Science.gov

Sample records for chimeric cyanovirin-n homolog

  1. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination.

    PubMed

    Shao, Renfu; Barker, Stephen C

    2011-02-15

    The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse.

  2. Structure and Glycan Binding of a New Cyanovirin-N Homolog.

    PubMed

    Matei, Elena; Basu, Rohan; Furey, William; Shi, Jiong; Calnan, Conor; Aiken, Christopher; Gronenborn, Angela M

    2016-09-01

    The HIV-1 envelope glycoprotein gp120 is heavily glycosylated and bears numerous high mannose sugars. These sugars can serve as targets for HIV-inactivating compounds, such as antibodies and lectins, which bind to the glycans and interfere with viral entry into the target cell. We determined the 1.6 Å x-ray structure of Cyt-CVNH, a recently identified lectin from the cyanobacterium Cyanothece(7424), and elucidated its glycan specificity by NMR. The Cyt-CVNH structure and glycan recognition profile are similar to those of other CVNH proteins, with each domain specifically binding to Manα(1-2)Manα units on the D1 and D3 arms of high mannose glycans. However, in contrast to CV-N, no cross-linking and precipitation of the cross-linked species in solution was observed upon Man-9 binding, allowing, for the first time, investigation of the interaction of Man-9 with a member of the CVNH family by NMR. HIV assays showed that Cyt-CVNH is able to inhibit HIV-1 with ∼4-fold higher potency than CV-N(P51G), a stabilized version of wild type CV-N. Therefore, Cyt-CVNH may qualify as a valuable lectin for potential microbicidal use. PMID:27402833

  3. Rhizosecretion improves the production of Cyanovirin-N in Nicotiana tabacum through simplified downstream processing.

    PubMed

    Madeira, Luisa M; Szeto, Tim H; Ma, Julian K-C; Drake, Pascal M W

    2016-07-01

    Rhizosecretion has many advantages for the production of recombinant pharmaceuticals, notably facile downstream processing from hydroponic medium. The aim of this study was to increase yields of the HIV microbicide candidate, Cyanovirin-N (CV-N), obtained using this production platform and to develop a simplified methodology for its downstream processing from hydroponic medium. Placing hydroponic cultures on an orbital shaker more than doubled the concentration of CV-N in the hydroponic medium compared to plants which remained stationary, reaching a maximum of approximately 20μg/ml in one week, which is more than 3 times higher than previously reported yields. The protein composition of the hydroponic medium, the rhizosecretome, was characterised in plants cultured with or without the plant growth regulator alpha-napthaleneacetic acid by LC-ESI-MS/MS, and CV-N was the most abundant protein. The issue of large volumes in the rhizosecretion system was addressed by using ion exchange chromatography to concentrate CV-N and partially remove impurities. The semi-purified CV-N was demonstrated to bind to HIV gp120 in an ELISA and to neutralise HIVBa-L with an IC50 of 6nM in a cell-based assay. Rhizosecretion is therefore a practicable and inexpensive method for the production of functional CV-N.

  4. Rhizosecretion improves the production of Cyanovirin-N in Nicotiana tabacum through simplified downstream processing.

    PubMed

    Madeira, Luisa M; Szeto, Tim H; Ma, Julian K-C; Drake, Pascal M W

    2016-07-01

    Rhizosecretion has many advantages for the production of recombinant pharmaceuticals, notably facile downstream processing from hydroponic medium. The aim of this study was to increase yields of the HIV microbicide candidate, Cyanovirin-N (CV-N), obtained using this production platform and to develop a simplified methodology for its downstream processing from hydroponic medium. Placing hydroponic cultures on an orbital shaker more than doubled the concentration of CV-N in the hydroponic medium compared to plants which remained stationary, reaching a maximum of approximately 20μg/ml in one week, which is more than 3 times higher than previously reported yields. The protein composition of the hydroponic medium, the rhizosecretome, was characterised in plants cultured with or without the plant growth regulator alpha-napthaleneacetic acid by LC-ESI-MS/MS, and CV-N was the most abundant protein. The issue of large volumes in the rhizosecretion system was addressed by using ion exchange chromatography to concentrate CV-N and partially remove impurities. The semi-purified CV-N was demonstrated to bind to HIV gp120 in an ELISA and to neutralise HIVBa-L with an IC50 of 6nM in a cell-based assay. Rhizosecretion is therefore a practicable and inexpensive method for the production of functional CV-N. PMID:26901579

  5. A Designed “Nested” Dimer of Cyanovirin-N Increases Antiviral Activity

    PubMed Central

    Woodrum, Brian W.; Maxwell, Jason; Allen, Denysia M.; Wilson, Jennifer; Krumpe, Lauren R.H.; Bobkov, Andrey A.; Hill, R. Blake; Kibler, Karen V.; O’Keefe, Barry R.; Ghirlanda, Giovanna

    2016-01-01

    Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the “nested” covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B’ and domains A and A’ respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner. PMID:27275831

  6. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N.

    PubMed

    Liu, Xiaowen; Lagenaur, Laurel A; Simpson, David A; Essenmacher, Kirsten P; Frazier-Parker, Courtney L; Liu, Yang; Tsai, Daniel; Rao, Srinivas S; Hamer, Dean H; Parks, Thomas P; Lee, Peter P; Xu, Qiang

    2006-10-01

    Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N). To facilitate efficient expression of CV-N by this bacterium, the L. jensenii 1153 genome was sequenced, allowing identification of native regulatory elements and sites for the chromosomal integration of heterologous genes. A CV-N expression cassette was optimized and shown to produce high levels of structurally intact CV-N when expressed in L. jensenii. Lactobacillus-derived CV-N was capable of inhibiting CCR5-tropic HIV(BaL) infectivity in vitro with a 50% inhibitory concentration of 0.3 nM. The CV-N expression cassette was stably integrated as a single copy into the bacterial chromosome and resolved from extraneous plasmid DNA without adversely affecting the bacterial phenotype. This bacterial strain was capable of colonizing the vagina and producing full-length CV-N when administered intravaginally to mice during estrus phase. The CV-N-producing Lactobacillus was genetically stable when propagated in vitro and in vivo. This work represents a major step towards the development of an inexpensive yet durable protein-based microbicide to block the heterosexual transmission of HIV in women. PMID:17005802

  7. Phase system selection with fractional factorial design for purification of recombinant cyanovirin-N from a hydroponic culture medium using centrifugal partition chromatography.

    PubMed

    Grudzień, Łukasz; Madeira, Luisa; Fisher, Derek; Ma, Julian; Garrard, Ian

    2013-04-12

    Centrifugal partition chromatography (CPC) with an aqueous two-phase system (ATPS) was used to purify recombinant cyanovirin-N (CV-N) from other proteins which were co-secreted into a hydroponic plant medium in a rhizosecretion process. To achieve satisfactory protein concentration, the purification was preceded by ultrafiltration performed on a 5 kDa filter. ATPS, because of their gentle nature, were selected as the phase system for CPC. A systematic phase system selection was applied. This involved studying the effect of seven parameters of ATPS: polymer type, salt type, the polymer and salt concentration, the polymer molecular weight, pH, and presence of two additional salts; NaCl and NaClO4, which all together gave 320 combinations. design of experiment (DoE) software allowed the reduction of this number to 46. Having tested partitioning of cyanovirin-N and impurities in 46 ATPS, the three best potential phase systems generated by the programme were then tested on the CPC. Out of these three, 13/13% PEG4000 sodium phosphate, pH 3.0, proved to be most effective phase system in the purification of cyanovirin-N, judged by ELISA and SDS-PAGE analysis, as it eliminated most of the impurities from the final cyanovirin-N preparation.

  8. Engineering soya bean seeds as a scalable platform to produce cyanovirin-N, a non-ARV microbicide against HIV.

    PubMed

    O'Keefe, Barry R; Murad, André M; Vianna, Giovanni R; Ramessar, Koreen; Saucedo, Carrie J; Wilson, Jennifer; Buckheit, Karen W; da Cunha, Nicolau B; Araújo, Ana Claudia G; Lacorte, Cristiano C; Madeira, Luisa; McMahon, James B; Rech, Elibio L

    2015-09-01

    There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 μg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.

  9. A sugar binding protein Cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion

    PubMed Central

    Tiwari, Vaibhav; Shukla, Shripaad Y.; Shukla, Deepak

    2009-01-01

    Herpes simplex virus type-1 (HSV-1) causes significant health problems from periodic skin and corneal lesions to encephalitis. It is also considered a cofactor in the development of age-related secondary glaucoma. Inhibition of HSV-1 at the stage of viral entry generates a unique opportunity for preventative and/or therapeutic intervention. Here we provide evidence that a sugar-binding antiviral protein, cyanovirin-N (CV-N), can act as a potent inhibitor of HSV-1 entry into natural target cells. Inhibition of entry was independent of HSV-1 gD receptor usage and it was observed in transformed as well as primary cell cultures. Evidence presented herein suggests that CV-N can not only block virus entry to cells but also, it is capable of significantly inhibiting membrane fusion mediated by HSV glycoproteins. While CV-N treated virions were significantly deficient in entering into cells, HSV-1 glycoproteins-expressing cells pretreated with CV-N demonstrated reduced cell-to-cell fusion and polykaryocytes formation. The observation that CV-N can block both entry as well as membrane fusion suggests a stronger potential for this compound in anti-viral therapy against HSV-1. PMID:19665490

  10. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers.

    PubMed

    Peng, Zhiyu; Yuan, Chengfu; Zellmer, Lucas; Liu, Siqi; Xu, Ningzhi; Liao, D Joshua

    2015-01-01

    Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.

  11. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers

    PubMed Central

    Peng, Zhiyu; Yuan, Chengfu; Zellmer, Lucas; Liu, Siqi; Xu, Ningzhi; Liao, D. Joshua

    2015-01-01

    Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine “two neighboring genes” as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of “consecutive reverse transcriptions (RTs)”, i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR. PMID:26000048

  12. Sensitivity of transmitted and founder human immunodeficiency virus type 1 envelopes to carbohydrate-binding agents griffithsin, cyanovirin-N and Galanthus nivalis agglutinin.

    PubMed

    Hu, Bodan; Du, Tao; Li, Chang; Luo, Sukun; Liu, Yalan; Huang, Xin; Hu, Qinxue

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) transmission often results from infection by a single transmitted/founder (T/F) virus. Here, we investigated the sensitivity of T/F HIV-1 envelope glycoproteins (Envs) to microbicide candidate carbohydrate-binding agents (CBAs) griffithsin (GRFT), cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA), showing that T/F Envs demonstrated different sensitivity to CBAs, with IC50 values ranging from 0.006 ± 0.0003 to >10 nM for GRFT, from 0.6 ± 0.2 to 28.9 ± 2.9 nM for CV-N and from 1.3 ± 0.2 to >500 nM for GNA. We further revealed that deglycosylation at position 295 or 448 decreased the sensitivity of T/F Env to GRFT, and at 339 to both CV-N and GNA. Mutation of all the three glcyans rendered a CBA-sensitive T/F Env largely resistant to GRFT, indicating that the sensitivity of T/F Env to GRFT is mainly determined by glycans at 295, 339 and 448. Our study identified specific T/F Env residues associated with CBA sensitivity.

  13. Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N.

    PubMed

    Drake, Pascal M W; de Moraes Madeira, Luisa; Szeto, Tim H; Ma, Julian K-C

    2013-12-01

    The marshmallow plant (Althaea officinalis L.) has been used for centuries in medicine and other applications. Valuable secondary metabolites have previously been identified in Agrobacterium rhizogenes-generated transgenic 'hairy' roots in this species. In the present study, transgenic roots were produced in A. officinalis using A. rhizogenes. In addition to wild-type lines, roots expressing the anti-human immunodeficiency virus microbicide candidate, cyanovirin-N (CV-N), were generated. Wild-type and CV-N root lines were transferred to liquid culture and increased in mass by 49 and 19 % respectively over a 7 day culture period. In the latter, the concentration of CV-N present in the root tissue was 2.4 μg/g fresh weight, with an average secretion rate into the growth medium of 0.02 μg/ml/24 h. A. officinalis transgenic roots may therefore in the future be used not only as a source of therapeutic secondary metabolites, but also as an expression system for the production of recombinant pharmaceuticals.

  14. Selective interactions of the human immunodeficiency virus-inactivating protein cyanovirin-N with high-mannose oligosaccharides on gp120 and other glycoproteins.

    PubMed

    Shenoy, S R; O'Keefe, B R; Bolmstedt, A J; Cartner, L K; Boyd, M R

    2001-05-01

    The virucidal protein cyanovirin-N (CV-N) mediates its highly potent anti-human immunodeficiency virus activity, at least in part, through interactions with the viral envelope glycoprotein gp120. Here we dissect in further detail the mechanism of CV-N's glycosylation-dependent binding to gp120. Isothermal titration calorimetry (ITC) binding studies of CV-N with endoglycosidase H-treated gp120 showed that binding was completely abrogated by removal of high-mannose oligosaccharides from the glycoprotein. Additional ITC and circular dichroism spectral studies with CV-N and other glycoproteins as well showed that CV-N discriminately bound only glycoproteins that contain high-mannose oligosaccharides. Binding experiments with RNase B indicated that the single high-mannose oligosaccharide on that enzyme mediated all of its binding with CV-N (K(d) = 0.602 microM). A finer level of oligosaccharide selectivity of CV-N was revealed in affinity chromatography-liquid chromatography-mass spectrometry experiments, which showed that CV-N preferentially bound only oligomannose-8 (Man-8) and oligomannose-9 isoforms of RNase B. Finally, we biophysically characterized the interaction of CV-N with a purified, single oligosaccharide, Man-8. The binding affinity of Man-8 for CV-N is unusually strong (K(d) = 0.488 microM), several hundredfold greater than observed for oligosaccharides and their protein lectins (K(d) = 1 microM--1 mM), further establishing a critical role of high-mannose oligosaccharides in CV-N binding to glycoproteins.

  15. Effect of homologous serotonin receptor loop substitutions on the heterologous expression in Pichia of a chimeric acetylcholine-binding protein with alpha-bungarotoxin-binding activity.

    PubMed

    Paulo, Joao A; Hawrot, Edward

    2009-10-01

    The molluscan acetylcholine-binding protein (AChBP) is a soluble homopentameric homolog of the extracellular domain of various ligand-gated ion channels. Previous studies have reported that AChBP, when fused to the ion pore domain of the serotonin receptor (5HT(3A)R), can form a functional ligand-gated chimeric channel only if the AChBP loop regions between beta-strands beta1 and beta2 (beta1-beta2), beta6 and beta7 (beta6-beta7), and beta8 and beta9 (beta8-beta9) are replaced with those of the 5HT(3A)R. To investigate further the potential interactions among these three important loop regions in a membrane- and detergent-free system, we designed AChBP constructs in which loops beta1-beta2, beta6-beta7, and beta8-beta9 of the AChBP were individually and combinatorially substituted in all permutations with the analogous loops of the 5HT(3A)R. These chimeras were expressed as secreted proteins using the Pichia pastoris yeast expression system. [(125)I]-alpha-Bungarotoxin-binding was detected in the culture media obtained from homologous recombinant clones expressing the wild-type AChBP, the beta1-beta2 loop-only chimera, and the chimera containing all three 5HT(3A)R loop substitutions. The remaining chimeras failed to show [(125)I]-alpha-bungarotoxin binding, and further analysis of cellular extracts allowed us to determine that these binding-negative chimeric constructs accumulated intracellularly and were not secreted into the culture medium. Our results demonstrate that coordinated interactions among loops beta1-beta2, beta6-beta7, and beta8-beta9 are essential for the formation of a functional ligand-binding site, as evidenced by [(125)I]-alpha-bungarotoxin-binding, and for efficient protein secretion. In addition, the constructs described here demonstrate the feasibility of utilizing soluble scaffolds to explore functionally important interactions within the extracellular domain of membrane-bound proteins. PMID:19427904

  16. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  17. Microvirin, a Novel α(1,2)-Mannose-specific Lectin Isolated from Microcystis aeruginosa, Has Anti-HIV-1 Activity Comparable with That of Cyanovirin-N but a Much Higher Safety Profile*

    PubMed Central

    Huskens, Dana; Férir, Geoffrey; Vermeire, Kurt; Kehr, Jan-Christoph; Balzarini, Jan; Dittmann, Elke; Schols, Dominique

    2010-01-01

    Microvirin (MVN), a recently isolated lectin from the cyanobacterium Microcystis aeruginosa PCC7806, shares 33% identity with the potent anti-human immunodeficiency virus (HIV) protein cyanovirin-N (CV-N) isolated from Nostoc ellipsosporum, and both lectins bind to similar carbohydrate structures. MVN is able to inhibit infection by a wide variety of HIV-1 laboratory-adapted strains and clinical isolates of different tropisms and subtypes in peripheral blood mononuclear cells. MVN also inhibits syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T cells and inhibits DC-SIGN-mediated HIV-1 binding and transmission to CD4+ T cells. Long term passaging of HIV-1 exposed to dose-escalating concentrations of MVN resulted in the selection of a mutant virus with four deleted high mannose-type glycans in the envelope gp120. The MVN-resistant virus was still highly sensitive to various other carbohydrate binding lectins (e.g. CV-N, HHA, GNA, and UDA) but not anymore to the carbohydrate-specific 2G12 monoclonal antibody. Importantly, MVN is more than 50-fold less cytotoxic than CV-N. Also in sharp contrast to CV-N, MVN did not increase the level of the activation markers CD25, CD69, and HLA-DR in CD4+ T lymphocytes, and subsequently, MVN did not enhance viral replication in pretreated peripheral blood mononuclear cells. Therefore, MVN may qualify as a useful lectin for potential microbicidal use based on its broad and potent antiviral activity and virtual lack of any stimulatory properties and cellular toxicity. PMID:20507987

  18. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution

    PubMed Central

    Xie, Bingkun; Yang, Wei; Ouyang, Yongchang; Chen, Lichan; Jiang, Hesheng; Liao, Yuying; Liao, D. Joshua

    2016-01-01

    Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization. PMID:27148738

  19. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution.

    PubMed

    Xie, Bingkun; Yang, Wei; Ouyang, Yongchang; Chen, Lichan; Jiang, Hesheng; Liao, Yuying; Liao, D Joshua

    2016-01-01

    Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization. PMID:27148738

  20. Protective Immunity Against Homologous and Heterologous Influenza Virus Lethal Challenge by Immunization with New Recombinant Chimeric HA2-M2e Fusion Protein in BALB/C Mice.

    PubMed

    Ameghi, Ali; Pilehvar-Soltanahmadi, Yones; Baradaran, Behzad; Barzegar, Abolfazl; Taghizadeh, Morteza; Zarghami, Nosratollah; Aghaiypour, Khosrow

    2016-05-01

    Influenza is an acute and highly contagious respiratory disease. The error prone RNA polymerase and segmented nature of the influenza A virus genome allow antigenic drift and shift, respectively. Therefore, most influenza vaccines are inefficient along time and against different viral subtypes. In this study, for the first time, protection properties of a new recombinant fusion of HA2 and M2e peptides originated from influenza virus A/Brisbane/59/2007-like (H1N1) in BALB/c mice model were investigated. After immunization of the BALB/c mice, the protection property of fusion peptide was determined by a neutralizing assay test. For further study, mice were lethal challenged by the (mouse adapted, A/PR8/34 [H1N1]) and heterologous (mouse adapted, A/Brisbane/10/2007 [H3N2]) influenza virus subtypes. Then, the lung viral titers, body weight, and survival rate of the immunized mice were monitored. The results showed that immunization by the M2e-HA2 recombinant fusion peptide provides strong protection against homologous challenge and an infirm protection against heterologous. These protections against homologous and heterologous influenza A virus challenges meant the universal nature of these recombinant peptides in an immunity manner against influenza A virus. However, more studies are needed to optimize this recombinant construction, and this experiment recommends HA2-M2e fusion peptide as a universal influenza A vaccine candidate. PMID:27058011

  1. Clinical significance of chimerism.

    PubMed

    Abuelo, Dianne

    2009-05-15

    Twins have been previously classified as either monozygotic or dizygotic. In recent years, fascinating, non-traditional mechanisms of twinning have been uncovered. We define chimerism versus mosaicism, touch on chimerism in the animal world, and explain timing of chimerism in humans. In addition, we discuss when to suspect chimerism in patients, and how to proceed with diagnostic evaluation and confirmation.

  2. Complex chimerism

    PubMed Central

    Ma, Kimberly K.; Petroff, Margaret G.; Coscia, Lisa A.; Armenti, Vincent T.; Adams Waldorf, Kristina M.

    2013-01-01

    Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant. PMID:23974274

  3. Quo vadis chimerism?

    PubMed Central

    2011-01-01

    Although immunity in multicellular organisms is efficient in dealing with alien agents, it may fail for allogeneic chimerism. Natural chimerism is widely documented in nature, distributed in at least ten phyla of protists, invertebrates and plants, vertebrates and mammals, including humans; it is an important ecological/evolutionary tool manipulating metazoans' life history portraits. Instead of purging allogeneic nascent selfish cells, a ‘double edged sword’ chimerism emerges, displaying environmental dictated costs and benefits for the genotypes involved. Benefits include the development of synergistic complementation, the increase of genetic variability, the assurance of mate location, improved size-dependent ecological qualities (growth rates, reproduction, survivorship, competition, environmental tolerance) and more. Costs include the threat of somatic and germ cell parasitism, developmental instability, death, diseases, autoimmunity, sexual sterility and organ malformations, which develop as well in mammalian natural chimerism, including humans. Because of its importance, medical sciences should study and harness natural chimerism properties for clinical purposes. PMID:21547028

  4. Quo vadis chimerism?

    PubMed

    Rinkevich, Baruch

    2011-01-01

    Although immunity in multicellular organisms is efficient in dealing with alien agents, it may fail for allogeneic chimerism. Natural chimerism is widely documented in nature, distributed in at least ten phyla of protists, invertebrates and plants, vertebrates and mammals, including humans; it is an important ecological/evolutionary tool manipulating metazoans' life history portraits. Instead of purging allogeneic nascent selfish cells, a 'double edged sword' chimerism emerges, displaying environmental dictated costs and benefits for the genotypes involved. Benefits include the development of synergistic complementation, the increase of genetic variability, the assurance of mate location, improved size-dependent ecological qualities (growth rates, reproduction, survivorship, competition, environmental tolerance) and more. Costs include the threat of somatic and germ cell parasitism, developmental instability, death, diseases, autoimmunity, sexual sterility and organ malformations, which develop as well in mammalian natural chimerism, including humans. Because of its importance, medical sciences should study and harness natural chimerism properties for clinical purposes.

  5. Innovation by homologous recombination.

    PubMed

    Trudeau, Devin L; Smith, Matthew A; Arnold, Frances H

    2013-12-01

    Swapping fragments among protein homologs can produce chimeric proteins with a wide range of properties, including properties not exhibited by the parents. Computational methods that use information from structures and sequence alignments have been used to design highly functional chimeras and chimera libraries. Recombination has generated proteins with diverse thermostability and mechanical stability, enzyme substrate specificity, and optogenetic properties. Linear regression, Gaussian processes, and support vector machine learning have been used to model sequence-function relationships and predict useful chimeras. These approaches enable engineering of protein chimeras with desired functions, as well as elucidation of the structural basis for these functions.

  6. Chimeric Pestivirus Experimental Vaccines.

    PubMed

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics. PMID:26458840

  7. Patterns of Amino Acid Evolution in the Drosophila ananassae Chimeric Gene, siren, Parallel Those of Other Adh-Derived Chimeras

    PubMed Central

    Shih, Hung-Jui; Jones, Corbin D.

    2008-01-01

    siren1 and siren2 are novel alcohol dehydrogenase (Adh)-derived chimeric genes in the Drosophila bipectinata complex. D. ananassae, however, harbors a single homolog of these genes. Like other Adh-derived chimeric genes, siren evolved adaptively shortly after it was formed. These changes likely shifted the catalytic activity of siren. PMID:18780749

  8. Engineering of chimeric class II polyhydroxyalkanoate synthases.

    PubMed

    Niamsiri, Nuttawee; Delamarre, Soazig C; Kim, Young-Rok; Batt, Carl A

    2004-11-01

    PHA synthase is a key enzyme involved in the biosynthesis of polyhydroxyalkanoates (PHAs). Using a combinatorial genetic strategy to create unique chimeric class II PHA synthases, we have obtained a number of novel chimeras which display improved catalytic properties. To engineer the chimeric PHA synthases, we constructed a synthetic phaC gene from Pseudomonas oleovorans (phaC1Po) that was devoid of an internal 540-bp fragment. Randomly amplified PCR products (created with primers based on conserved phaC sequences flanking the deleted internal fragment) were generated using genomic DNA isolated from soil and were substituted for the 540-bp internal region. The chimeric genes were expressed in a PHA-negative strain of Ralstonia eutropha, PHB(-)4 (DSM 541). Out of 1,478 recombinant clones screened for PHA production, we obtained five different chimeric phaC1Po genes that produced more PHA than the native phaC1Po. Chimeras S1-71, S4-8, S5-58, S3-69, and S3-44 exhibited 1.3-, 1.4-, 2.0-, 2.1-, and 3.0-fold-increased levels of in vivo activity, respectively. All of the mutants mediated the synthesis of PHAs with a slightly increased molar fraction of 3-hydroxyoctanoate; however, the weight-average molecular weights (Mw) of the PHAs in all cases remained almost the same. Based upon DNA sequence analyses, the various phaC fragments appear to have originated from Pseudomonas fluorescens and Pseudomonas aureofaciens. The amino acid sequence analyses showed that the chimeric proteins had 17 to 20 amino acid differences from the wild-type phaC1Po, and these differences were clustered in the same positions in the five chimeric clones. A threading model of PhaC1Po, developed based on homology of the enzyme to the Burkholderia glumae lipase, suggested that the amino acid substitutions found in the active chimeras were located mostly on the protein model surface. Thus, our combinatorial genetic engineering strategy proved to be broadly useful for improving the catalytic

  9. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  10. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  11. Chimeric enzymes with improved cellulase activities

    SciTech Connect

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  12. Construction of chimeric vaccinia viruses by molecular cloning and packaging.

    PubMed Central

    Scheiflinger, F; Dorner, F; Falkner, F G

    1992-01-01

    Foreign DNA was inserted into unique restriction endonuclease cleavage sites (Sma I or Not I) of the 200,000-base-pair vaccinia virus genome by direct molecular cloning. The modified vaccinia virus DNA was packaged in fowlpox virus-infected avian cells, and chimeric vaccinia virus was isolated from mammalian cells not supporting the growth of the fowlpox helper virus. In contrast to the classical "in vivo" recombination technique, chimeric viruses with inserts in both possible orientations and families of chimeras with multiple inserts were obtained. The different genomic configurations of chimeric viruses provide a broader basis for screening of optimal viruses. In addition to packaging in avian cells, a second packaging procedure for vaccinia DNA, based on the abortive infection of mammalian cells with the fowlpox helper virus, was developed. This procedure permits simultaneous packaging and host-range selection for the packaged virus. The cloning/packaging procedure allows the direct insertion of foreign DNA without the need for plasmids having flanking regions homologous to viral nonessential regions and is independent of inefficient in vivo recombination events. By direct cloning and packaging, about 5-10% of the total vaccinia virus yield consisted of chimeras. The procedure is, therefore, a useful tool in molecular virology. Images PMID:1438247

  13. Generation of Chimeric Rhesus Monkeys

    PubMed Central

    Tachibana, Masahito; Sparman, Michelle; Ramsey, Cathy; Ma, Hong; Lee, Hyo-Sang; Penedo, Maria Cecilia T.; Mitalipov, Shoukhrat

    2011-01-01

    Summary Totipotent cells in early embryos are progenitors of all stem cells and are capable of developing into a whole organism, including extraembryonic tissues such as placenta. Pluripotent cells in the inner cell mass (ICM) are the descendants of totipotent cells and can differentiate into any cell type of a body except extraembryonic tissues. The ability to contribute to chimeric animals upon reintroduction into host embryos is the key feature of murine totipotent and pluripotent cells. Here, we demonstrate that rhesus monkey embryonic stem cells (ESCs) and isolated ICMs fail to incorporate into host embryos and develop into chimeras. However, chimeric offspring were produced following aggregation of totipotent cells of the 4-cell embryos. These results provide insights into the species-specific nature of primate embryos and suggest that a chimera assay using pluripotent cells may not be feasible. PMID:22225614

  14. Chimerism and tolerance in transplantation.

    PubMed

    Starzl, Thomas E

    2004-10-01

    Studies in experimental models (1953-1956) demonstrated that acquired donor-specific allotolerance in immunologically immature or irradiated animals is strongly associated with donor leukocyte chimerism. Bone marrow transplantation in immune-deficient or cytoablated human recipients was a logical extension (1968). In contrast, clinical (1959) and then experimental organ transplantation was systematically accomplished in the apparent absence of leukocyte chimerism. Consequently, it was assumed for many years that success with organ and bone marrow transplantation involved fundamentally different mechanisms. With the discovery in 1992 of small numbers of donor leukocytes in the tissues or blood of long-surviving organ recipients (microchimerism), we concluded that organ engraftment was a form of leukocyte chimerism-dependent partial tolerance. In this initially controversial paradigm, alloengraftment after both kinds of transplantation is the product of a double immune reaction in which responses, each to the other, of coexisting donor and recipient immune systems results in variable reciprocal clonal exhaustion, followed by peripheral clonal deletion. It was proposed with Rolf Zinkernagel that the individual alloresponses are the equivalent of the MHC-restricted T cell recognition of, and host response to, intracellular parasites and that the mechanisms of immune responsiveness, or nonresponsiveness, are governed by the migration and localization of the respective antigens. Elucidation of the mechanisms of nonresponsiveness (clonal exhaustion-deletion and immune ignorance) and their regulation removed much of the historical mystique of transplantation. The insight was then applied to improve the timing and dosage of immunosuppression of current human transplant recipients.

  15. Antigenic and Cryo-Electron Microscopy Structure Analysis of a Chimeric Sapovirus Capsid

    PubMed Central

    Miyazaki, Naoyuki; Taylor, David W.

    2015-01-01

    ABSTRACT The capsid protein (VP1) of all caliciviruses forms an icosahedral particle with two principal domains, shell (S) and protruding (P) domains, which are connected via a flexible hinge region. The S domain forms a scaffold surrounding the nucleic acid, while the P domains form a homodimer that interacts with receptors. The P domain is further subdivided into two subdomains, termed P1 and P2. The P2 subdomain is likely an insertion in the P1 subdomain; consequently, the P domain is divided into the P1-1, P2, and P1-2 subdomains. In order to investigate capsid antigenicity, N-terminal (N-term)/S/P1-1 and P2/P1-2 were switched between two sapovirus genotypes GI.1 and GI.5. The chimeric VP1 constructs were expressed in insect cells and were shown to self-assemble into virus-like particles (VLPs) morphologically similar to the parental VLPs. Interestingly, the chimeric VLPs had higher levels of cross-reactivities to heterogeneous antisera than the parental VLPs. In order to better understand the antigenicity from a structural perspective, we determined an intermediate-resolution (8.5-Å) cryo-electron microscopy (cryo-EM) structure of a chimeric VLP and developed a VP1 homology model. The cryo-EM structure revealed that the P domain dimers were raised slightly (∼5 Å) above the S domain. The VP1 homology model allowed us predict the S domain (67–229) and P1-1 (229–280), P2 (281–447), and P1-2 (448–567) subdomains. Our results suggested that the raised P dimers might expose immunoreactive S/P1-1 subdomain epitopes. Consequently, the higher levels of cross-reactivities with the chimeric VLPs resulted from a combination of GI.1 and GI.5 epitopes. IMPORTANCE We developed sapovirus chimeric VP1 constructs and produced the chimeric VLPs in insect cells. We found that both chimeric VLPs had a higher level of cross-reactivity against heterogeneous VLP antisera than the parental VLPs. The cryo-EM structure of one chimeric VLP (Yokote/Mc114) was solved to 8.5-

  16. Transient mixed chimerism for allograft tolerance.

    PubMed

    Oura, Tetsu; Hotta, Kiyohiko; Cosimi, A B; Kawai, Tatsuo

    2015-04-01

    Mixed chimerism discovered in Freemartin cattle by Ray Owen 70 years ago paved the way for research on immune tolerance. Since his discovery, significant progress has been made in the effort to induce allograft tolerance via mixed chimerism in various murine models. However, induction of persistent mixed chimerism has proved to be extremely difficult in major histocompatibility complex mismatched humans. Chimerism induced in humans tends to either disappear or convert to full donor chimerism, depending on the intensity of the conditioning regimen. Nevertheless, our studies in both NHPs and humans have clearly demonstrated that renal allograft tolerance can be induced by transient mixed chimerism. Our studies have shown that solid organ allograft tolerance via transient mixed chimerism 1) requires induction of multilineage hematologic chimerism, 2) depends on peripheral regulatory mechanisms, rather than thymic deletion, for long-term maintenance, 3) is organ specific (kidney and lung but not heart allograft tolerance are feasible). A major advantage of tolerance induction via transient mixed chimerism is exclusion of the risk of graft-versus-host disease. Our ongoing studies are directed toward improving the consistency of tolerance induction, reducing the morbidity of the conditioning regimen, substituting clinically available agents, such as Belatacept for the now unavailable anti-CD2 monoclonal antibody, and extending the protocol to recipients of deceased donor allografts.

  17. Chimerism analysis following nonmyeloablative stem cell transplantation.

    PubMed

    Lion, Thomas; Watzinger, Franz

    2006-01-01

    Molecular monitoring of hematopoietic chimerism has become a routine diagnostic approach in patients after allogeneic stem cell transplantation. Chimerism testing permits the documentation and surveillance of engraftment and facilitates early detection of impending graft rejection. In patients transplanted for treatment of malignant hematological disorders, monitoring of chimerism can provide an early indication of incipient disease relapse. The investigation of chimerism has therefore become an indispensable tool for the management of patients during the posttransplant period. Growing use of nonmyeloablative conditioning, which is associated with prolonged duration of mixed hematopoietic chimerism, has further increased the clinical importance of chimerism analysis. At present, the most commonly used technical approaches to the investigation of chimerism include microsatellite analysis by polymerase chain reaction and, in the gender-mismatched transplant setting, fluorescence in situ hybridization analysis of sex chromosomes. The investigation of chimerism within specific leukocyte subsets isolated from peripheral blood or bone marrow samples by flow-sorting or magnetic bead-based techniques provides more specific information on processes underlying the dynamics of donor/recipient chimerism. Moreover, cell subset-specific analysis permits the assessment of impending complications at a significantly higher sensitivity, thus providing a basis for earlier treatment decisions.

  18. Theoretical design of a new chimeric protein for the treatment of breast cancer.

    PubMed

    Soleimani, Meysam; Mahnam, Karim; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other's function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part. PMID:27499788

  19. Theoretical design of a new chimeric protein for the treatment of breast cancer

    PubMed Central

    Soleimani, Meysam; Mahnam, Karim; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other’s function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part. PMID:27499788

  20. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs.

    PubMed

    Blignaut, Belinda; Visser, Nico; Theron, Jacques; Rieder, Elizabeth; Maree, Francois F

    2011-04-01

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species. PMID:21177923

  1. Nitrogenase and Homologs

    PubMed Central

    2014-01-01

    Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes. PMID:25491285

  2. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  3. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge.

    PubMed

    Maree, Francois F; Nsamba, Peninah; Mutowembwa, Paidamwoyo; Rotherham, Lia S; Esterhuysen, Jan; Scott, Katherine

    2015-06-01

    The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.

  4. Chimerism and xenotransplantation. New concepts.

    PubMed

    Starzl, T E; Rao, A S; Murase, N; Demetris, A J; Thomson, A; Fung, J J

    1999-02-01

    In both transplant and infectious circumstances, the immune response is governed by migration and localization of the antigen. If the antigenic epitopes of transgenic xenografts are sufficiently altered to avoid evoking the destructive force of innate immunity, the mechanisms of engraftment should be the same as those that permit the chimerism-dependent immunologic confrontation and resolution that is the basis of allograft acceptance. In addition to "humanizing" the epitopes, one of the unanswered questions is whether the species restriction of complement described in 1994 by Valdivia and colleagues also necessitates the introduction of human complement regulatory genes in animal donors. Because the liver is the principal or sole source of most complement components, the complement quickly is transformed to that of the donor after hepatic transplantation. Thus, the need for complementary regulatory transgenes may vary according to the kind of xenograft used. Much evidence shows that physiologically important peptides produced by xenografts (e.g., insulin, clotting factors, and enzymes) are incorporated into the metabolic machinery of the recipient body. To the extent that this is not true, xenotransplantation could result in the production of diseases that are analogous to inborn errors of metabolism. In the climate of pessimism that followed the failures of baboon to human liver xenotransplantation in 1992-1993, it seemed inconceivable that the use of even more discordant donors, such as the pig, could ever be seriously entertained; however, this preceded insight into the xenogeneic and allogeneic barriers that has brought transplantation infectious immunity to common ground. With this new insight and the increasing ease of producing transgenic donors, the goal of clinical xenotransplantation may not be so distant.

  5. Induction of tolerance through mixed chimerism.

    PubMed

    Sachs, David H; Kawai, Tatsuo; Sykes, Megan

    2014-01-01

    "Mixed chimerism" refers to a state in which the lymphohematopoietic system of the recipient of allogeneic hematopoietic stem cells comprises a mixture of host and donor cells. This state is usually attained through either bone marrow or mobilized peripheral blood stem cell transplantation. Although numerous treatment regimens have led to transplantation tolerance in mice, the induction of mixed chimerism is currently the only treatment modality that has been successfully extended to large animals and to the clinic. Here we describe and compare the use of mixed chimerism to establish transplantation tolerance in mice, pigs, monkeys, and in the clinic. We also attempt to correlate the mechanisms involved in achieving tolerance with the nature of the tolerance that has resulted in each case.

  6. Homology, convergence and parallelism.

    PubMed

    Ghiselin, Michael T

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  7. Homology, limbs, and genitalia.

    PubMed

    Minelli, Alessandro

    2002-01-01

    Similarities in genetic control between the main body axis and its appendages have been generally explained in terms of genetic co-option. In particular, arthropod and vertebrate appendages have been explained to invoke a common ancestor already provided with patterned body outgrowths or independent recruitment in limb patterning of genes or genetic cassettes originally used for purposes other than axis patterning. An alternative explanation is that body appendages, including genitalia, are evolutionarily divergent duplicates (paramorphs) of the main body axis. However, are all metazoan limbs and genitalia homologous? The concept of body appendages as paramorphs of the main body axis eliminates the requirement for the last common ancestor of limb-bearing animals to have been provided with limbs. Moreover, the possibility for an animal to express complex organs ectopically demonstrates that positional and special homology may be ontogenetically and evolutionarily uncoupled. To assess the homology of animal genitalia, we need to take into account three different sets of mechanisms, all contributing to their positional and/or special homology and respectively involved (1) in the patterning of themain body axis, (2) in axis duplication, followed by limb patterning mechanisms diverging away from those still patterning the main body axis (axis paramorphism), and (3) in controlling the specification of sexual/genital features, which often, but not necessarily, come into play by modifying already developed and patterned body appendages. This analysis demonstrates that a combinatorial approach to homology helps disentangling phylogenetic and ontogenetic layers of homology.

  8. Chimeric Measles Viruses with a Foreign Envelope

    PubMed Central

    Spielhofer, Pius; Bächi, Thomas; Fehr, Thomas; Christiansen, Gudrun; Cattaneo, Roberto; Kaelin, Karin; Billeter, Martin A.; Naim, Hussein Y.

    1998-01-01

    Measles virus (MV) and vesicular stomatitis virus (VSV) are both members of the Mononegavirales but are only distantly related. We generated two genetically stable chimeric viruses. In MGV, the reading frames of the MV envelope glycoproteins H and F were substituted by a single reading frame encoding the VSV G glycoprotein; MG/FV is similar but encodes a G/F hybrid in which the VSV G cytoplasmic tail was replaced by that of MV F. In contrast to MG/FV, MGV virions do not contain the MV matrix (M) protein. This demonstrates that virus assembly is possible in the absence of M; conversely, the cytoplasmic domain of F allows incorporation of M and enhances assembly. The formation of chimeric viruses was substantially delayed and the titers obtained were reduced about 50-fold in comparison to standard MV. In the novel chimeras, transcription and replication are mediated by the MV ribonucleoproteins but the envelope glycoproteins dictate the host range. Mice immunized with the chimeric viruses were protected against lethal doses of wild-type VSV. These findings suggest that it is feasible to construct MV variants bearing a variety of different envelopes for use as vaccines or for gene therapeutic purposes. PMID:9499071

  9. Manufacture of diploid/tetraploid chimeric mice.

    PubMed Central

    Lu, T Y; Markert, C L

    1980-01-01

    Tetraploid mouse embryos were produced by cytochalasin B treatment. These embryos usually die before completion of embryonic development and are abnormal morphologically and physiologically. The tetraploid embryos can be rescued to develop to maturity by aggregating them with normal diploid embryos to produce diploid/tetraploid chimeric mice. The diploid/tetraploid chimeric embryos are frequently abnormal: the larger the proportion of tetraploid cells, the greater the abnormality. By karyotype analysis and by the use of appropriate pigment cell markers, we have demonstrated that two of our surviving chimeras are in fact diploid/tetraploid chimeras. One surviving chimera is retarded in growth and displays neurological abnormalities. The coat color chimerism suggests that this chimera is about 50% tetraploid. Another chimera with about 10% tetraploid pigment cells in the coat is only slightly retarded in growth and is a fertile male. Tetraploid cells are distributed in many, if not all, tissues of embryos but evidently are physiologically inadequate to support completely normal development and function in the absence of substantial numbers of normal diploid cells. Images PMID:6934528

  10. Detection and quantification of chimerism by droplet digital PCR.

    PubMed

    George, David; Czech, Juliann; John, Bobby; Yu, Min; Jennings, Lawrence J

    2013-01-01

    Accurate quantification of chimerism and microchimerism is proving to be increasingly valuable for hematopoietic cell transplantation as well as non-transplant conditions. However, methods that are available to quantify low-level chimerism lack accuracy. Therefore, we developed and validated a method for quantifying chimerism based on digital PCR technology. We demonstrate accurate quantification that far exceeds what is possible with analog qPCR down to 0.01% with the potential to go even lower. Also, this method is inherently more informative than qPCR. We expect the advantages of digital PCR will make it the preferred method for chimerism analysis.

  11. Regional atmospheric composition modeling with CHIMERE

    NASA Astrophysics Data System (ADS)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  12. Development of a single probe for documentation of chimerism following bone marrow transplantation.

    PubMed Central

    Yam, P; Petz, L D; Ali, S; Stock, A D; Wallace, R B

    1987-01-01

    Although numerous genetic markers are available for studying chimerism after bone marrow transplantation (BMT), there remains a need for a practical and highly informative method that is applicable in the early posttransplantation period. Using DNA restriction-fragment-length polymorphisms (RFLPs), we have evaluated the feasibility of developing a single synthetic oligonucleotide probe to study post-BMT chimerism. We have thus tested three candidate probes, termed O-3315-32, O-3315-80, and O-AY-29, that are homologous to tandemly repetitive sequences. Our results demonstrated donor-specific and recipient-specific fragments in 11 of 11 HLA-matched sibling pairs tested using probes O-3315-32 and O-3315-80. When probe O-AY-29 was used, 14 of 17 sibling pairs showed both donor and recipient markers, one had only a recipient marker, and two were identical. We showed that each of the three synthetic probes was effective in documenting donor marrow engraftment, mixed hematopoietic chimerism, the patient's pre-BMT phenotype (by using cultured skin fibroblasts obtained after BMT), and the origin of the malignant hematopoietic cells (i.e., of donor or recipient origin) in patients who developed recurrent hematologic malignancy following BMT. Compared with the use of cloned genomic probes, there are several important advantages to the use of synthetic oligonucleotide probes in studying post-BMT chimerism. Synthetic probes have absolute hybridization specificity and can be designed to suit the purposes of an individual study, since they have adjustable specificity that can be altered by changes in the length of the probe and by changes in the hybridization temperature. A single synthetic probe analogous to several highly polymorphic loci can have a polymorphism information content sufficiently high so that all but a small percentage of BMT patients could be followed easily; for example, if a probe were complementary to three highly polymorphic unlinked loci, it would

  13. Chimerism in monochorionic dizygotic twins: case study and review.

    PubMed

    Chen, Kristen; Chmait, Ramen H; Vanderbilt, Douglas; Wu, Samuel; Randolph, Linda

    2013-07-01

    Chimerism occurs when an organism contains cells derived from more than one distinct zygote. We focus on monochorionic dizygotic twin blood chimerism, and particularly twin-twin transfusion syndrome in such pregnancies. For years, researchers have understood chimerism to be a common phenomenon in cattle. Although, this review will not delve deeply into animal chimerism, an understanding of chimerism in the animal world can provide clues regarding health implications for human chimeras. This report serves two purposes: an update and assessment of the twins we reported previously in 2010 [Assaf et al., 2010] and a review on dizygotic monochorionic chimeric twins. First, our updated assessment of the twins shows no identifiable regression of Müllerian sex derivatives in the female, and normal neurodevelopment was documented in both. Our research has suggested several key points; one that blood chimerism persists from fetal life to at least age two years. Second, chimerism in humans is not as rare as previously thought, although it has been studied only recently. Third, assisted reproductive technologies appear to increase the risk of monochorionic dizygotic twin pregnancies.

  14. Allosteric regulation and substrate channeling in multifunctional pyrimidine biosynthetic complexes: analysis of isolated domains and yeast-mammalian chimeric proteins.

    PubMed

    Serre, V; Guy, H; Liu, X; Penverne, B; Hervé, G; Evans, D

    1998-08-14

    The initial steps of pyrimidine biosynthesis in yeast and mammals are catalyzed by large multifunctional proteins of similar size, sequence and domain structure, but appreciable functional differences. The mammalian protein, CAD, has carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities. The yeast protein, ura2, catalyzes the first two reactions and has a domain, called pDHO, which is homologous to mammalian DHOase, but is inactive. In CAD, only CPSase is regulated, whereas both CPSase and ATCase in the yeast protein are inhibited by UTP. These functional differences were explored by constructing a series of mammalian yeast chimeras. The isolated ATCase domain is catalytically active, but is not regulated. The inclusion of the yeast sequences homologous to the mammalian regulatory domain (B3) and the intervening pDHO domain did not confer regulation. Chimeric proteins in which the homologous regions of the mammalian protein were replaced by the corresponding domains of ura2 exhibited full catalytic activity, as well regulation of the CPSase, but not the ATCase, activities. The yeast B3 subdomain confers UTP sensitivity on the mammalian CPSase, suggesting that it is the locus of CPSase regulation in ura2. Taken together, these results indicate that there are regulatory site(s) in ura2. Channeling is impaired in all the chimeric complexes and completely abolished in the chimera in which the pDHO domain of yeast is replaced by the mammalian DHO domain. PMID:9698553

  15. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies.

    PubMed Central

    Luo, L; Li, Y; Cannon, P M; Kim, S; Kang, C Y

    1992-01-01

    A 41-kDa unprocessed human immunodeficiency virus 2 (HIV-2) gag precursor protein that has a deletion of a portion of the viral protease assembles as virus-like particles by budding through the cytoplasmic membrane of recombinant baculovirus-infected insect cells. We have constructed six different combinations of chimeric genes by coupling the truncated HIV-2 gag gene to the neutralizing domain (V3) or the neutralizing and the CD4 binding domains (V3+CD4BD) of gp120 env gene sequences from HIV-1 or HIV-2. The env gene sequences were inserted either into the middle of the gag gene or at the 3' terminus of the gag gene. Virus-like particles were formed by chimeric gene products only when the env gene sequences were linked to the 3' terminus of the gag gene. Insertion of env gene sequence in the middle of the gag gene resulted in high-level chimeric gene expression but without the formation of virus-like particles. Three different chimeric genes [gag gene with HIV-1 V3 (1V3), gag gene with HIV-2 V3 (2V3), and gag gene with HIV-2 V3+CD4BD (2V3+CD4BD)] formed virus-like particles that were secreted into the cell culture medium. In contrast, the HIV-1 V3+CD4BD/HIV-2 gag construct did not form virus-like particles. The chimeric gag-env particles had spherical morphology and the size was slightly larger than that of the gag particles, but the chimeric particles were similar to the mature HIV particles. Western blot analysis showed that the gag-env chimeric proteins were recognized by antibodies in HIV-positive human serum and rabbit anti-gp120 serum. Rabbit anti-gag 1V3 and anti-gag 2V3 sera reacted with authentic gp120 of HIV-1 and HIV-2, respectively, and neutralized homologous HIV infectivity. Our results show that precursor gag protein has potential as a carrier for the presentation of foreign epitopes in good immunological context. The gag protein is highly immunogenic and has the ability to carry large foreign inserts; as such, it offers an attractive approach for

  16. Homology, homoplasy, novelty, and behavior.

    PubMed

    Hall, Brian K

    2013-01-01

    Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous). PMID:22711423

  17. Chimerism of buccal membrane cells in a monochorionic dizygotic twin.

    PubMed

    Fumoto, Seiko; Hosoi, Kenichiro; Ohnishi, Hiroaki; Hoshina, Hiroaki; Yan, Kunimasa; Saji, Hiroh; Oka, Akira

    2014-04-01

    No monochorionic dizygotic twins (MCDZTs) with cellular chimerism involving cells other than blood cells have been reported in the literature to date. Here we report a probable first case of MCDZTs with buccal cell chimerism. A 32-year-old woman conceived twins by in vitro fertilization by using 2 cryopreserved blastocysts that were transferred into her uterus. An ultrasound scan at 8 weeks' gestation showed signs indicative of monochorionic twins. A healthy boy and a healthy girl were born, showing no sexual ambiguity. Cytogenetic analyses and microsatellite studies demonstrated chimerism in blood cells of both twins. Notably, repeated fluorescence in situ hybridization and microsatellite studies revealed chimerism in buccal cells obtained from 1 of the twins. Although the mechanism through which buccal cell chimerism was generated remains to be elucidated, ectopic differentiation of chimeric hematopoietic cells that migrated to the buccal membrane or the cellular transfer between the 2 embryos at the early stage of development might be responsible for the phenomenon. This hypothesis raises an interesting issue regarding embryonic development and cellular differentiation into organs during fetal development. Given the possibility of cryptic chimerism in various organs including gonadal tissues in MCDZTs, close observation will be required to determine whether complications develop in the course of the patients' growth.

  18. Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes.

    PubMed Central

    Díaz, E; López, R; García, J L

    1990-01-01

    Pneumococcal peptidoglycan amidase (N-acetylmuramoyl-L-alanine amidase, EC 3.5.1.28) and phage CPL1 lysozyme degrade a common substrate (choline-containing pneumococcal cell walls); the former hydrolyzes the bond between muramic acid and alanine, whereas the latter breaks down the linkage between muramic acid and glucosamine. The amino acid sequences of their C-terminal domains are homologous. Chimeric genes were constructed by site-directed mutagenesis: a unique SnaBI restriction site in the cpl1 gene, coding for the phage lysozyme, was introduced at a location equivalent to the SnaBI site present in the lytA gene, which codes for the pneumococcal amidase. The resulting genes expressed lytic activities at levels similar to those of the parental genes. The gene products, which have been purified to electrophoretical homogeneity, exhibited unusual combined biochemical properties--e.g., by exchange of protein domains, we have switched the regulatory properties of these enzymes without altering their catalytic activities. Chimeric gene construction in Streptococcus pneumoniae and its bacteriophages is an excellent model to study the modular organization of genes and proteins and to help to establish evolutionary relationships between phage and bacteria. These constructions provide an experimental approach to the molecular processes involved in cassette recruitment during evolution and contribute support to the concept of bacteria as adaptable chimeras. Images PMID:1978320

  19. Complex chimerism: pregnancy after solid organ transplantation.

    PubMed

    Ma, Kimberly K; Petroff, Margaret G; Coscia, Lisa A; Armenti, Vincent T; Adams Waldorf, Kristina M

    2013-01-01

    Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant.

  20. Functional participation of a nifH-arsA2 chimeric fusion gene in arsenic reduction by Escherichia coli

    SciTech Connect

    Lahiri, Surobhi; Pulakat, Lakshmi; Gavini, Nara

    2008-04-04

    The NifH (dimer) and ArsA proteins are structural homologs and share common motifs like nucleotide-binding domains, signal transduction domains and also possible similar metal center ligands. Given the similarity between two proteins, we investigated if the NifH protein from Azotobacter vinelandii could functionally substitute for the ArsA1 half of the ArsA protein of Escherichia coli. The chimeric NifH-ArsA2 protein was expressed and detected in the E. coli strain by Western blotting. Growth comparisons of E. coli strains containing plasmids encoding for complete ArsA, partial ArsA (ArsA2) or chimeric ArsA (NifH-ArsA2) in media with increasing sodium arsenite concentrations (0-5 mM) showed that the chimeric NifH-ArsA2 could substitute for the ArsA. This functional complementation demonstrated the strong conservation of essential domains that have been maintained in NifH and ArsA even after their divergence to perform varied functions.

  1. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    PubMed

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  2. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    PubMed

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  3. Evolving the Concept of Homology

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Miller, Jon S.

    2009-01-01

    Understanding homology is fundamental to learning about evolution. The present study shows an exercise that can be varied in complexity, for which students compile research illustrating the fate of homologous fish skull elements, and assemble a mural to serve as a learning aid. The skull of the most primitive living Actinopterygian (bony fish),…

  4. Does inversion abolish the left chimeric face processing advantage?

    PubMed

    Butler, Stephen H; Harvey, Monika

    2005-12-19

    Experiments using chimeric stimuli have shown that the right hemisphere is more influential in processing facial information. Here, again, we found clear evidence that study participants used the information from the left side of the face to inform their gender decisions when chimeric male/female, female/male stimuli were presented. Most interestingly though, this effect was not only present for upright faces but also for inverted (flipped) faces (although the effect was significantly reduced). We propose that the chimeric bias effects found here argue against the idea that inversion destroys the right hemisphere superiority for faces. If this was indeed the case, flipping the chimeric faces should have resulted in a loss of the left face bias. This was not the case. PMID:16317340

  5. Stable mixed chimerism and tolerance to human organ transplants.

    PubMed

    Strober, Samuel

    2015-04-01

    Tolerance to combined kidney and hematopoietic cell transplant has been achieved in humans after establishment of mixed chimerism allowing for the withdrawal of immunosuppressive drugs. The seminal contributions of Ray Owen provided the scientific basis for the human protocol.

  6. Chimeric CYP21A1P/CYP21A2 genes identified in Czech patients with congenital adrenal hyperplasia.

    PubMed

    Vrzalová, Zuzana; Hrubá, Zuzana; Hrabincová, Eva Sťahlová; Vrábelová, Slávka; Votava, Felix; Koloušková, Stanislava; Fajkusová, Lenka

    2011-01-01

    Congenital adrenal hyperplasia (CAH) comprises a group of autosomal recessive disorders caused by an enzymatic deficiency which impairs the biosynthesis of cortisol and, in the majority of severe cases, also the biosynthesis of aldosterone. Approximately 95% of all CAH cases are caused by mutations in the steroid 21-hydroxylase gene (CYP21A2). The CYP21A2 gene and its inactive pseudogene (CYP21A1P) are located within the HLA class III region of the major histocompatibility complex (MHC) locus on chromosome 6p21.3. In this study, we describe chimeric CYP21A1P/CYP21A2 genes detected in our patients with 21-hydroxylase deficiency (21OHD). Chimeric CYP21A1P/CYP21A2 genes were present in 171 out of 508 mutated CYP21A2 alleles (33.8%). We detected four types of chimeric CYP21A1P/CYP21A2 genes: three of them have been described previously as CH-1, CH-3, CH-4, and one type is novel. The novel chimeric gene, termed CH-7, was detected in 21.4% of the mutant alleles. Possible causes of CYP21A1P/CYP21A2 formation are associated with 1) high recombination rate in the MHC locus, 2) high recombination rate between highly homologous genes and pseudogenes in the CYP21 gene area, and 3) the existence of chi-like sequences and repetitive minisatellite consensus sequences in CYP21A2 and CYP21A1P which play a role in promoting genetic recombination.

  7. Chimerism testing by quantitative PCR using Indel markers.

    PubMed

    Gendzekhadze, Ketevan; Gaidulis, Laima; Senitzer, David

    2013-01-01

    Engraftment monitoring is critical for patients after Hematopoietic Stem Cell Transplantation (HSCT). Complete donor chimerism is the goal; therefore, early detection of rejection and relapse is crucial for guiding the patient post HSCT treatment. Quantitative PCR for chimerism testing has been reported to be highly sensitive. In this chapter we discuss the quantitative PCR (qPCR) method using 34 Indel (Insertion and Deletion) genetic markers spread over 20 different chromosomes.

  8. Quantification of mixed chimerism allows early therapeutic interventions

    PubMed Central

    Merzoni, Jóice; Ewald, Gisele Menezes; Paz, Alessandra Aparecida; Daudt, Liane Esteves; Jobim, Luiz Fernando Job

    2014-01-01

    Hematopoietic stem cell transplantation is the curative option for patients with myelodysplastic syndrome; however, it requires a long post-transplantation follow-up. A 53-year-old woman with a diagnosis of myelodysplastic syndrome underwent related donor allogeneic hematopoietic stem cell transplantation in July 2006. Three months after transplantation, a comparative short tandem repeat analysis between donor and recipient revealed full chimerism, indicating complete, healthy bone marrow reconstitution. Three years and ten months after hematopoietic stem cell transplantation, the patient developed leukopenia and thrombocytopenia. Another short tandem repeat analysis was carried out which showed mixed chimerism (52.62%), indicating relapsed disease. A donor lymphocyte infusion was administered. The purpose of donor lymphocyte infusion is to induce a graft-versus-leukemia effect; in fact, this donor's lymphocyte infusion induced full chimerism. Successive short tandem repeat analyses were performed as part of post-transplantation follow-up, and in July 2010, one such analysis again showed mixed chimerism (64.25%). Based on this finding, a second donor lymphocyte infusion was administered, but failed to eradicate the disease. In September 2011, the patient presented with relapsed disease, and a second related donor allogeneic hematopoietic stem cell transplantation was performed. Subsequent short tandem repeat analyses revealed full chimerism, indicating complete bone marrow reconstitution. We conclude that quantitative detection of mixed chimerism is an important diagnostic tool that can guide early therapeutic intervention. PMID:25305171

  9. T-and B-lymphocyte chimerism in the marmoset.

    PubMed Central

    Niblack, G D; Kateley, J R; Gengozian, N

    1977-01-01

    Marmosets are natural blood chimeras, this condition resulting from the high frequency of fraternal twinning and the consistent development of placental vasular anastomoses between the two embryos. Identification of chimerism by sex-chromosome analysis of cultured blood lymphocytes provided a means of determining the proportion of chimerism among T and B lymphocytes. Peripheral blood lymphocytes were enriched for T or B cells by filtration through a nylon column (yields greater than 95 per cent T-cells) or inactivation of T lymphocytes by treatment with a goat anti-marmoset thymocyte antiserum in the presence of complement (yeilds greater than 95 per cent B cells). Mitogenic stimulation of these separated, enriched cell populations yielded metaphase plates which could be scored for percentage male and female cells. Tests on five different blood chimeras showed the T- and B-lymphocyte chimerism to be the same. Stimulation of blood lymphocytes with cells from another species of marmoset in a mixed lymphocyte culture test revealed the chimeric T-cell response (i.e., host and co-twin cells) to be similar to that obtained with a mitogenic lectin. The demonstration of equivalent T- and B-cell chimerism in these animals suggests derivation of these cells from a common stem cell pool and the response of both T-cell populations to an antigenic stimulus in proportions similar to their percentage chimerism suggests complete immunologic tolerance exists in this species for co-twin histocompatibility antigens. PMID:139360

  10. The EuroChimerism concept for a standardized approach to chimerism analysis after allogeneic stem cell transplantation.

    PubMed

    Lion, T; Watzinger, F; Preuner, S; Kreyenberg, H; Tilanus, M; de Weger, R; van Loon, J; de Vries, L; Cavé, H; Acquaviva, C; Lawler, M; Crampe, M; Serra, A; Saglio, B; Colnaghi, F; Biondi, A; van Dongen, J J M; van der Burg, M; Gonzalez, M; Alcoceba, M; Barbany, G; Hermanson, M; Roosnek, E; Steward, C; Harvey, J; Frommlet, F; Bader, P

    2012-08-01

    Hematopoietic stem cell transplantation is becoming an increasingly important approach to treatment of different malignant and non-malignant disorders. There is thus growing demand for diagnostic assays permitting the surveillance of donor/recipient chimerism posttransplant. Current techniques are heterogeneous, rendering uniform evaluation and comparison of diagnostic results between centers difficult. Leading laboratories from 10 European countries have therefore performed a collaborative study supported by a European grant, the EuroChimerism Concerted Action, with the aim to develop a standardized diagnostic methodology for the detection and monitoring of chimerism in patients undergoing allogeneic stem cell transplantation. Following extensive analysis of a large set of microsatellite/short tandem repeat (STR) loci, the EuroChimerism (EUC) panel comprising 13 STR markers was established with the aim to optimally meet the specific requirements of quantitative chimerism analysis. Based on highly stringent selection criteria, the EUC panel provides multiple informative markers in any transplant setting. The standardized STR-PCR tests permit detection of donor- or recipient-derived cells at a sensitivity ranging between 0.8 and 1.6%. Moreover, the EUC assay facilitates accurate and reproducible quantification of donor and recipient hematopoietic cells. Wide use of the European-harmonized protocol for chimerism analysis presented will provide a basis for optimal diagnostic support and timely treatment decisions.

  11. Parallel evolution of chimeric fusion genes.

    PubMed

    Jones, Corbin D; Begun, David J

    2005-08-01

    To understand how novel functions arise, we must identify common patterns and mechanisms shaping the evolution of new genes. Here, we take advantage of data from three Drosophila genes, jingwei, Adh-Finnegan, and Adh-Twain, to find evolutionary patterns and mechanisms governing the evolution of new genes. All three of these genes are independently derived from Adh, which enabled us to use the extensive literature on Adh in Drosophila to guide our analyses. We discovered a fundamental similarity in the temporal, spatial, and types of amino acid changes that occurred. All three genes underwent rapid adaptive amino acid evolution shortly after they were formed, followed by later quiescence and functional constraint. These genes also show striking parallels in which amino acids change in the Adh region. We showed that these early changes tend to occur at amino acid residues that seldom, if ever, evolve in Drosophila Adh. Changes at these slowly evolving sites are usually associated with loss of function or hypomorphic mutations in Drosophila melanogaster. Our data indicate that shifting away from ancestral functions may be a critical step early in the evolution of chimeric fusion genes. We suggest that the patterns we observed are both general and predictive.

  12. Chimeric antigen receptor therapy for cancer.

    PubMed

    Barrett, David M; Singh, Nathan; Porter, David L; Grupp, Stephan A; June, Carl H

    2014-01-01

    Improved outcomes for patients with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, synthetic biology, and cell-processing technologies has paved the way for clinical applications of chimeric antigen receptor-based therapies. This new form of targeted immunotherapy merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and on elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of cancer.

  13. Engineering bacterial microcompartment shells: chimeric shell proteins and chimeric carboxysome shells.

    PubMed

    Cai, Fei; Sutter, Markus; Bernstein, Susan L; Kinney, James N; Kerfeld, Cheryl A

    2015-04-17

    Bacterial microcompartments (BMCs) are self-assembling organelles composed entirely of protein. Depending on the enzymes they encapsulate, BMCs function in either inorganic carbon fixation (carboxysomes) or organic carbon utilization (metabolosomes). The hallmark feature of all BMCs is a selectively permeable shell formed by multiple paralogous proteins, each proposed to confer specific flux characteristics. Gene clusters encoding diverse BMCs are distributed broadly across bacterial phyla, providing a rich variety of building blocks with a predicted range of permeability properties. In theory, shell permeability can be engineered by modifying residues flanking the pores (symmetry axes) of hexameric shell proteins or by combining shell proteins from different types of BMCs into chimeric shells. We undertook both approaches to altering shell properties using the carboxysome as a model system. There are two types of carboxysomes, α and β. In both, the predominant shell protein(s) contain a single copy of the BMC domain (pfam00936), but they are significantly different in primary structure. Indeed, phylogenetic analysis shows that the two types of carboxysome shell proteins are more similar to their counterparts in metabolosomes than to each other. We solved high resolution crystal structures of the major shell proteins, CsoS1 and CcmK2, and the presumed minor shell protein CcmK4, representing both types of cyanobacterial carboxysomes and then tested the interchangeability. The in vivo study presented here confirms that both engineering pores to mimic those of other shell proteins and the construction of chimeric shells is feasible.

  14. Object-oriented persistent homology

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  15. Steroid metabolism in chimeric mice with humanized liver.

    PubMed

    Lootens, Leen; Van Eenoo, Peter; Meuleman, Philip; Pozo, Oscar J; Van Renterghem, Pieter; Leroux-Roels, Geert; Delbeke, Frans T

    2009-11-01

    Anabolic androgenic steroids are considered to be doping agents and are prohibited in sports. Their metabolism needs to be elucidated to allow for urinary detection by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Steroid metabolism was assessed using uPA(+/+) SCID mice with humanized livers (chimeric mice). This study presents the results of 19-norandrost-4-ene-3,17-dione (19-norAD) administration to these in vivo mice. As in humans, 19-norandrosterone and 19-noretiocholanolone are the major detectable metabolites of 19-norAD in the urine of chimeric mice.A summary is given of the metabolic pathways found in chimeric mice after administration of three model steroid compounds (methandienone, androst-4-ene-3,17-dione and 19-norandrost-4-ene-3,17-dione). From these studies we can conclude that all major metabolic pathways for anabolic steroids in humans are present in the chimeric mouse. It is hoped that, in future, this promising chimeric mouse model might assist the discovery of new and possible longer detectable metabolites of (designer) steroids. PMID:20355169

  16. Assessment of chimerism in epithelial cancers in transplanted patients.

    PubMed

    Leboeuf, Christophe; Ratajczak, Philippe; Vérine, Jérôme; Elbouchtaoui, Morad; Plassa, François; Legrès, Luc; Ferreira, Irmine; Sandid, Wissam; Varna, Mariana; Bousquet, Guilhem; Verneuil, Laurence; Janin, Anne

    2014-01-01

    Cancer is now the most severe complication in the long term in transplant recipients. As most solid-organ or hematopoietic stem-cell transplantations are allogeneic, chimerism studies can be performed on cancers occurring in recipients. We summarize here the different methods used to study chimerism in cancers developing in allogeneic-transplant recipients, analyze their respective advantages and report the main results obtained from these studies. Chimerism analyses of cancers in transplant recipients require methods suited to tissue samples. In the case of gender-mismatched transplantation, the XY chromosomes can be explored using fluorescent in situ hybridization on whole-tissue sections or Y-sequence-specific PCR after the laser microdissection of tumor cells. For cancers occurring after gender-matched transplantation, laser microdissection of tumor cells enables studies of microsatellite markers and high-resolution melting analysis of mitochondrial DNA on genes with marked polymorphism, provided these are different in the donor and the recipient. The results of different studies address the cancers that develop in both recipients and in transplants. The presence of chimeric cells in these two types of cancer implies an exchange of progenitor/stem-cells between transplant and recipient, and the plasticity of these progenitor/stem-cells contributes to epithelial cancers. The presence of chimeric cells in concomitant cancers and preneoplastic lesions implies that the oncogenesis of these cancers progresses through a multistep process.

  17. Effect of reverse chimerism on rejection in clinical transplantation.

    PubMed

    Bolado, Pedro; Landin, Luis

    2013-11-01

    Chimerism may enable allografts to survive when immunosuppressive therapy is administered at low levels or is even absent. Reverse chimerism (RC) is focused on intragraft chimerism that repopulates the allograft with cells of recipient origin. We aimed to identify and analyze current clinical evidence on RC and the presence of endothelial RC and tissue-specific RC. A total of 33 clinical reports on cardiac, kidney, liver, and lung transplants published between 1972 and 2012 that focused on RC were included in a systematic review. Liver allografts presented with the highest percentage of endothelial RC and lung allografts by far the lowest. Tissue-specific RC was present in most of the recipients, but at very low levels. There were also cardiac and kidney allografts with chimerism, but the functionality of the cells of recipient origin was questionable. We were unable to determine whether RC was a trigger for or a result of acute rejection. Further clinical research should focus on outcomes to evaluate the clinical relevance of this form of chimerism in transplantation.

  18. Mixed chimerism and split tolerance: mechanisms and clinical correlations.

    PubMed

    Al-Adra, David P; Anderson, Colin C

    2011-01-01

    Establishing hematopoietic mixed chimerism can lead to donor-specific tolerance to transplanted organs and may eliminate the need for long-term immunosuppressive therapy, while also preventing chronic rejection. In this review, we discuss central and peripheral mechanisms of chimerism induced tolerance. However, even in the long-lasting presence of a donor organ or donor hematopoietic cells, some allogeneic tissues from the same donor can be rejected; a phenomenon known as split tolerance. With the current goal of creating mixed chimeras using clinically feasible amounts of donor bone marrow and with minimal conditioning, split tolerance may become more prevalent and its mechanisms need to be explored. Some predisposing factors that may increase the likelihood of split tolerance are immunogenicity of the graft, certain donor-recipient combinations, prior sensitization, location and type of graft and minimal conditioning chimerism induction protocols. Additionally, split tolerance may occur due to a differential susceptibility of various types of tissues to rejection. The mechanisms involved in a tissue's differential susceptibility to rejection include the presence of polymorphic tissue-specific antigens and variable sensitivity to indirect pathway effector mechanisms. Finally, we review the clinical attempts at allograft tolerance through the induction of chimerism; studies that are revealing the complex relationship between chimerism and tolerance. This relationship often displays split tolerance, and further research into its mechanisms is warranted.

  19. Porcine induced pluripotent stem cells produce chimeric offspring.

    PubMed

    West, Franklin D; Terlouw, Steve L; Kwon, Dae Jin; Mumaw, Jennifer L; Dhara, Sujoy K; Hasneen, Kowser; Dobrinsky, John R; Stice, Steven L

    2010-08-01

    Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.

  20. The semaphorontic view of homology

    PubMed Central

    Assis, Leandro C.S.; Rieppel, Olivier

    2015-01-01

    ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and

  1. Facilitating cells: Translation of hematopoietic chimerism to achieve clinical tolerance.

    PubMed

    Ildstad, Suzanne T; Leventhal, Joseph; Wen, Yujie; Yolcu, Esma

    2015-04-01

    For over 50 y the association between hematopoietic chimerism and tolerance has been recognized. This originated with the brilliant observation by Dr. Ray Owen that freemartin cattle twins that shared a common placental blood supply were red blood cell chimeras, which led to the discovery that hematopoietic chimerism resulted in actively acquired tolerance. This was first confirmed in neonatal mice by Medawar et al. and subsequently in adult rodents. Fifty years later this concept has been successfully translated to solid organ transplant recipients in the clinic. The field is new, but cell-based therapies are being used with increasing frequency to induce tolerance and immunomodulation. The future is bright. This review focuses on chimerism and tolerance: past, present and prospects for the future.

  2. Symptotic detection of chimerism: Y does it matter?

    PubMed

    Geck, Peter

    2013-01-01

    Microchimerism (MC), transplacental acquisition of allogeneic cells from the mother (maternofetal MC) or from the fetus (fetomaternal MC) has been in the focus of research recently. Amplicons using Y-chromosome specific SRY and DYS14 sequences have been used as markers to trace cells from a male fetus in the mother. The sensitivity of these markers in formaldehyde fixed paraffin embedded samples, however, is less than optimal. To study chimerism in breast cancer we took advantage of the evolutionary history of the Y chromosome and designed amplicons on gene repeats to generate additive PCR signals. The increased sensitivity detected high incidence of male chimerism in normal breast tissues. We also showed correlation with protection from cancer with unique quantitative biology. Accumulating data from biology and medicine indicate that natural chimerism is astonishingly frequent and may affect human conditions. We hypothesize that it has significant evolutionary ramifications as well.

  3. Chimerism in the immunohematology laboratory in the molecular biology era.

    PubMed

    Bluth, Martin H; Reid, Marion E; Manny, Noga

    2007-04-01

    Dual or multiple cell populations, induced by chimeras, have been the subject of many studies. This long-standing fascination with chimeras has revealed a good deal of knowledge about human inheritance. Although historically most chimeras were caused by natural events, certain current medical intervention therapies are increasing the number of situations that can lead to a mixed cell population, that is, the chimeric condition, in humans. Medical therapies such as transfusion, stem cell transplantation, kidney transplantation, and artificial insemination induce temporary and sometimes permanent chimeras. Such natural or therapeutically induced presentations of chimerism can present challenging issues to the clinical immunohematology laboratory with regard to interpretation of results and subsequent patient management. The purpose of this review was to highlight some of these chimeric states and hypothesize how testing DNA from various tissues can cause apparent discrepancies between phenotype and genotype results.

  4. Chimeric antigen receptors: driving immunology towards synthetic biology.

    PubMed

    Sadelain, Michel

    2016-08-01

    The advent of second generation chimeric antigen receptors and the CD19 paradigm have ushered a new therapeutic modality in oncology. In contrast to earlier forms of adoptive cell therapy, which were based on the isolation and expansion of naturally occurring T cells, CAR therapy is based on the design and manufacture of engineered T cells with optimized properties. A new armamentarium, comprising not only CARs but also chimeric costimulatory receptors, chimeric cytokine receptors, inhibitory receptors and synthetic Notch receptors, expressed in naïve, central memory or stem cell-like memory T cells, is being developed for clinical use in a wide range of cancers. Immunological principles are thus finding a new purpose thanks to advances in genetic engineering, synthetic biology and cell manufacturing sciences. PMID:27372731

  5. Chimeric antigen receptors: driving immunology towards synthetic biology.

    PubMed

    Sadelain, Michel

    2016-08-01

    The advent of second generation chimeric antigen receptors and the CD19 paradigm have ushered a new therapeutic modality in oncology. In contrast to earlier forms of adoptive cell therapy, which were based on the isolation and expansion of naturally occurring T cells, CAR therapy is based on the design and manufacture of engineered T cells with optimized properties. A new armamentarium, comprising not only CARs but also chimeric costimulatory receptors, chimeric cytokine receptors, inhibitory receptors and synthetic Notch receptors, expressed in naïve, central memory or stem cell-like memory T cells, is being developed for clinical use in a wide range of cancers. Immunological principles are thus finding a new purpose thanks to advances in genetic engineering, synthetic biology and cell manufacturing sciences.

  6. Mutants of Streptomyces roseosporus that express enhanced recombination within partially homologous genes.

    PubMed

    Hosted, T J; Baltz, R H

    1996-10-01

    Streptomyces roseosporus mutants that express enhanced recombination between partially homologous (homeologous) sequences were isolated by selection for recombination between the bacteriophage phi C31 derivative KC570 containing the Streptomyces coelicolor glucose kinase (glk) gene and the S. roseosporus chromosome. The frequencies of homeologous recombination in the ehr mutants were determined by measuring the chromosomal insertion frequencies of plasmids containing S. coelicolor glnA or whiG genes. S. roseosporus ehr mutants showed 10(2)- to 10(4)-fold increases in homeologous recombination relative to Ehr+ strains, but no increase in homologous recombination. Southern hybridization analysis revealed single unique sites for the insertion of each of the plasmids, and the crossovers occurred in frame and in proper translational register, yielding functional chimeric glnA and whiG genes.

  7. Complex in vivo Ligation Using Homologous Recombination and High-efficiency Plasmid Rescue from Saccharomyces cerevisiae

    PubMed Central

    Finnigan, Gregory C.; Thorner, Jeremy

    2015-01-01

    The protocols presented here allow for the facile generation of a wide variety of complex multipart DNA constructs (tagged gene products, gene fusions, chimeric proteins, and other variants) using homologous recombination and in vivo ligation in budding yeast (Saccharomyces cerevisiae). This method is straightforward, efficient and cost-effective, and can be used both for vector creation and for subsequent one-step, high frequency integration into a chromosomal locus in yeast. The procedure utilizes PCR with extended oligonucleotide “tails” of homology between multiple fragments to allow for reassembly in yeast in a single transformation followed by a method for highly efficient plasmid extraction from yeast (for transformation into bacteria). The latter is an improvement on existing methods of yeast plasmid extraction, which, historically, has been a limiting step in recovery of desired constructs. We describe the utility and convenience of our techniques, and provide several examples. PMID:26523287

  8. Comparison of Recombinant Trypanosoma cruzi Peptide Mixtures versus Multiepitope Chimeric Proteins as Sensitizing Antigens for Immunodiagnosis▿

    PubMed Central

    Camussone, Cecilia; Gonzalez, Verónica; Belluzo, María S.; Pujato, Nazarena; Ribone, María E.; Lagier, Claudia M.; Marcipar, Iván S.

    2009-01-01

    The aim of this work was to determine the best strategy to display antigens (Ags) on immunochemical devices to improve test selectivity and sensitivity. We comparatively evaluated five Trypanosoma cruzi antigenic recombinant peptides, chose the three more sensitive ones, built up chimeras bearing these selected Ags, and systematically compared by enzyme-linked immunosorbent assay the performance of the assortments of those peptides with that of the multiepitope constructions bearing all those peptides lineally fused. The better-performing Ags that were compared included peptides homologous to the previously described T. cruzi flagellar repetitive Ag (here named RP1), shed acute-phase Ag (RP2), B13 (RP5), and the chimeric recombinant proteins CP1 and CP2, bearing repetitions of RP1-RP2 and RP1-RP2-RP5, respectively. The diagnostic performances of these Ags were assessed for discrimination efficiency by the formula +OD/cutoff value (where +OD is the mean optical density value of the positive serum samples tested), in comparison with each other either alone, in mixtures, or as peptide-fused chimeras and with total parasite homogenate (TPH). The discrimination efficiency values obtained for CP1 and CP2 were 25% and 52% higher, respectively, than those of their individual-Ag mixtures. CP2 was the only Ag that showed enhanced discrimination efficiency between Chagas' disease-positive and -negative samples, compared with TPH. This study highlights the convenience of performing immunochemical assays using hybrid, single-molecule, chimeric Ags instead of peptide mixtures. CP2 preliminary tests rendered 98.6% sensitivity when evaluated with a 141-Chagas' disease-positive serum sample panel and 99.4% specificity when assessed with a 164-Chagas' disease-negative serum sample panel containing 15 samples from individuals infected with Leishmania spp. PMID:19339486

  9. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  10. A Monoclonal Antibody Specific for the Programmed Death-1 Homolog Prevents Graft Versus Host Disease in Mouse Models1

    PubMed Central

    Flies, Dallas B; Wang, Shengdian; Xu, Haiying; Chen, Lieping

    2011-01-01

    Upon interaction with B7 homolog 1, Programmed Death-1 transmits a critical co-inhibitory signal to T cells to negatively regulate immune responses. By extensively searching the genomic database with the immunoglobulin variable region of PD-1, we identified a homolog and named it Programmed Death-1 homolog (PD-1H). PD-1H is broadly expressed on the cell surface of hematopoietic cells, and could be further upregulated on CD4+ and CD8+ T cells following activation. We have generated a monoclonal antibody against PD-1H, which strikingly prevents acute graft versus host disease (GVHD) in semi- and fully-allogeneic murine models, leading to full chimerism following treatment. GVHD remains a primary hindrance to successful allogeneic hematopoietic cell transplantation therapy for the treatment of hematologic malignancy. Therefore, manipulation of PD-1H function may provide a new modality for controlling T cell responses to allogeneic tissues in transplant medicine. PMID:21768399

  11. A dominant-negative pleiotrophin mutant introduced by homologous recombination leads to germ-cell apoptosis in male mice.

    PubMed

    Zhang, N; Yeh, H J; Zhong, R; Li, Y S; Deuel, T F

    1999-06-01

    Pleiotrophin (PTN) is an 18-kDa heparin-binding secretory growth/differentiation factor for different cell types. Its gene is differentially expressed in both mesenchyme and central nervous system during development and highly expressed in a number of different human tumors. Recently, a PTN mutant was found to act as a dominant-negative effector of PTN signaling. We have now used homologous recombination to introduce the dominant-negative PTN mutant into embryonic stem cells to generate chimeric mice. All highly chimeric male mice with germinal epithelium exclusively derived from embryonic stem cells with the heterologous PTN mutation were sterile. Their testes were uniformly atrophic, and the spermatocytes were strikingly apoptotic at all stages of development. The results support a central role of PTN signaling in normal spermatogenesis and suggest that interruption of PTN signaling may lead to sterility in males.

  12. Sex-discordant monochorionic twins with blood and tissue chimerism.

    PubMed

    Rodriguez-Buritica, David; Rojnueangnit, Kitiwan; Messiaen, Ludwine M; Mikhail, Fady M; Robin, Nathaniel H

    2015-04-01

    We report on a pair of normally conceived monochorionic/dizygotic (MC/DZ) sex discordant twins. The comparison of blood and skin genotypes revealed that the chimerism was also present in the skin. We conjecture about the developmental origins of this case.

  13. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  14. Chimeric aptamers in cancer cell-targeted drug delivery

    PubMed Central

    Kanwar, Jagat R; Roy, Kislay; Kanwar, Rupinder K

    2011-01-01

    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities. PMID:21955150

  15. Toward minimal conditioning protocols for allogeneic chimerism in tolerance resistant recipients.

    PubMed

    Al-Adra, David P; Anderson, Colin C

    2013-01-01

    Mixed chimerism is a promising approach toward generating donor-specific immunological tolerance. However, chimerism induction can be toxic; therefore, there is an effort to develop non-myeloablative, minimal intensity protocols that can generate chimerism without the toxic side effects. Recently, with the goal of creating a minimalistic chimerism induction protocol in the tolerance resistant non-obese diabetic (NOD) mouse model, we identified pre-existing T cells as cells that resist fully allogeneic chimerism. With monoclonals targeting NOD T cells, we showed that long-term chimerism and tolerance toward donor islets could be established. However, this promising new protocol relied on the administration of a single dose of anti-CD40 ligand, which is not clinically applicable. In refining protocols to move even closer to clinical utility, we report here initial success at generating fully allogeneic mixed chimerism in NOD mice by adding cyclophosphamide to the conditioning regimen in place of anti-CD40 ligand antibodies.

  16. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Guo, Tingting; Zhang, Chenchen; Xin, Yongping; Xin, Min; Kong, Jian

    2016-05-01

    Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.

  17. ISHAN: sequence homology analysis package.

    PubMed

    Shil, Pratip; Dudani, Niraj; Vidyasagar, Pandit B

    2006-01-01

    Sequence based homology studies play an important role in evolutionary tracing and classification of proteins. Various methods are available to analyze biological sequence information. However, with the advent of proteomics era, there is a growing demand for analysis of huge amount of biological sequence information, and it has become necessary to have programs that would provide speedy analysis. ISHAN has been developed as a homology analysis package, built on various sequence analysis tools viz FASTA, ALIGN, CLUSTALW, PHYLIP and CODONW (for DNA sequences). This JAVA application offers the user choice of analysis tools. For testing, ISHAN was applied to perform phylogenetic analysis for sets of Caspase 3 DNA sequences and NF-kappaB p105 amino acid sequences. By integrating several tools it has made analysis much faster and reduced manual intervention. PMID:17274766

  18. Development of a flatfish-specific enzyme-linked immunosorbent assay for Fsh using a recombinant chimeric gonadotropin.

    PubMed

    Chauvigné, François; Verdura, Sara; Mazón, María José; Boj, Mónica; Zanuy, Silvia; Gómez, Ana; Cerdà, Joan

    2015-09-15

    In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh β subunit (Fshβ) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshβ-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshβ subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.

  19. Restriction-Stimulated Homologous Recombination of Plasmids by the Rece Pathway of Escherichia Coli

    PubMed Central

    Nussbaum, A.; Shalit, M.; Cohen, A.

    1992-01-01

    To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI(+) cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the bioluminescence recombination assay, respectively. Plasmid recombinants were analyzed with restriction endonucleases. Our results indicate that a DSB can induce more than one type of RecE-mediated recombination. A DSB within the homology induced intermolecular recombination that followed the rules of the DSB repair model: (1) Recombination was enhanced by in vivo restriction. (2) Repair of the break depended on homologous sequences on the resident plasmid. (3) Break-repair was frequently associated with conversion of alleles that were cis to the break. (4) Conversion frequency decreased as the distance from the break increased. (5) Some clones contained a mixture of plasmid recombinants as expected by replication of a heteroduplex in the primary recombinant. The rules of the DSB repair model were not followed when recombination was induced by a DSB outside the homology. Both the cut and the uncut substrates were recipients in conversion events. Recombination events were associated with deletions that spanned the break site, but these deletions did not reach the homology. We propose that a break outside the homology may stimulate a RecE-mediated recombination pathway that does not involve direct participation of DNA ends in the homologous pairing reaction. PMID:1732167

  20. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  1. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities.

    PubMed

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  2. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    PubMed Central

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1. PMID:26738439

  3. Chimeric Bovine Respiratory Syncytial Virus with Attachment and Fusion Glycoproteins Replaced by Bovine Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase and Fusion Proteins

    PubMed Central

    Stope, Matthias B.; Karger, Axel; Schmidt, Ulrike; Buchholz, Ursula J.

    2001-01-01

    Chimeric bovine respiratory syncytial viruses (BRSV) expressing glycoproteins of bovine parainfluenza virus type 3 (BPIV-3) instead of BRSV glycoproteins were generated from cDNA. In the BRSV antigenome cDNA, the open reading frames of the major BRSV glycoproteins, attachment protein G and fusion protein F, were replaced individually or together by those of the BPIV-3 hemagglutinin-neuraminidase (HN) and/or fusion (F) glycoproteins. Recombinant virus could not be recovered from cDNA when the BRSV F open reading frame was replaced by the BPIV-3 F open reading frame. However, cDNA recovery of the chimeric virus rBRSV-HNF, with both glycoproteins replaced simultaneously, and of the chimeric virus rBRSV-HN, with the BRSV G protein replaced by BPIV-3 HN, was successful. The replication rates of both chimeras were similar to that of standard rBRSV. Moreover, rBRSV-HNF was neutralized by antibodies specific for BPIV-3, but not by antibodies specific to BRSV, demonstrating that the BRSV glycoproteins can be functionally replaced by BPIV-3 glycoproteins. In contrast, rBRSV-HN was neutralized by BRSV-specific antisera, but not by BPIV-3 specific sera, showing that infection of rBRSV-HN is mediated by BRSV F. Hemadsorption of cells infected with rBRSV-HNF and rBRSV-HN proved that BPIV-3 HN protein expressed by rBRSV is functional. Colocalization of the BPIV-3 glycoproteins with BRSV M protein was demonstrated by confocal laser scan microscopy. Moreover, protein analysis revealed that the BPIV-3 glycoproteins were present in chimeric virions. Taken together, these data indicate that the heterologous glycoproteins were not only expressed but were incorporated into the envelope of recombinant BRSV. Thus, the envelope glycoproteins derived from a member of the Respirovirus genus can together functionally replace their homologs in a Pneumovirus background. PMID:11533200

  4. Chimeric Plantibody Passively Protects Mice against Aerosolized Ricin Challenge

    PubMed Central

    Sully, Erin K.; Whaley, Kevin J.; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H.; Pauly, Michael H.; Velasco, Jesus; Hiatt, Ernie; Morton, Josh; Swope, Kelsi; Roy, Chad J.; Zeitlin, Larry

    2014-01-01

    Recent incidents in the United States and abroad have heightened concerns about the use of ricin toxin as a bioterrorism agent. In this study, we produced, using a robust plant-based platform, four chimeric toxin-neutralizing monoclonal antibodies that were then evaluated for the ability to passively protect mice from a lethal-dose ricin challenge. The most effective antibody, c-PB10, was further evaluated in mice as a therapeutic following ricin exposure by injection and inhalation. PMID:24574537

  5. Chimeric plantibody passively protects mice against aerosolized ricin challenge.

    PubMed

    Sully, Erin K; Whaley, Kevin J; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H; Pauly, Michael H; Velasco, Jesus; Hiatt, Ernie; Morton, Josh; Swope, Kelsi; Roy, Chad J; Zeitlin, Larry; Mantis, Nicholas J

    2014-05-01

    Recent incidents in the United States and abroad have heightened concerns about the use of ricin toxin as a bioterrorism agent. In this study, we produced, using a robust plant-based platform, four chimeric toxin-neutralizing monoclonal antibodies that were then evaluated for the ability to passively protect mice from a lethal-dose ricin challenge. The most effective antibody, c-PB10, was further evaluated in mice as a therapeutic following ricin exposure by injection and inhalation. PMID:24574537

  6. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    PubMed

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (p<0.0001) than individual construct vaccination. From this pilot study we could envisage that the chimeric DNA vaccine construct may offer an attractive strategy in controlling co-infection of leishmaniasis and tuberculosis and have important implication in future vaccine design. PMID:19559111

  7. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID

  8. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    PubMed

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (p<0.0001) than individual construct vaccination. From this pilot study we could envisage that the chimeric DNA vaccine construct may offer an attractive strategy in controlling co-infection of leishmaniasis and tuberculosis and have important implication in future vaccine design.

  9. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  10. Chimeric creatures in Greek mythology and reflections in science.

    PubMed

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development.

  11. Systemic chimerism in human female recipients of male livers.

    PubMed

    Starzl, T E; Demetris, A J; Trucco, M; Ramos, H; Zeevi, A; Rudert, W A; Kocova, M; Ricordi, C; Ildstad, S; Murase, N

    1992-10-10

    We have previously reported data from clinical and laboratory animal observations which suggest that organ tolerance after transplantation depends on a state of balanced lymphodendritic cell chimerism between the host and donor graft. We have sought further evidence to support this hypothesis by investigating HLA-mismatched liver allograft recipients. 9 of 9 female recipients of livers from male donors had chimerism in their allografts and extrahepatic tissues, according to in-situ hybridisation and molecular techniques 10 to 19 years posttransplantation. In 8 women with good graft function, evidence of the Y chromosome was found in the blood (6/8), skin (8/8), and lymph nodes (7/8). A ninth patient whose transplant failed after 12 years from recurrent chronic viral hepatitis had chimerism in her lymph nodes, skin, jejunum, and aorta at the time of retransplantation. Although cell migration is thought to take place after all types of transplantation, the large population of migratory cells in, and the extent of their seeding from, hepatic grafts may explain the privileged tolerogenicity of the liver compared with other organs.

  12. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    PubMed

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  13. Homologous gene replacement in Physarum

    SciTech Connect

    Burland, T.G.; Pallotta, D.

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1 in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.

  14. Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies

    PubMed Central

    Ilinykh, Philipp A.; Shen, Xiaoli; Flyak, Andrew I.; Kuzmina, Natalia; Ksiazek, Thomas G.; Crowe, James E.

    2016-01-01

    ABSTRACT Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to

  15. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  16. Immigration control in the vertebrate body with special reference to chimerism.

    PubMed

    Davies, Anthony J S

    2012-01-01

    The phenomenon of chimerism is reviewed against an understanding of adaptive immunity in vertebrates. It is shown that chimerism can be regarded as a ubiquitous condition and this suggests that monophylesis has played little part in evolution. It is suggested that the adaptive immune response has a special role in facilitating the development of chimerism and that the consensus view of adaptive immunity as a rejection mechanism should be revised.

  17. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    PubMed Central

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated the effects of two fusion tags, that is, thioredoxin (Trx) and 6x-His tags, and various expression conditions, on the expression of p28-NRC chimeric protein. Materials and Methods: In order to express the chimeric protein with only 6x-His tag, pET28 expression plasmid was used. Cloning in pET32 expression plasmid was performed to add both Trx and 6x-His tags to the chimeric protein. Expression of the chimeric protein with both plasmids was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis following optimization of expression conditions and host strains. Results: Expression of the chimeric protein in pET28a was performed. However, expression yield of the chimeric protein was low. Optimization of culture conditions and host strains led to reasonable expression yield of the toxic chimeric protein in pET32a vector. In cases of both plasmids, approximately 10 kDa deviation of the apparent molecular weight from the theoretical one was seen in SDS-PAGE of purified chimeric proteins. Conclusions: The study leads to proper expression and purification yield of p28-NRC chimeric protein with Trx tag following optimizing culture conditions and host strains. PMID:27169101

  18. Chimeric Proteins to Detect DNA Damage and Mismatches

    SciTech Connect

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was demonstrated in

  19. Characterization of a chimeric enzyme comprising feruloyl esterase and family 42 carbohydrate-binding module.

    PubMed

    Koseki, Takuya; Mochizuki, Keiji; Kisara, Hiroe; Miyanaga, Akimasa; Fushinobu, Shinya; Murayama, Tetsuya; Shiono, Yoshihito

    2010-03-01

    We engineered a chimeric enzyme (AwFaeA-CBM42) comprising of type-A feruloyl esterase from Aspergillus awamori (AwFaeA) and family 42 carbohydrate-binding module (AkCBM42) from glycoside hydrolase family 54 alpha-L-arabinofuranosidase of Aspergillus kawachii. The chimeric enzyme was successfully produced in Pichia pastoris and accumulated in the culture broth. The purified chimeric enzyme had an apparent relative molecular mass (M(r)) of 53,000. The chimeric enzyme binds to arabinoxylan; this indicates that the AkCBM42 in AwFaeA-CBM42 binds to arabinofuranose side chain moiety of arabinoxylan. The thermostability of the chimeric enzyme was greater than that of AwFaeA. No significant difference of the specific activity toward methyl ferulate was observed between the AwFaeA and chimeric enzyme, but the release of ferulic acid from insoluble arabinoxylan by the chimeric enzyme was approximately 4-fold higher than that achieved by AwFaeA alone. In addition, the chimeric enzyme and xylanase acted synergistically for the degradation of arabinoxylan. In conclusion, the findings of our study demonstrated that the components of the AwFaeA-CBM42 chimeric enzyme act synergistically to bring about the degradation of complex substrates and that the family 42 carbohydrate-binding module has potential for application in the degradation of polysaccharides.

  20. Detection of impending graft rejection and relapse by lineage-specific chimerism analysis.

    PubMed

    Lion, Thomas

    2007-01-01

    Molecular surveillance of hematopoietic chimerism has become part of the routine diagnostic program in patients after allogeneic stem cell transplantation. Chimerism testing permits early prediction and documentation of successful engraftment, and facilitates early detection of impending graft rejection. In patients transplanted for treatment of malignant hematological disorders, monitoring of chimerism can provide an early indication of incipient disease relapse. The investigation of chimerism has therefore become an indispensable tool for the management of patients during the posttransplant period. Growing use of nonmyeloablative conditioning, which is associated with prolonged duration of mixed hematopoietic chimerism, has further increased the clinical importance of chimerism analysis. At present, the most commonly used technical approach to the investigation of chimerism is microsatellite analysis by PCR. The investigation of chimerism within specific leukocyte subsets isolated from peripheral blood or bone marrow samples by flow-sorting or magnetic beads-based techniques provides more specific information on processes underlying the dynamics of donor/recipient chimerism. Moreover, cell subset-specific analysis permits the assessment of impending complications at a significantly higher sensitivity, thus providing a basis for earlier treatment decisions.

  1. Post-transplant monitoring of chimerism by lineage-specific analysis.

    PubMed

    Preuner, Sandra; Lion, Thomas

    2014-01-01

    Molecular surveillance of hematopoietic chimerism is an important part of the routine diagnostic program in patients after allogeneic stem cell transplantation. Chimerism testing permits early prediction and documentation of successful engraftment and facilitates early risk assessment of impending graft rejection. In patients transplanted for treatment of malignant hematologic disorders, monitoring of chimerism can provide an early indication of incipient disease relapse. The investigation of chimerism has therefore become an indispensable tool for the management of patients during the post-transplant period. Increasing use of reduced-intensity conditioning, which is associated with prolonged duration of mixed hematopoietic chimerism, has further increased the clinical importance of chimerism analysis. At present, the most commonly used technical approach to the investigation of chimerism is microsatellite analysis by polymerase chain reaction. The investigation of chimerism within specific leukocyte subsets isolated from peripheral blood or bone marrow samples by flow sorting- or magnetic bead-based techniques provides more specific information on processes underlying the dynamics of donor/recipient chimerism. Moreover, cell subset-specific analysis permits the assessment of impending complications at a significantly higher sensitivity, thus providing a basis for earlier treatment decisions.

  2. Persistent homology and string vacua

    NASA Astrophysics Data System (ADS)

    Cirafici, Michele

    2016-03-01

    We use methods from topological data analysis to study the topological features of certain distributions of string vacua. Topological data analysis is a multi-scale approach used to analyze the topological features of a dataset by identifying which homological characteristics persist over a long range of scales. We apply these techniques in several contexts. We analyze {N}=2 vacua by focusing on certain distributions of Calabi-Yau varieties and Landau-Ginzburg models. We then turn to flux compactifications and discuss how we can use topological data analysis to extract physical information. Finally we apply these techniques to certain phenomenologically realistic heterotic models. We discuss the possibility of characterizing string vacua using the topological properties of their distributions.

  3. Reflections on the unique tolerogenicity of bone marrow, the enigma of chimerism and clinical tolerance.

    PubMed

    Monaco, Anthony P

    2013-01-01

    Since the discovery of acquired immunological tolerance, chimerism has always been associated with tolerance. There is, however, a frequent dichotomy between chimerism and tolerance. Many experimental strategies that produce chimerism do not induce tolerance. In addition, some types of chimerism frequently occur after solid organ transplantation, but rarely result in tolerance. In experimental models of transient lymphocyte depletion with antilymphocyte serum, bone marrow cells exhibit a unique ability to induce allograft tolerance that is superior to that of other lymphoid cells. This tolerance can be augmented with standard immunosuppressive agents used in clinical transplantation. There are currently four ongoing clinical trials of tolerance induction to renal allografts that employ various protocols of non-myeloablative conditioning and donor bone marrow infusion. All four trials have been remarkably successful in achieving short- and moderate-term duration tolerance with minimal morbidity and complications. Persistent tolerance (total drug withdrawal) has been achieved in recipients with durable substantial chimerism. Durable tolerance has also been achieved in recipients who have lost chimerism before or after drug withdrawal has been initiated, as well as in recipients in whom only transient (less than three weeks) or no chimerism at all has been achieved. Although chimeric recipients have rejected grafts during drug withdrawal, durable chimerism is thus far the most positive biomarker for likely successful tolerance induction. At present, there is no proof that chimerism causes tolerance per se; the data are also consistent with another etiological mechanism that causes tolerance and thereby permits chimerism to persist. The current experimental protocols for tolerance induction are safe. More transplant programs should consider doing clinical tolerance research.

  4. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    PubMed Central

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  5. Novel nanocomposites from spider silk–silica fusion (chimeric) proteins

    PubMed Central

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V.; Belton, David J.; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R.; Perry, Carole C.; Kaplan, David L.

    2006-01-01

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5–10 μm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5–2 μm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials. PMID:16769898

  6. Chimeric creatures in Greek mythology and reflections in science.

    PubMed

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development. PMID:11337752

  7. A PCR amplification strategy for unrestricted generation of chimeric genes.

    PubMed

    Vos, Michel J; Kampinga, Harm H

    2008-09-15

    For analyzing protein function, protein dynamics, or protein-protein interactions, the use of chimeric proteins has become an indispensable tool. The generation of DNA constructs coding for such fused proteins can, however, be a tedious process. Currently used strategies often make use of available endonuclease sites, leading to limitations in the choice of the site of fusion between two genes and problems in maintaining protein secondary structure. We have developed a cloning strategy to get around these disadvantages that is based on a single round of PCR amplification followed by antibiotic-resistant gene complementation. PMID:18555003

  8. Clinical strategy for induction of transplantation tolerance through mixed chimerism.

    PubMed

    Cosimi, A Benedict; Sachs, David H; Sykes, Megan; Kawai, Tatsuo

    2013-01-01

    Following the demonstration that transplant tolerance could be induced in non-human primate recipients treated with non-myeloablative conditioning that resulted in only transient chimerism, we began in 1998 to evaluate this approach first in patients with end stage renal disease (ESRD), secondary to multiple myeloma (MM). A total of 10 patients with ESRD and MM have been treated with this initial protocol. Only 2 recipients developed evidence of reversible renal allograft rejection after stopping immunosuppression. Long-term (up to 14 years) operational renal allograft tolerance has been observed in all 10 patients, even in those with transient hematopoietic chimerism. Control of the MM has been less complete, as recurrent disease developed in five of these patients, three of whom expired. Nevertheless, in view of the essentially 100% 3-5 year mortality typically expected with alternative treatments for this challenging population, it has been suggested that combined kidney and donor bone marrow transplantation (CKBMT) following non-myeloablative conditioning should become the standard therapy for patients with ESRD secondary to MM (27). These encouraging results, as well as the acceptable morbidity observed in cancer patients receiving non-myeloablative human leukocyte antigen (HLA)-mismatched bone marrow transplantation in our center, led us to next evaluate CKBMT in 10 patients of HLA-mismatched transplants. All 10 subjects developed transient chimerism and in seven of these, immunosuppression was successfully discontinued. Four subjects continue to be immunosuppression free for periods of 4.5-11 years, while in three, reinstitution of immunosuppression was advised or accomplished after 5-8 years due to recurrence of original disease or chronic antibody mediated rejection. Donor-specific antibodies were frequently detectable in the earlier recipients. In contrast, no donor-specific antibodies were detected after immunosuppression was discontinued in the last

  9. A PCR amplification strategy for unrestricted generation of chimeric genes.

    PubMed

    Vos, Michel J; Kampinga, Harm H

    2008-09-15

    For analyzing protein function, protein dynamics, or protein-protein interactions, the use of chimeric proteins has become an indispensable tool. The generation of DNA constructs coding for such fused proteins can, however, be a tedious process. Currently used strategies often make use of available endonuclease sites, leading to limitations in the choice of the site of fusion between two genes and problems in maintaining protein secondary structure. We have developed a cloning strategy to get around these disadvantages that is based on a single round of PCR amplification followed by antibiotic-resistant gene complementation.

  10. Chimerism in cattle through microsurgical aggregation of morulae.

    PubMed

    Brem, G; Tenhumberg, H; Kräußlich, H

    1984-11-01

    A cattle chimera was produced by combining four halves of two parent embryos of different breeds (Brown-Swiss x Braunvieh plus Holstein-Friesian x Holstein-Friesian) in one zona pellucida. Parent embryos in the 32-cell morula stage were recovered non-surgically, were bisected, and the combined four halves were transferred non-surgically to recipient heifers. Chimerism of coat colour was used as evidence. Combining of only two half embryos from different parents resulted in five pregnancies carried to term but none of the calves born was a chimera.

  11. Chimeric antigen receptor T-cell therapy for solid tumors

    PubMed Central

    Newick, Kheng; Moon, Edmund; Albelda, Steven M

    2016-01-01

    Chimeric antigen receptor (CAR) T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias). This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment. PMID:27162934

  12. Frequent Homologous Recombination Events in Mycobacterium tuberculosis PE/PPE Multigene Families: Potential Role in Antigenic Variability▿ † ‡

    PubMed Central

    Karboul, Anis; Mazza, Alberto; Gey van Pittius, Nicolaas C.; Ho, John L.; Brousseau, Roland; Mardassi, Helmi

    2008-01-01

    The PE and PPE (PE/PPE) multigene families of Mycobacterium tuberculosis are particularly GC-rich and share extensive homologous repetitive sequences. We hypothesized that they may undergo homologous recombination events, a mechanism rarely described in the natural evolution of mycobacteria. To test our hypothesis, we developed a specific oligonucleotide-based microarray targeting nearly all of the PE/PPE genes, aimed at detecting signals for homologous recombination. Such a microarray has never before been reported due to the multiplicity and highly repetitive and homologous nature of these sequences. Application of the microarray to a collection of M. tuberculosis clinical isolates (n = 33) representing prevalent spoligotype strain families in Tunisia allowed successful detection of six deleted genomic regions involving a total of two PE and seven PPE genes. Some of these deleted genes are known to be immunodominant or involved in virulence. The four precisely determined deletions were flanked by 400- to 500-bp stretches of nearly identical sequences lying mainly at the conserved N-terminal region of the PE/PPE genes. These highly homologous sequences thus serve as substrates to mediate both intergenic and intragenic homologous recombination events, indicating an important function in generating strain variation. Importantly, all recombination events yielded a new in-frame fusion chimeric gene. Hence, homologous recombination within and between PE/PPE genes likely increased their antigenic variability, which may have profound implications in pathogenicity and/or host adaptation. The finding of high prevalence (∼45% and ∼58%) for at least two of the genomic deletions suggests that they likely confer advantageous biological attributes. PMID:18820012

  13. Quantitative chimerism: an independent acute leukemia prognosis indicator following allogeneic hematopoietic SCT.

    PubMed

    Qin, X-Y; Li, G-X; Qin, Y-Z; Wang, Y; Wang, F-R; Liu, D-H; Xu, L-P; Chen, H; Han, W; Wang, J-Z; Zhang, X-H; Li, J-L; Li, L-D; Liu, K-Y; Huang, X-J

    2014-10-01

    This study evaluates the prognostic significance of quantitative chimerism to monitor minimal residual disease and predict relapse in acute leukemia (AL) patients following allogeneic hematopoietic SCT (HSCT). The quantitative chimerism levels of 129 AL patients were measured using RQ-PCR based on 29 sequence polymorphisms. Receiver-operating characteristic curve indicated that the optimal cutoff point to predict an inevitable relapse was 1.0%, which results in 100.0% sensitivity and 79.6% specificity.The relapse rate of patients with chimerism >1.0% at 2 years was 55.0%, whereas that for patients with chimerism <1.0% was 0%(P=0.000). Quantitative chimerism >1.00% indicated a higher probability of relapse. Cox multivariate analysis indicated that quantitative chimerism >1.00% was associated with lower disease-free survival (hazard ratio (HR)=10.825; 95% confidence interval (CI) =4.704-24.912, P=0.000) and lower OS (HR=8.681; 95% CI=3.728-20.212, P=0.000). Patients (24/47 with quantitative chimerism >1.00%) who received preemptive modified DLI immunotherapy had significantly lower relapse rate (37.5%) than those (n=9) who did not (100%; P=0.001). Thus, quantitative chimerism is an independent prognostic factor that predicts clinical outcomes after HSCT and provides a guide for suitable interventions.

  14. Double umbilical cord blood transplantation: relevance of persistent mixed-unit chimerism.

    PubMed

    Hashem, Hasan; Lazarus, Hillard M

    2015-04-01

    Double umbilical cord blood transplantation (UCBT) was developed as a strategy to circumvent the cell dose limitation of single UCBT with a concomitant potential benefit of lowering the rate of leukemia relapse. Sustained hematopoiesis after double UCBT usually is derived from a single donor unit, as only a few patients have been reported to display stable mixed-unit chimerism for varying periods of time. Explanations for the 1 unit dominance, predictors for identifying unit superiority, and persistence of long-term mixed-unit chimerism remain elusive. Review of published literature revealed only 11 of 280 patients (4%) with mixed-unit chimerism for at least 1 year after transplantation, with 3 patients receiving reduced-intensity conditioning regimens. Mixed-unit chimerism was more likely if both units were closely HLA matched to each other. Outcome data for patients with stable mixed-unit chimerism, for the most part, were scarcely reported. Analysis of the small sample size revealed a potential advantage of stable mixed-unit chimerism on enhancing the graft-versus-leukemia effect; however, definitive conclusions cannot be made on the effect of mixed-unit chimerism on the rates of graft-versus-host disease. Therefore, gathering outcome data prospectively in larger clinical series will help answer the question of whether stable mixed-unit chimerism is either beneficial and, therefore, should be strived for, detrimental and, thus, needs to be eliminated, or if it is of no clinical consequence.

  15. Frontiers of stem cell transplantation monitoring: capturing graft dynamics through routine longitudinal chimerism analysis.

    PubMed

    Kristt, Don; Stein, Jerry; Klein, Tirza

    2007-03-01

    Quantitative chimerism testing has become an indispensable tool for following the course and success of allogeneic hematopoietic stem cell transplants. In this paper, we describe the current laboratory approach to quantitative chimerism testing based on an analysis of short tandem repeats, and explain why performing this analysis longitudinally is important and feasible. Longitudinal analysis focuses on relative changes appearing in the course of sequential samples, and as such exploits the ultimate potential of this intrinsically semi-quantitative platform. Such an analysis is more informative than single static values, less likely to be confused with platform artifacts, and is individualized to the particular patient. It is particularly useful with non-myeloablative conditioning, where mixed chimerism is common. When longitudinal chimerism analysis is performed on lineage-specific subpopulations, the sensitivity, specificity and mechanistic implications of the data are augmented. Importantly, longitudinal monitoring is a routinely feasible laboratory option because multiplex STR-PCR kits are available commercially, and modern software can be used to perform computation, reliability testing, and longitudinal tracking in a rapid, easy to use format. The ChimerTrack application, a shareware program developed in our laboratory for this purpose, produces a report that automatically summarizes and illustrates the quantitative temporal course of the patient's chimeric status. Such a longitudinal perspective enhances the value of quantitative chimerism monitoring for decisions regarding immunomodulatory post-transplant therapy. This information also provides unique insights into the biological dynamics of engraftment underlying the fluctuations in the temporal course of a patient's chimeric status.

  16. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    SciTech Connect

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David

    2011-06-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC{sub 50} values in the nanomolar range.

  17. Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers.

    PubMed

    Fujiwara, Takayuki; Ohnuma, Mio; Yoshida, Masaki; Kuroiwa, Tsuneyoshi; Hirano, Tatsuya

    2013-01-01

    The unicellular red alga Cyanidioschyzon merolae is an emerging model organism for studying organelle division and inheritance: the cell is composed of an extremely simple set of organelles (one nucleus, one mitochondrion and one chloroplast), and their genomes are completely sequenced. Although a fruitful set of cytological and biochemical methods have now been developed, gene targeting techniques remain to be fully established in this organism. Thus far, only a single selection marker, URA Cm-Gs , has been available that complements the uracil-auxotrophic mutant M4. URA Cm-Gs , a chimeric URA5.3 gene of C. merolae and the related alga Galdieria sulphuraria, was originally designed to avoid gene conversion of the mutated URA5.3 allele in the parental strain M4. Although an early example of targeted gene disruption by homologous recombination was reported using this marker, the genome structure of the resultant transformants had never been fully characterized. In the current study, we showed that the use of the chimeric URA Cm-Gs selection marker caused multicopy insertion at high frequencies, accompanied by undesired recombination events at the targeted loci. The copy number of the inserted fragments was variable among the transformants, resulting in high yet uneven levels of transgene expression. In striking contrast, when the authentic URA5.3 gene (URA Cm-Cm ) was used as a selection marker, efficient single-copy insertion was observed at the targeted locus. Thus, we have successfully established a highly reliable and reproducible method for gene targeting in C. merolae. Our method will be applicable to a number of genetic manipulations in this organism, including targeted gene disruption, replacement and tagging.

  18. Buoyancy instability of homologous implosions

    NASA Astrophysics Data System (ADS)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  19. Homology among bacterial catalase genes.

    PubMed

    Switala, J; Triggs-Raine, B L; Loewen, P C

    1990-10-01

    Catalase activities in crude extracts of exponential and stationary phase cultures of various bacteria were visualized following gel electrophoresis for comparison with the enzymes from Escherichia coli. Citrobacter freundii, Edwardsiella tarda, Enterobacter aerogenes, Klebsiella pneumoniae, and Salmonella typhimurium exhibited patterns of catalase activity similar to E. coli, including bifunctional HPI-like bands and a monofunctional HPII-like band. Proteus mirabilis, Erwinia carotovora, and Serratia marcescens contained a single band of monofunctional catalase with a mobility intermediate between the HPI-like and HPII-like bands. The cloned genes for catalases HPI (katG) and HPII (katE) from E. coli were used as probes in Southern hybridization analyses for homologous sequences in genomic DNA of the same bacteria. katG was found to hybridize with fragments from C. freudii, Ent. aerogenes, Sal. typhimurium, and K. pneumoniae but not at all with Ed. tarda, P. mirabilis, S. marcesens, or Er. carotovora. katE hybridized with C. freundii and K. pneumoniae DNAs and not with the other bacterial DNAs.

  20. Structural basis for receptor subtype-specific regulation revealed by a chimeric beta 3/beta 2-adrenergic receptor.

    PubMed Central

    Liggett, S B; Freedman, N J; Schwinn, D A; Lefkowitz, R J

    1993-01-01

    The physiological significance of multiple G-protein-coupled receptor subtypes, such as the beta-adrenergic receptors (beta ARs), remains obscure, since in many cases several subtypes activate the same effector and utilize the same physiological agonists. We inspected the deduced amino acid sequences of the beta AR subtypes for variations in the determinants for agonist regulation as a potential basis for subtype differentiation. Whereas the beta 2AR has a C terminus containing 11 serine and threonine residues representing potential sites for beta AR kinase phosphorylation, which mediates rapid agonist-promoted desensitization, only 3 serines are present in the comparable region of the beta 3AR, and they are in a nonfavorable context. The beta 3AR also lacks sequence homology in regions which are important for agonist-mediated sequestration and down-regulation of the beta 2AR, although such determinants are less well defined. We therefore tested the idea that the agonist-induced regulatory properties of the two receptors might differ by expressing both subtypes in CHW cells and exposing them to the agonist isoproterenol. The beta 3AR did not display short-term agonist-promoted functional desensitization or sequestration, or long-term down-regulation. To assign a structural basis for these subtype-specific differences in agonist regulation, we constructed a chimeric beta 3/beta 2AR which comprised the beta 3AR up to proline-365 of the cytoplasmic tail and the C terminus of the beta 2AR. When cells expressing this chimeric beta 3/beta 2AR were exposed to isoproterenol, functional desensitization was observed. Whole-cell phosphorylation studies showed that the beta 2AR displayed agonist-dependent phosphorylation, but no such phosphorylation could be demonstrated with the beta 3AR, even when beta AR kinase was overexpressed. In contrast, the chimeric beta 3/beta 2AR did display agonist-dependent phosphorylation, consistent with its functional desensitization. In

  1. Vaccination with Vesicular Stomatitis Virus-Vectored Chimeric Hemagglutinins Protects Mice against Divergent Influenza Virus Challenge Strains

    PubMed Central

    Ryder, Alex B.; Nachbagauer, Raffael; Buonocore, Linda; Palese, Peter; Krammer, Florian

    2015-01-01

    ABSTRACT Seasonal influenza virus infections continue to cause significant disease each year, and there is a constant threat of the emergence of reassortant influenza strains causing a new pandemic. Available influenza vaccines are variably effective each season, are of limited scope at protecting against viruses that have undergone significant antigenic drift, and offer low protection against newly emergent pandemic strains. “Universal” influenza vaccine strategies that focus on the development of humoral immunity directed against the stalk domains of the viral hemagglutinin (HA) show promise for protecting against diverse influenza viruses. Here, we describe such a strategy that utilizes vesicular stomatitis virus (VSV) as a vector for chimeric hemagglutinin (cHA) antigens. This vaccination strategy is effective at generating HA stalk-specific, broadly cross-reactive serum antibodies by both intramuscular and intranasal routes of vaccination. We show that prime-boost vaccination strategies provide protection against both lethal homologous and heterosubtypic influenza challenge and that protection is significantly improved with intranasal vaccine administration. Additionally, we show that vaccination with VSV-cHAs generates greater stalk-specific and cross-reactive serum antibodies than does vaccination with VSV-vectored full-length HAs, confirming that cHA-based vaccination strategies are superior at generating stalk-specific humoral immunity. VSV-vectored influenza vaccines that express chimeric hemagglutinin antigens offer a novel means for protecting against widely diverging influenza viruses. IMPORTANCE Universal influenza vaccination strategies should be capable of protecting against a wide array of influenza viruses, and we have developed such an approach utilizing a single viral vector system. The potent antibody responses that these vaccines generate are shown to protect mice against lethal influenza challenges with highly divergent viruses. Notably

  2. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  3. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids

    PubMed Central

    2008-01-01

    Background Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage. Results Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus. Conclusion Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT). PMID:18433492

  4. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells.

    PubMed

    Berger, Carolina; Sommermeyer, Daniel; Hudecek, Michael; Berger, Michael; Balakrishnan, Ashwini; Paszkiewicz, Paulina J; Kosasih, Paula L; Rader, Christoph; Riddell, Stanley R

    2015-02-01

    Genetic engineering of T cells for adoptive transfer by introducing a tumor-targeting chimeric antigen receptor (CAR) is a new approach to cancer immunotherapy. A challenge for the field is to define cell surface molecules that are both preferentially expressed on tumor cells and can be safely targeted with T cells. The orphan tyrosine kinase receptor ROR1 is a candidate target for T-cell therapy with CAR-modified T cells (CAR-T cells) because it is expressed on the surface of many lymphatic and epithelial malignancies and has a putative role in tumor cell survival. The cell surface isoform of ROR1 is expressed in embryogenesis but absent in adult tissues except for B-cell precursors and low levels of transcripts in adipocytes, pancreas, and lung. ROR1 is highly conserved between humans and macaques and has a similar pattern of tissue expression. To determine if low-level ROR1 expression on normal cells would result in toxicity or adversely affect CAR-T cell survival and/or function, we adoptively transferred autologous ROR1 CAR-T cells into nonhuman primates. ROR1 CAR-T cells did not cause overt toxicity to normal organs and accumulated in bone marrow and lymph node sites, where ROR1-positive B cells were present. The findings support the clinical evaluation of ROR1 CAR-T cells for ROR1(+) malignancies and demonstrate the utility of nonhuman primates for evaluating the safety of immunotherapy with engineered T cells specific for tumor-associated molecules that are homologous between humans and nonhuman primates.

  5. Expression, purification and identification of CtCVNH, a novel anti-HIV (Human Immunodeficiency Virus) protein from Ceratopteris thalictroides.

    PubMed

    Sun, Junbo; Su, Yingjuan; Wang, Ting

    2013-04-08

    CVN (cyanovirin-N) is an anti-HIV protein. CVNH (cyanovirin-N homology) represents its homology. In a previous study, we first reported the full-length sequences of the CVNH gene cloned from Ceratopteris thalictroides. Based on the finding, the coding sequence of CtCVNH was optimized in the study, and then a pET prokaryotic expression vector was constructed. The purification and identification of CtCVNH protein were investigated, as well. SDS-PAGE analysis indicated that a 31 kDa protein was overexpressed and mainly accumulated in the soluble fraction. Only a single protein was obtained after the Ni- nitrilotriacetic acid (NTA) affinity chromatography. The purified protein was identified to be the recombinant CtCVNH by both Western blot and peptide mass fingerprinting analysis.

  6. Mixed chimerism to induce tolerance for solid organ transplantation

    SciTech Connect

    Wren, S.M.; Nalesnik, M.; Hronakes, M.L.; Oh, E.; Ildstad, S.T. )

    1991-04-01

    Chimerism, or the coexistence of tissue elements from more than one genetically different strain or species in an organism, is the only experimental state that results in the induction of donor-specific transplantation tolerance. Transplantation of a mixture of T-cell-depleted syngeneic (host-type) plus T-cell-depleted allogeneic (donor) bone marrow into a normal adult recipient mouse (A + B----A) results in mixed allogeneic chimerism. Recipient mice exhibit donor-specific transplantation tolerance, yet have full immunocompetence to recognize and respond to third-party transplantation antigens. After complete hematolymphopoietic repopulation at 28 days, animals accept a donor-specific skin graft but reject major histocompatibility complex (MHC) locus-disparate third-party grafts. We now report that permanent graft acceptance can also be achieved when the graft is placed at the time of bone marrow transplantation. Histologically, grafts were viable and had only minimal inflammatory changes. This model may have potential future clinical application for the induction of donor-specific transplantation tolerance.

  7. A protective chimeric antibody to tick-borne encephalitis virus.

    PubMed

    Baykov, Ivan K; Matveev, Andrey L; Stronin, Oleg V; Ryzhikov, Alexander B; Matveev, Leonid E; Kasakin, Marat F; Richter, Vladimir A; Tikunova, Nina V

    2014-06-17

    The efficiency of several mouse monoclonal antibodies (mAbs) specific to the tick-borne encephalitis virus (TBEV) glycoprotein E in post-exposure prophylaxis was assessed, and mAb14D5 was shown to be the most active of all those studied. It was proven that the hybridoma cell line 14D5 produced one immunoglobulin H chain and two L chains. They were used to construct chimeric antibodies ch14D5a and ch14D5b, the affinity constants of which were 2.6 × 10(10)M(-1) and 1.0 × 10(7)M(-1), respectively, according to the SPR-based ProteOn biosensor assay. The neutralization index (IC50) of ch14D5a was 0.04 μg/ml in the focus reduction neutralization test. In in vivo experiments, ch14D5a at a dose of 10 μg/mouse resulted in a 100% survival of the mice infected with 240 LD50 of TBEV. This chimeric antibody is promising for further development of prevention and therapeutic drugs against TBEV. PMID:24837772

  8. Donor Chimerism Early after Reduced-intensity Conditioning Hematopoietic Stem Cell Transplantation Predicts Relapse and Survival

    PubMed Central

    Koreth, John; Kim, Haesook T.; Nikiforow, Sarah; Milford, Edgar L.; Armand, Philippe; Cutler, Corey; Glotzbecker, Brett; Ho, Vincent T.; Antin, Joseph H.; Soiffer, Robert J.; Ritz, Jerome; Alyea, Edwin P.

    2015-01-01

    The impact of early donor cell chimerism on outcomes of T-replete reduced-intensity conditioning (RIC) hematopoietic stem cell transplantation (HSCT) is ill-defined. We evaluated day 30 (D30) and 100 (D100) total donor cell chimerism after RIC HSCT undertaken between 2002 and 2010 at our institution, excluding patients who died or relapsed before D30. When available, donor T-cell chimerism was also assessed. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), relapse and non-relapse mortality (NRM). 688 patients with hematologic malignancies (48% myeloid; 52% lymphoid) and a median age of 57 years (range, 18-74) undergoing RIC HSCT with T-replete donor grafts (97% peripheral blood; 92% HLA-matched) and median follow-up of 58.2 months (range, 12.6-120.7) were evaluated. In multivariable analysis total donor cell and T-cell chimerism at D30 and D100 each predicted RIC HSCT outcomes, with D100 total donor cell chimerism most predictive. D100 total donor cell chimerism <90% was associated with increased relapse (HR 2.54, 95% CI 1.83-3.51, p<0.0001), impaired PFS (HR 2.01, 95% CI 1.53-2.65, p<0.0001) and worse OS (1.50, 95% CI 1.11-2.04, p=0.009), but not NRM (HR 0.76; 95% CI 0.44-2.27, p=0.33). There was no additional utility of incorporating sustained D30-D100 total donor cell chimerism, or T-cell chimerism. Low donor chimerism early after RIC HSCT is an independent risk factor for relapse and impaired survival. Donor chimerism assessment early after RIC HSCT can prognosticate for long-term outcomes and help identify high-risk patient cohorts that may benefit from additional therapeutic interventions. PMID:24907627

  9. Generation and immunogenicity of porcine circovirus type 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus GP5 epitope B.

    PubMed

    Hu, Gaowei; Wang, Naidong; Yu, Wanting; Wang, Zhanfeng; Zou, Yawen; Zhang, Yan; Wang, Aibing; Deng, Zhibang; Yang, Yi

    2016-04-01

    Virus-like particles (VLPs) can be used as transfer vehicles carrying foreign proteins or antigen epitopes to produce chimeric VLPs for bivalent or multivalent vaccines. Based on the crystal structure of porcine circovirus type 2 (PCV2) capsid protein (Cap), in addition to alignment of the Cap sequences collected from various isolates of PCV2 and PCV1, we predicted that Loop CD of the PCV2 Cap should tolerate insertion of foreign epitopes, and furthermore that such an insertion could be presented on the surface of PCV2 VLPs. To validate this, the GP5 epitope B of porcine reproductive and respiratory syndrome virus (PRRSV) was inserted into Loop CD of the PCV2 Cap. The 3D structure of the recombinant PCV2 Cap (rCap) was simulated by homology modeling; it appeared that the GP5 epitope B was folded as a relatively independent unit, separated from the PCV2 Cap backbone. Furthermore, based on transmission electron microscopy, the purified PCV2 rCap self-assembled into chimeric VLPs which entered PK-15 cells. In addition, PCV2 chimeric VLPs induced strong humoral (neutralizing antibodies against PCV2 and PRRSV) and cellular immune responses in mice. We concluded that the identified insertion site in the PCV2 Cap had great potential to develop PCV2 VLPs-based bivalent or multivalent vaccines; furthermore, it would also facilitate development of a nano-device to present a functional peptide on the surface of the VLPs that could be used for therapeutic purposes. PMID:26930366

  10. Homology-Independent Metrics for Comparative Genomics

    PubMed Central

    Coutinho, Tarcisio José Domingos; Franco, Glória Regina; Lobo, Francisco Pereira

    2015-01-01

    A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference. PMID:26029354

  11. Buoyancy instability of homologous implosions

    SciTech Connect

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest

  12. Buoyancy instability of homologous implosions

    DOE PAGESBeta

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100

  13. A technical application of quantitative next generation sequencing for chimerism evaluation

    PubMed Central

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-01-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44-amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (<1%). The protocol followed the standard Ion AmpliSeq library preparation and Ion Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification. PMID:27499173

  14. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras

    SciTech Connect

    Francescutti, L.H.; Gambel, P.; Wegmann, T.G.

    1985-07-01

    The authors have previously described a model for bone marrow transplantation that involves preparation of the host with monoclonal antibody against class I or class II antigens instead of irradiation or cytotoxic drugs. This allows engraftment and subsequent repopulation of the host by donor tissue. They have previously reported on chimerism in the peripheral blood of P1----(P1 X P2)F1 animals. In this report, the authors describe the examination of the bone marrow and spleen stem cell chimerism of these antibody-facilitated (AF) chimeras, by determining, with an isozyme assay, the phenotype of methylcellulose colonies grown from stem cells. They have found a correlation between peripheral blood chimerism and the stem cell constitution of both spleen and bone marrow. The peripheral blood chimerism also correlates with the level of chimerism in macrophages derived from peritoneal exudate cells. These findings indicate that assaying the peripheral blood of such chimeras provides an excellent indication of the degree of chimerism at the stem cell level and stands in sharp contrast to the level of chimerism in certain lymphoid compartments.

  15. Increasing chimerism after allogeneic stem cell transplantation is associated with longer survival time.

    PubMed

    Tang, Xiaowen; Alatrash, Gheath; Ning, Jing; Jakher, Haroon; Stafford, Patricia; Zope, Madhushree; Shpall, Elizabeth J; Jones, Roy B; Champlin, Richard E; Thall, Peter F; Andersson, Borje S

    2014-08-01

    Donor chimerism after allogeneic stem cell transplantation (allo-SCT) is commonly used to predict overall survival (OS) and disease-free survival (DFS). Because chimerism is observed at 1 or more times after allo-SCT and not at baseline, if chimerism is in fact associated with OS or DFS, then the occurrence of either disease progression or death informatively censors (terminates) the observed chimerism process. This violates the assumptions underlying standard statistical regression methods for survival analysis, which may lead to biased conclusions. To assess the association between the longitudinal post-allo-SCT donor chimerism process and OS or DFS, we analyzed data from 195 patients with acute myelogenous leukemia (n = 157) or myelodysplastic syndrome (n = 38) who achieved complete remission after allo-SCT following a reduced-toxicity conditioning regimen of fludarabine/intravenous busulfan. Median follow-up was 31 months (range, 1.1 to 105 months). Fitted joint longitudinal-survival time models showed that a binary indicator of complete (100%) donor chimerism and increasing percent of donor T cells were significantly associated with longer OS, whereas decreasing percent of donor T cells was highly significantly associated with shorter OS. Our analyses illustrate the usefulness of modeling repeated post-allo-SCT chimerism measurements as individual longitudinal processes jointly with OS and DFS to estimate their relationships.

  16. A technical application of quantitative next generation sequencing for chimerism evaluation.

    PubMed

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'Eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-10-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44‑amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (<1%). The protocol followed the standard Ion AmpliSeq library preparation and Ion Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification.

  17. A technical application of quantitative next generation sequencing for chimerism evaluation.

    PubMed

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'Eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-10-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44‑amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (<1%). The protocol followed the standard Ion AmpliSeq library preparation and Ion Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification. PMID:27499173

  18. 3D modeling and characterization of the human CD115 monoclonal antibody H27K15 epitope and design of a chimeric CD115 target.

    PubMed

    Grellier, Benoît; Le Pogam, Fabrice; Vitorino, Marc; Starck, Jean-Philippe; Geist, Michel; Duong, Vanessa; Haegel, Hélène; Menguy, Thierry; Bonnefoy, Jean-Yves; Marchand, Jean-Baptiste; Ancian, Philippe

    2014-01-01

    The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule. PMID:24492308

  19. Feasibility study of preemptive withdrawal of immunosuppression based on chimerism testing in children undergoing myeloablative allogeneic transplantation for hematologic malignancies.

    PubMed

    Horn, B; Soni, S; Khan, S; Petrovic, A; Breslin, N; Cowan, M; Pelle-Day, G; Cooperstein, E; Baxter-Lowe, L-A

    2009-03-01

    An increasing percentage of autologous cells (increasing chimerism) in the whole blood (WB) chimerism test following allogeneic transplant is related to a very high risk of relapse. Preemptive immunotherapy may decrease the risk of relapse in some patients. Our prospective multi-institutional study evaluated the feasibility of longitudinal chimerism testing in a central laboratory, compared WB, CD3+ and leukemia-specific lineage chimerism in patients with a variety of hematologic malignancies, and evaluated the feasibility of fast withdrawal of immunosuppression based on WB chimerism results. Centralized chimerism testing was feasible and showed low interassay variability. Increasing mixed chimerism (MC) in WB was not useful as a predictor of relapse in our study. The presence of full donor chimerism in WB, CD3+ and leukemia-specific lineages on all measurements was related to a significantly lower risk of relapse than the presence of MC in either subset (11 vs 71%, respectively; P=0.03). Increasing host chimerism in leukemia-specific lineage heralds relapse, but it was not detected early enough to allow immunotherapy. Further studies correlating lineage-specific chimerism and minimal residual disease are required. The goal of preemptive immunotherapy should be to achieve full donor chimerism in WB in CD3+ and leukemia-specific lineages.

  20. Digital PCR to assess hematopoietic chimerism after allogeneic stem cell transplantation.

    PubMed

    Stahl, Tanja; Böhme, Manja U; Kröger, Nicolaus; Fehse, Boris

    2015-06-01

    Analysis of hematopoietic chimerism after allogeneic stem cell transplantation represents a crucial method to evaluate donor-cell engraftment. Whereas sensitivity of classical approaches for chimerism monitoring is limited to ≥1%, quantitative polymerase chain reaction (qPCR)-based techniques readily detect one patient cell in >1,000 donor cells, thus facilitating application of chimerism assessment as a surrogate for minimal residual disease. However, due to methodologic specificities, qPCR combines its high sensitivity with limited resolution power in the state of mixed chimerism (e.g., >10% patient cells). Our aim was to overcome this limitation by employing a further development of qPCR, namely digital PCR (dPCR), for chimerism analysis. For proof-of-principle, we established more than 10 dPCR assays detecting Indel polymorphisms or Y-chromosome sequences and tested them on artificial cell mixtures and patient samples. Employing artificial cell mixtures, we found that dPCR allows exact quantification of chimerism over several orders of magnitude. Digital PCR results proved to be highly reproducible (deviation <5%), particularly in the "difficult" range of mixed chimerism. Excellent performance of the new assays was confirmed by analysis of multiple retrospective blood samples from patients after allogeneic stem cell transplantation, in comparison with established qPCR (14 patients) and short-tandem repeat PCR (4 patients) techniques. Finally, dPCR is easy to perform, needs only small amounts of DNA for chimerism assessment (65 ng corresponds to a sensitivity of approximately 0.03%), and does not require the use of standard curves and replicate analysis. In conclusion, dPCR represents a very promising method for routine chimerism monitoring.

  1. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    PubMed

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  2. Hypomelanosis of Ito: a manifestation of mosaicism or chimerism.

    PubMed Central

    Donnai, D; Read, A P; McKeown, C; Andrews, T

    1988-01-01

    We describe three patients with the cutaneous manifestations of hypomelanosis of Ito. Two, with unusual abnormalities of their toes, had a mixture of diploid and triploid cells in cultured skin fibroblasts. The published clinical descriptions of hypomelanosis of Ito and diploid-triploid mosaicism are reviewed. Chromosome heteromorphisms, HLA types, and DNA fingerprints were studied in an attempt to elucidate the origin of the disease in our patients. We conclude that hypomelanosis of Ito is a manifestation of a heterogeneous group of disorders, the common factor being the presence of two genetically different cell lines. It can result from chromosomal mosaicism or chimerism, from a postzygotic mutation, or from X inactivation. The risk of recurrence is negligible if the proband is a male; if the proband is female the risk is also low but an X linked mutation must be considered. Images PMID:3236362

  3. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    PubMed Central

    Dai, Hanren; Wang, Yao; Lu, Xuechun

    2016-01-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  4. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    PubMed

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  5. The pharmacology of second-generation chimeric antigen receptors.

    PubMed

    van der Stegen, Sjoukje J C; Hamieh, Mohamad; Sadelain, Michel

    2015-07-01

    Second-generation chimeric antigen receptors (CARs) retarget and reprogramme T cells to augment their antitumour efficacy. The combined activating and co-stimulatory domains incorporated in these CARs critically determine the function, differentiation, metabolism and persistence of engineered T cells. CD19-targeted CARs that incorporate CD28 or 4-1BB signalling domains are the best known to date. Both have shown remarkable complete remission rates in patients with refractory B cell malignancies. Recent data indicate that CD28-based CARs direct a brisk proliferative response and boost effector functions, whereas 4-1BB-based CARs induce a more progressive T cell accumulation that may compensate for less immediate potency. These distinct kinetic features can be exploited to further develop CAR-based T cell therapies for a variety of cancers. A new field of immunopharmacology is emerging.

  6. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy.

  7. Chimeric Antigen Receptor T Cell Therapy in Hematology

    PubMed Central

    Ataca, Pınar; Arslan, Önder

    2015-01-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy. PMID:26377367

  8. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  9. Modeling cognition and disease using human glial chimeric mice.

    PubMed

    Goldman, Steven A; Nedergaard, Maiken; Windrem, Martha S

    2015-08-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear that transplanted hGPCs not only engraft and expand within murine hosts, but dynamically outcompete the resident progenitors so as to ultimately dominate the host brain. The engrafted human progenitor cells proceed to generate parenchymal astrocytes, and when faced with a hypomyelinated environment, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our ability to construct human glial chimeras with the production of patient-specific hGPCs derived from pluripotential stem cells, we may now establish mice in which a substantial proportion of resident glia are both human and disease-derived. These mice in particular may provide us new opportunities for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human neurological and neuropsychiatric disease.

  10. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic?

    PubMed Central

    Cavalier-Smith, T; Allsopp, M T; Chao, E E

    1994-01-01

    All algae with chloroplasts located not freely in the cytosol, but inside two extra membranes, probably arose chimerically by the permanent fusion of two different eukaryote cells: a protozoan host and a eukaryotic algal symbiont. Two such groups, cryptomonads (phylum Cryptista) and Chlorarachniophyta, still retain a DNA-containing relic of the nucleus of the algal endosymbiont, known as the nucleomorph, as well as the host nucleus. These two phyla were traditionally assumed to have obtained their chloroplasts separately by two independent symbioses. We have sequenced the nuclear and the nucleomorph 18S rRNA genes of the nonphotosynthetic cryptomonad Chilomonas paramecium. Our phylogenetic analysis suggests that cryptomonad and chlorarachniophyte nucleomorphs may be related to each other and raises the possibility that both phyla may have diverged from a common ancestral chimeric cell that originated by a single endosymbiosis involving an algal endosymbiont related to the ancestor of red algae. But, because of the instability of the molecular trees when different taxa are added, there is insufficient evidence to overturn the traditional view that Chlorarachnion nucleomorphs evolved separately from a relative of green algae. The four phyla that contain chromophyte algae (those with chlorophyll c--i.e., Cryptista, Heterokonta, Haptophyta, Dinozoa) are distantly related to each other and to Chlorarachniophyta on our trees. However, all of the photosynthetic taxa within each of these four phyla radiate from each other very substantially after the radiation of the four phyla themselves. This favors the view that the common ancestor of these four phyla was not photosynthetic and that chloroplasts were implanted separately into each much more recently. This probable polyphyly of the chromophyte algae, if confirmed, would make it desirable to treat Cryptista, Heterokonta, and Haptophyta as separate kingdoms, rather than to group them together in the single kingdom

  11. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  12. The homologous recombination system of Ustilago maydis

    PubMed Central

    Holloman, William K.; Schirawski, Jan; Holliday, Robin

    2008-01-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of Ustilago maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins. PMID:18502156

  13. Persistent homology analysis of phase transitions

    NASA Astrophysics Data System (ADS)

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  14. Dualities in Persistent (Co)Homology

    SciTech Connect

    de Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-09-16

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establishalgebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existingalgorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. Wepresent experimental evidence for the practical efficiency of the latter algorithm.

  15. On the hodological criterion for homology

    PubMed Central

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  16. Immunogenicity and antigenicity of a recombinant chimeric protein containing epitopes of poliovirus type 1.

    PubMed

    Pan, X-X; Wang, J; Xia, W-Y; Li, X-F; Yang, L-J; Huang, C; Chen, Y-D

    2016-01-01

    To design a vaccine that simultaneously prevents both rotavirus (RV) and poliovirus (PV), a PV type 1 (PV1) chimeric protein using RV VP6 as a vector (VP6F) was constructed, expressed in Escherichia coli expression system and characterized by SDS-PAGE, Western blot, immunofluorescence assay and neutralization test. The results showed that the chimeric protein reacted with anti-VP6F and anti-PV1 antibodies and elicited production of serum antibodies against the chimeric protein in guinea pigs. Antibodies against the chimeric protein neutralized RV Wa and PV1 infection in vitro. The results provided a relevant possibility of developing novel approaches in the rational design of vaccines effective against both RV and PV. PMID:27640433

  17. Single-born marmosets without hemopoietic chimerism: naturally occurring and induced.

    PubMed

    Gengozian, N; Batson, J S

    1975-01-01

    Marmosets have a high frequency of fraternal twinning, and placental vascular anastomoses between the twin fetuses invariably lead to hemopoietic chimerism. The occasional finding of chimerism in single-born marmosets suggested that in a twin pregnancy one fetus had undergone resorption after contributing hemopoietic stem cells to its twin. In this study non-chimeric single-born marmosets were produced by fallopian tube ligation or surgical relocation of one ovary in breeding females. Further, in an examination of hemopoietic cells from over 50 single-born young from nonoperated females, chimerism occurred less frequently than what one would expect if resorption of a co-twin had occurred after a functional anastomosis had been established. PMID:808628

  18. Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope

    PubMed Central

    Robin, Aélig; Köhler, Valentin; Jones, Alison; Ali, Afruja; Kelly, Paul P; O'Reilly, Elaine; Turner, Nicholas J

    2011-01-01

    Summary A high-throughput screening protocol for evaluating chimeric, self-sufficient P450 biocatalysts and their mutants against a panel of substrates was developed, leading to the identification of a number of novel biooxidation activities. PMID:22238522

  19. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    SciTech Connect

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-10-25

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  20. Tolerance of Lung Allografts Achieved in Nonhuman Primates via Mixed Hematopoietic Chimerism.

    PubMed

    Tonsho, M; Lee, S; Aoyama, A; Boskovic, S; Nadazdin, O; Capetta, K; Smith, R-N; Colvin, R B; Sachs, D H; Cosimi, A B; Kawai, T; Madsen, J C; Benichou, G; Allan, J S

    2015-08-01

    While the induction of transient mixed chimerism has tolerized MHC-mismatched renal grafts in nonhuman primates and patients, this approach has not been successful for more immunogenic organs. Here, we describe a modified delayed-tolerance-induction protocol resulting in three out of four monkeys achieving long-term lung allograft survival without ongoing immunosuppression. Two of the tolerant monkeys displayed stable mixed lymphoid chimerism, and the other showed transient chimerism. Serial biopsies and post-mortem specimens from the tolerant monkeys revealed no signs of chronic rejection. The tolerant recipients also exhibited T cell unresponsiveness and a lack of alloantibody. This is the first report of durable mixed chimerism and successful tolerance induction of MHC-mismatched lungs in primates.

  1. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2

    PubMed Central

    Jehan, Zeenath; Vallinayagam, Sambandam; Tiwari, Shrish; Pradhan, Suman; Singh, Lalji; Suresh, Amritha; Reddy, Hemakumar M.; Ahuja, Y.R.; Jesudasan, Rachel A.

    2007-01-01

    The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript. PMID:17095710

  2. Postnatal donor lymphocytes enhance prenatally-created chimerism at the risk of graft-versus-host disease.

    PubMed

    Chen, Jeng-Chang; Ou, Liang-Shiou; Yu, Hsiu-Yueh; Kuo, Ming-Ling; Chang, Pei-Yeh; Chang, Hsueh-Ling

    2015-01-01

    The major barrier to clinical application of in utero hematopoietic stem cell transplantation is insufficient chimerism for phenotypic correction of target diseases or induction of graft tolerance. Postnatal donor lymphocyte infusion (DLI) may enhance donor cell levels so as to further facilitate tolerance induction. We created murine mixed chimeras in utero. Chimeras with <10% donor cells were subjected to postnatal DLI to evaluate the effects of DLI on chimerism augmentation and skin tolerance induction. Within one day after DLI, recipients experienced a transient peaking of donor chimerism, which could be as high as 20~40%. However, the transient chimerism peaking didn't benefit donor skin survivals despite immediate skin placement after DLI. In case of fruitful DLI, chimerism augmentation was usually observed after a latent period of 2~4 weeks. Otherwise, chimerism would return to around pre-DLI levels by days 7~14. Peripheral chimerism of >3% could be consistently boosted up to >10%, whereas chimerism of <0.2% hardly showed any significant enhancement. As for chimerism levels of 0.2~3%, chimerism augmentation up to >10% succeeded in 3(15%) of 20 recipients. Notably, chimerism augmentation by postnatal DLI was often associated with unexpected death or graft-versus-host disease (GVHD). In conclusion, transient chimerism augmentation by DLI played no role in facilitating graft tolerance. Substantial augmentation by DLI demanded a threshold chimerism level and posed a serious risk of GVHD to the recipients. It raised the concern about using postnatal DLI to broaden therapeutic horizons of in utero hematopoietic stem cell transplantation.

  3. Deletional and regulatory mechanisms coalesce to drive transplantation tolerance through mixed chimerism.

    PubMed

    Hock, Karin; Mahr, Benedikt; Schwarz, Christoph; Wekerle, Thomas

    2015-09-01

    Establishing donor-specific immunological tolerance could improve long-term outcome by obviating the need for immunosuppressive drug therapy, which is currently required to control alloreactivity after organ transplantation. Mixed chimerism is defined as the engraftment of donor hematopoietic stem cells in the recipient, leading to viable coexistence of both donor and recipient leukocytes. In numerous experimental models, cotransplantation of donor bone marrow (BM) into preconditioned (e.g., through irradiation or cytotoxic drugs) recipients leads to transplantation tolerance through (mixed) chimerism. Mixed chimerism offers immunological advantages for clinical translation; pilot trials have established proof of concept by deliberately inducing tolerance in humans. Widespread clinical application is prevented, however, by the harsh preconditioning currently necessary for permitting BM engraftment. Recently, the immunological mechanisms inducing and maintaining tolerance in experimental mixed chimerism have been defined, revealing a more prominent role for regulation than historically assumed. The evidence from murine models suggests that both deletional and regulatory mechanisms are critical in promoting complete tolerance, encompassing also the minor histocompatibility antigens. Here, we review the current understanding of tolerance through mixed chimerism and provide an outlook on how to realize widespread clinical translation based on mechanistic insights gained from chimerism protocols, including cell therapy with polyclonal regulatory T cells.

  4. Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility.

    PubMed

    Kristt, D; Stein, J; Yaniv, I; Klein, T

    2007-03-01

    In this review, we describe the current laboratory approach to quantitative chimerism testing based on short tandem repeats (STRs), focusing on a longitudinal analysis. The latter is based on relative changes appearing in the course of sequential samples, and as such exploits the ultimate potential of this intrinsically semiquantitative platform. Such an analysis is more informative than single static values, less likely to be confused with platform artifacts, and is individualized to the particular patient. It is particularly useful with non-myeloablative conditioning, where mixed chimerism is common. Importantly, longitudinal monitoring is a routinely feasible laboratory option because multiplex STR-polymerase chain reaction kits are available commercially, and modern software can be used to perform computation, reliability testing and longitudinal tracking in a rapid, easy to use format. The ChimerTrack application, a shareware, user friendly program developed for this purpose, produces a report that automatically summarizes and illustrates the quantitative temporal course of the patient's chimeric status. Such a longitudinal perspective enhances the value of quantitative chimerism monitoring for decisions regarding immunomodulatory post transplant therapy. This information also provides unique insights into the biological dynamics of engraftment underlying the fluctuations in the temporal course of a patient's chimeric status.

  5. Prognostic utility of routine chimerism testing at 2 to 6 months after allogeneic hematopoietic cell transplantation.

    PubMed

    Mossallam, Ghada I; Kamel, Azza M; Storer, Barry; Martin, Paul J

    2009-03-01

    The utility of routine chimerism analysis as a prognostic indicator of subsequent outcomes after allogeneic hematopoietic cell transplantation (HCT) with myeloablative conditioning regimens remains controversial. To address this controversy, routine chimerism test results at 2 to 6 months after HCT with myeloablative conditioning regimens were evaluated for association with subsequent risk of chronic graft-versus-host disease (GVHD), nonrelapse mortality (NRM), relapse, and overall mortality. Only 70 of 1304 patients (5%) had < 95% donor-derived cells in the marrow. Low donor chimerism in the marrow occurred more often in patients with low-risk diseases compared with those with higher-risk diseases and was significantly associated with a reduced risk of chronic GVHD. Among 673 patients evaluated, 164 (24%) had < 85% donor-derived T cells in the blood. Low donor T cell chimerism was more frequent in patients with low-risk diseases compared with those with higher-risk diseases, in those who received conditioning with busulfan compared with those who received conditioning with total body irradiation, and in those with lower-grade acute GVHD. Low donor T cell chimerism in the blood was significantly associated with a reduced risk of chronic GVHD but not with a reduced risk of relapse, NRM, or overall mortality. Routine testing of chimerism in the marrow and blood at 2 to 6 months after HCT with myeloablative conditioning regimens may be helpful in documenting engraftment in clinical trials, but provides only limited prognostic information in clinical practice.

  6. Effects of chimerism in sheep-goat concepti that developed from blastomere-aggregation embryos.

    PubMed

    Ruffing, N A; Anderson, G B; Bondurant, R H; Currie, W B; Pashen, R L

    1993-04-01

    Chimeric sheep-goat pregnancies were established in 24 ewes and 29 does by transferring 251 embryos, prepared by the blastomere-aggregation technique, to 52 ewes and 61 does. Fifteen does experienced early pregnancy failure; however, term offspring were delivered by 24 ewes (17 lambs, 3 kids, 6 chimeras) and 14 does (6 lambs, 9 kids, 6 chimeras). (Fetal classifications were based on phenotype, red blood cell isozymes, and lymphocyte antigen expression). RIAs for ovine and caprine placental lactogen detected chimerism in the binucleate cell population of the trophoblast throughout the pregnancies of 2 ewes and 7 does; these pregnancies resulted in the birth of 12 healthy offspring. Histological examinations of intact placentomes from 2 of these recipients revealed a continuous cellular trophoblast apposed to a syncytium as in normal placentas. Chimerism was detected electrophoretically in the membranes of the placentas with binucleate cell chimerism and in 17/28 of the other placentas. Data collected on placental lactogen production, chimerism in the conceptus, and placental morphometry were examined with respect to the stages of the blastomeres aggregated to form the chimeric embryo and with respect to fetal status at delivery. For comparison, analogous data were collected on sheep-goat concepti that developed from embryos prepared by inner cell mass transplantation. PMID:8485255

  7. Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis?

    PubMed

    Reed, Ann M; McNallan, Kelly; Wettstein, Peter; Vehe, Richard; Ober, Carole

    2004-04-15

    Juvenile dermatomyositis (JDM) is a multisystem autoimmune disease that at times resembles chronic graft-vs-host disease. This led us to suggest that nonself cells may play a role in the disease process. In this study we examined the relationship between HLA genotype and the presence of maternally derived chimeric cells in JDM patients and healthy controls, and assessed immunologic activity in the chimeric cells. We identified chimeric cells more often in children with JDM (60 of 72) than in their unaffected siblings (11 of 48) or in healthy controls (5 of 29). The presence of chimerism in the JDM patients, their healthy siblings, and unaffected control children was associated with a HLA-DQA1*0501 allele in the mother (p = 0.011). Further, we show that maternally transferred chimeric T cells are responsive to the host's (JDM childs') lymphocytes (33.75 +/- 8.4 IFN-gamma-producing cells from JDM cells vs 5.0 +/- 1.25 from maternal cells), and that this is a memory response. These combined data indicate that chimeric cells play a direct role in the JDM disease process and that the mother's HLA genotype facilitates the transfer and/or persistence of maternal cells in the fetal circulation. PMID:15067086

  8. Minimal residual disease after allogeneic stem cell transplant: a comparison among multiparametric flow cytometry, Wilms tumor 1 expression and chimerism status (Complete chimerism versus Low Level Mixed Chimerism) in acute leukemia.

    PubMed

    Rossi, Giovanni; Carella, Angelo Michele; Minervini, Maria Marta; Savino, Lucia; Fontana, Andrea; Pellegrini, Fabio; Greco, Michele Mario; Merla, Emanuela; Quarta, Gianni; Loseto, Giacomo; Capalbo, Silvana; Palumbo, Gaetano; Cascavilla, Nicola

    2013-12-01

    Relapse represents the main cause of treatment failure after allogeneic stem cell transplant (allo-SCT). The detection of minimal residual disease (MRD) by multiparametric flow cytometry (MFC), chimerism, cytogenetics and molecular analysis may be critical to prevent relapse. Therefore, we assessed the overall agreement among chimerism (low level mixed chimerism [LL-MC] vs. complete chimerism [CC]), MFC and Wilms tumor 1 (WT1) mRNA to detect MRD and investigated the impact of MRD obtained from the three methods on patient outcome. Sixty-seven fresh bone marrow (BM) samples from 24 patients (17 acute myeloid leukemia [AML], seven acute lymphoblastic leukemia [ALL]) in complete remission (CR) after allo-SCT were investigated at different time points. A moderate agreement was found among the three techniques investigated. A higher concordance between positive results from MFC (75.0% vs. 32.7%, p = 0.010) and WT1 (58.3% vs. 29.1%, p = 0.090) was detected among LL-MC rather than CC samples. Relapse-free survival (RFS) and overall survival (OS) were found to be higher in MRD negative patients than in MRD positive patients analyzed with MFC and WT1. Our results discourage the use of low autologous signals as the only marker of MRD, and suggest the usefulness of MFC and WT1 real-time quantitative polymerase chain reaction (RQ-PCR) in stratifying patients with respect to risk of relapse.

  9. Homology of Plant Peroxidases: AN IMMUNOCHEMICAL APPROACH.

    PubMed

    Conroy, J M; Borzelleca, D C; McDonell, L A

    1982-01-01

    Antisera specific for the basic peroxidase from horseradish (Amoracea rusticana) were used to examine homology among horseradish peroxidase isoenzymes and among basic peroxidases from root plants. The antisera cross-reacted with all tested isoperoxidases when measured by both agar diffusion and quantitative precipitin reactions. Precipitin analyses provided quantitative measurements of homology among these plant peroxidases. The basic radish (Raphanus sativus L. cv. Cherry Belle) peroxidase had a high degree of homology (73 to 81%) with the basic peroxidase from horseradish. Turnip (Brassica rapa L. cv. Purple White Top Globe) and carrot (Daucus carota L. cv. Danvers) basic peroxidases showed less cross-reaction (49 to 54% and 41 to 46%, respectively). However, the cross-reactions of antisera with basic peroxidases from different plants were greater than were those observed with acidic horseradish isoenzymes (30 to 35%). These experiments suggest that basic peroxidase isoenzymes are strongly conserved during evolution and may indicate that the basic peroxidases catalyze reactions involved in specialized cellular functions. Anticatalytic assays were poor indicators of homology. Even though homology among isoperoxidases was detected by other immunological methods, antibodies inhibited only the catalytic activity of the basic peroxidase from radish.

  10. HOVERGEN: a database of homologous vertebrate genes.

    PubMed Central

    Duret, L; Mouchiroud, D; Gouy, M

    1994-01-01

    Comparison of homologous genes is a major step for many studies related to genome structure, function or evolution. Similarity search programs easily find genes homologous to a given sequence. However, only very tedious manual procedures allow the retrieval of all sets of homologous genes sequenced for a given set of species. Moreover, this search often generates errors due to the complexity of data to be managed simultaneously: phylogenetic trees, alignments, taxonomy, sequences and related information. HOVERGEN helps to solve these problems by integrating all this information. HOVERGEN corresponds to GenBank sequences from all vertebrate species, with some data corrected, clarified, or completed, notably to address the problem of redundancy. Coding sequences have been classified in gene families. Protein multiple alignments and phylogenetic trees have been calculated for each family. Sequences and related information have been structured in an ACNUC database which permits complex selections. A graphical interface has been developed to visualize and edit trees. Genes are displayed in color, according to their taxonomy. Users have directly access to all information attached to sequences and to multiple alignments simply by clicking on genes. This graphical tool gives thus a rapid and simple access to all data necessary to interpret homology relationships between genes. HOVERGEN allows the user to easily select sets of homologous vertebrate genes, and thus is particularly useful for comparative sequence analysis, or molecular evolution studies. Images PMID:8036164

  11. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.

  12. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  13. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  14. Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis

    PubMed Central

    1995-01-01

    Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo

  15. Irradiated homologous costal cartilage for augmentation rhinoplasty

    SciTech Connect

    Lefkovits, G. )

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  16. Coronal Magnetic Structures for Homologous Eruptions

    NASA Astrophysics Data System (ADS)

    Lee, J.; Liu, C.; Jing, J.; Chae, J.

    2015-12-01

    Many studies have been made on homologous eruptions for their importance in understanding the flare energy build-up and release processes. We study the homologous eruptions that occurred in three active regions, NOAA 11444, 11283, and 12192, with emphasis on the coronal quantities derived from the nonlinear force-free field (NLFFF) extrapolation. The quantities include magnetic energy, electric current, and magnetic twist number, and decay index, computed from the high cadence photospheric vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). In addition, photospheric magnetic flux, flare ribbons and overlying field distribution are also examined to determine the changes associated with each eruption. As main results, we will present the difference between the homology of confined eruptions and that of eruptive ones, and variations of the coronal quantities with flare strength.

  17. Solar core homology, solar neutrinos and helioseismology

    SciTech Connect

    Bludman, S.A.; Kennedy, D.C.

    1995-12-31

    Precise numerical standard solar models (SSMs) now agree with one another and with helioseismological observations in the convective and outer radiative zones. Nevertheless these models obscure how luminosity, neutrino production and g-mode core helioseismology depend on such inputs as opacity and nuclear cross sections. Although the Sun is not homologous, its inner core by itself is chemically evolved and almost homologous, because of its compactness, radiative energy transport, and ppI-dominated luminosity production. We apply luminosity-fixed homology transformations to the core to estimate theoretical uncertainties in the SSM and to obtain a broad class of non-SSMs, parameterized by central temperature and density and purely radiative energy transport in the core. 25 refs., 3 figs., 3 tabs.

  18. Crystal structure of an archaeal actin homolog.

    PubMed

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  19. Donor chimerism early after reduced-intensity conditioning hematopoietic stem cell transplantation predicts relapse and survival.

    PubMed

    Koreth, John; Kim, Haesook T; Nikiforow, Sarah; Milford, Edgar L; Armand, Philippe; Cutler, Corey; Glotzbecker, Brett; Ho, Vincent T; Antin, Joseph H; Soiffer, Robert J; Ritz, Jerome; Alyea, Edwin P

    2014-10-01

    The impact of early donor cell chimerism on outcomes of T cell-replete reduced-intensity conditioning (RIC) hematopoietic stem cell transplantation (HSCT) is ill defined. We evaluated day 30 (D30) and 100 (D100) total donor cell chimerism after RIC HSCT undertaken between 2002 and 2010 at our institution, excluding patients who died or relapsed before D30. When available, donor T cell chimerism was also assessed. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), relapse, and nonrelapse mortality (NRM). We evaluated 688 patients with hematologic malignancies (48% myeloid and 52% lymphoid) and a median age of 57 years (range, 18 to 74) undergoing RIC HSCT with T cell-replete donor grafts (97% peripheral blood; 92% HLA-matched), with a median follow-up of 58.2 months (range, 12.6 to 120.7). In multivariable analysis, total donor cell and T cell chimerism at D30 and D100 each predicted RIC HSCT outcomes, with D100 total donor cell chimerism most predictive. D100 total donor cell chimerism <90% was associated with increased relapse (hazard ratio [HR], 2.54; 95% confidence interval [CI], 1.83 to 3.51; P < .0001), impaired PFS (HR, 2.01; 95% CI, 1.53 to 2.65; P < .0001), and worse OS (HR, 1.50; 95% CI, 1.11 to 2.04, P = .009), but not with NRM (HR, .76; 95% CI, .44 to 2.27; P = .33). There was no additional utility of incorporating sustained D30 to D100 total donor cell chimerism or T cell chimerism. Low donor chimerism early after RIC HSCT is an independent risk factor for relapse and impaired survival. Donor chimerism assessment early after RIC HSCT can prognosticate for long-term outcomes and help identify high-risk patient cohorts who may benefit from additional therapeutic interventions.

  20. Platelet chimerism by polymerase chain reaction (PCR) utilizing variable number of tandem repeats (VNTR) in allogeneic stem cell transplant in children: a new novel approach to full chimerism analysis.

    PubMed

    Chou, P M; Olszewski, M; Huang, W; Silva, M; Kletzel, M

    2003-10-01

    Evaluation of chimerism following allogeneic transplantation has been performed traditionally focusing on two cellular compartments, namely lymphoid and myeloid. However, none has been described so far to evaluate platelet chimerism. In order to achieve full chimerism in all three cellular compartments, we prospectively obtained 138 samples of peripheral blood in 55 patients at different post transplant periods following allogeneic hematopoietic transplantation. Evaluation of chimerism was performed utilizing tests of variable number of tandem repeat (VNTR) and sex determination by quantitative polymerase chain reaction (PCR). Tests for platelet chimerism using platelet-rich plasma were simultaneously analyzed with samples for T-cell lymphoid and myeloid compartments. Complete donor chimerism was noted in 49 of 55 patients (89%), while the remaining six have split chimerism ranging from 34 to 98%. There is significant difference (P=0.0004) between the percentages of donor DNA in all three cellular compartments comparing the means+/-s.e.m. (myeloid 95.60+/-0.9, T-cell lymphocytes 87.6+/-1.9, and the platelets 90.8+/-1.5); however, comparison between the medians is not statistically significant. This study represents an additional step towards achieving full chimerism and the observation may help reduce the number of unnecessary platelet transfusions once chimerism is noted in that cellular compartment.

  1. Chimeric TALE recombinases with programmable DNA sequence specificity.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  2. Chimerical pyrene-based [7]helicenes as twisted polycondensed aromatics.

    PubMed

    Buchta, Michal; Rybáček, Jiří; Jančařík, Andrej; Kudale, Amit A; Buděšínský, Miloš; Chocholoušová, Jana Vacek; Vacek, Jaroslav; Bednárová, Lucie; Císařová, Ivana; Bodwell, Graham J; Starý, Ivo; Stará, Irena G

    2015-06-01

    Chimerical pyrene-based dibenzo[7]helicene rac-1 and 2H-pyran[7]helicene (M,R,R)-(-)-2, in which two pyrene subunits are fused to the [7]helicene/[7]heterohelicene scaffold, were synthesised by means of Ni(0) - or Co(I) -mediated [2+2+2] cycloisomerisation of dipyrenyl-acetylene-derived triynes. Pyrene-based dibenzo[7]helicene 1 was obtained in enantioenriched form by enantioselective cycloisomerisation under Ni(0) /QUINAP catalysis (57 % ee) or in enantiopure form by racemate resolution by liquid chromatography on a chiral column. 1,3-Allylic-type strain-controlled diastereoselective cycloisomerisation was employed in the synthesis of enantiopure (M,R,R)-(-)-2. Physicochemical properties of 1 and 2 encompassing the helicity assignment, stability to racemisation, X-ray crystal structure, UV/Vis, experimental/calculated electronic circular dichroism and fluorescence spectra were studied. Accordingly, comparison of the X-ray crystal structure of (M,R,R)-(-)-2 with calculated structures (DFT: B3LYP/cc-pVDZ, B97D/cc-pVDZ) indicated that its helical backbone is slightly over-flattened owing to intramolecular dispersion forces between tert-butylated pyrene subunits. Both 1 and 2 are fluorescent (with quantum yields in dichloromethane of ΦF =0.10 and 0.17, respectively) and are suggested to form intramolecular excimer states upon excitation, which are remarkably stabilised and exhibit large Stokes shifts (296 and 203 nm, respectively).

  3. Radial symmetry in a chimeric glutamate receptor pore

    NASA Astrophysics Data System (ADS)

    Wilding, Timothy J.; Lopez, Melany N.; Huettner, James E.

    2014-02-01

    Ionotropic glutamate receptors comprise two conformationally different A/C and B/D subunit pairs. Closed channels exhibit fourfold radial symmetry in the transmembrane domain (TMD) but transition to twofold dimer-of-dimers symmetry for extracellular ligand binding and N-terminal domains. Here, to evaluate symmetry in open pores we analysed interaction between the Q/R editing site near the pore loop apex and the transmembrane M3 helix of kainate receptor subunit GluK2. Chimeric subunits that combined the GluK2 TMD with extracellular segments from NMDA receptors, which are obligate heteromers, yielded channels made up of A/C and B/D subunit pairs with distinct substitutions along M3 and/or Q/R site editing status, in an otherwise identical homotetrameric TMD. Our results indicate that Q/R site interaction with M3 occurs within individual subunits and is essentially the same for both A/C and B/D subunit conformations, suggesting that fourfold pore symmetry persists in the open state.

  4. Chimeric animal models in human stem cell biology.

    PubMed

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  5. The promise and potential pitfalls of chimeric antigen receptors.

    PubMed

    Sadelain, Michel; Brentjens, Renier; Rivière, Isabelle

    2009-04-01

    One important purpose of T cell engineering is to generate tumor-targeted T cells through the genetic transfer of antigen-specific receptors, which consist of either physiological, MHC-restricted T cell receptors (TCRs) or non MHC-restricted chimeric antigen receptors (CARs). CARs combine antigen-specificity and T cell activating properties in a single fusion molecule. First generation CARs, which included as their signaling domain the cytoplasmic region of the CD3zeta or Fc receptor gamma chain, effectively redirected T cell cytotoxicity but failed to enable T cell proliferation and survival upon repeated antigen exposure. Receptors encompassing both CD28 and CD3zeta are the prototypes for second generation CARs, which are now rapidly expanding to a diverse array of receptors with different functional properties. First generation CARs have been tested in phase I clinical studies in patients with ovarian cancer, renal cancer, lymphoma, and neuroblastoma, where they have induced modest responses. Second generation CARs, which are just now entering the clinical arena in the B cell malignancies and other cancers, will provide a more significant test for this approach. If the immunogenicity of CARs can be averted, the versatility of their design and HLA-independent antigen recognition will make CARs tools of choice for T cell engineering for the development of targeted cancer immunotherapies.

  6. Utilizing Chimeric Antigen Receptors to Direct Natural Killer Cell Activity

    PubMed Central

    Hermanson, David L.; Kaufman, Dan S.

    2015-01-01

    Natural killer (NK) cells represent an attractive lymphocyte population for cancer immunotherapy due to their ability to lyse tumor targets without prior sensitization and without need for human leukocyte antigens-matching. Chimeric antigen receptors (CARs) are able to enhance lymphocyte targeting and activation toward diverse malignancies. CARs consist of an external recognition domain (typically a small chain variable fragment) directed at a specific tumor antigen that is linked with one or more intracellular signaling domains that mediate lymphocyte activation. Most CAR studies have focused on their expression in T cells. However, use of CARs in NK cells is starting to gain traction because they provide a method to redirect these cells more specifically to target refractory cancers. CAR-mediated anti-tumor activity has been demonstrated using NK cell lines, as well as NK cells isolated from peripheral blood, and NK cells produced from human pluripotent stem cells. This review will outline the CAR constructs that have been reported in NK cells with a focus on comparing the use of different signaling domains in combination with other co-activating domains. PMID:25972867

  7. Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins.

    PubMed Central

    Peng, D; Koetzner, C A; McMahon, T; Zhu, Y; Masters, P S

    1995-01-01

    Targeted RNA recombination was used to construct mouse hepatitis virus (MHV) mutants containing chimeric nucleocapsid (N) protein genes in which segments of the bovine coronavirus N gene were substituted in place of their corresponding MHV sequences. This defined portions of the two N proteins that, despite evolutionary divergence, have remained functionally equivalent. These regions included most of the centrally located RNA-binding domain and two putative spacers that link the three domains of the N protein. By contrast, the amino terminus of N, the acidic carboxy-terminal domain, and a serine- and arginine-rich segment of the central domain could not be transferred from bovine coronavirus to MHV, presumably because these parts of the molecule participate in protein-protein interactions that are specific for each virus (or, possibly, each host). Our results demonstrate that targeted recombination can be used to make extensive substitutions in the coronavirus genome and can generate recombinants that could not otherwise be made between two viruses separated by a species barrier. The implications of these findings for N protein structure and function as well as for coronavirus RNA recombination are discussed. PMID:7636993

  8. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed. PMID:26873054

  9. Long-term assessment of particulate matter using CHIMERE model

    NASA Astrophysics Data System (ADS)

    Monteiro, A.; Miranda, A. I.; Borrego, C.; Vautard, R.; Ferreira, J.; Perez, A. T.

    Particulate matter (PM) and aerosols have became a critical pollutant and object of several research applications, due to their increasing levels, especially in urban areas, causing air pollution problems and thus effects on human health. The main purpose of this study is to perform a first long-term air quality assessment for Portugal, regarding aerosols and PM pollution. The CHIMERE chemistry-transport model, forced by the MM5 meteorological fields, was applied over Portugal for 2001 year, with 10 km horizontal resolution, using an emission inventory obtained from a spatial top-down disaggregation of the 2001 national inventory database. The evaluation model exercise shows a model trend to overestimate particulate pollution episodes (peaks) at urban sites, especially in winter season. This could be due to an underprediction of the winter model vertical mixing and also to an overestimation of PM emissions. Simulated inorganic components (ammonium and sulfate) and secondary organic aerosols (SOA) were compared to measurements taken at Aveiro (northwest coast of Portugal). An underestimation of the three components was verified. However, the model is able to predict their seasonal variation. Nevertheless, as a first approach, and despite the complex topography and coastal location of Portugal affected by sea salt natural aerosols emissions, the results obtained show that the model reproduces the PM levels, temporal evolution, and spatial patterns. The concentration maps reveal that the areas with high PM values are covered by the air quality monitoring network.

  10. Designing chimeric antigen receptors to effectively and safely target tumors.

    PubMed

    Jensen, Michael C; Riddell, Stanley R

    2015-04-01

    The adoptive transfer of T cells engineered to express artificial chimeric antigen receptors CARs) that target a tumor cell surface molecule has emerged as an exciting new approach for cancer immunotherapy. Clinical trials in patients with advanced B cell malignancies treated with CD19-specific CAR-modified T cells (CAR-T) have shown impressive antitumor efficacy, leading to optimism that this approach will be useful for treating common solid tumors. Because CAR-T cells recognize tumor cells independent of their expression of human leukocyte antigen (HLA) molecules, tumors that escape conventional T cells by downregulating HLA and/or mutating components of the antigen processing machinery can be eliminated. The ability to introduce or delete additional genes in T cells has the potential to provide therapeutic cell products with novel attributes that overcome impediments to immune mediated tumor elimination in immunosuppressive tumor microenvironments. This review will discuss recent concepts in the development of effective and safe synthetic CARs for adoptive T cell therapy (ACT).

  11. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.

  12. Impact of hematopoietic chimerism at day +14 on engraftment after unrelated donor umbilical cord blood transplantation for hematologic malignancies

    PubMed Central

    Moscardó, Federico; Sanz, Jaime; Senent, Leonor; Cantero, Susana; de la Rubia, Javier; Montesinos, Pau; Planelles, Dolores; Lorenzo, Ignacio; Cervera, Jose; Palau, Javier; Sanz, Miguel A.; Sanz, Guillermo F.

    2009-01-01

    Background Cord blood transplant is a feasible treatment alternative for adult patients with hematologic malignancies lacking a suitable HLA-matched donor. However, the kinetics of myeloid recovery is slow, and primary graft failure cannot be detected easily early after transplantation. We investigated the impact of hematopoietic chimerism status from unselected marrow cells 14 days after transplantation on predicting engraftment after a cord blood transplant. Design and Methods Seventy-one adult patients with hematologic malignancies undergoing single-unit unrelated donor cord blood transplantation after a myeloablative conditioning regimen were included in the study. All patients received conditioning regimens based on busulfan, thiotepa and antithymocyte globulin. Chimerism status was assessed analyzing short tandem repeat polymorphisms. Results The cumulative incidence of myeloid engraftment at 1 month was significantly lower in patients with mixed chimerism than in those with complete donor chimerism (55% vs. 94%; p<0.0001). For patients achieving myeloid recovery, the median time of engraftment was 16 days when donor chimerism at day + 14 was higher than 90%, compared with 24 days when donor chimerism was below this level (p<0.001). A donor chimerism level of 65% was found to be the best cut-off point for predicting primary graft failure, with a sensitivity of 97% and a specificity of 80%. The incidence of primary graft failure was 67% for patients with less than 65% donor chimerism at day +14 as compared to only 2% for those with more than 65% donor chimerism (p<0.001). Patients with mixed chimerism also had a lower cumulative incidence of platelet engraftment than those with complete chimerism (62% vs. 89%; p=0.01). Conclusions Donor-recipient chimerism status at day +14 predicts engraftment after a single-unit cord blood transplant in adults. PMID:19483157

  13. Evidence for Kidney Rejection after Combined Bone Marrow and Renal Transplantation Despite Ongoing Whole-blood Chimerism in Rhesus Macaques

    PubMed Central

    Ramakrishnan, Swetha K; Page, Andrew; Farris, Alton B.; Singh, Karnail; Leopardi, Frank; Hamby, Kelly; Sen, Sharon; Polnett, Aneesah; Deane, Taylor; Song, Mingqing; Stempora, Linda; Strobert, Elizabeth; Kirk, Allan D.; Larsen, Christian P.; Kean, Leslie S.

    2012-01-01

    Although there is evidence linking hematopoietic chimerism-induction and solid organ transplant tolerance, the mechanistic requirements for chimerism-induced tolerance are not clearly elucidated. To address this, we used an MHC-defined primate model to determine the impact of impermanent, T cell-poor, mixed-chimerism on renal allograft survival. We compared two cohorts: one receiving a bone marrow + renal transplant (“BMT/renal”) and one receiving only a renal transplant. Both cohorts received maintenance immunosuppression with CD28/CD40-directed costimulation blockade and sirolimus. As previously demonstrated, this transplant strategy consistently induced compartmentalized donor chimerism, (significant whole-blood chimerism, lacking T cell chimerism). This chimerism was not sufficient to prolong renal allograft acceptance: the BMT/renal mean survival time (MST, 76 days) was not significantly different than the renal transplant alone MST (85 days, p= 0. 46), with histopathology documenting T-cell mediated rejection. Flow cytometric analysis revealed significant enrichment for CD28-/CD95+ CD4+ and CD8+ Tem cells in the rejected kidney, suggesting a link between CD28-negative Tem and costimulation blockade-resistant rejection. These results suggest that in some settings, transient T cell-poor chimerism is not sufficient to induce tolerance to a concurrently placed renal allograft and that the presence of this chimerism per se is not an independent biomarker to identify tolerance. PMID:22642491

  14. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    SciTech Connect

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai . E-mail: chyang@emory.edu

    2006-08-15

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV.

  15. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation.

    PubMed

    Otsuka, Ryoko; Imai, Susumu; Murata, Takatoshi; Nomura, Yoshiaki; Okamoto, Masaaki; Tsumori, Hideaki; Kakuta, Erika; Hanada, Nobuhiro; Momoi, Yasuko

    2015-01-01

    Water-insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α-1,3-glucanase) and dextranase (α-1,6-glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi-functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE-SUMOstar Amp plasmid vector. The resultant his-tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non-adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol-sulfuric acid method, and reducing sugars were quantified by the Somogyi-Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose-dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.

  16. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  17. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  18. [Development of multiplex short tandem repeat (STR)-PCR for chimerism analysis in patients with hematological malignancies and comparison of chimerism in different sample sources].

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Takezawa, Yuka; Ito, Toshiro; Ishida, Fumihiro; Hidaka, Eiko; Kumagai, Toshiko; Honda, Takayuki

    2011-01-01

    Polymerase chain reaction analysis of short-tandem repeat (STR) markers (STR-PCR) has been used for chimerism testing to assess engraftment following hematopoietic stem cell transplantation (HSCT). We investigated the informativity of 7 STR loci (FGA, D5S818, SE33, TH01, VWF, PentaE, and D18S51) in 82 pre-HSCT DNA samples from 41 donor/recipient pairs and developed 2 multiplex STR-PCRs using VWF, SE33, and D18S51, D5S818 and FGA, respectively. The multiplex STR-PCRs could distinguish the recipients and donors in 92.7% of the cases. Dilution experiments using mixed DNA showed that the sensitivity of the multiplex STR-PCRs for detecting the minor population was 1-5%. To compare chimerism in different samples such as peripheral blood, mononuclear cells (MNC), and CD3-positive cells (CD3+), we investigated the relationship between the chimerisms at approximately day 30 post-HSCT and the interval from the day of HSCT to achievement of complete chimerism (CC) in 70 patients undergoing HSCT. CC was found in all samples of 54 patients at day 30 post-HSCT, and these samples showed CC thereafter. Eleven patients with mixed chimerism (MC) in all samples or in MNC and CD3+ showed CC at day 60-270 post-HSCT or persistent MC. The remaining 5 patients with MC in only CD3+ showed CC at day 30-60 post-HSCT. Taken together, MNC which can be separated easily may be a useful source for detecting patients who require longer time to achieve CC and those with high risk of graft failure.

  19. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation.

    PubMed

    Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo

    2016-01-01

    We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more

  20. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome

    PubMed Central

    Lipatov, Mikhail; Lenkov, Kapa; Petrov, Dmitri A; Bergman, Casey M

    2005-01-01

    Background Recent analysis of the human and mouse genomes has shown that a substantial proportion of protein coding genes and cis-regulatory elements contain transposable element (TE) sequences, implicating TE domestication as a mechanism for the origin of genetic novelty. To understand the general role of TE domestication in eukaryotic genome evolution, it is important to assess the acquisition of functional TE sequences by host genomes in a variety of different species, and to understand in greater depth the population dynamics of these mutational events. Results Using an in silico screen for host genes that contain TE sequences, we identified a set of 63 mature "chimeric" transcripts supported by expressed sequence tag (EST) evidence in the Drosophila melanogaster genome. We found a paucity of chimeric TEs relative to expectations derived from non-chimeric TEs, indicating that the majority (~80%) of TEs that generate chimeric transcripts are deleterious and are not observed in the genome sequence. Using a pooled-PCR strategy to assay the presence of gene-TE chimeras in wild strains, we found that over half of the observed chimeric TE insertions are restricted to the sequenced strain, and ~15% are found at high frequencies in North American D. melanogaster populations. Estimated population frequencies of chimeric TEs did not differ significantly from non-chimeric TEs, suggesting that the distribution of fitness effects for the observed subset of chimeric TEs is indistinguishable from the general set of TEs in the genome sequence. Conclusion In contrast to mammalian genomes, we found that fewer than 1% of Drosophila genes produce mRNAs that include bona fide TE sequences. This observation can be explained by the results of our population genomic analysis, which indicates that most potential chimeric TEs in D. melanogaster are deleterious but that a small proportion may contribute to the evolution of novel gene sequences such as nested or intercalated gene

  1. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    PubMed Central

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic—and plant and algal—lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller’s ratchet—the origin of eukaryotic recombination, or sex—might have required surprisingly little evolutionary innovation. PMID:25733873

  2. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  3. Advances in chimeric antigen receptor immunotherapy for neuroblastoma.

    PubMed

    Heczey, Andras; Louis, Chrystal U

    2013-12-01

    Neuroblastoma (NBL) is the most common extracranial pediatric solid tumor and has heterogeneous biology and behavior. Patients with high-risk disease have poor prognosis despite complex multimodal therapy; therefore, novel curative approaches are needed. Immunotherapy is a novel therapeutic approach that harnesses the inherent activity of the immune system to control and eliminate malignant cells. One form of immunotherapy uses chimeric antigen receptors (CAR) to target tumor-associated antigens. CARs are derived from the antigen-binding domain of a monoclonal antibody (MAb) coupled with the intracellular signaling portion of the T cell receptor. CARs can combine the specificity and effectiveness of MAbs with the active bio-distribution, direct cytotoxicity, and long-term persistence of T cells. NBL provides an attractive target for CAR immunotherapy as many of its tumor-associated antigens are not expressed at significant levels on normal tissues, thus decreasing potential treatment related toxicity. Two previous clinical trials utilizing L1-cell adhesion molecule (L1-CAM) and disialoganglioside (GD2) specific CARs (GD2-CAR) have demonstrated safety and anti-tumor efficacy in heavily pretreated relapsed/refractory neuroblastoma patients. Based on these promising results and on improved techniques that can further potentiate CAR therapies, two clinical trials are currently investigating the use of GD2-CARs in children with NBL. Several approaches may further enhance anti-tumor activity and persistence of CAR modified cells, and if these can be safely translated into the clinic, CAR-based immunotherapy could become a viable adjunct or potential alternative to conventional treatment options for patients with NBL.

  4. Advances in Chimeric Antigen Receptor Immunotherapy for Neuroblastoma

    PubMed Central

    Heczey, Andras; Louis, Chrystal U.

    2014-01-01

    Neuroblastoma (NBL) is the most common extracranial pediatric solid tumor and has heterogeneous biology and behavior. Patients with high-risk disease have poor prognosis despite complex multimodal therapy; therefore, novel curative approaches are needed. Immunotherapy is a novel therapeutic approach that harnesses the inherent activity of the immune system to control and eliminate malignant cells. One form of immunotherapy uses chimeric antigen receptors (CAR) to target tumor-associated antigens. CARs are derived from the antigen-binding domain of a monoclonal antibody (MAb) coupled with the intracellular signaling portion of the T cell receptor. CARs can combine the specificity and effectiveness of MAbs with the active bio-distribution, direct cytotoxicity, and long-term persistence of T cells. NBL provides an attractive target for CAR immunotherapy as many of its tumor-associated antigens are not expressed at significant levels on normal tissues, thus decreasing potential treatment related toxicity. Two previous clinical trials utilizing L1-cell adhesion molecule (L1-CAM) and disialoganglioside (GD2) specific CARs (GD2-CAR) have demonstrated safety and anti-tumor efficacy in heavily pretreated relapsed/refractory neuroblastoma patients. Based on these promising results and on improved techniques that can further potentiate CAR therapies, two clinical trials are currently investigating the use of GD2-CARs in children with NBL. Several approaches may further enhance anti-tumor activity and persistence of CAR modified cells, and if these can be safely translated into the clinic, CAR-based immunotherapy could become a viable adjunct or potential alternative to conventional treatment options for patients with NBL. PMID:24333408

  5. Simulations of Mineral Dust Content With CHIMERE-Dust Model

    NASA Astrophysics Data System (ADS)

    Schmechtig, C.; Marticorena, B.; Menut, L.; Bergametti, G.

    2006-12-01

    Simulations of the mineral dust cycle have been performed whith CHIMERE-Dust model over a domain that includes North Africa, the Mediterranean basin and the North Tropical Atlantic Ocean (10S-60N and 90W-90E) with a 1°x1° resolution using the ECMWF (European Center for Medium-Range Weather Forecasts) meteorological fields for two years, 2000 and 2001. As a validation, we compare the simulated dust concentration fields with photometric data from the AERONET network. From the comparisons between the simulated and measured aerosol optical depth for several stations of the Mediterranean basin, the model appears to reproduce correctly the intensity and occurrences of the dust events. Over Western Africa, the results are not as satisfying since some of the most intense dust events observed on the continent and downwind are not captured by the model. In addition, the simulated events are generally underestimated compared to the measured ones. It appears that these differences in the model performances are connected to the origin of the dust plumes. For example, dust plumes coming from Libya are well simulated while dust plumes originating from the Bodélé depression not as frequent as intense as the observations suggest. Soil properties in these two regions are comparable and typical of very erodible surfaces. We thus focused on the comparison between the ECMWF 10m wind speed fields and 10m wind speed measured at the meteorological stations located in both areas. We noticed that over Libya, the measured and ECMWF 10m wind speed are in very good agreement, while the meteorological model does not reproduce the extrema of the measured wind speed in the Bodélé depression. We found that a crude empirical correction of the 10m wind field in the Bodélé Depression significantly improve the simulations in terms of occurrence and of intensity.

  6. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  7. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    PubMed

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  8. Generation of progeny from embryonic stem cells by microinsemination of male germ cells from chimeric mice.

    PubMed

    Mizutani, Eiji; Ohta, Hiroshi; Kishigami, Satoshi; Van Thuan, Nguyen; Hikichi, Takafusa; Wakayama, Sayaka; Sato, Eimei; Wakayama, Teruhiko

    2005-09-01

    Mice chimeric for embryonic stem (ES) cells have not always successfully produced ES-derived offspring. Here we show that the male gametes from ES cells could be selected in male chimeric mice testes by labeling donor ES cells or host blastocytes with GFP. Male GFP-expressing ES-derived germ cells occurred as colonies in the chimeric testes, where the seminiferous tubules were separated into green and non-green regions. When mature spermatozoa from green tubules were used for microinsemination, GFP-expressing offspring were efficiently obtained. Using a reverse study, we also obtained ES-derived progeny from GFP-negative ES cells in GFP-labeled host chimeras. Furthermore, we showed this approach could be accelerated by using round spermatids from the testes of 20-day-old chimeric mice. Thus, this technique allowed us to generate the ES cell-derived progeny even from the low contributed chimeric mice, which cannot produce ES-origin offspring by natural mating.

  9. Faith-based perspectives on the use of chimeric organisms for medical research.

    PubMed

    Degeling, Chris; Irvine, Rob; Kerridge, Ian

    2014-04-01

    Efforts to advance our understanding of neurodegenerative diseases involve the creation chimeric organisms from human neural stem cells and primate embryos--known as prenatal chimeras. The existence of potential mentally complex beings with human and non-human neural apparatus raises fundamental questions as to the ethical permissibility of chimeric research and the moral status of the creatures it creates. Even as bioethicists find fewer reasons to be troubled by most types of chimeric organisms, social attitudes towards the non-human world are often influenced by religious beliefs. In this paper scholars representing eight major religious traditions provide a brief commentary on a hypothetical case concerning the development and use of prenatal human-animal chimeric primates in medical research. These commentaries reflect the plurality and complexity within and between religious discourses of our relationships with other species. Views on the moral status and permissibility of research on neural human animal chimeras vary. The authors provide an introduction to those who seek a better understanding of how faith-based perspectives might enter into biomedical ethics and public discourse towards forms of biomedical research that involves chimeric organisms.

  10. Chimeric hERG channels containing a tetramerization domain are functional and stable.

    PubMed

    Hausammann, Georg J; Grütter, Markus G

    2013-12-23

    Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies. PMID:24325597

  11. Chimeric spider silk proteins mediated by intein result in artificial hybrid silks.

    PubMed

    Lin, Senzhu; Chen, Gefei; Liu, Xiangqin; Meng, Qing

    2016-07-01

    Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3 PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385-392, 2016. PMID:26948769

  12. Generation and evaluation of a chimeric classical swine fever virus expressing a visible marker gene.

    PubMed

    Li, Yongfeng; Wang, Xiao; Sun, Yuan; Li, Lian-Feng; Zhang, Lingkai; Li, Su; Luo, Yuzi; Qiu, Hua-Ji

    2016-03-01

    Classical swine fever virus (CSFV) is a noncytopathogenic virus, and the incorporation of an enhanced green fluorescent protein (EGFP) tag into the viral genome provides a means of direct monitoring of viral infection without immunostaining. It is well established that the 3' untranslated region (3'-UTR) of the CSFV plays an important role in viral RNA replication. Although CSFV carrying a reporter gene and chimeric CSFV have been generated and evaluated, a chimeric CSFV with a visible marker has not yet been reported. Here, we generated and evaluated a chimeric virus containing the EGFP tag and the 3'-UTR from vaccine strain HCLV (C-strain) in the genetic background of the highly virulent CSFV Shimen strain. The chimeric marker CSFV was fluorescent and had an approximately 100-fold lower viral titer, lower replication level of viral genome, and weaker fluorescence intensity than the recombinant CSFV with only the EGFP tag or the parental virus. Furthermore, the marker chimera was avirulent and displayed no viremia in inoculated pigs, which were completely protected from lethal CSFV challenge as early as 15 days post-inoculation. The chimeric marker virus was visible in vitro and attenuated in vitro and in vivo, which suggests that CSFV can be engineered to produce attenuated variants with a visible marker to facilitate in vitro studies of CSFV infection and replication and to develop of novel vaccines against CSF. PMID:26614259

  13. A chimeric Plasmodium falciparum Pfnbp2b/Pfnbp2a gene originated during asexual growth.

    PubMed

    Cortés, Alfred

    2005-02-01

    The Plasmodium falciparum line 3D7-A has an unusual invasion phenotype, such that it can invade enzyme-treated and mutant red blood cells that are resistant to invasion by other parasite lines. 3D7-A has a chimeric Pfnbp2b gene that contains part of the repeat region of the paralogous gene Pfnbp2a. This chimeric gene originated by spontaneous gene conversion during normal maintenance in culture, indicating that ectopic recombination and gene conversion during asexual growth are potentially important mechanisms participating in the evolution of paralogous genes in Plasmodium. However, the presence of the chimeric Pfnbp2b gene in 3D7-A was not associated with its peculiar invasion phenotype.

  14. [Evolutionary fate and expression patterns of chimeric new genes in Drosophila melanogaster].

    PubMed

    Zhan, Zu-Bing; Zhang, Yue; Zhao, Ruo-Ping; Wang, Wen

    2011-12-01

    Origin and evolution of new genes contribute a lot to genome diversity. New genes usually form chimeric gene structures through DNA-based exon shuffling and generate proteins with novel functions. We investigated polymorphism of 14 chimeric new genes in Drosophila melanogaster populations and found that eight have premature stop codons in some individuals while six are intact in the population, four of which are under negative selection, suggesting the two evolutionary fates of new chimeric genes after origination: accumulate premature stop codons and pseudolize, or acquire functions and get fixed by natural selection. Different from new genes originated through RNA-based duplication (retroposition) which are usually testis-specific or male-specific expressed, the expression patterns of these new genes through DNA-based exon shuffling are temporally and spatially diverse, implying that they may have the potential to evolve various biological functions despite that they may become pseudogenes or non-protein-coding RNA genes.

  15. A chimerism-based approach to induce tolerance in IgE-mediated allergy.

    PubMed

    Baranyi, Ulrike; Pilat, Nina; Gattringer, Martina; Wekerle, Thomas

    2009-01-01

    Immunoglobulin-E-mediated allergy (type I allergy) is a T-helper-2-mediated disease with increasing prevalence in industrialized countries. Immunotherapy is available as causative treatment, but an effective preventive strategy is still an unmet need. Molecular chimerism is an attractive experimental approach that induces tolerance through transplantation of autologous hematopoietic stem cells that are genetically modified to express the disease-causing antigen(s). Molecular chimerism leads to permanent and robust tolerance in experimental models of autoimmune diseases and organ transplantation. Recently, proof-of-principle studies demonstrated that a type I allergic immune response can be durably tolerized by transplantation of allergen-expressing syngeneic bone marrow. We review the concept of tolerance induction through chimerism and discuss the potential of this strategy in immunoglobulin-E-mediated allergy.

  16. Chimerism and multiple numerical chromosome imbalances in a spontaneously aborted fetus.

    PubMed

    Vorsanova, S G; Iourov, I Y; Demidova, I A; Kirillova, E A; Soloviev, I V; Yurov, Y B

    2006-01-01

    We report on a case of chimerism and multiple abnormalities of chromosomes 21, Xand Yin spontaneous abortion specimen. To the best our knowledge the present case is the first documented chimera in a spontaneously aborted fetus. The application of interphase fluorescence in situ hybridization (FISH) using chromosome enumeration and site-specific DNA probes showed trisomy X in 92 nuclei (23 %), tetrasomy X in 100 nuclei (25 %), pentasomy of chromosome X in 40 nuclei (10 %), XXY in 36 nuclei (9 %), XXXXXXYY in 12 nuclei (3 %), XXXXXYYYYY in 8 nuclei (2 %), trisomy 21 and female chromosome complement in 40 nuclei (10 %), normal female chromosome complement in 72 nuclei (18 %) out of 400 nuclei scored. Our experience indicates that the frequency of chimerism coupled with multiple chromosome abnormalities should be no less than 1 : 400 among spontaneous abortions. The difficulties of chimerism identification in fetal tissues are discussed. PMID:17385415

  17. Large human YACs constructed in a rad52 strain show a reduced rate of chimerism

    SciTech Connect

    Haldi, M.; Perrot, V.; Saumier, M.

    1994-12-01

    Current YAC libraries are plagued by a high frequency of chimeras - that is, clones containing fragments from multiple genomic regions. Chimeras are thought to arise largely through recombination in the yeast host cell. If so, the use of recombination-deficient yeast strains, such as rad52 mutants, might be expected to alleviate the problem. Here, we report the construction of megabase-sized human YACs in the rad52 strain MHY5201 and the determination of their rate of chimerism by fluorescence in situ hybridization analysis. Examination of 48 YACs showed a rate of chimerism of at most 8%, whereas YACs constructed in the wildtype host AB1380 showed a rate of about 50%. These results show that it is possible to significantly decrease the rate of YAC chimerism through the use of appropriate yeast host strains. 27 refs., 3 figs., 3 tabs.

  18. Measurement of chimerism in cynomolgus monkeys using human-specific short tandem repeat-based assay.

    PubMed

    Akpinar, Edip; Keary, Jodie M; Kurlander, Roger; Hale, Douglas A

    2005-01-27

    Preclinical testing of a mixed chimerism mediated organ transplant tolerance strategy, in a cynomolgus macaque model, would be facilitated by the establishment of a reliable technique for quantitative assessment of chimerism. Among various techniques used for measurement of chimerism in humans, microsatellite DNA profiling has been considered the most versatile one that can discriminate between two individuals. We adopted a commercially available short tandem repeat profiling methodology to cynomolgus monkeys using two human specific alleles, TPOX and CSF1PO. Polymerase chain reaction (PCR) was used to amplify these alleles, and the analysis of the PCR products was performed by capillary electrophoresis. Of 54 cynomolgus macaques investigated, only one pair with the same ABO blood type demonstrated identity at both alleles. This implies that this technique should interfere minimally with the assignment of donor-recipient pairs based upon molecular tissue typing or mixed lymphocyte cultures.

  19. Redesigning Aldolase Stereoselectivity by Homologous Grafting.

    PubMed

    Bisterfeld, Carolin; Classen, Thomas; Küberl, Irene; Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  20. Homologous Pairing between Long DNA Double Helices

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2016-04-01

    Molecular recognition between two double stranded (ds) DNA with homologous sequences may not seem compatible with the B-DNA structure because the sequence information is hidden when it is used for joining the two strands. Nevertheless, it has to be invoked to account for various biological data. Using quantum chemistry, molecular mechanics, and hints from recent genetics experiments, I show here that direct recognition between homologous dsDNA is possible through the formation of short quadruplexes due to direct complementary hydrogen bonding of major-groove surfaces in parallel alignment. The constraints imposed by the predicted structures of the recognition units determine the mechanism of complexation between long dsDNA. This mechanism and concomitant predictions agree with the available experimental data and shed light upon the sequence effects and the possible involvement of topoisomerase II in the recognition.

  1. Redesigning Aldolase Stereoselectivity by Homologous Grafting

    PubMed Central

    Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  2. Khovanov homology of graph-links

    SciTech Connect

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  3. Homology and phylogeny and their automated inference

    NASA Astrophysics Data System (ADS)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  4. 78 FR 13691 - Prospective Grant of Exclusive License: The Development of m971 and m972 Chimeric Antigen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... m971 and m972 Chimeric Antigen Receptors (CARs) for the Treatment of B Cell Malignancies AGENCY... worldwide, and the field of use may be limited to: Treatment of B cell malignancies that express CD22 on their cell surface using chimeric antigen receptors which contain the m971 or m972 antibody...

  5. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  6. Structure-Function Analysis of Peroxisomal ATP-binding Cassette Transporters Using Chimeric Dimers*

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; Van Roermund, Carlo W.; Lopez, Tatiana E.; Dias, Alexandre M. M.; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J.; Trompier, Doriane; Savary, Stéphane

    2014-01-01

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters. PMID:25043761

  7. Mixed chimerism and transplant tolerance are not effectively induced in C3a-deficient mice.

    PubMed

    Baśkiewicz-Hałasa, Magdalena; Rogińska, Dorota; Piecyk, Katarzyna; Hałasa, Maciej; Lejkowska, Renata; Pius-Sadowska, Ewa; Machaliński, Bogusław

    2015-01-01

    Mixed chimerism, a phenomenon involved in the development of specific alloantigen tolerance, could be achieved through the transplantation of hematopoietic stem cells into properly prepared recipients. Because the C3a complement component modulates hematopoietic cell trafficking after transplantation, in the present study, we investigated the influence of the C3a deficiency on mixed chimerism and alloantigen tolerance induction. To induce mixed chimerism, C57BL/6J (wild-type strain; H-2K(b); I-E(-)) and B6.129S4-C3(tm1Crr)/J (C3a-deficient) mice were exposed to 3 G total body irradiation (day -1). Subsequently, these mice were treated with CD8-blocking (day -2) and CD40L-blocking (days 0 and 4) antibodies, followed by transplantation with 20 × 10(6) Balb/c (H-2K(d); I-E(+)) bone marrow cells (day 0). The degree of mixed chimerism in peripheral blood leukocytes was measured several times during the 20-week experiment. The tolerance to Balb/c mouse antigens was assessed based on the number of lymphocytes expressing Vβ5 and Vβ11 T-cell receptor and on skin-graft (day 0) acceptance. Applying our experimental model, mixed chimerism and alloantigen tolerance were effectively induced in C57BL/6J (wild-type) mice, but not in C3a(-/-) animals. The present study is, to our knowledge, the first to demonstrate that C3a is vital for achieving stable mixed chimerism and related to this induction of transplant tolerance.

  8. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  9. COMPASS server for remote homology inference.

    PubMed

    Sadreyev, Ruslan I; Tang, Ming; Kim, Bong-Hyun; Grishin, Nick V

    2007-07-01

    COMPASS is a method for homology detection and local alignment construction based on the comparison of multiple sequence alignments (MSAs). The method derives numerical profiles from given MSAs, constructs local profile-profile alignments and analytically estimates E-values for the detected similarities. Until now, COMPASS was only available for download and local installation. Here, we present a new web server featuring the latest version of COMPASS, which provides (i) increased sensitivity and selectivity of homology detection; (ii) longer, more complete alignments; and (iii) faster computational speed. After submission of the query MSA or single sequence, the server performs searches versus a user-specified database. The server includes detailed and intuitive control of the search parameters. A flexible output format, structured similarly to BLAST and PSI-BLAST, provides an easy way to read and analyze the detected profile similarities. Brief help sections are available for all input parameters and output options, along with detailed documentation. To illustrate the value of this tool for protein structure-functional prediction, we present two examples of detecting distant homologs for uncharacterized protein families. Available at http://prodata.swmed.edu/compass. PMID:17517780

  10. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii).

    PubMed

    Shimada, Kenshu

    2002-01-01

    The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates.

  11. Weak homological dimensions and biflat Koethe algebras

    SciTech Connect

    Pirkovskii, A Yu

    2008-06-30

    The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.

  12. Regulation of DNA Pairing in Homologous Recombination

    PubMed Central

    Daley, James M.; Gaines, William A.; Kwon, YoungHo; Sung, Patrick

    2014-01-01

    Homologous recombination (HR) is a major mechanism for eliminating DNA double-strand breaks from chromosomes. In this process, the break termini are resected nucleolytically to form 3′ ssDNA (single-strand DNA) overhangs. A recombinase (i.e., a protein that catalyzes homologous DNA pairing and strand exchange) assembles onto the ssDNA and promotes pairing with a homologous duplex. DNA synthesis then initiates from the 3′ end of the invading strand, and the extended DNA joint is resolved via one of several pathways to restore the integrity of the injured chromosome. It is crucial that HR be carefully orchestrated because spurious events can create cytotoxic intermediates or cause genomic rearrangements and loss of gene heterozygosity, which can lead to cell death or contribute to the development of cancer. In this review, we will discuss how DNA motor proteins regulate HR via a dynamic balance of the recombination-promoting and -attenuating activities that they possess. PMID:25190078

  13. Homologous recombination in rat germline stem cells.

    PubMed

    Kanatsu-Shinohara, Mito; Kato-Itoh, Megumi; Ikawa, Masahito; Takehashi, Masanori; Sanbo, Makoto; Morioka, Yuka; Tanaka, Takashi; Morimoto, Hiroko; Hirabayashi, Masumi; Shinohara, Takashi

    2011-07-01

    Spermatogonial stem cells (SSCs) are the only stem cells in the body with germline potential, which makes them an attractive target for germline modification. We previously showed the feasibility of homologous recombination in mouse SSCs and produced knockout (KO) mice by exploiting germline stem (GS) cells, i.e., cultured spermatogonia with SSC activity. In this study, we report the successful homologous recombination in rat GS cells, which can be readily established by their ability to form germ cell colonies on culture plates whose surfaces are hydrophilic and neutrally charged and thus limit somatic cell binding. We established a drug selection protocol for GS cells under hypoxic conditions. The frequency of the homologous recombination of the Ocln gene was 4.2% (2 out of 48 clones). However, these GS cell lines failed to produce offspring following xenogeneic transplantation into mouse testes and microinsemination, suggesting that long-term culture and drug selection have a negative effect on GS cells. Nevertheless, our results demonstrate the feasibility of gene targeting in rat GS cells and pave the way toward the generation of KO rats.

  14. Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing among three cytoplasm types in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Lee, Eul-Tai; Cho, Dong Youn; Han, Taeho; Bang, Haejeen; Patil, Bhimanagouda S; Ahn, Yul Kyun; Yoon, Moo-Kyoung

    2009-02-01

    A novel chimeric gene with a 5' end containing the nearly complete sequence of the coxI gene and a 3' end showing homology with chive orfA501 was isolated by genome walking from two cytoplasm types: CMS-S and CMS-T, both of which induce male-sterility in onion (Allium cepa L.). In addition, the normal active and variant inactive coxI genes were also isolated from onions containing the normal and CMS-S cytoplasms, respectively. The chimeric gene, designated as orf725, was nearly undetectable in normal cytoplasm, and the copy number of the normal coxI gene was significantly reduced in CMS-S cytoplasm. RT-PCR results showed that orf725 was not transcribed in normal cytoplasm. Meanwhile, the normal coxI gene, which is essential for normal mitochondrial function, was not expressed in CMS-S cytoplasm. However, both orf725 and coxI were transcribed in CMS-T cytoplasm. The expression of orf725, a putative male-sterility-inducing gene, was not affected by the presence of nuclear restorer-of-fertility gene(s) in male-fertility segregating populations originating from the cross between a male-sterile plant containing either CMS-T or CMS-S and a male-fertile plant whose genotypes of nuclear restorer gene(s) might be heterozygous. The specific stoichiometry of orf725 and coxI in the mtDNA of the three cytoplasm types was consistent among diverse germplasm. Therefore, a molecular marker based on the relative copy numbers of orf725 and coxI was designed for distinguishing among the three cytoplasm types by one simple PCR. The reliability and applicability of the molecular marker was shown by testing diverse onion germplasm.

  15. The influence of orientation and number of copies of T and B cell epitopes on the specificity and affinity of antibodies induced by chimeric peptides.

    PubMed

    Partidos, C; Stanley, C; Steward, M

    1992-10-01

    CBA and TO mice were immunized with chimeric peptide immunogens consisting of B cell (residues 404-414) and T cell (residues 288-302) epitopes from the F protein of measles virus. The chimeras were co-linearly synthesized to contain one or two copies of the T cell epitope linked to one or two copies of the B cell epitope via a glycine.glycine spacer. Two orientations were synthesized such that the T cell epitope(s) were located at either the amino or carboxyl terminus of the B cell epitope(s). The levels of antibody induced following immunization with the chimeras were assessed by enzyme-linked immunosorbent assay using microtiter plates coated with either the homologous chimera or the B cell epitope sequence. The affinities of the anti-chimera antibodies for the B cell epitope were assessed by a fluid-phase double-isotope radioimmunoassay. All the chimeras induced good antibody responses in both strains of mice with specificity for the B cell epitope. Chimeras containing two copies of the T cell epitope induced antibodies with higher affinity for the B cell epitope than did chimeras containing one copy of the T cell epitope or two copies of the B cell epitope. Furthermore, the amino terminal location of the T cell epitope in relation to the B cell epitope in the chimera induced higher affinity anti-B cell antibody than did the reverse orientation. These results suggest that orientation of epitopes and amino acid composition of chimeric peptides affect antigen processing and presentation to T cells which govern both the specificity and affinity of antibody produced. Thus, for the production of synthetic peptide immunogens with vaccine potential, attention needs to be given to the number and orientation of the component epitopes required to produce highest affinity antibody.

  16. Chimeric cDNA studies of Theiler's murine encephalomyelitis virus neurovirulence.

    PubMed Central

    Zhang, L; Senkowski, A; Shim, B; Roos, R P

    1993-01-01

    Strain GDVII and other members of the GDVII subgroup of Theiler's murine encephalomyelitis virus are highly neurovirulent and rapidly fatal, while strain DA and other members of the TO subgroup produce a chronic, demyelinating disease. GDVII/DA chimeric cDNA studies suggest that a major neurovirulence determinant is within the GDVII 1B through 1D capsid protein coding region, although the additional presence of upstream GDVII sequences, including the 5' untranslated region, contributes to full neurovirulence. Our studies indicate that there are limitations in precisely delineating neurovirulence determinants with chimeric cDNAs between evolutionarily diverged viruses, such as GDVII and DA. PMID:8510228

  17. Chimeric cDNA studies of Theiler's murine encephalomyelitis virus neurovirulence.

    PubMed

    Zhang, L; Senkowski, A; Shim, B; Roos, R P

    1993-07-01

    Strain GDVII and other members of the GDVII subgroup of Theiler's murine encephalomyelitis virus are highly neurovirulent and rapidly fatal, while strain DA and other members of the TO subgroup produce a chronic, demyelinating disease. GDVII/DA chimeric cDNA studies suggest that a major neurovirulence determinant is within the GDVII 1B through 1D capsid protein coding region, although the additional presence of upstream GDVII sequences, including the 5' untranslated region, contributes to full neurovirulence. Our studies indicate that there are limitations in precisely delineating neurovirulence determinants with chimeric cDNAs between evolutionarily diverged viruses, such as GDVII and DA.

  18. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    NASA Technical Reports Server (NTRS)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  19. Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene.

    PubMed

    Gupta, Aarti; Pal, Ram Krishna; Rajam, Manchikatla Venkat

    2013-07-15

    The ripening hormone, ethylene is known to initiate, modulate and co-ordinate the expression of various genes involved in the ripening process. The burst in ethylene production is the key event for the onset of ripening in climacteric fruits, including tomatoes. Therefore ethylene is held accountable for the tons of post-harvest losses due to over-ripening and subsequently resulting in fruit rotting. In the present investigation, delayed ripening tomatoes were generated by silencing three homologs of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) gene during the course of ripening using RNAi technology. The chimeric RNAi-ACS construct designed to target ACS homologs, effectively repressed the ethylene production in tomato fruits. Fruits from such lines exhibited delayed ripening and extended shelf life for ∼45 days, with improved juice quality. The ethylene suppression brought about compositional changes in these fruits by enhancing polyamine (PA) levels. Further, decreased levels of ethylene in RNAi-ACS fruits has led to the altered levels of various ripening-specific transcripts, especially the up-regulation of PA biosynthesis and ascorbic acid (AsA) metabolism genes and down-regulation of cell wall hydrolyzing enzyme genes. These results suggest that the down-regulation of ACS homologs using RNAi can be an effective approach for obtaining delayed ripening with longer shelf life and an enhanced processing quality of tomato fruits. Also, the chimeric gene fusion can be used as an effective design for simultaneous silencing of more than one gene. These observations would be useful in better understanding of the ethylene and PA signaling during fruit ripening and molecular mechanisms underlying the interaction of these two molecules in affecting fruit quality traits.

  20. Railway vehicle performance optimisation using virtual homologation

    NASA Astrophysics Data System (ADS)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  1. Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance.

    PubMed

    Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Sauma, Daniela; Rosemblatt, Mario; Bono, Maria Rosa

    2015-01-01

    The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation. PMID:26635810

  2. Chimeric lipid/block copolymer nanovesicles: Physico-chemical and bio-compatibility evaluation.

    PubMed

    Pippa, Natassa; Stellas, Dimitris; Skandalis, Athanasios; Pispas, Stergios; Demetzos, Costas; Libera, Marcin; Marcinkowski, Andrzej; Trzebicka, Barbara

    2016-10-01

    Chimeric systems are mixed nanovectors composed by different in nature materials and exhibit new functionalities and properties. The particular chimeric nanovectors, formed by the co-assembly of low and high molecular weight amphiphiles, have the potential to be utilized as drug delivery platforms. We have utilized two lipids, l-α-phosphatidylcholine, hydrogenated (Soy)(HSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and a poly(oligoethylene glycol acrylate)-b-poly(lauryl acrylate) (POEGA-PLA) block copolymer, at different molar ratios, in aqueous media. Light scattering, differential scanning calorimetry (DSC) and imaging techniques (cryo-TEM, AFM) were employed in order to elucidate the structure and properties of the nanostructures, as well as the cooperativity between the components. DSC experiments showed considerable interaction of the block copolymer with the lipid bilayers and suggested an inhomogeneous distribution of the copolymer chains and lateral phase separation of the components. Vesicle formation was observed in most cases by cryo-TEM with a chimeric membrane exhibiting kinks, in accordance with DSC data. A series of biocompatibility experiments indicated good in vitro biological stability and low cytotoxicity in vivo of the novel nanocarriers. Finally, ibuprofen (IBU) was used as model drug in order to study the loading and the release properties of the prepared chimeric lipid/block copolymer vesicles.

  3. Multipaddled Anterolateral Thigh Chimeric Flap for Reconstruction of Complex Defects in Head and Neck

    PubMed Central

    Li, Ning; Liu, Wen; Su, Tong; Chen, Xinqun; Zheng, Lian; Jian, Xinchun

    2014-01-01

    The anterolateral thigh flap has been the workhouse flap for coverage of soft-tissue defects in head and neck for decades. However, the reconstruction of multiple and complex soft-tissue defects in head and neck with multipaddled anterolateral thigh chimeric flaps is still a challenge for reconstructive surgeries. Here, a clinical series of 12 cases is reported in which multipaddled anterolateral thigh chimeric flaps were used for complex soft-tissue defects with several separately anatomic locations in head and neck. Of the 12 cases, 7 patients presented with trismus were diagnosed as advanced buccal cancer with oral submucous fibrosis, 2 tongue cancer cases were found accompanied with multiple oral mucosa lesions or buccal cancer, and 3 were hypopharyngeal cancer with anterior neck skin invaded. All soft-tissue defects were reconstructed by multipaddled anterolateral thigh chimeric flaps, including 9 tripaddled anterolateral thigh flaps and 3 bipaddled flaps. The mean length of skin paddle was 19.2 (range: 14–23) cm and the mean width was 4.9 (range: 2.5–7) cm. All flaps survived and all donor sites were closed primarily. After a mean follow-up time of 9.1 months, there were no problems with the donor or recipient sites. This study supports that the multipaddled anterolateral thigh chimeric flap is a reliable and good alternative for complex and multiple soft-tissue defects of the head and neck. PMID:25180680

  4. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach

    PubMed Central

    Mohammad, Nazanin; Karsabet, Mehrnaz Taghipour; Amani, Jafar; Ardjmand, Abolfazl; Zadeh, Mohsen Razavi; Gholi, Mohammad Khalifeh; Saffari, Mahmood; Ghasemi, Amir

    2016-01-01

    Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori. PMID:27335622

  5. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  6. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    PubMed

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  7. Evaluation of epithelial chimerism after bone marrow mesenchymal stromal cell infusion in intestinal transplant patients.

    PubMed

    Kilinc, S; Gurkan, U A; Guven, S; Koyuncu, G; Tan, S; Karaca, C; Ozdogan, O; Dogan, M; Tugmen, C; Pala, E E; Bayol, U; Baran, M; Kurtulmus, Y; Pirim, I; Kebapci, E; Demirci, U

    2014-01-01

    Intestinal transplantation is the most effective treatment for patients with short bowel syndrome and small bowel insufficiencies. We evaluated epithelial chimerism after infusion of autologous bone marrow mesenchymal stromal cells (BMSCs) in patients undergoing cadaveric donor isolated intestinal transplantation (I-ITx). BMSCs were isolated from patients' bone marrow via iliac puncture and expanded in vitro prior to infusion. Two out of the 3 patients were infused with autologous BMSCs, and small intestine tissue biopsies collected post-operatively were analyzed for epithelial chimerism using XY fluorescent in situ hybridization and short tandem repeat polymerase chain reaction. We observed epithelial chimeric effect in conditions both with and without BMSC infusion. Although our results suggest a higher epithelial chimerism effect with autologous BMSC infusion in I-ITx, the measurements in multiple biopsies at different time points that demonstrate the reproducibility of this finding and its stability or changes in the level over time would be beneficial. These approaches may have potential implications for improved graft survival, lower immunosuppressant doses, superior engraftment of the transplanted tissue, and higher success rates in I-ITx.

  8. Donor-specific tolerance induction in organ transplantation via mixed splenocytes chimerism.

    PubMed

    Yamazaki, S; Kanamoto, A; Takayama, T

    2013-08-01

    We have shown previously that donor-derived splenocytes can replace recipients' bone marrow and induce donor-specific tolerance (DST). We have also shown the usefulness of the chimeric state for the induction of DST. Further analysis of mixed splenocytes chimera, especially the role of each T cells in mixed splenocytes chimera, is indispensable issue for its clinical use. A chimeric state has been shown to achieve long-term survival in major histocompatibility complex (MHC)-mismatched grafts. The donor-derived splenocytes can replace recipients' bone marrow and induce DST. The long-term survival of allogeneic skin grafts was achieved without immunosuppressants. In this study we show the role of each T cell type in a splenocyte mixed chimera. This review provides a short summary of our original work, adding some supplemental interpretations. Mixed chimerism is thus considered an attractive approach for the induction of DST without the use of immunosuppressants. In this paper, we summarize some of the findings on mixed splenocyte chimeras and review mixed chimerism in recent organ transplantation.

  9. Mixed chimerism in haemoglobinopathies: from risk of graft rejection to immune tolerance.

    PubMed

    Andreani, M; Testi, M; Lucarelli, G

    2014-03-01

    Mixed chimerism (MC), the simultaneous presence of both host- and donor-derived cells in the recipient, is observed in a large proportion of patients after haematopoietic stem cell transplant (HSCT) to treat haemoglobinopathies. Detected early after transplantation, MC often moves towards complete chimerism, although sometimes it may evolve into graft rejection, especially if the proportion of donor cells is very low. However, some patients develop stable MC, defined as persistent when donor- and host-derived cells coexist for periods longer than 2 years after HSCT. Patients with persistent mixed chimerism (PMC) do not require additional red blood cell support and, regardless of the presence in some cases of an extremely low percentage of donor-derived nucleated cells in the bone marrow, their condition is clinically controlled by an incomplete but functional graft, as they express a two- to fivefold enrichment of donor-derived mature erythrocytes in the peripheral blood. These findings have tremendous implications not only in the context of allogeneic HSCT but also in the design of gene therapy trials based on the autologous transplantation of genetically modified CD34+ cells. Recent studies have shown that durable allograft tolerance has been achieved by induction of haematopoietic chimerism in clinical kidney transplantation, showing the involvement of regulatory T cells. Similarly, it has been shown that the regulatory T cells play a pivotal role in promoting and maintaining immune tolerance in patients that develop a status of PMC after HSCT for Thalassemia.

  10. Systematic analysis of stutters to enhance the accuracy of chimerism testing.

    PubMed

    Chen, Ding-Ping; Tseng, Ching-Ping; Tsai, Shu-Hui; Wu, Tsu-Lan; Chang, Pi-Yueh; Sun, Chien-Feng

    2008-01-01

    Post-transplantation chimerism testing is important to monitor the engraftment of donor stem cells and for the diagnosis of relapse. Detecting the presence of donor/recipient-specific short tandem repeats (STRs) is a frequently used method for engraftment study. Unfortunately, the interpretation of the STR-based chimerism tests is often subject to interference by the presence of a stutter peak, which is one 4-base repeat unit smaller than an authentic allele. The aim of this study was to systematically analyze and resolve the effect of stutter peaks on the interpretation of STR-based chimerism tests. The AmpFlSTR Identifiler Amplification kit (Applied Biosystems)was used to amplify 15 STR loci using genomic DNA from 30 randomly selected, healthy donors. We found that the stutter peaks had locus-specific characteristics. The stutter percentage was defined as the percentage of the stutter peak area/main STR peak area. Based on mean values for the 30 DNA samples, the stutter percentage varied from locus to locus and ranged from 3.12% to 10.71% for 15 STR loci. The locus-specific stutter effect can be eliminated through appropriately adjusted equations. The usefulness of these equations in the prediction of relapse was confirmed by the 5% sensitivity test. Hence, this report offers a valuable scheme to enhance the accuracy of chimerism testing.

  11. Standardisation of multiplex fluorescent short tandem repeat analysis for chimerism testing.

    PubMed

    Nollet, F; Billiet, J; Selleslag, D; Criel, A

    2001-09-01

    To evaluate the origin of cells after allogeneic haematopoietic stem cell transplantation we optimised and evaluated two commercially available systems (AmpFlSTR Profiler Plus and GenePrint Powerplex-16) which are based on multiplex fluorescent short tandem repeat (STR) analysis. A standard procedure for interpretation of electropherographs was found essential to obtain reproducible results. On the basis of the relative length of donor and recipient alleles, TYPE-I (no shared alleles are used to calculate chimerism), TYPE-II (one shared and one unshared allele is used to calculate chimerism) or TYPE-III (not informative) allelic distribution types were distinguished. Also, stutter peaks were recognised as an important criterion to exclude a marker for analysis. Intralaboratory and multicentre evaluation of the AmpFlSTR Profiler Plus system showed that mixed blood samples could be determined with an absolute deviation of less than 2%. A sensitivity threshold was set at 5% for TYPE-I and 10% for TYPE-II markers since relative imprecision increases at low chimerism values. No significant difference of calculated chimerism values was observed between STR markers shared between both systems. By monitoring 26 allogeneic peripheral blood stem cell transplants, the applicability of the proposed method was demonstrated.

  12. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis

    PubMed Central

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda

    2016-01-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol. PMID:26975994

  13. Construction of novel chimeric proteins through the truncation of SEC2 and Sak from Staphylococcus aureus.

    PubMed

    Hui, Jing; Yu, Xiao-jie; Cui, Xiao-jin; Mu, Teng; Lin, Jia-shuai; Ni, Pei; Li, Hui; You, Song; Hu, Feng-qing

    2014-01-01

    It is an usual clinical phenomenon that cancer patients are prone to thrombosis. Until now, there have been no efficient methods or appropriate drugs to prevent and cure tumor thrombus. Therefore, the construction of a bifunctional chimeric protein for the treatment of cancer, complicated with thrombosis, is of great significance. Utilizing the superantigenic activity of staphylococcal enterotoxin C2 (SEC2) and the thrombolytic activity of staphylokinase (Sak), Sak-linker-SEC2 and SEC2-linker-Sak were constructed which had good anti-tumor and thrombolytic activities at the same time. Due to the intrinsic emetic activity of SEC2 and high molecular weight (MW) of chimeric proteins (44 kDa), their clinical applications will be restricted. In this study, novel chimeric proteins including ΔSEC2-ΔSak and ΔSak-ΔSEC2 were constructed through the truncation of SEC2 and Sak without 9-Ala linker and His-tag. Compared with the former, both the truncated proteins preserved nearly the same anti-tumor and thrombolytic activities. In addition, their MWs were only 29 kDa and their immunoreactivities were slightly lower than that of Sak-linker-SEC2 and SEC2-linker-Sak, respectively. Therefore, the novel chimeric proteins possessed merits and characteristics, such as low MS, low immunogenicity, and difunctionality which the former had not. It will be of great interest if the above-mentioned proteins can be used to cure Trousseau syndrome in clinic. PMID:25209498

  14. Chimeric lipid/block copolymer nanovesicles: Physico-chemical and bio-compatibility evaluation.

    PubMed

    Pippa, Natassa; Stellas, Dimitris; Skandalis, Athanasios; Pispas, Stergios; Demetzos, Costas; Libera, Marcin; Marcinkowski, Andrzej; Trzebicka, Barbara

    2016-10-01

    Chimeric systems are mixed nanovectors composed by different in nature materials and exhibit new functionalities and properties. The particular chimeric nanovectors, formed by the co-assembly of low and high molecular weight amphiphiles, have the potential to be utilized as drug delivery platforms. We have utilized two lipids, l-α-phosphatidylcholine, hydrogenated (Soy)(HSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and a poly(oligoethylene glycol acrylate)-b-poly(lauryl acrylate) (POEGA-PLA) block copolymer, at different molar ratios, in aqueous media. Light scattering, differential scanning calorimetry (DSC) and imaging techniques (cryo-TEM, AFM) were employed in order to elucidate the structure and properties of the nanostructures, as well as the cooperativity between the components. DSC experiments showed considerable interaction of the block copolymer with the lipid bilayers and suggested an inhomogeneous distribution of the copolymer chains and lateral phase separation of the components. Vesicle formation was observed in most cases by cryo-TEM with a chimeric membrane exhibiting kinks, in accordance with DSC data. A series of biocompatibility experiments indicated good in vitro biological stability and low cytotoxicity in vivo of the novel nanocarriers. Finally, ibuprofen (IBU) was used as model drug in order to study the loading and the release properties of the prepared chimeric lipid/block copolymer vesicles. PMID:27519828

  15. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.

    PubMed

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J; Leser, George P; Lamb, Robert A; Crowe, James E; Jardetzky, Theodore S

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  16. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  17. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis.

    PubMed

    Lai, Ching-Juh; Monath, Thomas P

    2003-01-01

    Many arthropod-borne flaviviruses are important human pathogens responsible for diverse illnesses, including YF, JE, TBE, and dengue. Live, attenuated vaccines have afforded the most effective and economical means of prevention and control, as illustrated by YF 17D and JE SA14-14-2 vaccines. Recent advances in recombinant DNA technology have made it possible to explore a novel approach for developing live attenuated flavivirus vaccines against other flaviviruses. Full-length cDNA clones allow construction of infectious virus bearing attenuating mutations or deletions incorporated in the viral genome. It is also possible to create chimeric flaviviruses in which the structural protein genes for the target antigens of a flavivirus are replaced by the corresponding genes of another flavivirus. By combining these molecular techniques, the DNA sequences of DEN4 strain 814669, DEN2 PDK-53 candidate vaccine and YF 17D vaccine have been used as the genetic backbone to construct chimeric flaviviruses with the required attenuation phenotype and expression of the target antigens. Encouraging results from preclinical and clinical studies have shown that several chimeric flavivirus vaccines have the safety profile and satisfactory immunogenicity and protective efficacy to warrant further evaluation in humans. The chimeric flavivirus strategy has led to the rapid development of novel live-attenuated vaccines against dengue, TBE, JE, and West Nile viruses. PMID:14714441

  18. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    PubMed Central

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  19. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme

    PubMed Central

    Mao, Jinzhe; Schmelcher, Mathias; Harty, William J.; Foster-Frey, Juli; Donovan, David M.

    2013-01-01

    Peptidoglycan hydrolases are an effective new source of antimicrobials. A chimeric fusion protein of the Ply187 endopeptidase domain and LysK SH3b cell wall binding domain is a potent agent against Staphylococcus aureus in four functional assays. PMID:23413880

  20. Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina.

    PubMed

    Mercier, Annie; Sun, Zhao; Hamel, Jean-François

    2011-12-01

    The concept of intraorganismal genetic heterogeneity resulting from allogeneic fusion (i.e. chimerism) has almost exclusively been explored in modular organisms that have the capacity to reproduce asexually, such as colonial ascidians and corals. Apart from medical conditions in mammals, the natural development of chimeras across ontogenetic stages has not been investigated in any unitary organism incapable of asexual propagation. Furthermore, chimerism was mainly studied among gregarious settlers to show that clustering of genetically similar individuals upon settlement promotes the occurrence of multi-chimeras exhibiting greater fitness. The possible occurrence of chimeric embryos and larvae prior to settlement has not received any attention. Here we document for the first time the presence of natural chimeras in brooded embryos and larvae of a unitary cnidarian, the sea anemone Urticina felina. Rates of visible bi- and multi-chimerism of up to 3.13 per cent were measured in the broods of 16 females. Apart from these sectorial chimeras, monitored fusion events also yielded homogeneous chimeric entities (mega-larvae) suggesting that the actual rates of natural chimerism in U. felina are greater than predicted by visual assessment. In support of this assumption, the broods of certain individuals comprised a dominant proportion (to 90%) of inexplicably large embryos and larvae (relative to oocyte size). Findings of fusion and chimerism in a unitary organism add a novel dimension to the framework within which the mechanisms and evolutionary significance of genetic heterogeneity in animal taxa can be explored.

  1. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  2. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus

    PubMed Central

    Smyllie, Nicola J.; Chesham, Johanna E.; Hamnett, Ryan; Maywood, Elizabeth S.; Hastings, Michael H.

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells. PMID:26966234

  3. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.

    PubMed

    Smyllie, Nicola J; Chesham, Johanna E; Hamnett, Ryan; Maywood, Elizabeth S; Hastings, Michael H

    2016-03-29

    The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells. PMID:26966234

  4. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  5. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  6. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    PubMed Central

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  7. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    SciTech Connect

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai . E-mail: zhikaixu@fmmu.edu.cn

    2007-03-23

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice.

  8. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties

    PubMed Central

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.

    2015-01-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP’s), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis, and E. coli. In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up

  9. SANSparallel: interactive homology search against Uniprot.

    PubMed

    Somervuo, Panu; Holm, Liisa

    2015-07-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811

  10. Towards Scalable Optimal Sequence Homology Detection

    SciTech Connect

    Daily, Jeffrey A.; Krishnamoorthy, Sriram; Kalyanaraman, Anantharaman

    2012-12-26

    Abstract—The field of bioinformatics and computational biol- ogy is experiencing a data revolution — experimental techniques to procure data have increased in throughput, improved in accuracy and reduced in costs. This has spurred an array of high profile sequencing and data generation projects. While the data repositories represent untapped reservoirs of rich information critical for scientific breakthroughs, the analytical software tools that are needed to analyze large volumes of such sequence data have significantly lagged behind in their capacity to scale. In this paper, we address homology detection, which is a funda- mental problem in large-scale sequence analysis with numerous applications. We present a scalable framework to conduct large- scale optimal homology detection on massively parallel super- computing platforms. Our approach employs distributed memory work stealing to effectively parallelize optimal pairwise alignment computation tasks. Results on 120,000 cores of the Hopper Cray XE6 supercomputer demonstrate strong scaling and up to 2.42 × 107 optimal pairwise sequence alignments computed per second (PSAPS), the highest reported in the literature.

  11. Homology modelling of human P-glycoprotein.

    PubMed

    Domicevica, Laura; Biggin, Philip C

    2015-10-01

    P-glycoprotein (P-gp) is an ATP-binding cassette transporter that exports a huge range of compounds out of cells and is thus one of the key proteins in conferring multi-drug resistance in cancer. Understanding how it achieves such a broad specificity and the series of conformational changes that allow export to occur form major, on-going, research objectives around the world. Much of our knowledge to date has been derived from mutagenesis and assay data. However, in recent years, there has also been great progress in structural biology and although the structure of human P-gp has not yet been solved, there are now a handful of related structures on which homology models can be built to aid in the interpretation of the vast amount of experimental data that currently exists. Many models for P-gp have been built with this aim, but the situation is complicated by the apparent flexibility of the system and by the fact that although many potential templates exist, there is large variation in the conformational state in which they have been crystallized. In this review, we summarize how homology modelling has been used in the past, how models are typically selected and finally illustrate how MD simulations can be used as a means to give more confidence about models that have been generated via this approach.

  12. Developmental basis of limb homology in lizards.

    PubMed

    Fabrezi, Marissa; Abdala, Virginia; Oliver, María Inés Martínez

    2007-07-01

    Shubin and Alberch (Evol Biol 1986;20:319-387) proposed a scheme of tetrapod limb development based on cartilage morphogenesis that provides the arguments to interpret the homologies of skeletal elements and sets the basis to explain limb specialization through later developmental modification. Morphogenetic evidence emerged from the study of some reptiles, but the availability of data for lizards is limited. Here, the study of adult skeletal variation in 41 lizard taxa and ontogeny in species of Liolaemus and Tupinambis attempts to fill in this gap and provides supporting evidence for the Shubin-Alberch scheme. Six questions are explored. Is there an intermedium in the carpus? Are there two centralia in the carpus? Is there homology among proximal tarsalia of reptiles? Does digit V belong to the digital arch? Is the pisiform an element of the autopodium plan? And should the ossification processes be similar to cartilage morphogenesis? We found the following answers. Some taxa exhibit an ossified element that could represent an intermedium. There is one centrale in the carpus. Development of proximal tarsalia seems to be equivalent with that observed among reptiles. Digit V could arise from the digital arch. Pisiform does not arise as part of the limb plan. And different patterns of ossification occur following a single and conservative cartilaginous configuration. Lizard limb development shows an early pattern common to other reptiles with clear primary axis and digital arch. The pattern then becomes lizard-specific with specialization involving some reduction in prechondrogenic elements. PMID:17415759

  13. Early donor chimerism levels predict relapse and survival after allogeneic stem-cell transplantation with reduced intensity conditioning

    PubMed Central

    Reshef, Ran; Hexner, Elizabeth O.; Loren, Alison W.; Frey, Noelle V.; Stadtmauer, Edward A.; Luger, Selina M.; Mangan, James K.; Gill, Saar I.; Vassilev, Pavel; Lafferty, Kathryn A.; Smith, Jacqueline; Van Deerlin, Vivianna M.; Mick, Rosemarie; Porter, David L.

    2014-01-01

    The success of hematopoietic stem-cell transplantation (HSCT) with reduced-intensity conditioning (RIC) is limited by a high rate of disease relapse. Early risk assessment could potentially improve outcomes by identifying appropriate patients for pre-emptive strategies that may ameliorate this high risk. Using a series of landmark analyses, we investigated the predictive value of early (day-30) donor chimerism measurements on disease relapse, graft-versus-host disease and survival in a cohort of 121 patients who were allografted with a uniform RIC regimen. Chimerism levels were analyzed as continuous variables. In multivariate analysis, day-30 whole blood chimerism levels were significantly associated with relapse (HR=0.90, p<0.001), relapse-free survival (HR=0.89, p<0.001) and overall survival (HR=0.94, p=0.01). Day-30 T-cell chimerism levels were also significantly associated with relapse (HR=0.97, p=0.002), relapse-free survival (HR=0.97, p<0.001) and overall survival (HR=0.99, p=0.05). Multivariate models that included T-cell chimerism provided a better prediction for these outcomes compared to whole blood chimerism. Day-30 chimerism levels were not associated with acute or chronic graft-versus-host disease. We found that high donor chimerism levels were significantly associated with a low lymphocyte count in the recipient prior to transplant, highlighting the impact of pre-transplant lymphopenia on the kinetics of engraftment after RIC HSCT. In summary, low donor chimerism levels are associated with relapse and mortality and can potentially be used as an early predictive and prognostic marker. These findings can be used to design novel approaches to prevent relapse and to improve survival after RIC HSCT. PMID:25016197

  14. Homologous Recombination—Experimental Systems, Analysis and Significance

    PubMed Central

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  15. Alignment algorithm for homology modeling and threading.

    PubMed Central

    Alexandrov, N. N.; Luethy, R.

    1998-01-01

    A DNA/protein sequence comparison is a popular computational tool for molecular biologists. Finding a good alignment implies an evolutionary and/or functional relationship between proteins or genomic loci. Sequential similarity between two proteins indicates their structural resemblance, providing a practical approach for structural modeling, when structure of one of these proteins is known. The first step in the homology modeling is a construction of an accurate sequence alignment. The commonly used alignment algorithms do not provide an adequate treatment of the structurally mismatched residues in locally dissimilar regions. We propose a simple modification of the existing alignment algorithm which treats these regions properly and demonstrate how this modification improves sequence alignments in real proteins. PMID:9521100

  16. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    SciTech Connect

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: yuzong@nao.cas.cn

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  17. How homologous recombination maintains telomere integrity.

    PubMed

    Tacconi, Eliana M C; Tarsounas, Madalena

    2015-06-01

    Telomeres protect the ends of linear chromosomes against loss of genetic information and inappropriate processing as damaged DNA and are therefore crucial to the maintenance of chromosome integrity. In addition to providing a pathway for genome-wide DNA repair, homologous recombination (HR) plays a key role in telomere replication and capping. Consistent with this, the genomic instability characteristic of HR-deficient cells and tumours is driven in part by telomere dysfunction. Here, we discuss the mechanisms by which HR modulates the response to intrinsic cellular challenges that arise during telomere replication, as well as its impact on the assembly of telomere protective structures. How normal and tumour cells differ in their ability to maintain telomeres is deeply relevant to the search for treatments that would selectively eliminate cells whose capacity for HR-mediated repair has been compromised.

  18. Homologies among Coniferophyte cones: further observations

    NASA Astrophysics Data System (ADS)

    Grauvogel-Stamm, Léa; Galtier, Jean

    1998-04-01

    A reinvestigation of the Triassic conifer pollen cone of Darneya shows evidence that clusters of pollen sacs are attached (adnate), at regular intervals, to the upper side of the stalk and that the distribution of stomata is restricted to the apical part of the abaxial side of the peltate scale. These features and others, such as the commissure visible on the stalk and the scale, suggest a dual nature of the male scale complex of Darneya which therefore is interpreted as an abaxial bract fused with an adaxial fertile shoot bearing several clusters of pollen sacs. This conifer pollen cone is thus considered as a compound strobilus (inflorescence) homologous with the female cone of the conifers and therefore with the cones, both male and female, of the cordaites.

  19. Chatter detection in turning using persistent homology

    NASA Astrophysics Data System (ADS)

    Khasawneh, Firas A.; Munch, Elizabeth

    2016-03-01

    This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

  20. Modeling Non-homologous End Joining

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng

    2013-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed

  1. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  2. 78 FR 70955 - Prospective Grant of Exclusive Patent License: GMCSF-BclxL-Derived Chimeric Therapeutics for Use...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... its analogs have the potential to enhance cell survival, inhibit apoptosis and promote cell growth or... apoptosis in vivo and ex vivo. One domain of the chimeric protein is the ligand for GMCSF...

  3. Chimerism in DNA of buccal swabs from recipients after allogeneic hematopoietic stem cell transplantations: implications for forensic DNA testing.

    PubMed

    Berger, Burkhard; Parson, Roswitha; Clausen, Johannes; Berger, Cordula; Nachbaur, David; Parson, Walther

    2013-01-01

    We attempted to quantitatively determine the chimeric state in a total of 162 buccal swabs from 77 adult recipients aged 19-74 (median 50 years) after allogeneic hematopoietic cell transplantation by estimating the chimeric recipient/donor DNA ratios through analysis of 15 autosomal short tandem repeat markers. From each individual between one and nine, buccal swabs were taken at known time intervals after transplantation, ranging from 17 to 3,361 days (median 394 days). In buccal cells, the determined recipient/donor DNA ratios turned out to be highly variable between individuals and also within an individual. Relative donor chimerism levels (%Ch) between 0 and 100 % were detected with maximal frequencies between 10 and 30 %. Blood was always found to show the donor's genotype while hair samples in all cases gave the recipient's genotype. We examine chimerism levels with respect to age, gender, and posttransplantation period and discuss the results in the context of forensic identity testing.

  4. Expression of the Human Cytomegalovirus UL97 Gene in a Chimeric Guinea Pig Cytomegalovirus (GPCMV) Results in Viable Virus with Increased Susceptibility to Ganciclovir and Maribavir

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon; Cui, Xiaohong; McVoy, Michael A.; Schleiss, Mark R.

    2009-01-01

    In lieu of a licensed vaccine, antivirals are being considered as an intervention to prevent congenital human cytomegalovirus (HCMV) infection. Ideally, antiviral therapies should undergo pre-clinical evaluation in an animal model prior to human use. Guinea pig cytomegalovirus (GPCMV) is the only small animal model for congenital CMV. However, GPCMV is not susceptible to the most commonly used HCMV antiviral, ganciclovir (GCV), rendering in vivo study of this agent problematic in the guinea pig model. Human cytomegalovirus (HCMV) susceptibility to GCV is linked to the UL97 gene. We hypothesized that GPCMV susceptibility to GCV could be improved by inserting the HCMV (Towne) UL97 gene into the GPCMV genome in place of the homolog, GP97. A chimeric GPCMV (GPCMV::UL97) expressed UL97 protein, and replicated efficiently in cell culture, with kinetics similar to wild-type GPCMV. In contrast, deletion of GP97 resulted in a virus (GPCMVdGP97) that grew poorly in culture. GPCMV::UL97 had substantially improved susceptibility to the inhibitory effects of GCV in comparison to wild-type GPCMV. Additionally, GPCMV::UL97 exhibited improved susceptibility to another antiviral undergoing clinical trials, maribavir (MBV; benzimidazole riboside 1263W94), which also acts through UL97. PMID:18325607

  5. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain.

    PubMed

    Welters, P; Takegawa, K; Emr, S D; Chrispeels, M J

    1994-11-22

    The cDNA encoding phosphatidylinositol (PI) 3-kinase was cloned from Arabidopsis thaliana, and the derived amino acid sequence (AtVPS34) has a significantly higher homology to yeast PI 3-kinase (VPS34) than to the mammalian (p110). The protein has two conserved domains: a catalytic site with the ATP-binding site near the C terminus and a calcium-dependent lipid-binding domain near the N terminus. The plant cDNA does not rescue a yeast vps34 deletion mutant, but a chimeric gene in which the coding sequence for the C-terminal third of VPS34 is replaced by the corresponding sequence from the plant gene does rescue the yeast mutant. PI 3-kinase activity is detectable in extracts from plants that overexpress the plant PI 3-kinase. Expression of antisense constructs gives rise to second-generation transformed plants severely inhibited in growth and development.

  6. [Homologous recombination among bacterial genomes: the measurement and identification].

    PubMed

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research. PMID:26907777

  7. Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer.

    PubMed

    Gheybi, Elaheh; Amani, Jafar; Salmanian, Ali Hatef; Mashayekhi, Farhad; Khodi, Samaneh

    2014-11-01

    Breast cancer is the most common cancer among women in the world. One of the approaches for diagnosis of breast cancer is detection of its tumor-associated markers. Mucin 1 (MUC1), a tumor-associated antigen, is a transmembrane glycoprotein expressed by normal epithelial cells and overexpressed by carcinomas of epithelial origin. Also, human epidermal growth factor receptor-2 (HER2/erbB-2) belongs to the one of four members of tyrosin kinase type 1 family in which overexpression of HER2 is associated with malignancy in breast cancer. This study was aimed to bioinformatics analysis and designing a recombinant chimeric protein containing MUC1 and HER2 antigens to express in prokaryotic host (Escherichia coli) as breast cancer diagnosis tools. The immunogenic sequences of MUC1 and HER2 were extracted and fused together by a linker. The chimeric construct was analyzed by bioinformatics softwares. The optimization and purification, evaluation of the expression of chimeric protein was performed using Western blotting, ELISA, and immunohistochemistry. The results showed that the chimeric construct was stable and immunogenic domains were exposed. The pET-28a vector containing chimeric gene had high level of protein expression. The recombinant chimeric protein was confirmed using Western blotting, and it was investigated using ELISA and IHC. Then, the MUC1 and HER2 combined peptides can be used as coating antigens in ELISA for detection of antibodies against MUC1 or HER2 in human serum.

  8. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  9. Induction of mixed chimerism depletes pre-existing and de novo-developed autoreactive B cells in autoimmune NOD mice.

    PubMed

    Racine, Jeremy J; Wang, Miao; Zhang, Mingfeng; Zeng, Defu

    2014-06-01

    Destruction of pancreatic islet β-cells in type 1 diabetes (T1D) is mainly mediated by autoimmune T and B lymphocytes. We reported that induction of major histocompatibility complex (MHC)-mismatched mixed chimerism reversed autoimmunity and reestablished thymic negative selection of autoreactive T cells in NOD mice, but it is still unclear how mixed chimerism tolerizes autoreactive B cells. The current studies were designed to reveal the mechanisms on how mixed chimerism tolerizes autoreactive B cells in T1D. Accordingly, mixed chimerism was induced in NOD mice through radiation-free nonmyeloablative anti-CD3/CD8 conditioning and infusion of donor CD4(+) T cell-depleted spleen and whole bone marrow (BM) cells or through myeloablative total body irradiation conditioning and reconstitution with T cell-depleted BM cells from donor and host. Kinetic analysis of percentage and yield of preplasma and plasma B cells, newly developed B-cell subsets, and their apoptosis was performed 30-60 days after transplantation. Induction of MHC-mismatched mixed chimerism results in depleting host-type pre-existing preplasma and plasma B cells as well as augmenting apoptosis of immature transitional T1 B cells, including insulin-specific B cells in a donor B cell-dependent manner. Therefore, induction of MHC-mismatched mixed chimerism depletes pre-existing and de novo-developed autoreactive B cells.

  10. Early establishment of hematopoietic chimerism following allogeneic peripheral blood stem cell transplantation in comparison with allogeneic bone marrow transplantation.

    PubMed

    Nakao, S; Zeng, W; Yamazaki, H; Wang, H; Takami, A; Sugimori, N; Miura, Y; Shiobara, S; Matsuda, T; Shinagawa, Y; Harada, M

    1999-04-01

    To characterize the process of the establishment of complete chimerism after allogeneic peripheral blood stem cell transplantation (allo-PBSCT), we determined the origin of leukocytes in peripheral blood (PB) obtained from 23 patients in the very early period after allo-PBSCT using amplification of mini- or microsatellite regions of genomic DNA. Donor-specific alleles were amplified from the PB obtained at day 8 post-transplant for 19 allo-PBSCT patients. Among the 19 patients, 12 showed only donor-specific alleles (complete chimerism) while 7 did both donor and host-specific alleles (mixed chimerism). Although donor specific alleles were amplified in 10 of 12 patients who received allogeneic bone marrow transplantation (allo-BMT) similarly to allo-PBSCT, all of these ten showed mixed chimerism. When the chimeric state was examined in PB samples obtained serially at 2-3-day intervals post-transplant, host-specific alleles in allo-PBSCT patients were not detectable in the PB much earlier than those in allo-BMT patients. These findings indicate that the appearance of donor-derived cells associated with the disappearance of host-derived cells in the circulation occurs earlier after allo-PBSCT as compared with allo-BMT, leading to the rapid establishment of complete chimerism.

  11. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    PubMed

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides.

  12. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle.

    PubMed

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  13. Replication-competent chimeric lenti-oncovirus with expanded host cell tropism.

    PubMed

    Reiprich, S; Gundlach, B R; Fleckenstein, B; Uberla, K

    1997-04-01

    Baboon bone marrow was grafted into human immunodeficiency virus type 1-infected patients in the course of recent trials for AIDS treatment. Since the baboon genome harbors multiple copies of an endogenous oncovirus, chimeric lenti-oncoviruses could emerge in the xenotransplant recipient. To analyze the potential replication competence of hybrid viruses between different genera of retroviruses, we replaced most of the env gene of simian immunodeficiency virus with the env gene of an amphotropic murine leukemia virus. The hybrid virus could be propagated in human T-cell lines, in peripheral blood mononuclear cells of rhesus macaques, and in CD4- B-cell lines. Because of the expanded cell tropism, the hybrid virus might have a selective advantage in comparison to parental viruses. Therefore, emerging chimeric viruses may be considered a serious risk of xenotransplantation. A note of caution is also suggested for the use of pseudotyped lentiviral vectors for human gene therapy.

  14. Association of pigmentary anomalies with chromosomal and genetic mosaicism and chimerism.

    PubMed Central

    Thomas, I T; Frias, J L; Cantu, E S; Lafer, C Z; Flannery, D B; Graham, J G

    1989-01-01

    We have evaluated eight patients with pigmentary anomalies reminiscent of incontinentia pigmenti or hypomelanosis of Ito. All demonstrated abnormal lymphocyte karyotypes with chromosomal mosaicism in lymphocytes and/or skin fibroblasts. In seven the skin was darkly pigmented, and in all of these seven cases the abnormal pigmentation followed Blaschko lines. The literature contains at least 36 similar examples of an association between pigmentary anomalies and chromosomal mosaicism, as well as five examples of an association with chimerism. The pigmentary anomalies are pleomorphic, and the chromosomal anomalies involve autosomes and sex chromosomes. The pigmentation patterns are reminiscent of the archetypal paradigm seen in allophenic mice and demonstrate the clonal origin of melanoblasts from neural crest precursors. Patients with anomalous skin pigmentation, particularly when it follows a pattern of Blaschko lines, should be appropriately evaluated for a possible association with chromosomal or genetic mosaicism or chimerism. Images Figure 1 PMID:2667350

  15. Diversification of catalytic function in a synthetic family of chimeric cytochrome p450s.

    PubMed

    Landwehr, Marco; Carbone, Martina; Otey, Christopher R; Li, Yougen; Arnold, Frances H

    2007-03-01

    We report initial characterization of a synthetic family of more than 3000 cytochrome P450s made by SCHEMA recombination of 3 bacterial CYP102s. A total of 16 heme domains and their holoenzyme fusions with each of the 3 parental reductase domains were tested for activity on 11 different substrates. The results show that the chimeric enzymes have acquired significant functional diversity, including the ability to accept substrates not accepted by the parent enzymes. K-means clustering analysis of the activity data allowed the enzymes to be classified into five distinct groups based on substrate specificity. The substrates can also be grouped such that one can be a "surrogate" for others in the group. Fusion of a functional chimeric heme domain with a parental reductase domain always reconstituted a functional holoenzyme, indicating that key interdomain interactions are conserved upon reductase swapping. PMID:17379142

  16. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework. PMID:15123260

  17. Chimerism and use of mesenchymal stem cells in umbilical cord blood transplantation.

    PubMed

    Berglund, Sofia; Uhlin, Michael; Mattsson, Jonas

    2013-01-01

    We performed a retrospective single-center analysis of 50 umbilical cord blood transplantations (UCBTs), focusing on chimerism development. Complete donor chimerism (DC) was associated with acute graft-vs.-host disease (aGVHD) grades II-IV for the CD3 (+) cell lineage (p = 0.01) and, in multivariate analysis, with total body irradiation (TBI) for all lineages (p < 0.01). Overall survival (OS) was negatively associated with patient age, (p < 0.001); aGVHD grades III-IV, (p < 0.001); and treatment with mesenchymal stem cells (MSCs) (p = 0.027). In conclusion, though multiple factors may have contributed, the association of TBI and DC might be worthy of consideration in the treatment of patients with malignant disease in the UCBT setting. The negative influence of MSCs on OS may be a reason for more careful usage of this treatment modality in combination with UCBT.

  18. Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation.

    PubMed

    Starzl, T E; Demetris, A J; Trucco, M; Zeevi, A; Ramos, H; Terasaki, P; Rudert, W A; Kocova, M; Ricordi, C; Ildstad, S

    1993-06-01

    Chimerism was demonstrated with immunocytochemical and/or polymerase chain reaction techniques in kidney allografts and in the native skin, lymph nodes, or blood of 5 of 5 patients who received continuously functioning renal transplants from 1 or 2 haplotype HLA mismatched consanguineous donors (4 parents, 1 aunt) 27-29 years ago. In the 4 cases where the kidney donor still was alive to provide stimulator lymphocytes for testing, these provoked no (n = 2) or modest (n = 2) MLR in contrast to vigorous MLR to third party lymphocytes. In all 4 cases, the donor cells failed to generate in vitro cytotoxic effector cells (cell-mediated lymphocytotoxicity). These findings are in accord with the hypothesis that cell migration, repopulation, and chimerism are seminal events that define graft acceptance and ultimately can lead to acquired donor-specific nonresponsiveness (tolerance).

  19. Chimerism of allogeneic mesenchymal cells in bone marrow, liver, and spleen after mesenchymal stem cells infusion.

    PubMed

    Meleshko, Alexander; Prakharenia, Irina; Kletski, Semen; Isaikina, Yanina

    2013-12-01

    Although an infusion of culture-expanded MSCs is applied in clinic to improve results of HSCs transplantation and for a treatment of musculoskeletal disorders, homing, and engraftment potential of culture-expanded MSC in humans is still obscure. We report two female patients who received allogeneic BM transplantation as a treatment of hematological diseases and a transplantation of MSCs from third-party male donors. Both patients died within one yr of infectious complications. Specimens of paraffin-embedded blocks of tissues from transplanted patients were taken. The aim of the study was to estimate possible homing and engraftment of allogeneic BM-derived MSCs in some tissues/organs of recipient. Sensitive real-time quantitative PCR analysis was applied with SRY gene as a target. MSC chimerism was found in BM, liver, and spleen of both patients. We conclude that sensitive RQ-PCR analysis is acceptable for low-level chimerism evaluation even in paraffin-embedded tissue specimens.

  20. Augmentation of Chimerism in Whole Organ Recipients by Simultaneous Infusion of Donor Bone Marrow Cells

    PubMed Central

    Rao, A.S.; Fontes, P.; Zeevi, A.; Trucco, M.; Dodson, F.S.; Rybka, W.B.; Shapiro, R.; Jordan, M.; Pham, S.M.; Rilo, H.L.; Seskey, T.; Todo, S.; Scantlebury, V.; Vivas, C.; Demetris, A.J.; Fung, J.J.; Starzl, T.E.

    2010-01-01

    We had previously demonstrated the persistence of donor leukocytes in the peripheral blood and tissues of long-surviving kidneyl and live2-4 recipients who had stable graft function many years after transplantation.1-6 Donor cell chimerism has since been noted by other investigators in recipients of heart,7 liver,8 kidney,9 and lungl0 transplants. In an attempt to augment chimerism, and thereby facilitate graft function, we initiated a prospective trial to enhance this phenomenon by infusing 3 × l08/kg unaltered donor bone marrow cells perioperatively into an unmodified recipient of whole organ from the same donor. Additionally, 53 recipients of whole organ alone were monitored as controls. Reported herein are the first 20 of 64 study patients and 33 of 53 control patients who are more than 120 days posttransplantation. PMID:7878975

  1. [Harvesting technique of chimeric multiple paddles fibular flap for wide oromandibular defects].

    PubMed

    Foy, J-P; Qassemyar, Q; Assouly, N; Temam, S; Kolb, F

    2016-08-01

    Carcinological head and neck reconstruction still remains a challenge due to the volume and varied tissues needed. Large and wide oromandibular defects require, not just the bone but also soft tissues for the pelvilingual reconstruction and therefore, a second free flap may become necessary in addition to a fibular flap. The option of an unique chimeric flap based on the fibular artery and its branches is less known whereas it offers the advantage of a unique flap with bone, muscle and multiple skin paddles, independent of each other. The aim of this technical note is to present step by step the surgical procedure of this chimeric flap and share this method that avoids a second free flap.

  2. Design of a chimeric promoter induced by pro-inflammatory mediators in articular chondrocytes.

    PubMed

    Meynier de Salinelles, Véronique; Berenbaum, Francis; Jacques, Claire; Salvat, Colette; Olivier, Jean-Luc; Béréziat, Gilbert; Raymondjean, Michel; Massaad, Charbel

    2002-05-01

    We have designed a chimeric promoter that can be stimulated by various pro-inflammatory mediators and so drive the expression of therapeutic genes under inflammatory conditions. The promoter has two parts, the [-247/+20] fragment of the human type IIA secreted phospholipase A2 gene promoter, which is stimulated by the pro-inflammatory cytokine interleukin-1beta (IL-1beta), and a double peroxisome proliferator-activated receptor response element that is activated by some eicosanoids and by non-steroidal anti-inflammatory drugs (NSAIDs). Transfection experiments using rabbit articular chondrocytes in primary culture showed that this chimeric promoter produced a low basal activity and was induced by NSAIDs, WY-14643, IL-1beta, and 15-deoxy Delta12,14 prostaglandin J2. The latter two compounds stimulated the promoter synergistically.

  3. A Photinus pyralis and Luciola italica chimeric firefly luciferase produces enhanced bioluminescence.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Davis, Audrey L; Behney, Curran E; Murtiashaw, Martha H

    2014-10-14

    We report the enhanced bioluminescence properties of a chimeric enzyme (PpyLit) that contains the N-domain of recombinant Photinus pyralis luciferase joined to the C-domain of recombinant Luciola italica luciferase. Compared to the P. pyralis enzyme, the novel PpyLit chimera exhibited 1.8-fold enhanced flash-height specific activity, 2.0-fold enhanced integration-based specific activity, 2.9-fold enhanced catalytic efficiency (kcat/Km), and a 1.4-fold greater bioluminescence quantum yield. The results of this study provide an underlying basis of this unusual example of a chimeric enzyme with enhanced catalytic properties that are not simply the sum of the contributions of the two luciferases.

  4. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease.

    PubMed

    Ellebrecht, Christoph T; Bhoj, Vijay G; Nace, Arben; Choi, Eun Jung; Mao, Xuming; Cho, Michael Jeffrey; Di Zenzo, Giovanni; Lanzavecchia, Antonio; Seykora, John T; Cotsarelis, George; Milone, Michael C; Payne, Aimee S

    2016-07-01

    Ideally, therapy for autoimmune diseases should eliminate pathogenic autoimmune cells while sparing protective immunity, but feasible strategies for such an approach have been elusive. Here, we show that in the antibody-mediated autoimmune disease pemphigus vulgaris (PV), autoantigen-based chimeric immunoreceptors can direct T cells to kill autoreactive B lymphocytes through the specificity of the B cell receptor (BCR). We engineered human T cells to express a chimeric autoantibody receptor (CAAR), consisting of the PV autoantigen, desmoglein (Dsg) 3, fused to CD137-CD3ζ signaling domains. Dsg3 CAAR-T cells exhibit specific cytotoxicity against cells expressing anti-Dsg3 BCRs in vitro and expand, persist, and specifically eliminate Dsg3-specific B cells in vivo. CAAR-T cells may provide an effective and universal strategy for specific targeting of autoreactive B cells in antibody-mediated autoimmune disease. PMID:27365313

  5. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine.

    PubMed

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  6. Vaginal transmission of chimeric simian/human immunodeficiency viruses in rhesus macaques.

    PubMed Central

    Lu, Y; Brosio, P; Lafaile, M; Li, J; Collman, R G; Sodroski, J; Miller, C J

    1996-01-01

    Chimeric simian/human immunodeficiency viruses (SHIVs) that express the env genes derived from distinct HIV type 1 (HIV-1) isolates were tested for the ability to infect rhesus macaques following intravaginal inoculation. SHIVs containing either the HIV-1 HXBc2 or the HIV-1 89.6 envelope glycoproteins were capable of replicating in intravenously inoculated rhesus macaques. However, intravaginal inoculation of animals with these two SHIVs resulted in infection only with the SHIV containing the HIV-1 89.6 glycoprotein. Thus, properties conferred by the envelope glycoproteins in the chimeric virus affect the ability of particular SHIVs to initiate a systemic infection following vaginal inoculation. These results provide indirect support for the hypothesis that the selection of specific viral variants occurs in the genital tracts of individuals exposed to HIV by sexual contact. PMID:8627782

  7. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine

    PubMed Central

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  8. Chimeric nucleolin aptamer with survivin DNAzyme for cancer cell targeted delivery.

    PubMed

    Subramanian, Nithya; Kanwar, Jagat R; Akilandeswari, Balachandran; Kanwar, Rupinder K; Khetan, Vikas; Krishnakumar, Subramanian

    2015-04-25

    A chimeric aptamer-DNAzyme conjugate was generated for the first time using a nucleolin aptamer (NCL-APT) and survivin Dz (Sur_Dz) and exhibited the targeted killing of cancer cells. This proof of concept of using an aptamer for the delivery of DNAzyme can be applied to other cancer types to target survivin in cancer cells in a specific manner. PMID:25797393

  9. High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

    NASA Astrophysics Data System (ADS)

    Terrenoire, E.; Bessagnet, B.; Rouïl, L.; Tognet, F.; Pirovano, G.; Létinois, L.; Beauchamp, M.; Colette, A.; Thunis, P.; Amann, M.; Menut, L.

    2015-01-01

    A modified version of CHIMERE 2009, including new methodologies in emissions modelling and an urban correction, is used to perform a simulation at high resolution (0.125° × 0.0625°) over Europe for the year 2009. The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural (RB) than urban (UB) background stations, with yearly correlation values for the different pollutants ranging between 0.62 and 0.77 at RB sites and between 0.52 and 0.73 at UB sites. Also, the fractional biases (FBs) show that the model performs slightly better at RB sites than at UB sites for NO2 (RB = -33.9%, UB = -53.6%), O3 (RB = 20.1%, UB = 25.2%) and PM10 (RB = -5.50%, UB = -20.1%). The difficulties for the model in reproducing NO2 concentrations can be attributed to the general underestimation of NOx emissions as well as to the adopted horizontal resolution, which represents only partially the spatial gradient of the emissions over medium-size and small cities. The overestimation of O3 by the model is related to the NO2 underestimation and the overestimated O3 concentrations of the lateral boundary conditions. At UB sites, CHIMERE reproduces PM2.5 better than PM10. This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties in secondary organic aerosol (SOA) chemistry and its precursor emissions (Po valley and Mediterranean basin), dust (south of Spain) and sea salt (western Europe). The results suggest that future work should focus on the development of national bottom-up emission inventories including a better account for semi-volatile organic compounds and their conversion to SOA, the improvement of the CHIMERE urban parameterization, the introduction into CHIMERE of the coarse nitrate chemistry and an advanced parameterization accounting for windblown dust emissions.

  10. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  11. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    PubMed

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  12. High male chimerism in the female breast shows quantitative links with cancer.

    PubMed

    Dhimolea, Eugen; Denes, Viktoria; Lakk, Monika; Al-Bazzaz, Sana; Aziz-Zaman, Sonya; Pilichowska, Monika; Geck, Peter

    2013-08-15

    Clinical observations suggest that pregnancy provides protection against cancer. The mechanisms involved, however, remain unclear. Fetal cells are known to enter the mother's circulation during pregnancy and establish microchimerism. We investigated if pregnancy-related embryonic/fetal stem cell integration plays a role in breast cancer. A high-sensitivity Y-chromosome assay was developed to trace male allogeneic cells (from male fetus) in females. Fixed-embedded samples (n = 206) from both normal and breast cancer patients were screened for microchimerism. The results were combined with matching clinicopathological and histological parameters and processed statistically. The results show that in our samples (182 informative) more than half of healthy women (56%) carried male cells in their breast tissue for decades (n = 68), while only one out of five in the cancer sample pool (21%) (n = 114) (odds ratio = 4.75, CI at 95% 2.34-9.69; p = 0.0001). The data support the notion that a biological link may exist between chimerism and tissue-integrity. The correlation, however, is non-linear, since male microchimerism in excess ("hyperchimerism") is also involved in cancer. The data suggest a link between hyperchimerism and HER2-type cancers, while decreased chimerism ("hypochimerism") associates with ER/PR-positive (luminal-type) breast cancers. Chimerism levels that correlate with protection appear to be non-random and share densities with the mammary progenitor components of the stem cell lineage in the breast. The results suggest that protection may involve stem/progenitor level interactions and implicate novel quantitative mechanisms in chimerism biology.

  13. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  14. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury.

    PubMed

    Kakuni, Masakazu; Morita, Mayu; Matsuo, Kentaro; Katoh, Yumiko; Nakajima, Miki; Tateno, Chise; Yokoi, Tsuyoshi

    2012-10-01

    Troglitazone (Tro) is a thiazolidinedione antidiabetic drug that was withdrawn from the market due to its association with idiosyncratic severe liver injury. Tro has never induced liver injury in experimental animals in vivo. It was assumed that the species differences between human and experimental animals in the pharmaco- or toxicokinetics of Tro might be associated with these observations. In this study, we investigated whether a chimeric mouse with a humanized liver that we previously established, whose replacement index with human hepatocytes is up to 92% can reproduce Tro-induced liver injury. When the chimeric mice were orally administered Tro for 14 or 23 days (1000mg/kg/day), serum alanine aminotransferase (ALT) was significantly increased by 2.1- and 3.6-fold, respectively. Co-administration of l-buthionine sulfoximine (10mM in drinking water), an inhibitor of glutathione (GSH) synthesis, unexpectedly prevented the Tro-dependent increase of ALT, which suggests that the GSH scavenging pathway will not be involved in Tro-induced liver injury. To elucidate the mechanism of the onset of liver injury, hepatic GSH content, the level of oxidative stress markers and phase I and phase II drug metabolizing enzymes were determined. However, these factors were not associated with Tro-induced liver injury. An immune-mediated reaction may be associated with Tro-induced liver toxicity in vivo, because the chimeric mouse is derived from an immunodeficient SCID mouse. In conclusion, we successfully reproduced Tro-induced liver injury using chimeric mice with a humanized liver, which provides a new animal model for studying idiosyncratic drug-induced liver injury.

  15. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    PubMed Central

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-01-01

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404

  16. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    SciTech Connect

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.; West, Jason A. A.; Hux, Gary A.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. The development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.

  17. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    PubMed

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-06-29

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  18. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  19. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity.

    PubMed

    Rinkevich, Baruch; Shaish, Lee; Douek, Jacob; Ben-Shlomo, Rachel

    2016-01-01

    The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits' absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species. PMID:26758405

  20. Partial FI gene-independence of lambda-21 hybrid phages specifying chimeric terminases.

    PubMed

    Feiss, M; Frackman, S; Momany, T

    1988-11-01

    The role of the FI gene in the life cycles of a series of lambda-21 hybrid phages that produce chimeric lambda-21 terminases has been examined. An isogenic series of FI+ and FI- derivatives of the hybrids was constructed, and the growth properties of the phages were examined. It was found that three of the four hybrids (hybrids 51, 67, and 33) are able to form plaques and produce a small burst in the absence of the FI gene product (gpFI), but each of the three phages is much healthier in the presence of gpFI. It is concluded that each of the three chimeric terminases is dependent on gpFI. The ability of the FI- hybrids to grow better than lambda FI- is postulated to be due to a minor qualitative or quantitative difference between the chimeric terminases and lambda terminase. The fourth hybrid (54), known from earlier work to produce an infirm terminase, is more dependent on gpFI than the other hybrids and lambda itself. PMID:2973176

  1. A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls.

    PubMed

    Iwase, Akira; Hideno, Akihiro; Watanabe, Keiji; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-07-15

    Bioethanol might be produced more economically and with less ecological impact (with reduced exploitation of food crops) if we could increase the production of glucose from the cellulosic materials in plant cell walls. However, plant cell walls are relatively resistant to enzymatic and physicochemical hydrolysis and, therefore, it is necessary to develop methods for reducing such resistance. Changes in plant cell wall materials, by genetic engineering, that render them more easily hydrolyzable to glucose might be a valuable approach to this problem. We showed previously that, in Arabidopsis, NAC secondary wall thickening-promoting factor1 (NST1) and NST3 are key regulators of secondary wall formation. We report here that transgenic Arabidopsis plants that expressed a chimeric repressor derived from NST1 produced cell wall materials that were twice as susceptible to both enzymatic and physicochemical hydrolysis as those from wild-type plants. The yields of glucose from both fresh and dry biomass were increased in the chimeric repressor lines. Use of the NST1 chimeric repressor might enhance production of glucose from plant cell walls, by changing the nature of the cell walls themselves.

  2. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy.

    PubMed

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Tšuiko, Olga; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris R

    2016-05-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term "heterogoneic division" to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals. PMID:27197242

  3. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass.

    PubMed

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  4. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    PubMed

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-01-01

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis. PMID:27356872

  5. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation.

    PubMed

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current "gold standard" for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  6. A chimeric human-mouse model of Sjögren's syndrome.

    PubMed

    Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N

    2015-01-01

    Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology.

  7. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation

    PubMed Central

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U.; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current “gold standard” for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  8. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation.

    PubMed

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current "gold standard" for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics.

  9. Repeated Injections of IL-2 Break Renal Allograft Tolerance Induced via Mixed Hematopoietic Chimerism in Monkeys.

    PubMed

    Yamada, Y; Nadazdin, O; Boskovic, S; Lee, S; Zorn, E; Smith, R N; Colvin, R B; Madsen, J C; Cosimi, A B; Kawai, T; Benichou, G

    2015-12-01

    Tolerance of allografts achieved in mice via stable mixed hematopoietic chimerism relies essentially on continuous elimination of developing alloreactive T cells in the thymus (central deletion). Conversely, while only transient mixed chimerism is observed in nonhuman primates and patients, it is sufficient to ensure tolerance of kidney allografts. In this setting, it is likely that tolerance depends on peripheral regulatory mechanisms rather than thymic deletion. This implies that, in primates, upsetting the balance between inflammatory and regulatory alloimmunity could abolish tolerance and trigger the rejection of previously accepted renal allografts. In this study, six monkeys that were treated with a mixed chimerism protocol and had accepted a kidney allograft for periods of 1-10 years after withdrawal of immunosuppression received subcutaneous injections of IL-2 cytokine (0.6-3 × 10(6) IU/m(2) ). This resulted in rapid rejection of previously tolerated renal transplants and was associated with an expansion and reactivation of alloreactive pro-inflammatory memory T cells in the host's lymphoid organs and in the graft. This phenomenon was prevented by anti-CD8 antibody treatment. Finally, this process was reversible in that cessation of IL-2 administration aborted the rejection process and restored normal kidney graft function.

  10. Induced regulatory T cells in allograft tolerance via transient mixed chimerism

    PubMed Central

    Hotta, Kiyohiko; Aoyama, Akihiro; Oura, Tetsu; Yamada, Yohei; Tonsho, Makoto; Huh, Kyu Ha; Kawai, Kento; Schoenfeld, David; Allan, James S.; Madsen, Joren C.; Benichou, Gilles; Smith, Rex-Neal; Colvin, Robert B.; Sachs, David H.; Cosimi, A. Benedict

    2016-01-01

    Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism. PMID:27446989

  11. Neutrophils and lymphoid chimerism after adult living-related liver transplantation from a homozygous donor.

    PubMed

    Hajeer, A H; Issa, S; Alaskar, A; Abdullah, K; Awad, M; Tbakhi, A; Alabdulkareem, A

    2005-12-01

    Chimerism and graft-versus-host disease (GVHD) pose significant risks to liver transplant patients. The risk of chimerism and GVHD is higher among cases of living-related liver transplant (LRLT). Donors homozygous at all HLA loci carry a higher risk for GVHD. Herein we present a case of LRLT. The recipient suffered from end-stage liver disease and received a right lobe graft from his son. After 8 months posttransplant, the patient developed profound bone marrow depression. The patient was negative for CMV, Brucella, HHV6, HHV8, HBV, HCV, and parvovirus. No skin or GI signs of GVHD were noted. The patient and donor were HLA typed by SSP. The donor was homozygous for all HLA loci while the patient shared the class II homozygosity and was class I heterozygous. Chimerism studies were prompted after noting that the neutrophil compartment of the patient was homozygous for all HLA loci. This initiated further studies of the PMN and lymphocytes by microsatellite analysis. A total 15 microsatellites were analyzed. The results suggest that the majority (75%) of the PMNs and 45% of the lymphocytes were of donor origin. The patient was treated with G-CSF; his WBC counts returned to normal. At 2.5 years posttransplant the patient had not developed GVHD, despite the large number of donor lymphocytes circulating in his bloodstream. The only complaint he had was severe arthritis, which was treated with steroids. It must be investigated whether this was the result of GVHD.

  12. Immuno-intervention for the induction of transplantation tolerance through mixed chimerism.

    PubMed

    Sachs, David H; Sykes, Megan; Kawai, Tatsuo; Cosimi, A Benedict

    2011-06-01

    The induction of transplantation tolerance could liberate organ transplant recipients from the complications of life-long chronic immunosuppression. The original description of tolerance induction through mixed hematopoietic chimerism in mice utilized lethal whole body irradiation as the preparative regimen for achieving mixed chimerism. While such a regimen might be acceptable for treatment of patients with malignancies, which might also respond to the therapeutic effects of radiation, its toxicity would be unacceptable for patients in need only of an organ transplant. Graft-vs.-host disease, which is frequently a complication of mismatched bone marrow transplantation, would likewise be unacceptable for ordinary clinical transplantation. Therefore, as we have extended the use of this modality for tolerance induction from mice to large animal models, we have attempted to design preparative regimens that avoid both of these complications. In this article, we review our studies of mixed chimerism in mice, miniature swine and monkeys, as well as the results of our recent clinical studies that have extended this treatment modality to a series of kidney transplant patients who have been successfully weaned from all immunosuppression while maintaining stable renal function for up to 8 years.

  13. Chimeric Aptamer-Gelatin Hydrogels as an Extracellular Matrix Mimic for Loading Cells and Growth Factors

    PubMed Central

    Zhang, Xiaolong; Battig, Mark R.; Chen, Niancao; Gaddes, Erin R.; Duncan, Katelyn L.; Wang, Yong

    2016-01-01

    It is important to synthesize materials to recapitulate critical functions of biological systems for a variety of applications such as tissue engineering and regenerative medicine. The purpose of this study was to synthesize a chimeric hydrogel as a promising extracellular matrix (ECM) mimic using gelatin, a nucleic acid aptamer and polyethylene glycol (PEG). This hydrogel had a macroporous structure that was highly permeable for fast molecular transport. Despite its high permeability, it could strongly sequester and sustainably release growth factors with high bioactivity. Notably, growth factors retained in the hydrogel could maintain ~50% bioactivity during a 14-day release test. It also provided cells with effective binding sites, which led to high efficiency of cell loading into the macroporous hydrogel matrix. When cells and growth factors were co-loaded into the chimeric hydrogel, living cells could still be observed by day 14 in a static serum-reduced culture condition. Thus, this chimeric aptamer-gelatin hydrogel constitutes a promising biomolecular ECM mimic for loading cells and growth factors. PMID:26791559

  14. A Human-Mouse Chimeric Model of Obliterative Bronchiolitis after Lung Transplantation

    PubMed Central

    Xue, Jianmin; Zhu, Xuehai; George, M. Patricia; Myerburg, Michael M.; Stoner, Michael W.; Pilewski, Joseph W.; Duncan, Steven R.

    2011-01-01

    Obliterative bronchiolitis is a frequent, morbid, and usually refractory complication of lung transplantation. Mechanistic study of obliterative bronchiolitis would be aided by development of a relevant model that uses human immune effector cells and airway targets. Our objective was to develop a murine chimera model that mimics obliterative bronchiolitis of lung allograft recipients in human airways in vivo. Human peripheral blood mononuclear cells were adoptively transferred to immunodeficient mice lacking activity of T, B, and NK cells, with and without concurrent transplantations of human small airways dissected from allogeneic cadaveric lungs. Chimerism with human T cells occurred in the majority of recipient animals. The chimeric T cells became highly activated, rapidly infiltrated into the small human airway grafts, and caused obliterative bronchiolitis. In contrast, airways implanted into control mice that did not also receive human peripheral blood mononuclear cell transfers remained intact. In vitro proliferation assays indicated that the chimeric T cells had enhanced specific proliferative responses to donor airway alloantigens. This model confirms the critical role of T cells in development of obliterative bronchiolitis among human lung allograft recipients and provides a novel and easily implemented mechanism for detailed, reductionist in vivo studies of human T-cell responses to allogeneic human small airways. PMID:21801868

  15. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity

    PubMed Central

    Rinkevich, Baruch; Shaish, Lee; Douek, Jacob; Ben-Shlomo, Rachel

    2016-01-01

    The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits’ absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species. PMID:26758405

  16. [Blood cell chimerism in dizygotic twins conceived by in vitro fertilization].

    PubMed

    Martos-Moreno, G Á; Campos, C; Flores, R; Yturriaga, R; Pérez-Jurado, L A; Argente, J

    2013-10-01

    We present a case of hematopoietic chimerism in dizygotic twins (male and female) conceived by in vitro fertilization (IVF). At 8 years of age a blood karyotype was performed on the female due to the presence of clitoromegaly. Two different lines: 46,XX (53%) and 46,XY (47%) were found. FISH studies confirmed the presence of the SRY gene in 46,XY cells. Karyotyping of the male showed two different lines: 46,XY (58%) and 46,XX (42%). SRY gene was present in 46,XY cells. Microsatellite analyses of blood DNA revealed tetra-allelic contribution at some autosomal loci with similar proportions of maternal and paternal alleles and X/Y chromosome dose. FISH in buccal mucous showed that all cells from the female were 46,XX and those from the male 46,XY. The gonadal karyotype in the female was 46,XX without SRY. Hence, we report 46,XX/46,XY chimerism in dizygotic twins. Blood chimerism was confirmed by performing FISH on the buccal cells of the patients.

  17. Chimeric promoter mediates guard cell-specific gene expression in tobacco under water deficit.

    PubMed

    Na, Jong-Kuk; Metzger, James D

    2014-09-01

    The engineering of stomatal activity under water deficit through guard cell-specific gene regulation is an effective approach to improve drought tolerance of crops but it requires an appropriate promoter(s) inducible by water deficit in guard cells. We report that a chimeric promoter can induce guard cell-specific gene expression under water deficit. A chimeric promoter, p4xKST82-rd29B, was constructed using a tetramer of the 82 bp guard cell-specific regulatory region of potato KST1 promoter (4xKST82) and Arabidopsis dehydration-responsive rd29B promoter. Transgenic tobacco plants carrying p4xKST82-rd29B:mGFP-GUS exhibited GUS expression in response to water deficit. GUS enzyme activity of p4xKST82-rd29B:mGFP-GUS transgenic plants increased ~300 % by polyethylene glycol treatment compared to that of control plant but not by abscisic acid (ABA), indicating that the p4xKST82-rd29B chimeric promoter can be used to induce the guard cell-specific expression of genes of interest in response to water deficit in an ABA-independent manner.

  18. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity.

    PubMed

    Rizzo, J; Gifford, L K; Zhang, X; Gewirtz, A M; Lu, P

    2002-08-01

    Current methods to detect and assay ribonuclease H (RNase H) activity are indirect and time-consuming. Here we introduce a direct and sensitive method, based on the fluorescence quenching mechanism of molecular beacons, to assay RNA cleavage in RNA:DNA hybrids. An RNA-DNA chimeric beacon assay for RNase H enzymatic activity was developed. The substrate is a single-stranded RNA-DNA chimeric oligonucleotide labeled with a 5'-fluorescein and a 3'-DABCYL. The fluorophore (fluorescein) of the probe is held in close proximity to the quencher (DABCYL) by the RNA:DNA stem-loop structure. When the RNA sequence of the RNA:DNA hybrid stem is cleaved, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Chimeric beacons with different stem lengths and sequences have been surveyed for this assay with E. coli RNase H. We found that the beacon kinetic parameters are in qualitative agreement with previously reported values using more cumbersome assays. This method permits real-time detection of RNase H activity and a convenient approach to RNase H kinetic and mechanistic study.

  19. A chimeric mini-trypsin inhibitor derived from the oil rape proteinase inhibitor type III.

    PubMed

    Trovato, M; Maras, B; Polticelli, F; Costantino, P; Ascenzi, P

    2000-09-01

    The design of chimeric proteins is a major field of interest in structural biology and biotechnology. The successful design of the chimeric protein composed by the minimized reactive site domain of the low-molecular-mass trypsin inhibitor from Brassica napus (var. oleifera) seed (Ser3-Lys35; mini-RTI-III) and murine dihydrofolate reductase (DHFR) is reported here. The DHFR-mini-RTI-III chimeric protein was expressed in Escherichia coli, purified by metal-chelate affinity chromatography and oxidatively refolded. The affinity of the purified and refolded DHFR-mini-RTI-III for bovine trypsin (K = 5.0 x 10(-10) M) was closely similar to that determined for native RTI-III (K = 2.9 x 10(-10) M), at pH 8.2 and 22.0 degrees C. DHFR-mini-RTI-III may be regarded as a tool in structure-function studies and for developing multifunctional and multidomain proteinase inhibitors.

  20. Transbronchial biopsies provide longitudinal evidence for epithelial chimerism in children following sex mismatched lung transplantation

    PubMed Central

    Spencer, H; Rampling, D; Aurora, P; Bonnet, D; Hart, S; Jaffe, A

    2005-01-01

    Background: Recent reports have shown evidence of host derived parenchymal engraftment in several human allografts including the lung, leading to speculation that stem cell therapy may be useful for lung repair in diseases such as cystic fibrosis (CF). To date, previous studies have looked at single surgical or autopsy specimens and no longitudinal studies have been reported. The aim of this study was to assess whether transbronchial biopsies could be used to study the time course of chimerism following lung transplantation. Methods: Specimens of archived transbronchial lung biopsies from five time points taken for clinical purposes from two boys who had received a sex mismatched heart-lung transplant for end stage CF were examined. Sections were dual stained for cytokeratin (epithelium) and a mixture of leucocyte common antigen and CD68 for inflammatory cells. Co-localisation of cells containing a Y chromosome was confirmed by fluorescent in situ hybridisation. Results: Evidence of chimerism was found in up to 6.6% of epithelial cells in bronchial (median 1.4% (range 0–6.6)) and alveolar (median 3.6% (range 2.3–5.5) tissue without apparent evidence of fusion. This engraftment was seen as early as 3 weeks and remained relatively constant up to 37 months. Conclusions: This study has demonstrated proof of principle for long term chimerism in lung epithelium. Transbronchial biopsies may provide a new method for studying the kinetics of stem cell engraftment in the lung. PMID:15618585

  1. Frequent hepatocyte chimerism in long-term human liver allografts independent of graft outcome.

    PubMed

    Aini, Wulamujiang; Miyagawa-Hayashino, Aya; Ozeki, Munetaka; Tsuruyama, Tatsuaki; Tamaki, Keiji; Uemoto, Shinji; Haga, Hironori

    2013-03-01

    Microchimerism after liver transplantation is considered to promote graft tolerance or tissue repair, but its significance is controversial. By using multiplex polymerase chain reaction (PCR) of short tandem repeat (STR) loci after laser capture microdissection of hepatocyte nuclei, we compared the proportions of recipient-derived hepatocytes in long-term stable liver allografts and late dysfunctional allografts caused by chronic rejection or idiopathic post-transplantation hepatitis. Through fluorescence in situ hybridization (FISH), we also analyzed the presence of recipient-derived Y-positive hepatocytes in the biopsies of livers transplanted from female donors to male recipients. The study population comprised 24 pediatric liver transplant recipients who survived with the initial graft, whose 10-year protocol biopsy records were available, and who had normal liver function (stable graft, SG; n=13) or a late dysfunctional graft (LDG; n=11) with similar follow-up periods (mean 10.8years in the SG group and 11.2years in the LDG group). STR analysis revealed that hepatocyte chimerism occurred in 7 of 13 (54%) SGs and 5 of 11 (45%) LDGs (p=0.68). The proportion of hepatocyte chimerism was low, with a mean of 3% seen in 2 of 3 female-to-male transplanted livers (one each of SG and LDG). In conclusion, hepatocyte chimerism was a constant event. The extent of engraftment of recipient-derived hepatocytes does not seem to correlate with the degree of hepatic injury in long-term liver allografts.

  2. Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors.

    PubMed

    Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C

    2015-07-01

    Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity toward B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared with standard first- and second-generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors.

  3. Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products

    PubMed Central

    Nurk, Sergey; Bankevich, Anton; Antipov, Dmitry; Gurevich, Alexey A.; Korobeynikov, Anton; Lapidus, Alla; Prjibelski, Andrey D.; Pyshkin, Alexey; Sirotkin, Alexander; Sirotkin, Yakov; Stepanauskas, Ramunas; Clingenpeel, Scott R.; Woyke, Tanja; Mclean, Jeffrey S.; Lasken, Roger; Alekseyev, Max A.; Pevzner, Pavel A.

    2013-01-01

    Abstract Recent advances in single-cell genomics provide an alternative to largely gene-centric metagenomics studies, enabling whole-genome sequencing of uncultivated bacteria. However, single-cell assembly projects are challenging due to (i) the highly nonuniform read coverage and (ii) a greatly elevated number of chimeric reads and read pairs. While recently developed single-cell assemblers have addressed the former challenge, methods for assembling highly chimeric reads remain poorly explored. We present algorithms for identifying chimeric edges and resolving complex bulges in de Bruijn graphs, which significantly improve single-cell assemblies. We further describe applications of the single-cell assembler SPAdes to a new approach for capturing and sequencing “microbial dark matter” that forms small pools of randomly selected single cells (called a mini-metagenome) and further sequences all genomes from the mini-metagenome at once. On single-cell bacterial datasets, SPAdes improves on the recently developed E+V-SC and IDBA-UD assemblers specifically designed for single-cell sequencing. For standard (cultivated monostrain) datasets, SPAdes also improves on A5, ABySS, CLC, EULER-SR, Ray, SOAPdenovo, and Velvet. Thus, recently developed single-cell assemblers not only enable single-cell sequencing, but also improve on conventional assemblers on their own turf. SPAdes is available for free online download under a GPLv2 license. PMID:24093227

  4. High speed homology search with FPGAs.

    PubMed

    Yamaguchi, Yoshiki; Maruyama, Tsutomu; Konagaya, Akihiko

    2002-01-01

    We will introduce a way how we can achieve high speed homology search by only adding one off-the-shelf PCI board with one Field Programmable Gate Array (FPGA) to a Pentium based computer system in use. FPGA is a reconfigurable device, and any kind of circuits, such as pattern matching program, can be realized in a moment. The performance is almost proportional to the size of FPGA which is used in the system, and FPGAs are becoming larger and larger following Moore's law. We can easily obtain latest/larger FPGAs in the form off-the-shelf PCI boards with FPGAs, at low costs. The result which we obtained is as follows. The performance is most comparable with small to middle class dedicated hardware systems when we use a board with one of the latest FPGAs and the performance can be furthermore accelerated by using more number of FPGA boards. The time for comparing a query sequence of 2,048 elements with a database sequence of 64 million elements by the Smith-Waterman algorithm is about 34 sec, which is about 330 times faster than a desktop computer with a 1 GHz Pentium III. We can also accelerate the performance of a laptop computer using a PC card with one smaller FPGA. The time for comparing a query sequence (1,024) with the database sequence (64 million) is about 185 sec, which is about 30 times faster than the desktop computer.

  5. Real-time qPCR for chimerism assessment in allogeneic hematopoietic stem cell transplants from unrelated adult and double umbilical cord blood.

    PubMed

    Frankfurt, Olga; Zitzner, Jennifer R; Tambur, Anat R

    2015-03-01

    Allogeneic hematopoietic stem cell transplantation is the standard therapy for patients with various malignant hematologic disorders. A successful treatment results in complete engraftment of donor cells in the absence of the patient's own hematopoietic system. Chimerism analysis, aimed at determining the coexistence of genetically different cell populations, is considered a useful method to measure treatment success. A new, qPCR based, commercially available chimerism assay was recently introduced. Here we report our results of comparing STR with qPCR-based chimerism analysis, and assessment of sensitivity and reproducibility of the qPCR chimerism assay. A specific emphasis is put on analyzing chimerism in recipients of double cord blood transplantation. We conclude that the qPCR chimerism assay for engraftment monitoring is a reliable and sensitive assay. Advantages and limitations of the assay in its current format are summarized.

  6. Structure and properties of chimeric small heat shock proteins containing yellow fluorescent protein attached to their C-terminal ends.

    PubMed

    Datskevich, Petr N; Gusev, Nikolai B

    2014-07-01

    Recombinant chimeras of small heat shock proteins (sHsp) HspB1, HspB5, and HspB6 containing enhanced yellow fluorescent protein (EYFP) attached to their C-terminal ends were constructed and purified. Some properties of these chimeras were compared with the corresponding properties of the same chimeras containing EYFP attached to the N-terminal end of sHsp. The C-terminal fluorescent chimeras of HspB1 and HspB5 tend to aggregate and form a heterogeneous mixture of oligomers. The apparent molecular weight of the largest C-terminal chimeric oligomers was higher than that of the corresponding N-terminal chimeras or of the wild-type proteins; however, both homooligomers of N-terminal chimeras and homooligomers of C-terminal chimeras contained fewer subunits than the wild-type HspB1 or HspB5. Both N-terminal and C-terminal chimeras of HspB6 form small oligomers with an apparent molecular weight of 73-84 kDa. The C-terminal chimeras exchange their subunits with homologous wild-type proteins. Heterooligomers formed by the wild-type HspB1 (or HspB5) and the C-terminal chimeras of HspB6 differ in size and composition from heterooligomers formed by the corresponding wild-type proteins. As a rule, the N-terminal chimeras possess similar or slightly higher chaperone-like activity than the corresponding wild-type proteins, whereas the C-terminal chimeras always have a lower chaperone-like activity than the wild-type proteins. It is concluded that attachment of EYFP to either N-terminal or C-terminal ends of sHsp affects their oligomeric structure, their ability to form heterooligomers, and their chaperone-like activity. Therefore, the data obtained with fluorescent chimeras of sHsp expressed in the cell should be interpreted with caution.

  7. In silico and experimental characterization of chimeric Bacillus thermocatenulatus lipase with the complete conserved pentapeptide of Candida rugosa lipase.

    PubMed

    Hosseini, Mostafa; Karkhane, Ali Asghar; Yakhchali, Bagher; Shamsara, Mehdi; Aminzadeh, Saeed; Morshedi, Dena; Haghbeen, Kamahldin; Torktaz, Ibrahim; Karimi, Esmat; Safari, Zahra

    2013-02-01

    Lipases are one of the highest value commercial enzymes as they have broad applications in detergent, food, pharmaceutical, and dairy industries. To provide chimeric Bacillus thermocatenulatus lipase (BTL2), the completely conserved pentapeptide (¹¹²Ala-His-Ser-Gln-Gly¹¹⁶) was replaced with similar sequences (²⁰⁷Gly-Glu-Ser-Ala-Gly²¹¹) of Candida rugosa lipase (CLR) at the nucleophilic elbow region. For this purpose, three mutations including A112G, H113E, and Q115A were inserted in the conserved pentapeptide sequence of btl2 gene. Based on the crystal structures of 2W22, the best structure of opened form of the chimeric lipases were garnered using the MODELLER v9.10 software. The native and chimeric lipases were docked to a set of ligands, and a trial version of Molegro Virtual Docker (MVD) software was used to obtain the energy values. Docking results confirmed chimeric lipase to be better than the native lipase. Following the in silico study, cloning experiments were conducted and expression of native and chimeric btl2 gene in Pichia pastoris was performed. The native and chimeric lipases were purified, and the effect of these mutations on characteristics of chimeric lipase studied and then compared with those of native lipase. Chimeric lipase exhibited 1.6-fold higher activity than the native lipase at 55 °C. The highest percentage of both lipases activity was observed at 60 °C and pH of 8.0. The ion Ca²⁺ slightly inhibited the activity of both lipases, whereas the organic solvent enhanced the lipase stability of chimeric lipase as compared with the native lipase. According to the results, the presence of two glycine residues at the conserved pentapeptide region of this chimeric lipase (¹¹²Gly-Glu-Ser-Ala-Gly¹¹⁶) may increase the flexibility of the nucleophilic elbow region and affect the enzyme activity level. PMID:23274720

  8. CBH1 homologs and varian CBH1 cellulase

    SciTech Connect

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  9. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2008-11-18

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  10. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2011-05-31

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  11. Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA

    PubMed Central

    Zhang, Yanmei; Facemire, Loryn; Frierson, Henry; Li, Hui

    2016-01-01

    The chimeric RNA, SLC45A3-ELK4, was found to be a product of cis-splicing between the two adjacent genes (cis-SAGe). Despite the biological and clinical significance of SLC45A3-ELK4, its generating mechanism has not been elucidated. It was shown in one cell line that the binding of transcription factor CTCF to the insulators located at or near the gene boundaries, inversely correlates with the level of the chimera. To investigate the mechanism of such cis-SAGe events, we sequenced potential regions that may play a role in such transcriptional read-through. We could not detect mutations at the transcription termination site, insulator sites, splicing sites, or within CTCF itself in LNCaP cells, thus suggesting a “soft-wired” mechanism in regulating the cis-SAGe event. To investigate the role CTCF plays in regulating the chimeric RNA expression, we compared the levels of CTCF binding to the insulators in different cell lines, as well as clinical samples. Surprisingly, we did not find an inverse correlation between CTCF level, or its bindings to the insulators and SLC45A3-ELK4 expression among different samples. However, in three prostate cancer cell lines, different environmental factors can cause the expression levels of the chimeric RNA to change, and these changes do inversely correlate with CTCF level, and/or its bindings to the insulators. We thus conclude that CTCF and its bindings to the insulators are not the primary reasons for differential SLC45A3-ELK4 expression in different cell lines, or clinical cases. However, they are the likely mechanism for the same cells to respond to different environmental cues, in order to regulate the expression of SLC45A3-ELK4 chimeric RNA. This response to different environmental cues is not general to other cis-SAGe events, as we only found one out of 16 newly identified chimeric RNAs showing a pattern similar to SLC45A3-ELK4. PMID:26938874

  12. Multiple overlapping homologies between two rheumatoid antigens and immunosuppressive viruses.

    PubMed Central

    Douvas, A; Sobelman, S

    1991-01-01

    Amino acid (aa) sequence homologies between viruses and autoimmune nuclear antigens are suggestive of viral involvement in disorders such as systemic lupus erythematosus (SLE) and scleroderma. We analyzed the frequency of exact homologies of greater than or equal to 5 aa between 61 viral proteins (19,827 aa), 8 nuclear antigens (3813 aa), and 41 control proteins (11,743 aa). Both pentamer and hexamer homologies between control proteins and viruses are unexpectedly abundant, with hexamer matches occurring in 1 of 3 control proteins (or once every 769 aa). However, 2 nuclear antigens, the SLE-associated 70-kDa antigen and the scleroderma-associated CENP-B protein, are highly unusual in containing multiple homologies to a group of synergizing immunosuppressive viruses. Two viruses, herpes simplex virus 1 (HSV-1) and human immunodeficiency virus 1 (HIV-1), contain sequences exactly duplicated at 15 sites in the 70-kDa antigen and at 10 sites in CENP-B protein. The immediate-early (IE) protein of HSV-1, which activates HIV-1 regulatory functions, contains three homologies to the 70-kDa antigen (two hexamers and a pentamer) and two to CENP-B (a hexamer and pentamer). There are four homologies (including a hexamer) common to the 70-kDa antigen and Epstein-Barr virus, and three homologies (including two hexamers) common to CENP-B and cytomegalovirus. The majority of homologies in both nuclear antigens are clustered in highly charged C-terminal domains containing epitopes for human autoantibodies. Furthermore, most homologies have a contiguous or overlapping distribution, thereby creating a high density of potential epitopes. In addition to the exact homologies tabulated, motifs of matching sequences are repeated frequently in these domains. Our analysis suggests that coexpression of heterologous viruses having common immunosuppressive functions may generate autoantibodies cross-reacting with certain nuclear proteins. PMID:1712488

  13. Peridinialean dinoflagellate plate patterns, labels and homologies

    USGS Publications Warehouse

    Edwards, L.E.

    1990-01-01

    Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between

  14. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor.

    PubMed

    Kalli, K R; Hsu, P H; Bartow, T J; Ahearn, J M; Matsumoto, A K; Klickstein, L B; Fearon, D T

    1991-12-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti-CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) -B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and the CR1/CR2 chimeras, respectively, and assayed for binding of 125I-pC3b. The dissociation constants (Kd) for pC3b of wild-type CR1 and the LHR-BD and -CD constructs were in the range of 1.0-2.7 nM, and of the CR1/CR2 chimeras containing SCRs 1-4, 1-3, and 2-4 of LHR-B or -C were 1.8-2.4, 6-9, and 22-36 nM, respectively. The factor I-cofactor function of the CR1/CR2 chimeras paralleled the C3b-binding function of the constructs. A CR1/immunoglobulin (Ig) chimeric protein was prepared by fusing SCRs 1-4 of LHR-B to the heavy chains of a murine F(ab')2 anti-nitrophenacetyl (NP) monoclonal antibody. The (CR1)2-F(ab')2 chimera, which retained its specificity for NP, was as effective as soluble, full-length CR1 in binding pC3b, serving as a cofactor for factor I-mediated cleavage of C3b, and inhibiting activation of the alternative pathway, indicating that the bivalent expression of these SCRs reconstitutes the alternative pathway inhibitory function of CR1. The feasibility of creating CR1/Ig chimeras makes possible a new strategy of targeting complement inhibition by the use of Ig fusion partners having particular antigenic specificities.

  15. Mapping of the C3b-binding site of CR1 and construction of a (CR1)2-F(ab')2 chimeric complement inhibitor.

    PubMed

    Kalli, K R; Hsu, P H; Bartow, T J; Ahearn, J M; Matsumoto, A K; Klickstein, L B; Fearon, D T

    1991-12-01

    CR1/CR2 chimeric receptors in which various short consensus repeats (SCRs) of CR1 were attached to CR2 were transiently expressed on COS cells, and assessed for the binding of polymerized C3b (pC3b) and anti-CR2 by immunofluorescence. Of COS cells expressing chimeras containing SCR 1-4, 1-3, 2-4, 1-2, and 2-3 of the long homologous repeats (LHRs) -B or -C, 96%, 66%, 23%, 0%, and 0%, respectively, bound pC3b. K562 cells were stably transfected with wild-type CR1, deletion mutants of CR1, and the CR1/CR2 chimeras, respectively, and assayed for binding of 125I-pC3b. The dissociation constants (Kd) for pC3b of wild-type CR1 and the LHR-BD and -CD constructs were in the range of 1.0-2.7 nM, and of the CR1/CR2 chimeras containing SCRs 1-4, 1-3, and 2-4 of LHR-B or -C were 1.8-2.4, 6-9, and 22-36 nM, respectively. The factor I-cofactor function of the CR1/CR2 chimeras paralleled the C3b-binding function of the constructs. A CR1/immunoglobulin (Ig) chimeric protein was prepared by fusing SCRs 1-4 of LHR-B to the heavy chains of a murine F(ab')2 anti-nitrophenacetyl (NP) monoclonal antibody. The (CR1)2-F(ab')2 chimera, which retained its specificity for NP, was as effective as soluble, full-length CR1 in binding pC3b, serving as a cofactor for factor I-mediated cleavage of C3b, and inhibiting activation of the alternative pathway, indicating that the bivalent expression of these SCRs reconstitutes the alternative pathway inhibitory function of CR1. The feasibility of creating CR1/Ig chimeras makes possible a new strategy of targeting complement inhibition by the use of Ig fusion partners having particular antigenic specificities. PMID:1836011

  16. Tissue-specific and developmentally regulated expression of a chimeric actin-globin gene in transgenic mice.

    PubMed Central

    Shani, M

    1986-01-01

    A chimeric plasmid containing about 2/3 of the rat skeletal muscle actin gene plus 730 base pairs of its 5' flanking sequences fused to the 3' end of a human embryonic globin gene (D. Melloul, B. Aloni, J. Calvo, D. Yaffe, and U. Nudel, EMBO J. 3:983-990, 1984) was inserted into mice by microinjection into fertilized eggs. Eleven transgenic mice carrying the chimeric gene with or without plasmid pBR322 DNA sequences were identified. The majority of these mice transmitted the injected DNA to about 50% of their progeny. However, in transgenic mouse CV1, transmission to progeny was associated with amplification or deletion of the injected DNA sequences, while in transgenic mouse CV4 transmission was distorted, probably as a result of insertional mutagenesis. Tissue-specific expression was dependent on the removal of the vector DNA sequences from the chimeric gene sequences prior to microinjection. None of the transgenic mice carrying the chimeric gene together with plasmid pBR322 sequences expressed the introduced gene in striated muscles. In contrast, the six transgenic mice carrying the chimeric gene sequences alone expressed the inserted gene specifically in skeletal and cardiac muscles. Moreover, expression of the chimeric gene was not only tissue specific, but also developmentally regulated. Similar to the endogenous skeletal muscle actin gene, the chimeric gene was expressed at a relatively high level in cardiac muscle of neonatal mice and at a significantly lower level in adult cardiac muscle. These results indicate that the injected DNA included sufficient cis-acting control elements for its tissue-specific and developmentally regulated expression in transgenic mice. Images PMID:3023942

  17. Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer.

    PubMed

    Liu, Chunhai; Khazanehdari, Kamal A; Baskar, Vijaya; Saleem, Shazia; Kinne, Joerg; Wernery, Ulrich; Chang, Il-Kuk

    2012-04-01

    The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.

  18. Evaluation of the sensitivity of two recently developed STR multiplexes for the analysis of chimerism after haematopoietic stem cell transplantation.

    PubMed

    Odriozola, A; Riancho, J A; Colorado, M; Zarrabeitia, M T

    2013-04-01

    Forensic-oriented kits analysing short tandem repeat (STR) polymorphisms are widely used to determine the proportions of donor and recipient cells after haematopoietic stem cell transplantation. The sensitivity of this technology is crucial for the early detection of relapse and, in consequence, the adjustment of the treatment to enhance donor-origin haematopoiesis in transplant recipients. The objective of this study was to compare the performance of two recently developed STR multiplex kits, AmpFℓSTR(®) Identifiler(®) Plus PCR Amplification Kit (Applied Biosystems) and Investigator™ IDplex(®) (Qiagen), in the analysis of chimerism. Fifteen STR loci were amplified with both kits in 26 peripheral blood samples of transplantated patients showing chimerism. Peak amplitude threshold, detection limit (%DL), per cent donor chimerism and efficacy of each multiplex and STR were determined, and the results with both kits were compared. The %DL and the estimated per cent donor chimerism were similar with both kits. On the other hand, Identifiler(®) Plus kit allowed chimerism identification only in 24 (92%) of the 26 cases with chimerism detected by using the Investigator™ IDplex(®) when only 'type 5' allelic constellations (i.e. without potential interference by stutter peaks) were taken into account. However, IDplex(®) efficacy was somewhat lower than that of Identifiler Plus when only the most informative loci (D2S1338, D21S11, D18S51 and FGA) were considered. Therefore, although each system had some particular advantages and disadvantages, overall both STR multiplexes showed similar performance in qualitative and quantitative chimerism analysis.

  19. Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4

    PubMed Central

    Hu, Meng-Jun; Shao, Xiao-Xia; Wang, Jia-Hui; Wei, Dian; Guo, Yu-Qi; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2016-01-01

    The relaxin family peptides play a variety of biological functions by activating four G protein-coupled receptors, RXFP1–4. Among them, insulin-like peptide 5 (INSL5) and relaxin-3 share the highest sequence homology, but they have distinct receptor preference: INSL5 can activate RXFP4 only, while relaxin-3 can activate RXFP3, RXFP4, and RXFP1. Previous studies suggest that the A-chain is responsible for their different selectivity for RXFP1. However, the mechanism by which INSL5 distinguishes the homologous RXFP4 and RXFP3 remains unknown. In the present work, we chemically evolved INSL5 in vitro to a strong agonist of both RXFP4 and RXFP3 through replacement of its five B-chain residues with the corresponding residues of relaxin-3. We identified four determinants (B2Glu, B9Leu, B17Tyr, and a rigid B-chain C-terminus) on INSL5 that are responsible for its inactivity at RXFP3. In reverse experiments, we grafted these determinants onto a chimeric R3/I5 peptide, which contains the B-chain of relaxin-3 and the A-chain of INSL5, and retains full activation potency at RXFP3 and RXFP4. All resultant R3/I5 mutants retained high activation potency towards RXFP4, but most displayed significantly decreased or even abolished activation potency towards RXFP3, confirming the role of these four INSL5 determinants in distinguishing RXFP4 from RXFP3. PMID:27404393

  20. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus

    PubMed Central

    McGregor, Alistair

    2016-01-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107–179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model. PMID:27387220

  1. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus.

    PubMed

    Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair

    2016-07-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.

  2. Homologous recombination in bovine pestiviruses. Phylogenetic and statistic evidence.

    PubMed

    Jones, Leandro Roberto; Weber, E Laura

    2004-12-01

    Bovine pestiviruses (Bovine Viral Diarrea Virus 1 (BVDV 1) and Bovine Viral Diarrea Virus 2 (BVDV 2)) belong to the genus Pestivirus (Flaviviridae), which is composed of positive stranded RNA viruses causing significant economic losses world-wide. We used phylogenetic and bootstrap analyses to systematically scan alignments of previously sequenced genomes in order to explore further the evolutionary mechanisms responsible for variation in the virus. Previously published data suggested that homologous crossover might be one of the mechanisms responsible for the genomic rearrangements observed in cytopathic (cp) strains of bovine pestiviruses. Nevertheless, homologous recombination involves not just homologous crossovers, but also replacement of a homologous region of the acceptor RNA. Furthermore, cytopathic strains represent dead paths in evolution, since they are isolated exclusively from the fatal cases of mucosal disease. Herein, we report evidence of homologous inter-genotype recombination in the genome of a non-cytopathic (ncp) strain of Bovine Viral Diarrea Virus 1, the type species of the genus Pestivirus. We also show that intra-genotype homologous recombination might be a common phenomenon in both species of Pestivirus. This evidence demonstrates that homologous recombination contribute to the diversification of bovine pestiviruses in nature. Implications for virus evolution, taxonomy and phylogenetics are discussed.

  3. The history of the homology concept and the "Phylogenetisches Symposium".

    PubMed

    Hossfeld, Uwe; Olsson, Lennart

    2005-11-01

    The homology concept has had a long and varied history, starting out as a geometrical term in ancient Greece. Here we describe briefly how a typological use of homology to designate organs and body parts in the same position anatomically in different organisms was changed by Darwin's theory of evolution into a phylogenetic concept. We try to indicate the diversity of opinions on how to define and test for homology that has prevailed historically, before the important books by Hennig (1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin) and Remane (1952. Die Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Geest & Portig, Leipzig) brought more rigor into both the debate on homology and into the usage of the term homology among systematists. Homology as a theme has recurred repeatedly throughout the history of the "Phylogenetisches Symposium" and we give a very brief overview of the different aspects of homology that have been discussed at specific symposia over the last 48 years. We also honour the fact that the 2004 symposium was held in Jena by pointing to the roles played by biologists active in Jena, such as Ernst Haeckel and Carl Gegenbaur, in starting the development towards a homology concept concordant with an evolutionary world view. As historians of biology, we emphasize the importance of major treatises on homology and its history that may be little read by systematists active today, and have sometimes also received less attention by historians of biology than they deserve. Prominent among these are the works of Dietrich Starck, who also happened to be both a student, and later a benefactor, of systematics at Jena University. PMID:17046358

  4. The history of the homology concept and the "Phylogenetisches Symposium".

    PubMed

    Hossfeld, Uwe; Olsson, Lennart

    2005-11-01

    The homology concept has had a long and varied history, starting out as a geometrical term in ancient Greece. Here we describe briefly how a typological use of homology to designate organs and body parts in the same position anatomically in different organisms was changed by Darwin's theory of evolution into a phylogenetic concept. We try to indicate the diversity of opinions on how to define and test for homology that has prevailed historically, before the important books by Hennig (1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, Berlin) and Remane (1952. Die Grundlagen des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetik. Geest & Portig, Leipzig) brought more rigor into both the debate on homology and into the usage of the term homology among systematists. Homology as a theme has recurred repeatedly throughout the history of the "Phylogenetisches Symposium" and we give a very brief overview of the different aspects of homology that have been discussed at specific symposia over the last 48 years. We also honour the fact that the 2004 symposium was held in Jena by pointing to the roles played by biologists active in Jena, such as Ernst Haeckel and Carl Gegenbaur, in starting the development towards a homology concept concordant with an evolutionary world view. As historians of biology, we emphasize the importance of major treatises on homology and its history that may be little read by systematists active today, and have sometimes also received less attention by historians of biology than they deserve. Prominent among these are the works of Dietrich Starck, who also happened to be both a student, and later a benefactor, of systematics at Jena University.

  5. Benchmarking the next generation of homology inference tools

    PubMed Central

    Saripella, Ganapathi Varma; Sonnhammer, Erik L. L.; Forslund, Kristoffer

    2016-01-01

    Motivation: Over the last decades, vast numbers of sequences were deposited in public databases. Bioinformatics tools allow homology and consequently functional inference for these sequences. New profile-based homology search tools have been introduced, allowing reliable detection of remote homologs, but have not been systematically benchmarked. To provide such a comparison, which can guide bioinformatics workflows, we extend and apply our previously developed benchmark approach to evaluate the ‘next generation’ of profile-based approaches, including CS-BLAST, HHSEARCH and PHMMER, in comparison with the non-profile based search tools NCBI-BLAST, USEARCH, UBLAST and FASTA. Method: We generated challenging benchmark datasets based on protein domain architectures within either the PFAM + Clan, SCOP/Superfamily or CATH/Gene3D domain definition schemes. From each dataset, homologous and non-homologous protein pairs were aligned using each tool, and standard performance metrics calculated. We further measured congruence of domain architecture assignments in the three domain databases. Results: CSBLAST and PHMMER had overall highest accuracy. FASTA, UBLAST and USEARCH showed large trade-offs of accuracy for speed optimization. Conclusion: Profile methods are superior at inferring remote homologs but the difference in accuracy between methods is relatively small. PHMMER and CSBLAST stand out with the highest accuracy, yet still at a reasonable computational cost. Additionally, we show that less than 0.1% of Swiss-Prot protein pairs considered homologous by one database are considered non-homologous by another, implying that these classifications represent equivalent underlying biological phenomena, differing mostly in coverage and granularity. Availability and Implementation: Benchmark datasets and all scripts are placed at (http://sonnhammer.org/download/Homology_benchmark). Contact: forslund@embl.de Supplementary information: Supplementary data are available at

  6. Xenogenic oogenesis of chicken (Gallus domesticus) female primordial germ cells in germline chimeric quail (Coturnix japonica) ovary.

    PubMed

    Liu, C H; Chang, I K; Sasse, J; Dumatol, C J; Basker, J V; Wernery, U

    2007-10-01

    In present study, chicken primordial germ cells (PGCs) were transferred into quail embryos to investigate the development of these germ cells in quail ovary. Briefly, 2 microl of chicken embryonic blood (stage 14) or about 100 purified circulating PGCs were transferred into quail embryo. Contribution of chicken PGCs were detected in gonads of chimeric quail embryos (stage 28) by immunocytochemical staining of cell surface antigen SSEA-1, and by in situ hybridization (ISH) with female chicken specific DNA probe. As a result, 52.0+/-43.2 (n=18) and 42.7+/-27.3 (n=17) chicken PGCs were found in the gonads of chimeric quail embryo that was injected with chicken embryonic blood (stage 14) and about 100 purified circulating PGCs, respectively. Furthermore, the ovaries of 81.8% (9/11) 12 days post incubation (dpi) chimeric quail embryos were observed with a mean of 457.6+/-237.1 female chicken PGCs-derived oogonia scattered in ovarian cortex area. In 9 out of 12 newly hatched and one week old chimeric quail chicks, on average of 2883.0+/-1924.1 primary oocytes and 3 follicles derived from chicken PGCs were found, respectively. The present results suggest that chicken female PGCs are able to migrate, colonize, proliferate and differentiate into oogonia, primary oocytes in chimeric quail ovary.

  7. Stable mixed hematopoietic chimerism permits tolerance of vascularized composite allografts across a full major histocompatibility mismatch in swine.

    PubMed

    Mathes, David W; Solari, Mario G; Gazelle, Guy Scott; Butler, Peter E M; Wu, Anette; Nazzal, Adam; Nielsen, Gunnlauger P; Huang, Christene A; Sachs, David H; Lee, Wei Ping Andrew; Randolph, Mark A

    2014-10-01

    This study tested the hypothesis that vascularized composite allografts (VCA) could be accepted in a robust model of hematopoietic chimerism by injecting allogeneic bone marrow cells (BMC) into swine fetuses. Outbred Yorkshire sows and boars were screened to ensure the absence of the major histocompatibility (MHC) allele SLA(cc) of inbred MGH miniature swine and then mated. Bone marrow harvested from an SLA(cc) swine donor was T-cell depleted and injected intravenously into the fetuses between days 50-55 of gestation. After birth, the piglets were studied with flow cytometry to detect donor cells and mixed lymphocyte reactions (MLR) and cell-mediated lympholysis (CML) assays to assess their response to donor. Donor-matched VCAs from SLA(cc) donors were performed on four chimeric and two nonchimeric swine. The results showed donor cell engraftment and multilineage macrochimerism after the in utero transplantation of adult BMC, and chimeric animals were unresponsive to donor antigens in vitro. Both control VCAs were rejected by 21 days and were alloreactive. Chimeric animals accepted the VCAs and never developed antidonor antibodies or alloreactivity to donor. These results confirm that the intravascular, in utero transplantation of adult BMC leads to donor cell chimerism and donor-specific tolerance of VCAs across a full MHC barrier in this animal model.

  8. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    PubMed

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. PMID:27430511

  9. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    PubMed

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant.

  10. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates.

    PubMed

    Yamada, Y; Ochiai, T; Boskovic, S; Nadazdin, O; Oura, T; Schoenfeld, D; Cappetta, K; Smith, R-N; Colvin, R B; Madsen, J C; Sachs, D H; Benichou, G; Cosimi, A B; Kawai, T

    2014-12-01

    We have previously reported successful induction of renal allograft tolerance via a mixed chimerism approach in nonhuman primates. In those studies, we found that costimulatory blockade with anti-CD154 mAb was an effective adjunctive therapy for induction of renal allograft tolerance. However, since anti-CD154 mAb is not clinically available, we have evaluated CTLA4Ig as an alternative agent for effecting costimulation blockade in this treatment protocol. Two CTLA4Igs, abatacept and belatacept, were substituted for anti-CD154 mAb in the conditioning regimen (low dose total body irradiation, thymic irradiation, anti-thymocyte globulin and a 1-month posttransplant course of cyclosporine [CyA]). Three recipients treated with the abatacept regimen failed to develop comparable lymphoid chimerism to that achieved with anti-CD154 mAb treatment and these recipients rejected their kidney allografts early. With the belatacept regimen, four of five recipients developed chimerism and three of these achieved long-term renal allograft survival (>861, >796 and >378 days) without maintenance immunosuppression. Neither chimerism nor long-term allograft survival were achieved in two recipients treated with the belatacept regimen but with a lower, subtherapeutic dose of CyA. This study indicates that CD28/B7 blockade with belatacept can provide a clinically applicable alternative to anti-CD154 mAb for promoting chimerism and renal allograft tolerance.

  11. A case of leucocyte chimerism (78,XX/78,XY) in a dog with a disorder of sexual development.

    PubMed

    Szczerbal, I; Nowacka-Woszuk, J; Nizanski, W; Salamon, S; Ochota, M; Dzimira, S; Atamaniuk, W; Switonski, M

    2014-06-01

    A 1-year-old Shih Tzu dog was presented for examination because of abnormal external genitalia. A residual penis with a prepuce was located in a position typical of a male. The dog had no palpable testicles or scrotum. The ultrasound examination revealed the presence of the prostate, but the gonads remained undetectable. Cytogenetic analysis performed on chromosome preparations obtained from lymphocyte culture showed two cell lines - 78,XX and 78,XY. Molecular analysis of 14 polymorphic microsatellite markers allowed us to distinguish leucocyte chimerism from whole body chimerism. The presence of 3 or 4 alleles was confirmed in DNA isolated from blood, while in DNA isolated from hair follicles only 1 or 2 alleles were detected. The case was classified as leucocyte 78,XX/78,XY chimerism. Our study showed that XX/XY leucocyte chimerism might be associated with disorder of sexual development in dogs. Furthermore, it is emphasized that the use of cytogenetic study, in combination with analysis of polymorphic markers in DNA isolated from different somatic cells, facilitates distinguishing between leucocyte and whole body chimerism.

  12. An MHC-defined primate model reveals significant rejection of bone marrow after mixed chimerism induction despite full MHC matching.

    PubMed

    Larsen, C P; Page, A; Linzie, K H; Russell, M; Deane, T; Stempora, L; Strobert, E; Penedo, M C T; Ward, T; Wiseman, R; O'Connor, D; Miller, W; Sen, S; Singh, K; Kean, L S

    2010-11-01

    In murine models, mixed hematopoietic chimerism induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC-defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade-/sirolimus-mediated chimerism, and to probe possible mechanisms of bone marrow rejection after nonmyeloablative transplant. Using busulfan-based pretransplant preparation and maintenance immunosuppression with sirolimus, as well as CD28 and CD154 blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism. Thus, the vast majority of T cells presenting posttransplant were recipient-rather than donor-derived. Surprisingly, even in MHC-matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen-experienced T cells, and transplant rejection was associated with the acquisition of donor-directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the post-immunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen-experienced phenotype, and ultimately, to transplant rejection. PMID:20849552

  13. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  14. Importing the homology concept from biology into developmental psychology.

    PubMed

    Moore, David S

    2013-01-01

    To help introduce the idea of homology into developmental psychology, this article presents some of the concepts, distinctions, and guidelines biologists and philosophers of biology have devised to study homology. Some unresolved issues related to this idea are considered as well. Because homology reflects continuity across time, developmental scientists should find this concept to be useful in the study of psychological/behavioral development, just as biologists have found it essential in the study of the evolution and development of morphological and other characteristics.

  15. All Stable Characteristic Classes of Homological Vector Fields

    NASA Astrophysics Data System (ADS)

    Mosman, Elena; Sharapov, Alexey

    2010-12-01

    An odd vector field Q on a supermanifold M is called homological, if Q 2 = 0. The operator of Lie derivative L Q makes the algebra of smooth tensor fields on M into a differential tensor algebra. In this paper, we give a complete classification of certain invariants of homological vector fields called characteristic classes. These take values in the cohomology of the operator L Q and are represented by Q-invariant tensors made up of the homological vector field and a symmetric connection on M by means of the algebraic tensor operations and covariant differentiation.

  16. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    SciTech Connect

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  17. Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease.

    PubMed

    Altrock, Philipp M; Brendel, Christian; Renella, Raffaele; Orkin, Stuart H; Williams, David A; Michor, Franziska

    2016-09-01

    Recent advances in gene therapy and genome-engineering technologies offer the opportunity to correct sickle cell disease (SCD), a heritable disorder caused by a point mutation in the β-globin gene. The developmental switch from fetal γ-globin to adult β-globin is governed in part by the transcription factor (TF) BCL11A. This TF has been proposed as a therapeutic target for reactivation of γ-globin and concomitant reduction of β-sickle globin. In this and other approaches, genetic alteration of a portion of the hematopoietic stem cell (HSC) compartment leads to a mixture of sickling and corrected red blood cells (RBCs) in periphery. To reverse the sickling phenotype, a certain proportion of corrected RBCs is necessary; the degree of HSC alteration required to achieve a desired fraction of corrected RBCs remains unknown. To address this issue, we developed a mathematical model describing aging and survival of sickle-susceptible and normal RBCs; the former can have a selective survival advantage leading to their overrepresentation. We identified the level of bone marrow chimerism required for successful stem cell-based gene therapies in SCD. Our findings were further informed using an experimental mouse model, where we transplanted mixtures of Berkeley SCD and normal murine bone marrow cells to establish chimeric grafts in murine hosts. Our integrative theoretical and experimental approach identifies the target frequency of HSC alterations required for effective treatment of sickling syndromes in humans. Our work replaces episodic observations of such target frequencies with a mathematical modeling framework that covers a large and continuous spectrum of chimerism conditions. Am. J. Hematol. 91:931-937, 2016. © 2016 Wiley Periodicals, Inc.

  18. Modeling birch pollen emission and transport with the chemistry-transport model CHIMERE

    NASA Astrophysics Data System (ADS)

    Potier, Aurelie; Khvorostyanov, Dmitry; Menut, Laurent; Sofiev, Mikhail; Viovy, Nicolas; Vautard, Robert; Thibaudon, Michel; Tao, Phikune

    2013-04-01

    Among pollen species, birch pollen is recognized to have one of the highest allergenic effects. Its emission as well as its transport with air masses depend on several meteorological parameters. If the conditions are favourable (typically sunny and windy days), the pollen can travel at distances of hundred kilometers in only one day. For analysis and source-oriented forecast, the chemistry-transport models are promising tools to simulate emissions and concentrations over large domains such as Europe. In addition to pollution gaseous and particulate species, the birch pollen related processes were recently added in the chemistry-transport model CHIMERE. This first includes an emission module based on a double-threshold temperature sum concept which describes the onset of the flowering season as well as its propagation using a birch pollen source emission. The parameterization is defined following Sofiev et al. (2012). Second, the processes such as transport, turbulent vertical mixing, dry deposition, wash out and resuspension were updated in CHIMERE to account for the specificities of the pollen grains. In this study, we present a simulation of pollen emissions and transport over Europe with an horizontal resolution of 15km. The CHIMERE model is driven by the WRF meteorological fields and the simulation covers the complete spring of 2008. The modeled pollen concentrations are compared to the R.N.S.A. french national aerobiological survey network measurements. The strength and weaknesses of the modeled results are discussed in terms of emissions data available, meteorology and all specific processes added in the model.

  19. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    PubMed Central

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Methods: In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. Results: The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni–NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. Conclusion: The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure. PMID:27123423

  20. Innovation and opportunity for chimeric antigen receptor targeted T cells.

    PubMed

    Melenhorst, J Joseph; Levine, Bruce L

    2013-09-01

    Adoptive cell therapy truly began with the introduction of hematopoietic stem cell transplantation. The ability to manipulate genes through cloning and expression methodologies have allowed for the development of novel chimeric receptors to selectively target cancer when introduced into immune cells. Over the past decade, gene engineered cells have been tested in clinical trials throughout the world. Recent data and striking clinical responses demonstrate the power of this new type of therapy. Current challenges include managing a potent therapy that is a dividing, rather than a static drug, safeguarding against potential toxicity, and further development to enable access to a greater number of patients.

  1. Catalytic Signature of a Heat-Stable, Chimeric Human Alkaline Phosphatase with Therapeutic Potential

    PubMed Central

    Kiffer-Moreira, Tina; Sheen, Campbell R.; Gasque, Kellen Cristina da Silva; Bolean, Mayte; Ciancaglini, Pietro; van Elsas, Andrea; Hoylaerts, Marc F.; Millán, José Luis

    2014-01-01

    Recombinant alkaline phosphatases are becoming promising protein therapeutics to prevent skeletal mineralization defects, inflammatory bowel diseases, and treat acute kidney injury. By substituting the flexible crown domain of human intestinal alkaline phosphatase (IAP) with that of the human placental isozyme (PLAP) we generated a chimeric enzyme (ChimAP) that retains the structural folding of IAP, but displays greatly increased stability, active site Zn2+ binding, increased transphosphorylation, a higher turnover number and narrower substrate specificity, with comparable selectivity for bacterial lipopolysaccharide (LPS), than the parent IAP isozyme. ChimAP shows promise as a protein therapeutic for indications such as inflammatory bowel diseases, gut dysbioses and acute kidney injury. PMID:24586729

  2. An algorithm to detect chimeric clones and random noise in genomic mapping

    SciTech Connect

    Grigoriev, A.; Mott, R.; Lehrach, H.

    1994-07-15

    Experimental noise and contiguous clone inserts can pose serious problems in reconstructing genomic maps from hybridization data. The authors describe an algorithm that easily identifies false positive signals and clones containing chimeric inserts/internal deletions. The algorithm {open_quotes}dechimerizes{close_quotes} clones, splitting them into independent contiguous components and cleaning the initial library into a more consistent data set for further ordering. The effectiveness of the algorithm is demonstrated on both simulated data and the real YAC map of the whole genome genome of the fission yeast Schizosaccharomyces pombe. 8 refs., 3 figs., 1 tab.

  3. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties.

    PubMed

    Kuriki, T; Stewart, D C; Preiss, J

    1997-11-14

    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.

  4. Chimerism in a child with severe combined immunodeficiency: a case report.

    PubMed

    Aureli, Anna; Piancatelli, Daniela; Monaco, Palmina I; Ozzella, Giuseppina; Canossi, Angelica; Piazza, Antonina; Isacchi, Giancarlo; Caniglia, Maurizio; Adorno, Domenico

    2006-09-01

    Severe combined immunodeficiency (SCID) represents a group of rare, sometimes fatal, congenital disorders in which there is a combined absence of T-lymphocyte and B-lymphocyte function. Children with SCID die within two years of age, if untreated. The effective treatment for SCID is a hematopoietic stem cell transplantation (HSCT). It has been repeatedly described that in peripheral blood of infants with SCID maternal T cells can be found. Here we report a case of blood chimerism in a one-year-old boy with SCID.

  5. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.

    PubMed

    Sokol, Martin; Jessen, Karen Margrethe; Pedersen, Finn Skou

    2016-01-01

    Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights

  6. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences.

    PubMed

    Acharya, Sefali; Ranjan, Rajiv; Pattanaik, Sitakanta; Maiti, Indu B; Dey, Nrisingha

    2014-02-01

    In the present study, we developed a set of three chimeric/hybrid promoters namely FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt incorporating different important domains of Figwort Mosaic Virus sub-genomic transcript promoter (FSgt, -270 to -60), Mirabilis Mosaic Virus sub-genomic transcript promoter (MSgt, -306 to -125) and Peanut Chlorotic Streak Caulimovirus full-length transcript promoter (PFlt-, -353 to +24 and PFlt-UAS, -353 to -49). We demonstrated that these chimeric/hybrid promoters can drive the expression of reporter genes in different plant species including tobacco, Arabidopsis, petunia, tomato and spinach. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 4.2, 1.5 and 1.2 times stronger GUS activities compared to the activity of the CaMV35S promoter, respectively, in tobacco protoplasts. Protoplast-derived recombinant promoter driven GFP showed enhanced accumulation compared to that obtained under the CaMV35S promoter. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 3.0, 1.3 and 1.0 times stronger activities than the activity of the CaMV35S² (a modified version of the CaMV35S promoter with double enhancer domain) promoter, respectively, in tobacco (Nicotiana tabacum, var. Samsun NN). Alongside, we observed a fair correlation between recombinant promoter-driven GUS accumulation with the corresponding uidA-mRNA level in transgenic tobacco. Histochemical (X-gluc) staining of whole transgenic seedlings and fluorescence images of ImaGene Green™ treated floral parts expressing the GUS under the control of recombinant promoters also support above findings. Furthermore, we confirmed that these chimeric promoters are inducible in the presence of 150 μM salicylic acid (SA) and abscisic acid (ABA). Taken altogether, we propose that SA/ABA inducible chimeric/recombinant promoters could be used for strong expression of gene(s) of interest in crop plants.

  7. Chimeric antigen receptor T cell therapy: 25years in the making.

    PubMed

    Gill, Saar; Maus, Marcela V; Porter, David L

    2016-05-01

    Chimeric antigen receptor (CAR) T cell therapy of cancer is generating enormous enthusiasm. Twenty-five years after the concept was first proposed, major advances in molecular biology, virology, and good manufacturing practices (GMP)-grade cell production have transformed antibody-T cell chimeras from a scientific curiosity to a fact of life for academic cellular immunotherapy researchers and, increasingly, for patients. In this review, we explain the preclinical concept, outline how it has been translated to the clinic, and draw lessons from the first years of CAR T cell therapy for the practicing clinician. PMID:26574053

  8. Adoptive Therapy with Chimeric Antigen Receptor Modified T Cells of Defined Subset Composition

    PubMed Central

    Riddell, Stanley R.; Sommermeyer, Daniel; Berger, Carolina; Liu, Lingfeng (Steven); Balakrishnan, Ashwini; Salter, Alex; Hudecek, Michael; Maloney, David G.; Turtle, Cameron J.

    2014-01-01

    The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in in targeting CD19 on B cell malignancies. The clinical trials of CD19 CAR therapy have thus far not attempted to select defined subsets prior to transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products. This review will discuss the rationale for and challenges to utilizing adoptive therapy with genetically modified T cells of defined subset and phenotypic composition. PMID:24667960

  9. What is "homology thinking" and what is it for?

    PubMed

    Wagner, Günter P

    2016-01-01

    In this paper I examine the thesis by Marc Ereshefsky that, in evolutionary biology, there is a third style of thinking, besides the well-known "population thinking" and "tree thinking." Ereshefsky proposes "homology thinking" as a third approach, focused on the transformation of organismal phenotypes. In this short commentary, I aim at identifying the underlying biological assumptions for homology thinking and how they can be put to work in a research program within evolutionary biology. I propose that homology thinking is based on three insights: 1) multicellular organisms consist of developmentally individualized parts (sub-systems); 2) that developmental individuation entails evolutionary individuation, that is, variational quasi-independence; and 3) these individuated body parts are inherited, though indirectly, and form lineages that are recognized as homologies. These facts support a research program focused on the modification and origination of individuated body parts that supplements and puts into perspective the population genetic and phylogenetic approaches to the study of evolution. PMID:26486321

  10. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors

    PubMed Central

    Dickmeis, Christina; Honickel, Mareike Michaela Antonia; Fischer, Rainer; Commandeur, Ulrich

    2015-01-01

    We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles. PMID:26636076

  11. Structure-function study of a chlorotoxin-chimer and its activity on Kv1.3 channels.

    PubMed

    Huys, Isabelle; Waelkens, Etienne; Tytgat, Jan

    2004-04-15

    Chlorotoxin has been isolated from the venom of the scorpion Leiurus quinquestriatus and characterized as a 4.1kDa peptide, containing a lysine at position 27 that is also present in many Kv-blocking toxins. Because chlorotoxin shows no affinity for Kv-channels, we intended to design, express and purify a chlorotoxin-chimer, containing the active binding site (beta-sheet) of a very potent Kv1-channel blocking peptide, agitoxin 2, by mutating three original residues in the chlorotoxin molecule. Several derivatives of the chimer, gradually missing one additional amino acid residue at the N-terminal side of the peptide, were produced and identified chromatographically. In contrast to chlorotoxin, these chimer derivatives are capable of blocking cloned Kv1-channels.

  12. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors.

    PubMed

    Dickmeis, Christina; Honickel, Mareike Michaela Antonia; Fischer, Rainer; Commandeur, Ulrich

    2015-01-01

    We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles. PMID:26636076

  13. Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system.

    PubMed

    Ganesh, Irisappan; Ravikumar, Sambandam; Yoo, Ik-Keun; Hong, Soon Ho

    2015-04-01

    In an attempt to develop a high-throughput screening system for screening microorganisms which produce high amounts of malate, a MalKZ chimeric HK-based biosensor was constructed. Considering the sequence similarity among Escherichia coli (E. coli) MalK with Bacillus subtilis MalK and E. coli DcuS, the putative sensor domain of MalK was fused with the catalytic domain of EnvZ. The chimeric MalK/EnvZ TCS induced the ompC promoter through the cognate response regulator, OmpR, in response to extracellular malate. Real-time quantitative PCR and GFP fluorescence studies showed increased ompC gene expression and GFP fluorescence as malate concentration increased. By using this strategy, various chimeric TCS-based bacteria biosensors can be constructed, which may be used for the development of biochemical-producing recombinant microorganisms.

  14. Surface acidic amino acid of Pseudomonas/Halomonas chimeric nucleoside diphosphate kinase leads effective recovery from heat-denaturation.

    PubMed

    Tokunaga, Hiroko; Arakawa, Tsutomu; Tokunaga, Masao

    2013-07-01

    One of the hallmarks of halophilic properties is reversibility of thermal unfolding. A nucleoside diphosphate kinase (NDK) from a moderate halophile Halomonas sp. 593 (HaNDK) follows this behavior. His-tagged chimeric NDK (HisPaHaNDK) consisting of an N-terminal half of a non-halophilic Pseuodomonas aeruginosa NDK (PaNDK) and a Cterminal half of HaNDK loses this reversible property, indicating a critical role of the N-terminal portion of PaNDK in determining the reversibility of the chimeric protein. Various mutations were introduced at Arg45 and Lys61, based on the model NDK structure. It appears that having Glu at position 45 is critical in conferring the thermal reversibility to HisPa- HaNDK chimeric protein.

  15. MRFalign: protein homology detection through alignment of Markov random fields.

    PubMed

    Ma, Jianzhu; Wang, Sheng; Wang, Zhiyong; Xu, Jinbo

    2014-03-01

    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5. PMID:24675572

  16. Butterfly eyespot serial homology: enter the Hox genes.

    PubMed

    Hombría, James Castelli-Gair

    2011-01-01

    Hox genes modify serial homology patterns in many organisms, exemplified in vertebrates by modification of the axial skeleton and in arthropods by diversification of the body segments. Butterfly wing eyespots also appear in a serial homologous pattern that, in certain species, is subject to local modification. A paper in EvoDevo reports the Hox gene Antp is the earliest known gene to have eyespot-specific expression; however, not all Lepidoptera express Antp in eyespots, suggesting some developmental flexibility. PMID:21527048

  17. Efficient Assembly of DNA Using Yeast Homologous Recombination (YHR).

    PubMed

    Chandran, Sunil; Shapland, Elaine

    2017-01-01

    The assembly of multiple DNA parts into a larger DNA construct is a requirement in most synthetic biology laboratories. Here we describe a method for the efficient, high-throughput, assembly of DNA utilizing the yeast homologous recombination (YHR). The YHR method utilizes overlapping DNA parts that are assembled together by Saccharomyces cerevisiae via homologous recombination between designed overlapping regions. Using this method, we have successfully assembled up to 12 DNA parts in a single reaction. PMID:27671941

  18. Butterfly eyespot serial homology: enter the Hox genes.

    PubMed

    Hombría, James Castelli-Gair

    2011-01-01

    Hox genes modify serial homology patterns in many organisms, exemplified in vertebrates by modification of the axial skeleton and in arthropods by diversification of the body segments. Butterfly wing eyespots also appear in a serial homologous pattern that, in certain species, is subject to local modification. A paper in EvoDevo reports the Hox gene Antp is the earliest known gene to have eyespot-specific expression; however, not all Lepidoptera express Antp in eyespots, suggesting some developmental flexibility.

  19. Increasing mixed chimerism and the risk of graft loss in children undergoing allogeneic hematopoietic stem cell transplantation for non-malignant disorders.

    PubMed

    Ozyurek, E; Cowan, M J; Koerper, M A; Baxter-Lowe, L-A; Dvorak, C C; Horn, B N

    2008-07-01

    We performed quantitative PCR-based serial chimerism testing of whole blood (WB) and CD3+ cells and retrospectively correlated the results of chimerism tests and the risk of graft loss in children undergoing transplant for non-malignant disorders. Twenty-four children were included in this study. All patients initially engrafted; subsequently, 12% lost the graft, 21% achieved complete donor chimerism and 67% had mixed chimerism (MC). Patients underwent delayed taper of cyclosporine (CsA) if they had MC. Overall survival was 87+/-7% (s.d.) at 5-years post transplant, and it was not affected by chimerism status. Both WB and CD3+ chimerism showed significant fluctuations with a peak in autologous cell signal occurring at a median of 7 months for WB and 2 months for CD3+ cells. Initial post transplant chimerism percentage in either WB or CD3+ lineage was not related to graft loss. Increasing MC to >30% host cells was seen in 33% of patients, and it was related to increased risk of graft loss, as previously published. However, 63% of children with increasing MC did not lose their graft. Additional studies of post transplant chimerism are required to improve our ability to accurately identify children at risk of graft loss following transplant for non-malignant disorders.

  20. Metagenomic gene annotation by a homology-independent approach

    SciTech Connect

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  1. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum.

    PubMed Central

    Sauer, U; Treuner, A; Buchholz, M; Santangelo, J D; Dürre, P

    1994-01-01

    Using a PCR-based approach, we have cloned various sigma factor homologous genes from Clostridium acetobutylicum DSM 792. The nucleotide sequence of the dnaE-sigA operon has been determined and predicts two genes encoding 69- and 43-kDa proteins. The deduced DnaE amino acid sequence has approximately 30% amino acid identity with protein sequences of other primases. The putative sigA gene product shows high homology to primary sigma factors of various bacteria, most significantly to Bacillus subtilis and Staphylococcus aureus. Northern (RNA) blot analysis revealed that both genes from an operon, which is clearly expressed under conditions that allow for cell division. A promoter sequence with significant homology to the sigma H-dependent Bacillus promoters preceded the determined transcriptional start point, 182 bp upstream of the GUG start codon of dnaE. The homologous genes to Bacillus spp. sporulation sigma factors G, E, and K have been cloned and sequenced. Indirect evidence for the existence of sigma F was obtained by identification of a DNA sequence homologous to the respective Bacillus consensus promoter. Southern hybridization analysis indicated the presence of sigma D and sigma H homologous genes in C. acetobutylicum. A new gene group conserved within the eubacteria, but with yet unspecified functions, is described. The data presented here provide strong evidence that at least some of the complex regulation features of sporulation in B. subtilis are conserved in C. acetobutylicum and possibly Clostridium spp. Images PMID:7961408

  2. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus. PMID:26694481

  3. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus.

  4. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.

    PubMed

    Drent, Esther; Groen, Richard W J; Noort, Willy A; Themeli, Maria; Lammerts van Bueren, Jeroen J; Parren, Paul W H I; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W C J; Martens, Anton C M; Lokhorst, Henk M; Mutis, Tuna

    2016-05-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38(+) fractions of CD34(+) hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38(+) malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. PMID:26858358

  5. Expansion of recipient-derived antiviral T cells may influence donor chimerism after allogeneic stem cell transplantation.

    PubMed

    Borchers, S; Weissinger, E M; Pabst, B; Ganzenmueller, T; Dammann, E; Luther, S; Diedrich, H; Ganser, A; Stadler, M

    2013-12-01

    Donor chimerism (DC) analysis is an important marker in the hematopoietic stem cell transplant follow-up. Here, we present evidence for a possible relationship of infectious complications and declines in DC. We analyzed the DC in patients experiencing cytomegalovirus (CMV) reactivation. In addition, in some patients chimerism analyses of T-cell subsets were performed. CMV-specific cytotoxic T-lymphocytes (CMV-CTL) were monitored using human leukocyte antigen-restricted multimer staining. Interestingly, CMV reactivation was accompanied by changes in DC in 11 of 67 patients transplanted. For example, DC declined in a cord blood recipient, in both total leukocytes and CD4 and CD8 T-cell subsets upon CMV reactivation. The latter was controlled after only 5 days through expanding CMV-CTL of 96% recipient origin, according to chimerism analysis of CMV-CTL (enriched beyond 50%). In another patient, transplanted after reduced-intensity conditioning from a DQB1 mismatched, CMV seronegative donor, incipient CMV reactivation was completely aborted by CMV-CTL of recipient origin. However, at the same time, mixed chimerism dropped from 51% to 0% donor type, resulting in late graft rejection. Our data indicate that chimerism analyses in subset populations lead to a better understanding of declining total leukocyte chimerism. Furthermore, recipient-derived CMV-CTL may be able to control CMV reactivation after reduced-intensity conditioning. We speculate that autologous CMV-CTL may be instrumental to overcome recurrent CMV reactivations, especially in patients transplanted from CMV-seronegative donors. In addition, the expansion of recipient-derived CMV-CTL may contribute to both, graft failure or to conversion to full DC.

  6. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    PubMed Central

    Drent, Esther; Groen, Richard W.J.; Noort, Willy A.; Themeli, Maria; Lammerts van Bueren, Jeroen J.; Parren, Paul W.H.I.; Kuball, Jürgen; Sebestyen, Zsolt; Yuan, Huipin; de Bruijn, Joost; van de Donk, Niels W.C.J.; Martens, Anton C.M.; Lokhorst, Henk M.; Mutis, Tuna

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38+ fractions of CD34+ hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38+ malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. PMID:26858358

  7. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  8. Chimeric neuraminidase and mutant PB1 gene constellation improves growth and yield of H5N1 vaccine candidate virus.

    PubMed

    Plant, Ewan P; Ye, Zhiping

    2015-04-01

    We previously showed that a mutated PB1 gene improved the growth kinetics of a H3N2 influenza reassortant. Here, we showed that the same mutations improved the growth kinetics of a virus containing the A/Vietnam/1203/2004 (H5N1) haemagglutinin and neuraminidase (NA). Total protein yield and NA activity were increased when a chimeric NA was included. These increases indicated that the synergistic effect was due to the gene constellation containing both the altered PB1 gene and the chimeric NA gene.

  9. Clinical utility of chimerism status assessed by lineage-specific short tandem repeat analysis: experience from four cases of allogeneic stem cell transplantation.

    PubMed

    Goh, Ri-Young; Cho, Sung-Suk; Song, Yoo-Jeong; Heo, Kyeong; Oh, Sung-Yong; Kim, Sung-Hyun; Kwon, Hyeok-Chan; Kim, Hyo-Jin; Han, Jin-Yeong

    2009-08-01

    Chimerism testing permits early prediction and documentation of successful engraftment, and also facilitates detection of impending graft rejection. In this study, we serially monitored chimerism status by short tandem repeat-based PCR in nucleated cells (NC), T cells and natural killer (NK) cells after myeloablative allogeneic stem cell transplantation (SCT). Four patients with myeloid malignancies showed discrepant chimerism results among those three fractions. Three patients had mixed chimerism (MC) of donor/host T cells at a time point around the onset of chronic graft-versus-host disease (GVHD). In two patients with disease relapse, MC of NK cells preceded a morphological relapse or NK cells showed a higher percentage of patient cells compared to NC. Therefore, our study shows that chimerism analysis in lineage-specific cells might be useful in predicting clinical outcome after allogeneic SCT in certain patients.

  10. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family.

    PubMed

    Nguyen, Giang Kien Truc; Zhang, Sen; Nguyen, Ngan Thi Kim; Nguyen, Phuong Quoc Thuc; Chiu, Ming Sheau; Hardjojo, Antony; Tam, James P

    2011-07-01

    The tropical plant Clitoria ternatea is a member of the Fabaceae family well known for its medicinal values. Heat extraction of C. ternatea revealed that the bioactive fractions contained heat-stable cysteine-rich peptides (CRPs). The CRP family of A1b (Albumin-1 chain b/leginsulins), which is a linear cystine knot CRP, has been shown to present abundantly in the Fabaceae. In contrast, the cyclotide family, which also belongs to the cystine knot CRPs but with a cyclic structure, is commonly found in the Rubiaceae, Violaceae, and Cucurbitaceae families. In this study, we report the discovery of a panel of 15 heat-stable CRPs, of which 12 sequences (cliotide T1-T12) are novel. We show unambiguously that the cliotides are cyclotides and not A1bs, as determined by their sequence homology, disulfide connectivity, and membrane active properties indicated by their antimicrobial activities against Escherichia coli and cytotoxicities to HeLa cells. We also show that cliotides are prevalent in C. ternatea and are found in every plant tissue examined, including flowers, seeds, and nodules. In addition, we demonstrate that their precursors are chimeras, half from cyclotide and the other half from Albumin-1, with the cyclotide domain displacing the A1b domain in the precursor. Their chimeric structures likely originate from either horizontal gene transfer or convergent evolution in plant nuclear genomes, which are exceedingly rare events. Such atypical genetic arrangement also implies a different mechanism of biosynthetic processing of cyclotides in the Fabaceae and provides new understanding of their evolution in plants. PMID:21596752

  11. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family.

    PubMed

    Nguyen, Giang Kien Truc; Zhang, Sen; Nguyen, Ngan Thi Kim; Nguyen, Phuong Quoc Thuc; Chiu, Ming Sheau; Hardjojo, Antony; Tam, James P

    2011-07-01

    The tropical plant Clitoria ternatea is a member of the Fabaceae family well known for its medicinal values. Heat extraction of C. ternatea revealed that the bioactive fractions contained heat-stable cysteine-rich peptides (CRPs). The CRP family of A1b (Albumin-1 chain b/leginsulins), which is a linear cystine knot CRP, has been shown to present abundantly in the Fabaceae. In contrast, the cyclotide family, which also belongs to the cystine knot CRPs but with a cyclic structure, is commonly found in the Rubiaceae, Violaceae, and Cucurbitaceae families. In this study, we report the discovery of a panel of 15 heat-stable CRPs, of which 12 sequences (cliotide T1-T12) are novel. We show unambiguously that the cliotides are cyclotides and not A1bs, as determined by their sequence homology, disulfide connectivity, and membrane active properties indicated by their antimicrobial activities against Escherichia coli and cytotoxicities to HeLa cells. We also show that cliotides are prevalent in C. ternatea and are found in every plant tissue examined, including flowers, seeds, and nodules. In addition, we demonstrate that their precursors are chimeras, half from cyclotide and the other half from Albumin-1, with the cyclotide domain displacing the A1b domain in the precursor. Their chimeric structures likely originate from either horizontal gene transfer or convergent evolution in plant nuclear genomes, which are exceedingly rare events. Such atypical genetic arrangement also implies a different mechanism of biosynthetic processing of cyclotides in the Fabaceae and provides new understanding of their evolution in plants.

  12. Maize beta-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for beta-glucosidase aggregation.

    PubMed

    Kittur, Farooqahmed S; Lalgondar, Mallikarjun; Yu, Hyun Young; Bevan, David R; Esen, Asim

    2007-03-01

    In certain maize genotypes, called "null," beta-glucosidase does not enter gels and therefore cannot be detected on zymograms after electrophoresis. Such genotypes were originally thought to be homozygous for a null allele at the glu1 gene and thus devoid of enzyme. We have shown that a beta-glucosidase-aggregating factor (BGAF) is responsible for the "null" phenotype. BGAF is a chimeric protein consisting of two distinct domains: the disease response or "dirigent" domain and the jacalin-related lectin (JRL) domain. First, it was not known whether the lectin domain in BGAF is functional. Second, it was not known which of the two BGAF domains is involved in beta-glucosidase binding and aggregation. To this end, we purified BGAF to homogeneity from a maize null inbred line called H95. The purified protein gave a single band on SDS-PAGE, and the native protein was a homodimer of 32-kDa monomers. Native and recombinant BGAF (produced in Escherichia coli) agglutinated rabbit erythrocytes, and various carbohydrates and glycoproteins inhibited their hemagglutination activity. Sugars did not have any effect on the binding of BGAF to the beta-glucosidase isozyme 1 (Glu1), and the BGAF-Glu1 complex could still bind lactosyl-agarose, indicating that the sugar-binding site of BGAF is distinct from the beta-glucosidase-binding site. Neither the dirigent nor the JRL domains alone (produced separately in E. coli) produced aggregates of Glu1 based on results from pull-down assays. However, gel shift and competitive binding assays indicated that the JRL domain binds beta-glucosidase without causing it to aggregate. These results with those from deletion mutagenesis and replacement of the JRL domain of a BGAF homolog from sorghum, which does not bind Glu1, with that from maize allowed us to conclude that the JRL domain of BGAF is responsible for its lectin and beta-glucosidase binding and aggregating activities. PMID:17210577

  13. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans.

    PubMed

    Bolscher, Jan; Nazmi, Kamran; van Marle, Jan; van 't Hof, Wim; Veerman, Enno

    2012-06-01

    Bovine lactoferrin harbors 2 antimicrobial sequences (LFcin and LFampin), situated in close proximity in the N1-domain. To mimic their semi parallel configuration we have synthesized a chimeric peptide (LFchimera) in which these sequences are linked in a head-to-head fashion to the α- and ε-amino group, respectively, of a single lysine. In line with previously described bactericidal effects, this peptide was also a stronger candidacidal agent than the antimicrobial peptides LFcin17-30 and LFampin265-284, or a combination of these 2. Conditions that strongly reduced the candidacidal activities of LFcin17-30 and LFampin265-284, such as high ionic strength and energy depletion, had little influence on the activity of LFchimera. Freeze-fracture electron microscopy showed that LFchimera severely affected the membrane morphology, resulting in disintegration of the membrane bilayer and in an efflux of small and high molecular weight molecules such as ATP and proteins. The differential effects displayed by the chimeric peptide and a mixture of its constituent peptides clearly demonstrate the synergistic effect of linking these peptides in a fashion that allows a similar spatial arrangement as in the parent protein, suggesting that in bovine lactoferrrin the corresponding fragments act in concert in its candidacidal activity.

  14. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus.

    PubMed

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F; Peterson, Thomas

    2015-11-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  15. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models

    PubMed Central

    Yang, Liuyang; Cai, Changzhi; Feng, Qiang; Shi, Yun; Zuo, Qianfei; Yang, Huijie; Jing, Haiming; Wei, Chao; Zhuang, Yuan; Zou, Quanming; Zeng, Hao

    2016-01-01

    Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia. PMID:26865417

  16. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Couvidat, Florian; Menut, Laurent; Ghedira, Hosni

    2016-03-01

    A three dimensional chemistry transport model, CHIMERE, was used to simulate the aerosol optical depths (AOD) over the Arabian Peninsula desert with an offline coupling of Weather Research and Forecasting (WRF) model. The simulations were undertaken with: (i) different horizontal and vertical configurations, (ii) new datasets derived for soil/surface properties, and (iii) EDGAR-HTAP anthropogenic emissions inventories. The model performance evaluations were assessed: (i) qualitatively using MODIS (Moderate-Resolution Imaging Spectroradiometer) deep blue (DB) AOD data for the two local dust events of August 6th and 23rd (2013), and (ii) quantitatively using AERONET (Aerosol Robotic Network) AOD observations, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol extinction profiles, and AOD simulations from various forecast models. The model results were observed to be highly sensitive to erodibility and aerodynamic surface roughness length. The use of new datasets on soil erodibility, derived from the MODIS reflectance, and aerodynamic surface roughness length (z0), derived from the ERA-Interim datasets, significantly improved the simulation results. Simulations with the global EDGAR-HTAP anthropogenic emission inventories brought the simulated AOD values closer to the observations. Performance testing of the adapted model for the Arabian Peninsula domain with improved datasets showed good agreement between AERONET AOD measurements and CHIMERE simulations, where the correlation coefficient (R) is 0.6. Higher values of the correlation coefficients and slopes were observed for the dusty periods compared to the non-dusty periods.

  17. Design and screening of a chimeric survivin-specific nanobody and its anticancer activities in vitro.

    PubMed

    Zhang, Na; Guo, Hua; Zheng, Wenyun; Wang, Tianwen; Ma, Xingyuan

    2016-10-01

    Survivin is a strong inhibitor of apoptosis protein and a promising target for cancer prevention and treatment. Here, we report the design and preparation of novel chimeric nanobodies (Nbs) that could specifically bind to survivin. We screened the peptides from phage-displayed libraries (7-mer, 12-mer) for nonconserved sequences of complementarity-determining regions (CDRs) in the scaffold of the Nb. By a combination of the nonconserved sequences for CDRs, the corresponding chimeric Nbs (10 Nbs) were prepared with genetic operations. The antisurvivin Nb TAT-Nb4A (a fusion with cellular transduction peptide TAT) was found to be the most efficient antibody on the basis of the results from enzyme-linked immunosorbent assay, MTT, and flow cytometry when these nanobodies were tested with hepatoma carcinoma cell HepG2. TAT-Nb4A could inhibit the growth of HepG2 and promote cancer cell apoptosis significantly in a dose-dependent and time-dependent manner: the apoptosis rate reached 52.5% when the concentration of TAT-Nb4A was 120 μg/ml. Western blotting with cells expressing survivin showed that the prepared nanobody could efficiently bind to expressed survivin and blocked the signaling pathway in which survivin played a role. This study provided a convenient and feasible method of obtaining a novel specific Nb with the case of survivin as a good example. PMID:27362789

  18. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies.

    PubMed

    Gill, Saar; June, Carl H

    2015-01-01

    On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.

  19. A tale of two sequences: microRNA-target chimeric reads.

    PubMed

    Broughton, James P; Pasquinelli, Amy E

    2016-04-04

    In animals, a functional interaction between a microRNA (miRNA) and its target RNA requires only partial base pairing. The limited number of base pair interactions required for miRNA targeting provides miRNAs with broad regulatory potential and also makes target prediction challenging. Computational approaches to target prediction have focused on identifying miRNA target sites based on known sequence features that are important for canonical targeting and may miss non-canonical targets. Current state-of-the-art experimental approaches, such as CLIP-seq (cross-linking immunoprecipitation with sequencing), PAR-CLIP (photoactivatable-ribonucleoside-enhanced CLIP), and iCLIP (individual-nucleotide resolution CLIP), require inference of which miRNA is bound at each site. Recently, the development of methods to ligate miRNAs to their target RNAs during the preparation of sequencing libraries has provided a new tool for the identification of miRNA target sites. The chimeric, or hybrid, miRNA-target reads that are produced by these methods unambiguously identify the miRNA bound at a specific target site. The information provided by these chimeric reads has revealed extensive non-canonical interactions between miRNAs and their target mRNAs, and identified many novel interactions between miRNAs and noncoding RNAs.

  20. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  1. Inter-Specific Coral Chimerism: Genetically Distinct Multicellular Structures Associated with Tissue Loss in Montipora capitata

    PubMed Central

    Work, Thierry M.; Forsman, Zac H.; Szabó, Zoltán; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss. PMID:21829541

  2. Inter-specific coral chimerism: genetically distinct multicellular structures associated with tissue loss in Montipora capitata.

    PubMed

    Work, Thierry M; Forsman, Zac H; Szabó, Zoltán; Lewis, Teresa D; Aeby, Greta S; Toonen, Robert J

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss. PMID:21829541

  3. Dual-Function Vaccine for Pseudomonas aeruginosa: Characterization of Chimeric Exotoxin A-Pilin Protein

    PubMed Central

    Hertle, Ralf; Mrsny, Randall; Fitzgerald, David J.

    2001-01-01

    Pseudomonas aeruginosa is the major infectious agent of concern for cystic fibrosis patients. Strategies to prevent colonization by this bacterium and/or neutralize its virulence factors are clearly needed. Here we characterize a dual-function vaccine designed to generate antibodies to reduce bacterial adherence and to neutralize the cytotoxic activity of exotoxin A. To construct the vaccine, key sequences from type IV pilin were inserted into a vector encoding a nontoxic (active-site deletion) version of exotoxin A. The chimeric protein, termed PE64Δ553pil, was expressed in Escherichia coli, refolded to a near-native conformation, and then characterized by various biochemical and immunological assays. PE64Δ553pil bound specifically to asialo-GM1, and, when injected into rabbits, produced antibodies that reduced bacterial adherence and neutralized the cell-killing activity of exotoxin A. Results support further evaluation of this chimeric protein as a vaccine to prevent Pseudomonas colonization in susceptible individuals. PMID:11598071

  4. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli.

    PubMed

    Nazarian, Shahram; Gargari, Seyed Latif Mousavi; Rasooli, Iraj; Hasannia, Sadegh; Pirooznia, Nazanin

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of diarrhea among children. Colonization factors and enterotoxins are the major ETEC candidate vaccines. Since protection against ETEC mostly occurs by induction of IgA antibodies, much effort is focused on the development of oral vaccines. In this study oral immunogenicity of a poly(lactic-co-glycolic acid) (PLGA) encapsulated chimeric protein containing CfaB, CstH, CotA and LTB (Heat-labile B subunit) was investigated. The protein was encapsulated in PLGA by double emulsion method and nanoparticles were characterized physicochemically. Immunogenicity was assessed by evaluating IgG1, IgG2 and IgA titers after BALB/c mice vaccination. Non aggregated nanoparticles had a spherical shape with an average particle size of 252.7±23 nm and 91.96±4.4% of encapsulation efficiency. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein. Oral immunization of mice induced serum IgG and fecal IgA antibody responses. Immunization induced protection against ETEC binding to Caco-2 cells. The effect of LT toxin on fluid accumulation in ileal loops was neutralized by inhibition of enterotoxin binding to GM1-ganglosides. Delivery of the chimeric protein in PLGA elicited both systemic and mucosal immune responses. The findings could be exploited to development of oral multi-component ETEC prophylactic measures. PMID:23906742

  5. Human natural chimerism: an acquired character or a vestige of evolution?

    PubMed

    Rinkevich, B

    2001-06-01

    Analysis on five common classes of human natural chimeras (cytomictical, whole body, fetal-maternal, germ cell, and tumor chimeras) reveals that (1) they initiate only during pregnancy, (2) the most common class are chimeras which contain maternal cells, and (3) the primary mechanisms that are involved in their formation and establishment are still elusive. These classes of natural chimerism, are involved only with maladaptive phenomena such as malignancy and autoimmune diseases and without any documented benefit. A recent review has challenged the accepted dogma that the evolution of immunity is pathogen-directed and asserted that preserving individuality from littering the soma and the germline by conspecific alien cells might have been the original function of the innate immunity. Following this tenet, I propose here that human natural chimerism is a by-product of the new role evolved from primitive components of immunity to "educate" the developing embryo with the armamentarium of effector mechanisms, dedicated to purge the individual from pervasive somatic and germline variants, and is not a vestige of evolution.

  6. Targeting eradication of chronic myeloid leukemia using chimeric oncolytic adenovirus to drive IL-24 expression

    PubMed Central

    Wei, Xubin; liu, Li; Wang, Gang; Li, Wei; Xu, Ke; Hu, Xupang; Qian, Cheng; Shao, Jimin

    2015-01-01

    Chronic myeloid leukemia (CML) is a clonal disorder in which cells of the myeloid lineage undergo massive clonal expansion as well as resistance to conventional chemotherapy. Gene therapy hold a great promise for treatment of malignancies based on the transfer of genetic material to the tissues. In this study, we explore whether chimeric oncolytic adenovirus-mediated transfer of human interleukin-24 (IL-24) gene induce the enhanced antitumor potency. Our results showed that chimeric oncolytic adenovirus carrying hIL-24 (AdCN205-11-IL-24) could produce high levels of hIL-24 in CML cancer cells, as compared with constructed double-regulated oncolytic adenovirus expressing hIL-24 (AdCN205-IL-24). AdCN205-11-IL-24 could specifically induce cytotoxocity to CML cancer cells, but little or no effect on normal cell lines. AdCN205-11-IL-24 exhibited remarkable anti-tumor activities and induce higher antitumor activity to CML cancer cells by inducing apoptosis in vitro. Our study may provides a potent and safe tool for CML gene therapy. PMID:26097559

  7. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus.

    PubMed

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F; Peterson, Thomas

    2015-11-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize.

  8. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  9. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen

    SciTech Connect

    Sharabi, Y.; Sachs, D.H.

    1989-02-01

    The use of allogeneic bone marrow transplantation as a means of inducing donor-specific tolerance across MHC barriers could provide an immunologically specific conditioning regimen for organ transplantation. However, a major limitation to this approach is the toxicity of whole body irradiation as currently used to abrogate host resistance and permit marrow engraftment. The present study describes methodology for abrogating host resistance and permitting marrow engraftment without lethal irradiation. Our preparative protocol involves administration of anti-CD4 and anti-CD8 mAbs in vivo, 300-rad WBI, 700-rad thymic irradiation, and unmanipulated fully MHC-disparate bone marrow. B10 mice prepared by this regimen developed stable mixed lymphohematopoetic chimerism without any clinical evidence of graft-vs.-host disease. Engraftment was accompanied by induction of specific tolerance to donor skin grafts (B10.D2), while third-party skin grafts (B10.BR) were promptly rejected. Mice treated with the complete regimen without bone marrow transplantation appeared healthy and enjoyed long-term survival. This study therefore demonstrates that stable mixed chimerism with donor-specific tolerance can be induced across an MHC barrier after a nonlethal preparative regimen, without clinical GVHD and without the risk of aplasia.

  10. Analyzing cell fusion events within the central nervous system using bone marrow chimerism.

    PubMed

    Kemp, Kevin; Hares, Kelly

    2015-01-01

    It has emerged that cells which typically reside in the bone marrow have the capacity to cross the blood brain barrier and contribute genetic material to a range of neuronal cell types within the central nervous system. One such mechanism to account for this phenomenon is cellular fusion, occurring between migrating bone marrow-derived stem cells and neuronal cells in-situ. Biologically, the significance as to why cells from distinct lineages fuse with cells of the central nervous system is, as yet, unclear. Growing evidence however suggests that these cell fusion events could provide an efficient means of rescuing the highly complex and differentiated neuronal cell types that cannot be replaced in adulthood. To facilitate further understanding of cell fusion within the central nervous system, we describe here a technique to establish chimeric mice that are stably reconstituted with green fluorescent protein expressing sex-mismatched bone marrow. These chimeric mice are known to represent an excellent model for studying bone marrow cell migration and infiltration throughout the body, while in parallel, as will be described here, also provide a means to neatly analyze both bone marrow-derived cell fusion and trans-differentiation events within the central nervous system.

  11. Chimeric piggyBac transposases for genomic targeting in human cells.

    PubMed

    Owens, Jesse B; Urschitz, Johann; Stoytchev, Ilko; Dang, Nong C; Stoytcheva, Zoia; Belcaid, Mahdi; Maragathavally, Kommineni J; Coates, Craig J; Segal, David J; Moisyadi, Stefan

    2012-08-01

    Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy. PMID:22492708

  12. Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide.

    PubMed

    Bracalello, Angelo; Santopietro, Valentina; Vassalli, Massimo; Marletta, Giovanni; Del Gaudio, Rosanna; Bochicchio, Brigida; Pepe, Antonietta

    2011-08-01

    Protein-inspired biomaterials have gained great interest as an alternative to synthetic polymers, in particular, for their potential use as biomedical devices. The potential inspiring models are mainly proteins able to confer mechanical properties to tissues and organs, such as elasticity (elastin, resilin, spider silk) and strength (collagen, silk). The proper combination of repetitive sequences, each of them derived from different proteins, represents a useful tool for obtaining biomaterials with tailored mechanical properties and biological functions. In this report we describe the design, the production, and the preliminary characterization of a chimeric polypeptide, based on sequences derived from the highly resilient proteins resilin and elastin and from collagen-like sequences. The results show that the obtained chimeric recombinant material exhibits promising self-assembling properties. Young's modulus of the fibers was determined by AFM image analysis and lies in the range of 0.1-3 MPa in agreement with the expectations for elastin-like and resilin-like materials. PMID:21707089

  13. Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system.

    PubMed

    Ganesh, Irisappan; Ravikumar, Sambandam; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2013-12-01

    DcuS/DcuR two component system (TCS) was firstly employed for the expression of the gfp gene under the dcuB gene promoter in aerobic condition to develop high throughput screening system able to screen microorganisms producing high amount of fumarate. However, the DcuS/DcuR TCS could not produce a signal strong enough to mediate the expression of the gfp gene responding fumarate concentration. Thus, DcuS/DucR TCS was engineered by recruiting the EnvZ/OmpR system, the most-studied TCS in E. coli. A chimeric DcuS/EnvZ (DcuSZ) TCS was constructed by fusing the sensor histidine kinase of DcuS with the cytoplasmic catalytic domain of EnvZ, in which the expression of the gfp gene or the ompC gene was mediated by the ompC gene promoter through the cognate response regulator, OmpR. The output signals produced by the chimeric DcuSZ TCS were enough to detect fumarate concentration quantatively, in which the expressions of the gfp gene and the ompC gene were proportional to the fumarate concentration in the medium. Moreover, principal component analysis of C4-dicarboxylates showed that DcuSZ chimera was highly specific to fumarate but could also respond to other C4-dicarboxylates, which strongly suggests that TCS-based high throughput screening system able to screen microorganisms producing target chemicals can be developed.

  14. Inter-specific coral chimerism: Genetically distinct multicellular structures associated with tissue loss in Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Forsman, Zac H.; Szabo, Zoltan; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  15. Establishment and characterization of a chimeric infectious cDNA clone of classical swine fever virus.

    PubMed

    Zhao, T S; Xia, Y H

    2016-06-01

    Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. There are two important CSFV strains in China, Shimen and hog cholera lapinized virus (HCLV). Shimen strain is highly virulent while HCLV, also referred to as C-strain, is a live attenuated vaccine strain considered to be one of the most effective and safest live vaccines. In this study, a chimeric infectious cDNA clone of CSFV named pT7SM-c was engineered by replacing the E(rns) genomic region of an infectious clone of CSFV Shimen strain, pT7SM, with the same region obtained from HCLV. RNA transcripts of pT7SM-c containing an engineered EcoRI site that served as a genetic marker were directly infectious in PK15 cells. The rescued virus vT7SM-c showed similar growth kinetics and cytopathic effect with the parental virus vT7SM in the cells. The chimeric infectious cDNA clone can be used as a practical tool for further studying of the virulence, protein function and pathogenesis of CSFV through genetic manipulation.

  16. The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists

    PubMed Central

    Margulis, Lynn; Dolan, Michael F.; Guerrero, Ricardo

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium “Thiodendron latens.” By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This “earliest branching protist” that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa. PMID:10860956

  17. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression

    PubMed Central

    Tanaka, Yuri; Oshima, Yoshimi; Yamamura, Tomomichi; Sugiyama, Masao; Mitsuda, Nobutaka; Ohtsubo, Norihiro; Ohme-Takagi, Masaru; Terakawa, Teruhiko

    2013-01-01

    Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabidopsis thaliana showed similar effects on flower organ specification. Simultaneous expression of CpAG1-SRDX and CpAG2-SRDX in cyclamen induced rose-like, multi-petal flowers, a potentially valuable trait in commercial ornamental varieties. Expression of CpAG2-SRDX in a cyclamen mutant lacking expression of CpAG1 more effectively produced multi-petal flowers. Here, we controlled the number of petals in cyclamen by simple genetic engineering with a chimeric repressor. This strategy may be applicable useful for other ornamental plants with two distinct AG orthologues. PMID:24026510

  18. Chimeric piggyBac transposases for genomic targeting in human cells

    PubMed Central

    Owens, Jesse B.; Urschitz, Johann; Stoytchev, Ilko; Dang, Nong C.; Stoytcheva, Zoia; Belcaid, Mahdi; Maragathavally, Kommineni J.; Coates, Craig J.; Segal, David J.; Moisyadi, Stefan

    2012-01-01

    Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4–PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy. PMID:22492708

  19. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists.

    PubMed

    Margulis, L; Dolan, M F; Guerrero, R

    2000-06-20

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  20. Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions

    SciTech Connect

    Devitt, Gerard; Emerson, Vanessa; Holtkotte, Denise; Pfeiffer, Tanya; Pisch, Thorsten; Bosch, Valerie . E-mail: v.bosch@dkfz.de

    2007-05-10

    Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767{sup stop}, which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752{sup N750K}) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752{sup N750K} exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses.

  1. Report of a chimeric origin of transposable elements in a bovine-coding gene.

    PubMed

    Almeida, L M; Amaral, M E J; Silva, I T; Silva, W A; Riggs, P K; Carareto, C M

    2008-02-01

    Despite the wide distribution of transposable elements (TEs) in mammalian genomes, part of their evolutionary significance remains to be discovered. Today there is a substantial amount of evidence showing that TEs are involved in the generation of new exons in different species. In the present study, we searched 22,805 genes and reported the occurrence of TE-cassettes in coding sequences of 542 cow genes using the RepeatMasker program. Despite the significant number (542) of genes with TE insertions in exons only 14 (2.6%) of them were translated into protein, which we characterized as chimeric genes. From these chimeric genes, only the FAST kinase domains 3 (FASTKD3) gene, present on chromosome BTA 20, is a functional gene and showed evidence of the exaptation event. The genome sequence analysis showed that the last exon coding sequence of bovine FASTKD3 is approximately 85% similar to the ART2A retrotransposon sequence. In addition, comparison among FASTKD3 proteins shows that the last exon is very divergent from those of Homo sapiens, Pan troglodytes and Canis familiares. We suggest that the gene structure of bovine FASTKD3 gene could have originated by several ectopic recombinations between TE copies. Additionally, the absence of TE sequences in all other species analyzed suggests that the TE insertion is clade-specific, mainly in the ruminant lineage.

  2. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus

    PubMed Central

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F.; Peterson, Thomas

    2015-01-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  3. Establishment and characterization of a chimeric infectious cDNA clone of classical swine fever virus.

    PubMed

    Zhao, T S; Xia, Y H

    2016-06-01

    Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. There are two important CSFV strains in China, Shimen and hog cholera lapinized virus (HCLV). Shimen strain is highly virulent while HCLV, also referred to as C-strain, is a live attenuated vaccine strain considered to be one of the most effective and safest live vaccines. In this study, a chimeric infectious cDNA clone of CSFV named pT7SM-c was engineered by replacing the E(rns) genomic region of an infectious clone of CSFV Shimen strain, pT7SM, with the same region obtained from HCLV. RNA transcripts of pT7SM-c containing an engineered EcoRI site that served as a genetic marker were directly infectious in PK15 cells. The rescued virus vT7SM-c showed similar growth kinetics and cytopathic effect with the parental virus vT7SM in the cells. The chimeric infectious cDNA clone can be used as a practical tool for further studying of the virulence, protein function and pathogenesis of CSFV through genetic manipulation. PMID:27265471

  4. An In silico Chimeric Vaccine Targeting Breast Cancer Containing Inherent Adjuvant

    PubMed Central

    Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh; Amani, Jafar

    2015-01-01

    Background: Today, Lack of efficient therapeutic strategy for breast cancer (the most common cause of death in women) is one of the momentous problematic topics for all health care committees. Designing new specific vaccine, based on antigens located on the surface of cancer cells can be useful. Over expression of ROR1, lacked of HER2/neu, and hormone receptors on cell surface in the breast cancer, introduce this protein as an appropriate candidate for designing cancer vaccine. Objectives: We hypothesized the extracellular domain of receptor tyrosine kinase like orphan receptor 1 (ROR-1) along with a super antigen such as staphylococcal enterotoxin B could be a potent vaccine for drug resistant breast cancer. Materials and Methods: Here, we assessed the findings of bioinformatics analysis to identify the antitumor immune properties of this chimeric construct. In addition, the stability, physic-chemical properties and allergic potency of designed fusion protein were investigated by valid bioinformatics software. Results: Our result suggested that chimeric model is capable to be a stimulant of both T-cell and B- cell mediated immune responses with an acceptable accessibility and solubility but without any allergenicity. Conclusions: The ROR-1 with an enterotoxin B could be a potent vaccine for breast cancer. PMID:26413246

  5. Surfeit locus gene homologs are widely distributed in invertebrate genomes.

    PubMed

    Armes, N; Fried, M

    1996-10-01

    The mouse Surfeit locus contains six sequence-unrelated genes (Surf-1 to -6) arranged in the tightest gene cluster so far described for mammals. The organization and juxtaposition of five of the Surfeit genes (Surf-1 to -5) are conserved between mammals and birds, and this may reflect a functional or regulatory requirement for the gene clustering. We have undertaken an evolutionary study to determine whether the Surfeit genes are conserved and clustered in invertebrate genomes. Drosophila melanogaster and Caenorhabditis elegans homologs of the mouse Surf-4 gene, which encodes an integral membrane protein associated with the endoplasmic reticulum, have been isolated. The amino acid sequences of the Drosophila and C. elegans homologs are highly conserved in comparison with the mouse Surf-4 protein. In particular, a dilysine motif implicated in endoplasmic reticulum localization of the mouse protein is conserved in the invertebrate homologs. We show that the Drosophila Surf-4 gene, which is transcribed from a TATA-less promoter, is not closely associated with other Drosophila Surfeit gene homologs but rather is located upstream from sequences encoding a homolog of a yeast seryl-tRNA synthetase protein. There are at least two closely linked Surf-3/rpL7a genes or highly polymorphic alleles of a single Surf-3/rpL7a gene in the C. elegans genome. The chromosomal locations of the C. elegans Surf-1, Surf-3/rpL7a, and Surf-4 genes have been determined. In D. melanogaster the Surf-3/rpL7a, Surf-4, and Surf-5 gene homologs and in C. elegans the Surf-1, Surf-3/rpL7a, Surf-4, and Surf-5 gene homologs are located on completely different chromosomes, suggesting that any requirement for the tight clustering of the genes in the Surfeit locus is restricted to vertebrate lineages.

  6. Homologous prominence non-radial eruptions: A case study

    NASA Astrophysics Data System (ADS)

    Duchlev, P.; Koleva, K.; Madjarska, M. S.; Dechev, M.

    2016-10-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the pre-eruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing pre-eruptive precursors such as a brightening and enlarging of the prominence body followed by small surge-like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 h later has an identical morphology, the same angle of propagation with respect to the radial direction, as well as similar kinematic evolution as the previous three eruptions. We find an important feature of the homologous eruptive prominence sequence that is the maximum height increase of each consecutive eruption. The present analysis establishes that all four eruptions observed in Hα are of confined type with the third eruption undergoing a thermal disappearance during its eruptive phase. We suggest that the observation of the same direction of the magnetic flux rope (MFR) ejections can be consider as an additional observational criterion for MFR homology. This observational indication for homologous eruptions is important, especially in the case of events of typical or poorly distinguishable morphology of eruptive solar phenomena.

  7. Multiscale analysis of nonlinear systems using computational homology

    SciTech Connect

    Konstantin Mischaikow, Rutgers University /Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization

  8. Multiscale analysis of nonlinear systems using computational homology

    SciTech Connect

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization

  9. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  10. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  11. Homology modeling a fast tool for drug discovery: current perspectives.

    PubMed

    Vyas, V K; Ukawala, R D; Ghate, M; Chintha, C

    2012-01-01

    Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.

  12. Sorption of linear alcohol ethoxylate surfactant homologs to soils

    NASA Astrophysics Data System (ADS)

    Yuan, Ching; Jafvert, Chad T.

    1997-11-01

    Sorption onto five saturated soils of the homologs within the commercial surfactant mixture Brij 35 (registered trademark of ICI Americas) was investigated. Brij 35 is a mixture of linear ethoxylated alcohols, having an average of 23 ethoxy (EO) groups per molecule and alcohol chain of primarily 12 carbons in length (C 12H 25(OCH 2CH 2) 23OH). In experiments, saturated soils were exposed to various concentrations of the surfactant mixture for specified times, the slurries were centrifuged to separate the phases, the aqueous phases were extracted with 1,2-dichloroethane, and the residual homologs were derivatized with 3,5-dinitrobenzoyl chloride and analyzed by normal phase HPLC. Homologs containing 4-43 EO groups were chromatographically separated at near baseline. At aqueous Brij 35 concentrations below the critical micelle concentration (cmc), the proportion of each homolog sorbed to each of the soils increased with increasing EO chain length through the homologous series. As a result, in experiments where a significant proportion of the surfactant adsorbed, significant shifts in the aqueous phase compositions occurred to mixtures with lower mean EO numbers. A sharp break in the adsorption isotherms occurs at the cmc.

  13. Primary homologies of the circumorbital bones of snakes.

    PubMed

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes.

  14. RPA homologs and ssDNA processing during meiotic recombination.

    PubMed

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  15. Primary homologies of the circumorbital bones of snakes.

    PubMed

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes. PMID:23630161

  16. Construction of bacterial ghosts for transfer and expression of a chimeric hepatitis C virus gene in macrophages.

    PubMed

    Miri, M R; Behzad-Behbahani, A; Fardaei, M; Farhadi, A; Talebkhan, Y; Mohammadi, M; Tayebinia, M; Farokhinejad, F; Alavi, P; Fanian, M; Zare, F; Saberzade, J; Nikouyan, N; Okhovat, M A; Ranjbaran, R; Rafiei Dehbidi, G; Naderi, S

    2015-12-01

    The bacterial ghost (BG) production is a field of biotechnology for applications in vaccine and drug delivery. We assessed the capacity of BG for delivery of a recombinant gene encoded for both cell mediated and antibody dependent epitopes of hepatitis C virus (HCV) into murine macrophages. Escherichia coli (E. coli) cells were transformed with the lysis plasmid (pHH43). To produce chimeric gene, NS3 (non-structural protein 3) and core regions of HCV genome were fused together by splicing by overlap extension (SOEing) PCR and were cloned into plasmid pEGFP-C1. Bacterial ghosts were loaded with recombinant pEGFP-C1 and then were transferred to murine macrophages (RAW 264.7). To investigate plasmid transfection and chimeric mRNA transcription, fluorescent microscopy and RT-PCR were used. In vitro studies indicated that bacterial ghosts loaded with pEGFP-C1 plasmid were efficiently taken up by murine macrophages and indicated a high transfection rate (62%), as shown by fluorescent microscopy. RT-PCR from extracted intracellular mRNAs for chimeric Core-NS3 gene showed a specific 607 bp fragment of the gene. The sequence analysis of purified PCR products demonstrated the expected unique mRNA sequence. We constructed a chimeric HCV gene containing both cell mediated and antibody dependent epitopes with a significant expression in murine macrophages delivered by bacterial ghost.

  17. Performance Assessment of Four Chimeric Trypanosoma cruzi Antigens Based on Antigen-Antibody Detection for Diagnosis of Chronic Chagas Disease

    PubMed Central

    Zanchin, Nilson Ivo Tonin; Brasil, Tatiana de Arruda Campos; Foti, Leonardo; de Souza, Wayner Vieira; Silva, Edmilson Domingos; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2016-01-01

    The performance of serologic tests in chronic Chagas disease diagnosis largely depends on the type and quality of the antigen preparations that are used for detection of anti-Trypanosoma cruzi antibodies. Whole-cell T. cruzi extracts or recombinant proteins have shown variation in the performance and cross-reactivity. Synthetic chimeric proteins comprising fragments of repetitive amino acids of several different proteins have been shown to improve assay performances to detect Chagasic infections. Here, we describe the production of four chimeric T. cruzi proteins and the assessment of their performance for diagnostic purposes. Circular Dichroism spectra indicated the absence of well-defined secondary structures, while polydispersity evaluated by Dynamic Light Scattering revealed only minor aggregates in 50 mM carbonate-bicarbonate (pH 9.6), demonstrating that it is an appropriate buffering system for sensitizing microplates. Serum samples from T. cruzi-infected and non-infected individuals were used to assess the performance of these antigens for detecting antibodies against T. cruzi, using both enzyme-linked immunosorbent assay and a liquid bead array platform. Performance parameters (AUC, sensitivity, specificity, accuracy and J index) showed high diagnostic accuracy for all chimeric proteins for detection of specific anti-T. cruzi antibodies and differentiated seropositive individuals from those who were seronegative. Our data suggest that these four chimeric proteins are eligible for phase II studies. PMID:27517281

  18. The site of allergen expression in hematopoietic cells determines the degree and quality of tolerance induced through molecular chimerism.

    PubMed

    Baranyi, Ulrike; Gattringer, Martina; Farkas, Andreas M; Hock, Karin; Pilat, Nina; Iacomini, John; Valenta, Rudolf; Wekerle, Thomas

    2013-09-01

    The transplantation of allergens (e.g. Phl p 5 or Bet v 1) expressed on BM cells as membrane-anchored full-length proteins leads to permanent tolerance at the T-cell, B-cell, and effector-cell levels. Since the exposure of complete allergens bears the risk of inducing anaphylaxis, we investigated here whether expression of Phl p 5 in the cytoplasm (rather than on the cell surface) is sufficient for tolerance induction. Transplantation of BALB/c BM retrovirally transduced to express Phl p 5 in the cytoplasm led to stable and durable molecular chimerism in syngeneic recipients (∼20% chimerism at 6 months). Chimeras showed allergen-specific T-cell hyporesponsiveness. Further, Phl p 5-specific TH 1-dependent humoral responses were tolerized in several chimeras. Surprisingly, Phl p 5-specific IgE and IgG1 levels were significantly reduced but still detectable in sera of chimeric mice, indicating incomplete B-cell tolerance. No Phl p 5-specific sIgM developed in cytoplasmic chimeras, which is in marked contrast to mice transplanted with BM expressing membrane-anchored Phl p 5. Thus, the expression site of the allergen substantially influences the degree and quality of tolerance achieved with molecular chimerism in IgE-mediated allergy.

  19. Chimeric virus-like particles for the delivery of an inserted conserved influenza A-specific CTL epitope.

    PubMed

    Cheong, Wan-Shoo; Reiseger, Jessica; Turner, Stephen John; Boyd, Richard; Netter, Hans-Jürgen

    2009-02-01

    The small hepatitis B virus surface antigens (HBsAg-S) have the ability to self-assemble with host-derived lipids into empty non-infectious virus-like particles (VLPs). HBsAg-S VLPs are the sole component of the licensed hepatitis B vaccine, and they are a useful delivery platform for foreign epitopes. To develop VLPs capable of transporting foreign cytotoxic T lymphocyte (CTL) epitopes, HBsAg-S specific CTL epitopes at various sites were substituted with a conserved CTL epitope derived from the influenza matrix protein. Depending on the insertion site, the introduction of the MHC class I A2.1-restricted influenza epitope was compatible with the secretion competence of HBsAg-S indicating that chimeric VLPs were assembled. Immunizations of transgenic HHDII mice with chimeric VLPs induced anti-influenza CTL responses proving that the inserted foreign epitope can be correctly processed and cross-presented. Chimeric VLPs in the absence of adjuvant were able to induce memory T cell responses, which could be recalled by influenza virus infections in the mouse model system. The ability of chimeric HBsAg-S VLPs to induce anti-foreign CTL responses and also with the proven ability to induce humoral immune responses constitute a highly versatile platform for the delivery of selected multiple epitopes to target disease associated infectious agents.

  20. Performance Assessment of Four Chimeric Trypanosoma cruzi Antigens Based on Antigen-Antibody Detection for Diagnosis of Chronic Chagas Disease.

    PubMed

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Brasil, Tatiana de Arruda Campos; Foti, Leonardo; Souza, Wayner Vieira de; Silva, Edmilson Domingos; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2016-01-01

    The performance of serologic tests in chronic Chagas disease diagnosis largely depends on the type and quality of the antigen preparations that are used for detection of anti-Trypanosoma cruzi antibodies. Whole-cell T. cruzi extracts or recombinant proteins have shown variation in the performance and cross-reactivity. Synthetic chimeric proteins comprising fragments of repetitive amino acids of several different proteins have been shown to improve assay performances to detect Chagasic infections. Here, we describe the production of four chimeric T. cruzi proteins and the assessment of their performance for diagnostic purposes. Circular Dichroism spectra indicated the absence of well-defined secondary structures, while polydispersity evaluated by Dynamic Light Scattering revealed only minor aggregates in 50 mM carbonate-bicarbonate (pH 9.6), demonstrating that it is an appropriate buffering system for sensitizing microplates. Serum samples from T. cruzi-infected and non-infected individuals were used to assess the performance of these antigens for detecting antibodies against T. cruzi, using both enzyme-linked immunosorbent assay and a liquid bead array platform. Performance parameters (AUC, sensitivity, specificity, accuracy and J index) showed high diagnostic accuracy for all chimeric proteins for detection of specific anti-T. cruzi antibodies and differentiated seropositive individuals from those who were seronegative. Our data suggest that these four chimeric proteins are eligible for phase II studies. PMID:27517281

  1. Role of regulatory T cells in transferable immunological tolerance to bone marrow donor in murine mixed chimerism model.

    PubMed

    Yoon, Il-Hee; Kim, Yong-Hee; Kim, You-sun; Shin, Jun-Seop; Park, Chung-Gyu

    2013-12-01

    Constructing a bone marrow chimera prior to graft transplantation can induce donor-specific immune tolerance. Mixed chimerism containing hematopoietic cells of both recipient- and donor-origin has advantages attributed from low dose of total body irradiation. In this study, we explored the mechanism of mixed chimerism supplemented with depletion of Natural Killer cells. Mixed chimerism with C57BL/6 bone marrow cells was induced in recipient BALB/c mice which were given 450 cGy of γ-ray irradiation (n = 16). As revealed by reduced proliferation and cytokine production in mixed leukocyte reaction and ELISpot assay (24.6 vs 265.5), the allo-immune response to bone marrow donor was reduced. Furthermore, the induction of transferable immunological tolerance was confirmed by adoptive transfer and subsequent acceptance of C57BL/6 skin graft (n = 4). CD4(+)FoxP3(+) regulatory T cells were increased in the recipient compartment of the mixed chimera (19.2% → 33.8%). This suggests that regulatory T cells may be therapeutically used for the induction of graft-specific tolerance by mixed chimerism.

  2. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  3. The site of allergen expression in hematopoietic cells determines the degree and quality of tolerance induced through molecular chimerism

    PubMed Central

    Baranyi, Ulrike; Gattringer, Martina; Farkas, Andreas M; Hock, Karin; Pilat, Nina; Iacomini, John; Valenta, Rudolf; Wekerle, Thomas

    2013-01-01

    The transplantation of allergens (e.g. Phl p 5 or Bet v 1) expressed on BM cells as membrane-anchored full-length proteins leads to permanent tolerance at the T-cell, B-cell, and effector-cell levels. Since the exposure of complete allergens bears the risk of inducing anaphylaxis, we investigated here whether expression of Phl p 5 in the cytoplasm (rather than on the cell surface) is sufficient for tolerance induction. Transplantation of BALB/c BM retrovirally transduced to express Phl p 5 in the cytoplasm led to stable and durable molecular chimerism in syngeneic recipients (∼20% chimerism at 6 months). Chimeras showed allergen-specific T-cell hyporesponsiveness. Further, Phl p 5-specific TH1-dependent humoral responses were tolerized in several chimeras. Surprisingly, Phl p 5-specific IgE and IgG1 levels were significantly reduced but still detectable in sera of chimeric mice, indicating incomplete B-cell tolerance. No Phl p 5-specific sIgM developed in cytoplasmic chimeras, which is in marked contrast to mice transplanted with BM expressing membrane-anchored Phl p 5. Thus, the expression site of the allergen substantially influences the degree and quality of tolerance achieved with molecular chimerism in IgE-mediated allergy. PMID:23765421

  4. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci

    PubMed Central

    Dong, Qiuhua; Wang, Jing; Yang, Hang; Wei, Cuihua; Yu, Junping; Zhang, Yun; Huang, Yanling; Zhang, Xian-En; Wei, Hongping

    2015-01-01

    Developing chimeric lysins with a wide lytic spectrum would be important for treating some infections caused by multiple pathogenic bacteria. In the present work, a novel chimeric lysin (Ply187N-V12C) was constructed by fusing the catalytic domain (Ply187N) of the bacteriophage lysin Ply187 with the cell binding domain (146-314aa, V12C) of the lysin PlyV12. The results showed that the chimeric lysin Ply187N-V12C had not only lytic activity similar to Ply187N against staphylococcal strains but also extended its lytic activity to streptococci and enterococci, such as Streptococcus dysgalactiae, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis, which Ply187N could not lyse. Our work demonstrated that generating novel chimeric lysins with an extended lytic spectrum was feasible through fusing a catalytic domain with a cell-binding domain from lysins with lytic spectra across multiple genera. PMID:25219798

  5. Development of polyclonal antibodies for detection of aflatoxigenic molds involving culture filtrate and chimeric proteins expressed in Escherichia coli.

    PubMed

    Shapira, R; Paster, N; Menasherov, M; Eyal, O; Mett, A; Meiron, T; Kuttin, E; Salomon, R

    1997-03-01

    Polyclonal antibodies (PAb) were raised against an aflatoxigenic strain of Aspergillus parasiticus by using two different sources for antibody elicitation: (i) filtrate of a culture on which the fungus had been grown (ii) and two chimeric proteins, expressed in Escherichia coli as separate products, of the genes ver-1 and apa-2, which are involved in aflatoxin biosynthesis. The gene products were amplified by PCR, and each was cloned into the E. coli expression vector pGEX2T. Upon induction, the bacteria overexpressed 38- and 33-kDa chimeric proteins corresponding to the N-terminal domains of the genes ver-1 and apa-2, respectively. The chimeric proteins were isolated and affinity purified for use as antigens. The specificity of the raised antibodies was examined by enzyme-linked immunosorbent assay (ELISA). The PAbs raised against the culture filtrate reacted with all the species of Aspergillus and Penicillium tested but not with Fusarium species or corn gain. However, the PAbs elicited against the chimeric proteins were highly specific, showing significantly higher ELISA absorbance values (A405) against A. parasiticus and A. flavus than against the other fungi tested and the corn grain. The approach of utilizing gene products associated with aflatoxin biosynthesis for antibody production therefore appears to be feasible. Such a multiantibody system combined with the PCR technique, could provide a useful tool for the rapid, sensitive, and accurate detection of aflatoxin producers present in grains and foods. PMID:9055416

  6. The Macrophage-depleting Agent Clodronate Promotes Durable Hematopoietic Chimerism and Donor-specific Skin Allograft Tolerance in Mice

    PubMed Central

    Li, Zhanzhuo; Xu, Xin; Feng, Xingmin; Murphy, Philip M.

    2016-01-01

    Hematopoietic chimerism is known to promote donor-specific organ allograft tolerance; however, clinical translation has been impeded by the requirement for toxic immunosuppression and large doses of donor bone marrow (BM) cells. Here, we investigated in mice whether durable chimerism might be enhanced by pre-treatment of the recipient with liposomal clodronate, a macrophage depleting agent, with the goal of vacating BM niches for preferential reoccupation by donor hematopoietic stem cells (HSC). We found that liposomal clodronate pretreatment of C57BL/6 mice permitted establishment of durable hematopoietic chimerism when the mice were given a low dose of donor BM cells and transient immunosuppression. Moreover, clodronate pre-treatment increased durable donor-specific BALB/c skin allograft tolerance. These results provide proof-of-principle that clodronate is effective at sparing the number of donor BM cells required to achieve durable hematopoietic chimerism and donor-specific skin allograft tolerance and justify further development of a tolerance protocol based on this principle. PMID:26917238

  7. Protein Remote Homology Detection Based on an Ensemble Learning Approach.

    PubMed

    Chen, Junjie; Liu, Bingquan; Huang, Dong

    2016-01-01

    Protein remote homology detection is one of the central problems in bioinformatics. Although some computational methods have been proposed, the problem is still far from being solved. In this paper, an ensemble classifier for protein remote homology detection, called SVM-Ensemble, was proposed with a weighted voting strategy. SVM-Ensemble combined three basic classifiers based on different feature spaces, including Kmer, ACC, and SC-PseAAC. These features consider the characteristics of proteins from various perspectives, incorporating both the sequence composition and the sequence-order information along the protein sequences. Experimental results on a widely used benchmark dataset showed that the proposed SVM-Ensemble can obviously improve the predictive performance for the protein remote homology detection. Moreover, it achieved the best performance and outperformed other state-of-the-art methods.

  8. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  9. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  10. De Novo Sequencing and Homology Searching‡‡*

    PubMed Central

    Ma, Bin; Johnson, Richard

    2012-01-01

    In proteomics, de novo sequencing is the process of deriving peptide sequences from tandem mass spectra without the assistance of a sequence database. Such analyses have traditionally been performed manually by human experts, and more recently by computer programs that have been developed because of the need for higher throughput. Although powerful, de novo sequencing often can only determine partially correct sequence tags because of imperfect tandem mass spectra. However, these sequence tags can then be searched in a sequence database to identify the exact or a homologous peptide. Homology searches are particularly useful for the study of organisms whose genomes have not been sequenced. This tutorial will present background important to understanding de novo sequencing, suggestions on how to do this manually, plus descriptions of computer algorithms used to automate this process and to subsequently carryout homology-based database searches. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 1). PMID:22090170

  11. Protein Remote Homology Detection Based on an Ensemble Learning Approach

    PubMed Central

    Chen, Junjie; Liu, Bingquan; Huang, Dong

    2016-01-01

    Protein remote homology detection is one of the central problems in bioinformatics. Although some computational methods have been proposed, the problem is still far from being solved. In this paper, an ensemble classifier for protein remote homology detection, called SVM-Ensemble, was proposed with a weighted voting strategy. SVM-Ensemble combined three basic classifiers based on different feature spaces, including Kmer, ACC, and SC-PseAAC. These features consider the characteristics of proteins from various perspectives, incorporating both the sequence composition and the sequence-order information along the protein sequences. Experimental results on a widely used benchmark dataset showed that the proposed SVM-Ensemble can obviously improve the predictive performance for the protein remote homology detection. Moreover, it achieved the best performance and outperformed other state-of-the-art methods. PMID:27294123

  12. Remote homology and the functions of metagenomic dark matter.

    PubMed

    Lobb, Briallen; Kurtz, Daniel A; Moreno-Hagelsieb, Gabriel; Doxey, Andrew C

    2015-01-01

    Predicted open reading frames (ORFs) that lack detectable homology to known proteins are termed ORFans. Despite their prevalence in metagenomes, the extent to which ORFans encode real proteins, the degree to which they can be annotated, and their functional contributions, remain unclear. To gain insights into these questions, we applied sensitive remote-homology detection methods to functionally analyze ORFans from soil, marine, and human gut metagenome collections. ORFans were identified, clustered into sequence families, and annotated through profile-profile comparison to proteins of known structure. We found that a considerable number of metagenomic ORFans (73,896 of 484,121, 15.3%) exhibit significant remote homology to structurally characterized proteins, providing a means for ORFan functional profiling. The extent of detected remote homology far exceeds that obtained for artificial protein families (1.4%). As expected for real genes, the predicted functions of ORFans are significantly similar to the functions of their gene neighbors (p < 0.001). Compared to the functional profiles predicted through standard homology searches, ORFans show biologically intriguing differences. Many ORFan-enriched functions are virus-related and tend to reflect biological processes associated with extreme sequence diversity. Each environment also possesses a large number of unique ORFan families and functions, including some known to play important community roles such as gut microbial polysaccharide digestion. Lastly, ORFans are a valuable resource for finding novel enzymes of interest, as we demonstrate through the identification of hundreds of novel ORFan metalloproteases that all possess a signature catalytic motif despite a general lack of similarity to known proteins. Our ORFan functional predictions are a valuable resource for discovering novel protein families and exploring the boundaries of protein sequence space. All remote homology predictions are available at http

  13. Pre-treatment of allogeneic bone marrow recipients with the CXCR4 antagonist AMD3100 transiently enhances hematopoietic chimerism without promoting donor-specific skin allograft tolerance.

    PubMed

    Li, Zhanzhuo; Xu, Xin; Weiss, Ido D; Jacobson, Orit; Murphy, Philip M

    2015-10-01

    Hematopoietic chimerism established by allogeneic bone marrow transplantation is known to promote donor-specific organ allograft tolerance; however, clinical application is limited by the need for toxic host conditioning and "megadoses" of donor bone marrow cells. A potential solution to this problem has been suggested by the observation that recipient bone marrow mobilization by the CXCR4 antagonist AMD3100 promotes chimerism in congenic bone marrow transplantation experiments in mice. Here we report that a single subcutaneous dose of 10 mg/kg AMD3100 in recipient C57BL/6 mice was able to enhance hematopoietic chimerism when complete MHC-mismatched BALB/c donor bone marrow cells were transplanted 1h after drug dosing. However, levels of chimerism measured 30 days post-transplantation were not sustained when mice were reexamined on day 90 post-transplantation. Moreover, transient chimerism induced by this protocol did not support robust donor-specific skin allograft tolerance. Using the same transient immunosuppression protocol, we confirmed that "megadoses" of donor bone marrow cells could induce durable chimerism associated with donor-specific skin allograft tolerance without AMD3100 pre-treatment. We conclude that in this protocol AMD3100 pretreatment may empty bone marrow niches that become reoccupied by allogeneic donor hematopoietic progenitor cells but not by true long-lived donor hematopoietic stem cells, resulting in short-lived chimerism and failure to support durable donor-specific allograft tolerance.

  14. Complete donor chimerism is a prerequisite for the effect of Predicted Indirectly ReCognizable HLA Epitopes (PIRCHE) on acute graft-versus-host disease.