directed against the NIa protease of potato virus Y. The antibody was driven by the constitutive CaMV 35S RNA promoter. The expression cassette was transferred into potato plants via Agrobacterium tumefaciens mediated transformation. All transgenic lines showed detectable levels of VH protein confirming the efficient translation and stability of this protein. The cellular localisation of the VH antibody was investigated. Transgenic and control plants were transferred in the greenhouse and mechanically inoculated by PVY(o) suspension. Some of the transgenic lines showed delayed symptoms at the first period post inoculation and then displayed a recovery phenomenon while the virions were still detected in the leaves.

  6. Transfected Cell Microarrays for the Expression of Membrane-Displayed Single-Chain Antibodies

    DTIC Science & Technology

    2011-01-01

    Appli- cations of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnology Adv 27, 502–520. 6. Denzin , L. K...4-20. J Biol Chem 266, 14095–14103. Transfected Cell Microarrays 137 7. Denzin , L. K., Gulliver, G. A., Voss, E. W., Jr. (1993) Mutational analysis of

  7. Antibodies Expressed by Intratumoral B Cells as the Basis for a Diagnostic Test for Lung Cancer

    DTIC Science & Technology

    2014-07-01

    CD38 APC-Cy5.5, immunoglobulin M (IgM) FITC, and IgD PE (BD Biosciences, Mountain View, CA; Beckman Coulter, and Invitrogen). During the sort, we...the blot for 2 h at room temperature, washed the membrane, and detected bound antibody with goat anti-human IgGγ chain-HRP conjugate. This was

  8. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    PubMed Central

    Li, Yuan; Burns, Janine A; Cheney, Carol A; Zhang, Ningyan; Vitelli, Salvatore; Wang, Fubao; Bett, Andrew; Chastain, Michael; Audoly, Laurent P; Zhang, Zhi-Qiang

    2010-01-01

    Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC), but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers. PMID:20631820

  9. Development of an anti-claudin-3 and -4 bispecific monoclonal antibody for cancer diagnosis and therapy.

    PubMed

    Li, Xiangru; Iida, Manami; Tada, Minoru; Watari, Akihiro; Kawahigashi, Yumi; Kimura, Yuka; Yamashita, Taku; Ishii-Watabe, Akiko; Uno, Tadayuki; Fukasawa, Masayoshi; Kuniyasu, Hiroki; Yagi, Kiyohito; Kondoh, Masuo

    2014-10-01

    Most malignant tumors are derived from epithelium, and claudin (CLDN)-3 and CLDN-4 are frequently overexpressed in such tumors. Although antibodies have potential in cancer diagnostics and therapy, development of antibodies against CLDNs has been difficult because the extracellular domains of CLDNs are too small and there is high homology among human, rat, and mouse sequences. Here, we created a monoclonal antibody that recognizes human CLDN-3 and CLDN-4 by immunizing rats with a plasmid vector encoding human CLDN-4. A hybridoma clone that produced a rat monoclonal antibody recognizing both CLDN-3 and -4 (clone 5A5) was obtained from a hybridoma screen by using CLDN-3- and -4-expressing cells; 5A5 did not bind to CLDN-1-, -2-, -5-, -6-, -7-, or -9-expressing cells. Fluorescence-conjugated 5A5 injected into xenograft mice bearing human cancer MKN74 or LoVo cells could visualize the tumor cells. The human-rat chimeric IgG1 monoclonal antibody (xi5A5) activated FcγRIIIa in the presence of CLDN-3- or -4-expressing cells, indicating that xi5A5 may exert antibody-dependent cellular cytotoxicity. Administration of xi5A5 attenuated tumor growth in xenograft mice bearing MKN74 or LoVo cells. These results suggest that 5A5 shows promise in the development of a diagnostic and therapeutic antibody for cancers.

  10. Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord.

    PubMed

    Popovich, P G; Hickey, W F

    2001-07-01

    Brain and spinal cord inflammation that develops after traumatic injury is believed to differentially influence the structural and/or physiological integrity of surviving neurons and glia. It is possible that the functional dichotomy of CNS inflammation results from the activity of a heterogeneous macrophage population elicited by trauma. Indeed, unique functions have been attributed to macrophages derived from resident microglia versus those originating from infiltrating monocytes. Thus, whether progressive tissue injury or repair is favored could be explained by the disproportionate contributions of one macrophage subset relative to the other. Descriptive neuroanatomical studies are a reasonable first approach to revealing a relationship between microglia, recruited blood monocytes/macrophages, and regions of tissue degeneration and/or repair. Unfortunately, it is not possible to differentiate between CNS macrophage subsets using conventional immunohistochemical approaches. In the present study, we have used radiation bone marrow chimeric rats to definitively characterize the macrophage reaction elicited by experimental spinal contusion injury. In chimeric animals, antibodies raised against unique cell surface molecules expressed on bone marrow-derived cells (BMCs) were used to distinguish infiltrating BMCs from resident microglial-derived macrophages. Our findings indicate that the onset and plateau of macrophage activation (previously shown to be 3 and 7 days postinjury, respectively) is dominated initially by microglial-derived macrophages and then is supplanted by hematogenous cells. While resident macrophages are ubiquitously distributed throughout the injury site, leukocyte-derived monocytes exclusively infiltrate the gray matter and to a lesser extent subpial white matter. Generally, monocyte foci in white matter remain associated with the lumen or abluminal surface of blood vessels, i.e. few cells actually infiltrate the parenchyma. If functional

  11. One-step expression and purification of single-chain variable antibody fragment using an improved hexahistidine tag phagemid vector.

    PubMed

    Zhao, Qi; Chan, Yin-Wah; Lee, Susanna Sau-Tuen; Cheung, Wing-Tai

    2009-12-01

    Millions of candidate clones are commonly obtained following rounds of phage-displayed antibody library panning, and expression of those selected single-chain variable fragment (scFv) is required for secondary functional screening to identify positive clones. Large scale functional screening is often hampered by the time-consuming and labor-intensive subcloning of those candidate scFv clones into a bacterial expression vector carrying an affinity tag for scFv purification and detection. To overcome the limitations and to develop a multiplex approach, an improved hexahistidine tag phagemid vector was constructed for one-step scFv expression and purification. By using hexahistidine as an affinity tag, soluble scFvs can be rapidly and cost-effectively captured from Escherichia coli periplasmic extracts. For proof-of-concept, feasibility of the improved phagemid vector was examined against two scFvs, L17E4d targeting a cell surface antigen and L18Hh5 recognizing a monoclonal antibody (mAb). Using 1 ml of Ni-NTA agarose, 0.2-0.5 mg of soluble scFv was obtained from 1 L of bacteria culture, and the purified scFvs bound specifically to their target antigens with high affinity. Moreover, using two randomly selected hapten-specific scFv phage clones, it was demonstrated that the display of scFvs on phage surface was not affected by the hexahistidine affinity tag. These results suggest the improved phagemid vector allows the shuttle of phage-displayed antibody library panning and functional scFv production. Importantly, the improved phagemid vector can be easily adapted for multiplex screening.

  12. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    PubMed

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  13. Lymphocyte Display: A Novel Antibody Selection Platform Based on T Cell Activation

    PubMed Central

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Álvarez-Vallina, Laura Sanz, Luis

    2009-01-01

    Since their onset, display technologies have proven useful for the selection of antibodies against a variety of targets; however, most of the antibodies selected with the currently available platforms need to be further modified for their use in humans, and are restricted to accessible antigens. Furthermore, these platforms are not well suited for in vivo selections. We present here a novel cell based antibody display platform, which takes advantage of the functional capabilities of T lymphocytes. The display of antibodies on the surface of T lymphocytes, as a part of a chimeric-immune receptor (CIR) mediating signaling, may ideally link the antigen-antibody interaction to a demonstrable change in T cell phenotype, due to subsequent expression of the early T cell activation marker CD69. In this proof-of-concept, an in vitro selection was carried out using a human T cell line lentiviral-transduced to express a tumor-specific CIR on the surface, against a human tumor cell line expressing the carcinoembryonic antigen. Based on an effective interaction between the CIR and the tumor antigen, we demonstrated that combining CIR-mediated activation with FACS sorting of CD69+ T cells, it is possible to isolate binders to tumor specific cell surface antigen, with an enrichment factor of at least 103-fold after two rounds, resulting in a homogeneous population of T cells expressing tumor-specific CIRs. PMID:19777065

  14. Enhancement of antibody fragment secretion into the Escherichia coli periplasm by co-expression with the peptidyl prolyl isomerase, FkpA, in the cytoplasm.

    PubMed

    Levy, Raphael; Ahluwalia, Kiran; Bohmann, David J; Giang, Hoa M; Schwimmer, Lauren J; Issafras, Hassan; Reddy, Nithin B; Chan, Chung; Horwitz, Arnold H; Takeuchi, Toshihiko

    2013-08-30

    Improper protein folding or aggregation can frequently be responsible for low expression and poor functional activity of antibody fragments secreted into the Escherichia coli periplasm. Expression issues also can affect selection of antibody candidates from phage libraries, since antibody fragments displayed on phage also are secreted into the E. coli periplasm. To improve secretion of properly folded antibody fragments into the periplasm, we have developed a novel approach that involves co-expressing the antibody fragments with the peptidyl prolyl cis-trans isomerase, FkpA, lacking its signal sequence (cytFkpA) which consequently is expressed in the E. coli cytosol. Cytoplasmic expression of cytFkpA improved secretion of functional Fab fragments into the periplasm, exceeding even the benefits from co-expressing Fab fragments with native, FkpA localized in the periplasm. In addition, panning and subsequent screening of large Fab and scFv naïve phage libraries in the presence of cytFkpA significantly increased the number of unique clones selected, as well as their functional expression levels and diversity.

  15. CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines.

    PubMed

    Steger, Krista; Brady, James; Wang, Weili; Duskin, Meg; Donato, Karen; Peshwa, Madhusudan

    2015-04-01

    In recent years, researchers have turned to transient gene expression (TGE) as an alternative to CHO stable cell line generation for early-stage antibody development. Despite advances in transfection methods and culture optimization, the majority of CHO-based TGE systems produce insufficient antibody titers for extensive use within biotherapeutic development pipelines. Flow electroporation using the MaxCyte STX Scalable Transfection System is a highly efficient, scalable means of CHO-based TGE for gram-level production of antibodies without the need for specialized expression vectors or genetically engineered CHO cell lines. CHO cell flow electroporation is easily scaled from milligram to multigram quantities without protocol reoptimization while maintaining transfection performance and antibody productivity. In this article, data are presented that demonstrate the reproducibility, scalability, and antibody production capabilities of CHO-based TGE using the MaxCyte STX. Data show optimization of posttransfection parameters such as cell density, media composition, and feed strategy that result in secreted antibody titers >1 g/L and production of multiple grams of antibody within 2 weeks of a single CHO-S cell transfection. In addition, data are presented to demonstrate the application of scalable electroporation for the rapid generation of high-yield stable CHO cell lines to bridge the gap between early- and late-stage antibody development activities.

  16. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV

    PubMed Central

    Liu, Ye V.; Massare, Michael J.; Barnard, Dale L.; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale

    2011-01-01

    SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents. PMID:21762752

  17. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV.

    PubMed

    Liu, Ye V; Massare, Michael J; Barnard, Dale L; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale

    2011-09-02

    SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents.

  18. Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco.

    PubMed

    Almquist, Kurt C; McLean, Michael D; Niu, Yongqing; Byrne, Greg; Olea-Popelka, Fernando C; Murrant, Coral; Barclay, Jack; Hall, J Christopher

    2006-03-15

    Botulinum neurotoxins (BoNTs) are the most poisonous substances known and are thus classified as high-risk threats for use as bioterror agents. To examine the potential of transgenic plants as bioreactors for the production of BoNT antidotes, we transformed tobacco with an optimized, synthetic gene encoding a botulinum neurotoxin A (BoNT/A) neutralizing single-chain Fv (scFv) recombinant antibody fragment. In vitro mouse muscle twitch assays demonstrated the functional utility of this scFv extracted from tobacco for neutralizing the paralytic effects of BoNT/A at neuromuscular junctions. Based on the efficiency of the scFv capture process and the dose required to antidote a human being, 1-2 ha of this tobacco could yield up to 4 kg of scFv, which would be enough to contribute to the manufacture of 1,000,000 therapeutic doses of a monoclonal antibody (mAb) cocktail capable of neutralizing the effects of BoNT poisoning. Transgenic plants could provide an inexpensive production platform for expression of multiple mAbs toward the creation of polyclonal therapies (i.e. pooled mAbs) as the next improvement in recombinant antibody therapy.

  19. CRES-T, an effective gene silencing system utilizing chimeric repressors.

    PubMed

    Mitsuda, Nobutaka; Matsui, Kyoko; Ikeda, Miho; Nakata, Masaru; Oshima, Yoshimi; Nagatoshi, Yukari; Ohme-Takagi, Masaru

    2011-01-01

    Chimeric REpressor gene Silencing Technology (CRES-T) is a useful tool for functional analysis of plant transcription factors. In this system, a chimeric repressor that is produced by fusion of a transcription factor to the plant-specific EAR-motif repression domain (SRDX) suppresses target genes of a transcription factor dominantly over the activity of endogenous and functionally redundant transcription factors. As a result, the transgenic plants that express a chimeric repressor exhibit phenotypes similar to loss-of-function of the alleles of the gene encoding the transcription factor. This system is simple and effective and can be used as a powerful tool not only for functional analysis of redundant transcription factors but also for the manipulation of plant traits by active suppression of the gene expression. Strategies for construction of the chimeric repressors and their expression in transgenic plants are described. Transient effector-reporter assays for functional analysis of transcription factors and detection of protein-protein interactions using the trans-repressive activity of SRDX repression domain are also described.

  20. A Novel PET Imaging Using 64Cu-Labeled Monoclonal Antibody against Mesothelin Commonly Expressed on Cancer Cells

    PubMed Central

    Kobayashi, Kazuko; Sasaki, Takanori; Takenaka, Fumiaki; Yakushiji, Hiromasa; Fujii, Yoshihiro; Kishi, Yoshiro; Kita, Shoichi; Shen, Lianhua; Kumon, Hiromi; Matsuura, Eiji

    2015-01-01

    Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions. PMID:25883990

  1. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease.

    PubMed Central

    Strasser, A; Whittingham, S; Vaux, D L; Bath, M L; Adams, J M; Cory, S; Harris, A W

    1991-01-01

    The biological functions of the BCL2 gene were investigated in transgenic mice harboring human BCL2 cDNA under the control of an immunoglobulin heavy chain enhancer (E mu). Mice of a representative transgenic strain, E mu-bcl-2-22, had a great excess of B lymphocytes, immunoglobulin-secreting cells, and serum immunoglobulins, attributable to increased longevity of B-lineage cells. Pre-B and plasma cells as well as B cells exhibited prolonged survival in culture. Immunized animals produced an amplified and protracted antibody response. Within the first year of life, most mice spontaneously produced antibodies to nuclear antigens, and 60% developed kidney disease, diagnosed as immune complex glomerulonephritis. Thus E mu-bcl-2-22 mice constitute a transgenic model for a systemic autoimmune disease resembling the human disorder systemic lupus erythematosus. Images PMID:1924327

  2. Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice

    PubMed Central

    Luyai, Anthony E; Heimburg-Molinaro, Jamie; Prasanphanich, Nina Salinger; Mickum, Megan L; Lasanajak, Yi; Song, Xuezheng; Nyame, A Kwame; Wilkins, Patricia; Rivera-Marrero, Carlos A; Smith, David F; Van Die, Irma; Secor, W Evan; Cummings, Richard D

    2014-01-01

    Schistosomiasis is a debilitating parasitic disease of humans, endemic in tropical areas, for which no vaccine is available. Evidence points to glycan antigens as being important in immune responses to infection. Here we describe our studies on the comparative humoral immune responses to defined schistosome-type glycan epitopes in Schistosoma mansoni-infected humans, rhesus monkeys and mice. Rhesus anti-glycan responses over the course of infection were screened on a defined glycan microarray comprising semi-synthetic glycopeptides terminating with schistosome-associated or control mammalian-type glycan epitopes, as well as a defined glycan microarray of mammalian-type glycans representing over 400 glycan structures. Infected rhesus monkeys generated a high immunoglobulin G (IgG) antibody response to the core xylose/core α3 fucose epitope of N-glycans, which peaked at 8–11 weeks post infection, coinciding with maximal ability to kill schistosomula in vitro. By contrast, infected humans generated low antibody levels to this epitope. At 18 months following praziquantel therapy to eliminate the parasite, antibody levels were negligible. Mice chronically infected with S. mansoni generated high levels of anti-fucosylated LacdiNAc (GalNAcβ1, 4(Fucα1, 3)GlcNAc) IgM antibodies, but lacked a robust response to the core xylose/core α3 fucose N-glycan antigens compared with other species studied, and their sera demonstrated an intermediate level of schistosomula killing in vitro. These differential responses to parasite glycan antigens may be related to the ability of rhesus monkeys to self-cure in contrast to the chronic infection seen in humans and mice. Our results validate defined glycan microarrays as a useful technology to evaluate diagnostic and vaccine antigens for schistosomiasis and perhaps other infections. PMID:24727442

  3. Antibodies Expressed by Intratumoral B Cells as the Basis for a Diagnostic Test for Lung Cancer

    DTIC Science & Technology

    2015-06-01

    we washed the ITLs in PBS and stained them with Aqua vital dye (Invitrogen, Carlsbad, CA ) and the following anti-human antibodies: CD3 phycoerythrin...IgM) FITC, and IgD PE (BD Biosciences, Mountain View, CA ; Beckman Coulter, and Invitrogen). During the sort, we used forward- versus side-scatter... CA ) and analyzed the data with FlowJo (Tree Star, Ashland, OR). Deep Sequencing Results Sorting of B cells from ITLs In order to use deep

  4. c-Kit expression in desmoid fibromatosis. Comparative immunohistochemical evaluation of two commercial antibodies.

    PubMed

    Lucas, David R; al-Abbadi, Mousa; Tabaczka, Pamela; Hamre, Merlin R; Weaver, Donald W; Mott, Michael J

    2003-03-01

    To determine the frequency of c-Kit staining in desmoids and optimize an assay for clinical use, we stained 19 desmoids from various sites at various dilutions with 2 commonly used rabbit polyclonal, anti-c-Kit antibodies (A4502, DAKO, Carpinteria, CA; C-19, Santa Cruz Biotechnology, Santa Cruz, CA), with and without heat-induced epitope retrieval (HIER) in citrate buffer. Approdpriate external and internal control samples were evaluated for each test condition. At dilutions of 1:50 both antibodies stained substantial numbers of desmoids: with/without HIER, A4502, 89%/63%; C-19, 37%/74%. The staining was cytoplasmic without cell membrane accentuation. However, background stromal staining and nonspecific staining of endothelium and smooth and striated muscle were problematic with both antibodies at 1:50. At higher dilutions, C-19 stained no desmoid; however, diminished staining of external and internal control samples made it unreliable. A4502 similarly stained many fewer desmoids at higher dilutions. However, it retained strong staining of both external and internal control samples and showed much less nonspecific staining. Best results were achieved at 1:250 without HIER; only weak focal staining was present in 1 desmoid. With a simple immunohistochemical method optimized for clinical use, desmoid can be regarded as a c-Kit-negative tumor.

  5. Expression Cloning and Production of Human Heavy-Chain-Only Antibodies from Murine Transgenic Plasma Cells

    PubMed Central

    Drabek, Dubravka; Janssens, Rick; de Boer, Ernie; Rademaker, Rik; Kloess, Johannes; Skehel, John; Grosveld, Frank

    2016-01-01

    Several technologies have been developed to isolate human antibodies against different target antigens as a source of potential therapeutics, including hybridoma technology, phage and yeast display systems. For conventional antibodies, this involves either random pairing of VH and variable light (VL) domains in combinatorial display libraries or isolation of cognate pairs of VH and VL domains from human B cells or from transgenic mice carrying human immunoglobulin loci followed by single-cell sorting, single-cell RT-PCR, and bulk cloning of isolated natural VH–VL pairs. Heavy-chain-only antibodies (HCAbs) that naturally occur in camelids require only heavy immunoglobulin chain cloning. Here, we present an automatable novel, high-throughput technology for rapid direct cloning and production of fully human HCAbs from sorted population of transgenic mouse plasma cells carrying a human HCAb locus. Utility of the technique is demonstrated by isolation of diverse sets of sequence unique, soluble, high-affinity influenza A strain X-31 hemagglutinin-specific HCAbs. PMID:28066429

  6. Production of different glycosylation variants of the tumour-targeting mAb H10 in Nicotiana benthamiana: influence on expression yield and antibody degradation.

    PubMed

    Lombardi, Raffaele; Donini, Marcello; Villani, Maria Elena; Brunetti, Patrizia; Fujiyama, Kazuhito; Kajiura, Hiroyuki; Paul, Matthew; Ma, Julian K-C; Benvenuto, Eugenio

    2012-10-01

    We previously described the expression of a tumour-targeting antibody (mAb H10) in Nicotiana benthamiana by vacuum-agro-infiltration and the remarkable yields of highly pure protein achieved. The objective of the present work was to investigate different strategies for transient overexpression of the mAb H10 in which glycan configuration was modulated and assess how these strategies affect the accumulation yield and stability of the antibody. To this aim, three procedures have been assayed: (1) Site-directed mutagenesis to abolish the glycosylation site; (2) endoplasmic reticulum retention (C-terminal SEKDEL fusion) to ensure predominantly high-mannose type glycans; and (3) expression in a N. benthamiana RNAi down-regulated line in which β1,2-xylosyltransferase and α1,3-fucosyltransferase gene expression is silenced. The three antibody variants (H10-Mut) (H10-SEKDEL) (H10(XylT/FucT)) were transiently expressed, purified and characterised for their glycosylation profile, expression/purification yield and antibody degradation pattern. Glycosylation analysis of H10(XylT/FucT) demonstrated the absence of plant complex-type sugars, while H10-SEKDEL, although substantially retained in the ER, revealed the presence of β1,2-xylose and α1,3-fucose residues, indicating a partial escape from the ER retrieval system. Antibody accumulation and purification yields were not enhanced by ER retention. All H10 antibody glyco-forms revealed greater degradation compared to the original, resulting mostly in the formation of Fab fragments. In the case of aglycosylated H10-Mut, more than 95% of the heavy chain was cleaved, confirming the pivotal role of the sugar moiety in protein stability. Identification of possible 'fragile' sites in the H10 antibody hinge region could be of general interest for the development of new strategies to reduce antibody degradation and increase the yield of intact IgGs in plants.

  7. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems

    PubMed Central

    Galeffi, Patrizia; Lombardi, Alessio; Pietraforte, Immacolata; Novelli, Flavia; Di Donato, Monica; Sperandei, Maria; Tornambé, Andrea; Fraioli, Rocco; Martayan, Aline; Natali, Pier Giorgio; Benevolo, Maria; Mottolese, Marcella; Ylera, Francisco; Cantale, Cristina; Giacomini, Patrizio

    2006-01-01

    Background Aberrant signaling by ErbB-2 (HER 2, Neu), a member of the human Epidermal Growth Factor (EGF) receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. Methods Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs) to ErbB-2 that involves their functional expression in (a) bacteria, (b) transient as well as stable transgenic tobacco plants, and (c) a newly developed cell-free transcription-translation system. Results An ScFv (ScFv800E6) was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T), displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 × 108 M-1) only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. Conclusion ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology, and a candidate for

  8. Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma.

    PubMed

    Rue, Sarah M; Eckelman, Brendan P; Efe, Jem A; Bloink, Kristin; Deveraux, Quinn L; Lowery, David; Nasoff, Marc

    2015-04-15

    B-cell lymphoma is one of the most frequently observed non-cutaneous neoplasms in dogs. For both human and canine BCL, the standard of care treatment typically involves a combination chemotherapy, e.g. "CHOP" therapy. Treatment for human lymphoma greatly benefited from the addition of anti-CD20 targeted biological therapeutics to these chemotherapy protocols; this type of therapeutic has not been available to the veterinary oncologist. Here, we describe the generation and characterization of a rituximab-like anti-CD20 antibody intended as a candidate treatment for canine B-cell lymphoma. A panel of anti-canine CD20 monoclonal antibodies was generated using a mouse hybridoma approach. Mouse monoclonal antibody 1E4 was selected for construction of a canine chimeric molecule based on its rank ordering in a flow cytometry-based affinity assay. 1E4 binds to approximately the same location in the extracellular domain of CD20 as rituximab, and 1E4-based chimeric antibodies co-stain canine B cells in flow cytometric analysis of canine leukocytes using an anti-canine CD21 antibody. We show that two of the four reported canine IgG subclasses (cIgGB and cIgGC) can bind to canine CD16a, a receptor involved in antibody-dependent cellular cytotoxicity (ADCC). Chimeric monoclonal antibodies were assembled using canine heavy chain constant regions that incorporated the appropriate effector function along with the mouse monoclonal 1E4 anti-canine CD20 variable regions, and expressed in CHO cells. We observed that 1E4-cIgGB and 1E4-cIgGC significantly deplete B-cell levels in healthy beagle dogs. The in vivo half-life of 1E4-cIgGB in a healthy dog was ∼14 days. The antibody 1E4-cIgGB has been selected for further testing and development as an agent for the treatment of canine B-cell lymphoma.

  9. Stable mixed hematopoietic chimerism permits tolerance of vascularized composite allografts across a full major histocompatibility mismatch in swine.

    PubMed

    Mathes, David W; Solari, Mario G; Gazelle, Guy Scott; Butler, Peter E M; Wu, Anette; Nazzal, Adam; Nielsen, Gunnlauger P; Huang, Christene A; Sachs, David H; Lee, Wei Ping Andrew; Randolph, Mark A

    2014-10-01

    This study tested the hypothesis that vascularized composite allografts (VCA) could be accepted in a robust model of hematopoietic chimerism by injecting allogeneic bone marrow cells (BMC) into swine fetuses. Outbred Yorkshire sows and boars were screened to ensure the absence of the major histocompatibility (MHC) allele SLA(cc) of inbred MGH miniature swine and then mated. Bone marrow harvested from an SLA(cc) swine donor was T-cell depleted and injected intravenously into the fetuses between days 50-55 of gestation. After birth, the piglets were studied with flow cytometry to detect donor cells and mixed lymphocyte reactions (MLR) and cell-mediated lympholysis (CML) assays to assess their response to donor. Donor-matched VCAs from SLA(cc) donors were performed on four chimeric and two nonchimeric swine. The results showed donor cell engraftment and multilineage macrochimerism after the in utero transplantation of adult BMC, and chimeric animals were unresponsive to donor antigens in vitro. Both control VCAs were rejected by 21 days and were alloreactive. Chimeric animals accepted the VCAs and never developed antidonor antibodies or alloreactivity to donor. These results confirm that the intravascular, in utero transplantation of adult BMC leads to donor cell chimerism and donor-specific tolerance of VCAs across a full MHC barrier in this animal model.

  10. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge.

    PubMed

    Maree, Francois F; Nsamba, Peninah; Mutowembwa, Paidamwoyo; Rotherham, Lia S; Esterhuysen, Jan; Scott, Katherine

    2015-06-09

    The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.

  11. Chimeric influenza haemagglutinins: Generation and use in pseudotype neutralization assays.

    PubMed

    Ferrara, Francesca; Temperton, Nigel

    2017-01-01

    Recently chimeric influenza haemagglutinins (cHAs) have been generated as potential 'universal' vaccination antigens and as tools to identify HA stalk-directed antibodies via their use as antigens in ELISA, and virus or pseudotype-based neutralization assays. The original methods [1], [2] used for their generation require the amplification of regions of interest (head and stalk) using primers containing SapI sites and subsequent cloning into pDZ plasmid. This requires precise primer design, checking for the absence of SapI sites in the sequence of interest, and multi-segment ligation. As an alternative strategy we have developed and optimized a new protocol for assembling the cHA by exploiting Gibson Assembly. •This method also requires precise primer design, but it is rapid and methodologically simple to perform. We have evaluated that using this method it is possible to construct a cHA encoding DNA in less than a week.•Additional weeks are however necessary to optimize the production of pseudotyped lentiviral particles and to perform neutralization assays using them as surrogate antigens.•In comparison to the original protocols, we have also observed that performing parallel neutralization assays using pseudotypes harbouring the two parental HAs, permits effective delineation between stalk and head antibody responses in the samples tested.

  12. Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna *

    PubMed Central

    Liu, Hong-cui; Yuan, Bing-qiang; Li, Shao-nan

    2016-01-01

    To yield cholinesterase (ChE) from prokaryotic expression, the ChE gene that belongs to Daphnia magna was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using forward primer 5'-CCCYGGNGCSAT GATGTG-3' and reverse primer 5'-GYAAGTTRGCCCAATATCT-3'. To express the gene, one sequence of the amplified DNA, which was able to encode a putative protein containing two conserved carboxylesterase domains, was connected to the prokaryotic expression vector PET-29a(+). The recombinant vector was transformed into Escherichia coil BL21 (DE3). Protein expression was induced by isopropy-D-thiogalactoside. The expressed ChE was used as an immunogen to immunize BALB/c mice. The obtained antibodies were tested for their specificity towards crude enzymes from species such as Alona milleri, Macrobrachium nipponense, Bombyx mori, Chironomus kiiensis, Apis mellifera, Eisenia foetida, Brachydanio rerio, and Xenopus laevis. Results indicated that the antibodies had specificity suitable for detecting ChE in Daphnia magna. A type of indirect and non-competitive enzyme-linked immunosorbent assay (IN-ELISA) was used to test the immunoreactive content of ChE (ChE-IR) in Daphina magna. The detection limit of the IN-ELISA was found to be 14.5 ng/ml at an antiserum dilution of 1:22 000. Results from tests on Daphnia magna exposed to sublethal concentrations of triazophos indicated a maximal induction of 57.2% in terms of ChE-IR on the second day after the animals were exposed to a concentration of 2.10 μg/L triazophos. Testing on animals acclimatized to a temperature of 16 °C indicated that ChE-IR was induced by 16.9% compared with the ChE-IR content detected at 21 °C, and the rate of induction was 25.6% at 10 °C. The IN-ELISA was also used to test the stability of ChE-IR in collected samples. Repeated freezing and thawing had no influence on the outcome of the test. All these results suggest that the polyclonal antibodies developed against the recombinant ChE are as

  13. Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna.

    PubMed

    Liu, Hong-cui; Yuan, Bing-qiang; Li, Shao-nan

    2016-02-01

    To yield cholinesterase (ChE) from prokaryotic expression, the ChE gene that belongs to Daphnia magna was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using forward primer 5'-CCCYGGNGCSAT GATGTG-3' and reverse primer 5'-GYAAGTTRGCCCAATATCT-3'. To express the gene, one sequence of the amplified DNA, which was able to encode a putative protein containing two conserved carboxylesterase domains, was connected to the prokaryotic expression vector PET-29a(+). The recombinant vector was transformed into Escherichia coil BL21 (DE3). Protein expression was induced by isopropy-D-thiogalactoside. The expressed ChE was used as an immunogen to immunize BALB/c mice. The obtained antibodies were tested for their specificity towards crude enzymes from species such as Alona milleri, Macrobrachium nipponense, Bombyx mori, Chironomus kiiensis, Apis mellifera, Eisenia foetida, Brachydanio rerio, and Xenopus laevis. Results indicated that the antibodies had specificity suitable for detecting ChE in Daphnia magna. A type of indirect and non-competitive enzyme-linked immunosorbent assay (IN-ELISA) was used to test the immunoreactive content of ChE (ChE-IR) in Daphina magna. The detection limit of the IN-ELISA was found to be 14.5 ng/ml at an antiserum dilution of 1:22 000. Results from tests on Daphnia magna exposed to sublethal concentrations of triazophos indicated a maximal induction of 57.2% in terms of ChE-IR on the second day after the animals were exposed to a concentration of 2.10 μg/L triazophos. Testing on animals acclimatized to a temperature of 16 °C indicated that ChE-IR was induced by 16.9% compared with the ChE-IR content detected at 21 °C, and the rate of induction was 25.6% at 10 °C. The IN-ELISA was also used to test the stability of ChE-IR in collected samples. Repeated freezing and thawing had no influence on the outcome of the test. All these results suggest that the polyclonal antibodies developed against the recombinant ChE are as

  14. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

    PubMed Central

    Maude, Shannon L.; Frey, Noelle; Shaw, Pamela A.; Aplenc, Richard; Barrett, David M.; Bunin, Nancy J.; Chew, Anne; Gonzalez, Vanessa E.; Zheng, Zhaohui; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, Jan J.; Rheingold, Susan R.; Shen, Angela; Teachey, David T.; Levine, Bruce L.; June, Carl H.; Porter, David L.; Grupp, Stephan A.

    2014-01-01

    BACKGROUND Relapsed acute lymphoblastic leukemia (ALL) is difficult to treat despite the availability of aggressive therapies. Chimeric antigen receptor–modified T cells targeting CD19 may overcome many limitations of conventional therapies and induce remission in patients with refractory disease. METHODS We infused autologous T cells transduced with a CD19-directed chimeric antigen receptor (CTL019) lentiviral vector in patients with relapsed or refractory ALL at doses of 0.76×106 to 20.6×106 CTL019 cells per kilogram of body weight. Patients were monitored for a response, toxic effects, and the expansion and persistence of circulating CTL019 T cells. RESULTS A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the anti–interleukin-6 receptor antibody tocilizumab. CONCLUSIONS Chimeric antigen receptor–modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by

  15. A lytic monoclonal antibody to Trypanosoma cruzi bloodstream trypomastigotes which recognizes an epitope expressed in tissues affected in Chagas' disease.

    PubMed Central

    Zwirner, N W; Malchiodi, E L; Chiaramonte, M G; Fossati, C A

    1994-01-01

    It has been suggested that molecular mimicry between the antigens of Trypanosoma cruzi and the host could have a role in the onset of the chronic stage of Chagas' disease. In this article, we report on a monoclonal antibody (MAb), CAK20.12 (immunoglobulin G2b), which reacts with a polypeptidic epitope of a 150-kDa antigen expressed on the surface of several strains of T. cruzi. This MAb also causes lysis of bloodstream trypomastigotes. Serum samples from 30 of 30 patients with chronic and 11 of 13 patients with acute Chagas' disease present specific antibodies to this antigen. MAb CAK20.12 reacts, by indirect immunofluorescence, with human and syngeneic murine striated muscle tissue, with the smooth muscle layer of cardiac arteries, with the lamina muscularis mucosae and the external striated muscle layer of the esophagus, and with the smooth muscle cells of the colon from normal syngeneic mice. Reactivity with the small intestine was very weak, and no reactivity with ventricle or atrium tissue was detected. Adsorption with an antigenic fraction from normal murine striated muscle or from T. cruzi epimastigotes confirmed that MAb CAK20.12 recognizes a common epitope present in parasites and host tissues. MAb CAK20.12, lytic for the infective form of T. cruzi, recognizes an epitope expressed in striated and smooth muscle cells of the host tissues affected in the chronic stage of Chagas' disease. Images PMID:7514576

  16. A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein.

    PubMed

    Kaku, Yoshihiro; Noguchi, Akira; Marsh, Glenn A; McEachern, Jennifer A; Okutani, Akiko; Hotta, Kozue; Bazartseren, Boldbaatar; Fukushi, Shuetsu; Broder, Christopher C; Yamada, Akio; Inoue, Satoshi; Wang, Lin-Fa

    2009-09-01

    Nipah virus (NiV) is a new zoonotic paramyxovirus that emerged in 1998 and is now classified in the genus Henipavirus along with the closely related Hendra virus (HeV). NiV is highly pathogenic in several vertebrate species including humans, and the lack of available vaccines or specific treatment restricts it to biosafety level 4 (BSL4) containment. A serum neutralization test was developed for measuring NiV neutralizing antibodies under BSL2 conditions using a recombinant vesicular stomatitis virus (VSV) expressing green fluorescent protein (GFP) and bearing the F and G proteins of NiV (VSV-NiV-GFP). The neutralization titers were obtained by counting GFP-expressing cells or by measuring fluorescence. The performance of this new assay was compared against the conventional test using live NiV with panels of sera from several mammalian species, including sera from NiV outbreaks, experimental infections, as well as HeV-specific sera. The results obtained with the VSV-NiV-GFP based test correlated with those obtained using live NiV. Using a 50% reduction in VSV-NiV-GFP infected cells as the cut-off for neutralization, this new assay demonstrated its potential as an effective tool for detecting NiV neutralizing antibodies under BSL2 containment with greater speed, sensitivity and safety as compared to the conventional NiV serum neutralization test.

  17. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice

    PubMed Central

    Su, Jin; Sherman, Alexandra; Doerfler, Phillip A.; Byrne, Barry J.; Herzog, Roland W.; Daniell, Henry

    2015-01-01

    Summary Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation. PMID:26053072

  18. Anti-Nuclear Antibody Production and Autoimmunity in Transgenic Mice that Over-Express the Transcription Factor Bright

    PubMed Central

    Shankar, Malini; Nixon, Jamee C.; Maier, Shannon; Workman, Jennifer; Farris, A. Darise; Webb, Carol F.

    2009-01-01

    The B cell-restricted transcription factor, Bright, up-regulates immunoglobulin heavy chain transcription three- to seven-fold in activated B cells in vitro. Bright function is dependent upon both active Bruton’s tyrosine kinase and its substrate, the transcription factor, TFII-I. In mouse and human B lymphocytes, Bright transcription is down regulated in mature B cells, and its expression is tightly regulated during B cell differentiation. To determine how Bright expression affects B cell development, transgenic mice were generated that express Bright constitutively in all B lineage cells. These mice exhibited increases in total B220+ B lymphocyte lineage cells in the bone marrow, but the relative percentages of the individual subpopulations were not altered. Splenic immature transitional B cells were significantly expanded both in total cell numbers and as increased percentages of cells relative to other B cell subpopulations. Serum immunoglobulin levels, particularly IgG isotypes, were increased slightly in the Bright transgenic mice compared to littermate controls. However, immunization studies suggest that responses to all foreign antigens were not increased globally. Moreover, four week-old Bright transgenic mice produced anti-nuclear antibodies. Older animals developed antibody deposits in the kidney glomeruli, but did not succumb to further autoimmune sequelae. These data indicate that enhanced Bright expression results in failure to maintain B cell tolerance and suggest a previously unappreciated role for Bright regulation in immature B cells. Bright is the first B cell-restricted transcription factor demonstrated to induce autoimmunity. Therefore, the Bright transgenics provide a novel model system for future analyses of B cell autoreactivity. PMID:17312145

  19. Pregnancy-specific glycoprotein expression in normal gastrointestinal tract and in tumors detected with novel monoclonal antibodies.

    PubMed

    Houston, Aileen; Williams, John M; Rovis, Tihana Lenac; Shanley, Daniel K; O'Riordan, Ronan T; Kiely, Patrick A; Ball, Melanie; Barry, Orla P; Kelly, Jacquie; Fanning, Aine; MacSharry, John; Mandelboim, Ofer; Singer, Bernhard B; Jonjic, Stipan; Moore, Tom

    2016-01-01

    Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members related to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family and are encoded by 10 genes in the human. They are secreted at high levels by placental syncytiotrophoblast into maternal blood during pregnancy, and are implicated in immunoregulation, thromboregulation, and angiogenesis. To determine whether PSGs are expressed in tumors, we characterized 16 novel monoclonal antibodies to human PSG1 and used 2 that do not cross-react with CEACAMs to study PSG expression in tumors and in the gastrointestinal (GI) tract using tissue arrays and immunohistochemistry. Staining was frequently observed in primary squamous cell carcinomas and colonic adenocarcinomas and was correlated with the degree of tumor differentiation, being largely absent from metastatic samples. Staining was also observed in normal oesophageal and colonic epithelium. PSG expression in the human and mouse GI tract was confirmed using quantitative RT-PCR. However, mRNA expression was several orders of magnitude lower in the GI tract compared to placenta. Our results identify a non-placental site of PSG expression in the gut and associated tumors, with implications for determining whether PSGs have a role in tumor progression, and utility as tumor biomarkers.

  20. The translocation (6; 9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA

    SciTech Connect

    Von Lindern, M.; Fornerod, M.; Van Baal, S.; Jaegle, M.; De Wit, T.; Buijs, A.; Grosveld, G. )

    1992-04-01

    The translocation (6;9) is associated with a specific subtype of acute myeloid leukemia (AML). Previously, it was found that breakpoints on chromosome 9 are clustered in one of the introns of a large gene named Cain (can). cDNA probes derived from the 3' part of can detect an aberrant, leukemia-specific 5.5-kb transcript in bone marrow cells from t(6;9) AML patients. cDNA cloning of this mRNA revealed that it is a fusion of sequences encoded on chromosome 6 and 3' can. A novel gene on chromosome 6 which was named dek was isolated. In dek the t(6;9) breakpoints also occur in one intron. As a result the dek-can fusion gene, present in t(6;9) AML, encodes an invariable dek-can transcript. Sequence analysis of the dek-can cDNA showed that dek and can are merged without disruption of the original open reading frames and therefore the fusion mRNA encodes a chimeric DEK-CAN protein of 165 kDa. The predicted DEK and CAN proteins have molecular masses of 43 and 220 kDa, respectively. Sequence comparison with the EMBL data base failed to show consistent homology with any known protein sequences. 50 refs., 8 figs.

  1. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA.

    PubMed Central

    von Lindern, M; Fornerod, M; van Baal, S; Jaegle, M; de Wit, T; Buijs, A; Grosveld, G

    1992-01-01

    The translocation (6;9) is associated with a specific subtype of acute myeloid leukemia (AML). Previously, it was found that breakpoints on chromosome 9 are clustered in one of the introns of a large gene named Cain (can). cDNA probes derived from the 3' part of can detect an aberrant, leukemia-specific 5.5-kb transcript in bone marrow cells from t(6;9) AML patients. cDNA cloning of this mRNA revealed that it is a fusion of sequences encoded on chromosome 6 and 3' can. A novel gene on chromosome 6 which was named dek was isolated. In dek the t(6;9) breakpoints also occur in one intron. As a result the dek-can fusion gene, present in t(6;9) AML, encodes an invariable dek-can transcript. Sequence analysis of the dek-can cDNA showed that dek and can are merged without disruption of the original open reading frames and therefore the fusion mRNA encodes a chimeric DEK-CAN protein of 165 kDa. The predicted DEK and CAN proteins have molecular masses of 43 and 220 kDa, respectively. Sequence comparison with the EMBL data base failed to show consistent homology with any known protein sequences. Images PMID:1549122

  2. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    PubMed

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  3. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    SciTech Connect

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M. . E-mail: tmr15@pitt.edu

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, both sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.

  4. Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies.

    PubMed

    Rotiroti, Maria Caterina; Arcangeli, Silvia; Casucci, Monica; Perriello, Vincenzo; Bondanza, Attilio; Biondi, Andrea; Tettamanti, Sarah; Biagi, Ettore

    2017-03-01

    Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric high-risk patients, thus demanding advanced and personalized therapies. In this regard, different targeted immunotherapeutic approaches are available, ranging from naked monoclonal antibodies (mAb) to conjugated and multifunctional mAbs (i.e., BiTEs and DARTs). Recently, researchers have focused their attention on novel techniques of genetic manipulation specifically to redirect cytotoxic T cells endowed with chimeric antigen receptors (CARs) toward selected tumor associated antigens. So far, CAR T cells targeting the CD19 antigen expressed by B-cell origin hematological cancers have gained impressive clinical results, leading to the possibility of translating the CAR platform to treat other hematological malignancies such as AML. However, one of the main concerns in the field of AML CAR immunotherapy is the identification of an ideal target cell surface antigen, being highly expressed on tumor cells but minimally present on healthy tissues, together with the design of an anti-AML CAR appropriately balancing efficacy and safety profiles. The current review focuses mainly on AML target antigens and the related immunotherapeutic approaches developed so far, deeply dissecting methods of CAR T cell safety improvements, when designing novel CARs approaching human studies.

  5. Mesothelin-specific Chimeric Antigen Receptor mRNA-Engineered T cells Induce Anti-Tumor Activity in Solid Malignancies

    PubMed Central

    Beatty, Gregory L.; Haas, Andrew R.; Maus, Marcela V.; Torigian, Drew A.; Soulen, Michael C.; Plesa, Gabriela; Chew, Anne; Zhao, Yangbing; Levine, Bruce L.; Albelda, Steven M.; Kalos, Michael; June, Carl H.

    2014-01-01

    Off-target toxicity due to the expression of target antigens in normal tissue represents a major obstacle to the use of chimeric antigen receptor (CAR)-engineered T cells for treatment of solid malignancies. To circumvent this issue, we established a clinical platform for engineering T cells with transient CAR expression by using in vitro transcribed mRNA encoding a CAR that includes both the CD3-ζ and 4-1BB co-stimulatory domains. We present two case reports from ongoing trials indicating that adoptive transfer of mRNA CAR T cells that target mesothelin (CARTmeso cells) is feasible and safe without overt evidence of off-tumor on-target toxicity against normal tissues. CARTmeso cells persisted transiently within the peripheral blood after intravenous administration and migrated to primary and metastatic tumor sites. Clinical and laboratory evidence of antitumor activity was demonstrated in both patients and the CARTmeso cells elicited an antitumor immune response revealed by the development of novel anti-self antibodies. These data demonstrate the potential of utilizing mRNA engineered T cells to evaluate, in a controlled manner, potential off-tumor on-target toxicities and show that short-lived CAR T cells can induce epitope-spreading and mediate antitumor activity in patients with advanced cancer. Thus, these findings support the development of mRNA CAR-based strategies for carcinoma and other solid tumors. PMID:24579088

  6. Intratumoral injection of Ad-ISF35 (Chimeric CD154) breaks tolerance and induces lymphoma tumor regression.

    PubMed

    Urquiza, Mauricio; Melo-Cardenas, Johanna; Aguillon, Robier; Kipps, Thomas J; Castro, Januario E

    2015-01-01

    Ad-ISF35, an adenovirus vector encoding a membrane-bound engineered CD154 chimeric protein (ISF35), induces complete A20 lymphoma tumor regression in mice after intratumoral direct injection (IDI). Ad-ISF35 induced durable local and systemic antitumor responses associated with a rapid tumor infiltration of macrophages and neutrophils as well as increased levels of proinflammatory cytokines in the tumor microenvironment. Ad-ISF35 IDI transduced preferentially fibroblasts and macrophages present in the tumor microenvironment, and ISF35 protein expression was observed in only 0.25% of cells present in the tumor. Moreover, Ad-ISF35 IDI induced upregulation of CD40 in tumor and immune regulatory cells, including those that did not express ISF35, suggesting the presence of a strong bystander effect. These responses resulted in the generation of IFN-γ-secreting cytotoxic lymphocytes and the production of specific cytotoxic antibodies against lymphoma cells. Overall, cellular immune therapy based on ISF35 induced phenotypic changes in the tumor cells and tumor microenvironment that were associated with a break in tumor immune tolerance and a curative antitumor effect in this lymphoma mouse model. Our data highlight the potential activity that modulation of costimulatory signaling has in cancer therapy.

  7. At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies.

    PubMed

    Daniyan, Anthony F O; Brentjens, Renier J

    2016-12-01

    The chimeric antigen receptor (CAR) represents the epitome of cellular engineering and is one of the best examples of rational biologic design of a synthetic molecule. The CAR is a single polypeptide with modular domains, consisting of an antibody-derived targeting moiety, fused in line with T cell-derived signaling domains, allowing for T cell activation upon ligand binding. T cells expressing a CAR are able to eradicate selectively antigen-expressing tumor cells in a MHC-independent fashion. CD19, a tumor-associated antigen (TAA) present on normal B cells, as well as most B cell-derived malignancies, was an early target of this technology. Through years of experimental refinement and preclinical optimization, autologously derived CD19-targeting CAR T cells have been successfully, clinically deployed, resulting in dramatic and durable antitumor responses but not without therapy-associated toxicity. As CD19-targeted CAR T cells continue to show clinical success, work at the bench continues to be undertaken to increase further the efficacy of this therapy, while simultaneously minimizing the risk for treatment-related morbidities. In this review, we cover the history and evolution of CAR technology and its adaptation to targeting CD19. Furthermore, we discuss the future of CAR T cell therapy and the need to ask, as well as answer, critical questions as this treatment modality is being translated to the clinic.

  8. Chimeric RNase H-competent oligonucleotides directed to the HIV-1 Rev response element.

    PubMed

    Prater, Chrissy E; Saleh, Anthony D; Wear, Maggie P; Miller, Paul S

    2007-08-15

    Chimeric oligo-2'-O-methylribonucleotides containing centrally located patches of contiguous 2'-deoxyribonucleotides and terminating in a nuclease resistant 3'-methylphosphonate internucleotide linkage were prepared. The oligonucleotides were targeted to the 3'-side of HIV Rev response element (RRE) stem-loop IIB RNA, which is adjacent to the high affinity Rev protein binding site and is critical to virus function. Thermal denaturation experiments showed that chimeric oligonucleotides form very stable duplexes with a complementary single-stranded RNA, and gel electrophoretic mobility shift assays (EMSA) showed that they bind with high affinity and specificity to RRE stem-loop II RNA (K(D) approximately 200 nM). The chimeric oligonucleotides promote RNase H-mediated hydrolysis of RRE stem-loop II RNA and have half-lives exceeding 24h when incubated in cell culture medium containing 10% fetal calf serum. One of the chimeric oligonucleotides inhibited RRE mediated expression of chloramphenicol acetyl transferase (CAT) approximately 60% at a concentration of 300 nM in HEK 293T cells co-transfected with p-RRE/CAT and p-Rev mammalian expression vectors.

  9. Negative regulation of HLA-DR expression on endothelial cells by anti-blood group A/B antibody ligation and mTOR inhibition.

    PubMed

    Iwasaki, Kenta; Miwa, Yuko; Uchida, Kazuharu; Kodera, Yasuhiro; Kobayashi, Takaaki

    2017-02-01

    Donor-specific antibody (DSA), particularly against HLA class II, is a major cause of chronic antibody-mediated rejection (CAMR) after transplantation, although ABO-incompatible kidney transplantation has recently demonstrated favorable graft outcomes. The condition of no injury even in the presence of anti-donor antibody has been referred to as "accommodation", which would be one of the key factors for successful long-term graft survival. The purpose of this study was to analyze the beneficial effect of anti-blood group A/B antibody ligation on endothelial cells against HLA-DR antibody-mediated, complement-dependent cytotoxicity (CDC). Blood group A/B-expressing endothelial cells EA.hy926 or Human Umbilical Vein Endothelia Cells (HUVEC) were incubated with IFNγ in the presence or absence of anti-blood group A/B antibody or mTOR inhibitor (mTOR-i) for 48h. The effects on signaling pathway, HLA expression, complement regulatory factors, and CDC were investigated. Expression of HLA-DR on EA.hy926 or HUVEC were successfully elicited by IFNγ treatment, although little or no expression was observed in quiescent cells. Pre-incubation with anti-blood group A/B antibody had resistance to HLA-DR antibody-mediated CDC against IFNγ-treated cells in a concentration-dependent manner. This finding was ascribed to decreased expression of HLA-DR by post-translational regulation and increased expression of CD55/59, which was related to ERK and mTOR pathway inhibition. mTOR-i also inhibited HLA-DR expression by itself. Furthermore, the combination of mTOR-I and anti-blood group A/B ligation had an additive effect in preventing HLA-DR antibody-mediated CDC. Anti-blood group A/B antibody might play a preventive role in CAMR. Inhibition of the ERK and mTOR pathways may contribute to the development of a novel treatment in the maintenance period after transplantation.

  10. Immunodetection of Triticum mosaic virus by DAS- and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods.

    PubMed

    Tatineni, Satyanarayana; Sarath, Gautam; Seifers, Dallas; French, Roy

    2013-04-01

    Triticum mosaic virus (TriMV), an economically important virus infecting wheat in the Great Plains region of the USA, is the type species of the Poacevirus genus in the family Potyviridae. Sensitive and high-throughput serology-based detection methods are crucial for the management of TriMV and germplasm screening in wheat breeding programs. In this study, TriMV coat protein (CP) was expressed in Escherichia coli, and polyclonal antibodies were generated against purified soluble native form recombinant CP (rCP) in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western immuno-blot and enzyme-linked immunosorbent assays (ELISA). In direct antigen coating (DAC)-ELISA, antibodies reacted specifically, beyond 1:20,000 dilution with TriMV in crude sap, but not with healthy extracts, and antiserum at a 1:10,000 dilution detected TriMV in crude sap up to 1:4860 dilution. Notably, rabbit anti-TriMV IgG and anti-TriMV IgG-alkaline phosphatase conjugate reacted positively with native virions in crude sap in a double antibody sandwich-ELISA, suggesting that these antibodies can be used as coating antibodies which is crucial for any 'sandwich' type of assays. Finally, the recombinant antibodies reacted positively in ELISA with representative TriMV isolates collected from fields, suggesting that antibodies generated against rCP can be used for sensitive, large-scale, and broad-spectrum detection of TriMV.

  11. ADCT-301, a Pyrrolobenzodiazepine (PBD) Dimer-Containing Antibody-Drug Conjugate (ADC) Targeting CD25-Expressing Hematological Malignancies.

    PubMed

    Flynn, Michael J; Zammarchi, Francesca; Tyrer, Peter C; Akarca, Ayse U; Janghra, Narinder; Britten, Charles E; Havenith, Carin E G; Levy, Jean-Noel; Tiberghien, Arnaud; Masterson, Luke A; Barry, Conor; D'Hooge, Francois; Marafioti, Teresa; Parren, Paul W H I; Williams, David G; Howard, Philip W; van Berkel, Patrick H; Hartley, John A

    2016-11-01

    Despite the many advances in the treatment of hematologic malignancies over the past decade, outcomes in refractory lymphomas remain poor. One potential strategy in this patient population is the specific targeting of IL2R-α (CD25), which is overexpressed on many lymphoma and leukemic cells, using antibody-drug conjugates (ADC). ADCT-301 is an ADC composed of human IgG1 HuMax-TAC against CD25, stochastically conjugated through a dipeptide cleavable linker to a pyrrolobenzodiazepine (PBD) dimer warhead with a drug-antibody ratio (DAR) of 2.3. ADCT-301 binds human CD25 with picomolar affinity. ADCT-301 has highly potent and selective cytotoxicity against a panel of CD25-expressing human lymphoma cell lines. Once internalized, the released warhead binds in the DNA minor groove and exerts its potent cytotoxic action via the formation of DNA interstrand cross-links. A strong correlation between loss of viability and DNA cross-link formation is demonstrated. DNA damage persists, resulting in phosphorylation of histone H2AX, cell-cycle arrest in G2-M, and apoptosis. Bystander killing of CD25-negative cells by ADCT-301 is also observed. In vivo, a single dose of ADCT-301 results in dose-dependent and targeted antitumor activity against both subcutaneous and disseminated CD25-positive lymphoma models. In xenografts of Karpas 299, which expressed both CD25 and CD30, marked superiority over brentuximab vedotin (Adcetris) is observed. Dose-dependent increases in DNA cross-linking, γ-H2AX, and PBD payload staining were observed in tumors in vivo indicating a role as relevant pharmacodynamic assays. Together, these data support the clinical testing of this novel ADC in patients with CD25-expressing tumors. Mol Cancer Ther; 15(11); 2709-21. ©2016 AACR.

  12. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors.

    PubMed

    Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri

    2006-10-03

    Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events.

  13. Efficient generation of human IgA monoclonal antibodies.

    PubMed

    Lorin, Valérie; Mouquet, Hugo

    2015-07-01

    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  14. Uptake of 111In-labeled fully human monoclonal antibody TSP-A18 reflects transferrin receptor expression in normal organs and tissues of mice.

    PubMed

    Sugyo, Aya; Tsuji, Atsushi B; Sudo, Hitomi; Nomura, Fumiko; Satoh, Hirokazu; Koizumi, Mitsuru; Kurosawa, Gene; Kurosawa, Yoshikazu; Saga, Tsuneo

    2017-03-01

    Transferrin receptor (TfR) is an attractive molecule for targeted therapy of cancer. Various TfR-targeted therapeutic agents such as anti-TfR antibodies conjugated with anticancer agents have been developed. An antibody that recognizes both human and murine TfR is needed to predict the toxicity of antibody-based agents before clinical trials, there is no such antibody to date. In this study, a new fully human monoclonal antibody TSP-A18 that recognizes both human and murine TfR was developed and the correlation analysis of the radiolabeled antibody uptake and TfR expression in two murine strains was conducted. TSP-A18 was selected using extracellular portions of human and murine TfR from a human antibody library. The cross-reactivity of TSP-A18 with human and murine cells was confirmed by flow cytometry. Cell binding and competitive inhibition assays with [111In]TSP-A18 showed that TSP-A18 bound highly to TfR-expressing MIAPaCa-2 cells with high affinity. Biodistribution studies of [111In]TSP-A18 and [67Ga]citrate (a transferrin-mediated imaging probe) were conducted in C57BL/6J and BALB/c-nu/nu mice. [111In]TSP-A18 was accumulated highly in the spleen and bone containing marrow component of both strains, whereas high [67Ga]citrate uptake was only observed in bone containing marrow component and not in the spleen. Western blotting indicated the spleen showed the strongest TfR expression compared with other organs in both strains. There was significant correlation between [111In]TSP-A18 uptake and TfR protein expression in both strains, whereas there was significant correlation of [67Ga]citrate uptake with TfR expression only in C57BL/6J. These findings suggest that the difference in TfR expression between murine strains should be carefully considered when testing for the toxicity of anti-TfR antibody in mice and the uptake of anti-TfR antibody could reflect tissue TfR expression more accurately compared with that of transferrin-mediated imaging probe such as [67Ga]citrate.

  15. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.

    PubMed

    Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.

  16. Experimental and In Silico Modelling Analyses of the Gene Expression Pathway for Recombinant Antibody and By-Product Production in NS0 Cell Lines

    PubMed Central

    Mead, Emma J.; Chiverton, Lesley M.; Spurgeon, Sarah K.; Martin, Elaine B.; Montague, Gary A.; Smales, C. Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway. PMID:23071804

  17. Characterization of two distinct antigens expressed on either resting or activated human B cells as defined by monoclonal antibodies.

    PubMed Central

    Kokai, Y; Ishii, Y; Kikuchi, K

    1986-01-01

    Two antigen systems (L29 & L30) expressed on two distinct human B cell subpopulations were identified by using BL1-4D6 and TB3-7D5 monoclonal antibodies, respectively. L29 was expressed on approximately one-third of B cells in human lymphoid tissues. These B cells associated with L29 were large activated B cells located in the germinal centres of lymphoid follicles. L30, on the other hand, existed on approximately two-thirds of B cells mainly located in the mantle zone of lymphoid follicles, most of which also expressed IgM and IgD on their cell membrane. In addition, L30 was shared on mature granulocytes. With the use of polyclonal activators such as pokeweek mitogen (PWM) and protein A-bearing staphylococci (SAC), L29 antigen was inducible on PWM- or SAC-stimulated B cells in correspondence with the emergence of Tac and T10 antigens of these B cells. In contrast, L30 antigen on the B cells stimulated by the polyclonal activators was decreased in its expression and was finally lost from these B cells. Although none of L29 and L30 was expressed on normal, non-activated human thymus and peripheral T cells, L29 but not L30 was expressed on concanavalin A-activated T cells. Immunochemical studies showed that L30 consist of a single polypeptide with mol. wt of 40,000. L29 antigen is presently under study. Images Fig. 2 Fig. 4 PMID:3527505

  18. A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli.

    PubMed

    Chen, Ji-Ming; Yu, Meng; Morrissy, Chris; Zhao, Yong-Gang; Meehan, Greer; Sun, Ying-Xue; Wang, Qing-Hua; Zhang, Wei; Wang, Lin-Fa; Wang, Zhi-Liang

    2006-09-01

    The indirect ELISA is a simple and useful method for detection of pathogen-specific antibodies in animal sera. However, non-specific or background binding is often a problem, especially when recombinant proteins from Escherichia coli are used. In this study, a comparative indirect ELISA in which the total reactivity and the background binding were determined simultaneously on the same ELISA plate was reported. The background was determined by incubation of the test sera with excess free antigen to block specific binding. The sample was considered positive only when its total reactivity reading was higher than a pre-determined cut-off value and the ratio of the total reactivity to the background reading was more than 2.0. Using this approach, an antibody assay for henipaviruses using a recombinant Nipah virus nucleocapsid protein expressed in E. coli was developed. A total of 919 negative serum samples were tested in this assay and the specificity was 95.8%. In addition, eight positive experimental serum samples all tested positive. The use of recombinant protein as the ELISA antigen, instead of inactivated virus antigens, will be of significant advantage for countries where there is no facility of Biosafety level 4 to handle this group of zoonotic viruses.

  19. Expression of Human Skin-Specific Genes Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Edqvist, Per-Henrik D.; Fagerberg, Linn; Hallström, Björn M.; Danielsson, Angelika; Edlund, Karolina; Uhlén, Mathias

    2014-01-01

    To increase our understanding of skin, it is important to define the molecular constituents of the cell types and epidermal layers that signify normal skin. We have combined a genome-wide transcriptomics analysis, using deep sequencing of mRNA from skin biopsies, with immunohistochemistry-based protein profiling to characterize the landscape of gene and protein expression in normal human skin. The transcriptomics and protein expression data of skin were compared to 26 (RNA) and 44 (protein) other normal tissue types. All 20,050 putative protein-coding genes were classified into categories based on patterns of expression. We found that 417 genes showed elevated expression in skin, with 106 genes expressed at least five-fold higher than that in other tissues. The 106 genes categorized as skin enriched encoded for well-known proteins involved in epidermal differentiation and proteins with unknown functions and expression patterns in skin, including the C1orf68 protein, which showed the highest relative enrichment in skin. In conclusion, we have applied a genome-wide analysis to identify the human skin-specific proteome and map the precise localization of the corresponding proteins in different compartments of the skin, to facilitate further functional studies to explore the molecular repertoire of normal skin and to identify biomarkers related to various skin diseases. PMID:25411189

  20. Tissue distribution and radiation dosimetry of astatine-211-labeled chimeric 81C6, an alpha-particle-emitting immunoconjugate.

    PubMed

    Zalutsky, M R; Stabin, M G; Larsen, R H; Bigner, D D

    1997-04-01

    A paired-label study was performed in athymic mice bearing subcutaneous D-54 MG human glioma xenografts to compare the localization of human/mouse anti-tenascin chimeric antibody 81C6 labeled by reaction with N-succinimidyl 3-[211At]astatobenzoate and N-succinimidyl 3-[131I]iodobenzoate. Over the 48-h observation period, the distribution of 211At- and 131I-labeled antibody were quite similar in tumor and normal tissues except stomach. These data were used to calculate human radiation doses for both intravenously and intrathecal administered 211At-labeled chimeric 81C6 using a quality factor of 5 for alpha-emissions.

  1. Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    PubMed Central

    Borel, Christelle; Mudge, Jonathan M.; Howald, Cédric; Foissac, Sylvain; Ucla, Catherine; Chrast, Jacqueline; Ribeca, Paolo; Martin, David; Murray, Ryan R.; Yang, Xinping; Ghamsari, Lila; Lin, Chenwei; Bell, Ian; Dumais, Erica; Drenkow, Jorg; Tress, Michael L.; Gelpí, Josep Lluís; Orozco, Modesto; Valencia, Alfonso; van Berkum, Nynke L.; Lajoie, Bryan R.; Vidal, Marc; Stamatoyannopoulos, John; Batut, Philippe; Dobin, Alex; Harrow, Jennifer; Hubbard, Tim; Dekker, Job; Frankish, Adam; Salehi-Ashtiani, Kourosh; Reymond, Alexandre; Antonarakis, Stylianos E.; Guigó, Roderic; Gingeras, Thomas R.

    2012-01-01

    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. PMID:22238572

  2. Mixed chimerism in haemoglobinopathies: from risk of graft rejection to immune tolerance.

    PubMed

    Andreani, M; Testi, M; Lucarelli, G

    2014-03-01

    Mixed chimerism (MC), the simultaneous presence of both host- and donor-derived cells in the recipient, is observed in a large proportion of patients after haematopoietic stem cell transplant (HSCT) to treat haemoglobinopathies. Detected early after transplantation, MC often moves towards complete chimerism, although sometimes it may evolve into graft rejection, especially if the proportion of donor cells is very low. However, some patients develop stable MC, defined as persistent when donor- and host-derived cells coexist for periods longer than 2 years after HSCT. Patients with persistent mixed chimerism (PMC) do not require additional red blood cell support and, regardless of the presence in some cases of an extremely low percentage of donor-derived nucleated cells in the bone marrow, their condition is clinically controlled by an incomplete but functional graft, as they express a two- to fivefold enrichment of donor-derived mature erythrocytes in the peripheral blood. These findings have tremendous implications not only in the context of allogeneic HSCT but also in the design of gene therapy trials based on the autologous transplantation of genetically modified CD34+ cells. Recent studies have shown that durable allograft tolerance has been achieved by induction of haematopoietic chimerism in clinical kidney transplantation, showing the involvement of regulatory T cells. Similarly, it has been shown that the regulatory T cells play a pivotal role in promoting and maintaining immune tolerance in patients that develop a status of PMC after HSCT for Thalassemia.

  3. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach

    PubMed Central

    Mohammad, Nazanin; Karsabet, Mehrnaz Taghipour; Amani, Jafar; Ardjmand, Abolfazl; Zadeh, Mohsen Razavi; Gholi, Mohammad Khalifeh; Saffari, Mahmood; Ghasemi, Amir

    2016-01-01

    Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori. PMID:27335622

  4. Fine specificity and idiotypic expression of monoclonal antibodies directed against poly(Tyr,Glu)-poly(DLAla)--poly(Lys) and its ordered analogue (Tyr-Tyr-Glu-Glu)-poly(DLAla)--poly(Lys).

    PubMed Central

    Parhami-Seren, B; Eshhar, Z; Mozes, E

    1983-01-01

    In order to study the repertoire of poly(Tyr,Glu)-poly(DLAla)--poly(Lys) [(T,G)-A--L] specific antibodies, monoclonal antibodies were prepared by fusing myeloma cells with spleen cells from C3H.SW mice immunized with (T,G)-A--L and boosted with (Tyr-Tyr-Glu-Glu)-poly(DLAla)--poly(Lys)](T-T-G-G)-A--L]. Eleven clones which secreted homogeneous antibodies were obtained. In general, two families of monoclonal antibodies were detected: those which bind exclusively (T-T-G-G)-A--L and those which bind both (T-T-G-G)-A--L and (T,G)-A--L. Analysis for idiotypic expression revealed that only two antibodies (clones no. 103 and 160), which were found to be similar in their fine specificity, cross-reacted with antibodies against the major idiotypes of (T,G)A--L specific antibodies. Guinea-pig antibodies against clone no. 160 reacted with the polyclonal (T,G)-A--L specific antibodies, whereas antibodies against 103 monoclonal antibodies did not react with C3H.SW anti-(T,G)-A--L antibodies, but did cross-react with four other monoclonal antibodies. It appears that the idiotypic determinants expressed on polyclonal (T,G)-A--L specific antibodies are heterogeneous, and consist of at least two serologically different idiotypes detected by clones no. 103 and 160. PMID:6840812

  5. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity.

    PubMed

    Bende, Richard J; Aarts, Wilhelmina M; Riedl, Robert G; de Jong, Daphne; Pals, Steven T; van Noesel, Carel J M

    2005-04-18

    We analyzed the structure of antigen receptors of a comprehensive panel of mature B non-Hodgkin's lymphomas (B-NHLs) by comparing, at the amino acid level, their immunoglobulin (Ig)V(H)-CDR3s with CDR3 sequences present in GenBank. Follicular lymphomas, diffuse large B cell lymphomas, Burkitt's lymphomas, and myelomas expressed a CDR3 repertoire comparable to that of normal B cells. Mantle cell lymphomas and B cell chronic lymphocytic leukemias (B-CLLs) expressed clearly restricted albeit different CDR3 repertoires. Lymphomas of mucosa-associated lymphoid tissues (MALTs) were unique as 8 out of 45 (18%) of gastric- and 13 out of 32 (41%) of salivary gland-MALT lymphomas expressed B cell antigen receptors with strong CDR3 homology to rheumatoid factors (RFs). Of note, the RF-CDR3 homology without exception included N-region-encoded residues in the hypermutated IgV(H) genes, indicating that they were stringently selected for reactivity with auto-IgG. By in vitro binding studies with 10 MALT lymphoma-derived antibodies, we showed that seven of these cases, of which four with RF-CDR3 homology, indeed possessed strong RF reactivity. Of one MALT lymphoma, functional proof for selection of subclones with high RF affinity was obtained. Interestingly, RF-CDR3 homology and t(11;18) appeared to be mutually exclusive features and RF-CDR3 homology was not encountered in any of the 19 pulmonary MALT lymphomas studied.

  6. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  7. Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase.

    PubMed

    von Horsten, Hans Henning; Ogorek, Christiane; Blanchard, Véronique; Demmler, Christian; Giese, Christoph; Winkler, Karsten; Kaup, Matthias; Berger, Markus; Jordan, Ingo; Sandig, Volker

    2010-12-01

    All IgG-type antibodies are N-glycosylated in their Fc part at Asn-297. Typically, a fucose residue is attached to the first N-acetylglucosamine of these complex-type N-glycans. Antibodies lacking core fucosylation show a significantly enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and an increased efficacy of anti-tumor activity. In cases where the clinical efficacy of an antibody is to some extent mediated by its ADCC effector function, afucosylated N-glycans could help to reduce dose requirement and save manufacturing costs. Using Chinese hamster ovary (CHO) cells as a model, we demonstrate here that heterologous expression of the prokaryotic enzyme GDP-6-deoxy-d-lyxo-4-hexulose reductase within the cytosol can efficiently deflect the fucose de novo pathway. Antibody-producing CHO cells that were modified in this way secrete antibodies lacking core fucose as demonstrated by MALDI-TOF mass spectrometry and HPAEC-PAD monosaccharide analysis. Engineering of the fucose de novo pathway has led to the construction of IgGs with a strongly enhanced ADCC effector function. The method described here should have broad practical applicability for the development of next-generation therapeutic antibodies.

  8. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors

    PubMed Central

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-01-01

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors. PMID:26934960

  9. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone.

    PubMed

    Li, Zhushi; Yang, Huiqiang; Yang, Jian; Lin, Hua; Wang, Wei; Liu, Lina; Zhao, Yu; Liu, Li; Zeng, Xianwu; Yu, Yongxin; Li, Yuhua

    2014-10-13

    For the purpose of developing a novel dengue vaccine candidate, recombinant plasmids were constructed which contained the full length cDNA clone of Japanese encephalitis (JE) vaccine strain SA14-14-2 with its premembrane (PreM) and envelope (E) genes replaced by the counterparts of dengue virus type 4 (DENV4). By transfecting the in vitro transcription products of the recombinant plasmids into BHK-21 cells, a chimeric virus JEV/DENV4 was successfully recovered. The chimeric virus was identified by complete genome sequencing, Western blot and immunofluorescent staining. Growth characteristics revealed it was well adapted to primary hamster kidney (PHK) cells. Its genetic stability was investigated and only one unintentional mutation in 5'-untranslated region (5'-UTR) was found after 20 passages in PHK cells. Neurotropism, neurovirulence and immunogenicity of the chimeric virus were tested in mice. Besides, the influence of JE vaccine pre-immunization on the neutralizing antibody level induced by the chimeric virus was illuminated. To our knowledge, this is the first chimeric virus incorporating the JE vaccine stain SA14-14-2 and DENV4. It is probably a potential candidate to compose a tetravalent dengue chimeric vaccine.

  10. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors.

    PubMed

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-03-03

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors.

  11. Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning

    PubMed Central

    Graca, Luis; Daley, Stephen; Fairchild, Paul J; Cobbold, Stephen P; Waldmann, Herman

    2006-01-01

    Background A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. Results We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. Conclusion We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains. PMID:16638128

  12. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  13. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  14. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies.

    PubMed

    Heppner, F L; Musahl, C; Arrighi, I; Klein, M A; Rülicke, T; Oesch, B; Zinkernagel, R M; Kalinke, U; Aguzzi, A

    2001-10-05

    Variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy are initiated by extracerebral exposure to prions. Although prion transmission from extracerebral sites to the brain represents a potential target for prophylaxis, attempts at vaccination have been limited by the poor immunogenicity of prion proteins. To circumvent this, we expressed an anti-prion protein (anti-PrP) mu chain in Prnp(o/o) mice. Transgenic mice developed sustained anti-PrP titers, which were not suppressed by introduction of Prnp+ alleles. Transgene expression prevented pathogenesis of prions introduced by intraperitoneal injection in the spleen and brain. Expression of endogenous PrP (PrP(C)) in the spleen and brain was unaffected, suggesting that immunity was responsible for protection. This indicates the feasibility of immunological inhibition of prion disease in vivo.

  15. Antibody-based therapies in B-cell lineage acute lymphoblastic leukaemia.

    PubMed

    Le Jeune, Caroline; Thomas, Xavier

    2015-02-01

    Targeted therapies represent a major breakthrough in the treatment of adult acute lymphoblastic leukaemia (ALL). Because lymphoblastic leukaemia cells express a variety of specific antigens, those ones can serve as targets for monoclonal antibodies (MoAbs). Anti-CD20 (rituximab), anti-CD19 (blinatumomab, SAR3419), anti-CD22 (epratuzumab, inotuzumab ozogamicin) and anti-CD52 (alemtuzumab) have therefore been developed. Possible strategies even include recruitment of CD3 cytotoxic T cells (blinatumomab) or adoptive T-cell therapy by gene transfer of CD19-chimeric antigen receptors (CD19-CARs). Recent data show that antibody-based therapy is a highly promising treatment approach. However, optimal treatment approach still needs to be defined.

  16. Construction of chimeric bovine viral diarrhea viruses containing glycoprotein E rns of heterologous pestiviruses and evaluation of the chimeras as potential marker vaccines against BVDV.

    PubMed

    Luo, Yugang; Yuan, Ying; Ankenbauer, Robert G; Nelson, Lynn D; Witte, Steven B; Jackson, James A; Welch, Siao-Kun W

    2012-06-06

    Bovine viral diarrhea virus (BVDV) infections are enzootic in the cattle population and continue to cause significant economic losses to the beef and dairy industries worldwide. Extent of the damages has stimulated increasing interest in control programs directed at eradicating BVDV infections. Use of a BVDV marker vaccine would facilitate eradication efforts as a negatively marked vaccine would enable differentiation of infected from vaccinated animals (DIVA). We describe here the construction of three chimeric BVDVs containing glycoprotein E(rns) of heterologous pestiviruses and the evaluation of the chimera viruses as potential marker vaccines against BVDV infections. Chimeric NADL/G-E(rns), NADL/R-E(rns), and NADL/P-E(rns) were constructed by replacing the E(rns) gene of the full-length BVDV (NADL strain) genome with the E(rns) genes of giraffe (G-E(rns)), reindeer (R-E(rns)), or pronghorn antelope (P-E(rns)) pestiviruses, respectively. Each chimeric NADL virus was viable and infectious in RD 420 (bovine testicular) and BK-6 (bovine kidney) cells. By immunohistochemistry assays, NADL/G-E(rns) and NADL/R-E(rns) chimeric viruses reacted to BVDV E(rns) specific monoclonal antibody (mAb) 15C5, whereas the NADL/P-E(rns) chimeric virus did not. In an animal vaccination study, inactivated vaccines made from two chimeric viruses and the wild type NADL BVDV induced similar neutralizing antibody responses. NADL/P-E(rns)-vaccinated animals were distinguished from animals vaccinated with the wild type virus by means of a companion serological DIVA assay. These results show that chimeric NADL/P-E(rns) virus containing the E(rns) gene of pronghorn antelope pestivirus could be a potential marker vaccine candidate for use in a BVDV control and eradication program.

  17. Recombinant NDV expressing cytokines or fliC confers a quick immune response against NDV challenge and resistance to maternal antibody.

    PubMed

    Zhang, Tianyuan; Liu, Yunye; Wang, Hui; Zhang, Xu; Zhu, Shenglong; Xu, Pengfei; Yin, Jiechao; Ren, Guiping; Liu, Jingli; Li, Deshan

    2016-11-30

    Currently, there are two major bottleneck problems which seriously affect prevention of the Newcastle disease (ND): interference of maternal antibody on NDV vaccination and slow production of neutralization antibody. To overcome these problems, in present study, four rNDV vaccine strains expressing bio-adjuvants chIL2, chIL15, chGM-CSF or fliC gene were constructed and rescued using reverse genetics approach. The HI antibody titers of SPF birds immunized with rNDV reached to 5.5log2, 4.7log2, 6.5log2 and 5.8log2, respectively at the 8th day post immunization, while the antibody titers of the parental virus and control were 3.3log2 and 1log2, respectively. The immunized chickens were challenged by 10(4)ELD50 dose of the virulent NDV BJ strains at the 7th day post immunization. The protection rate of the four rNDVs bio-adjuvant groups was 100%, while the protection rate of the parental group was 80%. We also examined the anti-maternal antibody activity of these adjuvant vaccines by detection HI titer after vaccination of chickens with high (8.4log2) or low (5log2) maternal antibody levels. In chicken flock with higher maternal antibody, parental strain could not resist the influence of the maternal antibody and induce any notable change of HI antibody kinetics. However, both rClon30-chGM-CSF and rClon30-flic were able to resist the influence of the maternal antibody and maintained the HI antibody above the protection level during the 14day's experiment. In chicken flock with lower maternal antibody, the parental rclone30 strain could not induce HI titer to the protection level until the 14th day, but both rClon30-GM-CSF and clone30-fliC raised the HI antibody to above the protection level at the 7th day post vaccination.

  18. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    PubMed Central

    Yoshikawa, A; Tanaka, T; Hoshi, Y; Kato, N; Tachibana, K; Iizuka, H; Machida, A; Okamoto, H; Yamasaki, M; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that antigenic determinants of both HBV and HCV cores were accessible on them. Proteolytic digestion deprived chimeric core particles of the antigenicity for the HCV core without affecting that of the HBV core, confirming the surface exposure of HCV core determinants. The density of HCV core determinants on chimeric core particles increased as copies of fused HCV core protein were increased. Hybrid core particles with multiple HCV core determinants would be instrumental as an antigen probe for detecting class-specific antibodies to the HCV core in patients with acute and chronic hepatitis C and for simultaneous detection of antibodies to HBV core and those to HCV core in donated blood. Images PMID:8396669

  19. Microfluidic continuum sorting of sub-populations of tumor cells via surface antibody expression levels.

    PubMed

    Jack, Rhonda; Hussain, Khadijah; Rodrigues, Danika; Zeinali, Mina; Azizi, Ebrahim; Wicha, Max; Simeone, Diane M; Nagrath, Sunitha

    2017-03-29

    The extent of inter- and intra-tumor cell heterogeneity observed in patient tumors appears to be directly associated with patient prognosis. Moreover, studies indicate that targeting distinct subpopulations of tumor cells may be more relevant to successfully managing cancer metastasis. The ability to distinguish and characterize unique tumor cell subpopulations within a given sample is thus exigent. Existing platforms separate cells binarily, based on some threshold level of phenotypic characteristics without consideration of the continuum levels of biomarker expression and the associated implications. Herein we describe how specific tumor cell groups have been immunomagnetically enriched according to a continuum of EpCAM surface marker expression levels. Even among a relatively homogenous group of cells such as the PANC-1 cell line, cells could be separated according to their EpCAM levels into low, moderate and high expression. To physiologically assess each subpopulation, a wound healing assay was performed which revealed distinct invasive potentials among each subset. Furthermore, the clinical relevance of the approach was demonstrated by isolating pancreatic cancer CTCs from the same patient sample based on their EpCAM levels. We demonstrate a robust method of isolating CTCs according to their varying protein levels, which enables extensive studies on tumor cell heterogeneity. Interestingly, 5 of 6 samples had CTCs that could be recovered at all three levels of EpCAM expression though the majority of CTCs were recovered as low expression events. Preliminary studies that compare tumor cell subpopulations in this continuum manner can potentially increase our understanding of the dynamic nature of cell heterogeneity and how it relates to patient outcomes. Ultimately further investigation may yield therapeutic targets against virulent cell subpopulations.

  20. Expression of the 2S albumin from Bertholletia excelsa in Brassica napus.

    PubMed

    Guerche, P; De Almeida, E R; Schwarztein, M A; Gander, E; Krebbers, E; Pelletier, G

    1990-05-01

    The methionine rich 2S albumin seed storage protein of Bertholletia excelsa has been expressed in seeds of Brassica napus (rapeseed). A chimeric gene driven by the soybean lectin 5' flanking regions was used to produce a fusion protein consisting of the soybean lectin signal peptide and the propeptide of the Brazil nut 2S albumin. Several transgenic plants were studied at the RNA and protein levels; in each case the chimeric gene was expressed and the protein detected at levels ranging from 0.02% to 0.06% of total protein. Transcriptional studies in a particular transgenic plant show that expression of the gene is tissue specific and developmentally regulated during seed maturation. The endogenous napin genes and the introduced gene are regulated differently, with expression of the chimeric gene paralleling that seen when the soybean lectin gene is expressed in other plant species. Western analysis using antibodies to Brazil nut 2S albumins resulted in the detection of a protein whose size is consistent with correct processing of the precursor.

  1. Determination of Carbohydrate Structure Recognized by Prostate-specific F77 Monoclonal Antibody through Expression Analysis of Glycosyltransferase Genes*

    PubMed Central

    Nonaka, Motohiro; Fukuda, Michiko N.; Gao, Chao; Li, Zhen; Zhang, Hongtao; Greene, Mark I.; Peehl, Donna M.; Feizi, Ten; Fukuda, Minoru

    2014-01-01

    This study reports the determination of the carbohydrate epitope of monoclonal antibody F77 previously raised against human prostate cancer PC-3 cells (Zhang, G., Zhang, H., Wang, Q., Lal, P., Carroll, A. M., de la Llera-Moya, M., Xu, X., and Greene, M. I. (2010) Proc. Natl. Acad. Sci. U. S. A. 107, 732–737). We performed a series of co-transfections using mammalian expression vectors encoding specific glycosyltransferases. We thereby identified branching enzymes and FUT1 (required for Fucα1→2Gal linkage) as being essential for F77 antigen formation. When immortalized normal prostate 267B1 cells were transfected with FUT1 alone, cells showed weak expression of F77 antigen. By contrast, cells co-transfected with FUT1 plus either GCNT1, GCNT2, or GCNT3 (an enzyme required to form GlcNAcβ1→6Gal/GalNAc) showed robust F77 antigen expression, suggesting that F77 specifically binds to Fucα1→2Galβ1→4GlcNAcβ1→6Gal/GalNAc. RT-PCR for FUT1, GCNT1, GCNT2, and GCNT3 showed that F77-positive cell lines indeed express transcripts encoding FUT1 plus one GCNT. F77-positive prostate cancer cells transfected with siRNAs targeting FUT1, GCNT2, and GCNT3 showed significantly reduced F77 antigen, confirming the requirement of these enzymes for epitope synthesis. We also found that hypoxia induces F77 epitope expression in immortalized prostate RWPE1 cells, which express F77 antigen moderately under normoxia but at an elevated level under hypoxia. Quantitative RT-PCR demonstrated up-regulation of FUT1, GCNT2, and GCNT3 transcripts in RWPE1 cells under hypoxia, suggesting that hypoxia up-regulates glycosyltransferase expression required for F77 antigen synthesis. These results define the F77 epitope and provide a potential mechanism for F77 antigen synthesis in malignant prostate cancer. PMID:24753248

  2. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.

  3. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    PubMed

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality.

  4. Expression and characterization of single-chain variable fragment antibody against staphylococcal enterotoxin A in Escherichia coli.

    PubMed

    Chen, Weifeng; Hu, Li; Liu, Aiping; Li, Jinquan; Chen, Fusheng; Wang, Xiaohong

    2014-11-01

    The staphylococcal enterotoxins (SEs) are potent gastrointestinal exotoxins synthesized by Staphylococcus aureus, which is responsible for various diseases including septicemia, food poisoning, and toxic shock syndrome, as well as bovine mastitis. Among them, staphylococcal enterotoxin A (SEA) is one of the most commonly present serotypes in staphylococcal food poisoning cases. In this study, the stable hybridoma 3C12 producing anti-SEA monoclonal antibody was established with an equilibrium dissociation constant (KD) of 1.48 × 10(-8) mol·L(-1), its ScFv-coding genes were obtained and then the anti-SEA single chain variable fragment (ScFv) protein was expressed in Escherichia coli. Characterization of the expressed target ScFv protein was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis, Western blot, and enzyme-linked immunosorbent assay. The results demonstrated that the recombinant anti-SEA ScFv protein retained a specific binding activity for SEA, and the KD value of the soluble ScFv was about 3.75 × 10(-7) mol·L(-1). The overall yield of bioactive anti-SEA ScFv in E. coli flask culture was more than 10 mg·L(-1).

  5. Decreased Fc-Receptor expression on innate immune cells is associated with impaired antibody mediated cellular phagocytic activity in chronically HIV-1 infected individuals

    PubMed Central

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T.; Ackerman, Margaret E.; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-01-01

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular-phagocytosis (ADCP), antibody dependent cellular-cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. PMID:21565376

  6. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals.

    PubMed

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T; Ackerman, Margaret E; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-07-05

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection.

  7. Development and Application of a Saccharomyces cerevisiae-Expressed Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay for Detection of Antibodies against Infectious Bronchitis Virus

    PubMed Central

    Gibertoni, Aliandra M.; Montassier, Maria de Fátima S.; Sena, Janete A. D.; Givisiez, Patrícia E. N.; Furuyama, Cibele R. A. G.; Montassier, Hélio J.

    2005-01-01

    A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA. PMID:15815038

  8. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody.

    PubMed

    Rossi, Sabrina; Orvieto, Enrico; Furlanetto, Alberto; Laurino, Licia; Ninfo, Vito; Dei Tos, Angelo P

    2004-05-01

    FLI-1 nuclear transcription factor has been proposed as a useful tool in the differential diagnosis of small round cell sarcomas. Recently, FLI-1 has been reported as the first nuclear marker of endothelial differentiation. However, its clinical use has been hampered by major interpretation problems, due to the presence of background staining as well as staining variation between different lots of the same antiserum. In this study, a novel monoclonal antibody raised against the carboxyl terminal of the FLI-1 protein (clone GI146-222, BD Pharmingen) was tested in a series of small round cell and vascular neoplasms. Furthermore, in order to assess FLI-1 specificity, we analyzed its expression in a series of common epithelial and nonepithelial malignancies. In total, 15 Ewing's sarcomas, 10 rhabdomyosarcomas, 5 desmoplastic small round cell tumors, 10 synovial sarcomas, 10 high-grade pleomorphic sarcomas, 10 malignant melanomas, 5 Merkel's carcinomas, 10 colonic adenocarcinomas, 10 breast carcinomas, 10 lung adenocarcinomas, 20 angiosarcomas, 5 epithelioid hemangioendotheliomas, 10 Kaposi's sarcomas and 10 benign hemangiomas, were stained. A strong FLI-1 immunoreactivity was detected in all Ewing's sarcomas and vascular neoplasms, highlighting the high sensitivity of FLI-1 monoclonal antibody. However, 2/5 Merkel's carcinomas and 1/10 malignant melanomas showed a strong nuclear immunostaining, suggesting that FLI-1 may not be so helpful in the differential diagnosis of cutaneous Ewing's sarcoma. In addition, a weak immunoreactivity was found in 3/5 Merkel cell carcinomas, 3/10 synovial sarcomas, 5/10 malignant melanomas, 6/10 lung adenocarcinomas and in 1/10 breast carcinomas. In contrast, all the rhabdomyosarcomas, desmoplastic small round cell tumors, high-grade pleomorphic sarcomas and colonic adenocarcinomas tested were negative. Importantly, in contrast with previous studies, no background staining was observed. Our results indicate that FLI-1 monoclonal antibody

  9. A new monoclonal antibody (KB61) recognizing a novel antigen which is selectively expressed on a subpopulation of human B lymphocytes.

    PubMed Central

    Pulford, K; Ralfkiaer, E; MacDonald, S M; Erber, W N; Falini, B; Gatter, K C; Mason, D Y

    1986-01-01

    The present paper describes a new monoclonal antibody (KB61) raised against hairy cell leukaemia cells. Antibody KB61 recognizes a molecule of approximately 40,000 molecular weight on human B cells. It reacts with B lymphocytes in the peripheral blood, in primary lymphoid follicles, in the mantle zone of secondary follicles, in interfollicular areas and in splenic marginal zone areas. However, germinal centre lymphoid cells do not express the antigen recognized by antibody KB61. The antibody shows limited reactivity outside the lymphoid system, i.e. polymorphs, tissue macrophages endothelial cells in the hepatic sinusoids. Antibody KB61 discriminates between different types of B-cell malignancies, reacting with the neoplastic cells in hairy cell leukaemia, chronic lymphocytic leukaemia (of B-cell type), prolymphocytic leukaemia and centrocytic lymphoma, but not with acute lymphoblastic leukaemia, germinal centre-derived lymphomas (other than centrocytic), Burkitt's lymphoma and lymphoblastic lymphoma. Antibody KB61 may be of value in the study of B-cell subpopulations and in the differential diagnosis of B-cell neoplasms. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3484721

  10. The characterization of the first anti-mouse Muc6 antibody shows an increased expression of the mucin in pancreatic tissue of Cftr-knockout mice.

    PubMed

    Gouyer, Valérie; Leir, Shih-Hsing; Tetaert, Daniel; Liu, Yamin; Gottrand, Frédéric; Harris, Ann; Desseyn, Jean-Luc

    2010-05-01

    Gel-forming mucins are large high-molecular weight secreted O-glycoproteins responsible for the gel-properties of the mucus blanket. Five orthologous gel-forming mucins have been cloned in human and mouse. Among them, the mucin MUC6 has been less studied, particularly in rodents and no anti rodent-Muc6 antibody has been reported yet. In order to further study Muc6 in mice, our aims were to obtain a specific Muc6 antibody, to validate it and to test it in Cftr deficient mice. A polyclonal serum named CP4 was isolated from a rabbit immunized by a mouse Muc6 peptide. In Western blot experiments, the antibody detected a high-molecular weight molecule secreted by the gastric tissue. Using immunohistochemistry, we showed that the antibody reacted strongly with deep glands of duodenum and ileum and mucous neck cells of gastric body. CP4 also recognized Muc6 protein secreted at the surface of the stomach and renal collecting tubules. The centroacinar cells of pancreatic tissue also reacted with the antibody. Cftr-/- mice showed a higher expression of Muc6 at both protein and RNA levels compared with their control Cftr+/+ littermates suggesting that as in the human disease, Muc6 may contribute to the formation of materials that block pancreatic acini and ducts in mouse models of cystic fibrosis. The rabbit anti-mouse Muc6 polyclonal antibody seems highly specific to the mouse mucin and will be useful to study pancreatic pathology in cystic fibrosis.

  11. Antibodies to myelin-associated glycoprotein (anti-Mag) in IgM amyloidosis may influence expression of neuropathy in rare patients.

    PubMed

    Garces-Sanchez, Mercedes; Dyck, Peter J; Kyle, Robert A; Zeldenrust, Steven; Wu, Yanhong; Ladha, Shafeeq S; Klein, Christopher J

    2008-04-01

    We have examined whether antibodies to myelin-associated glycoprotein (anti-MAG) influence neuropathy occurrence and phenotype in primary (AL IgM) amyloidosis. Anti-MAG and the cross-reacted sulfoglucuronyl paragloboside antibodies (SGPG) were studied in 46 patients with IgM amyloidosis (21 with polyneuropathy), and 21 matched IgM MGUS (monoclonal gammopathies of undetermined significance) controls without neuropathy. We assessed the occurrence, phenotype of neuropathy, and attributes of nerve conduction and their relation to antibody activity. Twenty of 46 patients with IgM amyloidosis (7 with and 13 without polyneuropathy) had elevation of anti-MAG or SGPG by enzyme-linked immunosorbent assay (ELISA). Two of the polyneuropathy patients with IgM amyloidosis had antibodies to MAG based on Western blot (WB) positivity. One of these patients, with the highest anti-MAG titer, had a painful sensory ataxia, with prominent demyelination, and amyloid deposition in sural nerve. The other anti-MAG WB-positive amyloid patient had an axonal neuropathy and dysautonomia. Low levels of anti-MAG antibodies were found in 12 of 21 IgM MGUS controls without neuropathy (mean follow-up, 11 years). We conclude that finding serum anti-MAG antibodies does not exclude the diagnosis of primary amyloidosis. They do not appear to affect the occurrence or expression of polyneuropathy, except possibly in occasional cases with WB positivity.

  12. Race-related differences in antibody responses to the inactivated influenza vaccine are linked to distinct pre-vaccination gene expression profiles in blood.

    PubMed

    Kurupati, Raj; Kossenkov, Andrew; Haut, Larissa; Kannan, Senthil; Xiang, Zhiquan; Li, Yan; Doyle, Susan; Liu, Qin; Schmader, Kenneth; Showe, Louise; Ertl, Hildegund

    2016-09-27

    We conducted a 5-year study analyzing antibody and B cell responses to the influenza A virus components of the inactivated influenza vaccine, trivalent (IIV3) or quadrivalent (IIV4) in younger (aged 35-45) and aged (≥65 years of age) Caucasian and African American individuals. Antibody titers to the two influenza A virus strains, distribution of circulating B cell subsets and the blood transcriptome were tested at baseline and after vaccination while expression of immunoregulatory markers on B cells were analyzed at baseline. African Americans mounted higher virus neutralizing and IgG antibody responses to the H1N1 component of IIV3 or 4 compared to Caucasians. African Americans had higher levels of circulating B cell subsets compared to Caucasians. Expression of two co-regulators, i.e., programmed death (PD)-1 and the B and T cell attenuator (BTLA) were differentially expressed in the two cohorts. Race-related differences were caused by samples from younger African Americans, while results obtained with samples of aged African Americans were similar to those of aged Caucasians. Gene expression profiling by Illumina arrays revealed highly significant differences in 1368 probes at baseline between Caucasians and African Americans although samples from both cohorts showed comparable changes in transcriptome following vaccination. Genes differently expressed between samples from African Americans and Caucasians regardless of age were enriched for myeloid genes, while the transcripts that differed in expression between younger African Americans and younger Caucasians were enriched for those specific for B-cells.

  13. Construction of a photo-responsive chimeric histidine kinase in Escherichia coli.

    PubMed

    Hori, Mayuko; Oka, Shyunsuke; Sugie, Yoshimi; Ohtsuka, Hokuto; Aiba, Hirofumi

    2017-01-31

    Two-component signal transduction systems (TCS), that are also referred to as His to Asp phosphorelay systems, are involved in widespread cellular responses to diverse signals from bacteria to plants. Previously, we succeeded in reconstructing a cyanobacterial photo-perception system in Escherichia coli by employing a CcaS-CcaR two-component system from Nostoc punctiforme. In this study, we have added a photo-responsive ability to ArcB-ArcA (anoxic redox control) TCS of E. coli by fusing a cyanobacterial photoreceptor domain of CcaS with an intracellular histidine kinase (HK) domain of ArcB. For this, we constructed several chimeric HKs between CcaS and ArcB and found that one chimeric HK, named ArcaS9, has a photo-responsive ability. When ArcaS9 was expressed with an ArcA response regulator in E. coli expressing phycocyanobilin (PCB)-producing enzymes, the expression of sdh, a target gene of ArcB-ArcA TCS was regulated in a light-color-dependent manner. Thus we succeeded in endowing E. coli HK with a photo-responsive ability. This provides an insight into how the sensing ability of HK can be manipulated by a chimeric construct.

  14. Primary response to GAT in F344 rats: anti-GAT antibodies, nonspecific immunoglobulins, and expression of the GAT-13 idiotype.

    PubMed

    Petit, C; Gilbert, M

    1983-08-01

    It has been reported that antigen induces differentiation of two populations of Ig-containing cells: the first one to appear, IgCC, synthesizes nonspecific Ig and the second, AbCC, synthesizes antibodies. Along with other arguments, the observation that nonspecific Ig bear idiotypic determinants, which cross-react with those of antibodies, had led to the hypothesis that IgCC are precursors of AbCC. However, the synthesis of such idiotype-positive nonspecific Ig before the appearance of the antibodies has not yet been proven. This problem was investigated by analyzing the primary response to poly(Glu60-Ala30-Tyr10) (GAT) in F344 rats. Kinetics studies of cells synthesizing Ig expressing a major idiotype (GAT-13), and of cells synthesizing Ig not expressing GAT-13 idiotype, revealed that these two cell populations were undetectable before the appearance of the anti-GAT antibodies. This demonstrates that IgCC differentiation is not a necessary condition for the development of all antibody responses.

  15. Immunodiagnosis of episomal Banana streak MY virus using polyclonal antibodies to an expressed putative coat protein.

    PubMed

    Sharma, Susheel Kumar; Kumar, P Vignesh; Baranwal, Virendra Kumar

    2014-10-01

    A cryptic Badnavirus species complex, known as banana streak viruses (BSV) poses a serious threat to banana production and genetic improvement worldwide. Due to the presence of integrated BSV sequences in the banana genome, routine detection is largely based on serological and nucleo-serological diagnostic methods which require high titre specific polyclonal antiserum. Viral structural proteins like coat protein (CP) are the best target for in vitro expression, to be used as antigen for antiserum production. However, in badnaviruses precise CP sequences are not known. In this study, two putative CP coding regions (p48 and p37) of Banana streak MY virus (BSMYV) were identified in silico by comparison with caulimoviruses, retroviruses and Rice tungro bacilliform virus. The putative CP coding region (p37) was in vitro expressed in pMAL system and affinity purified. The purified fusion protein was used as antigen for raising polyclonal antiserum in rabbit. The specificity of antiserum was confirmed in Western blots, immunosorbent electron microscopy (ISEM) and antigen coated plate-enzyme linked immunosorbent assay (ACP-ELISA). The antiserum (1:2000) was successfully used in ACP-ELISA for specific detection of BSMYV infection in field and tissue culture raised banana plants. The antiserum was also utilized in immuno-capture PCR (IC-PCR) based indexing of episomal BSMYV infection. This is the first report of in silico identification of putative CP region of BSMYV, production of polyclonal antiserum against recombinant p37 and its successful use in immunodetection.

  16. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies

    PubMed Central

    Ricklin, Meret E.; Vielle, Nathalie J.; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4+ T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value. PMID:27446083

  17. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters.

    PubMed

    Wang, Yuan-Kai; Yan, Ya-Xian; Kim, Hyeun Bum; Ju, Xianghong; Zhao, Song; Zhang, Keshan; Tzipori, Saul; Sun, Xingmin

    2015-01-01

    Clostridium difficile is the major cause of hospital-acquired infectious diarrhea and colitis in developed countries. The pathogenicity of C. difficile is mainly mediated by the release of 2 large potent exotoxins, toxin A (TcdA) and toxin B (TcdB), both of which require neutralization to prevent disease occurrence. We have generated a novel chimeric protein, designated mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA and expressed it in Bacillus megaterium. To ensure that mTcd138 is atoxic, 2 point mutations were introduced to the glucosyltransferase domain of TcdB, which essentially eliminates toxicity of mTcd138. Parenteral immunizations of mice and hamsters with mTcd138 induced protective antibodies to both toxins and provided protection against infection with the hyper-virulent C. difficile strain UK6.

  18. IMGN853, a Folate Receptor-α (FRα)-Targeting Antibody-Drug Conjugate, Exhibits Potent Targeted Antitumor Activity against FRα-Expressing Tumors.

    PubMed

    Ab, Olga; Whiteman, Kathleen R; Bartle, Laura M; Sun, Xiuxia; Singh, Rajeeva; Tavares, Daniel; LaBelle, Alyssa; Payne, Gillian; Lutz, Robert J; Pinkas, Jan; Goldmacher, Victor S; Chittenden, Thomas; Lambert, John M

    2015-07-01

    A majority of ovarian and non-small cell lung adenocarcinoma cancers overexpress folate receptor α (FRα). Here, we report the development of an anti-FRα antibody-drug conjugate (ADC), consisting of a FRα-binding antibody attached to a highly potent maytansinoid that induces cell-cycle arrest and cell death by targeting microtubules. From screening a large panel of anti-FRα monoclonal antibodies, we selected the humanized antibody M9346A as the best antibody for targeted delivery of a maytansinoid payload into FRα-positive cells. We compared M9346A conjugates with various linker/maytansinoid combinations, and found that a conjugate, now denoted as IMGN853, with the N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate (sulfo-SPDB) linker and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) exhibited the most potent antitumor activity in several FRα-expressing xenograft tumor models. The level of expression of FRα on the surface of cells was a major determinant in the sensitivity of tumor cells to the cytotoxic effect of the conjugate. Efficacy studies of IMGN853 in xenografts of ovarian cancer and non-small cell lung cancer cell lines and of a patient tumor-derived xenograft model demonstrated that the ADC was highly active against tumors that expressed FRα at levels similar to those found on a large fraction of ovarian and non-small cell lung cancer patient tumors, as assessed by immunohistochemistry. IMGN853 displayed cytotoxic activity against FRα-negative cells situated near FRα-positive cells (bystander cytotoxic activity), indicating its ability to eradicate tumors with heterogeneous expression of FRα. Together, these findings support the clinical development of IMGN853 as a novel targeted therapy for patients with FRα-expressing tumors.

  19. Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs.

    PubMed

    Tian, Debin; Ni, Yan-Yan; Zhou, Lei; Opriessnig, Tanja; Cao, Dianjun; Piñeyro, Pablo; Yugo, Danielle M; Overend, Christopher; Cao, Qian; Lynn Heffron, C; Halbur, Patrick G; Pearce, Douglas S; Calvert, Jay G; Meng, Xiang-Jin

    2015-11-01

    The extensive genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains is a major obstacle for vaccine development. We previously demonstrated that chimeric PRRSVs in which a single envelope gene (ORF3, ORF4, ORF5 or ORF6) was shuffled via DNA shuffling had an improved heterologous cross-neutralizing ability. In this study, we incorporate all of the individually-shuffled envelope genes together in different combinations into an infectious clone backbone of PRRSV MLV Fostera(®) PRRS. Five viable progeny chimeric viruses were rescued, and their growth characteristics were characterized in vitro. In a pilot pig study, two chimeric viruses (FV-SPDS-VR2,FV-SPDS-VR5) were found to induce cross-neutralizing antibodies against heterologous strains. A subsequent vaccination/challenge study in 72 pigs revealed that chimeric virus FV-SPDS-VR2 and parental virus conferred partial cross-protection when challenged with heterologous strains NADC20 or MN184B. The results have important implications for future development of an effective PRRSV vaccine that confers heterologous protection.

  20. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes

    PubMed Central

    Xu, Jun; Hu, Junying; Liu, Lingzi; Li, Li; Wang, Xu; Zhang, Huiyuan; Jiang, Wei; Tian, Jiesheng; Li, Ying; Li, Jilun

    2014-01-01

    Magnetosomes are membrane-enclosed magnetite nanocrystals synthesized by magnetotactic bacteria (MTB). They display chemical purity, narrow size ranges, and species-specific crystal morphologies. Specific transmembrane proteins are sorted to the magnetosome membrane (MM). MamC is the most abundant MM protein of Magnetospirillum gryphiswaldense strain MSR-1. MamF is the second most abundant MM protein of MSR-1 and forms stable oligomers. We expressed staphylococcal protein A (SPA), an immunoglobulin-binding protein from the cell wall of Staphylococcus aureus, on MSR-1 magnetosomes by fusion with MamC or MamF. The resulting recombinant magnetosomes were capable of self-assembly with the Fc region of mammalian antibodies (Abs) and were therefore useful for functionalization of magnetosomes. Recombinant plasmids pBBR-mamC-spa and pBBR-mamF-spa were constructed by fusing spa (the gene that encodes SPA) with mamC and mamF, respectively. Recombinant magnetosomes with surface expression of SPA were generated by introduction of these fusion genes into wild-type MSR-1 or a mamF mutant strain. Studies with a Zeta Potential Analyzer showed that the recombinant magnetosomes had hydrated radii significantly smaller than those of WT magnetosomes and zeta potentials less than −30 mV, indicating that the magnetosome colloids were relatively stable. Observed conjugation efficiencies were as high as 71.24 μg Ab per mg recombinant magnetosomes, and the conjugated Abs retained most of their activity. Numbers of Vibrio parahaemolyticus (a common pathogenic bacterium in seafood) captured by recombinant magnetosome/Ab complexes were measured by real-time fluorescence-based quantitative PCR. One mg of complex was capable of capturing as many as 1.74 × 107 Vibrio cells. The surface expression system described here will be useful for design of functionalized magnetosomes from MSR-1 and other MTB. PMID:24765089

  1. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen

    PubMed Central

    Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano

    2015-01-01

    In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive

  2. Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy.

    PubMed

    Hubert, Pascale; Heitzmann, Adèle; Viel, Sophie; Nicolas, André; Sastre-Garau, Xavier; Oppezzo, Pablo; Pritsch, Otto; Osinaga, Eduardo; Amigorena, Sebastian

    2011-08-01

    Antibody-dependent cell cytotoxicity (ADCC) plays a critical role in monoclonal antibody (mAb)-mediated cancer therapy. ADCC, however, has not been directly shown in vivo but inferred from the requirement for IgG Fc receptors (FcγR) in tumor rejection in mice. Here, we investigated the mechanism of action of a Tn antigen-specific chimeric mAb (Chi-Tn), which binds selectively to a wide variety of carcinomas, but not to normal tissues, in both humans and mice. Chi-Tn mAb showed no direct toxicity against carcinomas cell lines in vitro but induced the rejection of a murine breast tumor in 80% to 100% of immunocompetent mice, when associated with cyclophosphamide. Tumor rejection was abolished in Fc receptors-associated γ chain (FcR-γ)-deficient mice, suggesting a role for ADCC. Indeed, tumor cells formed stable conjugates in vivo with FcR-γ chain-expressing macrophages and neutrophils in Chi-Tn mAb-treated but not in control mAb-treated mice. The contact zone between tumor cells and ADCC effectors accumulated actin, FcγR and phospho-tyrosines. The in vivo formed ADCC synapses were organized in multifocal supra-molecular activation clusters. These results show that in vivo ADCC mediated by macrophages and neutrophils during tumor rejection by Chi-Tn mAb involves a novel type of multifocal immune synapse between effectors of innate immunity and tumor cells.

  3. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma.

    PubMed

    Choi, Bryan D; Suryadevara, Carter M; Gedeon, Patrick C; Herndon, James E; Sanchez-Perez, Luis; Bigner, Darell D; Sampson, John H

    2014-01-01

    Chimeric antigen receptors (CAR)-transduced T cells hold great promise in the treatment of malignant disease. Here, we demonstrate that intracerebral injection with a human, epidermal growth factor receptor variant III (EGFRvIII)-specific, third generation CAR successfully treats glioma in mice. Importantly, these results endorse clinical translation of this CAR in patients with EGFRvIII-expressing brain tumors.

  4. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    PubMed

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.

  5. Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma.

    PubMed

    Daud, Adil I; Wolchok, Jedd D; Robert, Caroline; Hwu, Wen-Jen; Weber, Jeffrey S; Ribas, Antoni; Hodi, F Stephen; Joshua, Anthony M; Kefford, Richard; Hersey, Peter; Joseph, Richard; Gangadhar, Tara C; Dronca, Roxana; Patnaik, Amita; Zarour, Hassane; Roach, Charlotte; Toland, Grant; Lunceford, Jared K; Li, Xiaoyun Nicole; Emancipator, Kenneth; Dolled-Filhart, Marisa; Kang, S Peter; Ebbinghaus, Scot; Hamid, Omid

    2016-12-01

    Purpose Expression of programmed death-ligand 1 (PD-L1) is a potential predictive marker for response and outcome after treatment with anti-programmed death 1 (PD-1). This study explored the relationship between anti-PD-1 activity and PD-L1 expression in patients with advanced melanoma who were treated with pembrolizumab in the phase Ib KEYNOTE-001 study (clinical trial information: NCT01295827). Patients and Methods Six hundred fifty-five patients received pembrolizumab10 mg/kg once every 2 weeks or once every 3 weeks, or 2 mg/kg once every 3 weeks. Tumor response was assessed every 12 weeks per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 by independent central review. Primary outcome was objective response rate. Secondary outcomes included progression-free survival (PFS) and overall survival (OS). Membranous PD-L1 expression in tumor and tumor-associated immune cells was assessed by a clinical trial immunohistochemistry assay (22C3 antibody) and scored on a unique melanoma (MEL) scale of 0 to 5 by one of three pathologists who were blinded to clinical outcome; a score ≥ 2 (membranous staining in ≥ 1% of cells) was considered positive. Results Of 451 patients with evaluable PD-L1 expression, 344 (76%) had PD-L1-positive tumors. Demographic and staging variables were equally distributed among PD-L1-positive and -negative patients. An association between higher MEL score and higher response rate and longer PFS (hazard ratio, 0.76; 95% CI, 0.71 to 0.82) and OS (hazard ratio, 0.76; 95% CI, 0.69 to 0.83) was observed ( P < .001 for each). Objective response rate was 8%, 12%, 22%, 43%, 57%, and 53% for MEL 0, 1, 2, 3, 4, and 5, respectively. Conclusion PD-L1 expression in pretreatment tumor biopsy samples was correlated with response rate, PFS, and OS; however, patients with PD-L1-negative tumors may also achieve durable responses.

  6. Expression of recombinant HA1 protein for specific detection of influenza A/H1N1/2009 antibodies in human serum.

    PubMed

    Luo, Lizhong; Nishi, Krista; Macleod, Erin; Sabara, Marta I; Coleman, Brenda L; Gubbay, Jonathan B; Li, Yan

    2013-01-01

    The hemagglutinin genes (HA1 subunit) from human and animal 2009 pandemic H1N1 virus isolates were expressed with a baculovirus vector. Recombinant HA1 (rHA1) protein-based ELISA was evaluated for detection of specific influenza A(H1N1)pdm09 antibodies in serum samples from vaccinated humans. It was found that rHA1 ELISA consistently differentiated between antibodies recognizing the seasonal influenza H1N1 and pdm09 viruses, with a concordance of 94% as compared to the hemagglutination inhibition test. This study suggests the utility of rHA1 ELISA in serosurveillance.

  7. Selection of antibodies from synthetic antibody libraries.

    PubMed

    Harel Inbar, Noa; Benhar, Itai

    2012-10-15

    More than 2 dozen years had passed since the field of antibody engineering was established, with the first reports of bacterial [1-3] and mammalian cells [4] expression of recombinant antibody fragments, and in that time a lot of effort was dedicated to the development of efficient technological means, intended to assist in the creation of therapeutic monoclonal antibodies (mAbs). Research focus was given to two intertwined technological aspects: the selection platform and the recombinant antibody repertoires. In accordance with these areas of interest, it is the goal of this chapter to describe the various selection tools and antibody libraries existing, with emphasis on the later, and their applications. This chapter gives a far from exhaustive, subjective "historic account" of the field, describing the selection platforms, the different formats of antibody repertoires and the applications of both for selecting recombinant antibodies. Several excellent books provide detailed protocols for constructing antibody libraries and selecting antibodies from those libraries [5-13]. Such books may guide a newcomer to the field in the fine details of antibody engineering. We would like to offer advice to the novice: although seemingly simple, effective library construction and antibody isolation provide best benefits in the hands of professionals. It is an art as much as it is science.

  8. Antibody Engineering for Pursuing a Healthier Future

    PubMed Central

    Saeed, Abdullah F. U. H.; Wang, Rongzhi; Ling, Sumei; Wang, Shihua

    2017-01-01

    Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.

  9. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    PubMed

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  10. Bicistronic expression plasmid encoding allergen and anti-IgE single chain variable fragment antibody as a novel DNA vaccine for allergy therapy and prevention.

    PubMed

    Bandbon Balenga, Nariman Aghaei; Thalhamer, Josef; Weiss, Richard

    2006-01-01

    Several approaches have been applied in order to alleviate the difficulties allergic patients are suffering from. Among them DNA vaccination and anti-IgE antibody have shown promising results. Herewith, a combination of both strategies is proposed to minimize IgE production while inducing high levels of blocking IgG and strong Th1 immune responses. A bicistronic expression plasmid including an internal ribosomal entry site (IRES) can express both, allergen and a single chain variable fragment (scFv) antibody against human IgE within antigen presenting cells (APCs) including B cells. Presentation of allergen derived peptides via MHC I and MHC II stimulates specific Th1 responses resulting in high levels of IFN-gamma and IgG. Anti-IgE scFv antibody binds to newly synthesized IgE molecules within B cell cytoplasm and also to free serum IgE, thereby inhibiting attachment of IgE to its receptors on basophils and mast cells. Also, IgE-anti-IgE complex functions as blocking antibody and neutralizes allergens entering the body. Additionally, anti-IgE scFv antibody binds to membrane bound IgE (mIgE) on B cells and interferes with IgE expression. Using assays, such as enzyme linked immunosorbent assay (ELISA), IgG and IgE production in response to this expression system can be evaluated. Also, rat basophil leukemia cell assay (using RBL-2H3 cells) can show the amount of functional IgE in sera as basophil mediator release is regarded as an indicator of the allergic hypersensitive reactions. The proposed approach may result in high levels of blocking IgG and low levels of IgE secretion from B cells. Additionally, it can inhibit activity of IgE in degranulation of basophils and mast cells.

  11. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models.

    PubMed

    Yang, Liuyang; Cai, Changzhi; Feng, Qiang; Shi, Yun; Zuo, Qianfei; Yang, Huijie; Jing, Haiming; Wei, Chao; Zhuang, Yuan; Zou, Quanming; Zeng, Hao

    2016-02-11

    Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4(+) T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia.

  12. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models

    PubMed Central

    Yang, Liuyang; Cai, Changzhi; Feng, Qiang; Shi, Yun; Zuo, Qianfei; Yang, Huijie; Jing, Haiming; Wei, Chao; Zhuang, Yuan; Zou, Quanming; Zeng, Hao

    2016-01-01

    Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (b