Science.gov

Sample records for chimeric cyanovirin-n homolog

  1. The antiviral lectin cyanovirin-N: probing multivalency and glycan recognition through experimental and computational approaches.

    PubMed

    Woodrum, Brian W; Maxwell, Jason D; Bolia, Ashini; Ozkan, S Banu; Ghirlanda, Giovanna

    2013-10-01

    CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the antiviral activity, and we discuss features that contribute to the high specificity and affinity for the glycan ligand observed in CVN. An integrated approach that encompasses structural determination, mutagenesis analysis and computational work holds particular promise to clarify aspects of the interactions between CVN and glycans.

  2. Rhizosecretion improves the production of Cyanovirin-N in Nicotiana tabacum through simplified downstream processing.

    PubMed

    Madeira, Luisa M; Szeto, Tim H; Ma, Julian K-C; Drake, Pascal M W

    2016-07-01

    Rhizosecretion has many advantages for the production of recombinant pharmaceuticals, notably facile downstream processing from hydroponic medium. The aim of this study was to increase yields of the HIV microbicide candidate, Cyanovirin-N (CV-N), obtained using this production platform and to develop a simplified methodology for its downstream processing from hydroponic medium. Placing hydroponic cultures on an orbital shaker more than doubled the concentration of CV-N in the hydroponic medium compared to plants which remained stationary, reaching a maximum of approximately 20μg/ml in one week, which is more than 3 times higher than previously reported yields. The protein composition of the hydroponic medium, the rhizosecretome, was characterised in plants cultured with or without the plant growth regulator alpha-napthaleneacetic acid by LC-ESI-MS/MS, and CV-N was the most abundant protein. The issue of large volumes in the rhizosecretion system was addressed by using ion exchange chromatography to concentrate CV-N and partially remove impurities. The semi-purified CV-N was demonstrated to bind to HIV gp120 in an ELISA and to neutralise HIVBa-L with an IC50 of 6nM in a cell-based assay. Rhizosecretion is therefore a practicable and inexpensive method for the production of functional CV-N.

  3. The antiviral protein cyanovirin-N: the current state of its production and applications.

    PubMed

    Xiong, Sheng; Fan, Jun; Kitazato, Kaio

    2010-04-01

    Human immunodeficiency virus (HIV)/AIDS continues to spread worldwide, and most of the HIV-infected people living in developing countries have little or no access to highly active antiretroviral therapy. The development of efficient and low-cost microbicides to prevent sexual transmission of HIV should be given high priority because there is no vaccine available yet. Cyanovirin-N (CVN) is an entry inhibitor of HIV and many other viruses, and it represents a new generation of microbicide that has specific and potent activity, a different mechanism of action, and unusual chemicophysical stability. In vitro and in vivo antiviral tests suggested that the anti-HIV effect of CVN is stronger than a well-known gp120-targeted antibody (2G12) and another microbicide candidate, PRO2000. CVN is a cyanobacteria-derived protein that has special structural features, making the artificial production of this protein very difficult. In order to develop an efficient and relatively low-cost approach for large-scale production of recombinant CVN to satisfy medical use, this protein has been expressed in many systems by trial and error. Here, to summarize the potential and remaining challenges for the development of this protein into an HIV prevention agent, the progress in the structural mechanism determination, heterologous production and pharmacological evaluation of CVN is reviewed.

  4. The Antiretroviral Lectin Cyanovirin-N Targets Well-Known and Novel Targets on the Surface of Entamoeba histolytica Trophozoites ▿ †

    PubMed Central

    Carpentieri, Andrea; Ratner, Daniel M.; Ghosh, Sudip K.; Banerjee, Sulagna; Bushkin, G. Guy; Cui, Jike; Lubrano, Michael; Steffen, Martin; Costello, Catherine E.; O'Keefe, Barry; Robbins, Phillips W.; Samuelson, John

    2010-01-01

    Entamoeba histolytica, the protist that causes amebic dysentery and liver abscess, has a truncated Asn-linked glycan (N-glycan) precursor composed of seven sugars (Man5GlcNAc2). Here, we show that glycoproteins with unmodified N-glycans are aggregated and capped on the surface of E. histolytica trophozoites by the antiretroviral lectin cyanovirin-N and then replenished from large intracellular pools. Cyanovirin-N cocaps the Gal/GalNAc adherence lectin, as well as glycoproteins containing O-phosphodiester-linked glycans recognized by an anti-proteophosphoglycan monoclonal antibody. Cyanovirin-N inhibits phagocytosis by E. histolytica trophozoites of mucin-coated beads, a surrogate assay for amebic virulence. For technical reasons, we used the plant lectin concanavalin A rather than cyanovirin-N to enrich secreted and membrane proteins for mass spectrometric identification. E. histolytica glycoproteins with occupied N-glycan sites include Gal/GalNAc lectins, proteases, and 17 previously hypothetical proteins. The latter glycoproteins, as well as 50 previously hypothetical proteins enriched by concanavalin A, may be vaccine targets as they are abundant and unique. In summary, the antiretroviral lectin cyanovirin-N binds to well-known and novel targets on the surface of E. histolytica that are rapidly replenished from large intracellular pools. PMID:20852023

  5. A Designed “Nested” Dimer of Cyanovirin-N Increases Antiviral Activity

    PubMed Central

    Woodrum, Brian W.; Maxwell, Jason; Allen, Denysia M.; Wilson, Jennifer; Krumpe, Lauren R.H.; Bobkov, Andrey A.; Hill, R. Blake; Kibler, Karen V.; O’Keefe, Barry R.; Ghirlanda, Giovanna

    2016-01-01

    Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the “nested” covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B’ and domains A and A’ respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner. PMID:27275831

  6. A Designed "Nested" Dimer of Cyanovirin-N Increases Antiviral Activity.

    PubMed

    Woodrum, Brian W; Maxwell, Jason; Allen, Denysia M; Wilson, Jennifer; Krumpe, Lauren R H; Bobkov, Andrey A; Hill, R Blake; Kibler, Karen V; O'Keefe, Barry R; Ghirlanda, Giovanna

    2016-06-06

    Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the "nested" covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 μM and 900 μM, assigned to domains B and B' and domains A and A' respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner.

  7. Differential Inhibitory Effects of Cyanovirin-N, Griffithsin, and Scytovirin on Entry Mediated by Envelopes of Gammaretroviruses and Deltaretroviruses

    PubMed Central

    Jensen, Stig M. R.; Ruscetti, Francis W.; Rein, Alan; Bertolette, Daniel C.; Saucedo, Carrie J.; O'Keefe, Barry R.

    2014-01-01

    The antiviral lectins griffithsin (GRFT), cyanovirin-N (CV-N), and scytovirin (SVN), which inhibit several enveloped viruses, including lentiviruses, were examined for their ability to inhibit entry mediated by Env proteins of delta- and gammaretroviruses. The glycoproteins from human T-cell leukemia virus type 1 (HTLV-1) were resistant to the antiviral effects of all three lectins. For gammaretroviruses, CV-N inhibited entry mediated by some but not all of the envelopes examined, whereas GRFT and SVN displayed only little or no effect. PMID:24284326

  8. Phase system selection with fractional factorial design for purification of recombinant cyanovirin-N from a hydroponic culture medium using centrifugal partition chromatography.

    PubMed

    Grudzień, Łukasz; Madeira, Luisa; Fisher, Derek; Ma, Julian; Garrard, Ian

    2013-04-12

    Centrifugal partition chromatography (CPC) with an aqueous two-phase system (ATPS) was used to purify recombinant cyanovirin-N (CV-N) from other proteins which were co-secreted into a hydroponic plant medium in a rhizosecretion process. To achieve satisfactory protein concentration, the purification was preceded by ultrafiltration performed on a 5 kDa filter. ATPS, because of their gentle nature, were selected as the phase system for CPC. A systematic phase system selection was applied. This involved studying the effect of seven parameters of ATPS: polymer type, salt type, the polymer and salt concentration, the polymer molecular weight, pH, and presence of two additional salts; NaCl and NaClO4, which all together gave 320 combinations. design of experiment (DoE) software allowed the reduction of this number to 46. Having tested partitioning of cyanovirin-N and impurities in 46 ATPS, the three best potential phase systems generated by the programme were then tested on the CPC. Out of these three, 13/13% PEG4000 sodium phosphate, pH 3.0, proved to be most effective phase system in the purification of cyanovirin-N, judged by ELISA and SDS-PAGE analysis, as it eliminated most of the impurities from the final cyanovirin-N preparation.

  9. Solution and crystal structures of a sugar binding site mutant of Cyanovirin-N: no evidence of domain-swapping

    PubMed Central

    Matei, Elena; Furey, William; Gronenborn, Angela M.

    2008-01-01

    SUMMARY The cyanobacterial lectin Cyanovirin-N (CV-N) exhibits antiviral activity against HIV at a low nanomolar concentration by interacting with high-mannose oligosaccharides on the virus surface envelope glycoprotein gp120. Atomic structures of wild-type CV-N revealed a monomer in solution and a domain-swapped dimer in the crystal, with the monomer comprising two independent carbohydrate binding sites that individually bind with micromolar affinity to di- and trimannoses. In the mutant CVNmutDB, the binding site on domain B was abolished and the protein was found to be completely inactive against HIV. We determined the solution NMR and crystal structures of this variant and characterized its sugar binding properties. PMID:18682220

  10. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones.

    PubMed

    Arenhart, Sandra; Silva, José Valter Joaquim; Flores, Eduardo Furtado; Weiblen, Rudi; Gil, Laura Helena Vega Gonzales

    The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  11. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  12. In vivo evaluation of safety and toxicity of a Lactobacillus jensenii producing modified cyanovirin-N in a rhesus macaque vaginal challenge model.

    PubMed

    Brichacek, Beda; Lagenaur, Laurel A; Lee, Peter P; Venzon, David; Hamer, Dean H

    2013-01-01

    Sexual transmission of human immunodeficiency virus type 1 (HIV-1) across the cervicovaginal mucosa in women is influenced by many factors including the microbiota and the presence of underlying inflammation. It is important that potential HIV preventative agents do not alter the mucosal environment in a way that enhances HIV acquisition. We examined the impact of a "live" microbicide on the vaginal mucosal environment in a rhesus macaque repeated vaginal simian-HIV (SHIVSF162P3) challenge model. The microbicide contained a human vaginal Lactobacillus jensenii expressing the HIV-1 entry inhibitor, modified Cyanovirin-N (mCV-N), and henceforth called LB-mCV-N. Macaques were colonized vaginally each week with LB-mCV-N and sampled six days after colonization for culturable bacteria, pH and cervical-vaginal cytokines during the duration of the six-week study. We show that macaques that retained the engineered LB-mCV-N strain in their vaginal microbiota, during SHIV challenge, had lower pH, when colonization levels were higher, and had no evidence of inflammatory cytokines. Indeed, Interleukin-13, a mediator of inflammation, was detected less often in LB-mCV-N colonized macaques than in controls and we found higher levels of Interleukin 1 receptor antagonist (IL-1RA) in LB-mCV-N colonized macaques during the SHIV challenge period. We noted an inverse correlation between levels of mucosal IL-1RA and peak plasma viral load, thus higher IL-1RA correlated with lower viral load in LB-mCV-N treated macaques. These data support the use of LB-mCV-N as a safe "live" microbicide and suggest that lactobacilli themselves may positively impact the mucosal environment.

  13. Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains.

    PubMed

    Albariño, César G; Bird, Brian H; Chakrabarti, Ayan K; Dodd, Kimberly A; White, David M; Bergeron, Eric; Shrivastava-Ranjan, Punya; Nichol, Stuart T

    2011-01-01

    The Arenaviridae are a diverse and globally distributed collection of viruses that are maintained primarily by rodent reservoirs. Junin virus (JUNV) and Lassa virus (LASV) can both cause significant outbreaks of severe and often fatal human disease throughout their respective areas of endemicity. In an effort to improve upon the existing live attenuated JUNV Candid1 vaccine, we generated a genetically homogenous stock of this virus from cDNA copies of the virus S and L segments by using a reverse genetics system. Further, these cDNAs were used in combination with LASV cDNAs to successfully generate two recombinant Candid1 JUNV/LASV chimeric viruses (via envelope glycoprotein [GPC] exchange). It was found that while the GPC extravirion domains were readily exchangeable, homologous stable signal peptide (SSP) and G2 transmembrane and cytoplasmic tail domains were essential for correct GPC maturation and production of infectious chimeric viruses. The switching of the JUNV and LASV G1/G2 ectodomains within the Candid1 vaccine background did not alter the attenuated phenotype of the vaccine strain in a lethal mouse model. These recombinant chimeric viruses shed light on the fundamental requirements of arenavirus GPC maturation and may serve as a strategy for the development of bivalent JUNV and LASV vaccine candidates.

  14. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    NASA Technical Reports Server (NTRS)

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  15. NMR Solution Structure of a Cyanovirin Homolog from Wheat Head Blight Fungus

    PubMed Central

    Matei, Elena; Louis, John M.; Jee, JunGoo; Gronenborn, Angela M.

    2011-01-01

    Members of the cyanovirin-N homolog (CVNH) lectin family are found in bacteria, fungi and plants. As part of our ongoing work on CVNH structure-function studies, we determined the high-resolution NMR solution structure of the homolog from the wheat head blight disease causing ascomycetous fungus Gibberella zeae (or Fusarium graminearum), hereafter called GzCVNH. Like cyanovirin-N (CV-N), GzCVNH comprises two tandem sequence repeats and the protein sequence exhibits 30% identity with CV-N. The overall structure is similar to those of other members of the CVNH family, with the conserved pseudo-symmetric halves of the structure, domains A and B, closely resembling recently determined structures of Tuber borchii, Neurospora crassa and Ceratopteris richardii CVNH proteins. Although GzCVNH exhibits a similar glycan recognition profile to CV-N and specifically binds to Manα(1–2)Manα, its weak carbohydrate binding affinity to only one binding site is insufficient for conferring anti-HIV activity. PMID:21365681

  16. Construction and Evaluation of a Maize Chimeric Promoter with Activity in Kernel Endosperm and Embryo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chimeric promoters contain DNA sequences from different promoters. Chimeric promoters are developed to increase the level of recombinant protein expression, precisely control transgene activity, or to escape homology-based gene silencing. Sets of chimeric promoters, each containing different lengt...

  17. Chimeric Pestivirus Experimental Vaccines.

    PubMed

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  18. Alcohol homologation

    DOEpatents

    Wegman, R.W.; Moloy, K.G.

    1988-02-23

    A process is described for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  19. Alcohol homologation

    DOEpatents

    Wegman, Richard W.; Moloy, Kenneth G.

    1988-01-01

    A process for the homologation of an alkanol by reaction with synthesis gas in contact with a system containing rhodium atom, ruthenium atom, iodine atom and a bis(diorganophosphino) alkane to selectivity produce the next higher homologue.

  20. Chimeric enzymes with improved cellulase activities

    DOEpatents

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  1. Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides

    PubMed Central

    Kolganova, N. A.; Shchyolkina, A. K.; Chudinov, A. V.; Zasedatelev, A. S.; Florentiev, V. L.; Timofeev, E. N.

    2012-01-01

    Triplex-directed DNA recognition is strictly limited by polypurine sequences. In an attempt to address this problem with synthetic biology tools, we designed a panel of short chimeric α,β-triplex-forming oligonucleotides (TFOs) and studied their interaction with fluorescently labelled duplex hairpins using various techniques. The hybridization of hairpin with an array of chimeric probes suggests that recognition of double-stranded DNA follows complicated rules combining reversed Hoogsteen and non-canonical homologous hydrogen bonding. In the presence of magnesium ions, chimeric TFOs are able to form highly stable α,β-triplexes, as indicated by native gel-electrophoresis, on-array thermal denaturation and fluorescence-quenching experiments. CD spectra of chimeric triplexes exhibited features typically observed for anti-parallel purine triplexes with a GA or GT third strand. The high potential of chimeric α,β-TFOs in targeting double-stranded DNA was demonstrated in the EcoRI endonuclease protection assay. In this paper, we report, for the first time, the recognition of base pair inversions in a duplex by chimeric TFOs containing α-thymidine and α-deoxyguanosine. PMID:22641847

  2. Mechanisms of tolerance induced via mixed chimerism.

    PubMed

    Sykes, Megan

    2007-05-01

    Mixed hematopoietic chimerism provides a powerful means of inducing robust, donor-specific tolerance. In this article, the minimal requirements for achieving mixed chimerism, the development of new reagents that promote its achievement, and the mechanisms by which peripheral and intrathymic tolerance are achieved via mixed chimerism are discussed. An emerging understanding of these mechanisms, along with the development of new immunosuppressive reagents, is allowing advancement toward clinical application of this approach.

  3. Theoretical design of a new chimeric protein for the treatment of breast cancer

    PubMed Central

    Soleimani, Meysam; Mahnam, Karim; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other’s function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part. PMID:27499788

  4. Theoretical design of a new chimeric protein for the treatment of breast cancer.

    PubMed

    Soleimani, Meysam; Mahnam, Karim; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    p28 and NRC peptides are two anticancer peptides with various mechanisms have shown to be effective against breast cancer. Therefore, it seems that construction of a chimeric protein containing the two peptides might cause synergistic cytotoxic effects. However, since the two peptides bear opposite charges, production of a chimeric protein in which the two moieties do not intervene each other is difficult. In this study, our goal was to find a suitable peptide linker for the new chimeric protein in a manner that none of the peptides intervene the other's function. We selected some linkers with different characteristics and lengths and created a small library of the chimeric proteins harboring these linkers. Homology modeling and molecular dynamic simulation revealed that (PA)5P and (EAAAK)3 linkers can separate the p28 and NRC peptides effectively. Thus, the chimeric protein linked with (PA)5P or (EAAAK)3 linkers might show synergistic and stronger anticancer effects than the separate peptide moieties because they could exert their cytotoxic effects freely which is not influenced by the other part.

  5. Chimeric Foot-and-Mouth Disease Viruses: Evaluation of Their Efficacy as Potential Marker Vaccines in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work in swine has demonstrated that full protection against Foot-and-Mouth Disease (FMD) can be achieved following vaccination with chimeric Foot-and-Mouth Disease Virus (FMDV) vaccines, whereby the VP1 G-H loop has been substituted with a non-homologous alternative. If proven to be effect...

  6. Homology and causes.

    PubMed

    Van Valen, L M

    1982-09-01

    Homology is resemblance caused by a continuity of information. In biology it is a unified developmental phenomenon. Homologies among and within individuals intergrade in several ways, so historical homology cannot be separated sharply from repetitive homology. Nevertheless, the consequences of historical and repetitive homologies can be mutually contradictory. A detailed discussion of the rise and fall of the "premolar-analogy" theory of homologies of mammalian molar-tooth cusps exemplifies such a contradiction. All other hypotheses of historical homology which are based on repetitive homology, such as the foliar theory of the flower considered phyletically, are suspect.

  7. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs.

    PubMed

    Blignaut, Belinda; Visser, Nico; Theron, Jacques; Rieder, Elizabeth; Maree, Francois F

    2011-04-01

    Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.

  8. Homology, Analogy, and Ethology.

    ERIC Educational Resources Information Center

    Beer, Colin G.

    1984-01-01

    Because the main criterion of structural homology (the principle of connections) does not exist for behavioral homology, the utility of the ethological concept of homology has been questioned. The confidence with which behavioral homologies can be claimed varies inversely with taxonomic distance. Thus, conjectures about long-range phylogenetic…

  9. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge.

    PubMed

    Maree, Francois F; Nsamba, Peninah; Mutowembwa, Paidamwoyo; Rotherham, Lia S; Esterhuysen, Jan; Scott, Katherine

    2015-06-09

    The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.

  10. Nitrogenase and Homologs

    PubMed Central

    2014-01-01

    Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes. PMID:25491285

  11. Homology, convergence and parallelism

    PubMed Central

    Ghiselin, Michael T.

    2016-01-01

    Homology is a relation of correspondence between parts of parts of larger wholes. It is used when tracking objects of interest through space and time and in the context of explanatory historical narratives. Homologues can be traced through a genealogical nexus back to a common ancestral precursor. Homology being a transitive relation, homologues remain homologous however much they may come to differ. Analogy is a relationship of correspondence between parts of members of classes having no relationship of common ancestry. Although homology is often treated as an alternative to convergence, the latter is not a kind of correspondence: rather, it is one of a class of processes that also includes divergence and parallelism. These often give rise to misleading appearances (homoplasies). Parallelism can be particularly hard to detect, especially when not accompanied by divergences in some parts of the body. PMID:26598721

  12. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  13. Transcriptome Sequencing for the Detection of Chimeric Transcripts.

    PubMed

    Chu, Hsueh-Ting

    2016-01-01

    The occurrence of chimeric transcripts has been reported in many cancer cells and seen as potential biomarkers and therapeutic targets. Modern high-throughput sequencing technologies offer a way to investigate individual chimeric transcripts and the systematic information of associated gene expressions about underlying genome structural variations and genomic interactions. The detection methods of finding chimeric transcripts from massive amount of short read sequence data are discussed here. Both assembly-based and alignment-based methods are used for the investigation of chimeric transcripts.

  14. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    PubMed

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.

  15. DNA shuffling of uricase gene leads to a more "human like" chimeric uricase with increased uricolytic activity.

    PubMed

    Chen, Jing; Jiang, Nan; Wang, Tao; Xie, Guangrong; Zhang, Zhilai; Li, Hui; Yuan, Jing; Sun, Zengxian; Chen, Jianhua

    2016-01-01

    Urate oxidase (Uox) is the enzyme involved in purine metabolism. Pseudogenization of Uox gene is the underlying mechanism of hyperuricemia and gout in human. Although Uox from various microorganisms has been used in clinical practice for many years, its application is limited by potential immunogenicity. In order to develop a more "human like" uricase, DNA shuffling was used to create chimeric uricase with both improved enzymatic activity and increased homology with deduced human uricase (dHU) gene. By using wild porcine uricase (wPU) gene and dhu as parental genes, a diverse chimeric library was generated. After preliminary screening by a "homebrew" high throughput protocol, approximately 100 chimeras with relatively high enzymatic activity were obtained. By further activity comparison of the purified enzymes, chimera-62 with increase in both activity and homology with dHU compared with wPU was selected. Its Km and catalytic efficiency were determined as 9.43±0.04μM and 2.67s(-1)μM(-1) respectively. There were 33 amino acid substitutions in chimera-62 when compared with dHU and 5 substitutions when compared with wPU. By homology modeling and 3-D structure analysis, it was speculated that mutations G248S and L266F contributed to the increased activity of chimera-62 by increasing the stability of α-helix and surface polarity respectively.

  16. Homology recognition funnel

    NASA Astrophysics Data System (ADS)

    Lee, Dominic; Kornyshev, Alexei A.

    2009-10-01

    The recognition of homologous sequences of DNA before strand exchange is considered to be the most puzzling stage of homologous recombination. A mechanism for two homologous dsDNAs to recognize each other from a distance in electrolytic solution without unzipping had been proposed in an earlier paper [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 366 (2001)]. In that work, the difference in the electrostatic interaction energy between homologous duplexes and between nonhomologous duplexes, termed the recognition energy, has been calculated. That calculation was later extended in a series of papers to account for torsional elasticity of the molecules. A recent paper [A. A. Kornyshev and A. Wynveen, Proc. Natl. Acad. Sci. U.S.A. 106, 4683 (2009)] investigated the form of the potential well that homologous DNA molecules may feel when sliding along each other. A simple formula for the shape of the well was obtained. However, this latter study was performed under the approximation that the sliding molecules are torsionally rigid. Following on from this work, in the present article we investigate the effect of torsional flexibility of the molecules on the shape of the well. A variational approach to this problem results in a transcendental equation that is easily solved numerically. Its solutions show that at large interaxial separations the recognition well becomes wider and shallower, whereas at closer distances further unexpected features arise related to an abrupt change in the mean azimuthal alignment of the molecules. The energy surface as a function of interaxial separation and the axial shift defines what we call the recognition funnel. We show that it depends dramatically on the patterns of adsorption of counterions on DNA.

  17. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses.

    PubMed

    Wei, Y; Wang, S; Wang, X

    2014-01-01

    Vectors based on self-replicating RNAs (replicons) of flaviviruses are becoming powerful tool for expression of heterologous genes in mammalian cells and development of novel antiviral and anticancer vaccines. We constructed two vectors expressing chimeric viruses consisting of attenuated SA14-14-2 strain of Japanese encephalitis virus (JEV) in which the PrM/M-E genes were replaced fully or partially with those of dengue 2 virus (DENV-2). These vectors, named pJED2 and pJED2-1770 were transfected to BHK-21 cells and produced chimeric viruses JED2V and JED2-1770V, respectively. The chimeric viruses could be passaged in C6/36 but not BHK-21 cells. The chimeric viruses produced in C6/36 cells CPE 4-5 days after infection and RT-PCR, sequencing, immunofluorescence assay (IFA) and Western blot analysis confirmed the chimeric nature of produced viruses. The immunogenicity of chimeric viruses in mice was proved by detecting DENV-2 E protein-specific serum IgG antibodies with neutralization titer of 10. Successful preparation of infectious clones of chimeric JEV-DENV-2 viruses showed that JEV-based expression vectors are fully functional.

  18. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    PubMed

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.

  19. Assembly and immunogenicity of chimeric Gag-Env proteins derived from the human immunodeficiency virus type 1.

    PubMed

    Truong, C; Brand, D; Mallet, F; Roingeard, P; Brunet, S; Barin, F

    1996-03-01

    We evaluated the potential of the precursor Gag protein (Pr55) of the human immunodeficiency virus type 1 (HIV-1) as a carrier for the presentation of envelope epitopes. Recombinant chimeric core-envelope protein-expressing constructs were derived by deletion of regions within the gag gene, especially of regions encoding p24 capsid epitopes. Sequences encoding either the principal neutralization determinant (PND) and/or the CD4-binding domains (CD4BS) were then inserted. Deletion of residues 196-226 within the p24 capsid protein did not prevent self-assembly into virus-like particles (VLPs) whereas deletion of residues 299-328 completely abolished VLP formation. Thus the major homology region (MHR) and proximal sequences are required for capsid assembly. An immunization study in mice showed that assembled chimeric proteins elicited strong anti-Gag, weak anti-envelope, and no neutralizing humoral responses. Nonassembled chimeric proteins were poor immunogens. Mapping of Pr55 antigenic sites using sera from immunized mice and peptides overlapping the entire Gag precursor showed that p24 capsid and p17 matrix epitopes presented to the immune system differed from the mature form (p24 or p17) and the multimeric immature form (Pr55).

  20. Chimeric alignment by dynamic programming: Algorithm and biological uses

    SciTech Connect

    Komatsoulis, G.A.; Waterman, M.S.

    1997-12-01

    A new nearest-neighbor method for detecting chimeric 16S rRNA artifacts generated during PCR amplification from mixed populations has been developed. The method uses dynamic programming to generate an optimal chimeric alignment, defined as the highest scoring alignment between a query and a concatenation of a 5{prime} and a 3{prime} segment from two separate entries from a database of related sequences. Chimeras are detected by studying the scores and form of the chimeric and global sequence alignments. The chimeric alignment method was found to be marginally more effective than k-tuple based nearest-neighbor methods in simulation studies, but its most effective use is in concert with k-tuple methods. 15 refs., 3 figs., 1 tab.

  1. Generation of Novel Chimeric Mice with Humanized Livers by Using Hemizygous cDNA-uPA/SCID Mice.

    PubMed

    Tateno, Chise; Kawase, Yosuke; Tobita, Yoshimi; Hamamura, Satoko; Ohshita, Hiroki; Yokomichi, Hiroshi; Sanada, Harumi; Kakuni, Masakazu; Shiota, Akira; Kojima, Yuha; Ishida, Yuji; Shitara, Hiroshi; Wada, Naoko A; Tateishi, Hiromi; Sudoh, Masayuki; Nagatsuka, Shin-Ichiro; Jishage, Kou-Ichi; Kohara, Michinori

    2015-01-01

    We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression-not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for

  2. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    PubMed

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  3. Chimeric CYP21A1P/CYP21A2 genes identified in Czech patients with congenital adrenal hyperplasia.

    PubMed

    Vrzalová, Zuzana; Hrubá, Zuzana; Hrabincová, Eva Sťahlová; Vrábelová, Slávka; Votava, Felix; Koloušková, Stanislava; Fajkusová, Lenka

    2011-01-01

    Congenital adrenal hyperplasia (CAH) comprises a group of autosomal recessive disorders caused by an enzymatic deficiency which impairs the biosynthesis of cortisol and, in the majority of severe cases, also the biosynthesis of aldosterone. Approximately 95% of all CAH cases are caused by mutations in the steroid 21-hydroxylase gene (CYP21A2). The CYP21A2 gene and its inactive pseudogene (CYP21A1P) are located within the HLA class III region of the major histocompatibility complex (MHC) locus on chromosome 6p21.3. In this study, we describe chimeric CYP21A1P/CYP21A2 genes detected in our patients with 21-hydroxylase deficiency (21OHD). Chimeric CYP21A1P/CYP21A2 genes were present in 171 out of 508 mutated CYP21A2 alleles (33.8%). We detected four types of chimeric CYP21A1P/CYP21A2 genes: three of them have been described previously as CH-1, CH-3, CH-4, and one type is novel. The novel chimeric gene, termed CH-7, was detected in 21.4% of the mutant alleles. Possible causes of CYP21A1P/CYP21A2 formation are associated with 1) high recombination rate in the MHC locus, 2) high recombination rate between highly homologous genes and pseudogenes in the CYP21 gene area, and 3) the existence of chi-like sequences and repetitive minisatellite consensus sequences in CYP21A2 and CYP21A1P which play a role in promoting genetic recombination.

  4. Structure aided design of chimeric antibiotics.

    PubMed

    Karoli, Tomislav; Mamidyala, Sreeman K; Zuegg, Johannes; Fry, Scott R; Tee, Ernest H L; Bradford, Tanya A; Madala, Praveen K; Huang, Johnny X; Ramu, Soumya; Butler, Mark S; Cooper, Matthew A

    2012-04-01

    The rise of antibiotic resistance is of great clinical concern. One approach to reducing the development of resistance is to co-administer two or more antibiotics with different modes of action. However, it can be difficult to control the distribution and pharmacokinetics of two drugs to ensure both concentrations remain within the range of therapeutic efficacy whilst avoiding adverse effects. Hybrid drugs, where two drugs are linked together with a flexible linker, have been explored, but the resultant large, flexible molecules can have poor bioavailability. We have developed a chimeric approach using click chemistry where the pharmacophores of two drugs are overlapped into a single smaller, more drug-like molecule. Design and selection of compounds were assisted by in silico structural docking. We prepared a series of compounds that include candidates showing activity against the targets of both trimethoprim; dihydrofolate reductase, and ciprofloxacin; DNA gyrase and topoisomerase IV. The resultant triazole containing molecules show modest, but broad spectrum activities against drug sensitive and resistant Gram-negative and Gram-positive bacteria, with no observable cytotoxicity.

  5. Syngeneic Transplants with Modified Chimeric Hematopoietic Tumors.

    PubMed

    Hemann, Michael

    2015-08-03

    This protocol describes strategies to rapidly transduce tumor cells ex vivo and then transplant modified cells into immunocompetent-recipient mice. Inherent in the definition of a bona fide murine hematopoietic malignancy, unlike a myelo- or lympho-proliferative disease, is the ability to transplant tumors and give rise to a malignancy in recipient animals. This characteristic of hematopoietic disease makes these tumors a tractable model for examining the role of specific genes in tumor growth, dissemination, or therapeutic response. Additionally, because of the systemic nature of hematopoietic malignancies, transplanted tumors are frequently pathologically indistinguishable from donor malignancies-allowing one to perform decisive therapy studies on large cohorts of transplant recipients. Finally, following ex vivo manipulation, transplanted tumors can be made chimeric for the presence of defined retrovirally induced alterations. Thus, these malignancies can be made to resemble genetically heterogeneous human tumors that are in the process of acquiring new capabilities. In these experiments, fluorescent markers serve as a surrogate marker for the expression of a defined alteration, and the change in the percentage of fluorescent cells in a tumor population over time or in response to therapy can be used to gauge the impact of specific alterations on tumor behavior.

  6. 4-1BB chimeric antigen receptors.

    PubMed

    Campana, Dario; Schwarz, Herbert; Imai, Chihaya

    2014-01-01

    In addition to T-cell receptor signals, T lymphocytes require costimulatory signals for robust activation. Among these, those mediated by 4-1BB (CD137, TNFRSF9) are critical for tumor immunity. 4-1BB is expressed in T-cell receptor-activated lymphocytes as well as natural killer cells and other hematopoietic and nonhematopoietic cells. 4-1BB ligation induces a signaling cascade that results in cytokine production, expression of antiapoptotic molecules, and enhanced immune responses. In line with the described function of 4-1BB, its addition to CD3ζ chimeric antigen receptors (CARs) increases their capacity to provoke T-cell expansion and antitumor activity. The results of preclinical studies with 4-1BB CARs have been corroborated by encouraging results from clinical trials. Advantages and disadvantages of 4-1BB CARs versus CARs bearing other costimulatory components remain to be fully elucidated. In this review, we discuss the properties of 4-1BB, the design of 4-1BB CARs, and the function of T lymphocytes and natural killer cells expressing them.

  7. Chimeric human/murine monoclonal IgM antibodies to HIV-1 Nef antigen expressed on chronically infected cells.

    PubMed

    Kawai, Masahiro; He, Lianying; Kawamura, Takeshi; Omoto, Shinya; Fujii, Yoichi R; Okada, Noriko

    2003-01-01

    Human IgM antibody (Ab) to gangliosides induced cytolysis of HIV-1-infected cells by homologous human complement. We expected that any human IgM Ab reactive with HIV-1 infected cells could cause complement-mediated cytolysis. The trans-chromosome mouse (TC mouse) contains human chromosomes harboring genes responsible for immunoglobulin production. Spleen cells from TC mice immunized with recombinant Nef were fused with mouse myeloma cells to generate hybridomas, and we selected those that produced human mu-chain-positive Abs reactive with Nef fixed on an ELISA plate. However, the L-chain of the monoclonal Abs (mAbs) were murine lambda in type and were chimeric, and we could not succeed in obtaining mAb with human mu- and human kappa-chains. The chimeric mAbs reacted with the HIV-1 infected cells as seen with flow cytometric analysis, and the surface expression of Nef was also detectable on chronically infected OM10.1 cells which had no detectable gp120. However, although the reaction of the chimeric IgM mAb with HIV-1-infected MOLT4 cells induced C3 deposition on cell surfaces on incubation with fresh human serum, the cells remained unlysed, as determined by 51Cr release assay. The amount of Nef antigen on the cells might not have been high enough to overcome the function of HRF20 (CD59) that restricts formation of membrane attack complexes of homologous complement. However, combination of anti-Nef IgM mAb with other IgM mAbs reactive with the surface of HIV-1-infected cells may induce a synergistic effect in complement mediated cytolysis.

  8. Quantifying homologous replacement of loci between haloarchaeal species.

    PubMed

    Williams, David; Gogarten, J Peter; Papke, R Thane

    2012-01-01

    In vitro studies of the haloarchaeal genus Haloferax have demonstrated their ability to frequently exchange DNA between species, whereas rates of homologous recombination estimated from natural populations in the genus Halorubrum are high enough to maintain random association of alleles between five loci. To quantify the effects of gene transfer and recombination of commonly held (relaxed core) genes during the evolution of the class Halobacteria (haloarchaea), we reconstructed the history of 21 genomes representing all major groups. Using a novel algorithm and a concatenated ribosomal protein phylogeny as a reference, we created a directed horizontal genetic transfer (HGT) network of contemporary and ancestral genomes. Gene order analysis revealed that 90% of testable HGTs were by direct homologous replacement, rather than nonhomologous integration followed by a loss. Network analysis revealed an inverse log-linear relationship between HGT frequency and ribosomal protein evolutionary distance that is maintained across the deepest divergences in Halobacteria. We use this mathematical relationship to estimate the total transfers and amino acid substitutions delivered by HGTs in each genome, providing a measure of chimerism. For the relaxed core genes of each genome, we conservatively estimate that 11-20% of their evolution occurred in other haloarchaea. Our findings are unexpected, because the transfer and homologous recombination of relaxed core genes between members of the class Halobacteria disrupts the coevolution of genes; however, the generation of new combinations of divergent but functionally related genes may lead to adaptive phenotypes not available through cumulative mutations and recombination within a single population.

  9. Quantifying Homologous Replacement of Loci between Haloarchaeal Species

    PubMed Central

    Williams, David; Gogarten, J. Peter; Papke, R. Thane

    2012-01-01

    In vitro studies of the haloarchaeal genus Haloferax have demonstrated their ability to frequently exchange DNA between species, whereas rates of homologous recombination estimated from natural populations in the genus Halorubrum are high enough to maintain random association of alleles between five loci. To quantify the effects of gene transfer and recombination of commonly held (relaxed core) genes during the evolution of the class Halobacteria (haloarchaea), we reconstructed the history of 21 genomes representing all major groups. Using a novel algorithm and a concatenated ribosomal protein phylogeny as a reference, we created a directed horizontal genetic transfer (HGT) network of contemporary and ancestral genomes. Gene order analysis revealed that 90% of testable HGTs were by direct homologous replacement, rather than nonhomologous integration followed by a loss. Network analysis revealed an inverse log-linear relationship between HGT frequency and ribosomal protein evolutionary distance that is maintained across the deepest divergences in Halobacteria. We use this mathematical relationship to estimate the total transfers and amino acid substitutions delivered by HGTs in each genome, providing a measure of chimerism. For the relaxed core genes of each genome, we conservatively estimate that 11–20% of their evolution occurred in other haloarchaea. Our findings are unexpected, because the transfer and homologous recombination of relaxed core genes between members of the class Halobacteria disrupts the coevolution of genes; however, the generation of new combinations of divergent but functionally related genes may lead to adaptive phenotypes not available through cumulative mutations and recombination within a single population. PMID:23160063

  10. The Chimeric Protein Domain III-Capsid of Dengue Virus Serotype 2 (DEN-2) Successfully Boosts Neutralizing Antibodies Generated in Monkeys upon Infection with DEN-2▿

    PubMed Central

    Valdés, Iris; Gil, Lázaro; Romero, Yaremis; Castro, Jorge; Puente, Pedro; Lazo, Laura; Marcos, Ernesto; Guzmán, María G.; Guillén, Gerardo; Hermida, Lisset

    2011-01-01

    Use of a heterologous prime-boost strategy based on a combination of nonreplicative immunogens and candidate attenuated virus vaccines against dengue virus in the same schedule is an attractive approach. These combinations may result in a condensed immunization regime for humans, thus reducing the number of doses with attenuated virus and the time spacing. The present work deals with the evaluation of the heterologous prime-boost strategy combining a novel chimeric protein (domain III-capsid) of dengue virus serotype 2 (DEN-2) and the infective homologous virus in the same immunization schedule in monkeys. Primed monkeys received one dose of infective DEN-2 and were then vaccinated with the recombinant protein. We found that animals developed a neutralizing antibody response after the infective dose and were notably boosted with a second dose of the chimeric protein 3 months later. The neutralizing antibodies induced were long lasting, and animals also showed the ability to induce a specific cellular response 6 months after the booster dose. As a conclusion, we can state that the domain III region, when it is properly presented as a fusion protein to the immune system, is able to recall the neutralizing antibody response elicited following homologous virus infection in monkeys. Further prime-boost approaches can be performed in a condensed regime combining the chimeric domain III-capsid protein and candidate live attenuated vaccines against DEN-2. PMID:21209159

  11. Homological Computation Using Spanning Trees

    NASA Astrophysics Data System (ADS)

    Molina-Abril, H.; Real, P.

    We introduce here a new mathbb{F}_2 homology computation algorithm based on a generalization of the spanning tree technique on a finite 3-dimensional cell complex K embedded in ℝ3. We demonstrate that the complexity of this algorithm is linear in the number of cells. In fact, this process computes an algebraic map φ over K, called homology gradient vector field (HGVF), from which it is possible to infer in a straightforward manner homological information like Euler characteristic, relative homology groups, representative cycles for homology generators, topological skeletons, Reeb graphs, cohomology algebra, higher (co)homology operations, etc. This process can be generalized to others coefficients, including the integers, and to higher dimension.

  12. Steroid metabolism in chimeric mice with humanized liver.

    PubMed

    Lootens, Leen; Van Eenoo, Peter; Meuleman, Philip; Pozo, Oscar J; Van Renterghem, Pieter; Leroux-Roels, Geert; Delbeke, Frans T

    2009-11-01

    Anabolic androgenic steroids are considered to be doping agents and are prohibited in sports. Their metabolism needs to be elucidated to allow for urinary detection by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Steroid metabolism was assessed using uPA(+/+) SCID mice with humanized livers (chimeric mice). This study presents the results of 19-norandrost-4-ene-3,17-dione (19-norAD) administration to these in vivo mice. As in humans, 19-norandrosterone and 19-noretiocholanolone are the major detectable metabolites of 19-norAD in the urine of chimeric mice.A summary is given of the metabolic pathways found in chimeric mice after administration of three model steroid compounds (methandienone, androst-4-ene-3,17-dione and 19-norandrost-4-ene-3,17-dione). From these studies we can conclude that all major metabolic pathways for anabolic steroids in humans are present in the chimeric mouse. It is hoped that, in future, this promising chimeric mouse model might assist the discovery of new and possible longer detectable metabolites of (designer) steroids.

  13. Assessment of chimerism in epithelial cancers in transplanted patients.

    PubMed

    Leboeuf, Christophe; Ratajczak, Philippe; Vérine, Jérôme; Elbouchtaoui, Morad; Plassa, François; Legrès, Luc; Ferreira, Irmine; Sandid, Wissam; Varna, Mariana; Bousquet, Guilhem; Verneuil, Laurence; Janin, Anne

    2014-01-01

    Cancer is now the most severe complication in the long term in transplant recipients. As most solid-organ or hematopoietic stem-cell transplantations are allogeneic, chimerism studies can be performed on cancers occurring in recipients. We summarize here the different methods used to study chimerism in cancers developing in allogeneic-transplant recipients, analyze their respective advantages and report the main results obtained from these studies. Chimerism analyses of cancers in transplant recipients require methods suited to tissue samples. In the case of gender-mismatched transplantation, the XY chromosomes can be explored using fluorescent in situ hybridization on whole-tissue sections or Y-sequence-specific PCR after the laser microdissection of tumor cells. For cancers occurring after gender-matched transplantation, laser microdissection of tumor cells enables studies of microsatellite markers and high-resolution melting analysis of mitochondrial DNA on genes with marked polymorphism, provided these are different in the donor and the recipient. The results of different studies address the cancers that develop in both recipients and in transplants. The presence of chimeric cells in these two types of cancer implies an exchange of progenitor/stem-cells between transplant and recipient, and the plasticity of these progenitor/stem-cells contributes to epithelial cancers. The presence of chimeric cells in concomitant cancers and preneoplastic lesions implies that the oncogenesis of these cancers progresses through a multistep process.

  14. Immunogenicity and efficacy of chimeric dengue vaccine (DENVax) formulations in interferon-deficient AG129 mice.

    PubMed

    Brewoo, Joseph N; Kinney, Richard M; Powell, Tim D; Arguello, John J; Silengo, Shawn J; Partidos, Charalambos D; Huang, Claire Y-H; Stinchcomb, Dan T; Osorio, Jorge E

    2012-02-14

    Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.

  15. Preclinical Model To Test Human Papillomavirus Virus (HPV) Capsid Vaccines In Vivo Using Infectious HPV/Cottontail Rabbit Papillomavirus Chimeric Papillomavirus Particles▿

    PubMed Central

    Mejia, Andres F.; Culp, Timothy D.; Cladel, Nancy M.; Balogh, Karla K.; Budgeon, Lynn R.; Buck, Christopher B.; Christensen, Neil D.

    2006-01-01

    A human papillomavirus (HPV) vaccine consisting of virus-like particles (VLPs) was recently approved for human use. It is generally assumed that VLP vaccines protect by inducing type-specific neutralizing antibodies. Preclinical animal models cannot be used to test for protection against HPV infections due to species restriction. We developed a model using chimeric HPV capsid/cottontail rabbit papillomavirus (CRPV) genome particles to permit the direct testing of HPV VLP vaccines in rabbits. Animals vaccinated with CRPV, HPV type 16 (HPV-16), or HPV-11 VLPs were challenged with both homologous (CRPV capsid) and chimeric (HPV-16 capsid) particles. Strong type-specific protection was observed, demonstrating the potential application of this approach. PMID:17005666

  16. Evolving the Concept of Homology

    ERIC Educational Resources Information Center

    Naples, Virginia L.; Miller, Jon S.

    2009-01-01

    Understanding homology is fundamental to learning about evolution. The present study shows an exercise that can be varied in complexity, for which students compile research illustrating the fate of homologous fish skull elements, and assemble a mural to serve as a learning aid. The skull of the most primitive living Actinopterygian (bony fish),…

  17. Comparison of Recombinant Trypanosoma cruzi Peptide Mixtures versus Multiepitope Chimeric Proteins as Sensitizing Antigens for Immunodiagnosis▿

    PubMed Central

    Camussone, Cecilia; Gonzalez, Verónica; Belluzo, María S.; Pujato, Nazarena; Ribone, María E.; Lagier, Claudia M.; Marcipar, Iván S.

    2009-01-01

    The aim of this work was to determine the best strategy to display antigens (Ags) on immunochemical devices to improve test selectivity and sensitivity. We comparatively evaluated five Trypanosoma cruzi antigenic recombinant peptides, chose the three more sensitive ones, built up chimeras bearing these selected Ags, and systematically compared by enzyme-linked immunosorbent assay the performance of the assortments of those peptides with that of the multiepitope constructions bearing all those peptides lineally fused. The better-performing Ags that were compared included peptides homologous to the previously described T. cruzi flagellar repetitive Ag (here named RP1), shed acute-phase Ag (RP2), B13 (RP5), and the chimeric recombinant proteins CP1 and CP2, bearing repetitions of RP1-RP2 and RP1-RP2-RP5, respectively. The diagnostic performances of these Ags were assessed for discrimination efficiency by the formula +OD/cutoff value (where +OD is the mean optical density value of the positive serum samples tested), in comparison with each other either alone, in mixtures, or as peptide-fused chimeras and with total parasite homogenate (TPH). The discrimination efficiency values obtained for CP1 and CP2 were 25% and 52% higher, respectively, than those of their individual-Ag mixtures. CP2 was the only Ag that showed enhanced discrimination efficiency between Chagas' disease-positive and -negative samples, compared with TPH. This study highlights the convenience of performing immunochemical assays using hybrid, single-molecule, chimeric Ags instead of peptide mixtures. CP2 preliminary tests rendered 98.6% sensitivity when evaluated with a 141-Chagas' disease-positive serum sample panel and 99.4% specificity when assessed with a 164-Chagas' disease-negative serum sample panel containing 15 samples from individuals infected with Leishmania spp. PMID:19339486

  18. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.

    PubMed

    Wang, Haiying; Sun, Xingmin; Zhang, Yongrong; Li, Shan; Chen, Kevin; Shi, Lianfa; Nie, Weijia; Kumar, Raj; Tzipori, Saul; Wang, Jufang; Savidge, Tor; Feng, Hanping

    2012-08-01

    The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.

  19. Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis.

    PubMed

    Camussone, Cecilia; Gonzalez, Verónica; Belluzo, María S; Pujato, Nazarena; Ribone, María E; Lagier, Claudia M; Marcipar, Iván S

    2009-06-01

    The aim of this work was to determine the best strategy to display antigens (Ags) on immunochemical devices to improve test selectivity and sensitivity. We comparatively evaluated five Trypanosoma cruzi antigenic recombinant peptides, chose the three more sensitive ones, built up chimeras bearing these selected Ags, and systematically compared by enzyme-linked immunosorbent assay the performance of the assortments of those peptides with that of the multiepitope constructions bearing all those peptides lineally fused. The better-performing Ags that were compared included peptides homologous to the previously described T. cruzi flagellar repetitive Ag (here named RP1), shed acute-phase Ag (RP2), B13 (RP5), and the chimeric recombinant proteins CP1 and CP2, bearing repetitions of RP1-RP2 and RP1-RP2-RP5, respectively. The diagnostic performances of these Ags were assessed for discrimination efficiency by the formula +OD/cutoff value (where +OD is the mean optical density value of the positive serum samples tested), in comparison with each other either alone, in mixtures, or as peptide-fused chimeras and with total parasite homogenate (TPH). The discrimination efficiency values obtained for CP1 and CP2 were 25% and 52% higher, respectively, than those of their individual-Ag mixtures. CP2 was the only Ag that showed enhanced discrimination efficiency between Chagas' disease-positive and -negative samples, compared with TPH. This study highlights the convenience of performing immunochemical assays using hybrid, single-molecule, chimeric Ags instead of peptide mixtures. CP2 preliminary tests rendered 98.6% sensitivity when evaluated with a 141-Chagas' disease-positive serum sample panel and 99.4% specificity when assessed with a 164-Chagas' disease-negative serum sample panel containing 15 samples from individuals infected with Leishmania spp.

  20. The phenotype Ae1B: a probable result of chimerism.

    PubMed Central

    Longster, G H; Robinson, E A; North, D I

    1978-01-01

    An apparently normal healthy adult with the blood group phenotype Ae1B is described. The unusual ABO group is apparently the result of chimerism, the proportion of the minor population of cells being so small as to be only detectable by absorption and elution techniques. PMID:739532

  1. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  2. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  3. Construction of yellow fever-influenza A chimeric virus particles.

    PubMed

    Oliveira, B C E P D; Liberto, M I M; Barth, O M; Cabral, M C

    2002-12-01

    In order to obtain a better understanding of the functional mechanisms involved in the fusogenesis of enveloped viruses, the influenza A (X31) and the yellow fever (17DD) virus particles were used to construct a chimeric structure based on their distinct pH requirements for fusion, and the distinct malleability of their nucleocapsids. The malleable nucleocapsid of the influenza A virus particle is characterized by a pleomorphic configuration when observed by electron microscopy. A heat inactivated preparation of X31 virus was used as a lectin to interact with the sialic acid domains present in the 17DD virus envelope. The E spikes of 17DD virus were induced to promote fusion of both envelopes, creating a double genome enveloped structure, the chimeric yellow fever-influenza A virus particle. These chimeric viral particles, originally denominated 'partículas virais quiméricas' (PVQ), were characterized by their infectious capacity for different biological systems. Cell inoculation with PVQ resulted in viral products that showed similar characteristics to those obtained after 17DD virus infections. Our findings open new opportunities towards the understanding of both virus particles and aspects of cellular physiologic quality control. The yellow fever-influenza A chimeric particles, by means of their hybrid composition, should be a valuable tool in the study of cell biology and the function of viral components.

  4. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV).

    PubMed

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil; Kirnbauer, Reinhard

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17-36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous HPV

  5. Chimeric L2-Based Virus-Like Particle (VLP) Vaccines Targeting Cutaneous Human Papillomaviruses (HPV)

    PubMed Central

    Huber, Bettina; Schellenbacher, Christina; Shafti-Keramat, Saeed; Jindra, Christoph; Christensen, Neil

    2017-01-01

    Common cutaneous human papillomavirus (HPV) types induce skin warts, whereas species beta HPV are implicated, together with UV-radiation, in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. Licensed HPV vaccines contain virus-like particles (VLP) self-assembled from L1 major capsid proteins that provide type-restricted protection against mucosal HPV infections causing cervical and other ano-genital and oro-pharyngeal carcinomas and warts (condylomas), but do not target heterologous HPV. Experimental papillomavirus vaccines have been designed based on L2 minor capsid proteins that contain type-common neutralization epitopes, to broaden protection to heterologous mucosal and cutaneous HPV types. Repetitive display of the HPV16 L2 cross-neutralization epitope RG1 (amino acids (aa) 17–36) on the surface of HPV16 L1 VLP has greatly enhanced immunogenicity of the L2 peptide. To more directly target cutaneous HPV, L1 fusion proteins were designed that incorporate the RG1 homolog of beta HPV17, the beta HPV5 L2 peptide aa53-72, or the common cutaneous HPV4 RG1 homolog, inserted into DE surface loops of HPV1, 5, 16 or 18 L1 VLP scaffolds. Baculovirus expressed chimeric proteins self-assembled into VLP and VLP-raised NZW rabbit immune sera were evaluated by ELISA and L1- and L2-based pseudovirion (PsV) neutralizing assays, including 12 novel beta PsV types. Chimeric VLP displaying the HPV17 RG1 epitope, but not the HPV5L2 aa53-72 epitope, induced cross-neutralizing humoral immune responses to beta HPV. In vivo cross-protection was evaluated by passive serum transfer in a murine PsV challenge model. Immune sera to HPV16L1-17RG1 VLP (cross-) protected against beta HPV5/20/24/38/96/16 (but not type 76), while antisera to HPV5L1-17RG1 VLP cross-protected against HPV20/24/96 only, and sera to HPV1L1-4RG1 VLP cross-protected against HPV4 challenge. In conclusion, RG1-based VLP are promising next generation vaccine candidates to target cutaneous

  6. Object-oriented Persistent Homology

    PubMed Central

    Wang, Bao; Wei, Guo-Wei

    2015-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  7. Object-oriented Persistent Homology.

    PubMed

    Wang, Bao; Wei, Guo-Wei

    2016-01-15

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  8. Object-oriented persistent homology

    NASA Astrophysics Data System (ADS)

    Wang, Bao; Wei, Guo-Wei

    2016-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a

  9. The PIKE homolog Centaurin gamma regulates developmental timing in Drosophila.

    PubMed

    Gündner, Anna Lisa; Hahn, Ines; Sendscheid, Oliver; Aberle, Hermann; Hoch, Michael

    2014-01-01

    Phosphoinositide-3-kinase enhancer (PIKE) proteins encoded by the PIKE/CENTG1 gene are members of the gamma subgroup of the Centaurin superfamily of small GTPases. They are characterized by their chimeric protein domain architecture consisting of a pleckstrin homology (PH) domain, a GTPase-activating (GAP) domain, Ankyrin repeats as well as an intrinsic GTPase domain. In mammals, three PIKE isoforms with variations in protein structure and subcellular localization are encoded by the PIKE locus. PIKE inactivation in mice results in a broad range of defects, including neuronal cell death during brain development and misregulation of mammary gland development. PIKE -/- mutant mice are smaller, contain less white adipose tissue, and show insulin resistance due to misregulation of AMP-activated protein kinase (AMPK) and insulin receptor/Akt signaling. here, we have studied the role of PIKE proteins in metabolic regulation in the fly. We show that the Drosophila PIKE homolog, ceng1A, encodes functional GTPases whose internal GAP domains catalyze their GTPase activity. To elucidate the biological function of ceng1A in flies, we introduced a deletion in the ceng1A gene by homologous recombination that removes all predicted functional PIKE domains. We found that homozygous ceng1A mutant animals survive to adulthood. In contrast to PIKE -/- mouse mutants, genetic ablation of Drosophila ceng1A does not result in growth defects or weight reduction. Although metabolic pathways such as insulin signaling, sensitivity towards starvation and mobilization of lipids under high fed conditions are not perturbed in ceng1A mutants, homozygous ceng1A mutants show a prolonged development in second instar larval stage, leading to a late onset of pupariation. In line with these results we found that expression of ecdysone inducible genes is reduced in ceng1A mutants. Together, we propose a novel role for Drosophila Ceng1A in regulating ecdysone signaling-dependent second to third instar

  10. The semaphorontic view of homology

    PubMed Central

    Assis, Leandro C.S.; Rieppel, Olivier

    2015-01-01

    ABSTRACT The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra‐organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter‐species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity—ontogenetic (through development) and phylogenetic (via shared evolutionary history)—break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (‐state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (‐states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 578–587, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and

  11. Development of a flatfish-specific enzyme-linked immunosorbent assay for Fsh using a recombinant chimeric gonadotropin.

    PubMed

    Chauvigné, François; Verdura, Sara; Mazón, María José; Boj, Mónica; Zanuy, Silvia; Gómez, Ana; Cerdà, Joan

    2015-09-15

    In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh β subunit (Fshβ) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshβ-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshβ subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.

  12. Novel Antiproliferative Chimeric Compounds with Marked Histone Deacetylase Inhibitory Activity

    PubMed Central

    2014-01-01

    Given our interest in finding potential antitumor agents and in view of the multifactorial mechanistic nature of cancer, in the present work, taking advantage of the multifunctional ligands approach, new chimeric molecules were designed and synthesized by combining in single chemical entities structural features of SAHA, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives previously obtained by us and endowed with antiproliferative and pro-apoptotic activity. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on different tumor cell lines, as well as their HDACs inhibition. Among the other, trans-6 showed the most interesting biological profile, as it exhibited a strong pro-apoptotic activity in tumor cell lines in comparison with both of its parent compounds and a marked HDAC inhibition. PMID:25221651

  13. Mechanisms of Tolerance Induction by Hematopoietic Chimerism: The Immune Perspective.

    PubMed

    Yolcu, Esma S; Shirwan, Haval; Askenasy, Nadir

    2017-03-01

    Hematopoietic chimerism is one of the effective approaches to induce tolerance to donor-derived tissue and organ grafts without administration of life-long immunosuppressive therapy. Although experimental efforts to develop such regimens have been ongoing for decades, substantial cumulative toxicity of combined hematopoietic and tissue transplants precludes wide clinical implementation. Tolerance is an active immunological process that includes both peripheral and central mechanisms of mutual education of coresident donor and host immune systems. The major stages include sequential suppression of early alloreactivity, establishment of hematopoietic chimerism and suppressor cells that sustain the state of tolerance, with significant mechanistic and temporal overlap along the tolerization process. Efforts to devise less toxic transplant strategies by reduction of preparatory conditioning focus on modulation rather than deletion of residual host immunity and early reinstitution of regulatory subsets at the central and peripheral levels. Stem Cells Translational Medicine 2017;6:700-712.

  14. Characterization of chimeric plasmid cloning vehicles in Bacillus subtilis.

    PubMed

    Gryczan, T; Shivakumar, A G; Dubnau, D

    1980-01-01

    Restriction endonuclease cleavage maps of seven chimeric plasmids that may be used for molecular cloning in Bacillus subtilis are presented. These plasmids all carry multiple antibiotic resistance markers and were constructed by in vitro molecular cloning techniques. Several of the antibiotic resistance markers were shown to undergo insertional inactivation at specific restriction endonuclease sites. Kanamycin inactivation occurred at the BglII site of pUB110 derivatives, erythromycin inactivation occurred at the HpaI and BclI sites of pE194 derivatives, and streptomycin inactivation occurred at the HindIII site of pSA0501 derivatives. A stable mini-derivative of pBD12 was isolated and characterized. By using these plasmids, we identified proteins involved in plasmid-coded kanamycin and erythromycin resistance. The properties and uses of these chimeric plasmids in the further development of recombinant deoxyribonucleic acid technology in B. subtilis are discussed.

  15. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  16. Genetic engineering of chimeric antigen receptors using lamprey derived variable lymphocyte receptors

    PubMed Central

    Moot, Robert; Raikar, Sunil S; Fleischer, Lauren; Querrey, Melissa; Tylawsky, Daniel E; Nakahara, Hirotomo; Doering, Christopher B; Spencer, H Trent

    2016-01-01

    Chimeric antigen receptors (CARs) are used to redirect effector cell specificity to selected cell surface antigens. Using CARs, antitumor activity can be initiated in patients with no prior tumor specific immunity. Although CARs have shown promising clinical results, the technology remains limited by the availability of specific cognate cell target antigens. To increase the repertoire of targetable tumor cell antigens we utilized the immune system of the sea lamprey to generate directed variable lymphocyte receptors (VLRs). VLRs serve as membrane bound and soluble immune effectors analogous but not homologous to immunoglobulins. They have a fundamentally different structure than immunoglobulin (Ig)-based antibodies while still demonstrating high degrees of specificity and affinity. To test the functionality of VLRs as the antigen recognition domain of CARs, two VLR-CARs were created. One contained a VLR specific for a murine B cell leukemia and the other contained a VLR specific for the human T cell surface antigen, CD5. The CAR design consisted of the VLR sequence, myc-epitope tag, CD28 transmembrane domain, and intracellular CD3ζ signaling domain. We demonstrate proof of concept, including gene transfer, biosynthesis, cell surface localization, and effector cell activation for multiple VLR-CAR designs. Therefore, VLRs provide an alternative means of CAR-based cancer recognition. PMID:27933313

  17. Chimeric Amino Acid Rearrangements as Immune Targets in Prostate Cancer

    DTIC Science & Technology

    2016-05-01

    cancer using a variety of approaches, including dendritic cell-based vaccines (e.g. Provegene), pox-based vaccines (e.g. PROSTVAC) as well as...Background: Cancer vaccines aim to elicit antigen-specific T cell responses against tumor antigens. Most prostate cancer vaccines to date target mis...therapeutic vaccination against fusion oncogenes in prostate cancer. IMMUNOGENICITY OF CHIMERIC AMINO ACID SEQUENCES IN PROSTATE CANCER Jennifer L

  18. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    PubMed

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (p<0.0001) than individual construct vaccination. From this pilot study we could envisage that the chimeric DNA vaccine construct may offer an attractive strategy in controlling co-infection of leishmaniasis and tuberculosis and have important implication in future vaccine design.

  19. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Bedford, Trevor; Lyons, Ana M.; Hartl, Daniel L.

    2010-01-01

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3′ segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5′ and 3′ regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution. PMID:20534482

  20. Cord blood chimerism and relapse after haplo-cord transplantation.

    PubMed

    van Besien, Koen; Koshy, Nebu; Gergis, Usama; Mayer, Sebastian; Cushing, Melissa; Rennert, Hannah; Reich-Slotky, Ronit; Mark, Tomer; Pearse, Roger; Rossi, Adriana; Phillips, Adrienne; Vasovic, Liljana; Ferrante, Rosanna; Hsu, Yen-Michael; Shore, Tsiporah

    2017-02-01

    Haplo-cord stem cell transplantation combines the infusion of CD34 selected hematopoietic progenitors from a haplo-identical donor with an umbilical cord blood (UCB) graft from an unrelated donor and allows faster count recovery, with low rates of disease recurrence and chronic graft-versus-host disease (GVHD). But the contribution of the umbilical cord blood graft to long-term transplant outcome remains unclear. We analyzed 39 recipients of haplo-cord transplants with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), engrafted and in remission at 2 months. Median age was 66 (18-72) and all had intermediate, high, or very-high risk disease. Less than 20% UCB chimerism in the CD33 lineage was associated with an increased rate of disease recurrence (54% versus 11% p < 0.0001) and decrease in one year progression-free (20% versus 55%, p = 0.004) and overall survival (30% versus 62%, p = 0.02). Less than 100% UCB chimerism in the CD3 lineage was associated with increase rate of disease recurrence (46% versus 12%, p = 0.007). Persistent haplo-chimerism in the CD3 lineage was associated with an increased rate of disease recurrence (40% versus 15%, p = 0.009) Chimerism did not predict for treatment related mortality. The cumulative incidence of acute GVHD by day 100 was 43%. The cumulative incidence of moderate/severe chronic GVHD was only 5%. Engraftment of the umbilical cord blood grafts provides powerful graft-versus-leukemia (GVL) effects which protect against disease recurrence and is associated with low risk of chronic GVHD. Engraftment of CD34 selected haplo-identical cells can lead to rapid development of circulating T-cells, but when these cells dominate, GVL-effects are limited and rates of disease recurrence are high.

  1. Chimeric plantibody passively protects mice against aerosolized ricin challenge.

    PubMed

    Sully, Erin K; Whaley, Kevin J; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H; Pauly, Michael H; Velasco, Jesus; Hiatt, Ernie; Morton, Josh; Swope, Kelsi; Roy, Chad J; Zeitlin, Larry; Mantis, Nicholas J

    2014-05-01

    Recent incidents in the United States and abroad have heightened concerns about the use of ricin toxin as a bioterrorism agent. In this study, we produced, using a robust plant-based platform, four chimeric toxin-neutralizing monoclonal antibodies that were then evaluated for the ability to passively protect mice from a lethal-dose ricin challenge. The most effective antibody, c-PB10, was further evaluated in mice as a therapeutic following ricin exposure by injection and inhalation.

  2. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID

  3. Prism adaptation changes perceptual awareness for chimeric visual objects but not for chimeric faces in spatial neglect after right-hemisphere stroke.

    PubMed

    Sarri, Margarita; Kalra, Lalit; Greenwood, Richard; Driver, Jon

    2006-06-01

    Prism adaptation can ameliorate some symptoms of left spatial neglect after right-hemisphere stroke. The mechanisms behind this remain unclear. Prism therapy may increase exploration towards the contralesional side, yet without improving perceptual awareness, as apparently for the left side of chimeric face stimuli (Ferber et al. 2003). However, other prism studies suggest that perceptual awareness might be improved (e.g., Maravita et al., 2003). We tested the impact of prism therapy on visual awareness for the left side of chimeric objects as well as chimeric faces, in three neglect patients. Prism therapy dramatically improved awareness for the identity of the left side of chimeric non-face objects, but had no effect on judging expressions for chimeric faces. The latter may thus be unique in showing no prism benefit.

  4. Chimeric creatures in Greek mythology and reflections in science.

    PubMed

    Bazopoulou-Kyrkanidou, E

    2001-04-15

    "The Chimaera" in Homer's Iliad, "was of divine stock, not of men, in the forepart a lion, in the hinder a serpent, and in the midst a goat, ellipsis Bellerophon slew her, trusting in the signs of the gods." In Hesiod's Theogony it is emphasized that "Chimaera ellipsis had three heads, one of a grim-eyed lion, another of a goat, and another of a snakeellipsis". In addition to this interspecies animal chimera, human/animal chimeras are referred to in Greek mythology, preeminent among them the Centaurs and the Minotaur. The Centaurs, as horse/men, first appear in Geometric and early Archaic art, but in the literature not until early in the fifth century B.C. The bullheaded-man Minotaur, who is not certainly attested in the literary evidence until circa 500 B.C., first appears in art about 650 B.C. Attempts, in the fourth century B.C. and thereafter, to rationalize their mythical appearance were in vain; their chimeric nature retained its fascinating and archetypal form over the centuries. Early in the 1980s, experimental sheep/goat chimeras were produced removing the reproductive barrier between these two animal species. Late in the 1990s, legal, political, ethical, and moral fights loomed over a patent bid on human/animal chimeras. Chimeric technology is recently developed; however, the concept of chimerism has existed in literary and artistic form in ancient mythology. This is yet another example where art and literature precede scientific research and development.

  5. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  6. Utilizing chimeric proteins for exploring the cellular fate of endogenous proteins.

    PubMed

    Ben-Yehudah, Ahmi; Aqeilan, Rami; Belostotsky, Ruth; Azar, Yehudith; Lorberboum-Galski, Haya

    2002-01-11

    We recently designed and constructed chimeric proteins for the elimination of specific cell populations. These chimeric proteins are composed of a targeting component fused to an apoptotic protein as the killing moiety. However, chimeric proteins can serve not only to eliminate cell populations, but also as "biological tools" for studying the fate of endogenous proteins. We show here that upon entering their target cell, a variety of chimeric proteins composed of an endogenous protein as their killing moiety reach the subcellular location of their endogenous counterpart. In contrast, bacterial-based killing domains head for the subcellular site of their substrate. Moreover, the chimeric protein acts similarly to the endogenous protein, while causing the cell to die. Therefore, chimeric proteins may serve as a unique tool for investigating cellular proteins and their intracellular localization, without the need to overexpress them.

  7. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    PubMed

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  8. Chimeric Proteins to Detect DNA Damage and Mismatches

    SciTech Connect

    McCutchen-Maloney, S; Malfatti, M; Robbins, K M

    2002-01-14

    The goal of this project was to develop chimeric proteins composed of a DNA mismatch or damage binding protein and a nuclease, as well as methods to detect DNA mismatches and damage. We accomplished this through protein engineering based on using polymerase chain reactions (PCRs) to create chimeras with novel functions for damage and mismatch detection. This project addressed fundamental questions relating to disease susceptibility and radiation-induced damage in cells. It also supported and enhanced LLNL's competency in the emerging field of proteomics. In nature, DNA is constantly being subjected to damaging agents such as exposure to ultraviolet (UV) radiation and various environmental and dietary carcinogens. If DNA damage is not repaired however, mutations in DNA result that can eventually manifest in cancer and other diseases. In addition to damage-induced DNA mutations, single nucleotide polymorphisms (SNPs), which are variations in the genetic sequence between individuals, may predispose some to disease. As a result of the Human Genome Project, the integrity of a person's DNA can now be monitored. Therefore, methods to detect DNA damage, mutations, and SNPs are useful not only in basic research but also in the health and biotechnology industries. Current methods of detection often use radioactive labeling and rely on expensive instrumentation that is not readily available in many research settings. Our methods to detect DNA damage and mismatches employ simple gel electrophoresis and flow cytometry, thereby alleviating the need for radioactive labeling and expensive equipment. In FY2001, we explored SNP detection by developing methods based on the ability of the chimeric proteins to detect mismatches. Using multiplex assays with flow cytometry and fluorescent beads to which the DNA substrates where attached, we showed that several of the chimeras possess greater affinity for damaged and mismatched DNA than for native DNA. This affinity was demonstrated in

  9. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein

    PubMed Central

    Soleimani, Meysam; Mirmohammad-Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Jahanian-Najafabadi, Ali

    2016-01-01

    Background: Chimeric proteins consisting of a targeting moiety and a cytotoxic moiety are now under intense research focus for targeted therapy of cancer. Here, we report cloning, expression, and purification of such a targeted chimeric protein made up of p28 peptide as both targeting and anticancer moiety fused to NRC peptide as a cytotoxic moiety. However, since the antimicrobial activity of the NRC peptide would intervene expression of the chimeric protein in Escherichia coli, we evaluated the effects of two fusion tags, that is, thioredoxin (Trx) and 6x-His tags, and various expression conditions, on the expression of p28-NRC chimeric protein. Materials and Methods: In order to express the chimeric protein with only 6x-His tag, pET28 expression plasmid was used. Cloning in pET32 expression plasmid was performed to add both Trx and 6x-His tags to the chimeric protein. Expression of the chimeric protein with both plasmids was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis following optimization of expression conditions and host strains. Results: Expression of the chimeric protein in pET28a was performed. However, expression yield of the chimeric protein was low. Optimization of culture conditions and host strains led to reasonable expression yield of the toxic chimeric protein in pET32a vector. In cases of both plasmids, approximately 10 kDa deviation of the apparent molecular weight from the theoretical one was seen in SDS-PAGE of purified chimeric proteins. Conclusions: The study leads to proper expression and purification yield of p28-NRC chimeric protein with Trx tag following optimizing culture conditions and host strains. PMID:27169101

  10. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii).

    PubMed

    Ross, C N; French, J A; Ortí, G

    2007-04-10

    The formation of viable genetic chimeras in mammals through the transfer of cells between siblings in utero is rare. Using microsatellite DNA markers, we show here that chimerism in marmoset (Callithrix kuhlii) twins is not limited to blood-derived hematopoietic tissues as was previously described. All somatic tissue types sampled were found to be chimeric. Notably, chimerism was demonstrated to be present in germ-line tissues, an event never before documented as naturally occurring in a primate. In fact, we found that chimeric marmosets often transmit sibling alleles acquired in utero to their own offspring. Thus, an individual that contributes gametes to an offspring is not necessarily the genetic parent of that offspring. The presence of somatic and germ-line chimerism may have influenced the evolution of the extensive paternal and alloparental care system of this taxon. Although the exact mechanisms of sociobiological change associated with chimerism have not been fully explored, we show here that chimerism alters relatedness between twins and may alter the perceived relatedness between family members, thus influencing the allocation of parental care. Consistent with this prediction, we found a significant correlation between paternal care effort and the presence of epithelial chimerism, with males carrying chimeric infants more often than nonchimeric infants. Therefore, we propose that the presence of placental chorionic fusion and the exchange of cell lines between embryos may represent a unique adaptation affecting the evolution of cooperative care in this group of primates.

  11. Characterization of chimeric Bacillus thuringiensis Vip3 toxins.

    PubMed

    Fang, Jun; Xu, Xiaoli; Wang, Ping; Zhao, Jian-Zhou; Shelton, Anthony M; Cheng, Jiaan; Feng, Ming-Guang; Shen, Zhicheng

    2007-02-01

    Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.

  12. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins.

    PubMed

    Wong Po Foo, Cheryl; Patwardhan, Siddharth V; Belton, David J; Kitchel, Brandon; Anastasiades, Daphne; Huang, Jia; Naik, Rajesh R; Perry, Carole C; Kaplan, David L

    2006-06-20

    Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5-10 microm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5-2 microm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials.

  13. Restriction-Stimulated Homologous Recombination of Plasmids by the Rece Pathway of Escherichia Coli

    PubMed Central

    Nussbaum, A.; Shalit, M.; Cohen, A.

    1992-01-01

    To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI(+) cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the bioluminescence recombination assay, respectively. Plasmid recombinants were analyzed with restriction endonucleases. Our results indicate that a DSB can induce more than one type of RecE-mediated recombination. A DSB within the homology induced intermolecular recombination that followed the rules of the DSB repair model: (1) Recombination was enhanced by in vivo restriction. (2) Repair of the break depended on homologous sequences on the resident plasmid. (3) Break-repair was frequently associated with conversion of alleles that were cis to the break. (4) Conversion frequency decreased as the distance from the break increased. (5) Some clones contained a mixture of plasmid recombinants as expected by replication of a heteroduplex in the primary recombinant. The rules of the DSB repair model were not followed when recombination was induced by a DSB outside the homology. Both the cut and the uncut substrates were recipients in conversion events. Recombination events were associated with deletions that spanned the break site, but these deletions did not reach the homology. We propose that a break outside the homology may stimulate a RecE-mediated recombination pathway that does not involve direct participation of DNA ends in the homologous pairing reaction. PMID:1732167

  14. Bioengineered Chimeric Spider Silk-Uranium Binding Proteins

    PubMed Central

    Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.

    2014-01-01

    Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989

  15. Chimeric transcripts resulting from complex duplications in chromosome Xq28.

    PubMed

    Zuccherato, Luciana W; Alleva, Benjamin; Whiters, Marjorie A; Carvalho, Claudia M B; Lupski, James R

    2016-02-01

    Gene fusions have been observed in somatic alterations in cancer and in schizophrenia. However, the underlying mechanism(s) for their formation are poorly understood. We experimentally demonstrated the expression of splicing variants of in silico predicted chimeric genes F8/CSAG1 and BCAP31/TEX28 in two individuals with de novo complex genomic rearrangements of Xq28; F8/CSAG1 includes exonization of an ERVL-MaLR intronic repetitive element. We provide evidence that replicative repair may contribute to exon shuffling processes and diversify the repertoire of expressed transcripts.

  16. Chimeric antigen receptor T-cell therapy for solid tumors

    PubMed Central

    Newick, Kheng; Moon, Edmund; Albelda, Steven M

    2016-01-01

    Chimeric antigen receptor (CAR) T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias). This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment. PMID:27162934

  17. Deep homology: a view from systematics.

    PubMed

    Scotland, Robert W

    2010-05-01

    Over the past decade, it has been discovered that disparate aspects of morphology - often of distantly related groups of organisms - are regulated by the same genetic regulatory mechanisms. Those discoveries provide a new perspective on morphological evolutionary change. A conceptual framework for exploring these research findings is termed 'deep homology'. A comparative framework for morphological relations of homology is provided that distinguishes analogy, homoplasy, plesiomorphy and synapomorphy. Four examples - three from plants and one from animals - demonstrate that homologous developmental mechanisms can regulate a range of morphological relations including analogy, homoplasy and examples of uncertain homology. Deep homology is part of a much wider range of phenomena in which biological (genes, regulatory mechanisms, morphological traits) and phylogenetic levels of homology can both be disassociated. Therefore, to understand homology, precise, comparative, independent statements of both biological and phylogenetic levels of homology are necessary.

  18. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...: Chimeric West Nile/Dengue Viruses AGENCY: Centers for Disease Control and Prevention (CDC), Department of... license, in the field of use of in vitro diagnostics for dengue virus infection, to practice the... Application 61/049,342, filed 4/30/2008, entitled ``Engineered, Chimeric West Nile/Dengue Viruses;''...

  19. Chimeric Genes as a Source of Rapid Evolution in Drosophila melanogaster

    PubMed Central

    Rogers, Rebekah L.; Hartl, Daniel L.

    2012-01-01

    Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (dS < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster. PMID:21771717

  20. Mixed chimerism to induce tolerance for solid organ transplantation

    SciTech Connect

    Wren, S.M.; Nalesnik, M.; Hronakes, M.L.; Oh, E.; Ildstad, S.T. )

    1991-04-01

    Chimerism, or the coexistence of tissue elements from more than one genetically different strain or species in an organism, is the only experimental state that results in the induction of donor-specific transplantation tolerance. Transplantation of a mixture of T-cell-depleted syngeneic (host-type) plus T-cell-depleted allogeneic (donor) bone marrow into a normal adult recipient mouse (A + B----A) results in mixed allogeneic chimerism. Recipient mice exhibit donor-specific transplantation tolerance, yet have full immunocompetence to recognize and respond to third-party transplantation antigens. After complete hematolymphopoietic repopulation at 28 days, animals accept a donor-specific skin graft but reject major histocompatibility complex (MHC) locus-disparate third-party grafts. We now report that permanent graft acceptance can also be achieved when the graft is placed at the time of bone marrow transplantation. Histologically, grafts were viable and had only minimal inflammatory changes. This model may have potential future clinical application for the induction of donor-specific transplantation tolerance.

  1. Chimeric behavior of excited thioxanthone in protic solvents: II. Theory.

    PubMed

    Rai-Constapel, Vidisha; Villnow, Torben; Ryseck, Gerald; Gilch, Peter; Marian, Christel M

    2014-12-18

    The chimeric behavior of thioxanthone in protic solvents has been investigated employing computational chemistry methods. In particular, methanol and 2,2,2-trifluoroethanol have been chosen in this study. The solvent environment has been modeled using microsolvation in combination with a conductor-like screening model. The vertical excitation spectrum within the same solvent is seen to depend on the number of specific bonds formed between the chromophore and the solvent molecules. Two different models have been discussed in this work, namely, one and two H-bond models. In particular, the formation of the second H-bond causes the energy gap between the πHπL* and nOπL* states to increase further. Excited-state absorption spectra for the photophysically relevant electronic states have been theoretically determined for comparison with the time-resolved spectra recorded experimentally [Villnow, T.; Ryseck, G.; Rai-Constapel, V.; Marian, C. M.; Gilch, P. J. Phys. Chem. A 2014]. The equilibration of the 1(πHπL*) and 3(nOπL*) states holds responsible for the chimeric behavior. This equilibrium sets in with a calculated time constant of 23 ps in methanol and 14 ps in TFE (5 and 10 ps in experiment, respectively). The radiative decay from the optically bright 1(πHπL*) state is computed to occur with a time constant of 25 ns in both solvents (14–25 ns in experiment).

  2. Preliminary analgesic properties of deltorphin-5-methoxytryptamine chimeric opioid peptides.

    PubMed

    Wang, Jing; Wang, Li; Li, Meixing; Jin, Qiaoying; Dong, Shouliang

    2011-05-01

    To further understand the relationship between melatonin (MT) and deltorphins (Dels) in pain modulation, two chimeric peptides (Del I-5-methoxytryptamine and Del II-5-methoxytryptamine) both containing 5-methoxytryptamine at the carboxyl-terminal of Dels mimicking MT were designed, synthesized and characterized by tail-flick assay in mice. Results showed that intracerebroventricular (i.c.v.) administration of Del I-5-methoxytryptamine (YaFDVVG-X, X is 5-methoxytryptamine, 5, 50 nmol/kg) or Del II-5-methoxytryptamine (YaFEVVG-X, X is 5-methoxytryptamine, 5, 50 nmol/kg) produced stronger analgesia than deltorphins (Del I or Del II alone), and acting even longer and stronger than cocktails containing Del I or Del II (50 nmol/kg) and MT (50 nmol/kg). Naloxone (i.p., 100 nmol/kg) could totally block the analgesic effects induced by the chimeric peptides, while luzindole (specific antagonist of melatonin receptor, i.p., 250 nmol/kg) could only partially inhibit the effects down to that induced by Dels alone. Interestingly, Del I-5-methoxytryptamine and Del II-5-methoxytryptamine act weaker with δ receptor than Dels in vitro but could induce much longer analgesia through co-activating δ opioid receptor and melatonin receptor.

  3. Chimeric antigen receptor engineered stem cells: a novel HIV therapy.

    PubMed

    Zhen, Anjie; Carrillo, Mayra A; Kitchen, Scott G

    2017-03-01

    Despite the success of combination antiretroviral therapy (cART) for suppressing HIV and improving patients' quality of life, HIV persists in cART-treated patients and remains an incurable disease. Financial burdens and health consequences of lifelong cART treatment call for novel HIV therapies that result in a permanent cure. Cellular immunity is central in controlling HIV replication. However, HIV adopts numerous strategies to evade immune surveillance. Engineered immunity via genetic manipulation could offer a functional cure by generating cells that have enhanced antiviral activity and are resistant to HIV infection. Recently, encouraging reports from several human clinical trials using an anti-CD19 chimeric antigen receptor (CAR) modified T-cell therapy for treating B-cell malignancies have provided valuable insights and generated remarkable enthusiasm in engineered T-cell therapy. In this review, we discuss the development of HIV-specific chimeric antigen receptors and the use of stem cell based therapies to generate lifelong anti-HIV immunity.

  4. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    PubMed

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  5. Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease

    SciTech Connect

    Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.; Torbett, Bruce E.; Elder, John H.; Stout, C. David

    2011-06-01

    Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC{sub 50} values in the nanomolar range.

  6. Donor Chimerism Early after Reduced-intensity Conditioning Hematopoietic Stem Cell Transplantation Predicts Relapse and Survival

    PubMed Central

    Koreth, John; Kim, Haesook T.; Nikiforow, Sarah; Milford, Edgar L.; Armand, Philippe; Cutler, Corey; Glotzbecker, Brett; Ho, Vincent T.; Antin, Joseph H.; Soiffer, Robert J.; Ritz, Jerome; Alyea, Edwin P.

    2015-01-01

    The impact of early donor cell chimerism on outcomes of T-replete reduced-intensity conditioning (RIC) hematopoietic stem cell transplantation (HSCT) is ill-defined. We evaluated day 30 (D30) and 100 (D100) total donor cell chimerism after RIC HSCT undertaken between 2002 and 2010 at our institution, excluding patients who died or relapsed before D30. When available, donor T-cell chimerism was also assessed. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), relapse and non-relapse mortality (NRM). 688 patients with hematologic malignancies (48% myeloid; 52% lymphoid) and a median age of 57 years (range, 18-74) undergoing RIC HSCT with T-replete donor grafts (97% peripheral blood; 92% HLA-matched) and median follow-up of 58.2 months (range, 12.6-120.7) were evaluated. In multivariable analysis total donor cell and T-cell chimerism at D30 and D100 each predicted RIC HSCT outcomes, with D100 total donor cell chimerism most predictive. D100 total donor cell chimerism <90% was associated with increased relapse (HR 2.54, 95% CI 1.83-3.51, p<0.0001), impaired PFS (HR 2.01, 95% CI 1.53-2.65, p<0.0001) and worse OS (1.50, 95% CI 1.11-2.04, p=0.009), but not NRM (HR 0.76; 95% CI 0.44-2.27, p=0.33). There was no additional utility of incorporating sustained D30-D100 total donor cell chimerism, or T-cell chimerism. Low donor chimerism early after RIC HSCT is an independent risk factor for relapse and impaired survival. Donor chimerism assessment early after RIC HSCT can prognosticate for long-term outcomes and help identify high-risk patient cohorts that may benefit from additional therapeutic interventions. PMID:24907627

  7. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  8. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase

    NASA Technical Reports Server (NTRS)

    Sathyanarayanan, P. V.; Siems, W. F.; Jones, J. P.; Poovaiah, B. W.

    2001-01-01

    The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.

  9. Structure-based affinity maturation of a chimeric anti-ricin antibody C4C13.

    PubMed

    Luo, Longlong; Luo, Qun; Guo, Leiming; Lv, Ming; Lin, Zhou; Geng, Jing; Li, Xinying; Li, Yan; Shen, Beifen; Qiao, Chunxia; Feng, Jiannan

    2014-01-01

    Ricin is a highly lethal toxin. Anti-ricin chimeric monoclonal antibody (mAb) C4C13 was prepared in our lab; however, its binding affinity was much weaker than that of the parent antibody 4C13. In this study, based on the computer-guided homology modeling and conformational optimization methods, the 3-D structure of C4C13 variable regions Fv was constructed and optimized. Using molecular docking and dynamics simulation methods, the 3-D complex structure of ricin and C4C13 Fv was obtained. Considering the orientation property, surface electrostatic distribution, residues chemical and physical character and intermolecular hydrogen bond, the binding mode and key residues were predicted. According to C4C13 Fv fragment and ricin complementary binding surface, electrostatic attraction periphery and van der Waals interaction interface, three mutants (i.e., M1 (N(H102)F, W(H103)Y); M2 (W(H103)Y) and M3 (R(L90)G)) were designed, in which M1 and M2 were predicted to possess higher antigen-binding activity than C4C13, while M3 was weaker. The relative affinity assays by ELISA showed that M1 and M2 mutations had higher affinity (9.6 and 18.3 nmol/L) than C4C13 (130 nmol/L) and M3 had weaker affinity (234.5 nmol/L) than C4C13. The results showed that the modeling complex structure of the antigen (ricin) and antibody (C4C13) is reasonable. Our work offered affinity maturated antibodies by site mutations, which were beneficial for valuable anti-ricin antibody design and preparation in future.

  10. Orientation Dependence in Homologous Recombination

    PubMed Central

    Yamamoto, K.; Takahashi, N.; Fujitani, Y.; Yoshikura, H.; Kobayashi, I.

    1996-01-01

    Homologous recombination was investigated in Escherichia coli with two plasmids, each carrying the homologous region (two defective neo genes, one with an amino-end deletion and the other with a carboxyl-end deletion) in either direct or inverted orientation. Recombination efficiency was measured in recBC sbcBC and recBC sbcA strains in three ways. First, we measured the frequency of cells carrying neo(+) recombinant plasmids in stationary phase. Recombination between direct repeats was much more frequent than between inverted repeats in the recBC sbcBC strain but was equally frequent in the two substrates in the recBC sbcA strain. Second, the fluctuation test was used to exclude bias by a rate difference between the recombinant and parental plasmids and led to the same conclusion. Third, direct selection for recombinants just after transformation with or without substrate double-strand breaks yielded essentially the same results. Double-strand breaks elevated recombination in both the strains and in both substrates. These results are consistant with our previous findings that the major route of recombination in recBC sbcBC strains generates only one recombinant DNA from two DNAs and in recBC sbcA strains generates two recombinant DNAs from two DNAs. PMID:8722759

  11. Structural homologies among the hemopoietins.

    PubMed Central

    Schrader, J W; Ziltener, H J; Leslie, K B

    1986-01-01

    A group of cytokines characterized by a common set of target cells--namely, the pluripotential hemopoietic stem cells or their cellular derivatives--share similarities in the amino acid sequence at their N terminus or in the putative signal peptide immediately prior to the published N terminus. Murine P-cell-stimulating factor (PSF), murine and human interleukin 2 (IL-2), murine and human granulocyte-macrophage colony-stimulating factor (GM-CSF), human erythropoietin, and human interleukin 1 beta all share alanine as the N-terminal amino acid and have some similarities in the succeeding three or four amino acids. In the case of murine PSF and GM-CSF, the six N-terminal amino acids are readily cleaved from mature molecules and are lacking from the N-terminal amino acid sequences reported initially. A sixth cytokine, colony-stimulating factor 1, has an alanine followed by a similar pattern of five amino acids at the end of the putative signal peptide. GM-CSF and IL-2 have more extensive homology, about 25% of residues being identical in three regions that comprise about 70% of the molecules. Only minor similarities of uncertain significance were found among the complete amino acid sequences of the other cytokines. Although its evolutionary origin is uncertain, the homology around the N terminus may provide a structural marker for a group of cytokines active on the pluripotential hemopoietic stem cell and its derivatives. PMID:3085095

  12. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

    PubMed Central

    Maude, Shannon L.; Frey, Noelle; Shaw, Pamela A.; Aplenc, Richard; Barrett, David M.; Bunin, Nancy J.; Chew, Anne; Gonzalez, Vanessa E.; Zheng, Zhaohui; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, Jan J.; Rheingold, Susan R.; Shen, Angela; Teachey, David T.; Levine, Bruce L.; June, Carl H.; Porter, David L.; Grupp, Stephan A.

    2014-01-01

    BACKGROUND Relapsed acute lymphoblastic leukemia (ALL) is difficult to treat despite the availability of aggressive therapies. Chimeric antigen receptor–modified T cells targeting CD19 may overcome many limitations of conventional therapies and induce remission in patients with refractory disease. METHODS We infused autologous T cells transduced with a CD19-directed chimeric antigen receptor (CTL019) lentiviral vector in patients with relapsed or refractory ALL at doses of 0.76×106 to 20.6×106 CTL019 cells per kilogram of body weight. Patients were monitored for a response, toxic effects, and the expansion and persistence of circulating CTL019 T cells. RESULTS A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the anti–interleukin-6 receptor antibody tocilizumab. CONCLUSIONS Chimeric antigen receptor–modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by

  13. Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine

    PubMed Central

    Whitaker, Neal; Berry, Trista M.; Rosenthal, Nathan; Gordon, Jay E.; Gonzalez-Rivera, Christian; Sheehan, Kathy B.; Truchan, Hilary K.; VieBrock, Lauren; Newton, Irene L. G.; Carlyon, Jason A.

    2016-01-01

    ABSTRACT Bacterial type IV secretion systems (T4SSs) are composed of two major subfamilies, conjugation machines dedicated to DNA transfer and effector translocators for protein transfer. We show here that the Escherichia coli pKM101-encoded conjugation system, coupled with chimeric substrate receptors, can be repurposed for transfer of heterologous effector proteins. The chimeric receptors were composed of the N-terminal transmembrane domain of pKM101-encoded TraJ fused to soluble domains of VirD4 homologs functioning in Agrobacterium tumefaciens, Anaplasma phagocytophilum, or Wolbachia pipientis. A chimeric receptor assembled from A. tumefaciens VirD4 (VirD4At) mediated transfer of a MOBQ plasmid (pML122) and A. tumefaciens effector proteins (VirE2, VirE3, and VirF) through the pKM101 transfer channel. Equivalent chimeric receptors assembled from the rickettsial VirD4 homologs similarly supported the transfer of known or candidate effectors from rickettsial species. These findings establish a proof of principle for use of the dedicated pKM101 conjugation channel, coupled with chimeric substrate receptors, to screen for translocation competency of protein effectors from recalcitrant species. Many T4SS receptors carry sequence-variable C-terminal domains (CTDs) with unknown function. While VirD4At and the TraJ/VirD4At chimera with their CTDs deleted supported pML122 transfer at wild-type levels, ΔCTD variants supported transfer of protein substrates at strongly diminished or elevated levels. We were unable to detect binding of VirD4At's CTD to the VirE2 effector, although other VirD4At domains bound this substrate in vitro. We propose that CTDs evolved to govern the dynamics of substrate presentation to the T4SS either through transient substrate contacts or by controlling substrate access to other receptor domains. IMPORTANCE Bacterial type IV secretion systems (T4SSs) display striking versatility in their capacity to translocate DNA and protein substrates to

  14. A technical application of quantitative next generation sequencing for chimerism evaluation

    PubMed Central

    Aloisio, Michelangelo; Licastro, Danilo; Caenazzo, Luciana; Torboli, Valentina; D'eustacchio, Angela; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2016-01-01

    At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44-amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (<1%). The protocol followed the standard Ion AmpliSeq library preparation and Ion Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification. PMID:27499173

  15. Chimeric Antigen Receptor T Cell Therapy in Hematology.

    PubMed

    Ataca, Pınar; Arslan, Önder

    2015-12-01

    It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.

  16. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy.

  17. The pharmacology of second-generation chimeric antigen receptors.

    PubMed

    van der Stegen, Sjoukje J C; Hamieh, Mohamad; Sadelain, Michel

    2015-07-01

    Second-generation chimeric antigen receptors (CARs) retarget and reprogramme T cells to augment their antitumour efficacy. The combined activating and co-stimulatory domains incorporated in these CARs critically determine the function, differentiation, metabolism and persistence of engineered T cells. CD19-targeted CARs that incorporate CD28 or 4-1BB signalling domains are the best known to date. Both have shown remarkable complete remission rates in patients with refractory B cell malignancies. Recent data indicate that CD28-based CARs direct a brisk proliferative response and boost effector functions, whereas 4-1BB-based CARs induce a more progressive T cell accumulation that may compensate for less immediate potency. These distinct kinetic features can be exploited to further develop CAR-based T cell therapies for a variety of cancers. A new field of immunopharmacology is emerging.

  18. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy

    PubMed Central

    Dai, Hanren; Wang, Yao; Lu, Xuechun

    2016-01-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  19. Modeling cognition and disease using human glial chimeric mice.

    PubMed

    Goldman, Steven A; Nedergaard, Maiken; Windrem, Martha S

    2015-08-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear that transplanted hGPCs not only engraft and expand within murine hosts, but dynamically outcompete the resident progenitors so as to ultimately dominate the host brain. The engrafted human progenitor cells proceed to generate parenchymal astrocytes, and when faced with a hypomyelinated environment, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our ability to construct human glial chimeras with the production of patient-specific hGPCs derived from pluripotential stem cells, we may now establish mice in which a substantial proportion of resident glia are both human and disease-derived. These mice in particular may provide us new opportunities for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human neurological and neuropsychiatric disease.

  20. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic?

    PubMed Central

    Cavalier-Smith, T; Allsopp, M T; Chao, E E

    1994-01-01

    All algae with chloroplasts located not freely in the cytosol, but inside two extra membranes, probably arose chimerically by the permanent fusion of two different eukaryote cells: a protozoan host and a eukaryotic algal symbiont. Two such groups, cryptomonads (phylum Cryptista) and Chlorarachniophyta, still retain a DNA-containing relic of the nucleus of the algal endosymbiont, known as the nucleomorph, as well as the host nucleus. These two phyla were traditionally assumed to have obtained their chloroplasts separately by two independent symbioses. We have sequenced the nuclear and the nucleomorph 18S rRNA genes of the nonphotosynthetic cryptomonad Chilomonas paramecium. Our phylogenetic analysis suggests that cryptomonad and chlorarachniophyte nucleomorphs may be related to each other and raises the possibility that both phyla may have diverged from a common ancestral chimeric cell that originated by a single endosymbiosis involving an algal endosymbiont related to the ancestor of red algae. But, because of the instability of the molecular trees when different taxa are added, there is insufficient evidence to overturn the traditional view that Chlorarachnion nucleomorphs evolved separately from a relative of green algae. The four phyla that contain chromophyte algae (those with chlorophyll c--i.e., Cryptista, Heterokonta, Haptophyta, Dinozoa) are distantly related to each other and to Chlorarachniophyta on our trees. However, all of the photosynthetic taxa within each of these four phyla radiate from each other very substantially after the radiation of the four phyla themselves. This favors the view that the common ancestor of these four phyla was not photosynthetic and that chloroplasts were implanted separately into each much more recently. This probable polyphyly of the chromophyte algae, if confirmed, would make it desirable to treat Cryptista, Heterokonta, and Haptophyta as separate kingdoms, rather than to group them together in the single kingdom

  1. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  2. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  3. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.

    PubMed

    Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa

    2009-01-01

    Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.

  4. Generating chimeric mice from embryonic stem cells via vial coculturing or hypertonic microinjection.

    PubMed

    Lee, Kun-Hsiung

    2014-01-01

    The generation of a fertile embryonic stem cell (ESC)-derived or F0 (100 % coat color chimerism) mice is the final criterion in proving that the ESC is truly pluripotent. Many methods have been developed to produce chimeric mice. To date, the most popular methods for generating chimeric embryos is well sandwich aggregation between zona pellucida (ZP) removed (denuded) 2.5-day post-coitum (dpc) embryos and ESC clumps, or direct microinjection of ESCs into the cavity (blastocoel) of 3.5-dpc blastocysts. However, due to systemic limitations and the disadvantages of conventional microinjection, aggregation, and coculturing, two novel methods (vial coculturing and hypertonic microinjection) were developed in recent years at my laboratory.Coculturing 2.5-dpc denuded embryos with ESCs in 1.7-mL vials for ~3 h generates chimeras that have significantly high levels of chimerism (including 100 % coat color chimerism) and germline transmission. This method has significantly fewer instrumental and technological limitations than existing methods, and is an efficient, simple, inexpensive, and reproducible method for "mass production" of chimeric embryos. For laboratories without a microinjection system, this is the method of choice for generating chimeric embryos. Microinjecting ESCs into a subzonal space of 2.5-dpc embryos can generate germline-transmitted chimeras including 100 % coat color chimerism. However, this method is adopted rarely due to the very small and tight space between ZP and blastomeres. Using a laser pulse or Piezo-driven instrument/device to help introduce ESCs into the subzonal space of 2.5-dpc embryos demonstrates the superior efficiency in generating ESC-derived (F0) chimeras. Unfortunately, due to the need for an expensive instrument/device and extra fine skill, not many studies have used either method. Recently, ESCs injected into the large subzonal space of 2.5-dpc embryos in an injection medium containing 0.2-0.3 M sucrose very efficiently generated

  5. Efficient signal transduction by a chimeric yeast-mammalian G protein alpha subunit Gpa1-Gsalpha covalently fused to the yeast receptor Ste2.

    PubMed Central

    Medici, R; Bianchi, E; Di Segni, G; Tocchini-Valentini, G P

    1997-01-01

    Saccharomyces cerevisiae uses G protein-coupled receptors for signal transduction. We show that a fusion protein between the alpha-factor receptor (Ste2) and the Galpha subunit (Gpa1) transduces the signal efficiently in yeast cells devoid of the endogeneous STE2 and GPA1 genes. To evaluate the function of different domains of Galpha, a chimera between the N-terminal region of yeast Gpa1 and the C-terminal region of rat Gsalpha has been constructed. This chimeric Gpa1-Gsalpha is capable of restoring viability to haploid gpa1Delta cells, but signal transduction is prevented. This is consistent with evidence showing that the C-terminus of the homologous Galpha is required for receptor-G protein recognition. Surprisingly, a fusion protein between Ste2 and Gpa1-Gsalpha is able to transduce the signal efficiently. It appears, therefore, that the C-terminus of Galpha is mainly responsible for bringing the G protein into the close proximity of the receptor's intracellular domains, thus ensuring efficient coupling, rather than having a particular role in transmitting the signal. To confirm this conclusion, we show that two proteins interacting with each other (such as Snf1 and Snf4, or Ras and Raf), each of them fused either to the receptor or to the chimeric Galpha, allow efficient signal transduction. PMID:9405353

  6. Persistent homology analysis of craze formation

    NASA Astrophysics Data System (ADS)

    Ichinomiya, Takashi; Obayashi, Ippei; Hiraoka, Yasuaki

    2017-01-01

    We apply a persistent homology analysis to investigate the behavior of nanovoids during the crazing process of glassy polymers. We carry out a coarse-grained molecular dynamics simulation of the uniaxial deformation of an amorphous polymer and analyze the results with persistent homology. Persistent homology reveals the void coalescence during craze formation, and the results suggest that the yielding process is regarded as the percolation of nanovoids created by deformation.

  7. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    SciTech Connect

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-10-25

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  8. Antiproliferative and GH-inhibitory activity of chimeric peptides consisting of GHRP-6 and somatostatin.

    PubMed

    Dasgupta, P; Singh, A T; Mukherjee, R

    1999-06-07

    Chimeric peptides consisting of growth hormone releasing peptide (GHRP-6) linked to somatostatin (6-11) via an amide bond to provide the effector parts of both the peptides were synthesized. The anti-proliferative, cytotoxic, and GH-inhibitory activities of these chimeric peptides were determined in vitro in the rat pituitary adenoma cell line GH3. One of the chimeric peptides, GSD, exhibited significantly greater (p < 0.001) anti-neoplastic and GH-inhibitory activity, as compared to RC-160. The hybrid peptides displayed high affinity binding to somatostatin receptors on GH3 cells. The bioactivity of GSD was found to be mediated by the stimulation of tyrosine phosphatase, involving a cGMP-dependent pathway, through pertussis toxin-sensitive G-proteins. Such potent GH-inhibitory chimeric peptides may be of potential importance in the therapy of acromegaly, as well as provide novel tools to study the regulation of GH secretion by GHRP and somatostatin.

  9. Identification of the rate of chimerism of different tissues with microsatellite markers in chicken chimeras.

    PubMed

    Siwek, Maria; Sławińska, Anna; Łakota, Paweł; Grajewski, Bartosz; Wawrzyńska, Magdalena; Wiśniewska, Ewa; Pławski, Andrzej; Słomski, Ryszard; Bednarczyk, Marek

    2010-01-01

    The goal of our study was to evaluate whether private alleles can be defined in microsatellite markers for the breeds under investigation; to evaluate if these private alleles distinguish chicken chimera when using different tissues; to trace them back to the donor: Green-Legged Partridgelike and recipient: White Leghorn chicken breeds, and further on, to estimate the level of chimerism in each tissue. Private and common alleles were defined for donor and recipient chicken breeds in 3 loci. The rate of chimerism was defined based on private alleles present in liver, heart, breast muscle, femoral muscle and gonads. The highest rate of chimerism was observed in liver. A lower rate of chimersim was observed in gonads, and femoral muscle, and finally the lowest rate of chimerism was observed in breast muscle and heart.

  10. Chimeric antigen receptor T-cell neuropsychiatric toxicity in acute lymphoblastic leukemia.

    PubMed

    Prudent, Vasthie; Breitbart, William S

    2017-01-04

    Chimeric antigen receptor T cells are used in the treatment of B-cell leukemias. Common chimeric antigen receptor T-cell toxicities can range from mild flu-like symptoms, such as fever and myalgia, to a more striking neuropsychiatric toxicity that can present as discrete neurological symptoms and delirium. We report here two cases of chimeric antigen receptor T-cell neuropsychiatric toxicity, one who presented as a mild delirium and aphasia that resolved without intervention, and one who presented with delirium, seizures, and respiratory insufficiency requiring intensive treatment. The current literature on the treatment and proposed mechanisms of this clinically challenging chimeric antigen receptor T-cell complication is also presented.

  11. Tolerance of Lung Allografts Achieved in Nonhuman Primates via Mixed Hematopoietic Chimerism

    PubMed Central

    Tonsho, M.; Lee, S.; Aoyama, A.; Boskovic, S.; Nadazdin, O.; Capetta, K.; Smith, R.-N.; Colvin, R. B.; Sachs, D. H.; Cosimi, A. B.; Kawai, T.; Madsen, J. C.; Benichou, G.; Allan, J. S.

    2015-01-01

    While the induction of transient mixed chimerism has tolerized MHC-mismatched renal grafts in nonhuman primates and patients, this approach has not been successful for more immunogenic organs. Here, we describe a modified delayed-tolerance-induction protocol resulting in three out of four monkeys achieving long-term lung allograft survival without ongoing immunosuppression. Two of the tolerant monkeys displayed stable mixed lymphoid chimerism, and the other showed transient chimerism. Serial biopsies and post-mortem specimens from the tolerant monkeys revealed no signs of chronic rejection. The tolerant recipients also exhibited T cell unresponsiveness and a lack of alloantibody. This is the first report of durable mixed chimerism and successful tolerance induction of MHC-mismatched lungs in primates. PMID:25904524

  12. ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides.

    PubMed

    Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai

    2013-12-01

    High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.

  13. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile.

    PubMed

    González, Alejandra V; Santelices, Bernabé

    2017-01-01

    Chimerism occurs when two genetically distinct conspecific individuals fuse together generating a single entity. Coalescence and chimerism in red seaweeds has been positively related to an increase in body size, and the consequent reduction in susceptibility to mortality factors, thus increasing survival, reproductive potential and tolerance to stress in contrast to genetically homogeneous organisms. In addition, they showed that a particular pattern of post-fusion growth maintains higher genetic diversity and chimerism in the holdfast but homogenous axes. In Chilean kelps (brown seaweeds), intraorganismal genetic heterogeneity (IGH) and holdfast coalescence has been described in previous research, but the extent of chimerism in wild populations and the patterns of distribution of the genetically heterogeneous thallus zone have scarcely been studied. Since kelps are under continuous harvesting, with enormous social, ecological and economic importance, natural chimerism can be considered a priceless in-situ reservoir of natural genetic resources and variability. In this study, we therefore examined the frequency of IGH and chimerism in three harvested populations of Lessonia spicata. We then evaluated whether chimeric wild-type holdfasts show higher genetic diversity than erect axes (stipe and lamina) and explored the impact of this on the traditional estimation of genetic diversity at the population level. We found a high frequency of IGH (60-100%) and chimerism (33.3-86.7%), varying according to the studied population. We evidenced that chimerism occurs mostly in holdfasts, exhibiting heterogeneous tissues, whereas stipes and lamina were more homogeneous, generating a vertical gradient of allele and genotype abundance as well as divergence, constituting the first time "within- plant" genetic patterns have been reported in kelps. This is very different from the chimeric patterns described in land plants and animals. Finally, we evidenced that IGH affected genetic

  14. Frequency of chimerism in populations of the kelp Lessonia spicata in central Chile

    PubMed Central

    2017-01-01

    Chimerism occurs when two genetically distinct conspecific individuals fuse together generating a single entity. Coalescence and chimerism in red seaweeds has been positively related to an increase in body size, and the consequent reduction in susceptibility to mortality factors, thus increasing survival, reproductive potential and tolerance to stress in contrast to genetically homogeneous organisms. In addition, they showed that a particular pattern of post-fusion growth maintains higher genetic diversity and chimerism in the holdfast but homogenous axes. In Chilean kelps (brown seaweeds), intraorganismal genetic heterogeneity (IGH) and holdfast coalescence has been described in previous research, but the extent of chimerism in wild populations and the patterns of distribution of the genetically heterogeneous thallus zone have scarcely been studied. Since kelps are under continuous harvesting, with enormous social, ecological and economic importance, natural chimerism can be considered a priceless in-situ reservoir of natural genetic resources and variability. In this study, we therefore examined the frequency of IGH and chimerism in three harvested populations of Lessonia spicata. We then evaluated whether chimeric wild-type holdfasts show higher genetic diversity than erect axes (stipe and lamina) and explored the impact of this on the traditional estimation of genetic diversity at the population level. We found a high frequency of IGH (60–100%) and chimerism (33.3–86.7%), varying according to the studied population. We evidenced that chimerism occurs mostly in holdfasts, exhibiting heterogeneous tissues, whereas stipes and lamina were more homogeneous, generating a vertical gradient of allele and genotype abundance as well as divergence, constituting the first time “within- plant” genetic patterns have been reported in kelps. This is very different from the chimeric patterns described in land plants and animals. Finally, we evidenced that IGH affected

  15. [Symmetries and homologies of Geomerida].

    PubMed

    Zarenkov, N A

    2005-01-01

    The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.

  16. Buoyancy instability of homologous implosions

    NASA Astrophysics Data System (ADS)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  17. Chimerism and cure: hematologic and pathologic correction of murine sickle cell disease.

    PubMed

    Kean, Leslie S; Manci, Elizabeth A; Perry, Jennifer; Balkan, Can; Coley, Shana; Holtzclaw, David; Adams, Andrew B; Larsen, Christian P; Hsu, Lewis L; Archer, David R

    2003-12-15

    Bone marrow transplantation (BMT) is the only curative therapy for sickle cell disease (SCD). However, the morbidity and mortality related to pretransplantation myeloablative chemotherapy often outweighs the morbidity of SCD itself, thus severely limiting the number of patients eligible for transplantation. Although nonmyeloablative transplantation is expected to reduce the risk of BMT, it will likely result in mixed-chimerism rather than complete replacement with donor stem cells. Clinical application of nonmyeloablative transplantation thus requires knowledge of the effect of mixed chimerism on SCD pathophysiology. We have, therefore, created a panel of transplanted SCD mice that received transplants displaying an array of red blood cell (RBC) and white blood cell (WBC) chimerism. A significant enrichment of RBC over WBC chimerism occurred in these mice, because of the dramatic survival advantage of donor over sickle RBCs in the peripheral blood. Increasing levels of RBC chimerism provided progressive correction of hematologic and pathologic abnormalities. However, sickle bone marrow and splenic hematopoiesis was not corrected until peripheral blood sickle RBCs were fully replaced with donor RBCs. These results have important and unexpected implications for nonmyeloablative BMT for SCD. As the critical hematopoietic organs were not corrected without full RBC replacement, 100% peripheral blood RBC chimerism becomes the most important benchmark for cure after nonmyeloablative BMT.

  18. Tetraploid cells of enhanced green fluorescent protein transgenic mice in tetraploid/diploid-chimeric embryos.

    PubMed

    Ishiguro, Naomi; Kano, Kiyoshi; Yamamoto, Yoshio; Taniguchi, Kazuyuki

    2005-10-01

    We succeeded in noninvasively analyzing the distribution of tetraploid (4n) cells in tetraploid<-->diploid (4n<-->2n) chimeric embryos by using enhanced green fluorescent protein (EGFP) transgenic (Tg) mouse embryos. We also evaluated whether this technique of analyzing 4n-cells in EGFP Tg 4n<-->2n chimeric embryos could be used to determine which characteristics of 4n-cells cause the death of 4n-embryos and restricted distribution of 4n-cells in 4n<-->2n-chimeric embryos after implantation. In our experiments, the distribution of 4n-cells in 4n<-->2n-embryos was normal until an embryonic age of 3.5 days (E3.5). With respect to morphological development, there were no differences between 4n-, diploid (2n), 4n<-->2n-, and diploid/diploid (2n<-->2n) chimeric embryos, but the number of cells in the tetraploid (4n) blastocyst was smaller than expected. This decrease in the number of cells may have caused cell death or reduced the rate of cell division in 4n-cells, and may have restricted the distribution of 4n-cells in 4n<-->2n-chimeric embryos. This study demonstrated the utility of EGFP transgenic mouse embryos for relatively easy and noninvasive study of the sequential distribution of cells in chimeric embryos.

  19. Regulated expression of the feline panleukopenia virus P38 promoter on extrachromosomal FPV/EBV chimeric plasmids.

    PubMed Central

    Clemens, D L; Carlson, J O

    1989-01-01

    Feline panleukopenia virus/Epstein-Barr virus (FPV/EBV) chimeric expression plasmids were constructed to study regulation of the structural protein gene of the parvovirus, FPV, in a homologous cell culture system. Detection and quantitation of activity from the native FPV promoter, P38, was facilitated by fusing the Escherichia coli lacZ gene with the FPV structural protein gene. Feline cell lines which stably maintained these plasmids extrachromosomally were established. Constitutive beta-galactosidase activity was low but increased up to 40-fold after infection with FPV. Expression of beta-galactosidase was only detected when the FPV/lacZ gene was oriented in the same transcriptional direction as the Epstein-Barr virus gene coding for EBNA-1. When a small open reading frame upstream of the FPV/lacZ initiation codon was deleted, beta-galactosidase expression increased another 4.7- to 26-fold. These changes in beta-galactosidase activity indicate that expression of the FPV structural protein gene is regulated both transcriptionally and posttranscriptionally. Images PMID:2542586

  20. Random-walk model of homologous recombination

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei; Kobayashi, Ichizo

    1995-12-01

    Interaction between two homologous (i.e., identical or nearly identical) DNA sequences leads to their homologous recombination in the cell. We present the following stochastic model to explain the dependence of the frequency of homologous recombination on the length of the homologous region. The branch point connecting the two DNAs in a reaction intermediate follows the random-walk process along the homology (N base-pairs). If the branch point reaches either of the homology ends, it bounds back to the homologous region at a probability of γ (reflection coefficient) and is destroyed at a probability of 1-γ. When γ is small, the frequency of homologous recombination is found to be proportional to N3 for smaller N and a linear function of N for larger N. The exponent of the nonlinear dependence for smaller N decreases from three as γ increases. When γ=1, only the linear dependence is left. These theoretical results can explain many experimental data in various systems. (c) 1995 The American Physical Society

  1. DNA Sequence Alignment during Homologous Recombination.

    PubMed

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination.

  2. Computational methods for remote homolog identification.

    PubMed

    Wan, Xiu-Feng; Xu, Dong

    2005-12-01

    As more and more protein sequences are available, homolog identification becomes increasingly important for functional, structural, and evolutional studies of proteins. Many homologous proteins were separated a very long time ago in their evolutionary history and thus their sequences share low sequence identity. These remote homologs have become a research focus in bioinformatics over the past decade, and some significant advances have been achieved. In this paper, we provide a comprehensive review on computational techniques used in remote homolog identification based on different methods, including sequence-sequence comparison, and sequence-structure comparison, and structure-structure comparison. Other miscellaneous approaches are also summarized. Pointers to the online resources of these methods and their related databases are provided. Comparisons among different methods in terms of their technical approaches, their strengths, and limitations are followed. Studies on proteins in SARS-CoV are shown as an example for remote homolog identification application.

  3. Engineering HIV-Specific Immunity with Chimeric Antigen Receptors.

    PubMed

    Kitchen, Scott G; Zack, Jerome A

    2016-12-01

    HIV remains a highly important public health and clinical issue despite many recent advances in attempting to develop a cure, which has remained elusive for most people infected with HIV. HIV disease can be controlled with pharmacologic therapies; however, these treatments are expensive, may have severe side effects, and are not curative. Consequently, an improved means to control or eliminate HIV replication is needed. Cytotoxic T lymphocytes (CTLs) play a critical role in controlling viral replication and are an important part in the ability of the immune response to eradicate most viral infections. There are considerable efforts to enhance CTL responses in HIV-infected individuals in hopes of providing the immune response with armaments to more effectively control viral replication. In this review, we discuss some of these efforts and focus on the development of a gene therapy-based approach to engineer hematopoietic stem cells with an HIV-1-specific chimeric antigen receptor, which seeks to provide an inexhaustible source of HIV-1-specific immune cells that are MHC unrestricted and superior to natural antiviral T cell responses. These efforts provide the basis for further development of T cell functional enhancement to target and treat chronic HIV infection in hopes of eradicating the virus from the body.

  4. Chimeric influenza haemagglutinins: Generation and use in pseudotype neutralization assays.

    PubMed

    Ferrara, Francesca; Temperton, Nigel

    2017-01-01

    Recently chimeric influenza haemagglutinins (cHAs) have been generated as potential 'universal' vaccination antigens and as tools to identify HA stalk-directed antibodies via their use as antigens in ELISA, and virus or pseudotype-based neutralization assays. The original methods [1], [2] used for their generation require the amplification of regions of interest (head and stalk) using primers containing SapI sites and subsequent cloning into pDZ plasmid. This requires precise primer design, checking for the absence of SapI sites in the sequence of interest, and multi-segment ligation. As an alternative strategy we have developed and optimized a new protocol for assembling the cHA by exploiting Gibson Assembly. •This method also requires precise primer design, but it is rapid and methodologically simple to perform. We have evaluated that using this method it is possible to construct a cHA encoding DNA in less than a week.•Additional weeks are however necessary to optimize the production of pseudotyped lentiviral particles and to perform neutralization assays using them as surrogate antigens.•In comparison to the original protocols, we have also observed that performing parallel neutralization assays using pseudotypes harbouring the two parental HAs, permits effective delineation between stalk and head antibody responses in the samples tested.

  5. Protective and immunological behavior of chimeric yellow fever dengue vaccine.

    PubMed

    Halstead, Scott B; Russell, Philip K

    2016-03-29

    Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.

  6. Long-term assessment of particulate matter using CHIMERE model

    NASA Astrophysics Data System (ADS)

    Monteiro, A.; Miranda, A. I.; Borrego, C.; Vautard, R.; Ferreira, J.; Perez, A. T.

    Particulate matter (PM) and aerosols have became a critical pollutant and object of several research applications, due to their increasing levels, especially in urban areas, causing air pollution problems and thus effects on human health. The main purpose of this study is to perform a first long-term air quality assessment for Portugal, regarding aerosols and PM pollution. The CHIMERE chemistry-transport model, forced by the MM5 meteorological fields, was applied over Portugal for 2001 year, with 10 km horizontal resolution, using an emission inventory obtained from a spatial top-down disaggregation of the 2001 national inventory database. The evaluation model exercise shows a model trend to overestimate particulate pollution episodes (peaks) at urban sites, especially in winter season. This could be due to an underprediction of the winter model vertical mixing and also to an overestimation of PM emissions. Simulated inorganic components (ammonium and sulfate) and secondary organic aerosols (SOA) were compared to measurements taken at Aveiro (northwest coast of Portugal). An underestimation of the three components was verified. However, the model is able to predict their seasonal variation. Nevertheless, as a first approach, and despite the complex topography and coastal location of Portugal affected by sea salt natural aerosols emissions, the results obtained show that the model reproduces the PM levels, temporal evolution, and spatial patterns. The concentration maps reveal that the areas with high PM values are covered by the air quality monitoring network.

  7. Chimeric Antigen Receptor T Cells in Hematologic Malignancies.

    PubMed

    Shank, Brandon R; Do, Bryan; Sevin, Adrienne; Chen, Sheree E; Neelapu, Sattva S; Horowitz, Sandra B

    2017-03-01

    Patients with B-cell hematologic malignancies who progress through first- or second-line chemotherapy have a poor prognosis. Early clinical trials with autologous anti-CD19 chimeric antigen receptor (CAR) T cells have demonstrated promising results for patients who have relapsed or refractory disease. Lymphodepleting conditioning regimens, including cyclophosphamide, fludarabine, pentostatin, bendamustine, interleukin-2, and total body irradiation, are often administered before the infusion of CAR T cells, allowing for greater T-cell expansion. The major toxicity associated with CAR T-cell infusions is cytokine release syndrome (CRS), a potentially life-threatening systemic inflammatory disorder. The quick onset and progression of CRS require rapid detection and intervention to reduce treatment-related mortality. Management with tocilizumab can help ameliorate the symptoms of severe CRS, allowing steroids, which diminish the expansion and persistence of CAR T cells, to be reserved for tocilizumab-refractory patients. Other toxicities of CAR T-cell therapy include neutropenia and/or febrile neutropenia, infection, tumor lysis syndrome, neurotoxicity and nausea/vomiting. A review of patients' medications is imperative to eliminate medications that may contribute to treatment-related toxicities. Studies are ongoing to help optimize patient selection, preparation, safety, and management of individuals receiving CAR T cells. Long-term follow-up will help establish the place of CAR T cells in therapy.

  8. AMKL chimeric transcription factors are potent inducers of leukemia.

    PubMed

    Dang, J; Nance, S; Ma, J; Cheng, J; Walsh, M P; Vogel, P; Easton, J; Song, G; Rusch, M; Gedman, A L; Koss, C; Downing, J R; Gruber, T A

    2017-03-10

    Acute megakaryoblastic leukemia in patients without Down syndrome is a rare malignancy with a poor prognosis. RNA sequencing of fourteen pediatric cases previously identified novel fusion transcripts that are predicted to be pathological including CBFA2T3-GLIS2, GATA2-HOXA9, MN1-FLI and NIPBL-HOXB9. In contrast to CBFA2T3-GLIS2, which is insufficient to induce leukemia, we demonstrate that the introduction of GATA2-HOXA9, MN1-FLI1 or NIPBL-HOXB9 into murine bone marrow induces overt disease in syngeneic transplant models. With the exception of MN1, full penetrance was not achieved through the introduction of fusion partner genes alone, suggesting that the chimeric transcripts possess a unique gain-of-function phenotype. Leukemias were found to exhibit elements of the megakaryocyte erythroid progenitor gene expression program, as well as unique leukemia-specific signatures that contribute to transformation. Comprehensive genomic analyses of resultant murine tumors revealed few cooperating mutations confirming the strength of the fusion genes and their role as pathological drivers. These models are critical for both the understanding of the biology of disease as well as providing a tool for the identification of effective therapeutic agents in preclinical studies.Leukemia advance online publication, 10 March 2017; doi:10.1038/leu.2017.51.

  9. Competitive annealing of multiple DNA origami: formation of chimeric origami

    NASA Astrophysics Data System (ADS)

    Majikes, Jacob M.; Nash, Jessica A.; LaBean, Thomas H.

    2016-11-01

    Scaffolded DNA origami are a robust tool for building discrete nanoscale objects at high yield. This strategy ensures, in the design process, that the desired nanostructure is the minimum free energy state for the designed set of DNA sequences. Despite aiming for the minimum free energy structure, the folding process which leads to that conformation is difficult to characterize, although it has been the subject of much research. In order to shed light on the molecular folding pathways, this study intentionally frustrates the folding process of these systems by simultaneously annealing the staple pools for multiple target or parent origami structures, forcing competition. A surprising result of these competitive, simultaneous anneals is the formation of chimeric DNA origami which inherit structural regions from both parent origami. By comparing the regions inherited from the parent origami, relative stability of substructures were compared. This allowed examination of the folding process with typical characterization techniques and materials. Anneal curves were then used as a means to rapidly generate a phase diagram of anticipated behavior as a function of staple excess and parent staple ratio. This initial study shows that competitive anneals provide an exciting way to create diverse new nanostructures and may be used to examine the relative stability of various structural motifs.

  10. [Hydrolysis of chimeric proteins by enteropeptidase at the specific linker (Asp)4Lys depending on refolding conditions].

    PubMed

    Shibanova, E D; Mikhaĭlova, A G; Aleksandrov, S L; Rumsh, L D

    2000-07-01

    Refolding from inclusion bodies of chimeric proteins containing the enteropeptidase-specific linker (Asp)4Lys was carried out. It was shown that, depending on the refolding conditions, chimeric proteins function as substrates or inhibitors of the enteropeptidase. The efficiency of the enteropeptidase hydrolysis of chimeric proteins containing the (Asp)4Lys linker may depend not only on the amino acid sequence of the protein binding site for the enzyme but also on the site conformation.

  11. Buoyancy instability of homologous implosions

    SciTech Connect

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest

  12. Buoyancy instability of homologous implosions

    DOE PAGES

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100

  13. Duplication of chicken defensin7 gene generated by gene conversion and homologous recombination

    PubMed Central

    Lee, Mi Ok; Bornelöv, Susanne; Andersson, Leif; Lamont, Susan J.; Chen, Junfeng; Womack, James E.

    2016-01-01

    Defensins constitute an evolutionary conserved family of cationic antimicrobial peptides that play a key role in host innate immune responses to infection. Defensin genes generally reside in complex genomic regions that are prone to structural variation, and defensin genes exhibit extensive copy number variation in humans and in other species. Copy number variation of defensin genes was examined in inbred lines of Leghorn and Fayoumi chickens, and a duplication of defensin7 was discovered in the Fayoumi breed. Analysis of junction sequences confirmed the occurrence of a simple tandem duplication of defensin7 with sequence identity at the junction, suggesting nonallelic homologous recombination between defensin7 and defensin6. The duplication event generated two chimeric promoters that are best explained by gene conversion followed by homologous recombination. Expression of defensin7 was not elevated in animals with two genes despite both genes being transcribed in the tissues examined. Computational prediction of promoter regions revealed the presence of several putative transcription factor binding sites generated by the duplication event. These data provide insight into the evolution and possible function of large gene families and specifically, the defensins. PMID:27849592

  14. Duplication of chicken defensin7 gene generated by gene conversion and homologous recombination.

    PubMed

    Lee, Mi Ok; Bornelöv, Susanne; Andersson, Leif; Lamont, Susan J; Chen, Junfeng; Womack, James E

    2016-11-29

    Defensins constitute an evolutionary conserved family of cationic antimicrobial peptides that play a key role in host innate immune responses to infection. Defensin genes generally reside in complex genomic regions that are prone to structural variation, and defensin genes exhibit extensive copy number variation in humans and in other species. Copy number variation of defensin genes was examined in inbred lines of Leghorn and Fayoumi chickens, and a duplication of defensin7 was discovered in the Fayoumi breed. Analysis of junction sequences confirmed the occurrence of a simple tandem duplication of defensin7 with sequence identity at the junction, suggesting nonallelic homologous recombination between defensin7 and defensin6 The duplication event generated two chimeric promoters that are best explained by gene conversion followed by homologous recombination. Expression of defensin7 was not elevated in animals with two genes despite both genes being transcribed in the tissues examined. Computational prediction of promoter regions revealed the presence of several putative transcription factor binding sites generated by the duplication event. These data provide insight into the evolution and possible function of large gene families and specifically, the defensins.

  15. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    SciTech Connect

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai . E-mail: chyang@emory.edu

    2006-08-15

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV.

  16. Preventing Elevated Radix Deformity in Asian Rhinoplasty with a Chimeric Dorsal-Glabellar Construct

    PubMed Central

    Zelken, Jonathan A.; Hong, Joon Pio; Broyles, Justin M.; Hsiao, Yen-Chang

    2016-01-01

    Background Asian facial aesthetic surgery should enhance, but not change, natural features. Augmentation rhinoplasty is a hallmark of Asian cosmetic surgery. In the authors' experience, I-shaped implants can elevate and efface the radix, leading to an unnatural appearance (elevated radix deformity). Objectives The Chimeric technique was developed to control final radix position and preserve the nasal profile. We aim to demonstrate that the Chimeric technique promotes forward projection, not elevation, of the radix. Methods Between 2013 and 2015, 49 patients underwent rhinoplasty with I-shaped implants. Nineteen patients had Chimeric dorsal-glabellar implants, 30 did not. Standardized photographs were obtained at every visit. Novel and established photogrammetric parameters were used to describe radix position and position change. A retrospective chart review provided additional procedural details and outcomes data. Results Patients were followed for 10.8 months (range, 2-36 months). Nasal height increase (113% vs 107%) and bridge length increase (118% vs 105%) were significantly greater when the Chimeric technique was not performed (P < .0001). The nasofrontal angle increased 6° in both groups; there was no difference between groups. The vector of radix position change was 26.1° in the Chimeric group and 63.4° in the traditional group (P < .0001). Conclusions The Chimeric technique preserves the nasal profile with a favorable (horizontal) radix transposition vector. There was not a significant difference in final radix position when Chimeric rhinoplasty was performed because that is controlled by implant thickness and position. The technique did not blunt the radix significantly. Level of Evidence: 4 Therapeutic PMID:26879296

  17. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes

    PubMed Central

    van der Geld, Ymke M; Hellmark, Thomas; Selga, Daina; Heeringa, Peter; Huitema, Minke G; Limburg, Pieter C; Kallenberg, Cees G M

    2007-01-01

    Aim In this study, we employed chimeric human/mouse Proteinase 3 (PR3) proteins as tools to induce an autoantibody response to PR3 in rats and mice. Method Rats and mice were immunised with recombinant human PR3 (HPR3), recombinant murine PR3 (mPR3), single chimeric human/mouse PR3 (HHm, HmH, mHH, mmH, mHm, Hmm) or pools of chimeric proteins. Antibodies to mPR3 and HPR3 were measured by ELISA. Antibodies to rat PR3 were determined by indirect immunofluorescence (IIF) on rat white blood cells. Urinalysis was performed by dipstick analysis. Kidney and lung tissue was obtained for pathological examination. Results In mice, immunisation with the chimeric human/mouse PR3 Hmm led to an autoantibody response to mPR3. Rats immunised with the chimeric human/mouse PR3 Hmm, HmH and mmH, or a pool of the chimeric human/mouse PR3 proteins, produced antibodies selectively binding to rat granulocytes as detected by IIF. No gross pathological abnormalities could be detected in kidney or lungs of mice or rats immunised with chimeric human/mouse PR3. Conclusion Immunisation with chimeric human/mouse proteins induces autoantibodies to PR3 in rats and mice. Chimeric proteins can be instrumental in developing experimental models for autoimmune diseases. PMID:17644551

  18. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining.

    PubMed

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-04

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/.

  19. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining

    PubMed Central

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-01

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. PMID:27899563

  20. Influence of conditioning regimens and stem cell sources on donor-type chimerism early after stem cell transplantation.

    PubMed

    Sugita, Junichi; Tanaka, Junji; Hashimoto, Aya; Shiratori, Souichi; Yasumoto, Atsushi; Wakasa, Kentaro; Kikuchi, Misato; Shigematsu, Akio; Miura, Yoko; Tsutsumi, Yutaka; Kondo, Takeshi; Asaka, Masahiro; Imamura, Masahiro

    2008-12-01

    We retrospectively analyzed very early chimerism before and ongoing neutrophil engraftment (days 7, 14, 21, 28) and investigated the influence of conditioning regimens and stem cell sources on donor-type chimerism in 59 Japanese patients who had received allogeneic hematopoietic stem cell transplantation. The percentage of donor-type chimerism increased before engraftment in all patients who achieved engraftment. The average percentage of donor-type chimerism in patients who had received reduced-intensity stem cell transplantation (RIST) with total body irradiation (TBI) was significantly higher than that in patients who had received RIST without TBI (98.8% vs 87.5% on day 21, P<0.01; 99.3% vs 84.3% on day 28, P<0.01). The average percentage of donor-type chimerism after peripheral blood stem cell transplantation was significantly higher than that after bone marrow transplantation on day 7 (81.5% vs 43.1%, P<0.01), and the average percentage of donor-type chimerism after cord blood transplantation was significantly lower on day 14 (55.8% vs 84.8%, P<0.05). Compared with the average percentage of donor-type chimerism in patients who achieved engraftment with each stem cell source, a notable decrease in donor-type chimerism was observed in patients who failed to achieve engraftment. This study suggests that differences in conditioning regimens and stem cell sources should be taken into account when considering donor-type chimerism.

  1. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  2. Simulations of Mineral Dust Content With CHIMERE-Dust Model

    NASA Astrophysics Data System (ADS)

    Schmechtig, C.; Marticorena, B.; Menut, L.; Bergametti, G.

    2006-12-01

    Simulations of the mineral dust cycle have been performed whith CHIMERE-Dust model over a domain that includes North Africa, the Mediterranean basin and the North Tropical Atlantic Ocean (10S-60N and 90W-90E) with a 1°x1° resolution using the ECMWF (European Center for Medium-Range Weather Forecasts) meteorological fields for two years, 2000 and 2001. As a validation, we compare the simulated dust concentration fields with photometric data from the AERONET network. From the comparisons between the simulated and measured aerosol optical depth for several stations of the Mediterranean basin, the model appears to reproduce correctly the intensity and occurrences of the dust events. Over Western Africa, the results are not as satisfying since some of the most intense dust events observed on the continent and downwind are not captured by the model. In addition, the simulated events are generally underestimated compared to the measured ones. It appears that these differences in the model performances are connected to the origin of the dust plumes. For example, dust plumes coming from Libya are well simulated while dust plumes originating from the Bodélé depression not as frequent as intense as the observations suggest. Soil properties in these two regions are comparable and typical of very erodible surfaces. We thus focused on the comparison between the ECMWF 10m wind speed fields and 10m wind speed measured at the meteorological stations located in both areas. We noticed that over Libya, the measured and ECMWF 10m wind speed are in very good agreement, while the meteorological model does not reproduce the extrema of the measured wind speed in the Bodélé depression. We found that a crude empirical correction of the 10m wind field in the Bodélé Depression significantly improve the simulations in terms of occurrence and of intensity.

  3. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    PubMed Central

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic—and plant and algal—lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller’s ratchet—the origin of eukaryotic recombination, or sex—might have required surprisingly little evolutionary innovation. PMID:25733873

  4. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    PubMed

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  5. The homologous recombination system of Ustilago maydis.

    PubMed

    Holloman, William K; Schirawski, Jan; Holliday, Robin

    2008-08-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.

  6. The homologous recombination system of Ustilago maydis

    PubMed Central

    Holloman, William K.; Schirawski, Jan; Holliday, Robin

    2008-01-01

    Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of Ustilago maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins. PMID:18502156

  7. Dualities in Persistent (Co)Homology

    SciTech Connect

    de Silva, Vin; Morozov, Dmitriy; Vejdemo-Johansson, Mikael

    2011-09-16

    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establishalgebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existingalgorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. Wepresent experimental evidence for the practical efficiency of the latter algorithm.

  8. Persistent homology analysis of phase transitions.

    PubMed

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ^{4} lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  9. Preserved irradiated homologous cartilage for orbital reconstruction

    SciTech Connect

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-07-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption.

  10. Interleukin 2-Bax: a novel prototype of human chimeric proteins for targeted therapy.

    PubMed

    Aqeilan, R; Yarkoni, S; Lorberboum-Galski, H

    1999-08-27

    During the past few years many chimeric proteins have been developed to target and kill cells expressing specific surface molecules. Generally, these molecules carry a bacterial or plant toxin that destroys the unwanted cells. The major obstacle in the clinical application of such chimeras is their immunogenicity and non-specific toxicity. We have developed a new generation of chimeric proteins, taking advantage of apoptosis-inducing proteins, such as the human Bax protein, as novel killing components. The first prototype chimeric protein, IL2-Bax, directed toward IL2R-expressing cells, was constructed, expressed in Escherichia coli and partially purified. IL2-Bax increased the population of apoptotic cells in a variety of target T cell lines, as well as in human fresh PHA-activated lymphocytes, in a dose-dependent manner and had no effect on cells lacking IL2R expression. The IL2-Bax chimera represents an innovative approach for constructing chimeric proteins comprising a molecule that binds a specific cell type and an apoptosis-inducing protein. Such new chimeric proteins could be used for targeted treatment of human diseases.

  11. Induction of Pluripotent Protective Immunity Following Immunisation with a Chimeric Vaccine against Human Cytomegalovirus

    PubMed Central

    Zhong, Jie; Rist, Michael; Cooper, Leanne; Smith, Corey; Khanna, Rajiv

    2008-01-01

    Based on the life-time cost to the health care system, the Institute of Medicine has assigned the highest priority for a vaccine to control human cytomegalovirus (HCMV) disease in transplant patients and new born babies. In spite of numerous attempts successful licensure of a HCMV vaccine formulation remains elusive. Here we have developed a novel chimeric vaccine strategy based on a replication-deficient adenovirus which encodes the extracellular domain of gB protein and multiple HLA class I & II-restricted CTL epitopes from HCMV as a contiguous polypeptide. Immunisation with this chimeric vaccine consistently generated strong HCMV-specific CD8+ and CD4+ T-cells which co-expressed IFN-γ and TNF-α, while the humoral response induced by this vaccine showed strong virus neutralizing capacity. More importantly, immunization with adenoviral chimeric vaccine also afforded protection against challenge with recombinant vaccinia virus encoding HCMV antigens and this protection was associated with the induction of a pluripotent antigen-specific cellular and antibody response. Furthermore, in vitro stimulation with this adenoviral chimeric vaccine rapidly expanded multiple antigen-specific human CD8+ and CD4+ T-cells from healthy virus carriers. These studies demonstrate that the adenovirus chimeric HCMV vaccine provides an excellent platform for reconstituting protective immunity to prevent HCMV diseases in different clinical settings. PMID:18806877

  12. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells.

    PubMed Central

    Liu, A Y; Robinson, R R; Hellström, K E; Murray, E D; Chang, C P; Hellström, I

    1987-01-01

    A chimeric mouse-human antibody has been created that recognizes an antigen found on the surface of cells from many carcinomas. Immunoglobulin constant (C) domains of the mouse monoclonal antibody L6, C gamma 2a and C kappa, were substituted by the human C gamma 1 and C kappa by recombining cDNA modules encoding variable or C domains. The cDNA constructs were transfected into lymphoid cells for antibody production. The chimeric antibody and mouse L6 antibody bound to carcinoma cells with equal affinity and mediated complement-dependent cytolysis. In the presence of human effector cells, the chimeric antibody gave antibody-dependent cellular cytotoxicity at 100 times lower concentration than that needed for the mouse L6 antibody. The chimeric antibody, but not the mouse L6 antibody, is effective against a melanoma line expressing small amounts of the L6 antigen. The findings point to the usefulness of the chimeric antibody approach for obtaining agents with strong antitumor activity for possible therapeutic use in man. PMID:3106970

  13. Production of a neutralizing mouse-human chimeric antibody against botulinum neurotoxin serotype E.

    PubMed

    Mukamoto, Masafumi; Maeda, Hiroaki; Kohda, Tomoko; Nozaki, Chikateru; Takahashi, Motohide; Kozaki, Shunji

    2013-01-01

    A mouse-human chimeric antibody that can neutralize botulinum neurotoxin serotype E (BoNT/E) was developed. Variable regions of heavy and light chains obtained using a mouse hybridoma clone (E9-4) cDNA, which was selected on the basis of neutralizing activity against BoNT/E, were fused with the upstream regions of the constant counterparts of human kappa light and gamma 1 heavy chain genes, respectively. CHO-DG44 cells were transfected with these plasmids and a mouse-human chimeric antibody (EC94) was purified to examine binding and neutralizing activity against BoNT/E. EC94 exhibited the same levels of binding activities against BoNT/E as those of a parent mouse monoclonal antibody and neutralized more than 4,000 LD(50)/mg antibody. This chimeric antibody seems to be a useful candidate for infant botulism in which the use of passive immunotherapy is not planned so as to avoid serious events such as anaphylactic shock. We designed shuffling chimeric antibodies with replacement of V(H) or V(L) of EC94 with that of a chimeric antibody (AC24) that possessed neutralizing activity against BoNT/A. These shuffling antibodies did not exhibit neutralizing activity against either BoNT/E or BoNT/A.

  14. Reversible heat-induced inactivation of chimeric beta-glucuronidase in transgenic plants.

    PubMed

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-05-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to beta-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5'-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions.

  15. On the hodological criterion for homology.

    PubMed

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as "the same organ in different animals under every variety of form and function" and its redefinition after Darwin as "the same trait in different lineages due to common ancestry" entail the same heuristic problem: how to establish "sameness."Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium.

  16. Homolog pairing and segregation in Drosophila meiosis.

    PubMed

    McKee, B D

    2009-01-01

    Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.

  17. On the hodological criterion for homology

    PubMed Central

    Faunes, Macarena; Francisco Botelho, João; Ahumada Galleguillos, Patricio; Mpodozis, Jorge

    2015-01-01

    Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium. PMID:26157357

  18. CHIMERIC SINDBIS/EASTERN EQUINE ENCEPHALITIS VACCINE CANDIDATES ARE HIGHLY ATTENUATED AND IMMUNOGENIC IN MICE

    PubMed Central

    Wang, Eryu; Petrakova, Olga; Adams, A. Paige; Aguilar, Patricia V.; Kang, Wenli; Paessler, Slobodan; Volk, Sara M.; Frolov, Ilya; Weaver, Scott C.

    2007-01-01

    We developed chimeric Sindbis (SINV)/Eastern equine encephalitis (EEEV) viruses and investigated their potential for use as live virus vaccines against EEEV. One vaccine candidate contained structural protein genes from a typical North American EEEV strain, while the other had structural proteins from a naturally attenuated Brazilian isolate. Both chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in mice. Vaccinated mice did not develop detectable disease or viremia, but developed high titers of neutralizing antibodies. Upon challenge with EEEV, mice vaccinated with >104PFU of the chimeric viruses were completely protected from disease. These findings support the potential use of these SIN/EEEV chimeras as safe and effective vaccines. PMID:17904699

  19. Homologs of Breast Cancer Genes in Plants

    PubMed Central

    Trapp, Oliver; Seeliger, Katharina; Puchta, Holger

    2011-01-01

    Since the initial discovery of genes involved in hereditary breast cancer in humans, a vast wealth of information has been published. Breast cancer proteins were shown to work as tumor suppressors primarily through their involvement in DNA-damage repair. Surprisingly, homologs of these genes can be found in plant genomes, as well. Here, we want to give an overview of the identification and characterization of the biological roles of these proteins, in plants. In addition to the conservation of their function in DNA repair, new plant-specific characteristics have been revealed. BRCA1 is required for the efficient repair of double strand breaks (DSB) by homologous recombination in somatic cells of the model plant Arabidopsis thaliana. Bioinformatic analysis indicates that, whereas most homologs of key components of the different mammalian BRCA1 complexes are present in plant genomes, homologs of most factors involved in the recruitment of BRCA1 to the DSB cannot be identified. Thus, it is not clear at the moment whether differences exist between plants and animals at this important step. The most conserved region of BRCA1 and BARD1 homologs in plants is a PHD domain which is absent in mammals and which, in AtBARD1, might be involved in the transcriptional regulation of plant development. The presence of a plant-specific domain prompted us to reevaluate the current model for the evolution of BRCA1 homologs and to suggest a new hypothesis, in which we postulate that plant BRCA1 and BARD1 have one common predecessor that gained a PHD domain before duplication. Furthermore, work in Arabidopsis demonstrates that – as in animals – BRCA2 homologs are important for meiotic DNA recombination. Surprisingly, recent research has revealed that AtBRCA2 also has an important role in systemic acquired resistance. In Arabidopsis, BRCA2 is involved in the transcriptional regulation of pathogenesis-related (PR) genes via its interaction with the strand exchange protein RAD51. PMID

  20. Generation and developmental characteristics of porcine tetraploid embryos and tetraploid/diploid chimeric embryos.

    PubMed

    He, Wenteng; Kong, Qingran; Shi, Yongqian; Xie, Bingteng; Jiao, Mingxia; Huang, Tianqing; Guo, Shimeng; Hu, Kui; Liu, Zhonghua

    2013-10-01

    The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P<0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P>0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P<0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.

  1. Structure-Function Analysis of Peroxisomal ATP-binding Cassette Transporters Using Chimeric Dimers*

    PubMed Central

    Geillon, Flore; Gondcaille, Catherine; Charbonnier, Soëli; Van Roermund, Carlo W.; Lopez, Tatiana E.; Dias, Alexandre M. M.; Pais de Barros, Jean-Paul; Arnould, Christine; Wanders, Ronald J.; Trompier, Doriane; Savary, Stéphane

    2014-01-01

    ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters. PMID:25043761

  2. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  3. 78 FR 13691 - Prospective Grant of Exclusive License: The Development of m971 and m972 Chimeric Antigen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... m971 and m972 Chimeric Antigen Receptors (CARs) for the Treatment of B Cell Malignancies AGENCY... worldwide, and the field of use may be limited to: Treatment of B cell malignancies that express CD22 on their cell surface using chimeric antigen receptors which contain the m971 or m972 antibody...

  4. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts.

    PubMed

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-01

    The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.

  5. The impact of chimerism in DNA-based forensic sex determination analysis.

    PubMed

    George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid

    2013-01-01

    Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.

  6. Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile.

    PubMed

    Numata, K; Muro, M; Akutsu, N; Nosoh, Y; Yamagishi, A; Oshima, T

    1995-01-01

    Chimeric isopropylmalate dehydrogenases were constructed by connecting the genes isolated from an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis. These genes were expressed in Escherichia coli. The enzymes were purified and analysed. Enzymes of T.thermophilus and B.subtilis and chimeric enzymes showed similar enzymological characteristics except for thermal stability. The stability of each enzyme was approximately proportional to the content of the amino acid sequence from the T.thermophilus enzyme. The results suggested that amino acid residues contributing the thermal stability distribute themselves, in general, evenly at least in the N-terminal half of the amino acid sequence of T.thermophilus isopropylmalate dehydrogenase.

  7. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  8. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    PubMed

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-17

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  9. Hyper(co)homology for exact left covariant functors and a homology theory for topological spaces

    NASA Astrophysics Data System (ADS)

    Sklyarenko, E. G.

    1995-06-01

    Contents Introduction §1. Strong cohomology of dual complexes §2. Hyperhomology §3. Examples §4. Typical limit relations for Steenrod-Sitnikov homology §5. The strong homology of topological spaces §6. On the special position held by singular theory Bibliography

  10. Follow up of hemopoietic chimerism in individuals given allogeneic hemopoietic stem cell allografts using an immunosuppressive, non-myeloablative conditioning regimen: a prospective study in a single institution.

    PubMed

    Ruiz-Argüelles, Guillermo J; López-Martíneza, Briceida; Santellán-Olea, Ma Rayo; Abreu-Díaz, Glexsy; Reyes-Núñez, Virginia; Ruiz-Argüelles, Alejandro; Garcés-Eisele, Javier

    2002-07-01

    Thirty consecutive patients were given non-myeloablative stem cell transplants (NST) and posttransplant chimerism was studied by several methods. In 16 individuals definitive proofs of chimerism have been shown: In 10 cases sex chimerism, in 7 cases chimerism shown by means of microsatellites, in 4 cases ABO chimerism, in two cases Rh chimerism and in one HLA-DR chimerism. In addition, in 9 individuals the disappearance of the molecular marker of the leukemia is an indirect evidence of the chimerism, as well as the presence of graft versus host disease (GVHD) in 17 allografted patients. Only in 6 patients no evidence of chimerism could be shown; all of them died as a result of either persistent or relapsing malignancy. Since the early patterns of chimerism may be predictive of either GVHD or graft loss in NST and, since therapeutic intervention (such as donor lymphocytes infusions) is based in the patterns of chimerism, it is possible that chimerism studies in these types of allografts should be ideally done more frequently than in conventional allotransplants.

  11. Irradiated homologous costal cartilage for augmentation rhinoplasty

    SciTech Connect

    Lefkovits, G. )

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  12. Solar core homology, solar neutrinos and helioseismology

    SciTech Connect

    Bludman, S.A.; Kennedy, D.C.

    1995-12-31

    Precise numerical standard solar models (SSMs) now agree with one another and with helioseismological observations in the convective and outer radiative zones. Nevertheless these models obscure how luminosity, neutrino production and g-mode core helioseismology depend on such inputs as opacity and nuclear cross sections. Although the Sun is not homologous, its inner core by itself is chemically evolved and almost homologous, because of its compactness, radiative energy transport, and ppI-dominated luminosity production. We apply luminosity-fixed homology transformations to the core to estimate theoretical uncertainties in the SSM and to obtain a broad class of non-SSMs, parameterized by central temperature and density and purely radiative energy transport in the core. 25 refs., 3 figs., 3 tabs.

  13. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    NASA Technical Reports Server (NTRS)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  14. Secretion of a chimeric T-cell receptor-immunoglobulin protein.

    PubMed Central

    Gascoigne, N R; Goodnow, C C; Dudzik, K I; Oi, V T; Davis, M M

    1987-01-01

    To produce sufficient quantities of soluble T-cell receptor protein for detailed biochemical and biophysical analyses we have explored the use of immunoglobulin--T-cell receptor gene fusions. In this report we describe a chimeric gene construct containing a T-cell receptor alpha-chain variable (V) domain and the constant (C) region coding sequences of an immunoglobulin gamma 2a molecule. Cells transfected with the chimeric gene synthesize a stable protein product that expresses immunoglobulin and T-cell receptor antigenic determinants as well as protein A binding sites. We show that the determinant recognized by the anticlonotypic antibody A2B4.2 resides on the V alpha domain of the T-cell receptor. The chimeric protein associates with a normal lambda light chain to form an apparently normal tetrameric (H2L2, where H = heavy and L = light) immunoglobulin molecule that is secreted. Also of potential significance is the fact that a T-cell receptor V beta gene in the same construct is neither assembled nor secreted with the lambda light chain, and when expressed with a C kappa region it does not assemble with the chimeric V alpha C gamma 2a protein mentioned above. This indicates that not all T-cell receptor V regions are similar enough to immunoglobulin V regions for them to be completely interchangeable. Images PMID:3472243

  15. Perceptual Asymmetry for Chimeric Stimuli in Children with Early Unilateral Brain Damage

    ERIC Educational Resources Information Center

    Bava, Sunita; Ballantyne, Angela O.; May, Susanne J.; Trauner, Doris A.

    2005-01-01

    The present study used a chimeric stimuli task to assess the magnitude of the left-hemispace bias in children with congenital unilateral brain damage (n=46) as compared to typically developing matched controls (n=46). As would be expected, controls exhibited a significant left-hemispace bias. In the presence of left hemisphere (LH) damage, the…

  16. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  17. Multipaddled Anterolateral Thigh Chimeric Flap for Reconstruction of Complex Defects in Head and Neck

    PubMed Central

    Li, Ning; Liu, Wen; Su, Tong; Chen, Xinqun; Zheng, Lian; Jian, Xinchun

    2014-01-01

    The anterolateral thigh flap has been the workhouse flap for coverage of soft-tissue defects in head and neck for decades. However, the reconstruction of multiple and complex soft-tissue defects in head and neck with multipaddled anterolateral thigh chimeric flaps is still a challenge for reconstructive surgeries. Here, a clinical series of 12 cases is reported in which multipaddled anterolateral thigh chimeric flaps were used for complex soft-tissue defects with several separately anatomic locations in head and neck. Of the 12 cases, 7 patients presented with trismus were diagnosed as advanced buccal cancer with oral submucous fibrosis, 2 tongue cancer cases were found accompanied with multiple oral mucosa lesions or buccal cancer, and 3 were hypopharyngeal cancer with anterior neck skin invaded. All soft-tissue defects were reconstructed by multipaddled anterolateral thigh chimeric flaps, including 9 tripaddled anterolateral thigh flaps and 3 bipaddled flaps. The mean length of skin paddle was 19.2 (range: 14–23) cm and the mean width was 4.9 (range: 2.5–7) cm. All flaps survived and all donor sites were closed primarily. After a mean follow-up time of 9.1 months, there were no problems with the donor or recipient sites. This study supports that the multipaddled anterolateral thigh chimeric flap is a reliable and good alternative for complex and multiple soft-tissue defects of the head and neck. PMID:25180680

  18. Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance.

    PubMed

    Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Sauma, Daniela; Rosemblatt, Mario; Bono, Maria Rosa

    2015-01-01

    The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.

  19. Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance

    PubMed Central

    Ruiz, Paulina; Maldonado, Paula; Hidalgo, Yessia; Sauma, Daniela; Rosemblatt, Mario; Bono, Maria Rosa

    2015-01-01

    The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation. PMID:26635810

  20. Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    PubMed Central

    Borel, Christelle; Mudge, Jonathan M.; Howald, Cédric; Foissac, Sylvain; Ucla, Catherine; Chrast, Jacqueline; Ribeca, Paolo; Martin, David; Murray, Ryan R.; Yang, Xinping; Ghamsari, Lila; Lin, Chenwei; Bell, Ian; Dumais, Erica; Drenkow, Jorg; Tress, Michael L.; Gelpí, Josep Lluís; Orozco, Modesto; Valencia, Alfonso; van Berkum, Nynke L.; Lajoie, Bryan R.; Vidal, Marc; Stamatoyannopoulos, John; Batut, Philippe; Dobin, Alex; Harrow, Jennifer; Hubbard, Tim; Dekker, Job; Frankish, Adam; Salehi-Ashtiani, Kourosh; Reymond, Alexandre; Antonarakis, Stylianos E.; Guigó, Roderic; Gingeras, Thomas R.

    2012-01-01

    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. PMID:22238572

  1. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  2. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  3. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    PubMed

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films.

  4. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    PubMed Central

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  5. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  6. Mixed chimerism in haemoglobinopathies: from risk of graft rejection to immune tolerance.

    PubMed

    Andreani, M; Testi, M; Lucarelli, G

    2014-03-01

    Mixed chimerism (MC), the simultaneous presence of both host- and donor-derived cells in the recipient, is observed in a large proportion of patients after haematopoietic stem cell transplant (HSCT) to treat haemoglobinopathies. Detected early after transplantation, MC often moves towards complete chimerism, although sometimes it may evolve into graft rejection, especially if the proportion of donor cells is very low. However, some patients develop stable MC, defined as persistent when donor- and host-derived cells coexist for periods longer than 2 years after HSCT. Patients with persistent mixed chimerism (PMC) do not require additional red blood cell support and, regardless of the presence in some cases of an extremely low percentage of donor-derived nucleated cells in the bone marrow, their condition is clinically controlled by an incomplete but functional graft, as they express a two- to fivefold enrichment of donor-derived mature erythrocytes in the peripheral blood. These findings have tremendous implications not only in the context of allogeneic HSCT but also in the design of gene therapy trials based on the autologous transplantation of genetically modified CD34+ cells. Recent studies have shown that durable allograft tolerance has been achieved by induction of haematopoietic chimerism in clinical kidney transplantation, showing the involvement of regulatory T cells. Similarly, it has been shown that the regulatory T cells play a pivotal role in promoting and maintaining immune tolerance in patients that develop a status of PMC after HSCT for Thalassemia.

  7. Intravitreal injection of a chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: The treatment of endophthalmitis is becoming very challenging due to the emergence of multidrug-resistant bacteria. Hence, the development of novel therapeutic alternatives for ocular use is essential. Here, we evaluated the therapeutic potential of Ply187AN-KSH3b, a chimeric phage endol...

  8. Growth and long-term somatic and germline chimerism following fusion of juvenile Botryllus schlosseri.

    PubMed

    Carpenter, Meredith A; Powell, John H; Ishizuka, Katherine J; Palmeri, Karla J; Rendulic, Snjezana; De Tomaso, Anthony W

    2011-02-01

    The colonial ascidian Botryllus schlosseri undergoes a histocompatibility reaction that can result in vascular fusion of distinct genotypes, creating a chimera. Chimerism has both potential benefits, such as an immediate increase in size that may enhance growth rates, and costs. For the latter, the presence of multiple genotypes in a chimera can lead to competition between genetically distinct stem cell lineages, resulting in complete replacement of somatic and germline tissues by a single genotype. Although fusion can occur at any point after metamorphosis, previous studies have focused on chimeras created from sexually mature adults, where no benefit to chimerism has been documented. Here we focus on the costs and benefits of fusion between juveniles, characterizing growth rates and patterns of somatic and germline chimerism after natural and controlled fusion events. We also compared outcomes between low- and high-density growth conditions, the latter more likely representative of what occurs in natural populations. We found that growth rates were density-dependent, and that only chimeras grew under high-density conditions. We also observed a positional component to a post-fusion event called resorption, indicating that extrinsic factors were important in this process. Patterns of germline and somatic chimerism and dominance in chimeras made from fused juveniles were equivalent to those after fusion of sexually mature adults, and there were no age-related differences in these processes. Finally, by using genetic markers that could retrospectively assign genotypes, we also found that the majority of individual testes in a chimera were clonally derived.

  9. The Evolution and Analysis of the Functional Domains of the Chimeric Proteins that Initiate Pyrimidine Biosynthesis

    DTIC Science & Technology

    1989-10-15

    proteins in eubacteria , but are consolidated in a single 243 kDa chimeric plypeptide in mrnmals and other higher eukaryotes. We have shown previously that...and regulatory properties, have been identified in eubacteria . E. coli aspartate transcarbamylase, a well characterized class B enzyme, Is a

  10. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis

    PubMed Central

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda

    2016-01-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol. PMID:26975994

  11. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    PubMed

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  12. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach

    PubMed Central

    Mohammad, Nazanin; Karsabet, Mehrnaz Taghipour; Amani, Jafar; Ardjmand, Abolfazl; Zadeh, Mohsen Razavi; Gholi, Mohammad Khalifeh; Saffari, Mahmood; Ghasemi, Amir

    2016-01-01

    Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori. PMID:27335622

  13. 77 FR 3482 - Prospective Grant of Exclusive License: Development of T Cell Receptors and Chimeric Antigen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Prospective Grant of Exclusive License: Development of T Cell Receptors and Chimeric Antigen Receptors Into.../057272 and foreign equivalents thereof entitled ``Anti-MAGE-A3 T cell receptors and related materials and... Patent Application No. PCT/US2011/051537 and foreign equivalents thereof entitled ``Anti-SSX-2 T...

  14. Chimeric peptide beacons: a direct polypeptide analog of DNA molecular beacons†

    PubMed Central

    Oh, Kenneth J.; Cash, Kevin J.; Lubin, Arica A.

    2009-01-01

    We have developed a new biosensor architecture, which is comprised of a polypeptide–peptide nucleic acid tri-block copolymer and which we have termed chimeric peptide beacons (CPB), that generates an optical output via a mechanism analogous to that employed in DNA-based molecular beacons. PMID:18361352

  15. Chimeric RNase H-competent oligonucleotides directed to the HIV-1 Rev response element.

    PubMed

    Prater, Chrissy E; Saleh, Anthony D; Wear, Maggie P; Miller, Paul S

    2007-08-15

    Chimeric oligo-2'-O-methylribonucleotides containing centrally located patches of contiguous 2'-deoxyribonucleotides and terminating in a nuclease resistant 3'-methylphosphonate internucleotide linkage were prepared. The oligonucleotides were targeted to the 3'-side of HIV Rev response element (RRE) stem-loop IIB RNA, which is adjacent to the high affinity Rev protein binding site and is critical to virus function. Thermal denaturation experiments showed that chimeric oligonucleotides form very stable duplexes with a complementary single-stranded RNA, and gel electrophoretic mobility shift assays (EMSA) showed that they bind with high affinity and specificity to RRE stem-loop II RNA (K(D) approximately 200 nM). The chimeric oligonucleotides promote RNase H-mediated hydrolysis of RRE stem-loop II RNA and have half-lives exceeding 24h when incubated in cell culture medium containing 10% fetal calf serum. One of the chimeric oligonucleotides inhibited RRE mediated expression of chloramphenicol acetyl transferase (CAT) approximately 60% at a concentration of 300 nM in HEK 293T cells co-transfected with p-RRE/CAT and p-Rev mammalian expression vectors.

  16. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis.

    PubMed

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda; Real, Fernando

    2016-05-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.

  17. Low levels of allogeneic but not syngeneic hematopoietic chimerism reverse autoimmune insulitis in prediabetic NOD mice.

    PubMed

    Kaminitz, Ayelet; Mizrahi, Keren; Yaniv, Isaac; Farkas, Daniel L; Stein, Jerry; Askenasy, Nadir

    2009-09-01

    The relative efficiencies of allogeneic and syngeneic bone marrow transplantation and the threshold levels of donor chimerism required to control autoimmune insulitis were evaluated in prediabetic NOD mice. Male and female NOD mice were conditioned by radiation and grafted with bone marrow cells from allogeneic and syngeneic sex-mismatched donors. Establishment of full allogeneic chimerism in peripheral blood reversed insulitis and restored glucose tolerance despite persistence of residual host immune cells. By contrast, sublethal total body irradiation (with or without syngeneic transplant) reduced the incidence and delayed the onset of diabetes. The latter pattern was also seen in mice that rejected the bone marrow allografts. Low levels of stable allogeneic hematopoietic chimerism (>1%) were sufficient to prevent the evolution of diabetes following allogeneic transplantation. The data indicate that immunomodulation attained at low levels of allogeneic, but not syngeneic, hematopoietic chimerism is effective in resolution of islet inflammation at even relatively late stages in the evolution of the prediabetic state in a preclinical model. However, our data question the efficacy and rationale behind syngeneic (autologous-like) immuno-hematopoietic reconstitution in type 1 diabetes.

  18. A mathematical model for the rational design of chimeric ligands in selective drug therapies.

    PubMed

    Doldán-Martelli, V; Guantes, R; Míguez, D G

    2013-02-13

    Chimeric drugs with selective potential toward specific cell types constitute one of the most promising forefronts of modern Pharmacology. We present a mathematical model to test and optimize these synthetic constructs, as an alternative to conventional empirical design. We take as a case study a chimeric construct composed of epidermal growth factor (EGF) linked to different mutants of interferon (IFN). Our model quantitatively reproduces all the experimental results, illustrating how chimeras using mutants of IFN with reduced affinity exhibit enhanced selectivity against cell overexpressing EGF receptor. We also investigate how chimeric selectivity can be improved based on the balance between affinity rates, receptor abundance, activity of ligand subunits, and linker length between subunits. The simplicity and generality of the model facilitate a straightforward application to other chimeric constructs, providing a quantitative systematic design and optimization of these selective drugs against certain cell-based diseases, such as Alzheimer's and cancer.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e26; doi:10.1038/psp.2013.2; advance online publication 13 February 2013.

  19. The perforator-based conjoint (chimeric) medial Sural(MEDIAL GASTROCNEMIUS) free flap.

    PubMed

    Sano, Kazufumi; Hallock, Geoffrey G; Hamazaki, Masahiro; Daicyo, Yoshihiro

    2004-12-01

    The prototypical conjoint or so-called "chimeric" free flap heretofore has been composed of several large independent flaps, each supplied by a separate major branch, that ultimately arise from a common source vessel. The perforator-based type of chimeric flap is a relatively new concept, usually involving multiple muscle perforator flaps each based on a solitary musculocutaneous perforator, but still arising from the same "mother" vessel. This principle of split cutaneous perforator flaps has been now successfully adapted to the medial suralMEDIAL GASTROCNEMIUS perforator free flap on 2 separate occasions. As a chimeric flap, there was greater flexibility in insetting, and overall flap width may be larger but still narrow enough to allow primary donor site closure; and yet, by definition, only a single recipient site was needed for any microanastomoses. This is further proof that the perforator-based chimeric free flap may be an option for any muscle perforator flap donor site, so that potential donor territories for conjoint flaps have become virtually unlimited.

  20. CRES-T, an effective gene silencing system utilizing chimeric repressors.

    PubMed

    Mitsuda, Nobutaka; Matsui, Kyoko; Ikeda, Miho; Nakata, Masaru; Oshima, Yoshimi; Nagatoshi, Yukari; Ohme-Takagi, Masaru

    2011-01-01

    Chimeric REpressor gene Silencing Technology (CRES-T) is a useful tool for functional analysis of plant transcription factors. In this system, a chimeric repressor that is produced by fusion of a transcription factor to the plant-specific EAR-motif repression domain (SRDX) suppresses target genes of a transcription factor dominantly over the activity of endogenous and functionally redundant transcription factors. As a result, the transgenic plants that express a chimeric repressor exhibit phenotypes similar to loss-of-function of the alleles of the gene encoding the transcription factor. This system is simple and effective and can be used as a powerful tool not only for functional analysis of redundant transcription factors but also for the manipulation of plant traits by active suppression of the gene expression. Strategies for construction of the chimeric repressors and their expression in transgenic plants are described. Transient effector-reporter assays for functional analysis of transcription factors and detection of protein-protein interactions using the trans-repressive activity of SRDX repression domain are also described.

  1. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains.

    PubMed

    Nagashima, Hiroaki; Ootsubo, Michiko; Fukazawa, Mizuki; Motoi, Sotaro; Konakahara, Shu; Masuho, Yasuhiko

    2011-04-01

    We previously reported that chimeric monoclonal antibodies (mAbs) with tandemly repeated Fc domains, which were developed by introducing tandem repeats of Fc domains downstream of 2 Fab domains, augmented binding avidities for all Fcγ receptors, resulting in enhanced antibody (Ab)-dependent cellular cytotoxicity. Here we investigated regarding Ab-dependent cellular phagocytosis (ADCP) mediated by these chimeric mAbs, which is considered one of the most important mechanisms that kills tumor cells, using two-color flow cytometric methods. ADCP mediated by T3-Ab, a chimeric mAb with 3 tandemly repeated Fc domains, was 5 times more potent than that by native anti-CD20 M-Ab (M-Ab hereafter). Furthermore, T3-Ab-mediated ADCP was resistant to competitive inhibition by intravenous Ig (IVIG), although M-Ab-mediated ADCP decreased in the presence of IVIG. An Fcγ receptor-blocking study demonstrated that T3-Ab mediated ADCP via both FcγRIA and FcγRIIA, whereas M-Ab mediated ADCP exclusively via FcγRIA. These results suggest that chimeric mAbs with tandemly repeated Fc domains enhance ADCP as well as ADCC, and that Fc multimerization may significantly enhance the efficacy of therapeutic Abs.

  2. Persistent homology in graph power filtrations

    PubMed Central

    Marchette, David J.

    2016-01-01

    The persistence of homological features in simplicial complex representations of big datasets in Rn resulting from Vietoris–Rips or Čech filtrations is commonly used to probe the topological structure of such datasets. In this paper, the notion of homological persistence in simplicial complexes obtained from power filtrations of graphs is introduced. Specifically, the rth complex, r ≥ 1, in such a power filtration is the clique complex of the rth power Gr of a simple graph G. Because the graph distance in G is the relevant proximity parameter, unlike a Euclidean filtration of a dataset where regional scale differences can be an issue, persistence in power filtrations provides a scale-free insight into the topology of G. It is shown that for a power filtration of G, the girth of G defines an r range over which the homology of the complexes in the filtration are guaranteed to persist in all dimensions. The role of chordal graphs as trivial homology delimiters in power filtrations is also discussed and the related notions of ‘persistent triviality’, ‘transient noise’ and ‘persistent periodicity’ in power filtrations are introduced. PMID:27853540

  3. Cyclic homology for Hom-associative algebras

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Shapiro, Ilya; Sütlü, Serkan

    2015-12-01

    In the present paper we investigate the noncommutative geometry of a class of algebras, called the Hom-associative algebras, whose associativity is twisted by a homomorphism. We define the Hochschild, cyclic, and periodic cyclic homology and cohomology for this class of algebras generalizing these theories from the associative to the Hom-associative setting.

  4. Single copy DNA homology in sea stars.

    PubMed

    Smith, M J; Nicholson, R; Stuerzl, M; Lui, A

    1982-01-01

    The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA from Pisaster ochraceus was reannealed with excess genomic DNA from P. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, and Dermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines. P. brevispinus DNA contains essentially all of the sequences present in P. ochraceus single copy tracer while Evasterias and Pycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeled Evasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology between P. ochraceus single copy DNA and Solaster or Dermasterias DNA. Similarly Solaster DNA contains sequences homologous to approximately 18% of Dermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the genera Pisaster and Evasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The two Pisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the genera Pisaster and Evasterias.

  5. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  6. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  7. Rad54, the Motor of Homologous Recombination

    PubMed Central

    Mazin, Alexander V.; Mazina, Olga M.; Bugreev, Dmitry V.; Rossi, Matthew J.

    2009-01-01

    Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions. PMID:20089461

  8. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    PubMed Central

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  9. Recombinant Mouse-Human Chimeric Antibodies as Calibrators in Immunoassays That Measure Antibodies to Toxoplasma gondii

    PubMed Central

    Hackett, John; Hoff-Velk, Jane; Golden, Alan; Brashear, Jeff; Robinson, John; Rapp, Margaret; Klass, Michael; Ostrow, David H.; Mandecki, Wlodek

    1998-01-01

    In the present study, we examined the feasibility of using recombinant antibodies containing murine variable regions and human constant regions as calibrators or controls in immunoassays. As a model system, we chose the Abbott IMx Toxo immunoglobulin M (IgM) and Toxo IgG assays designed to detect antibodies to Toxoplasma gondii. Two mouse monoclonal antibodies were selected based on their reactivity to the T. gondii antigens P30 and P66. Heavy- and light-chain variable-region genes were cloned from both hybridomas and transferred into immunoglobulin expression vectors containing human kappa and IgG1 or IgM constant regions. The constructs were stably transfected into Sp2/0-Ag14 cells. In the IMx Toxo IgG assay, immunoreactivity of the anti-P30 chimeric IgG1 antibody paralleled that of the positive human plasma-derived assay calibrators. Signal generated with the anti-P66 chimeric IgG1 antibody was observed to plateau below the maximal reactivity observed for the assay calibrator. Examination of the IgM chimeric antibodies in the IMx Toxo IgM assay revealed that both the anti-P30 and anti-P66 antibodies matched the assay index calibrator manufactured with human Toxo IgM-positive plasma. When evaluated with patient samples, the correlation between results obtained with the chimeric antibody calibrators and the positive human plasma calibrators was ≥0.985. These data demonstrate that chimeric mouse-human antibodies are a viable alternative to high-titer positive human plasma for the manufacture of calibrators and controls for diagnostic assays. PMID:9574691

  10. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    SciTech Connect

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai . E-mail: zhikaixu@fmmu.edu.cn

    2007-03-23

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice.

  11. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  12. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis.

    PubMed

    Xie, Xuping; Yang, Yujiao; Muruato, Antonio E; Zou, Jing; Shan, Chao; Nunes, Bruno T D; Medeiros, Daniele B A; Vasconcelos, Pedro F C; Weaver, Scott C; Rossi, Shannan L; Shi, Pei-Yong

    2017-02-07

    Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425-428, 2016, https://doi.org/10.1038/nature17994). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development.

  13. Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis

    PubMed Central

    Yang, Yujiao; Muruato, Antonio E.; Zou, Jing; Shan, Chao; Nunes, Bruno T. D.; Medeiros, Daniele B. A.; Vasconcelos, Pedro F. C.; Weaver, Scott C.; Rossi, Shannan L.

    2017-01-01

    ABSTRACT Compared with other flaviviruses, Zika virus (ZIKV) is uniquely associated with congenital diseases in pregnant women. One recent study reported that (i) ZIKV has higher thermostability than dengue virus (DENV [a flavivirus closely related to ZIKV]), which might contribute to the disease outcome; (ii) the higher thermostability of ZIKV could arise from an extended loop structure in domain III of the viral envelope (E) protein and an extra hydrogen-bond interaction between E molecules (V. A. Kostyuchenko, E. X. Y. Lim, S. Zhang, G. Fibriansah, T.-S. Ng, J. S. G. Ooi, J. Shi, and S.-M. Lok, Nature 533:425–428, 2016, https://doi.org/10.1038/nature17994). Here we report the functional analysis of the structural information in the context of complete ZIKV and DENV-2 virions. Swapping the prM-E genes between ZIKV and DENV-2 switched the thermostability of the chimeric viruses, identifying the prM-E proteins as the major determinants for virion thermostability. Shortening the extended loop of the E protein by 1 amino acid was lethal for ZIKV assembly/release. Mutations (Q350I and T351V) that abolished the extra hydrogen-bond interaction between the E proteins did not reduce ZIKV thermostability, indicating that the extra interaction does not increase the thermostability. Interestingly, mutant T351V was attenuated in A129 mice defective in type I interferon receptors, even though the virus retained the wild-type thermostability. Furthermore, we found that a chimeric ZIKV with the DENV-2 prM-E and a chimeric DENV-2 with the ZIKV prM-E were highly attenuated in A129 mice; these chimeric viruses were highly immunogenic and protective against DENV-2 and ZIKV challenge, respectively. These results indicate the potential of these chimeric viruses for vaccine development. PMID:28174309

  14. Impact of Mixed Xenogeneic Porcine Hematopoietic Chimerism on Human NK Cell Recognition in a Humanized Mouse Model.

    PubMed

    Li, H W; Vishwasrao, P; Hölzl, M A; Chen, S; Choi, G; Zhao, G; Sykes, M

    2017-02-01

    Mixed chimerism is a promising approach to inducing allograft and xenograft tolerance. Mixed allogeneic and xenogeneic chimerism in mouse models induced specific tolerance and global hyporesponsiveness, respectively, of host mouse natural killer (NK) cells. In this study, we investigated whether pig/human mixed chimerism could tolerize human NK cells in a humanized mouse model. Our results showed no impact of induced human NK cell reconstitution on porcine chimerism. NK cells from most pig/human mixed chimeric mice showed either specifically decreased cytotoxicity to pig cells or global hyporesponsiveness in an in vitro cytotoxicity assay. Mixed xenogeneic chimerism did not hamper the maturation of human NK cells but was associated with an alteration in NK cell subset distribution and interferon gamma (IFN-γ) production in the bone marrow. In summary, we demonstrate that mixed xenogeneic chimerism induces human NK cell hyporesponsiveness to pig cells. Our results support the use of this approach to inducing xenogeneic tolerance in the clinical setting. However, additional approaches are required to improve the efficacy of tolerance induction while ensuring adequate NK cell functions.

  15. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    PubMed

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.

  16. Text mining of DNA sequence homology searches.

    PubMed

    McCallum, John; Ganesh, Siva

    2003-01-01

    Primary tasks in analysis and annotation of expressed sequence tag (EST) datasets are to identify similarity among sequences by unsupervised clustering and assign putative function based on BLAST homology searches. We investigated the usefulness of text mining as a simple approach for further higher-level clustering of EST datasets using IBM Intelligent Miner for Text v2.3 tools. Agglomerative and k-means clustering tools were used to cluster BLASTx homology search documents from two onion EST datasets and optimised by pre-processing and pruning. Subjective evaluation confirmed that these tools provided biologically useful and complementary views of the two libraries, provided new insights into their composition and revealed clusters previously identified by human experts. We compared BLASTx textual clusters for two gene families with their DNA sequence-based clusters and confirmed that these shared similar morphology.

  17. Homologous Pairing between Long DNA Double Helices

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2016-04-01

    Molecular recognition between two double stranded (ds) DNA with homologous sequences may not seem compatible with the B-DNA structure because the sequence information is hidden when it is used for joining the two strands. Nevertheless, it has to be invoked to account for various biological data. Using quantum chemistry, molecular mechanics, and hints from recent genetics experiments, I show here that direct recognition between homologous dsDNA is possible through the formation of short quadruplexes due to direct complementary hydrogen bonding of major-groove surfaces in parallel alignment. The constraints imposed by the predicted structures of the recognition units determine the mechanism of complexation between long dsDNA. This mechanism and concomitant predictions agree with the available experimental data and shed light upon the sequence effects and the possible involvement of topoisomerase II in the recognition.

  18. Redesigning Aldolase Stereoselectivity by Homologous Grafting

    PubMed Central

    Henßen, Birgit; Metz, Alexander; Gohlke, Holger; Pietruszka, Jörg

    2016-01-01

    The 2-deoxy-d-ribose-5-phosphate aldolase (DERA) offers access to highly desirable building blocks for organic synthesis by catalyzing a stereoselective C-C bond formation between acetaldehyde and certain electrophilic aldehydes. DERA´s potential is particularly highlighted by the ability to catalyze sequential, highly enantioselective aldol reactions. However, its synthetic use is limited by the absence of an enantiocomplementary enzyme. Here, we introduce the concept of homologous grafting to identify stereoselectivity-determining amino acid positions in DERA. We identified such positions by structural analysis of the homologous aldolases 2-keto-3-deoxy-6-phosphogluconate aldolase (KDPG) and the enantiocomplementary enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase (KDPGal). Mutation of these positions led to a slightly inversed enantiopreference of both aldolases to the same extent. By transferring these sequence motifs onto DERA we achieved the intended change in enantioselectivity. PMID:27327271

  19. Khovanov homology of graph-links

    SciTech Connect

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  20. Homology and phylogeny and their automated inference

    NASA Astrophysics Data System (ADS)

    Fuellen, Georg

    2008-06-01

    The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.

  1. PubServer: literature searches by homology.

    PubMed

    Jaroszewski, Lukasz; Koska, Laszlo; Sedova, Mayya; Godzik, Adam

    2014-07-01

    PubServer, available at http://pubserver.burnham.org/, is a tool to automatically collect, filter and analyze publications associated with groups of homologous proteins. Protein entries in databases such as Entrez Protein database at NCBI contain information about publications associated with a given protein. The scope of these publications varies a lot: they include studies focused on biochemical functions of individual proteins, but also reports from genome sequencing projects that introduce tens of thousands of proteins. Collecting and analyzing publications related to sets of homologous proteins help in functional annotation of novel protein families and in improving annotations of well-studied protein families or individual genes. However, performing such collection and analysis manually is a tedious and time-consuming process. PubServer automatically collects identifiers of homologous proteins using PSI-Blast, retrieves literature references from corresponding database entries and filters out publications unlikely to contain useful information about individual proteins. It also prepares simple vocabulary statistics from titles, abstracts and MeSH terms to identify the most frequently occurring keywords, which may help to quickly identify common themes in these publications. The filtering criteria applied to collected publications are user-adjustable. The results of the server are presented as an interactive page that allows re-filtering and different presentations of the output.

  2. Mismatch repair during homologous and homeologous recombination.

    PubMed

    Spies, Maria; Fishel, Richard

    2015-03-02

    Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.

  3. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii).

    PubMed

    Shimada, Kenshu

    2002-01-01

    The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates.

  4. Mismatch Repair during Homologous and Homeologous Recombination

    PubMed Central

    Spies, Maria; Fishel, Richard

    2015-01-01

    Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans. PMID:25731766

  5. Homologous recombination using bacterial artificial chromosomes.

    PubMed

    Lai, Cary; Fischer, Tobias; Munroe, Elizabeth

    2015-02-02

    This protocol introduces the technique of homologous recombination in bacteria to insert a linear DNA fragment into bacterial artificial chromosomes (BACs). Homologous recombination allows the modification of large DNA molecules, in contrast with conventional restriction endonuclease-based strategies, which cleave large DNAs into numerous fragments and are unlikely to permit the precise targeting afforded by recombination-based approaches. The method uses a phage lambda-derived recombination system (using exo, beta, and gam) as well as other enzymatic activities provided by the host (Escherichia coli). In the method described here, a DNA fragment encoding enhanced cyan fluorescent protein is inserted immediately after the start codon of the gene encoding choline acetyltransferase ("ChAT"), the final enzyme in acetylcholine biosynthesis, using homologous recombination between sequences that are present both on the introduced DNA fragment and in the target BAC. The desired recombination products are identified via positive selection for resistance to kanamycin. In principle, the resulting modified BAC could be used to produce transgenic mice that express this fluorescent protein in cholinergic neurons. The approach described here could be used to insert any DNA fragment.

  6. Early mixed T-cell chimerism is predictive of pediatric AML or MDS relapse after hematopoietic stem cell transplant.

    PubMed

    Broglie, Larisa; Helenowski, Irene; Jennings, Lawrence J; Schafernak, Kristian; Duerst, Reggie; Schneiderman, Jennifer; Tse, William; Kletzel, Morris; Chaudhury, Sonali

    2017-03-07

    Patients with acute myeloid leukemia (AML) who relapse after hematopoietic stem cell transplantation (HCT) have dismal outcomes. Our ability to predict those at risk for relapse is limited. We examined chimerism trends post-HCT in 63 children who underwent HCT for AML or myelodysplastic syndrome (MDS). Mixed T-cell chimerism at engraftment and absence of chronic graft versus host disease (cGVHD) were associated with relapse (P = 0.04 and P = 0.02, respectively). Mixed T-cell chimerism at engraftment was predictive in patients without cGVHD (P = 0.03). Patients with engraftment mixed T-cell chimerism may warrant closer disease monitoring and consideration for early intervention.

  7. Flow cytometric evaluation of red blood cell chimerism after bone marrow transplantation in Iranian patients: a preliminary study.

    PubMed

    Shaiegan, Mojgan; Hadjati, Esmerdis; Aghaiipour, Mahnaz; Iravani, Masoud; David, Gaelle; Bernard, Daniel

    2006-10-01

    The aim of this study was to evaluate mixed red cells population and red blood cell chimerism after hematopoietic stem cell transplantation. Red blood cell chimerism after hematopoietic stem cell transplantation was analyzed using a series of fluorescein isothiocyanate-conjugated monoclonal antibodies (BioAtlantic, France) directed against ABH, Rh (D, C, E, c, e), Kell, Duffy, Kidd, and Ss antigens on blood samples of 14 patients with hematologic disorders undergoing hematopoietic stem cell transplantation, by flow cytometric method on days 15, 30, and 60 after transplantation. All patients showed expression of donor red cell antigens within days 15 - 30 after hematopoietic stem cell transplantation. Graft versus host disease and ABO incompatibility did not affect the expression of chimerism. Flow cytometric analysis is a simple, accurate, and valuable test which is of significant help in monitoring chimerism in allogeneic hematopoietic stem cell transplantation.

  8. Artificial Recruitment of UAF1-USP Complexes by a PHLPP1-E1 Chimeric Helicase Enhances Human Papillomavirus DNA Replication

    PubMed Central

    Gagnon, David; Lehoux, Michaël

    2015-01-01

    ABSTRACT The E1 helicase from anogenital human papillomavirus (HPV) types interacts with the cellular WD repeat-containing protein UAF1 in complex with the deubiquitinating enzyme USP1, USP12, or USP46. This interaction stimulates viral DNA replication and is required for maintenance of the viral episome in keratinocytes. E1 associates with UAF1 through a short UAF1-binding site (UBS) located within the N-terminal 40 residues of the protein. Here, we investigated if the E1 UBS could be replaced by the analogous domain from an unrelated protein, the pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1). We found that PHLPP1 and E1 interact with UAF1 in a mutually exclusive manner and mapped the minimal PHLPP1 UBS (PUBS) to a 100-amino-acid region sufficient for assembly into UAF1-USP complexes. Similarly to the E1 UBS, overexpression of PUBS in trans inhibited HPV DNA replication, albeit less efficiently. Characterization of a PHLPP1-E1 chimeric helicase revealed that PUBS could partially substitute for the E1 UBS in enhancing viral DNA replication and that the stimulatory effect of PUBS likely involves recruitment of UAF1-USP complexes, as it was abolished by mutations that weaken UAF1-binding and by overexpression of catalytically inactive USPs. Although functionally similar to the E1 UBS, PUBS is larger in size and requires both the WD repeat region and C-terminal ubiquitin-like domain of UAF1 for interaction, in contrast to E1, which does not contact the latter. Overall, this comparison of two heterologous UBSs indicates that these domains function as transferable protein interaction modules and provide further evidence that the association of E1 with UAF1-containing deubiquitinating complexes stimulates HPV DNA replication. IMPORTANCE The E1 protein from anogenital HPV types interacts with the UAF1-associated deubiquitinating enzymes USP1, USP12, and USP46 to stimulate replication of the viral genome. Little is known about the

  9. Effects of mixed hematopoietic chimerism in a mouse model of bone marrow transplantation for sickle cell anemia.

    PubMed

    Iannone, R; Luznik, L; Engstrom, L W; Tennessee, S L; Askin, F B; Casella, J F; Kickler, T S; Goodman, S N; Hawkins, A L; Griffin, C A; Noffsinger, L; Fuchs, E J

    2001-06-15

    Sickle cell anemia (SCA) is an inherited disorder of beta-globin, resulting in red blood cell rigidity, anemia, painful crises, organ infarctions, and reduced life expectancy. Allogeneic blood or marrow transplantation (BMT) can cure SCA but is associated with an 8% to 10% mortality rate, primarily from complications of marrow-ablative conditioning. Transplantation of allogeneic marrow after less intensive conditioning reduces toxicity but may result in stable mixed hematopoietic chimerism. The few SCA patients who inadvertently developed mixed chimerism after BMT remain symptom free, suggesting that mixed chimerism can reduce disease-related morbidity. However, because the effects of various levels of mixed chimerism on organ pathology have not been characterized, this study examined the histologic effects of an increasing percentage of normal donor hematopoiesis in a mouse model of BMT for SCA. In lethally irradiated normal mice that were reconstituted with varying ratios of T-cell-depleted marrow from normal and transgenic "sickle cell" mice, normal myeloid chimerism in excess of 25% was associated with more than 90% normal hemoglobin (Hb). However, 70% normal myeloid chimerism was required to reverse the anemia. Organ pathology, including liver infarction, was present in mice with sickle Hb (HbS) levels as low as 16.8% (19.6% normal myeloid chimerism). Histologic abnormalities increased in severity up to 80% HbS, but were less severe in mice with more than 80% HbS than in those with 40% to 80% HbS. Therefore, stable mixed chimerism resulting from nonmyeloablative BMT may reduce the morbidity from SCA, but prevention of all disease complications may require minimizing the fraction of circulating sickle red cells. (Blood. 2001;97:3960-3965)

  10. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease.

    PubMed

    Ellebrecht, Christoph T; Bhoj, Vijay G; Nace, Arben; Choi, Eun Jung; Mao, Xuming; Cho, Michael Jeffrey; Di Zenzo, Giovanni; Lanzavecchia, Antonio; Seykora, John T; Cotsarelis, George; Milone, Michael C; Payne, Aimee S

    2016-07-08

    Ideally, therapy for autoimmune diseases should eliminate pathogenic autoimmune cells while sparing protective immunity, but feasible strategies for such an approach have been elusive. Here, we show that in the antibody-mediated autoimmune disease pemphigus vulgaris (PV), autoantigen-based chimeric immunoreceptors can direct T cells to kill autoreactive B lymphocytes through the specificity of the B cell receptor (BCR). We engineered human T cells to express a chimeric autoantibody receptor (CAAR), consisting of the PV autoantigen, desmoglein (Dsg) 3, fused to CD137-CD3ζ signaling domains. Dsg3 CAAR-T cells exhibit specific cytotoxicity against cells expressing anti-Dsg3 BCRs in vitro and expand, persist, and specifically eliminate Dsg3-specific B cells in vivo. CAAR-T cells may provide an effective and universal strategy for specific targeting of autoreactive B cells in antibody-mediated autoimmune disease.

  11. A Photinus pyralis and Luciola italica chimeric firefly luciferase produces enhanced bioluminescence.

    PubMed

    Branchini, Bruce R; Southworth, Tara L; Fontaine, Danielle M; Davis, Audrey L; Behney, Curran E; Murtiashaw, Martha H

    2014-10-14

    We report the enhanced bioluminescence properties of a chimeric enzyme (PpyLit) that contains the N-domain of recombinant Photinus pyralis luciferase joined to the C-domain of recombinant Luciola italica luciferase. Compared to the P. pyralis enzyme, the novel PpyLit chimera exhibited 1.8-fold enhanced flash-height specific activity, 2.0-fold enhanced integration-based specific activity, 2.9-fold enhanced catalytic efficiency (kcat/Km), and a 1.4-fold greater bioluminescence quantum yield. The results of this study provide an underlying basis of this unusual example of a chimeric enzyme with enhanced catalytic properties that are not simply the sum of the contributions of the two luciferases.

  12. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine

    PubMed Central

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  13. Association of pigmentary anomalies with chromosomal and genetic mosaicism and chimerism.

    PubMed Central

    Thomas, I T; Frias, J L; Cantu, E S; Lafer, C Z; Flannery, D B; Graham, J G

    1989-01-01

    We have evaluated eight patients with pigmentary anomalies reminiscent of incontinentia pigmenti or hypomelanosis of Ito. All demonstrated abnormal lymphocyte karyotypes with chromosomal mosaicism in lymphocytes and/or skin fibroblasts. In seven the skin was darkly pigmented, and in all of these seven cases the abnormal pigmentation followed Blaschko lines. The literature contains at least 36 similar examples of an association between pigmentary anomalies and chromosomal mosaicism, as well as five examples of an association with chimerism. The pigmentary anomalies are pleomorphic, and the chromosomal anomalies involve autosomes and sex chromosomes. The pigmentation patterns are reminiscent of the archetypal paradigm seen in allophenic mice and demonstrate the clonal origin of melanoblasts from neural crest precursors. Patients with anomalous skin pigmentation, particularly when it follows a pattern of Blaschko lines, should be appropriately evaluated for a possible association with chromosomal or genetic mosaicism or chimerism. Images Figure 1 PMID:2667350

  14. Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor.

    PubMed

    Matsui, Kyoko; Tanaka, Hideo; Ohme-Takagi, Masaru

    2004-11-01

    Flavonoids are secondary metabolites that are specific to higher plants. PAP1, a member of the family of MYB domain transcription factors in Arabidopsis, is a positive regulator of the biosynthesis of anthocyanin. We show here that a chimeric PAP1 repressor, in which the EAR-motif repression domain from SUPERMAN was fused to PAP1, suppressed the expression of four flavonoid biosynthetic genes, namely CHS, DFR, LDOX, and BAN, in siliques, and inhibited the accumulation of proanthocyanidin, even in the presence of an endogenous positive regulator, such as TT2. This suppression resulted in the formation of light yellow seeds in 35S::PAP1SRDX transgenic plants. Our results indicate that PAP1 has the potential ability to regulate the biosynthesis not only of anthocyanin but also of proanthocyanidin. Our gene silencing system, using chimeric repressors, appears to be a useful tool for the manipulation of the biosynthesis of secondary metabolites in plants.

  15. Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II.

    PubMed

    Sun, Baodong; Zhang, Haoyue; Benjamin, Daniel K; Brown, Talmage; Bird, Andrew; Young, Sarah P; McVie-Wylie, Alison; Chen, Y-T; Koeberl, Dwight D

    2006-12-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) is an inherited muscular dystrophy caused by deficiency in the activity of the lysosomal enzyme acid alpha-glucosidase (GAA). We hypothesized that chimeric GAA containing an alternative signal peptide could increase the secretion of GAA from transduced cells and enhance the receptor-mediated uptake of GAA in striated muscle. The relative secretion of chimeric GAA from transfected 293 cells increased up to 26-fold. Receptor-mediated uptake of secreted, chimeric GAA corrected cultured GSD-II patient cells. High-level hGAA was sustained in the plasma of GSD-II mice for 24 weeks following administration of an AAV2/8 vector encoding chimeric GAA; furthermore, GAA activity was increased and glycogen content was significantly reduced in striated muscle and in the brain. Administration of only 1 x 10(10) vector particles increased GAA activity in the heart and diaphragm for >18 weeks, whereas 3 x 10(10) vector particles increased GAA activity and reduced glycogen content in the heart, diaphragm, and quadriceps. Furthermore, an AAV2/2 vector encoding chimeric GAA produced secreted hGAA for >12 weeks in the majority of treated GSD-II mice. Thus, chimeric, highly secreted GAA enhanced the efficacy of AAV vector-mediated gene therapy in GSD-II mice.

  16. Humanized neuronal chimeric mouse brain generated by neonatally engrafted human iPSC-derived primitive neural progenitor cells

    PubMed Central

    Chen, Chen

    2016-01-01

    The creation of a humanized chimeric mouse nervous system permits the study of human neural development and disease pathogenesis using human cells in vivo. Humanized glial chimeric mice with the brain and spinal cord being colonized by human glial cells have been successfully generated. However, generation of humanized chimeric mouse brains repopulated by human neurons to possess a high degree of chimerism have not been well studied. Here we created humanized neuronal chimeric mouse brains by neonatally engrafting the distinct and highly neurogenic human induced pluripotent stem cell (hiPSC)–derived rosette-type primitive neural progenitors. These neural progenitors predominantly differentiate to neurons, which disperse widely throughout the mouse brain with infiltration of the cerebral cortex and hippocampus at 6 and 13 months after transplantation. Building upon the hiPSC technology, we propose that this potentially unique humanized neuronal chimeric mouse model will provide profound opportunities to define the structure, function, and plasticity of neural networks containing human neurons derived from a broad variety of neurological disorders. PMID:27882348

  17. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    PubMed

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides.

  18. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  19. Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer.

    PubMed

    Gheybi, Elaheh; Amani, Jafar; Salmanian, Ali Hatef; Mashayekhi, Farhad; Khodi, Samaneh

    2014-11-01

    Breast cancer is the most common cancer among women in the world. One of the approaches for diagnosis of breast cancer is detection of its tumor-associated markers. Mucin 1 (MUC1), a tumor-associated antigen, is a transmembrane glycoprotein expressed by normal epithelial cells and overexpressed by carcinomas of epithelial origin. Also, human epidermal growth factor receptor-2 (HER2/erbB-2) belongs to the one of four members of tyrosin kinase type 1 family in which overexpression of HER2 is associated with malignancy in breast cancer. This study was aimed to bioinformatics analysis and designing a recombinant chimeric protein containing MUC1 and HER2 antigens to express in prokaryotic host (Escherichia coli) as breast cancer diagnosis tools. The immunogenic sequences of MUC1 and HER2 were extracted and fused together by a linker. The chimeric construct was analyzed by bioinformatics softwares. The optimization and purification, evaluation of the expression of chimeric protein was performed using Western blotting, ELISA, and immunohistochemistry. The results showed that the chimeric construct was stable and immunogenic domains were exposed. The pET-28a vector containing chimeric gene had high level of protein expression. The recombinant chimeric protein was confirmed using Western blotting, and it was investigated using ELISA and IHC. Then, the MUC1 and HER2 combined peptides can be used as coating antigens in ELISA for detection of antibodies against MUC1 or HER2 in human serum.

  20. Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses

    PubMed Central

    Mohan, Teena; Berman, Zachary; Luo, Yuan; Wang, Chao; Wang, Shelly; Compans, Richard W.; Wang, Bao-Zhong

    2017-01-01

    Influenza virus is a significant cause of morbidity and mortality, with worldwide seasonal epidemics. The duration and quality of humoral immunity and generation of immunological memory to vaccines is critical for protective immunity. In the current study, we examined the long-lasting protective efficacy of chimeric VLPs (cVLPs) containing influenza HA and GPI-anchored CCL28 as antigen and mucosal adjuvant, respectively, when immunized intranasally in mice. We report that the cVLPs induced significantly higher and sustainable levels of virus-specific antibody responses, especially IgA levels and hemagglutination inhibition (HAI) titers, more than 8-month post-vaccination compared to influenza VLPs without CCL28 or influenza VLPs physically mixed with sCCL28 (soluble) in mice. After challenging the vaccinated animals at month 8 with H3N2 viruses, the cVLP group also demonstrated strong recall responses. On day 4 post-challenge, we measured increased antibody levels, ASCs and HAI titers with reduced viral load and inflammatory responses in the cVLP group. The animals vaccinated with the cVLP showed 20% cross-protection against drifted (Philippines) and 60% protection against homologous (Aichi) H3N2 viruses. Thus, the results suggest that the GPI-anchored CCL28 induces significantly higher mucosal antibody responses, involved in providing long-term cross-protection against H3N2 influenza virus when compared to other vaccination groups. PMID:28067290

  1. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  2. Conformational influence of the ribose 2'-hydroxyl group: crystal structures of DNA-RNA chimeric duplexes

    NASA Technical Reports Server (NTRS)

    Egli, M.; Usman, N.; Rich, A.

    1993-01-01

    We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.

  3. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    PubMed

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  4. Production and Characterisation of a Neutralising Chimeric Antibody against Botulinum Neurotoxin A

    PubMed Central

    Prigent, Julie; Mazuet, Christelle; Boquet, Didier; Lamourette, Patricia; Volland, Hervé; Popoff, Michel R.; Créminon, Christophe; Simon, Stéphanie

    2010-01-01

    Botulinum neurotoxins, produced by Clostridium botulinum bacteria, are the causative agent of botulism. This disease only affects a few hundred people each year, thus ranking it among the orphan diseases. However, botulinum toxin type A (BoNT/A) is the most potent toxin known to man. Due to their potency and ease of production, these toxins were classified by the Centers for Disease Control and Prevention (CDC) as Category A biothreat agents. For several biothreat agents, like BoNT/A, passive immunotherapy remains the only possible effective treatment allowing in vivo neutralization, despite possible major side effects. Recently, several mouse monoclonal antibodies directed against a recombinant fragment of BoNT/A were produced in our laboratory and most efficiently neutralised the neurotoxin. In the present work, the most powerful one, TA12, was selected for chimerisation. The variable regions of this antibody were thus cloned and fused with the constant counterparts of human IgG1 (kappa light and gamma 1 heavy chains). Chimeric antibody production was evaluated in mammalian myeloma cells (SP2/0-Ag14) and insect cells (Sf9). After purifying the recombinant antibody by affinity chromatography, the biochemical properties of chimeric and mouse antibody were compared. Both have the same very low affinity constant (close to 10 pM) and the chimeric antibody exhibited a similar capacity to its parent counterpart in neutralising the toxin in vivo. Its strong affinity and high neutralising potency make this chimeric antibody interesting for immunotherapy treatment in humans in cases of poisoning, particularly as there is a probable limitation of the immunological side effects observed with classical polyclonal antisera from heterologous species. PMID:20967241

  5. Mouse x pig chimeric antibodies expressed in Baculovirus retain the same properties of their parent antibodies.

    PubMed

    Jar, Ana M; Osorio, Fernando A; López, Osvaldo J

    2009-01-01

    The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse x pig anti-PRRSV antibodies. We cloned the constant regions of gamma-1 and gamma-2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western-blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs.

  6. A chimeric human-mouse model of Sjögren's syndrome.

    PubMed

    Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N

    2015-01-01

    Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology.

  7. Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases.

    PubMed

    Yasukawa, Kiyoshi; Mizuno, Masaki; Inouye, Kuniyo

    2009-03-01

    Reverse transcriptases (RTs) from Moloney murine leukaemia virus (MMLV) and avian myeloblastosis virus (AMV) contain all the fingers, palm, thumb, connection and RNase H domains. The fingers, palm and thumb domains are thought to be involved in the reverse transcription activity, and the RNase H domain is in the RNase H activity. In this study, we characterized four chimeric RTs which comprise one of the fingers, palm, thumb and RNase H domains originated from AMV RT and the other three and connection domains originated from MMLV RT. Unexpectedly, all chimeric RTs exhibited the same characteristics: their specific reverse transcription activities decreased to less than 0.1% of that of MMLV RT, while their specific RNase H activities were approximately 20% of that of MMLV RT. The decreases in the two activities of the chimeric RTs were ascribed to the decreases in k(cat). Based on that the reverse transcription activity of MMLV RT was impaired by substituting its RNase H domain with that from AMV RT, we propose that in MMLV RT, there might be an interaction between the fingers/palm/thumb domain and the RNase H domain.

  8. Chimeric Aptamer-Gelatin Hydrogels as an Extracellular Matrix Mimic for Loading Cells and Growth Factors

    PubMed Central

    Zhang, Xiaolong; Battig, Mark R.; Chen, Niancao; Gaddes, Erin R.; Duncan, Katelyn L.; Wang, Yong

    2016-01-01

    It is important to synthesize materials to recapitulate critical functions of biological systems for a variety of applications such as tissue engineering and regenerative medicine. The purpose of this study was to synthesize a chimeric hydrogel as a promising extracellular matrix (ECM) mimic using gelatin, a nucleic acid aptamer and polyethylene glycol (PEG). This hydrogel had a macroporous structure that was highly permeable for fast molecular transport. Despite its high permeability, it could strongly sequester and sustainably release growth factors with high bioactivity. Notably, growth factors retained in the hydrogel could maintain ~50% bioactivity during a 14-day release test. It also provided cells with effective binding sites, which led to high efficiency of cell loading into the macroporous hydrogel matrix. When cells and growth factors were co-loaded into the chimeric hydrogel, living cells could still be observed by day 14 in a static serum-reduced culture condition. Thus, this chimeric aptamer-gelatin hydrogel constitutes a promising biomolecular ECM mimic for loading cells and growth factors. PMID:26791559

  9. Construction of a photo-responsive chimeric histidine kinase in Escherichia coli.

    PubMed

    Hori, Mayuko; Oka, Shyunsuke; Sugie, Yoshimi; Ohtsuka, Hokuto; Aiba, Hirofumi

    2017-01-31

    Two-component signal transduction systems (TCS), that are also referred to as His to Asp phosphorelay systems, are involved in widespread cellular responses to diverse signals from bacteria to plants. Previously, we succeeded in reconstructing a cyanobacterial photo-perception system in Escherichia coli by employing a CcaS-CcaR two-component system from Nostoc punctiforme. In this study, we have added a photo-responsive ability to ArcB-ArcA (anoxic redox control) TCS of E. coli by fusing a cyanobacterial photoreceptor domain of CcaS with an intracellular histidine kinase (HK) domain of ArcB. For this, we constructed several chimeric HKs between CcaS and ArcB and found that one chimeric HK, named ArcaS9, has a photo-responsive ability. When ArcaS9 was expressed with an ArcA response regulator in E. coli expressing phycocyanobilin (PCB)-producing enzymes, the expression of sdh, a target gene of ArcB-ArcA TCS was regulated in a light-color-dependent manner. Thus we succeeded in endowing E. coli HK with a photo-responsive ability. This provides an insight into how the sensing ability of HK can be manipulated by a chimeric construct.

  10. Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors.

    PubMed

    Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C

    2015-07-01

    Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity toward B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared with standard first- and second-generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors.

  11. Immunotherapy for cancer: construction, expression and functional characterization of chimeric antibodies.

    PubMed

    Motmans, K; Thirion, S; Heyligen, H; Janssens, J; Raus, J; Vandevyver, C

    1996-12-01

    Monoclonal antibodies (Mabs) are a potential key component for the treatment of cancer, because of their specificity and multiple effector functions. Hybridoma technology and progress in genetic engineering made it possible to customize antibody molecules, rendering them more suitable for selective application. A widely used technique is the construction of mouse-human hybrid molecules by recombinant DNA techniques. These so-called chimeric antibodies contain the murine variable (V) regions fused to the human constant (C) regions. In this report, a general approach is described for the production of chimeric antibodies. The gene segments encoding the murine variable heavy and light chain are isolated by the polymerase chain reaction and cloned into expression vectors containing the human gamma 1 heavy chain gene and the human K light chain gene, respectively. Subsequently, these constructs are transfected into a non-Ig-producing murine hybridoma, eg SP2/0 cells. The in vitro study of the functional characteristics and biological properties of the thus obtained chimeric antibodies are discussed.

  12. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy

    PubMed Central

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Tšuiko, Olga; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris R.

    2016-01-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term “heterogoneic division” to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals. PMID:27197242

  13. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  14. A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls.

    PubMed

    Iwase, Akira; Hideno, Akihiro; Watanabe, Keiji; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-07-15

    Bioethanol might be produced more economically and with less ecological impact (with reduced exploitation of food crops) if we could increase the production of glucose from the cellulosic materials in plant cell walls. However, plant cell walls are relatively resistant to enzymatic and physicochemical hydrolysis and, therefore, it is necessary to develop methods for reducing such resistance. Changes in plant cell wall materials, by genetic engineering, that render them more easily hydrolyzable to glucose might be a valuable approach to this problem. We showed previously that, in Arabidopsis, NAC secondary wall thickening-promoting factor1 (NST1) and NST3 are key regulators of secondary wall formation. We report here that transgenic Arabidopsis plants that expressed a chimeric repressor derived from NST1 produced cell wall materials that were twice as susceptible to both enzymatic and physicochemical hydrolysis as those from wild-type plants. The yields of glucose from both fresh and dry biomass were increased in the chimeric repressor lines. Use of the NST1 chimeric repressor might enhance production of glucose from plant cell walls, by changing the nature of the cell walls themselves.

  15. [Blood cell chimerism in dizygotic twins conceived by in vitro fertilization].

    PubMed

    Martos-Moreno, G Á; Campos, C; Flores, R; Yturriaga, R; Pérez-Jurado, L A; Argente, J

    2013-10-01

    We present a case of hematopoietic chimerism in dizygotic twins (male and female) conceived by in vitro fertilization (IVF). At 8 years of age a blood karyotype was performed on the female due to the presence of clitoromegaly. Two different lines: 46,XX (53%) and 46,XY (47%) were found. FISH studies confirmed the presence of the SRY gene in 46,XY cells. Karyotyping of the male showed two different lines: 46,XY (58%) and 46,XX (42%). SRY gene was present in 46,XY cells. Microsatellite analyses of blood DNA revealed tetra-allelic contribution at some autosomal loci with similar proportions of maternal and paternal alleles and X/Y chromosome dose. FISH in buccal mucous showed that all cells from the female were 46,XX and those from the male 46,XY. The gonadal karyotype in the female was 46,XX without SRY. Hence, we report 46,XX/46,XY chimerism in dizygotic twins. Blood chimerism was confirmed by performing FISH on the buccal cells of the patients.

  16. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment.

    PubMed

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-03-11

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.

  17. Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector.

    PubMed Central

    Casadei, J; Powell, M J; Kenten, J H

    1990-01-01

    A fusion protein has been expressed from the relevant genes in mammalian cells consisting of the photoprotein aequorin and an anti-4-hydroxy-3-nitrophenacetyl antibody gene. This chimeric antibody has allowed the development of a sensitive luminescent immunoassay. Initially the cDNA of the photoprotein aequorin from Aequorea victoria was cloned and expressed in Escherichia coli. The gene was expressed as apoaequorin and, by using luciferin isolated from Renilla reniformis, its activity was found essentially identical to native aequorin. The aequorin gene was subcloned into a mammalian expression vector to produce a fusion protein directing secretion of apoaequorin; the aequorin gene was fused to the 3' terminus of an immunoglobulin heavy-chain gene that directed expression of an anti-4-hydroxy-3-nitrophenacetyl antibody. The gene fusion contained the variable region, the constant region domain 1, and part of domain 2 for the IgG2b mouse immunoglobulin, followed by the aequorin gene. Transfection of the chimeric gene into a cell line expressing the complementary lambda 1 light chain, J558L, allowed recovery of a chimeric antibody with binding specificity for the 4-hydroxy-3-nitrophenacetyl group and the related 4-hydroxy-3-iodo-5-nitrophenacetyl hapten. The Ca2(+)-dependent bioluminescent activity of aequorin was also recovered. Images PMID:2315301

  18. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity

    PubMed Central

    Rinkevich, Baruch; Shaish, Lee; Douek, Jacob; Ben-Shlomo, Rachel

    2016-01-01

    The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits’ absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species. PMID:26758405

  19. Development of a high-throughput microfluidic integrated microarray for the detection of chimeric bioweapons.

    SciTech Connect

    Sheppod, Timothy; Satterfield, Brent; Hukari, Kyle W.; West, Jason A. A.; Hux, Gary A.

    2006-10-01

    The advancement of DNA cloning has significantly augmented the potential threat of a focused bioweapon assault, such as a terrorist attack. With current DNA cloning techniques, toxin genes from the most dangerous (but environmentally labile) bacterial or viral organism can now be selected and inserted into robust organism to produce an infinite number of deadly chimeric bioweapons. In order to neutralize such a threat, accurate detection of the expressed toxin genes, rather than classification on strain or genealogical decent of these organisms, is critical. The development of a high-throughput microarray approach will enable the detection of unknowns chimeric bioweapons. The development of a high-throughput microarray approach will enable the detection of unknown bioweapons. We have developed a unique microfluidic approach to capture and concentrate these threat genes (mRNA's) upto a 30 fold concentration. These captured oligonucleotides can then be used to synthesize in situ oligonucleotide copies (cDNA probes) of the captured genes. An integrated microfluidic architecture will enable us to control flows of reagents, perform clean-up steps and finally elute nanoliter volumes of synthesized oligonucleotides probes. The integrated approach has enabled a process where chimeric or conventional bioweapons can rapidly be identified based on their toxic function, rather than being restricted to information that may not identify the critical nature of the threat.

  20. Hotspot Selective Preference of the Chimeric Sequences Formed in Multiple Displacement Amplification

    PubMed Central

    Tu, Jing; Lu, Na; Duan, Mengqin; Huang, Mengting; Chen, Liang; Li, Junji; Guo, Jing; Lu, Zuhong

    2017-01-01

    Multiple displacement amplification (MDA) is considered to be a conventional approach to comprehensive amplification from low input DNA. The chimeric reads generated in MDA lead to severe disruption in some studies, including those focusing on heterogeneity, structural variation, and genetic recombination. Meanwhile, the generation of by-products gives a new approach to gain insights into the reaction process of φ29 polymerase. Here, we analyzed 36.7 million chimeras and screened 196 billion chimeric hotspots in the human genome, as well as evaluating the hotspot selective preference of chimeras. No significant preference was captured in the distributions of chimeras and hotspots among chromosomes. Hotspots with overlaps for 12–13 nucleotides (nt) were most likely to be selected as templates in chimera generation. Meanwhile, a regularly selective preference was noticed in overlap GC content. The preferences in overlap length and GC content was shown to be pertinent to the sequence denaturation temperature, which pointed out the optimization direction for reducing chimeras. Distance preference between two segments of chimeras was 80–280 nt. The analysis is beneficial for reducing the chimeras in MDA, and the characterization of MDA chimeras is helpful in distinguishing MDA chimeras from chimeric sequences caused by disease. PMID:28245591

  1. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    PubMed Central

    Wang, Shan; Li, Linmei; Shi, Renren; Liu, Xueting; Zhang, Junyan; Zou, Zehong; Hao, Zhuofang; Tao, Ailin

    2016-01-01

    The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors. PMID:26978404

  2. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    PubMed

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-06-29

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  3. Venturing in coral larval chimerism: a compact functional domain with fostered genotypic diversity

    NASA Astrophysics Data System (ADS)

    Rinkevich, Baruch; Shaish, Lee; Douek, Jacob; Ben-Shlomo, Rachel

    2016-01-01

    The globally distributed coral species Pocillopora damicornis is known to release either sexual or asexual derived planula-larvae in various reef locations. Using microsatellite loci as markers, we documented the release of asexually derived chimeric larvae (CL), originating from mosaicked maternal colonies that were also chimeras, at Thai and Philippines reefs. The CL, each presenting different combinations of maternal genotypic constituents, create genetically-complex sets of asexual propagules. This novel mode of inheritance in corals challenges classical postulations of sexual/asexual reproduction traits, as asexual derived CL represent an alliance between genotypes that significantly sways the recruits’ absolute fitness. This type of inherited chimerism, while enhancing intra-entity genetic heterogeneity, is an evolutionary tactic used to increase genetic-heterogeneity, primarily in new areas colonized by a limited number of larvae. Chimerism may also facilitate combat global change impacts by exhibiting adjustable genomic combinations of within-chimera traits that could withstand alterable environmental pressures, helping Pocillopora become a successful cosmopolitan species.

  4. Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides.

    PubMed

    Rice, M C; May, G D; Kipp, P B; Parekh, H; Kmiec, E B

    2000-06-01

    Chimeric oligonucleotides are synthetic molecules comprised of RNA and DNA bases assembled in a double hairpin conformation. These molecules have been shown to direct gene conversion events in mammalian cells and animals through a process involving at least one protein from the DNA mismatch repair pathway. The mechanism of action for gene repair in mammalian cells has been partially elucidated through the use of a cell-free extract system. Recent experiments have expanded the utility of chimeric oligonucleotides to plants and have demonstrated genotypic and phenotypic conversion, as well as Mendelian transmission. Although these experiments showed correction of point and frameshift mutations, the biochemical and mechanistic aspects of the process were not addressed. In this paper, we describe the establishment of cell-free extract systems from maize (Zea mays), banana (Musa acuminata cv Rasthali), and tobacco (Nicotiana tabacum). Using a genetic readout system in bacteria and chimeric oligonucleotides designed to direct the conversion of mutations in antibiotic-resistant genes, we demonstrate gene repair of point and frameshift mutations. Whereas extracts from banana and maize catalyzed repair of mutations in a precise fashion, cell-free extracts prepared from tobacco exhibited either partial repair or non-targeted nucleotide conversion. In addition, an all-DNA hairpin molecule also mediated repair albeit in an imprecise fashion in all cell-free extracts tested. This system enables the mechanistic study of gene repair in plants and may facilitate the identification of DNA repair proteins operating in plant cells.

  5. Multiple Layers of Chimerism in a Single-Stranded DNA Virus Discovered by Deep Sequencing

    PubMed Central

    Krupovic, Mart; Zhi, Ning; Li, Jungang; Hu, Gangqing; Koonin, Eugene V.; Wong, Susan; Shevchenko, Sofiya; Zhao, Keji; Young, Neal S.

    2015-01-01

    Viruses with single-stranded (ss) DNA genomes infect hosts in all three domains of life and include many medically, ecologically, and economically important pathogens. Recently, a new group of ssDNA viruses with chimeric genomes has been discovered through viral metagenomics. These chimeric viruses combine capsid protein genes and replicative protein genes that, respectively, appear to have been inherited from viruses with positive-strand RNA genomes, such as tombusviruses, and ssDNA genomes, such as circoviruses, nanoviruses or geminiviruses. Here, we describe the genome sequence of a new representative of this virus group and reveal an additional layer of chimerism among ssDNA viruses. We show that not only do these viruses encompass genes for capsid proteins and replicative proteins that have distinct evolutionary histories, but also the replicative genes themselves are chimeras of functional domains inherited from viruses of different families. Our results underscore the importance of horizontal gene transfer in the evolution of ssDNA viruses and the role of genetic recombination in the emergence of novel virus groups. PMID:25840414

  6. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation

    PubMed Central

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U.; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current “gold standard” for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  7. PRIMO: An Interactive Homology Modeling Pipeline

    PubMed Central

    Glenister, Michael

    2016-01-01

    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO’s automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/. PMID:27855192

  8. Identification of plant microRNA homologs.

    PubMed

    Dezulian, Tobias; Remmert, Michael; Palatnik, Javier F; Weigel, Detlef; Huson, Daniel H

    2006-02-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding RNAs that regulate gene and protein expression in plants and animals. MiRNAs have so far been identified mostly by specific cloning of small RNA molecules, complemented by computational methods. We present a computational identification approach that is able to identify candidate miRNA homologs in any set of sequences, given a query miRNA. The approach is based on a sequence similarity search step followed by a set of structural filters.

  9. Railway vehicle performance optimisation using virtual homologation

    NASA Astrophysics Data System (ADS)

    Magalhães, H.; Madeira, J. F. A.; Ambrósio, J.; Pombo, J.

    2016-09-01

    Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are

  10. Excluded volume effect enhances the homology pairing of model chromosomes

    NASA Astrophysics Data System (ADS)

    Takamiya, Kazunori; Yamamoto, Keisuke; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  11. High frequency of donor chimerism after allogeneic transplantation of CD34+-selected peripheral blood cells.

    PubMed

    Briones, J; Urbano-Ispizua, A; Lawler, M; Rozman, C; Gardiner, N; Marín, P; Salgado, C; Féliz, P; McCann, S; Montserrat, E

    1998-05-01

    Ex vivo T cell depletion of allogeneic grafts is associated with a high (up to 80%) rate of mixed chimerism (MC) posttransplantation. The number of transplanted progenitor cells is an important factor in achieving complete donor chimerism in the T cell depletion setting. Use of granulocyte colony-stimulating factor (G-CSF) peripheral blood allografts allows the administration of large numbers of CD34+ cells. We studied the chimeric status of 13 patients who received allogeneic CD34+-selected peripheral blood progenitor cell transplants (allo-PBPCTs/CD34+) from HLA-identical sibling donors. Patients were conditioned with cyclophosphamide (120 mg/kg) and total-body irradiation (13 Gy in four fractions). Apheresis products were T cell-depleted by the immunoadsorption avidin-biotin method. The median number of CD34+ and CD3+ cells infused was 2.8x10(6)/kg (range 1.9-8.6x10(6)/kg) and 0.4x10(6)/kg (range 0.3-1x10(6)/kg), respectively. Molecular analysis of the engraftment was performed using polymerase chain reaction (PCR) amplification of highly polymorphic short tandem repeat (PCR-STR) sequences in peripheral blood samples. MC was detected in two (15%) of 13 patients. These two patients relapsed at 8 and 10 months after transplant, respectively. The remaining 11 patients showed complete donor chimerism and were in clinical remission after a maximum follow-up period of 24 months (range 6-24 months). These results were compared with those obtained in 10 patients who were treated with T cell-depleted bone marrow transplantation by means of elutriation and who received the same conditioning treatment and similar amounts of CD3+ cells (median 0.45x10(6)/kg; not significant) but a lower number of CD34+ cells (median 0.8x10(6)/kg; p = 0.001). MC was documented in six of 10 patients (60%), which was significantly higher than in the allo-PBPCT/CD34+ group (p = 0.04). We conclude that a high frequency of complete donor chimerism is achieved in patients receiving allo-PBPCT/CD34

  12. Histone deacetylases 9 and 10 are required for homologous recombination.

    PubMed

    Kotian, Shweta; Liyanarachchi, Sandhya; Zelent, Arthur; Parvin, Jeffrey D

    2011-03-11

    We tested the role of histone deacetylases (HDACs) in the homologous recombination process. A tissue-culture based homology-directed repair assay was used in which repair of a double-stranded break by homologous recombination results in gene conversion of an inactive GFP allele to an active GFP gene. Our rationale was that hyperacetylation caused by HDAC inhibitor treatment would increase chromatin accessibility to repair factors, thereby increasing homologous recombination. Contrary to expectation, treatment of cells with the inhibitors significantly reduced homologous recombination activity. Using RNA interference to deplete each HDAC, we found that depletion of either HDAC9 or HDAC10 specifically inhibited homologous recombination. By assaying for sensitivity of cells to the interstrand cross-linker mitomycin C, we found that treatment of cells with HDAC inhibitors or depletion of HDAC9 or HDAC10 resulted in increased sensitivity to mitomycin C. Our data reveal an unanticipated function of HDAC9 and HDAC10 in the homologous recombination process.

  13. SANSparallel: interactive homology search against Uniprot.

    PubMed

    Somervuo, Panu; Holm, Liisa

    2015-07-01

    Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest.

  14. Archaeal and eukaryotic homologs of Hfq

    PubMed Central

    Mura, Cameron; Randolph, Peter S.; Patterson, Jennifer; Cozen, Aaron E.

    2013-01-01

    Hfq and other Sm proteins are central in RNA metabolism, forming an evolutionarily conserved family that plays key roles in RNA processing in organisms ranging from archaea to bacteria to human. Sm-based cellular pathways vary in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in each of these pathways being mediated by an RNA-associated molecular assembly built upon Sm proteins. Though the first structures of Sm assemblies were from archaeal systems, the functions of Sm-like archaeal proteins (SmAPs) remain murky. Our ignorance about SmAP biology, particularly vis-à-vis the eukaryotic and bacterial Sm homologs, can be partly reduced by leveraging the homology between these lineages to make phylogenetic inferences about Sm functions in archaea. Nevertheless, whether SmAPs are more eukaryotic (RNP scaffold) or bacterial (RNA chaperone) in character remains unclear. Thus, the archaeal domain of life is a missing link, and an opportunity, in Sm-based RNA biology. PMID:23579284

  15. Mammalian masticatory muscles: homology, nomenclature, and diversification.

    PubMed

    Druzinsky, Robert E; Doherty, Alison H; De Vree, Frits L

    2011-08-01

    There is a deep and rich literature of comparative studies of jaw muscles in mammals but no recent analyses employ modern phylogenetic techniques to better understand evolutionary changes that have occurred in these muscles. In order to fully develop and utilize the Feeding Experiments End-user Database (FEED), we are constructing a comprehensive ontology of mammalian jaw muscles. This process has led to a careful consideration of nomenclature and homologies of the muscles and their constituent parts. Precise determinations of muscle attachments have shown that muscles with similar names are not necessarily homologous. Using new anatomical descriptions derived from the literature, we defined character states for the jaw muscles in diverse mammalian species. We then mapped those characters onto a recent phylogeny of mammals with the aid of the Mesquite software package. Our data further elucidate how muscle groups associated with the feeding apparatus differ and have become highly specialized in certain mammalian orders, such as Rodentia, while remaining conserved in other orders. We believe that careful naming of muscles and statistical analyses of their distributions among mammals, in association with the FEED database, will lead to new, significant insights into the functional, structural, and evolutionary morphology of the jaw muscles.

  16. Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer.

    PubMed

    Liu, Chunhai; Khazanehdari, Kamal A; Baskar, Vijaya; Saleem, Shazia; Kinne, Joerg; Wernery, Ulrich; Chang, Il-Kuk

    2012-04-01

    The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.

  17. Should nucleotide sequence analyzing computer algorithms always extend homologies by extending homologies?

    PubMed

    Burnett, L; Basten, A; Hensley, W J

    1986-01-10

    Most computer algorithms used for comparing or aligning nucleotide sequences rely on the premise that the best way to extend a homology between the two sequences is to select a match rather than a mismatch. We have tested this assumption and found that it is not always valid.

  18. Chatter detection in turning using persistent homology

    NASA Astrophysics Data System (ADS)

    Khasawneh, Firas A.; Munch, Elizabeth

    2016-03-01

    This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

  19. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    SciTech Connect

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: yuzong@nao.cas.cn

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  20. How homologous recombination maintains telomere integrity.

    PubMed

    Tacconi, Eliana M C; Tarsounas, Madalena

    2015-06-01

    Telomeres protect the ends of linear chromosomes against loss of genetic information and inappropriate processing as damaged DNA and are therefore crucial to the maintenance of chromosome integrity. In addition to providing a pathway for genome-wide DNA repair, homologous recombination (HR) plays a key role in telomere replication and capping. Consistent with this, the genomic instability characteristic of HR-deficient cells and tumours is driven in part by telomere dysfunction. Here, we discuss the mechanisms by which HR modulates the response to intrinsic cellular challenges that arise during telomere replication, as well as its impact on the assembly of telomere protective structures. How normal and tumour cells differ in their ability to maintain telomeres is deeply relevant to the search for treatments that would selectively eliminate cells whose capacity for HR-mediated repair has been compromised.

  1. Homologies among Coniferophyte cones: further observations

    NASA Astrophysics Data System (ADS)

    Grauvogel-Stamm, Léa; Galtier, Jean

    1998-04-01

    A reinvestigation of the Triassic conifer pollen cone of Darneya shows evidence that clusters of pollen sacs are attached (adnate), at regular intervals, to the upper side of the stalk and that the distribution of stomata is restricted to the apical part of the abaxial side of the peltate scale. These features and others, such as the commissure visible on the stalk and the scale, suggest a dual nature of the male scale complex of Darneya which therefore is interpreted as an abaxial bract fused with an adaxial fertile shoot bearing several clusters of pollen sacs. This conifer pollen cone is thus considered as a compound strobilus (inflorescence) homologous with the female cone of the conifers and therefore with the cones, both male and female, of the cordaites.

  2. Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma.

    PubMed Central

    Luiten, R. M.; Coney, L. R.; Fleuren, G. J.; Warnaar, S. O.; Litvinov, S. V.

    1996-01-01

    The monoclonal antibody (MAb) G250 binds to a tumour-associated antigen, expressed in renal cell carcinoma (RCC), which has been demonstrated to be a suitable target for antibody-mediated immunotherapy. A bispecific antibody having both G250 and anti-CD3 specificity can cross-link G250 antigen-expressing RCC target cells with T cells and can mediate lysis of such targets. Therapy studies with murine antibodies are limited by immune responses to the antibodies injected (HAMA response), which can be decreased by using chimeric antibodies. We generated a chimeric bispecific G250/anti CD3 MAb by transfecting chimeric genes of heavy and light chains for both the G250 MAb and the anti-CD3 MAb into a myeloma cell line. Cytotoxicity assays revealed that the chimeric bispecific MAb was capable of mediating lysis of RCC cell lines by cloned human CD8+T cells or by IL-2-stimulated peripheral blood lymphocytes (PBLs). Lysis mediated by the MAb was specific for target cells that expressed the G250 antigen and was effective at concentrations as low as 0.01 microgram ml-1. The chimeric bispecific G250/anti-CD3 MAb produced may be an effective adjuvant to the currently used IL-2-based therapy of advanced renal cell arcinoma. Images Figure 7 PMID:8795576

  3. Stable mixed hematopoietic chimerism permits tolerance of vascularized composite allografts across a full major histocompatibility mismatch in swine.

    PubMed

    Mathes, David W; Solari, Mario G; Gazelle, Guy Scott; Butler, Peter E M; Wu, Anette; Nazzal, Adam; Nielsen, Gunnlauger P; Huang, Christene A; Sachs, David H; Lee, Wei Ping Andrew; Randolph, Mark A

    2014-10-01

    This study tested the hypothesis that vascularized composite allografts (VCA) could be accepted in a robust model of hematopoietic chimerism by injecting allogeneic bone marrow cells (BMC) into swine fetuses. Outbred Yorkshire sows and boars were screened to ensure the absence of the major histocompatibility (MHC) allele SLA(cc) of inbred MGH miniature swine and then mated. Bone marrow harvested from an SLA(cc) swine donor was T-cell depleted and injected intravenously into the fetuses between days 50-55 of gestation. After birth, the piglets were studied with flow cytometry to detect donor cells and mixed lymphocyte reactions (MLR) and cell-mediated lympholysis (CML) assays to assess their response to donor. Donor-matched VCAs from SLA(cc) donors were performed on four chimeric and two nonchimeric swine. The results showed donor cell engraftment and multilineage macrochimerism after the in utero transplantation of adult BMC, and chimeric animals were unresponsive to donor antigens in vitro. Both control VCAs were rejected by 21 days and were alloreactive. Chimeric animals accepted the VCAs and never developed antidonor antibodies or alloreactivity to donor. These results confirm that the intravascular, in utero transplantation of adult BMC leads to donor cell chimerism and donor-specific tolerance of VCAs across a full MHC barrier in this animal model.

  4. Construction and evaluation of a chimeric protein made from Fasciola hepatica leucine aminopeptidase and cathepsin L1.

    PubMed

    Hernández-Guzmán, K; Sahagún-Ruiz, A; Vallecillo, A J; Cruz-Mendoza, I; Quiroz-Romero, H

    2016-01-01

    Leucine aminopeptidase (LAP) and cathepsin L1 (CL1) are important enzymes for the pathogenesis and physiology of Fasciola hepatica. These enzymes were analysed in silico to design a chimeric protein containing the most antigenic sequences of LAP (GenBank; AAV59016.1; amino acids 192-281) and CL1 (GenBank CAC12806.1; amino acids 173-309). The cloned 681-bp chimeric fragment (rFhLAP-CL1) contains 270 bp from LAP and 411 bp from CL1, comprising three epitopes, DGRVVHLKY (amino acids 54-62) from LAP, VTGYYTVHSGSEVELKNLV (amino acids 119-137) and YQSQTCLPF (amino acids 161-169) from CL1. The ~25 kDa rFhLAP-CL1 chimeric protein was expressed from the pET15b plasmid in the Rosetta (DE3) Escherichia coli strain. The chimeric protein rFhLAP-CL1, which showed antigenic and immunogenic properties, was recognized in Western blot assays using F. hepatica-positive bovine sera, and induced strong, specific antibody responses following immunization in rabbits. The newly generated chimeric protein may be used as a diagnostic tool for detection of antibodies against F. hepatica in bovine sera and as an immunogen to induce protection against bovine fasciolosis.

  5. Use of CTLA4Ig for Induction of Mixed Chimerism and Renal Allograft Tolerance in Nonhuman Primates

    PubMed Central

    Yamada, Yohei; Ochiai, Takanori; Boskovic, Svjetlan; Nadazdin, Ognjenka; Oura, Tetsu; Schoenfeld, David; Cappetta, Kate; Smith, Rex-Neal; Colvin, Robert B; Madsen, Joren C.; Sachs, David H.; Benichou, Gilles; Cosimi, A. Benedict; Kawai, Tatsuo

    2014-01-01

    We have previously reported successful induction of renal allograft tolerance via a mixed chimerism approach in nonhuman primates (NHP). In those studies, we found that costimulatory blockade with anti-CD154 mAb was an effective adjunctive therapy for induction of renal allograft tolerance. However, since anti-CD154 mAb is not clinically available, we have evaluated CTLA4Ig as an alternative agent for effecting costimulation blockade in this treatment protocol. Two CTLA4-Igs, Abatacept and Belatacept, were substituted for anti-CD154 mAb in the conditioning regimen (low dose total body irradiation, thymic irradiation, ATG and a one month post-transplant course of cyclosporine (CyA)). Three recipients treated with the Abatacept regimen failed to develop comparable lymphoid chimerism to that achieved with anti-CD154 mAb treatment and these recipients rejected their kidney allografts early. With the Belatacept regimen, four of five recipients developed chimerism and three of these achieved long-term renal allograft survival (>861, >796 and >378 days) without maintenance immunosuppression. Neither chimerism nor long-term allograft survival were achieved in two recipients treated with the Belatacept regimen but with a lower, subtherapeutic dose of CyA. This study indicates that CD28/B7 blockade with Belatacept can provide a clinically applicable alternative to anti-CD154 mAb for promoting chimerism and renal allograft tolerance. PMID:25394378

  6. Modeling Non-homologous End Joining

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng

    2013-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed

  7. Identifying potential PARIS homologs in D. melanogaster.

    PubMed

    Merzetti, E M; Staveley, B E

    2016-11-03

    Mitochondrial destruction leads to the formation of reactive oxygen species, increases cellular stress, causes apoptotic cell death, and involves a cascade of proteins including PARKIN, PINK1, and Mitofusin2. Mitochondrial biogenesis pathways depend upon the activity of the protein PGC-1α. These two processes are coordinated by the activity of a transcriptional repressor, Parkin interacting substrate (PARIS). The PARIS protein is degraded through the activity of the PARKIN protein, which in turn eliminates the transcriptional repression that PARIS imposes upon a downstream target, PGC-1α. Genes in this pathway have been implicated in Parkinson's disease, and there is a strong relationship between mitochondrial dysfunction and pre-mature neuron death. The identification of a PARIS homolog in Drosophila melanogaster would increase our understanding of the roles that PARIS and interacting genes play in higher organisms. We identified three potential PARIS homologs in D. melanogaster, one of which encodes a protein with similar domains to the Homo sapiens PARIS protein, CG15436. The Drosophila eye is formed from neuronal precursors, making it an ideal system to assay the effects of altered gene expression on neuronal tissue formation. The eye-specific expression of RNAi constructs for these genes revealed that both CG15269 and Crol caused neurodegenerative phenotypes, whereas CG15436 produced a phenotype similar to srl-EY. Crol-RNAi expression reduced mean lifespan when expressed in dopaminergic neurons, whereas CG15436-RNAi significantly increased lifespan. CG15436 was PARIS-like in both structure and function, and we characterized the effects of decreased gene expression in both the neuron-rich D. melanogaster eye and in dopaminergic neurons.

  8. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  9. Bifunctional peptides derived from homologous loop regions in the laminin alpha chain LG4 modules interact with both alpha 2 beta 1 integrin and syndecan-2.

    PubMed

    Yokoyama, Fumiharu; Suzuki, Nobuharu; Kadoya, Yuichi; Utani, Atsushi; Nakatsuka, Hiroko; Nishi, Norio; Haruki, Masahiro; Kleinman, Hynda K; Nomizu, Motoyoshi

    2005-07-19

    Laminin alpha chains show diverse biological functions in a chain-specific fashion. The laminin G-like modules (LG modules) of the laminin alpha chains consist of a 14-stranded beta-sheet sandwich structure with biologically active sequences found in the connecting loops. Previously, we reported that connecting loop regions between beta-strands E and F in the mouse laminin alpha chain LG4 modules exhibited chain-specific activities. In this study, we focus on the homologous loop regions in human laminin alpha chain LG4 modules using five synthetic peptides (hEF-1-hEF-5). These homologous peptides induced chain-specific cellular responses in various cell types. Next, to examine the dual-receptor recognition model, we synthesized chimeras (cEF13A-cEF13E) derived from peptides hEF-1 and hEF-3. All of the chimeric peptides promoted fibroblast attachment as well as the parental peptides. Attachment of fibroblasts to cEF13A and cEF13B was inhibited by anti-integrin alpha2 and beta1 antibodies and by heparin, while cell adhesion to cEF13C, cEF13D, and cEF13E was blocked only by heparin. Actin organization of fibroblasts on cEF13C was not different from that on hEF-3, but cEF13B induced membrane ruffling at the tips of the actin stress fibers. These results suggest that cEF13B had bifunctional effects on cellular behaviors through alpha2beta1 integrin and heparin/heparan sulfate proteoglycan. We conclude that the approach utilizing chimeric peptides is useful for examining cellular mechanisms in dual-receptor systems.

  10. The Chromosomal Courtship Dance-homolog pairing in early meiosis.

    PubMed

    Klutstein, Michael; Cooper, Julia Promisel

    2014-02-01

    The intermingling of genomes that characterizes sexual reproduction requires haploid gametes in which parental homologs have recombined. For this, homologs must pair during meiosis. In a crowded nucleus where sequence homology is obscured by the enormous scale and packaging of the genome, partner alignment is no small task. Here we review the early stages of this process. Chromosomes first establish an initial docking site, usually at telomeres or centromeres. The acquisition of chromosome-specific patterns of binding factors facilitates homolog recognition. Chromosomes are then tethered to the nuclear envelope (NE) and subjected to nuclear movements that 'shake off' inappropriate contacts while consolidating homolog associations. Thereafter, homolog connections are stabilized by building the synaptonemal complex or its equivalent and creating genetic crossovers. Recent perspectives on the roles of these stages will be discussed.

  11. Dystrophic Muscle in Mice Chimeric for Expression of α5 Integrin

    PubMed Central

    Taverna, Daniela; Disatnik, Marie-Helene; Rayburn, Helen; Bronson, Roderick T.; Yang, Joy; Rando, Thomas A.; Hynes, Richard O.

    1998-01-01

    α5-deficient mice die early in embryogenesis (Yang et al., 1993). To study the functions of α5 integrin later in mouse embryogenesis and during adult life we generated α5 −/−;+/+ chimeric mice. These animals contain α5-negative and positive cells randomly distributed. Analysis of the chimerism by glucose- 6-phosphate isomerase (GPI) assay revealed that α5 −/− cells contributed to all the tissues analyzed. High contributions were observed in the skeletal muscle. The perinatal survival of the mutant chimeras was lower than for the controls, however the subsequent life span of the survivors was only slightly reduced compared with controls (Taverna et al., 1998). Histological analysis of α5 −/−;+/+ mice from late embryogenesis to adult life revealed an alteration in the skeletal muscle structure resembling a typical muscle dystrophy. Giant fibers, increased numbers of nuclei per fiber with altered position and size, vacuoli and signs of muscle degeneration–regeneration were observed in head, thorax and limb muscles. Electron microscopy showed an increase in the number of mitochondria in some muscle fibers of the mutant mice. Increased apoptosis and immunoreactivity for tenascin-C were observed in mutant muscle fibers. All the alterations were already visible at late stages of embryogenesis. The number of altered muscle fibers varied in different animals and muscles and was often increased in high percentage chimeric animals. Differentiation of α5 −/− ES cells or myoblasts showed that in vitro differentiation into myotubes was achieved normally. However proper adhesion and survival of myoblasts on fibronectin was impaired. Our data suggest that a novel form of muscle dystrophy in mice is α5-integrin-dependent. PMID:9813102

  12. Fate of tetraploid cells in 4n<-->2n chimeric mouse blastocysts.

    PubMed

    Mackay, Gillian E; West, John D

    2005-12-01

    Previous studies have shown that tetraploid (4n) cells rarely contribute to the derivatives of the epiblast lineage of mid-gestation 4n<-->2n mouse chimeras. The aim of the present study was to determine when and how 4n cells were excluded from the epiblast lineage of such chimeras. The contributions of GFP-positive cells to different tissues of 4n<-->2n chimeric blastocysts labelled with tauGFP were analysed at E3.5 and E4.5 using confocal microscopy. More advanced E5.5 and E7.5 chimeric blastocysts were analysed after a period of diapause to allow further growth without implantation. Tetraploid cells were not initially excluded from the epiblast in 4n<-->2n chimeric blastocysts and they contributed to all four blastocyst tissues at all of the blastocyst stages examined. Four steps affected the allocation and fate of 4n cells in chimeras, resulting in their exclusion from the epiblast lineage by mid-gestation. (1) Fewer 4n cells were allocated to the inner cell mass than trophectoderm. (2) The blastocyst cavity tended to form among the 4n cells, causing more 4n cells to be allocated to the hypoblast and mural trophectoderm than the epiblast and polar trophectoderm, respectively. (3) 4n cells were depleted from the hypoblast and mural trophectoderm, where initially they were relatively enriched. (4) After implantation 4n cells must be lost preferentially from the epiblast lineage. Relevance of these results to the aetiology of human confined placental mosaicism and possible implications for the interpretation of mouse tetraploid complementation studies of the site of gene action are discussed.

  13. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    PubMed Central

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Methods: In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. Results: The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni–NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. Conclusion: The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure. PMID:27123423

  14. Expression level of a chimeric kinase governs entry into sporulation in Bacillus subtilis.

    PubMed

    Eswaramoorthy, Prahathees; Dravis, Ashlee; Devi, Seram Nganbiton; Vishnoi, Monika; Dao, Hoang-Anh; Fujita, Masaya

    2011-11-01

    Upon starvation, Bacillus subtilis cells switch from growth to sporulation. It is believed that the N-terminal sensor domain of the cytoplasmic histidine kinase KinA is responsible for detection of the sporulation-specific signal(s) that appears to be produced only under starvation conditions. Following the sensing of the signal, KinA triggers autophosphorylation of the catalytic histidine residue in the C-terminal domain to transmit the phosphate moiety, via phosphorelay, to the master regulator for sporulation, Spo0A. However, there is no direct evidence to support the function of the sensor domain, because the specific signal(s) has never been found. To investigate the role of the N-terminal sensor domain, we replaced the endogenous three-PAS repeat in the N-terminal domain of KinA with a two-PAS repeat derived from Escherichia coli and examined the function of the resulting chimeric protein. Despite the introduction of a foreign domain, we found that the resulting chimeric protein, in a concentration-dependent manner, triggered sporulation by activating Spo0A through phosphorelay, irrespective of nutrient availability. Further, by using chemical cross-linking, we showed that the chimeric protein exists predominantly as a tetramer, mediated by the N-terminal domain, as was found for KinA. These results suggest that tetramer formation mediated by the N-terminal domain, regardless of the origin of the protein, is important and sufficient for the kinase activity catalyzed by the C-terminal domain. Taken together with our previous observations, we propose that the primary role of the N-terminal domain of KinA is to form a functional tetramer, but not for sensing an unknown signal.

  15. A recombinant chimeric protein containing B chains of ricin and abrin is an effective vaccine candidate.

    PubMed

    Wang, Junhong; Gao, Shan; Zhang, Tao; Kang, Lin; Cao, Wuchun; Xu, Na; Liu, Wensen; Wang, Jinglin

    2014-01-01

    Both ricin toxin (RT) and abrin toxin (AT) are 2 important toxin agents as potantial bioweapons. A dual subunit vaccine against RT and AT exposure is a promising option for developing prophylactic vaccination. In this study, we constructed a dual vaccine with RT B chain and AT B chain named RTB-ATB. The RTB-ATB chimeric protein was expressed in Escherichia coli (E. coli), and the purified protein was used to evaluate the immune response by a 2 × 2 × 2 × 2 factorial design. The main effects included dose of RTB-ATB, route of immunization injection, immunization time interval, and dose of native toxins challenge. For 2 × LD(50) challenge of RT or AT, 100% of the RTB-ATB immunized mice survived and regained or exceeded their initial weights within 10 days. For 4 × LD(50) challenge, different routes of immunization injection caused significant difference (P < 0.05), intraperitoneal (i.p.) administration of immunogen protected mice better than the subcutaneous (s.c.) administration. In conclusion, when administered i.p. to mice with 25 μg per mouse and immunization time interval Π in the absence of adjuvant, the chimeric protein elicited a stronger immune response and protected the animals from a dose of native toxins which was 4 times higher than their LD(50) in unvaccinated mice. Besides, the RTB-ATB chimeric protein could induce specific neutralizing antibodies against these 2 toxins. We anticipate that this study will open new possibilities in the preparation of RTB-ATB dual subunit vaccine against the exposure to deadly RT and AT.

  16. Short term interactions with long term consequences: modulation of chimeric vessels by neural progenitors.

    PubMed

    Williams, Cicely; Rauch, Millicent Ford; Michaud, Michael; Robinson, Rebecca; Xu, Hao; Madri, Joseph; Lavik, Erin

    2012-01-01

    Vessels are a critical and necessary component of most tissues, and there has been substantial research investigating vessel formation and stabilization. Several groups have investigated coculturing endothelial cells with a second cell type to promote formation and stabilization of vessels. Some have noted that long-term vessels derived from implanted cocultures are often chimeric consisting of both host and donor cells. The questions arise as to whether the coculture cell might impact the chimeric nature of the microvessels and can modulate the density of donor cells over time. If long-term engineered microvessels are primarily of host origin, any impairment of the host's angiogenic ability has significant implications for the long-term success of the implant. If one can modulate the host versus donor response, one may be able to overcome a host's angiogenic impairment. Furthermore, if one can modulate the donor contribution, one may be able to engineer microvascular networks to deliver molecules a patient lacks systemically for long times. To investigate the impact of the cocultured cell on the host versus donor contributions of endothelial cells in engineered microvascular networks, we varied the ratio of the neural progenitors to endothelial cells in subcutaneously implanted poly(ethylene glycol)/poly-L-lysine hydrogels. We found that the coculture of neural progenitors with endothelial cells led to the formation of chimeric host-donor vessels, and the ratio of neural progenitors has a significant impact on the long term residence of donor endothelial cells in engineered microvascular networks in vivo even though the neural progenitors are only present transiently in the system. We attribute this to the short term paracrine signaling between the two cell types. This suggests that one can modulate the host versus donor contributions using short-term paracrine signaling which has broad implications for the application of engineered microvascular networks and

  17. Short Term Interactions with Long Term Consequences: Modulation of Chimeric Vessels by Neural Progenitors

    PubMed Central

    Williams, Cicely; Rauch, Millicent Ford; Michaud, Michael; Robinson, Rebecca; Xu, Hao; Madri, Joseph; Lavik, Erin

    2012-01-01

    Vessels are a critical and necessary component of most tissues, and there has been substantial research investigating vessel formation and stabilization. Several groups have investigated coculturing endothelial cells with a second cell type to promote formation and stabilization of vessels. Some have noted that long-term vessels derived from implanted cocultures are often chimeric consisting of both host and donor cells. The questions arise as to whether the coculture cell might impact the chimeric nature of the microvessels and can modulate the density of donor cells over time. If long-term engineered microvessels are primarily of host origin, any impairment of the host's angiogenic ability has significant implications for the long-term success of the implant. If one can modulate the host versus donor response, one may be able to overcome a host's angiogenic impairment. Furthermore, if one can modulate the donor contribution, one may be able to engineer microvascular networks to deliver molecules a patient lacks systemically for long times. To investigate the impact of the cocultured cell on the host versus donor contributions of endothelial cells in engineered microvascular networks, we varied the ratio of the neural progenitors to endothelial cells in subcutaneously implanted poly(ethylene glycol)/poly-L-lysine hydrogels. We found that the coculture of neural progenitors with endothelial cells led to the formation of chimeric host-donor vessels, and the ratio of neural progenitors has a significant impact on the long term residence of donor endothelial cells in engineered microvascular networks in vivo even though the neural progenitors are only present transiently in the system. We attribute this to the short term paracrine signaling between the two cell types. This suggests that one can modulate the host versus donor contributions using short-term paracrine signaling which has broad implications for the application of engineered microvascular networks and

  18. The Pharmacokinetics and Metabolism of Lumiracoxib in Chimeric Humanized and Murinized FRG Mice.

    PubMed

    Dickie, A P; Wilson, C E; Schreiter, K; Wehr, R; Wilson, E M; Bial, J; Scheer, N; Wilson, I D; Riley, R J

    2017-03-25

    The pharmacokinetics and metabolism of lumiracoxib were studied, after administration of single 10 mg/kg oral doses to chimeric liver-humanized and murinized FRG mice. In the chimeric humanized mice, lumiracoxib reached peak observed concentrations in the blood of 1.10 ± 0.08 μg/mL at 0.25-0.5 h post-dose with an AUCinf of 1.74 ± 0.52 μg h/mL and an effective half-life for the drug of 1.42 ± 0.72 h (n=3). In the case of the murinized animals peak observed concentrations in the blood were determined as 1.15 ± 0.08 μg/mL at 0.25 h post-dose with an AUCinf of 1.94 ± 0.22 μg h/mL and an effective half-life of 1.28 ± 0.02 h (n=3). Analysis of blood indicated only the presence of unchanged lumiracoxib. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles obtained in humanized mice were different compared to murinized animals with e.g., a higher proportion of the dose detected in the form of acyl glucuronide metabolites and much reduced amounts of taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57bl/6J mice and humans, revealed a greater though not complete match between chimeric humanized mice and humans, such that the liver-humanized FRG model may represent a useful approach to assessing the biotransformation of such compounds in humans.

  19. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    SciTech Connect

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  20. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.

    PubMed

    Sokol, Martin; Jessen, Karen Margrethe; Pedersen, Finn Skou

    2016-01-01

    Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights

  1. Metal binding and antioxidant properties of chimeric tri- and tetra-domained metallothioneins.

    PubMed

    Moreau, Jean-Luc; Baudrimont, Magalie; Carrier, Patrick; Peltier, Gilles; Bourdineaud, Jean-Paul

    2008-05-01

    An unusual tri-domained (alpha-beta-beta) natural oyster metallothionein (MT) is known, and non-oxidative MT dimers occur in vivo in mollusk species and in mammals. To assess the respective role of the MT domains, two chimeric MTs were constructed: a tetra-domained oyster MT corresponding to the alpha-beta-alpha-beta structure, in order to mimic the natural non-oxidative dimeric form, and a tri-domained alpha-beta-alpha oyster MT. Metal binding and putative antioxidant properties of these two chimeric MTs were investigated using expression of the related genes in the bacteria Escherichia coli. In a wild-type strain these MTs could efficiently bind Cd. In a superoxide dismutase (sodA sodB) null mutant, the tri-domained MT was found to exacerbate Cd toxicity whereas the tetra-domained MT efficiently protected bacteria from Cd. The paradoxical toxicity displayed by the tri-domained MT upon Cd contamination was linked to the generation of superoxide radicals generated by a mechanism which most probably involves a copper-redox cycling reaction, since a Cd-contaminated sodA sodB strain expressing this MT produced 4 times more O2(-) than the control bacteria, and MT toxicity disappeared in the presence of bathocuproine disulfonic acid, a copper chelator. In contrast, the tetra-domained form did not. Interestingly, in bacteria producing superoxide dismutase but hypersensitive to oxidative stress due to either mutations in thioredoxin and glutathione reductase pathways (WM104 mutant) or to a lack of gamma-glutamylcysteine synthetase (gshA mutant), both chimeric MTs were protecting against Cd toxicity. However, an unexpected lack of antioxidant function was observed for both chimeric MTs, which were found to enhance the toxicity of hydrogen peroxide in WM104, or that of menadione in QC1726. Altogether, our results suggest that superoxide dismutase activity counteracts the potential prooxidative effect of the tri-domained MT mediated by Cu ions and that the tetra

  2. A chimeric measles virus with canine distemper envelope protects ferrets from lethal distemper challenge.

    PubMed

    Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika

    2009-08-06

    CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.

  3. Chimerism in a child with severe combined immunodeficiency: a case report.

    PubMed

    Aureli, Anna; Piancatelli, Daniela; Monaco, Palmina I; Ozzella, Giuseppina; Canossi, Angelica; Piazza, Antonina; Isacchi, Giancarlo; Caniglia, Maurizio; Adorno, Domenico

    2006-09-01

    Severe combined immunodeficiency (SCID) represents a group of rare, sometimes fatal, congenital disorders in which there is a combined absence of T-lymphocyte and B-lymphocyte function. Children with SCID die within two years of age, if untreated. The effective treatment for SCID is a hematopoietic stem cell transplantation (HSCT). It has been repeatedly described that in peripheral blood of infants with SCID maternal T cells can be found. Here we report a case of blood chimerism in a one-year-old boy with SCID.

  4. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences.

    PubMed

    Acharya, Sefali; Ranjan, Rajiv; Pattanaik, Sitakanta; Maiti, Indu B; Dey, Nrisingha

    2014-02-01

    In the present study, we developed a set of three chimeric/hybrid promoters namely FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt incorporating different important domains of Figwort Mosaic Virus sub-genomic transcript promoter (FSgt, -270 to -60), Mirabilis Mosaic Virus sub-genomic transcript promoter (MSgt, -306 to -125) and Peanut Chlorotic Streak Caulimovirus full-length transcript promoter (PFlt-, -353 to +24 and PFlt-UAS, -353 to -49). We demonstrated that these chimeric/hybrid promoters can drive the expression of reporter genes in different plant species including tobacco, Arabidopsis, petunia, tomato and spinach. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 4.2, 1.5 and 1.2 times stronger GUS activities compared to the activity of the CaMV35S promoter, respectively, in tobacco protoplasts. Protoplast-derived recombinant promoter driven GFP showed enhanced accumulation compared to that obtained under the CaMV35S promoter. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 3.0, 1.3 and 1.0 times stronger activities than the activity of the CaMV35S² (a modified version of the CaMV35S promoter with double enhancer domain) promoter, respectively, in tobacco (Nicotiana tabacum, var. Samsun NN). Alongside, we observed a fair correlation between recombinant promoter-driven GUS accumulation with the corresponding uidA-mRNA level in transgenic tobacco. Histochemical (X-gluc) staining of whole transgenic seedlings and fluorescence images of ImaGene Green™ treated floral parts expressing the GUS under the control of recombinant promoters also support above findings. Furthermore, we confirmed that these chimeric promoters are inducible in the presence of 150 μM salicylic acid (SA) and abscisic acid (ABA). Taken altogether, we propose that SA/ABA inducible chimeric/recombinant promoters could be used for strong expression of gene(s) of interest in crop plants.

  5. [Homologous recombination among bacterial genomes: the measurement and identification].

    PubMed

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research.

  6. Gene prediction by pattern recognition and homology search

    SciTech Connect

    Xu, Y.; Uberbacher, E.C.

    1996-05-01

    This paper presents an algorithm for combining pattern recognition-based exon prediction and database homology search in gene model construction. The goal is to use homologous genes or partial genes existing in the database as reference models while constructing (multiple) gene models from exon candidates predicted by pattern recognition methods. A unified framework for gene modeling is used for genes ranging from situations with strong homology to no homology in the database. To maximally use the homology information available, the algorithm applies homology on three levels: (1) exon candidate evaluation, (2) gene-segment construction with a reference model, and (3) (complete) gene modeling. Preliminary testing has been done on the algorithm. Test results show that (a) perfect gene modeling can be expected when the initial exon predictions are reasonably good and a strong homology exists in the database; (b) homology (not necessarily strong) in general helps improve the accuracy of gene modeling; (c) multiple gene modeling becomes feasible when homology exists in the database for the involved genes.

  7. Production of Hybrid Chimeric PVX Particles Using a Combination of TMV and PVX-Based Expression Vectors

    PubMed Central

    Dickmeis, Christina; Honickel, Mareike Michaela Antonia; Fischer, Rainer; Commandeur, Ulrich

    2015-01-01

    We have generated hybrid chimeric potato virus X (PVX) particles by coexpression of different PVX coat protein fusions utilizing tobacco mosaic virus (TMV) and PVX-based expression vectors. Coinfection was achieved with a modified PVX overcoat vector displaying a fluorescent protein and a TMV vector expressing another PVX fluorescent overcoat fusion protein. Coexpression of the PVX-CP fusions in the same cells was confirmed by epifluorescence microscopy. Labeling with specific antibodies and transmission electron microscopy revealed chimeric particles displaying green fluorescent protein and mCherry on the surface. These data were corroborated by bimolecular fluorescence complementation. We used split-mCherry fragments as PVX coat fusions and confirmed an interaction between the split-mCherry fragments in coinfected cells. The presence of assembled split-mCherry on the surface confirmed the hybrid character of the chimeric particles. PMID:26636076

  8. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus.

  9. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  10. Chimeric neuraminidase and mutant PB1 gene constellation improves growth and yield of H5N1 vaccine candidate virus.

    PubMed

    Plant, Ewan P; Ye, Zhiping

    2015-04-01

    We previously showed that a mutated PB1 gene improved the growth kinetics of a H3N2 influenza reassortant. Here, we showed that the same mutations improved the growth kinetics of a virus containing the A/Vietnam/1203/2004 (H5N1) haemagglutinin and neuraminidase (NA). Total protein yield and NA activity were increased when a chimeric NA was included. These increases indicated that the synergistic effect was due to the gene constellation containing both the altered PB1 gene and the chimeric NA gene.

  11. The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists

    PubMed Central

    Margulis, Lynn; Dolan, Michael F.; Guerrero, Ricardo

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium “Thiodendron latens.” By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This “earliest branching protist” that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa. PMID:10860956

  12. Establishment of permanent chimerism in a lactate dehydrogenase-deficient mouse mutant with hemolytic anemia

    SciTech Connect

    Datta, T.; Doermer, P.

    1987-12-01

    Pluripotent hemopoietic stem cell function was investigated in the homozygous muscle type lactate dehydrogenase (LDH-A) mutant mouse using bone marrow transplantation experiments. Hemopoietic tissues of LDH-A mutants showed a marked decreased in enzyme activity that was associated with severe hemolytic anemia. This condition proved to be transplantable into wild type mice (+/+) through total body irradiation (TBI) at a lethal dose of 8.0 Gy followed by engraftment of mutant bone marrow cells. Since the mutants are extremely radiosensitive (lethal dose50/30 4.4 Gy vs 7.3 Gy in +/+ mice), 8.0-Gy TBI followed by injection of even high numbers of normal bone marrow cells did not prevent death within 5-6 days. After a nonlethal dose of 4.0 Gy and grafting of normal bone marrow cells, a transient chimerism showing peripheral blood characteristics of the wild type was produced that returned to the mutant condition within 12 weeks. The transfusion of wild type red blood cells prior to and following 8.0-Gy TBI and reconstitution with wild type bone marrow cells prevented the early death of the mutants and permanent chimerism was achieved. The chimeras showed all hematological parameters of wild type mice, and radiosensitivity returned to normal. It is concluded that the mutant pluripotent stem cells are functionally comparable to normal stem cells, emphasizing the significance of this mouse model for studies of stem cell regulation.

  13. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen

    SciTech Connect

    Sharabi, Y.; Sachs, D.H.

    1989-02-01

    The use of allogeneic bone marrow transplantation as a means of inducing donor-specific tolerance across MHC barriers could provide an immunologically specific conditioning regimen for organ transplantation. However, a major limitation to this approach is the toxicity of whole body irradiation as currently used to abrogate host resistance and permit marrow engraftment. The present study describes methodology for abrogating host resistance and permitting marrow engraftment without lethal irradiation. Our preparative protocol involves administration of anti-CD4 and anti-CD8 mAbs in vivo, 300-rad WBI, 700-rad thymic irradiation, and unmanipulated fully MHC-disparate bone marrow. B10 mice prepared by this regimen developed stable mixed lymphohematopoetic chimerism without any clinical evidence of graft-vs.-host disease. Engraftment was accompanied by induction of specific tolerance to donor skin grafts (B10.D2), while third-party skin grafts (B10.BR) were promptly rejected. Mice treated with the complete regimen without bone marrow transplantation appeared healthy and enjoyed long-term survival. This study therefore demonstrates that stable mixed chimerism with donor-specific tolerance can be induced across an MHC barrier after a nonlethal preparative regimen, without clinical GVHD and without the risk of aplasia.

  14. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models.

    PubMed

    Yang, Liuyang; Cai, Changzhi; Feng, Qiang; Shi, Yun; Zuo, Qianfei; Yang, Huijie; Jing, Haiming; Wei, Chao; Zhuang, Yuan; Zou, Quanming; Zeng, Hao

    2016-02-11

    Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4(+) T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia.

  15. Non-Chimeric HLA-Identical Renal Transplant Tolerance: Regulatory Immunophenotypic/Genomic Biomarkers

    PubMed Central

    Leventhal, J.R.; Mathew, J.M.; Salomon, D.R.; Kurian, S.M.; Friedewald, J.J.; Gallon, L.; Konieczna, I.; Tambur, A.R.; charette, j.; Levitsky, J.; Jie, C.; Kanwar, Y. S.; Abecassis, M. M.; Miller, J.

    2015-01-01

    We previously described early results of a non-chimeric operational tolerance protocol in HLA identical living donor renal transplants and now update these results. Recipients given alemtuzumab, tacrolimus/MPA with early sirolimus conversion were multiply infused with donor hematopoietic CD34+ stem cells. Immunosuppression was withdrawn by 24 months. Twelve months later operational tolerance was confirmed by rejection-free transplant biopsies. Five of the first 8 enrollees were initially tolerant one year off immunosuppression. Biopsies of 3 others after total withdrawal showed Banff 1A acute cellular rejection without renal dysfunction. With longer follow-up including 5 year post-transplant biopsies 4 of the 5 tolerant recipients remain without rejection while one developed Banff 1A without renal dysfunction. We now add 7 new subjects (2 operationally tolerant), and demonstrate time-dependent increases of circulating CD4+CD25+++CD127−FOXP3+ Tregs vs. losses of Tregs in non-tolerant subjects (p< 0.001). Gene expression signatures, developed using global RNA expression profiling of sequential whole blood and protocol biopsy samples, were highly associative with operational tolerance as early as 1 year post-transplant. The blood signature was validated by an external ITN data set. Our approach to non-chimeric operational HLA identical tolerance reveals association with Treg immunophenotypes and serial gene expression profiles. PMID:26227106

  16. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase

    PubMed Central

    Minczuk, Michal; Papworth, Monika A.; Kolasinska, Paulina; Murphy, Michael P.; Klug, Aaron

    2006-01-01

    We used engineered zinc finger peptides (ZFPs) to bind selectively to predetermined sequences in human mtDNA. Surprisingly, we found that engineered ZFPs cannot be reliably routed to mitochondria by using only conventional mitochondrial targeting sequences. We here show that addition of a nuclear export signal allows zinc finger chimeric enzymes to be imported into human mitochondria. The selective binding of mitochondria-specific ZFPs to mtDNA was exemplified by targeting the T8993G mutation, which causes two mitochondrial diseases, neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and also maternally inherited Leigh's syndrome. To develop a system that allows the monitoring of site-specific alteration of mtDNA we combined a ZFP with the easily assayed DNA-modifying activity of hDNMT3a methylase. Expression of the mutation-specific chimeric methylase resulted in the selective methylation of cytosines adjacent to the mutation site. This is a proof of principle that it is possible to target and alter mtDNA in a sequence-specific manner by using zinc finger technology. PMID:17170133

  17. Chimeric YACs were generated at unreduced rates in conditions that suppress coligation.

    PubMed Central

    Wada, M; Abe, K; Okumura, K; Taguchi, H; Kohno, K; Imamoto, F; Schlessinger, D; Kuwano, M

    1994-01-01

    Chimerism is a major limitation of current YAC libraries. A method based on partially filled-in ends of restriction fragments was designed to avoid coligation as a possible source of chimeras. Model experiments using plasmid DNA as an insert showed that coligation was clearly avoided by this method. Pilot collections of YACs with an average insert size of 650kb were then constructed with and without the partial fill-in treatment. Starting from a mixture of a equal amounts of human and mouse DNA, none of 108 clones was positive by hybridization with both Alu and B2 probes, again suggesting that coligation was effectively blocked. However, 4 out of 10 clones still hybridized to 2 or more locations by FISH on chromosomes in human metaphase spreads, level similar to that in the clones made without the partial fill-in step. These results strongly suggest that chimeric clones generally arise by a mechanism independent of coligation, presumptively based on recombination. Images PMID:8202367

  18. Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants.

    PubMed

    Betti, Camilla; Lico, Chiara; Maffi, Dario; D'Angeli, Simone; Altamura, Maria Maddalena; Benvenuto, Eugenio; Faoro, Franco; Baschieri, Selene

    2012-02-01

    Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.

  19. Engineered platform for bioethylene production by a cyanobacterium expressing a chimeric complex of plant enzymes.

    PubMed

    Jindou, Sadanari; Ito, Yuki; Mito, Natsumi; Uematsu, Keiji; Hosoda, Akifumi; Tamura, Hiroto

    2014-07-18

    Ethylene is an industrially important compound, but more sustainable production methods are desirable. Since cellulosomes increase the ability of cellulolytic enzymes by physically linking the relevant enzymes via dockerin-cohesin interactions, in this study, we genetically engineered a chimeric cellulosome-like complex of two ethylene-generating enzymes from tomato using cohesin-dockerins from the bacteria Clostridium thermocellum and Acetivibrio cellulolyticus. This complex was transformed into Escherichia coli to analyze kinetic parameters and enzyme complex formation and into the cyanobacterium Synechococcus elongatus PCC 7942, which was then grown with and without 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Only at minimal protein expression levels (without IPTG), the chimeric complex produced 3.7 times more ethylene in vivo than did uncomplexed enzymes. Thus, cyanobacteria can be used to sustainably generate ethylene, and the synthetic enzyme complex greatly enhanced production efficiency. Artificial synthetic enzyme complexes hold great promise for improving the production efficiency of other industrial compounds.

  20. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  1. Human natural chimerism: an acquired character or a vestige of evolution?

    PubMed

    Rinkevich, B

    2001-06-01

    Analysis on five common classes of human natural chimeras (cytomictical, whole body, fetal-maternal, germ cell, and tumor chimeras) reveals that (1) they initiate only during pregnancy, (2) the most common class are chimeras which contain maternal cells, and (3) the primary mechanisms that are involved in their formation and establishment are still elusive. These classes of natural chimerism, are involved only with maladaptive phenomena such as malignancy and autoimmune diseases and without any documented benefit. A recent review has challenged the accepted dogma that the evolution of immunity is pathogen-directed and asserted that preserving individuality from littering the soma and the germline by conspecific alien cells might have been the original function of the innate immunity. Following this tenet, I propose here that human natural chimerism is a by-product of the new role evolved from primitive components of immunity to "educate" the developing embryo with the armamentarium of effector mechanisms, dedicated to purge the individual from pervasive somatic and germline variants, and is not a vestige of evolution.

  2. Establishment and characterization of a chimeric infectious cDNA clone of classical swine fever virus.

    PubMed

    Zhao, T S; Xia, Y H

    2016-06-01

    Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. There are two important CSFV strains in China, Shimen and hog cholera lapinized virus (HCLV). Shimen strain is highly virulent while HCLV, also referred to as C-strain, is a live attenuated vaccine strain considered to be one of the most effective and safest live vaccines. In this study, a chimeric infectious cDNA clone of CSFV named pT7SM-c was engineered by replacing the E(rns) genomic region of an infectious clone of CSFV Shimen strain, pT7SM, with the same region obtained from HCLV. RNA transcripts of pT7SM-c containing an engineered EcoRI site that served as a genetic marker were directly infectious in PK15 cells. The rescued virus vT7SM-c showed similar growth kinetics and cytopathic effect with the parental virus vT7SM in the cells. The chimeric infectious cDNA clone can be used as a practical tool for further studying of the virulence, protein function and pathogenesis of CSFV through genetic manipulation.

  3. Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance.

    PubMed

    Diogo, José A; Hoffmam, Zaira B; Zanphorlin, Letícia M; Cota, Junio; Machado, Carla B; Wolf, Lúcia D; Squina, Fabio; Damásio, André R L; Murakami, Mario T; Ruller, Roberto

    2015-02-01

    Xylan is an abundant plant cell wall polysaccharide and its reduction to xylose units for subsequent biotechnological applications requires a combination of distinct hemicellulases and auxiliary enzymes, mainly endo-xylanases and ß-xylosidases. In the present work, a bifunctional enzyme consisting of a GH11 endo-1,4-β-xylanase fused to a GH43 β-xylosidase, both from Bacillus subtilis, was designed taking into account the quaternary arrangement and accessibility to the substrate. The parental enzymes and the resulting chimera were successfully expressed in Escherichia coli, purified and characterized. Interestingly, the substrate cleavage rate was altered by the molecular fusion improving at least 3-fold the xylose production using specific substrates as beechwood xylan and hemicelluloses from pretreated biomass. Moreover, the chimeric enzyme showed higher thermotolerance with a positive shift of the optimum temperature from 35 to 50 °C for xylosidase activity. This improvement in the thermal stability was also observed by circular dichroism unfolding studies, which seems to be related to a gain of stability of the β-xylosidase domain. These results demonstrate the superior functional and stability properties of the chimeric enzyme in comparison to individual parental domains, suggesting the molecular fusion as a promising strategy for enhancing enzyme cocktails aiming at lignocellulose hydrolysis.

  4. Inter-Specific Coral Chimerism: Genetically Distinct Multicellular Structures Associated with Tissue Loss in Montipora capitata

    PubMed Central

    Work, Thierry M.; Forsman, Zac H.; Szabó, Zoltán; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss. PMID:21829541

  5. Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning

    PubMed Central

    Graca, Luis; Daley, Stephen; Fairchild, Paul J; Cobbold, Stephen P; Waldmann, Herman

    2006-01-01

    Background A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. Results We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. Conclusion We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains. PMID:16638128

  6. Manipulation of the coronavirus genome using targeted RNA recombination with interspecies chimeric coronaviruses.

    PubMed

    de Haan, Cornelis A M; Haijema, Bert Jan; Masters, Paul S; Rottier, Peter J M

    2008-01-01

    Targeted RNA recombination has proven to be a powerful tool for the genetic engineering of the coronavirus genome, particularly in its 3' part. Here we describe procedures for the generation of recombinant and mutant mouse hepatitis virus and feline infectious peritonitis virus. Key to the two-step method is the efficient selection of recombinant viruses based on host cell switching. The first step consists of the preparation---using this selection principle--of an interspecies chimeric coronavirus. In this virus the ectodomain of the spike glycoprotein is replaced by that of a coronavirus with a different species tropism. In the second step this chimeric virus is used as the recipient for recombination with synthetic donor RNA carrying the original spike gene. Recombinant viruses are then isolated on the basis of their regained natural (e.g., murine or feline) cell tropism. Additional mutations created in the donor RNA can be co-incorporated into the recombinant virus in order to generate mutant viruses.

  7. Immunoreactivity evaluation of a new recombinant chimeric protein against Brucella in the murine model

    PubMed Central

    Abdollahi, Abbas; Mansouri, Shahla; Amani, Jafar; Fasihi-Ramandi, Mahdi; Moradi, Mohammad

    2016-01-01

    Background and Objectives: Brucellosis is an important health problem in developing countries and no vaccine is available for the prevention of infection in humans. Because of clinically infectious diseases and their economic consequences in human and animals, designing a proper vaccine against Brucella is desirable. In this study, we evaluated the immune responses induced by a designed recombinant chimera protein in murine model. Materials and Methods: Three immunodominant antigens of Brucella have been characterized as potential immunogenic and protective antigens including: trigger factor (TF), Omp31 and Bp26 were fused together by EAAAK linkers to produce a chimera (structure were designed in silico), which was synthesized, cloned, and expressed in E. coli BL21 (DE3). The purification of recombinant protein was performed using Ni-NTA agarose. SDS-PAGE and anti-His antibody was used for confirmation purified protein (Western blot). BALB/c immunization was performed by purified protein and adjuvant, and sera antibody levels were measured by ELISA. otted. Results: SDS-PAGE and Western blotting results indicated the similarity of in silico designing and in vitro experiments. ELISA result proved that the immunized sera of mice contain high levels of antibodies (IgG) against recombinant chimeric protein. Conclusion: The recombinant chimeric protein could be a potential antigen candidate for the development of a subunit vaccine against Brucella. PMID:27928487

  8. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models

    PubMed Central

    Yang, Liuyang; Cai, Changzhi; Feng, Qiang; Shi, Yun; Zuo, Qianfei; Yang, Huijie; Jing, Haiming; Wei, Chao; Zhuang, Yuan; Zou, Quanming; Zeng, Hao

    2016-01-01

    Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia. PMID:26865417

  9. Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression.

    PubMed

    Tanaka, Yuri; Oshima, Yoshimi; Yamamura, Tomomichi; Sugiyama, Masao; Mitsuda, Nobutaka; Ohtsubo, Norihiro; Ohme-Takagi, Masaru; Terakawa, Teruhiko

    2013-01-01

    Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabidopsis thaliana showed similar effects on flower organ specification. Simultaneous expression of CpAG1-SRDX and CpAG2-SRDX in cyclamen induced rose-like, multi-petal flowers, a potentially valuable trait in commercial ornamental varieties. Expression of CpAG2-SRDX in a cyclamen mutant lacking expression of CpAG1 more effectively produced multi-petal flowers. Here, we controlled the number of petals in cyclamen by simple genetic engineering with a chimeric repressor. This strategy may be applicable useful for other ornamental plants with two distinct AG orthologues.

  10. Inter-specific coral chimerism: Genetically distinct multicellular structures associated with tissue loss in Montipora capitata

    USGS Publications Warehouse

    Work, Thierry M.; Forsman, Zac H.; Szabo, Zoltan; Lewis, Teresa D.; Aeby, Greta S.; Toonen, Robert J.

    2011-01-01

    Montipora white syndrome (MWS) results in tissue-loss that is often lethal to Montipora capitata, a major reef building coral that is abundant and dominant in the Hawai'ian Archipelago. Within some MWS-affected colonies in Kane'ohe Bay, Oahu, Hawai'i, we saw unusual motile multicellular structures within gastrovascular canals (hereafter referred to as invasive gastrovascular multicellular structure-IGMS) that were associated with thinning and fragmentation of the basal body wall. IGMS were in significantly greater densities in coral fragments manifesting tissue-loss compared to paired normal fragments. Mesenterial filaments from these colonies yielded typical M. capitata mitochondrial haplotypes (CO1, CR), while IGMS from the same colony consistently yielded distinct haplotypes previously only found in a different Montipora species (Montipora flabellata). Protein profiles showed consistent differences between paired mesenterial filaments and IGMS from the same colonies as did seven microsatellite loci that also exhibited an excess of alleles per locus inconsistent with a single diploid organism. We hypothesize that IGMS are a parasitic cellular lineage resulting from the chimeric fusion between M. capitata and M. flabellata larvae followed by morphological reabsorption of M. flabellata and subsequent formation of cell-lineage parasites. We term this disease Montiporaiasis. Although intra-specific chimerism is common in colonial animals, this is the first suspected inter-specific example and the first associated with tissue loss.

  11. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus

    PubMed Central

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F.; Peterson, Thomas

    2015-01-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  12. [NMR structure and dynamics of the chimeric protein SH3-F2].

    PubMed

    Kutyshenko, V P; Gushchina, L V; Khristoforov, V S; Prokhorov, D A; Timchenko, M A; Kudrevatykh, Iu A; Fediukina, D V; Filimonov, V V

    2010-01-01

    For the further elucidation of structural and dynamic principles of protein self-organization and protein-ligand interactions the design of new chimeric protein SH3-F2 was made and genetically engineered construct was created. The SH3-F2 amino acid sequence consists of polyproline ligand mgAPPLPPYSA, GG linker and the sequence of spectrin SH3 domain circular permutant S19-P20s. Structural and dynamics properties of the protein were studied by high-resolution NMR. According to NMR data the tertiary structure of the chimeric protein SH3-F2 has the topology which is typical of SH3 domains in the complex with the ligand, forming polyproline type II helix, located in the conservative region of binding in the orientation II. The polyproline ligand closely adjoins with the protein globule and is stabilized by hydrophobic interactions. However the interaction of ligand and the part of globule relative to SH3 domain is not too large because the analysis of protein dynamic characteristics points to the low amplitude, high-frequency ligand tumbling in relation to the slow intramolecular motions of the main globule. The constructed chimera permits to carry out further structural and thermodynamic investigations of polyproline helix properties and its interaction with regulatory domains.

  13. A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco.

    PubMed

    Dalakouras, Athanasios; Moser, Mirko; Krczal, Gabi; Wassenegger, Michael

    2010-07-01

    In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4-5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3' end by a 19 bp PSTVd and at its 5' end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)-mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.

  14. The role of fabricated chimeric free flaps in reconstruction of devastating hand and forearm injuries.

    PubMed

    Giessler, Goetz A; Schmidt, Andreas B; Germann, Guenter; Pelzer, Michael

    2011-11-01

    Devastating hand and forearm injuries almost exclusively need free flap transfer if reconstruction is attempted. Early active and passive motion is only possible with aggressive, early, and comprehensive reconstruction. Despite recent advances in compound flaps, in selected cases it might be wise to harvest several smaller flaps and microsurgically combine them to one "chain-linked" flap "system." Four microsurgically fabricated chimeric free flaps were used in four patients for complex hand and forearm injuries. The combinations were sensate anterolateral thigh (ALT) flap plus sensate extended lateral arm flap (2x), ALT plus free fibula, and ALT plus functional musculocutaneous gracilis muscle. All flaps survived completely. Functional rehabilitation was possible immediately after flap transfer. There were no donor-site complications except two widened scars. The microsurgical fabrication of chimeric free flaps, as well established in head and neck reconstruction, can be successfully adapted to massive hand injuries as well. Individual placement of selected tissue components, early comprehensive reconstruction, and reduction of the number of operations are beneficial in cases that need more than one free flap.

  15. Bifunctional chimeric fusion proteins engineered for DNA delivery: Optimization of the protein to DNA ratio

    PubMed Central

    Gao, Shan; Simon, Melissa J.; Morrison, Barclay; Banta, Scott

    2009-01-01

    Background Cell penetrating peptides (CPPs) have been used to deliver nucleotide-based therapeutics to cells, but this approach has produced mixed results. Ionic interactions and covalent bonds between the CPPs and the cargos may inhibit the effectiveness of the CPPs or interfere with the bioactivity of the cargos. Methods We have created a bifunctional chimeric protein that binds DNA using the p50 domain of the NF-κB transcription factor and is functionalized for delivery with the TAT CPP. The green fluorescent protein (GFP) has been incorporated for tracking delivery. The new chimeric protein, p50-GFP-TAT, was compared to p50-GFP, GFP-TAT and GFP as controls for the ability to transduce PC12 cells with and without oligonucleotide cargos. Results The p50-GFP-TAT construct can deliver 30bp and 293bp oligonucleotides to PC12 cells with an optimal ratio of 1.89 protein molecules per base pair of DNA length. This correlation was validated through the delivery of a fluorescent protein transgene encoded in a plasmid to PC12 cells. Conclusion Self-assembling CPP-based bifunctional fusion proteins can be engineered for the non-viral delivery of nucleotide-based cargos to mammalian cells. General significance This work represents an important step forward in the rational design of protein-based systems for the delivery of macromolecular cargos. PMID:19402206

  16. [Inhibition by IFN-(Asp)4-Lys-HIV chimeric protein of hydrolysis of the low molecular substrate by the enteropeptidase light chain].

    PubMed

    Shibanova, E D; Grishina, Iu B; Rumsh, L D

    2002-01-01

    The full length enteropeptidase or it's light chain have often used for the limited proteolysis of recombinant chimeric proteins incorporating the linker-(Asp)4Lys- to obtain the target protein. Any chimeric proteins were not cleaved by the full length enteropeptidase efficiently. The resistant to the hydrolysis chimeric protein IFN-(Asp)4Lys-HIV earlier was shown to be the competitive inhibitor (Ki = 3,4 x 10(-6) M) in relation to the low molecular substrate. In present study we were determined this chimeric protein competitive inhibited the same substrate hydrolysis by enteropeptidase light chain (Ki = 2,7 x 10(-5) M). Comparison the Ki values for the substrate hydrolysis by full length enzyme and its light chain suggests that the enteropeptidase heavy chain may participate in chimeric protein binding.

  17. Chimeric flaps pedicled with the lateral circumflex femoral artery for individualised reconstruction of through-and-through oral and maxillofacial defects.

    PubMed

    Gong, Zhao-jian; Zhang, Sheng; Wang, Kai; Tan, Hong-yu; Zhu, Zhao-fu; Liu, Jin-bing; Ren, Zhen-hu; He, Zhi-jing; Wu, Han-jiang

    2015-02-01

    Reconstruction of through-and-through oral and maxillofacial defects has always been difficult. We have evaluated the feasibility and reconstructive efficacy of chimeric flaps pedicled with the lateral circumflex femoral artery in the reconstruction of 41 through-and-through oral and maxillofacial defects after resections for cancer. There were 29 chimeric anterolateral thigh and anterolateral thigh flaps and 12 chimeric anterolateral thigh and anteromedial thigh flaps, the sizes of which ranged from 5×8 to 9×11 cm. The chimeric flaps provided separate flaps to reconstruct the intraoral mucosa and extraoral skin defects, and 40/41 of them survived. The appearance and function were satisfactory in all patients after the reconstruction. Chimeric flaps pedicled with the lateral circumflex femoral artery are a good choice for the reconstruction of through-and-through oral and maxillofacial defects.

  18. The imaging and the fractal metrology of chimeric liposomal Drug Delivery nano Systems: the role of macromolecular architecture of polymeric guest.

    PubMed

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2014-09-01

    The major advance of mixed liposomes (the so-called chimeric systems) is to control the size, structure, and morphology of these nanoassemblies, and therefore, system colloidal properties, with the aid of a large variety of parameters, such as chemical architecture and composition. The goal of this study is to investigate the alterations of the physicochemical and morphological characteristics of chimeric dipalmitoylphosphatidylcholine (DPPC) liposomes, caused by the incorporation of block and gradient copolymers (different macromolecular architecture) with different chemical compositions (different amounts of hydrophobic component). Light scattering techniques were utilized in order to characterize physicochemically and to delineate the fractal morphology of chimeric liposomes. In this study, we also investigated the structural differences between the prepared chimeric liposomes as are visualized by scanning electron microscopy (SEM). It could be concluded that all the chimeric liposomes have regular structure, as SEM images revealed, while their fractal dimensionality was found to be dependent on the macromolecular architecture of the polymeric guest.

  19. Homology-aware Phylogenomics at Gigabase Scales.

    PubMed

    Sanderson, M J; Nicolae, Marius; McMahon, M M

    2017-01-25

    Obstacles to inferring species trees from whole genome data sets range from algorithmic and data management challenges to the wholesale discordance in evolutionary history found in different parts of a genome. Recent work that builds trees directly from genomes by parsing them into sets of small k-mer strings holds promise to streamline and simplify these efforts, but existing approaches do not account well for gene tree discordance. We describe a "seed and extend" protocol that finds nearly exact matching sets of orthologous k-mers and extends them to construct data sets that can properly account for genomic heterogeneity. Exploiting an efficient suffix array data structure, sets of whole genomes can be parsed and converted into phylogenetic data matrices rapidly, with contiguous blocks of k-mers from the same chromosome, gene, or scaffold concatenated as needed. Phylogenetic trees constructed from highly curated rice genome data and a diverse set of six other eukaryotic whole genome, transcriptome and organellar genome data sets recovered trees nearly identical to published phylogenomic analyses, in a small fraction of the time, and requiring many fewer parameter choices. Our method's ability to retain local homology information was demonstrated by using it to characterize gene tree discordance across the rice genome, and by its robustness to the high rate of inter-chromosomal gene transfer found in several rice species.

  20. Precise genome editing by homologous recombination

    PubMed Central

    Hoshijima, K.; Jurynec, M.J.; Grunwald, D.J.

    2016-01-01

    Simple and efficient methods are presented for creating precise modifications of the zebrafish genome. Edited alleles are generated by homologous recombination between the host genome and double-stranded DNA (dsDNA) donor molecules, stimulated by the induction of double-strand breaks at targeted loci in the host genome. Because several kilobase-long tracts of sequence can be exchanged, multiple genome modifications can be generated simultaneously at a single locus. Methods are described for creating: (1) alleles with simple sequence changes or in-frame additions, (2) knockin/knockout alleles that express a reporter protein from an endogenous locus, and (3) conditional alleles in which exons are flanked by recombinogenic loxP sites. Significantly, our approach to genome editing allows the incorporation of a linked reporter gene into the donor sequences so that successfully edited alleles can be identified by virtue of expression of the reporter. Factors affecting the efficiency of genome editing are discussed, including the finding that dsDNA products of I-SceI meganuclease enzyme digestion are particularly effective as donor molecules for gene-editing events. Reagents and procedures are described for accomplishing efficient genome editing in the zebrafish. PMID:27443923

  1. Surprises from an unusual CLC homolog.

    PubMed

    Phillips, Sabrina; Brammer, Ashley E; Rodriguez, Luis; Lim, Hyun-Ho; Stary-Weinzinger, Anna; Matulef, Kimberly

    2012-11-07

    The chloride channel (CLC) family is distinctive in that some members are Cl(-) ion channels and others are Cl(-)/H(+) antiporters. The molecular mechanism that couples H(+) and Cl(-) transport in the antiporters remains unknown. Our characterization of a novel bacterial homolog from Citrobacter koseri, CLC-ck2, has yielded surprising discoveries about the requirements for both Cl(-) and H(+) transport in CLC proteins. First, even though CLC-ck2 lacks conserved amino acids near the Cl(-)-binding sites that are part of the CLC selectivity signature sequence, this protein catalyzes Cl(-) transport, albeit slowly. Ion selectivity in CLC-ck2 is similar to that in CLC-ec1, except that SO(4)(2-) strongly competes with Cl(-) uptake through CLC-ck2 but has no effect on CLC-ec1. Second, and even more surprisingly, CLC-ck2 is a Cl(-)/H(+) antiporter, even though it contains an isoleucine at the Glu(in) position that was previously thought to be a critical part of the H(+) pathway. CLC-ck2 is the first known antiporter that contains a nonpolar residue at this position. Introduction of a glutamate at the Glu(in) site in CLC-ck2 does not increase H(+) flux. Like other CLC antiporters, mutation of the external glutamate gate (Glu(ex)) in CLC-ck2 prevents H(+) flux. Hence, Glu(ex), but not Glu(in), is critical for H(+) permeation in CLC proteins.

  2. Precise genome editing by homologous recombination.

    PubMed

    Hoshijima, K; Jurynec, M J; Grunwald, D J

    2016-01-01

    Simple and efficient methods are presented for creating precise modifications of the zebrafish genome. Edited alleles are generated by homologous recombination between the host genome and double-stranded DNA (dsDNA) donor molecules, stimulated by the induction of double-strand breaks at targeted loci in the host genome. Because several kilobase-long tracts of sequence can be exchanged, multiple genome modifications can be generated simultaneously at a single locus. Methods are described for creating: (1) alleles with simple sequence changes or in-frame additions, (2) knockin/knockout alleles that express a reporter protein from an endogenous locus, and (3) conditional alleles in which exons are flanked by recombinogenic loxP sites. Significantly, our approach to genome editing allows the incorporation of a linked reporter gene into the donor sequences so that successfully edited alleles can be identified by virtue of expression of the reporter. Factors affecting the efficiency of genome editing are discussed, including the finding that dsDNA products of I-SceI meganuclease enzyme digestion are particularly effective as donor molecules for gene-editing events. Reagents and procedures are described for accomplishing efficient genome editing in the zebrafish.

  3. Homologous recombination in plants is organ specific.

    PubMed

    Boyko, Alexander; Filkowski, Jody; Hudson, Darryl; Kovalchuk, Igor

    2006-03-20

    In this paper we analysed the genome stability of various Arabidopsis thaliana plant organs using a transgenic recombination system. The system was based on two copies of non-functional GUS (lines #651 and #11) or LUC (line #15D8) reporter genes serving as a recombination substrate. Both reporter assays showed that recombination in flowers or stems were rare events. Most of the recombination sectors were found in leaves and roots, with leaves having over 2-fold greater number of the recombination events per single cell genome as compared to roots. The recombination events per single genome were 9.7-fold more frequent on the lateral half of the leaves than on the medial halves. This correlated with a 2.5-fold higher metabolic activity in the energy source (lateral) versus energy sink (medial) of leaves. Higher metabolic activity was paralleled by a higher anthocyanin production in lateral halves. The level of double strand break (DSB) occurrence was also different among plant organs; the highest level was observed in roots and the lowest in leaves. High level of DSBs strongly positively correlated with the activity of the key repair enzymes, AtKU70 and AtRAD51. The ratio of AtRAD51 to AtKU70 expression was the highest in leaves, supporting the more active involvement of homologous recombination pathway in the repair of DSBs in this organ. Western blot analysis confirmed the real time PCR expression data for AtKU70 gene.

  4. A Cytohesin Homolog in Dictyostelium Amoebae

    PubMed Central

    Shina, Maria Christina; Müller, Rolf; Blau-Wasser, Rosemarie; Glöckner, Gernot; Schleicher, Michael; Eichinger, Ludwig; Noegel, Angelika A.; Kolanus, Waldemar

    2010-01-01

    Background Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. Principal Findings Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG− cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. Significance The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote. PMID:20186335

  5. Molecular Phylogenetics and the Perennial Problem of Homology.

    PubMed

    Inkpen, S Andrew; Doolittle, W Ford

    2016-12-01

    The concept of homology has a long history, during much of which the issue has been how to reconcile similarity and common descent when these are not coextensive. Although thinking molecular phylogeneticists have learned not to say "percent homology," the problems are deeper than that and unresolved.

  6. Regulation of DNA strand exchange in homologous recombination.

    PubMed

    Holthausen, J Thomas; Wyman, Claire; Kanaar, Roland

    2010-12-10

    Homologous recombination, the exchange of DNA strands between homologous DNA molecules, is involved in repair of many structural diverse DNA lesions. This versatility stems from multiple ways in which homologous DNA strands can be rearranged. At the core of homologous recombination are recombinase proteins such as RecA and RAD51 that mediate homology recognition and DNA strand exchange through formation of a dynamic nucleoprotein filament. Four stages in the life cycle of nucleoprotein filaments are filament nucleation, filament growth, homologous DNA pairing and strand exchange, and filament dissociation. Progression through this cycle requires a sequence of recombinase-DNA and recombinase protein-protein interactions coupled to ATP binding and hydrolysis. The function of recombinases is controlled by accessory proteins that allow coordination of strand exchange with other steps of homologous recombination and that tailor to the needs of specific aberrant DNA structures undergoing recombination. Accessory proteins are also able to reverse filament formation thereby guarding against inappropriate DNA rearrangements. The dynamic instability of the recombinase-DNA interactions allows both positive and negative action of accessory proteins thereby ensuring that genome maintenance by homologous recombination is not only flexible and versatile, but also accurate.

  7. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2008-11-18

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  8. CBH1 homologs and variant CBH1 cellulases

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2011-05-31

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  9. CBH1 homologs and varian CBH1 cellulase

    DOEpatents

    Goedegebuur, Frits; Gualfetti, Peter; Mitchinson, Colin; Neefe, Paulien

    2014-07-01

    Disclosed are a number of homologs and variants of Hypocrea jecorina Cel7A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  10. Single-Stranded DNA Curtains for Studying Homologous Recombination.

    PubMed

    Ma, C J; Steinfeld, J B; Greene, E C

    2017-01-01

    Homologous recombination is an important pathway involved in the repair of double-stranded DNA breaks. Genetic studies form the foundation of our knowledge on homologous recombination. Significant progress has also been made toward understanding the biochemical and biophysical properties of the proteins, complexes, and reaction intermediates involved in this essential DNA repair pathway. However, heterogeneous or transient recombination intermediates remain extremely difficult to assess through traditional ensemble methods, leaving an incomplete mechanistic picture of many steps that take place during homologous recombination. To help overcome some of these limitations, we have established DNA curtain methodologies as an experimental platform for studying homologous DNA recombination in real-time at the single-molecule level. Here, we present a detailed overview describing the preparation and use of single-stranded DNA curtains in applications related to the study of homologous DNA recombination with emphasis on recent work related to the study of the eukaryotic recombinase Rad51.

  11. DNA Strand Exchange and RecA Homologs in Meiosis

    PubMed Central

    Brown, M. Scott; Bishop, Douglas K.

    2015-01-01

    Homology search and DNA strand–exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand–exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand–exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved. PMID:25475089

  12. DNA strand exchange and RecA homologs in meiosis.

    PubMed

    Brown, M Scott; Bishop, Douglas K

    2014-12-04

    Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.

  13. The OGCleaner: filtering false-positive homology clusters.

    PubMed

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Snell, Quinn; Bybee, Seth M

    2017-01-01

    Detecting homologous sequences in organisms is an essential step in protein structure and function prediction, gene annotation and phylogenetic tree construction. Heuristic methods are often employed for quality control of putative homology clusters. These heuristics, however, usually only apply to pairwise sequence comparison and do not examine clusters as a whole. We present the Orthology Group Cleaner (the OGCleaner), a tool designed for filtering putative orthology groups as homology or non-homology clusters by considering all sequences in a cluster. The OGCleaner relies on high-quality orthologous groups identified in OrthoDB to train machine learning algorithms that are able to distinguish between true-positive and false-positive homology groups. This package aims to improve the quality of phylogenetic tree construction especially in instances of lower-quality transcriptome assemblies.

  14. Gene Editing by Co-Transformation of TALEN and Chimeric RNA/DNA Oligonucleotides on the Rice OsEPSPS Gene and the Inheritance of Mutations

    PubMed Central

    Wang, Mugui; Liu, Yujun; Zhang, Cuicui; Liu, Jianping; Liu, Xin; Wang, Liangchao; Wang, Wenyi; Chen, Hao; Wei, Chuchu; Ye, Xiufen; Li, Xinyuan; Tu, Jumin

    2015-01-01

    Although several site-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT) in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs), including different strand composition such as RNA/DNA (C1) or DNA/RNA (C2) but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP), we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19) as well as co-transformation of TELAN with either HRP (5/30) or C1 (2/25) or C2 (5/31). Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type. PMID:25856577

  15. Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family.

    PubMed

    Nguyen, Giang Kien Truc; Zhang, Sen; Nguyen, Ngan Thi Kim; Nguyen, Phuong Quoc Thuc; Chiu, Ming Sheau; Hardjojo, Antony; Tam, James P

    2011-07-08

    The tropical plant Clitoria ternatea is a member of the Fabaceae family well known for its medicinal values. Heat extraction of C. ternatea revealed that the bioactive fractions contained heat-stable cysteine-rich peptides (CRPs). The CRP family of A1b (Albumin-1 chain b/leginsulins), which is a linear cystine knot CRP, has been shown to present abundantly in the Fabaceae. In contrast, the cyclotide family, which also belongs to the cystine knot CRPs but with a cyclic structure, is commonly found in the Rubiaceae, Violaceae, and Cucurbitaceae families. In this study, we report the discovery of a panel of 15 heat-stable CRPs, of which 12 sequences (cliotide T1-T12) are novel. We show unambiguously that the cliotides are cyclotides and not A1bs, as determined by their sequence homology, disulfide connectivity, and membrane active properties indicated by their antimicrobial activities against Escherichia coli and cytotoxicities to HeLa cells. We also show that cliotides are prevalent in C. ternatea and are found in every plant tissue examined, including flowers, seeds, and nodules. In addition, we demonstrate that their precursors are chimeras, half from cyclotide and the other half from Albumin-1, with the cyclotide domain displacing the A1b domain in the precursor. Their chimeric structures likely originate from either horizontal gene transfer or convergent evolution in plant nuclear genomes, which are exceedingly rare events. Such atypical genetic arrangement also implies a different mechanism of biosynthetic processing of cyclotides in the Fabaceae and provides new understanding of their evolution in plants.

  16. Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity.

    PubMed

    Rimphanitchayakit, Vichien; Tonozuka, Takashi; Sakano, Yoshiyuki

    2005-10-17

    Three DNA fragments of 7919 base pairs containing genes for beta-cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19), an iron III dicitrate transport protein-like protein and a partial coding sequence for putative ferrichrome ABC transporter from Bacillus circulans A11 were cloned and sequenced (GenBank Accession AF302787). The DNA sequence contained a CGTase open reading frame of 2139 base pairs, which encoded a polypeptide of 713 amino acid residues. The signal peptide constituted the N-terminal 27 amino acid residues. The amino acid sequence was highly homologous to that of Bacillus sp. 1011 with 98.7% identity. The cloned CGTase gene contained its own promoter that directed the expression of the gene in Escherichia coli host cells. Chimeric construction against the alpha-CGTase from B. macerans IAM1243 was carried out by means of three created restriction sites, XhoI, SpeI, and MfeI, introduced by mutagenesis in between domains A/B and C, C and D, and D and E, respectively, and the NdeI site within the domains A/B. The various chimeras with different combinations of domains and part of domains A/B were analyzed for their dextrinizing and CD-forming activities. Their activities were of three groups: chimeras with no dextrinizing and cyclization activities, chimeras with only dextrinizing activity, and chimeras with both dextrinizing and cyclization activities. Two chimeras in the latter group showed altered product specificity. The results located the amino acid segment essential for the product specificity at the C-terminal half of domains A/B. Further, the function of domains C and D in positioning domain E in the correct orientation and proximity to domains A/B is implicated.

  17. Peridinialean dinoflagellate plate patterns, labels and homologies

    USGS Publications Warehouse

    Edwards, L.E.

    1990-01-01

    Tabulation patterns for peridinialean dinoflagellate thecae and cysts have been traditionally expressed using a plate labelling system described by C.A. Kofoid in the early 1900's. This system can obscure dinoflagellate plate homologies and has not always been strictly applied. The plate-labelling system presented here introduces new series labels but incorporates key features and ideas from the more recently proposed systems of G.L. Eaton and F.J.R. Taylor, as modified by W.R. Evitt. Plate-series recognition begins with the cingulum (C-series) and proceeds from the cingulum toward the apex for the three series of the epitheca/epicyst and proceeds from the cingulum toward the antapex for the two series of the hypotheca/hypocyst. The epithecal/epicystal model consists of eight plates that touch the anterior margin of the cingulum (E-series: plates E1-E7, ES), seven plates toward the apex that touch the E-series plates (M-series: R, M1-M6), and up to seven plates near the apex that do not touch E-series plates (D-series: Dp-Dv). The hypothecal/hypocystal model consists of eight plates that touch the posterior margin of the cingulum (H-series: H1-H6,HR,HS) and three plates toward the antapex (T1-T3). Epithecal/epicystal tabulation patterns come in both 8- and 7- models, corresponding to eight and seven plates, respectively, in the E-series. Hypothecal/hypocystal tabulation patterns also come in both 8- and 7-models, corresponding to eight and seven plates, respectively, in the H-series. By convention, the 7-model epitheca/epicyst has no plates E1 and M1; the 7-model hypotheca/hypocyst has no plate H6. Within an 8-model or 7-model, the system emphasizes plates that are presumed to be homologous by giving them identical labels. I introduce the adjectives "monothigmate", "dithigmate," and "trithigmate" to designate plates touching one, two, and three plates, respectively, of the adjacent series. The term "thigmation" applies to the analysis of plate contacts between

  18. A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus

    PubMed Central

    McGregor, Alistair

    2016-01-01

    In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107–179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model. PMID:27387220

  19. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture.

    PubMed

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping; Mikkelsen, Lotte S; Gottwein, Judith M; Bukh, Jens

    2013-03-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5' end to the NS2-NS3 region followed by JFH1 sequence from Core to the 3' end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and

  20. Vertebrate head development: segmentation, novelties, and homology.

    PubMed

    Olsson, Lennart; Ericsson, Rolf; Cerny, Robert

    2005-11-01

    Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the "mandibular" condensation, and that the "maxillary" condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.

  1. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

    PubMed

    Holmberg, Mats A; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-06-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs.

  2. A beam of "chimeric" darkness: presence, interconnectedness, and transformation in the psychoanalytic treatment of a patient convicted of sex offenses.

    PubMed

    Eshel, Ofra

    2012-04-01

    The paper puts forward the dimension created by analytic presence and the ensuing patient-analyst interconnectedness in the process of psychoanalytic treatment and change, particularly with more disturbed patients. Working within this dimension, at a fundamental level of contact and impact, opens up new possibilities of extending the reach of psychoanalytic treatment. The analyst's "presencing" and interconnectedness with the patient forge a living therapeutic entity that is not a one-person or two-person psychology, but an emergent two-in-one new entity that goes beyond the confines of the separate subjectivities of patient and analyst and the simple summation of the two. The paper describes the kind of knowledge, experience, and powerful therapeutic potential that comes into being through analytic "presencing" and patient-analyst interconnectedness, and particularly focuses on the chimeric element, or quality, of this interconnectedness. The term "chimera/chimerism"-chosen here for its wealth of mythological, genetic, biological, biomedicinal (chimeric proteins), and psychoanalytical associations-is used in this paper to highlight the complex quality of patient-analyst interconnectedness, especially in difficult, psychotic, psychically foreclosed, dissociative and perverse states. The author offers an extensive clinical account of psychoanalytic treatment of a patient convicted of sex offenses in order to illustrate "presencing," interconnectedness, and the extent and intricate emotional meaning of the extreme chimerism that this kind of (difficult) treatment entailed.

  3. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases.

  4. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci

    PubMed Central

    Dong, Qiuhua; Wang, Jing; Yang, Hang; Wei, Cuihua; Yu, Junping; Zhang, Yun; Huang, Yanling; Zhang, Xian-En; Wei, Hongping

    2015-01-01

    Developing chimeric lysins with a wide lytic spectrum would be important for treating some infections caused by multiple pathogenic bacteria. In the present work, a novel chimeric lysin (Ply187N-V12C) was constructed by fusing the catalytic domain (Ply187N) of the bacteriophage lysin Ply187 with the cell binding domain (146-314aa, V12C) of the lysin PlyV12. The results showed that the chimeric lysin Ply187N-V12C had not only lytic activity similar to Ply187N against staphylococcal strains but also extended its lytic activity to streptococci and enterococci, such as Streptococcus dysgalactiae, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis, which Ply187N could not lyse. Our work demonstrated that generating novel chimeric lysins with an extended lytic spectrum was feasible through fusing a catalytic domain with a cell-binding domain from lysins with lytic spectra across multiple genera. PMID:25219798

  5. Performance Assessment of Four Chimeric Trypanosoma cruzi Antigens Based on Antigen-Antibody Detection for Diagnosis of Chronic Chagas Disease

    PubMed Central

    Zanchin, Nilson Ivo Tonin; Brasil, Tatiana de Arruda Campos; Foti, Leonardo; de Souza, Wayner Vieira; Silva, Edmilson Domingos; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2016-01-01

    The performance of serologic tests in chronic Chagas disease diagnosis largely depends on the type and quality of the antigen preparations that are used for detection of anti-Trypanosoma cruzi antibodies. Whole-cell T. cruzi extracts or recombinant proteins have shown variation in the performance and cross-reactivity. Synthetic chimeric proteins comprising fragments of repetitive amino acids of several different proteins have been shown to improve assay performances to detect Chagasic infections. Here, we describe the production of four chimeric T. cruzi proteins and the assessment of their performance for diagnostic purposes. Circular Dichroism spectra indicated the absence of well-defined secondary structures, while polydispersity evaluated by Dynamic Light Scattering revealed only minor aggregates in 50 mM carbonate-bicarbonate (pH 9.6), demonstrating that it is an appropriate buffering system for sensitizing microplates. Serum samples from T. cruzi-infected and non-infected individuals were used to assess the performance of these antigens for detecting antibodies against T. cruzi, using both enzyme-linked immunosorbent assay and a liquid bead array platform. Performance parameters (AUC, sensitivity, specificity, accuracy and J index) showed high diagnostic accuracy for all chimeric proteins for detection of specific anti-T. cruzi antibodies and differentiated seropositive individuals from those who were seronegative. Our data suggest that these four chimeric proteins are eligible for phase II studies. PMID:27517281

  6. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method.

    PubMed

    Kondoh, G; Yamamoto, Y; Yoshida, K; Suzuki, Y; Osuka, S; Nakano, Y; Morita, T; Takeda, J

    1999-05-13

    Production of germ-line competent chimeric mice from embryonic stem (ES) cells is an inevitable step in establishing gene-manipulated mouse lineages. A common method used for creating chimeric mice is the injection of ES cells into the blastocoelic cavity (blastocyst injection). The aggregation method is an alternative way to introduce ES cells to the host embryo which is less difficult than blastocyst injection. Here we re-examined the condition of embryo-ES cell coculture on the aggregation method and found improvement of germ-line competent chimeric production by a simple modification of the coculture medium. Moreover, R1 ES cell and its 10 gene-manipulated subclones were tested by this method. Although all ES cell clones showed good morphology and a normal karyotype, the efficiency of chimeric development and germ-line transmission varied among clones and were classified into three grades according to germ-line competency. In the first group (class A), both the incidence of chimera with high ES cell contribution and the rate of germ-line transmission were fairly high. Germ-line competent chimeras were obtained but with rather low efficiency in the second group (class B), while another group (class C) showed an absence of high ES cell-contributed chimeras and no germ-line transmission. These results suggest the usefulness of this modified aggregation method to predict the potency of ES cell clones for germ-line competency.

  7. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma.

    PubMed

    Choi, Bryan D; Suryadevara, Carter M; Gedeon, Patrick C; Herndon, James E; Sanchez-Perez, Luis; Bigner, Darell D; Sampson, John H

    2014-01-01

    Chimeric antigen receptors (CAR)-transduced T cells hold great promise in the treatment of malignant disease. Here, we demonstrate that intracerebral injection with a human, epidermal growth factor receptor variant III (EGFRvIII)-specific, third generation CAR successfully treats glioma in mice. Importantly, these results endorse clinical translation of this CAR in patients with EGFRvIII-expressing brain tumors.

  8. Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs.

    PubMed

    Tian, Debin; Ni, Yan-Yan; Zhou, Lei; Opriessnig, Tanja; Cao, Dianjun; Piñeyro, Pablo; Yugo, Danielle M; Overend, Christopher; Cao, Qian; Lynn Heffron, C; Halbur, Patrick G; Pearce, Douglas S; Calvert, Jay G; Meng, Xiang-Jin

    2015-11-01

    The extensive genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains is a major obstacle for vaccine development. We previously demonstrated that chimeric PRRSVs in which a single envelope gene (ORF3, ORF4, ORF5 or ORF6) was shuffled via DNA shuffling had an improved heterologous cross-neutralizing ability. In this study, we incorporate all of the individually-shuffled envelope genes together in different combinations into an infectious clone backbone of PRRSV MLV Fostera(®) PRRS. Five viable progeny chimeric viruses were rescued, and their growth characteristics were characterized in vitro. In a pilot pig study, two chimeric viruses (FV-SPDS-VR2,FV-SPDS-VR5) were found to induce cross-neutralizing antibodies against heterologous strains. A subsequent vaccination/challenge study in 72 pigs revealed that chimeric virus FV-SPDS-VR2 and parental virus conferred partial cross-protection when challenged with heterologous strains NADC20 or MN184B. The results have important implications for future development of an effective PRRSV vaccine that confers heterologous protection.

  9. The Relationship between STR-PCR Chimerism Analysis and Chronic GvHD Following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Mousavi, Seyed Asadollah; Javadimoghadam, Mina; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Sayarifard, Azadeh; Ghaffari, Seyed-Hamidollah; Chahardouli, Bahram; Basi, Ali

    2017-01-01

    Background: The study attempts to assess the relationship between chimerism analysis using polymerase chain reaction of short tandem repeat (STR) and the incidence of chronic graft versus host disease (GvHD) as well as survival. Subjects and Methods: The retrospective cohort included all patients who received allo-HSCT during 2005-2013. Data collected by day +100 were reviewed in terms of the incidence of chronic GvHD and survival. Chimerism was evaluated for whole blood, T-cell and PMN cells on days 15, 30 and 60, respectively using polymerase chain reaction of short tandem repeat (STR). Results: Forty (69%) patients developed chronic GvHD, 11 (19%) relapsed and 22 (39.7%) expired during the study. There was a significant relationship between chronic GvHD and chimerism analysis including whole blood on day 60 (p=0.001), Polymorphonuclear neutrophil (PMN) on day 60 (p=0.05), T-cell on days 15 (p=0.028), 30 (p=0.01) and 60 (p=0.004). Patients with chronic GvHD showed a long-term survival as compared with those without chronic GvHD (p=0.0013). Conclusion: Conducting continuous analysis of chimerism provides an opportunity to initiate immediate measures in order to prevent complications. PMID:28286611

  10. Chimeric virus-like particles for the delivery of an inserted conserved influenza A-specific CTL epitope.

    PubMed

    Cheong, Wan-Shoo; Reiseger, Jessica; Turner, Stephen John; Boyd, Richard; Netter, Hans-Jürgen

    2009-02-01

    The small hepatitis B virus surface antigens (HBsAg-S) have the ability to self-assemble with host-derived lipids into empty non-infectious virus-like particles (VLPs). HBsAg-S VLPs are the sole component of the licensed hepatitis B vaccine, and they are a useful delivery platform for foreign epitopes. To develop VLPs capable of transporting foreign cytotoxic T lymphocyte (CTL) epitopes, HBsAg-S specific CTL epitopes at various sites were substituted with a conserved CTL epitope derived from the influenza matrix protein. Depending on the insertion site, the introduction of the MHC class I A2.1-restricted influenza epitope was compatible with the secretion competence of HBsAg-S indicating that chimeric VLPs were assembled. Immunizations of transgenic HHDII mice with chimeric VLPs induced anti-influenza CTL responses proving that the inserted foreign epitope can be correctly processed and cross-presented. Chimeric VLPs in the absence of adjuvant were able to induce memory T cell responses, which could be recalled by influenza virus infections in the mouse model system. The ability of chimeric HBsAg-S VLPs to induce anti-foreign CTL responses and also with the proven ability to induce humoral immune responses constitute a highly versatile platform for the delivery of selected multiple epitopes to target disease associated infectious agents.

  11. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  12. Large antigenic skin load in total abdominal wall transplants permits chimerism induction.

    PubMed

    Nasir, Serdar; Bozkurt, Mehmet; Klimczak, Aleksandra; Siemionow, Maria

    2008-11-01

    . Microangiography of the transplant demonstrated entire skin island was supplied bilaterally by superficial epigastric vessels pedicle. Dye studies with India ink demonstrated dye uptake in all flap components. Histologic examination also demonstrated the viability of flap tissues. High chimerism levels in peripheral blood was determined at the 7th, 21st, 35th, 63rd, and 100th posttransplant days was compared with full face, hemiface, groin flap data. It was found that TAW transplant had higher chimerism level compared with groin flap but lower chimerism than full face and hemiface allografts. TAW transplant may serve as a new experimental model with large skin component and may be useful to determine immunologic responses to tissues with high antigenic load under different immunosuppressive protocols.

  13. Homologous recombination in bovine pestiviruses. Phylogenetic and statistic evidence.

    PubMed

    Jones, Leandro Roberto; Weber, E Laura

    2004-12-01

    Bovine pestiviruses (Bovine Viral Diarrea Virus 1 (BVDV 1) and Bovine Viral Diarrea Virus 2 (BVDV 2)) belong to the genus Pestivirus (Flaviviridae), which is composed of positive stranded RNA viruses causing significant economic losses world-wide. We used phylogenetic and bootstrap analyses to systematically scan alignments of previously sequenced genomes in order to explore further the evolutionary mechanisms responsible for variation in the virus. Previously published data suggested that homologous crossover might be one of the mechanisms responsible for the genomic rearrangements observed in cytopathic (cp) strains of bovine pestiviruses. Nevertheless, homologous recombination involves not just homologous crossovers, but also replacement of a homologous region of the acceptor RNA. Furthermore, cytopathic strains represent dead paths in evolution, since they are isolated exclusively from the fatal cases of mucosal disease. Herein, we report evidence of homologous inter-genotype recombination in the genome of a non-cytopathic (ncp) strain of Bovine Viral Diarrea Virus 1, the type species of the genus Pestivirus. We also show that intra-genotype homologous recombination might be a common phenomenon in both species of Pestivirus. This evidence demonstrates that homologous recombination contribute to the diversification of bovine pestiviruses in nature. Implications for virus evolution, taxonomy and phylogenetics are discussed.

  14. Chimeric proteins combining phosphatase and cellulose-binding activities: proof-of-concept and application in the hydrolysis of paraoxon.

    PubMed

    Gonçalves, Larissa M; Chaimovich, Hernan; Cuccovia, Iolanda M; Marana, Sandro R

    2014-05-01

    Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification.

  15. MHC-mismatched mixed chimerism augments thymic regulatory T-cell production and prevents relapse of EAE in mice

    PubMed Central

    Wu, Limin; Li, Nainong; Zhang, Mingfeng; Xue, Sheng-Li; Cassady, Kaniel; Lin, Qing; Riggs, Arthur D.; Zeng, Defu

    2015-01-01

    Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2b) donor in SJL/J (H-2s) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4+ T cells and significant increase in the percentage of Foxp3+ Treg among host-type CD4+ T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4+CD8+ thymocytes and an increase of Treg percentage among the CD4+CD8+ and CD4+CD8− thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4+ T cells, augment production of Foxp3+ Treg, and cure EAE. PMID:26647186

  16. Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with Mycobacterium tuberculosis.

    PubMed

    Liang, Yan; Wu, Xueqiong; Zhang, Junxian; Xiao, Li; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Zhongming; Bi, Lan; Li, Ning; Wu, Xiaoli

    2012-12-01

    The situation of tuberculosis (TB) is very severe in China. New therapeutic agents or regimens to treat TB are urgently needed. In this study, Mycobacterium tuberculosis-infected mice were given immunotherapy intramuscularly with Ag85A/B chimeric DNA or saline, plasmid vector pVAX1, or Mycobacterium vaccae vaccine. The mice treated with Ag85A/B chimeric DNA showed significantly higher numbers of T cells secreting interferon-gamma (IFN-γ), more IFN-γ in splenocyte culture supernatant, more Th1 and Tc1 cells, and higher ratios of Th1/Th2 and Tc1/Tc2 cells in whole blood, indicating a predominant Th1 immune response to treatment. Infected mice treated with doses of 100 μg Ag85A/B chimeric DNA had an extended time until death of 50% of the animals that was markedly longer than the saline and vector control groups, and the death rate at 1 month after the last dose was lower than that in the other groups. Compared with the saline group, 100 μg Ag85A/B chimeric DNA and 100 μg Ag85A DNA reduced the pulmonary bacterial loads by 0.79 and 0.45 logs, and the liver bacterial loads by 0.52 and 0.50 logs, respectively. Pathological changes in the lungs were less, and the lesions were more limited. These results show that Ag85A/B chimeric DNA was effective for the treatment of TB, significantly increasing the cellular immune response and inhibiting the growth of M. tuberculosis.

  17. Species-specific functioning of the Pseudomonas XcpQ secretin: role for the C-terminal homology domain and lipopolysaccharide.

    PubMed

    Bitter, Wilbert; van Boxtel, Ria; Groeneweg, Mathijs; Carballo, Patricia Sánchez; Zähringer, Ulrich; Tommassen, Jan; Koster, Margot

    2007-04-01

    Secretins are oligomeric proteins that mediate the export of macromolecules across the bacterial outer membrane. The members of the secretin superfamily possess a C-terminal homology domain that is important for oligomerization and channel formation, while their N-terminal halves are thought to be involved in system-specific interactions. The XcpQ secretin of Pseudomonas spp. is a component of the type II secretion pathway. XcpQ from Pseudomonas alcaligenes is not able to functionally replace the secretin of the closely related species Pseudomonas aeruginosa. By analysis of chimeric XcpQ proteins, a region important for species-specific functioning was mapped between amino acid residues 344 and 478 in the C-terminal homology domain. Two chromosomal suppressor mutations were obtained that resulted in the proper functioning in P. aeruginosa of P. alcaligenes XcpQ and inactive hybrids. These mutations caused a defect in the synthesis of the lipopolysaccharide (LPS) outer core region. Subsequent analysis of different LPS mutants showed that changes in the outer core and not the loss of O antigen caused the suppressor phenotype. High concentrations of divalent cations in the growth medium also allowed P. alcaligenes XcpQ and inactive hybrids to function properly in P. aeruginosa. Since divalent cations are known to affect the structure of LPS, this observation supports the hypothesis that LPS has a role in the functioning of secretins.

  18. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  19. Importing the homology concept from biology into developmental psychology.

    PubMed

    Moore, David S

    2013-01-01

    To help introduce the idea of homology into developmental psychology, this article presents some of the concepts, distinctions, and guidelines biologists and philosophers of biology have devised to study homology. Some unresolved issues related to this idea are considered as well. Because homology reflects continuity across time, developmental scientists should find this concept to be useful in the study of psychological/behavioral development, just as biologists have found it essential in the study of the evolution and development of morphological and other characteristics.

  20. Geometric K-Homology of Flat D-Branes

    NASA Astrophysics Data System (ADS)

    Reis, Rui M. G.; Szabo, Richard J.

    2006-08-01

    We use the Baum-Douglas construction of K-homology to explicitly describe various aspects of D-branes in Type II superstring theory in the absence of background supergravity form fields. We rigorously derive various stability criteria for states of D-branes and show how standard bound state constructions are naturally realized directly in terms of topological K-cycles. We formulate the mechanism of flux stabilization in terms of the K-homology of non-trivial fibre bundles. Along the way we derive a number of new mathematical results in topological K-homology of independent interest.

  1. Case of 46,XX/47,XY, +21 chimerism in a newborn infant with ambiguous genitalia

    SciTech Connect

    Sawai, Tomoko; Yoshimoto, Masaaki; Kinoshita, Ei-ichi; Baba, Tsuneyoshi; Matsumoto, Tadashi; Tsuji, Yoshiro, Niikawa, Norio; Fukuda, Shinpei; Harada, Naoki

    1994-02-15

    The authors describe the whole-body chimerism in a newborn infant with small phallus, pseudo-vaginal perineal hypospadias, and a bifid scrotum containing gonads. The human testis determining factor gene (SRY) was detected by PCR amplification. GTG-banding chromosome analysis in peripheral blood lymphocytes and cultured fibroblasts derived from right cubital skin showed a 46,XX/47,XY, +21 karyotype. Their ratios in each cell line were 294:5 and 178:7, respectively. QFQ-banding chromosome analysis documented 3 heteromorphic satellites on trisomic chromsomes 21 in the 47,XY,+21 cell line and a homozygous satellite pattern in the 46,XX cell line. Heteromorphic patterns of chromsomes 4, 13, 14, and 22 were also different between the two cell lines. To our knowledge, such disomy/trisomy chimeras have not been described previously. 10 refs., 3 figs.

  2. Treatment of vitiligo with a chimeric monoclonal antibody to CD20: a pilot study.

    PubMed

    Ruiz-Argüelles, A; García-Carrasco, M; Jimenez-Brito, G; Sánchez-Sosa, S; Pérez-Romano, B; Garcés-Eisele, J; Camacho-Alarcón, C; Reyes-Núñez, V; Sandoval-Cruz, M; Mendoza-Pinto, C; López-Colombo, A

    2013-11-01

    Five patients with active disseminated vitiligo were given 1g of a chimeric (murine/human) monoclonal antibody to CD20 in a single intravenous infusion and followed-up for 6 months. Three of the patients showed an overt clinical and histological improvement of the disease, one presented slight improvement and the remaining patient showed no changes. Improvement was neither associated with changes in laboratory parameters nor to a specific human leucocyte antigen D-related (HLA-DR) phenotype. We believe that these preliminary results are encouraging, and further clinical trials should be undertaken. An important aim should be the finding of a marker with a good response to this therapeutic approach.

  3. HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells

    PubMed Central

    Zhen, Anjie; Kamata, Masakazu; Rezek, Valerie; Rick, Jonathan; Levin, Bernard; Kasparian, Saro; Chen, Irvin SY; Yang, Otto O; Zack, Jerome A; Kitchen, Scott G

    2015-01-01

    The human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte (CTL) response is critical in controlling HIV infection. Since the immune response does not eliminate HIV, it would be beneficial to develop ways to enhance the HIV-specific CTL response to allow long-term viral suppression or clearance. Here, we report the use of a protective chimeric antigen receptor (CAR) in a hematopoietic stem/progenitor cell (HSPC)-based approach to engineer HIV immunity. We determined that CAR-modified HSPCs differentiate into functional T cells as well as natural killer (NK) cells in vivo in humanized mice and these cells are resistant to HIV infection and suppress HIV replication. These results strongly suggest that stem cell-based gene therapy with a CAR may be feasible and effective in treating chronic HIV infection and other morbidities. PMID:26050990

  4. HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells.

    PubMed

    Zhen, Anjie; Kamata, Masakazu; Rezek, Valerie; Rick, Jonathan; Levin, Bernard; Kasparian, Saro; Chen, Irvin Sy; Yang, Otto O; Zack, Jerome A; Kitchen, Scott G

    2015-08-01

    The human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte (CTL) response is critical in controlling HIV infection. Since the immune response does not eliminate HIV, it would be beneficial to develop ways to enhance the HIV-specific CTL response to allow long-term viral suppression or clearance. Here, we report the use of a protective chimeric antigen receptor (CAR) in a hematopoietic stem/progenitor cell (HSPC)-based approach to engineer HIV immunity. We determined that CAR-modified HSPCs differentiate into functional T cells as well as natural killer (NK) cells in vivo in humanized mice and these cells are resistant to HIV infection and suppress HIV replication. These results strongly suggest that stem cell-based gene therapy with a CAR may be feasible and effective in treating chronic HIV infection and other morbidities.

  5. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    PubMed

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-01-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever.

  6. Treatment of vitiligo with a chimeric monoclonal antibody to CD20: a pilot study

    PubMed Central

    Ruiz-Argüelles, A; García-Carrasco, M; Jimenez-Brito, G; Sánchez-Sosa, S; Pérez-Romano, B; Garcés-Eisele, J; Camacho-Alarcón, C; Reyes-Núñez, V; Sandoval-Cruz, M; Mendoza-Pinto, C; López-Colombo, A

    2013-01-01

    Five patients with active disseminated vitiligo were given 1 g of a chimeric (murine/human) monoclonal antibody to CD20 in a single intravenous infusion and followed-up for 6 months. Three of the patients showed an overt clinical and histological improvement of the disease, one presented slight improvement and the remaining patient showed no changes. Improvement was neither associated with changes in laboratory parameters nor to a specific human leucocyte antigen D-related (HLA-DR) phenotype. We believe that these preliminary results are encouraging, and further clinical trials should be undertaken. An important aim should be the finding of a marker with a good response to this therapeutic approach. PMID:23815517

  7. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    SciTech Connect

    Shustov, Alexandr V.

    2010-04-25

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  8. Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain.

    PubMed

    van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N

    2017-03-15

    Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah

  9. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma

    PubMed Central

    Garfall, Alfred L.; Maus, Marcela V.; Hwang, Wei-Ting; Lacey, Simon F.; Mahnke, Yolanda D.; Melenhorst, J. Joseph; Zheng, Zhaohui; Vogl, Dan T.; Cohen, Adam D.; Weiss, Brendan M.; Dengel, Karen; Kerr, Naseem D.S.; Bagg, Adam; Levine, Bruce L.; June, Carl H.; Stadtmauer, Edward A.

    2015-01-01

    SUMMARY A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patient’s neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.) PMID:26352815

  10. Improving Therapy of Chronic Lymphocytic Leukemia (CLL) with Chimeric Antigen Receptor (CAR) T Cells

    PubMed Central

    Fraietta, Joseph A.; Schwab, Robert D.; Maus, Marcela V.

    2016-01-01

    Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically-engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and re-directing the immune system against cancer. This review will briefly summarize T cell therapies in development for CLL disease. We discuss the role of T cell function and phenotype, T cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. PMID:27040708

  11. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice.

    PubMed

    Mikolajczak, Sebastian A; Vaughan, Ashley M; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E; Adams, John H; Sattabongkot, Jetsumon; Prachumsri, Jetsumon; Kappe, Stefan H I

    2015-04-08

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.

  12. Solution structure and dynamics of the chimeric SH3 domains, SHH- and SHA-"Bergeracs".

    PubMed

    Kutyshenko, Victor P; Prokhorov, Dmitry A; Timchenko, Maria A; Kudrevatykh, Yuri A; Gushchina, Liubov' V; Khristoforov, Vladimir S; Filimonov, Vladimir V; Uversky, Vladimir N

    2009-12-01

    Two chimeric proteins, SHcapital EN, Cyrillic and SHA of the "SH3-Bergerac" family (where the beta-turn N47D48 in spectrin SH3 domain was substituted for KITVNGKTYE or KATANGKTYE sequences, respectively), were analyzed by high-resolution NMR to resolve their spatial structures and to analyze their dynamics. Although the presence of a stable beta-hairpin in the region of the insertion was confirmed, the introduced extension of the polypeptide chain in SHcapital EN, Cyrillic (approximately 17%) practically did not affect the total molecule topology. Interestingly, the introduced beta-hairpin had higher mobility in comparison with other protein regions. Finally, we performed a disorder prediction with the PONDR VSL2 algorithm and discovered that the inserted beta-hairpin in both SHH and SHA proteins exhibited significant propensity for intrinsic disorder and therefore for high mobility. In agreement with the experimental data, the predisposition for the increased intramolecular mobility was noticeably higher in SHA.

  13. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    NASA Astrophysics Data System (ADS)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  14. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    PubMed Central

    Cartellieri, Marc; Bachmann, Michael; Feldmann, Anja; Bippes, Claudia; Stamova, Slava; Wehner, Rebekka; Temme, Achim; Schmitz, Marc

    2010-01-01

    CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs). First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells. PMID:20467460

  15. Immunotherapy of Malignant Disease Using Chimeric Antigen Receptor Engrafted T Cells

    PubMed Central

    Maher, John

    2012-01-01

    Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies. PMID:23304553

  16. Chimeric Antigen Receptor- and TCR-Modified T Cells Enter Main Street and Wall Street.

    PubMed

    Barrett, David M; Grupp, Stephan A; June, Carl H

    2015-08-01

    The field of adoptive cell transfer (ACT) is currently comprised of chimeric Ag receptor (CAR)- and TCR-engineered T cells and has emerged from principles of basic immunology to paradigm-shifting clinical immunotherapy. ACT of T cells engineered to express artificial receptors that target cells of choice is an exciting new approach for cancer, and it holds equal promise for chronic infection and autoimmunity. Using principles of synthetic biology, advances in immunology, and genetic engineering have made it possible to generate human T cells that display desired specificities and enhanced functionalities. Clinical trials in patients with advanced B cell leukemias and lymphomas treated with CD19-specific CAR T cells have induced durable remissions in adults and children. The prospects for the widespread availability of engineered T cells have changed dramatically given the recent entry of the pharmaceutical industry to this arena. In this overview, we discuss some of the challenges and opportunities that face the field of ACT.

  17. Origin and Evolution of a Chimeric Fusion Gene in Drosophila subobscura, D. madeirensis and D. guanche

    PubMed Central

    Jones, Corbin D.; Custer, Andrew W.; Begun, David J.

    2005-01-01

    An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5′ promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions. PMID:15781692

  18. Enhancement by dimethyl myleran of donor type chimerism in murine recipients of bone marrow allografts

    SciTech Connect

    Lapidot, T.; Terenzi, A.; Singer, T.S.; Salomon, O.; Reisner, Y. )

    1989-05-15

    A major problem in using murine models for studies of bone marrow allograft rejection in leukemia patients is the narrow margin in which graft rejection can be analyzed. In mice irradiated with greater than 9 Gy total body irradiation (TBI) rejection is minimal, whereas after administration of 8 Gy TBI, which spares a significant number of clonable T cells, a substantial frequency of host stem cells can also be detected. In current murine models, unlike in humans, bone marrow allograft rejection is generally associated with full autologous hematopoietic reconstitution. In the present study, we investigated the effect of the myeloablative drug dimethyl myleran (DMM) on chimerism status following transplantation of T cell-depleted allogenic bone marrow (using C57BL/6 donors and C3H/HeJ recipients, conditioned with 8 Gy TBI). Donor type chimerism 1 to 2 months post-transplant of 1 to 3 x 10(6) bone marrow cells was markedly enhanced by using DMM one day after TBI and prior to transplantation. Conditioning with cyclophosphamide instead of DMM, in combination with 8 Gy TBI, did not enhance engraftment of donor type cells. Artificial reconstitution of T cells, after conditioning with TBI plus DMM, by adding mature thymocytes, or presensitization with irradiated donor type spleen cells 1 week before TBI and DMM, led to strong graft rejection and consequently to severe anemia. The anti-donor responses in these models were proportional to the number of added T cells and to the number of cells used for presensitization, and they could be neutralized by increasing the bone marrow inoculum.

  19. Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases.

    PubMed

    Pavlov, Andrey R; Belova, Galina I; Kozyavkin, Sergei A; Slesarev, Alexei I

    2002-10-15

    Helix-hairpin-helix (HhH) is a widespread motif involved in sequence-nonspecific DNA binding. The majority of HhH motifs function as DNA-binding modules with typical occurrence of one HhH motif or one or two (HhH)(2) domains in proteins. We recently identified 24 HhH motifs in DNA topoisomerase V (Topo V). Although these motifs are dispensable for the topoisomerase activity of Topo V, their removal narrows the salt concentration range for topoisomerase activity tenfold. Here, we demonstrate the utility of Topo V's HhH motifs for modulating DNA-binding properties of the Stoffel fragment of TaqDNA polymerase and Pfu DNA polymerase. Different HhH cassettes fused with either NH(2) terminus or COOH terminus of DNA polymerases broaden the salt concentration range of the polymerase activity significantly (up to 0.5 M NaCl or 1.8 M potassium glutamate). We found that anions play a major role in the inhibition of DNA polymerase activity. The resistance of initial extension rates and the processivity of chimeric polymerases to salts depend on the structure of added HhH motifs. Regardless of the type of the construct, the thermal stability of chimeric Taq polymerases increases under the optimal ionic conditions, as compared with that of TaqDNA polymerase or its Stoffel fragment. Our approach to raise the salt tolerance, processivity, and thermostability of Taq and Pfu DNA polymerases may be applied to all pol1- and polB-type polymerases, as well as to other DNA processing enzymes.

  20. Emotion processing in chimeric faces: hemispheric asymmetries in expression and recognition of emotions.

    PubMed

    Indersmitten, Tim; Gur, Ruben C

    2003-05-01

    Since the discovery of facial asymmetries in emotional expressions of humans and other primates, hypotheses have related the greater left-hemiface intensity to right-hemispheric dominance in emotion processing. However, the difficulty of creating true frontal views of facial expressions in two-dimensional photographs has confounded efforts to better understand the phenomenon. We have recently described a method for obtaining three-dimensional photographs of posed and evoked emotional expressions and used these stimuli to investigate both intensity of expression and accuracy of recognizing emotion in chimeric faces constructed from only left- or right-side composites. The participant population included 38 (19 male, 19 female) African-American, Caucasian, and Asian adults. They were presented with chimeric composites generated from faces of eight actors and eight actresses showing four emotions: happiness, sadness, anger, and fear, each in posed and evoked conditions. We replicated the finding that emotions are expressed more intensely in the left hemiface for all emotions and conditions, with the exception of evoked anger, which was expressed more intensely in the right hemiface. In contrast, the results indicated that emotional expressions are recognized more efficiently in the right hemiface, indicating that the right hemiface expresses emotions more accurately. The double dissociation between the laterality of expression intensity and that of recognition efficiency supports the notion that the two kinds of processes may have distinct neural substrates. Evoked anger is uniquely expressed more intensely and accurately on the side of the face that projects to the viewer's right hemisphere, dominant in emotion recognition.

  1. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    NASA Astrophysics Data System (ADS)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  2. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis

    PubMed Central

    Conlin, Laura K.; Thiel, Brian D.; Bonnemann, Carsten G.; Medne, Livija; Ernst, Linda M.; Zackai, Elaine H.; Deardorff, Matthew A.; Krantz, Ian D.; Hakonarson, Hakon; Spinner, Nancy B.

    2010-01-01

    Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1–3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms. PMID:20053666

  3. Recombinant chimeric vaccine composed of PRRSV antigens and truncated Pseudomonas exotoxin A (PE-K13).

    PubMed

    Yang, Hsin-Ping; Wang, Tsan-Chih; Wang, Shiou-Jen; Chen, Shih-Ping; Wu, Eva; Lai, Shao-Qun; Chang, Hsueh-Wei; Liao, Chao-Wei

    2013-10-01

    A Pseudomonas exotoxin (PE-KDEL)-based chimeric subunit vaccine system was recently developed using a reverse vaccinology technique. In this study, the plasmids containing PE-PRRS chimeric subunits were constructed that composed of porcine reproductive and respiratory syndrome virus (PRRSV) antigen moieties, a ligand moiety and a Pseudomonas exotoxin A deleted domain III (PE (ΔIII)), and a carboxyl terminal moiety that includes a polypeptide with amino acid sequence KDEL (K3). The PE-PRRS combination vaccine can effectively induce not only PRRSV-specific INF-γ cellular immunity but also a slow-reacting and complement-requiring type serum neutralizing antibody in pigs. In a specific pathogen free (SPF) pig challenge model, body temperature (colonic temperature), occurrence of PRRSV viremia, nasal excretions, gross and histopathological appearances of pneumonia, and serum antibody activity (IFA and SN) titers significantly differed between the immunized group and the control group. The survey showed that a 0.3mg/dose PE-PRRS vaccine formula conferred protection against PRRSV. A field trial of PE-PRRS vaccine was performed to study the immune response of pregnant sows after vaccination in a PRRSV persist farm. The RT-PCR analysis of viremia and serological titers showed that the PE-PRRS vaccine not only increased sow reproductive performance and evoked its immune response to PRRS viremia, it also activated maternal immune protections to prevent piglets from inflicting viremia. In conclusion, we developed a novel and effective PRRS cytotoxic T-cells (CTLs)-based vaccine containing Pseudomonas exotoxin (PE-KDEL) carrier in combination with PRRSV conserved epitopes against PRRS virus.

  4. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  5. Activation of a Chimeric Rpb5/RpoH Subunit Using Library Selection

    PubMed Central

    Sommer, Bettina; Waege, Ingrid; Pöllmann, David; Seitz, Tobias; Thomm, Michael; Sterner, Reinhard; Hausner, Winfried

    2014-01-01

    Rpb5 is a general subunit of all eukaryotic RNA polymerases which consists of a N-terminal and a C-terminal domain. The corresponding archaeal subunit RpoH contains only the conserved C-terminal domain without any N-terminal extensions. A chimeric construct, termed rp5H, which encodes the N-terminal yeast domain and the C-terminal domain from Pyrococcus furiosus is unable to complement the lethal phenotype of a yeast rpb5 deletion strain (Δrpb5). By applying a random mutagenesis approach we found that the amino acid exchange E197K in the C-terminal domain of the chimeric Rp5H, either alone or with additional exchanges in the N-terminal domain, leads to heterospecific complementation of the growth deficiency of Δrpb5. Moreover, using a recently described genetic system for Pyrococcus we could demonstrate that the corresponding exchange E62K in the archaeal RpoH subunit alone without the eukaryotic N-terminal extension was stable, and growth experiments indicated no obvious impairment in vivo. In vitro transcription experiments with purified RNA polymerases showed an identical activity of the wild type and the mutant Pyrococcus RNA polymerase. A multiple alignment of RpoH sequences demonstrated that E62 is present in only a few archaeal species, whereas the great majority of sequences within archaea and eukarya contain a positively charged amino acid at this position. The crystal structures of the Sulfolobus and yeast RNA polymerases show that the positively charged arginine residues in subunits RpoH and Rpb5 most likely form salt bridges with negatively charged residues from subunit RpoK and Rpb1, respectively. A similar salt bridge might stabilize the interaction of Rp5H-E197K with a neighboring subunit of yeast RNA polymerase and thus lead to complementation of Δrpb5. PMID:24489922

  6. A Small Chimeric Fibronectin Fragment Accelerates Dermal Wound Repair in Diabetic Mice

    PubMed Central

    Hocking, Denise C.; Brennan, James R.; Raeman, Carol H.

    2016-01-01

    Objective: During wound repair, soluble fibronectin is converted into biologically active, insoluble fibrils via a cell-mediated process. This fibrillar, extracellular matrix (ECM) form of fibronectin stimulates cell processes critical to tissue repair. Nonhealing wounds show reduced levels of ECM fibronectin fibrils. The objective of this study was to produce a small, recombinant wound supplement with the biological activity of insoluble fibronectin fibrils. Approach: A chimeric fibronectin fragment was produced by inserting the integrin-binding Arg-Gly-Asp (RGD) loop from the tenth type III repeat of fibronectin (FNIII10) into the analogous site within the heparin-binding, bioactive fragment of the first type III repeat (FNIII1H). FNIII1HRGD was tested for its ability to support cell functions necessary for wound healing, and then evaluated for its capacity to accelerate healing of full-thickness dermal wounds in diabetic mice. Results: In vitro, FNIII1HRGD supported cell adhesion, proliferation, and ECM fibronectin deposition. Application of FNIII1HRGD to dermal wounds of diabetic mice significantly enhanced wound closure compared with controls (73.9% ±4.1% vs. 58.1% ±4.7% closure on day 9, respectively), and significantly increased granulation tissue thickness (2.88 ± 0.75-fold increase over controls on day 14). Innovation: Recombinant proteins designed to functionally mimic the ECM form of fibronectin provide a novel therapeutic approach to circumvent diminished fibronectin fibril formation by delivering ECM fibronectin signals in a soluble form to chronic wounds. Conclusion: A small, chimeric fibronectin protein was developed. FNIII1HRGD demonstrated enhanced bioactivity in vitro and stimulated wound repair in a murine model of chronic wounds. PMID:27867754

  7. [Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].

    PubMed

    Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong

    2016-01-01

    The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.

  8. Chimeric Autofluorescent Proteins as Photophysical Model System for Multicolor Bimolecular Fluorescence Complementation.

    PubMed

    Peter, Sébastien; Oven-Krockhaus, Sven Zur; Veerabagu, Manikandan; Rodado, Virtudes Mira; Berendzen, Kenneth W; Meixner, Alfred J; Harter, Klaus; Schleifenbaum, Frank E

    2017-03-10

    The yellow fluorescent protein (YFP) is frequently used in a protein complementation assay called bimolecular fluorescence complementation (BiFC), and is employed to visualize protein-protein interactions. In this analysis, two different, nonfluorescent fragments of YFP are genetically attached to proteins of interest. Upon interaction of these proteins, the YFP fragments are brought into proximity close enough to reconstitute their original structure, enabling fluorescence. BiFC allows for a straightforward readout of protein-protein interactions and furthermore facilitates their functional investigation by in vivo imaging. Furthermore, it has been observed that the available color range in BiFC can be extended upon complementing fragments of different proteins that are, like YFP, derived from the Aequorea victoria green fluorescent protein, thereby allowing for a multiplexed investigation of protein-protein interactions. Some spectral characteristics of "multicolor" BiFC (mcBiFC) complexes have been reported before; however, no in-depth analysis has been performed yet. Therefore, little is known about the photophysical characteristics of these mcBiFC complexes because a proper characterization essentially relies on in vitro data. This is particularly difficult for fragments of autofluorescent proteins (AFPs) because they show a very strong tendency to form supramolecular aggregates which precipitate ex vivo. In this study, this intrinsic difficulty is overcome by directly fusing the coding DNA of different AFP fragments. Translation of the genetic sequence in Escherichia coli leads to fully functional, highly soluble fluorescent proteins with distinct properties. On the basis of their construction, they are designated chimeric AFPs, or BiFC chimeras, here. Comparison of their spectral characteristics with experimental in vivo BiFC data confirmed the utility of the chimeric proteins as a BiFC model system. In this study, nine different chimeras were thoroughly

  9. Heterologous transmembrane and cytoplasmic domains direct functional chimeric influenza virus hemagglutinins into the endocytic pathway

    PubMed Central

    1986-01-01

    Chimeric genes were created by fusing DNA sequences encoding the ectodomain of the influenza virus hemagglutinin (HA) to DNA coding for the transmembrane and cytoplasmic domains of either the G glycoprotein of vesicular stomatitis virus or the gC glycoprotein of Herpes simplex virus 1. CV-1 cells infected with SV40 vectors carrying the recombinant genes expressed large amounts of the chimeric proteins, HAG or HAgC on their surfaces. Although the ectodomains of HAG and HAgC differed in their immunological properties from that of HA, the chimeras displayed the biological functions characteristic of the wild-type protein. Both HAG and HAgC bound erythrocytes as efficiently as HA did and, after brief exposure to an acidic environment, induced the fusion of erythrocyte and CV-1 cell membranes. However, the behavior of HAG and HAgC at the cell surface differed from that of HA in several important respects. HAG and HAgC were observed to collect in coated pits whereas wild-type HA was excluded from those structures. In the presence of chloroquine, which inhibits the exit of receptors from endosomes, HAG and HAgC accumulated in intracellular vesicles. By contrast, chloroquine had no effect on the location of wild-type HA. HAG and HAgC labeled at the cell surface exhibited a temperature-dependent acquisition of resistance to extracellular protease at a rate similar to the rates of internalization observed for many cell surface receptors. HA acquired resistance to protease at a rate at least 20- fold slower. We conclude that HAG and HAgC are efficiently routed into the endocytic pathway and HA is not. However, like HA, HAG was degraded slowly, raising the possibility that HAG recycles to the plasma membrane. PMID:3007532

  10. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia.

    PubMed

    Rippey, Caitlin; Walsh, Tom; Gulsuner, Suleyman; Brodsky, Matt; Nord, Alex S; Gasperini, Molly; Pierce, Sarah; Spurrell, Cailyn; Coe, Bradley P; Krumm, Niklas; Lee, Ming K; Sebat, Jonathan; McClellan, Jon M; King, Mary-Claire

    2013-10-03

    Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.

  11. Chimeric hepatitis B virus (HBV)/hepatitis C virus (HCV) subviral envelope particles induce efficient anti-HCV antibody production in animals pre-immunized with HBV vaccine.

    PubMed

    Beaumont, Elodie; Roingeard, Philippe

    2015-02-18

    The development of an effective, affordable prophylactic vaccine against hepatitis C virus (HCV) remains a medical priority. The recently described chimeric HBV-HCV subviral envelope particles could potentially be used for this purpose, as they could be produced by industrial procedures adapted from those established for the hepatitis B virus (HBV) vaccine. We show here, in an animal model, that pre-existing immunity acquired through HBV vaccination does not influence the immunogenicity of the HCV E2 protein presented by these chimeric particles. Thus, these chimeric HBV-HCV subviral envelope particles could potentially be used as a booster in individuals previously vaccinated against HBV, to induce protective immunity to HCV.

  12. Recombination, Pairing, and Synapsis of Homologs during Meiosis.

    PubMed

    Zickler, Denise; Kleckner, Nancy

    2015-05-18

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.

  13. Worst case estimation of homology design by convex analysis

    NASA Technical Reports Server (NTRS)

    Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.

    1998-01-01

    The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.

  14. Homological properties of rings of functional-analytic type.

    PubMed Central

    Wodzicki, M

    1990-01-01

    Strong flatness properties are established for a large class of functional-analytic rings including all C*-algebras. This is later used to prove that all those rings satisfy excision in Hochschild and in cyclic homology over almost arbitrary rings of coefficients and that, for stable C*-algebras, the Hochschild and cyclic homology groups defined over an arbitrary coefficient ring k subset C of complex numbers (e.g., k = Z or Q) vanish in all dimensions. PMID:11607088

  15. MRFalign: protein homology detection through alignment of Markov random fields.

    PubMed

    Ma, Jianzhu; Wang, Sheng; Wang, Zhiyong; Xu, Jinbo

    2014-03-01

    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.

  16. Metagenomic gene annotation by a homology-independent approach

    SciTech Connect

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  17. Homologous pairing and the role of pairing centers in meiosis.

    PubMed

    Tsai, Jui-He; McKee, Bruce D

    2011-06-15

    Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.

  18. Homoplasy, homology and the problem of 'sameness' in biology.

    PubMed

    Wake, D B

    1999-01-01

    The reality of evolution requires some concept of 'sameness'. That which evolves changes its state to some degree, however minute or grand, although parts remain 'the same'. Yet homology, our word for sameness, while universal in the sense of being necessarily true, can only ever be partial with respect to features that change. Determining what is equivalent to what among taxa, and from what something has evolved, remain real problems, but the word homology is not helpful in these problematic contexts. Henning saw this clearly when he coined new terms with technical meanings for phylogenetic studies. Analysis in phylogenetic systematics remains contentious and relatively subjective, especially as new information accumulates or as one changes one's mind about characters. This pragmatic decision making should not be called homology assessment. Homology as a concept anticipated evolution. Homology dates to pre-evolutionary times and represents late 18th and early 19th century idealism. Our attempts to recycle words in science leads to difficulty, and we should eschew giving precise modern definitions to terms that originally arose in entirely different contexts. Rather than continue to refine our homology concept we should focus on issues that have high relevance to modern evolutionary biology, in particular homoplasy--derived similarity--whose biological bases require elucidation.

  19. Homologous prominence non-radial eruptions: A case study

    NASA Astrophysics Data System (ADS)

    Duchlev, P.; Koleva, K.; Madjarska, M. S.; Dechev, M.

    2016-10-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the pre-eruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing pre-eruptive precursors such as a brightening and enlarging of the prominence body followed by small surge-like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 h later has an identical morphology, the same angle of propagation with respect to the radial direction, as well as similar kinematic evolution as the previous three eruptions. We find an important feature of the homologous eruptive prominence sequence that is the maximum height increase of each consecutive eruption. The present analysis establishes that all four eruptions observed in Hα are of confined type with the third eruption undergoing a thermal disappearance during its eruptive phase. We suggest that the observation of the same direction of the magnetic flux rope (MFR) ejections can be consider as an additional observational criterion for MFR homology. This observational indication for homologous eruptions is important, especially in the case of events of typical or poorly distinguishable morphology of eruptive solar phenomena.

  20. A Replication-incompetent Rift Valley Fever Vaccine: Chimeric Virus-like Particles Protect Mice and Rats Against Lethal Challenge

    PubMed Central

    Mandell, Robert B.; Koukuntla, Ramesh; Mogler, Laura J. K.; Carzoli, Andrea K.; Freiberg, Alexander N.; Holbrook, Michael R.; Martin, Brian K.; Staplin, William R.; Vahanian, Nicholas N.; Link, Charles J.; Flick, Ramon

    2009-01-01

    Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC, nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate. PMID:19932911

  1. Utility of saliva and hair follicles in donor selection for hematopoietic stem cell transplantation and chimerism monitoring.

    PubMed

    Kaur, Gurvinder; Kumar, Neeraj; Nandakumar, Ramya; Rapthap, Chowphi C; Sharma, Gaurav; Neolia, Shekhar; Kumra, Heena; Mahalwar, Prateek; Garg, Abhinav; Kumar, Sunil; Kaur, Jasmeet; Hakim, Mrinali; Kumar, Lalit; Mehra, Narinder K

    2012-01-01

    Selection of an HLA identical donor is a critical pre-requisite for successful hematopoietic stem cell transplantation (HSCT). Most transplant centers utilize blood as the most common source of DNA for HLA testing. However, obtaining blood through phlebotomy is often challenging in patients with conditions like severe leucopenia or hemophilia, pediatric and elderly patients. We have used a simple in-house protocol and shown that HLA genotypes obtained on DNA extracted from saliva or hair are concordant with blood and hence can be used for selection of donors for HSCT or organ transplantation. Similarly, for post-HSCT chimerism monitoring, non-availability of pre-transplant DNA samples poses a major limitation of reference STR fingerprints. This study shows that DNA obtained post-HSCT from hair follicles can be used to generate pre-transplant patient specific fingerprints while the STR profiles obtained in saliva samples cannot as these display a mixed state of chimerism.

  2. ReX: A suite of computational tools for the design, visualization, and analysis of chimeric protein libraries.

    PubMed

    Huang, Weiliang; Johnston, Wayne A; Boden, Mikael; Gillam, Elizabeth M J

    2016-02-01

    Directed evolution has greatly facilitated protein engineering and provided new insights into protein structure-function relationships. DNA shuffling using restriction enzymes is a particularly simple and cost-effective means of recombinatorial evolution that is well within the capability of most molecular biologists, but tools for the design and analysis of such experiments are limited. Here we introduce a suite of freely available online tools to make the construction and analysis of chimeric libraries readily accessible to the novice. REcut (http://qpmf.rx.umaryland.edu/REcut.html) facilitates the choice of DNA fragmentation strategy, while Xover (http://qpmf.rx.umaryland.edu/Xover.html) analyzes chimeric mutants to reveal recombination patterns and extract quantitative data.

  3. Tissue distribution and radiation dosimetry of astatine-211-labeled chimeric 81C6, an alpha-particle-emitting immunoconjugate.

    PubMed

    Zalutsky, M R; Stabin, M G; Larsen, R H; Bigner, D D

    1997-04-01

    A paired-label study was performed in athymic mice bearing subcutaneous D-54 MG human glioma xenografts to compare the localization of human/mouse anti-tenascin chimeric antibody 81C6 labeled by reaction with N-succinimidyl 3-[211At]astatobenzoate and N-succinimidyl 3-[131I]iodobenzoate. Over the 48-h observation period, the distribution of 211At- and 131I-labeled antibody were quite similar in tumor and normal tissues except stomach. These data were used to calculate human radiation doses for both intravenously and intrathecal administered 211At-labeled chimeric 81C6 using a quality factor of 5 for alpha-emissions.

  4. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  5. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    SciTech Connect

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P. )

    1991-03-19

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with ({sup 3}H)glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Gal{beta}1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked {alpha}1-6 to the asparagine-linked N-acetylglucosamine.

  6. Enhanced Efficacy of an AAV Vector Encoding Chimeric, Highly-Secreted Acid α-glucosidase in Glycogen Storage Disease Type II

    PubMed Central

    Sun, Baodong; Zhang, Haoyue; Benjamin, Daniel K.; Brown, Talmage; Bird, Andrew; Young, Sarah P.; McVie-Wylie, Alison; Chen, Y-T; Koeberl, Dwight D.

    2009-01-01

    Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) is an inherited muscular dystrophy caused by deficiency in the activity of the lysosomal enzyme acid α-glucosidase (GAA). We hypothesized that chimeric GAA containing an alternative signal peptide could increase the secretion of GAA from transduced cells and enhance the receptor-mediated uptake of GAA in striated muscle. The relative secretion of chimeric GAA from transfected 293 cells increased up to 26-fold. Receptor-mediated uptake of secreted, chimeric GAA corrected cultured GSD-II patient cells. High-level hGAA was sustained in the plasma of GSD-II mice for 24 weeks following administration of an AAV2/8 vector encoding chimeric GAA; furthermore, GAA activity was increased and glycogen content was significantly reduced in striated muscle and in the brain. Administration of only 1×1010 vector particles increased GAA activity in the heart and diaphragm for >18 weeks, whereas 3×1010 vector particles increased GAA activity and reduced glycogen content in the heart, diaphragm, and quadriceps. Furthermore, an AAV2/2 vector encoding chimeric GAA produced secreted hGAA for >12 weeks in the majority of treated GSD-II mice. Thus, chimeric, highly secreted GAA enhanced the efficacy of AAV vector-mediated gene therapy in GSD-II mice. PMID:16987711

  7. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors

    PubMed Central

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-01-01

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors. PMID:26934960

  8. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone.

    PubMed

    Li, Zhushi; Yang, Huiqiang; Yang, Jian; Lin, Hua; Wang, Wei; Liu, Lina; Zhao, Yu; Liu, Li; Zeng, Xianwu; Yu, Yongxin; Li, Yuhua

    2014-10-13

    For the purpose of developing a novel dengue vaccine candidate, recombinant plasmids were constructed which contained the full length cDNA clone of Japanese encephalitis (JE) vaccine strain SA14-14-2 with its premembrane (PreM) and envelope (E) genes replaced by the counterparts of dengue virus type 4 (DENV4). By transfecting the in vitro transcription products of the recombinant plasmids into BHK-21 cells, a chimeric virus JEV/DENV4 was successfully recovered. The chimeric virus was identified by complete genome sequencing, Western blot and immunofluorescent staining. Growth characteristics revealed it was well adapted to primary hamster kidney (PHK) cells. Its genetic stability was investigated and only one unintentional mutation in 5'-untranslated region (5'-UTR) was found after 20 passages in PHK cells. Neurotropism, neurovirulence and immunogenicity of the chimeric virus were tested in mice. Besides, the influence of JE vaccine pre-immunization on the neutralizing antibody level induced by the chimeric virus was illuminated. To our knowledge, this is the first chimeric virus incorporating the JE vaccine stain SA14-14-2 and DENV4. It is probably a potential candidate to compose a tetravalent dengue chimeric vaccine.

  9. ChiTaRS-3.1—the enhanced chimeric transcripts and RNA-seq database matched with protein–protein interactions

    PubMed Central

    Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana

    2017-01-01

    Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922 chimeric transcripts along with 11 714 cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the ‘Full Collection’. In addition, for every chimera, we have added a predicted chimeric protein–protein interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922 chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. PMID:27899596

  10. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    PubMed

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  11. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors.

    PubMed

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-03-03

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors.

  12. Monitoring of hematopoietic chimerism after transplantation for pediatric myelodysplastic syndrome: real-time or conventional short tandem repeat PCR in peripheral blood or bone marrow?

    PubMed

    Willasch, Andre M; Kreyenberg, Hermann; Shayegi, Nona; Rettinger, Eva; Meyer, Vida; Zabel, Marion; Lang, Peter; Kremens, Bernhard; Meisel, Roland; Strahm, Brigitte; Rossig, Claudia; Gruhn, Bernd; Klingebiel, Thomas; Niemeyer, Charlotte M; Bader, Peter

    2014-12-01

    Quantitative real-time PCR (qPCR) has been proposed as a highly sensitive method for monitoring hematopoietic chimerism and may serve as a surrogate marker for the detection of minimal residual disease minimal residual disease in myelodysplastic syndrome (MDS), until specific methods of detection become available. Because a systematic comparison of the clinical utility of qPCR with the gold standard short tandem repeat (STR)-PCR has not been reported, we retrospectively measured chimerism by qPCR in 54 children transplanted for MDS in a previous study. Results obtained by STR-PCR in the initial study served as comparison. Because the detection limit of qPCR was sufficiently low to detect an autologous background, we defined the sample as mixed chimera if the proportion of recipient-derived cells exceeded .5%. The true positive rates were 100% versus 80% (qPCR versus STR-PCR, not significant), and mixed chimerism in most cases was detected earlier by qPCR than by STR-PCR (median, 31 days) when chimerism was quantified concurrently in peripheral blood and bone marrow. Both methods revealed a substantial rate of false positives (22.7% versus 13.6%, not significant), indicating the importance of serial testing of chimerism to monitor its progression. Finally, we propose criteria for monitoring chimerism in pediatric MDS with regard to the subtypes, specimens, PCR method, and timing of sampling.

  13. The translocation (6; 9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA

    SciTech Connect

    Von Lindern, M.; Fornerod, M.; Van Baal, S.; Jaegle, M.; De Wit, T.; Buijs, A.; Grosveld, G. )

    1992-04-01

    The translocation (6;9) is associated with a specific subtype of acute myeloid leukemia (AML). Previously, it was found that breakpoints on chromosome 9 are clustered in one of the introns of a large gene named Cain (can). cDNA probes derived from the 3' part of can detect an aberrant, leukemia-specific 5.5-kb transcript in bone marrow cells from t(6;9) AML patients. cDNA cloning of this mRNA revealed that it is a fusion of sequences encoded on chromosome 6 and 3' can. A novel gene on chromosome 6 which was named dek was isolated. In dek the t(6;9) breakpoints also occur in one intron. As a result the dek-can fusion gene, present in t(6;9) AML, encodes an invariable dek-can transcript. Sequence analysis of the dek-can cDNA showed that dek and can are merged without disruption of the original open reading frames and therefore the fusion mRNA encodes a chimeric DEK-CAN protein of 165 kDa. The predicted DEK and CAN proteins have molecular masses of 43 and 220 kDa, respectively. Sequence comparison with the EMBL data base failed to show consistent homology with any known protein sequences. 50 refs., 8 figs.

  14. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA.

    PubMed Central

    von Lindern, M; Fornerod, M; van Baal, S; Jaegle, M; de Wit, T; Buijs, A; Grosveld, G

    1992-01-01

    The translocation (6;9) is associated with a specific subtype of acute myeloid leukemia (AML). Previously, it was found that breakpoints on chromosome 9 are clustered in one of the introns of a large gene named Cain (can). cDNA probes derived from the 3' part of can detect an aberrant, leukemia-specific 5.5-kb transcript in bone marrow cells from t(6;9) AML patients. cDNA cloning of this mRNA revealed that it is a fusion of sequences encoded on chromosome 6 and 3' can. A novel gene on chromosome 6 which was named dek was isolated. In dek the t(6;9) breakpoints also occur in one intron. As a result the dek-can fusion gene, present in t(6;9) AML, encodes an invariable dek-can transcript. Sequence analysis of the dek-can cDNA showed that dek and can are merged without disruption of the original open reading frames and therefore the fusion mRNA encodes a chimeric DEK-CAN protein of 165 kDa. The predicted DEK and CAN proteins have molecular masses of 43 and 220 kDa, respectively. Sequence comparison with the EMBL data base failed to show consistent homology with any known protein sequences. Images PMID:1549122

  15. Effect of IL-2-Bax, a novel interleukin-2-receptor-targeted chimeric protein, on bleomycin lung injury.

    PubMed

    Segel, Michael J; Aqeilan, Rami; Zilka, Keren; Lorberboum-Galski, Haya; Wallach-Dayan, Shulamit B; Conner, Michael W; Christensen, Thomas G; Breuer, Raphael

    2005-10-01

    The role of lymphocytes in the pathogenesis of lung fibrosis is not clear, but the weight of the evidence supports a pro-fibrotic effect for lymphocytes. The high-affinity interleukin-2 receptor (haIL-2R) is expressed on activated, but not quiescent, T lymphocytes. This selective expression of haIL-2R provides the basis for therapeutic strategies that target IL-2R-expressing cells. We hypothesized that elimination of activated lymphocytes by IL-2R-targeted chimeric proteins might ameliorate lung fibrosis. We investigated the effects of IL-2-Bax, a novel apoptosis-inducing IL-2R-targeted chimeric protein, on bleomycin-induced lung injury in mice. Treatment groups included (i) a single intratracheal instillation of bleomycin and twice-daily intraperitoneal injections of IL-2-Bax; (ii) intratracheal bleomycin and intraperitoneal IL-2-PE66(4Glu), an older-generation chimeric protein; (iii) intratracheal bleomycin/intraperitoneal PBS; (iv) intratracheal saline/intraperitoneal PBS. Lung injury was evaluated 14 days after intratracheal instillation by cell count in bronchoalveolar lavage (BAL) fluid, semi-quantitative and quantitative histomorphological measurements and by biochemical analysis of lung hydroxyproline. Bleomycin induced a BAL lymphocytosis that was significantly attenuated by IL-2-Bax and IL-2-PE66(4Glu). However, morphometric parameters and lung hydroxyproline were unaffected by the chimeric proteins. These results show that IL-2-Bax reduces the lymphocytic infiltration of the lungs in response to bleomycin, but this effect is not accompanied by a decrease in lung fibrosis.

  16. Replication and clearance of Venezuelan equine encephalitis virus from the brains of animals vaccinated with chimeric SIN/VEE viruses.

    PubMed

    Paessler, Slobodan; Ni, Haolin; Petrakova, Olga; Fayzulin, Rafik Z; Yun, Nadezhda; Anishchenko, Michael; Weaver, Scott C; Frolov, Ilya

    2006-03-01

    Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.

  17. Preparation and identification of anti-transforming growth factor β1 U1 small nuclear RNA chimeric ribozyme in vitro

    PubMed Central

    Lin, Ju-Sheng; Song, Yu-Hu; Kong, Xin-Juan; Li, Bin; Liu, Nan-Zhi; Wu, Xiao-Li; Jin, You-Xin

    2003-01-01

    AIM: To study the preparation and cleavage activity of anti-transforming growth factor (TGF)β1 U1 small nuclear (sn) RNA chimeric hammerhead ribozymes in vitro. METHODS: TGFβ1 partial gene fragment was cloned into T-vector at the downstream of T7 promoter. 32p-labeled TGFβ1 partial transcripts as target RNA were transcribed in vitro and purified by denaturing polyacrylamide gel electrophoresis (PAGE). Anti-TGFβ1 ribozymes were designed by computer, then synthetic ribozyme fragments were cloned into the U1 ribozyme vector pZeoU1EcoSpe containing U1 snRNA promoter/enhancer and terminator. 32p-labeled U1 snRNA chimeric ribozyme transcripts were gel-purified, incubated with target-RNAs at different conditions and autoradiographed after running denaturing PAGE. RESULTS: Active U1snRNA chimeric ribozyme (U1Rz803) had the best cleavage activity at 50 °C; at 37 °C, it was active, Km = 34.48 nmol/L, Kcat = 0.14 min-1; while the point mutant ribozyme U1Rz803m had no cleavage activity, so these indicated the design of U1Rz803 was correct. CONCLUSION: U1Rz803 prepared in this study possessed the perfect specific catalytic cleavage activity. These results indicate U1 snRNA chimeric ribozyme U1Rz803 may suppress the expression of TGFβ1 in vivo, therefore it may provide a new avenue for the treatment of liver fibrosis in the future. PMID:12632521

  18. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9.

    PubMed

    Holla, Øystein L; Strøm, Thea Bismo; Cameron, Jamie; Berge, Knut Erik; Leren, Trond P

    2010-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the extracellular domain of the low density lipoprotein receptor (LDLR) at the cell surface, and disrupts the normal recycling of the LDLR. However, the exact mechanism by which the LDLR is re-routed for lysosomal degradation remains to be determined. To clarify the role of the cytoplasmic domain of the LDLR for re-routing to the lysosomes, we have studied the ability of PCSK9 to degrade a chimeric receptor which contains the extracellular and transmembrane domains of the LDLR and the cytoplasmic domain of the transferrin receptor. These studies were performed in CHO T-REx cells stably transfected with a plasmid encoding the chimeric receptor and a novel assay was developed to study the effect of PCSK9 on the LDLR in these cells. Localization, function and stability of the chimeric receptor were similar to that of the wild-type LDLR. The addition of purified gain-of-function mutant D374Y-PCSK9 to the culture medium of stably transfected CHO T-REx cells showed that the chimeric receptor was degraded, albeit to a lower extent than the wild-type LDLR. In addition, a mutant LDLR, which has the three lysines in the intracellular domain substituted with arginines, was also degraded by D374Y-PCSK9. Thus, the mechanism for the PCSK9-mediated degradation of the LDLR does not appear to involve an interaction between the endosomal sorting machinery and LDLR-specific motifs in the cytoplasmic domain. Moreover, ubiquitination of lysines in the cytoplasmic domain does not appear to play a critical role in the PCSK9-mediated degradation of the LDLR.

  19. A tailor-made chimeric thiamine diphosphate dependent enzyme for the direct asymmetric synthesis of (S)-benzoins.

    PubMed

    Westphal, Robert; Vogel, Constantin; Schmitz, Carlo; Pleiss, Jürgen; Müller, Michael; Pohl, Martina; Rother, Dörte

    2014-08-25

    Thiamine diphosphate dependent enzymes are well known for catalyzing the asymmetric synthesis of chiral α-hydroxy ketones from simple prochiral substrates. The steric and chemical properties of the enzyme active site define the product spectrum. Enzymes catalyzing the carboligation of aromatic aldehydes to (S)-benzoins have not so far been identified. We were able to close this gap by constructing a chimeric enzyme, which catalyzes the synthesis of various (S)-benzoins with excellent enantiomeric excess (>99%) and very good conversion.

  20. Origin and Ascendancy of a Chimeric Fusion Gene: The β/δ-Globin Gene of Paenungulate Mammals

    PubMed Central

    Opazo, Juan C.; Sloan, Angela M.; Campbell, Kevin L.

    2009-01-01

    The δ-globin gene (HBD) of eutherian mammals exhibits a propensity for recombinational exchange with the closely linked β-globin gene (HBB) and has been independently converted by the HBB gene in multiple lineages. Here we report the presence of a chimeric β/δ fusion gene in the African elephant (Loxodonta africana) that was created by unequal crossing-over between misaligned HBD and HBB paralogs. The recombinant chromosome that harbors the β/δ fusion gene in elephants is structurally similar to the “anti-Lepore” duplication mutant of humans (the reciprocal exchange product of the hemoglobin Lepore deletion mutant). However, the situation in the African elephant is unique in that the chimeric β/δ fusion gene supplanted the parental HBB gene and is therefore solely responsible for synthesizing the β-chain subunits of adult hemoglobin. A phylogenetic survey of β-like globin genes in afrotherian and xenarthran mammals revealed that the origin of the chimeric β/δ fusion gene and the concomitant inactivation of the HBB gene predated the radiation of “Paenungulata,” a clade of afrotherian mammals that includes three orders: Proboscidea (elephants), Sirenia (dugongs and manatees), and Hyracoidea (hyraxes). The reduced fitness of the human Hb Lepore deletion mutant helps to explain why independently derived β/δ fusion genes (which occur on an anti-Lepore chromosome) have been fixed in a number of mammalian lineages, whereas the reciprocal δ/β fusion gene (which occurs on a Lepore chromosome) has yet to be documented in any nonhuman mammal. This illustrates how the evolutionary fates of chimeric fusion genes can be strongly influenced by their recombinational mode of origin. PMID:19332641

  1. Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of Figwort mosaic virus (FMV).

    PubMed

    Ranjan, Rajiv; Patro, Sunita; Kumari, Sangeeta; Kumar, Deepak; Dey, Nrisingha; Maiti, Indu B

    2011-03-10

    Addition of multiple repeats of the FS3 upstream activation sequence (FS3-UAS, -270 to -60) intra-molecularly to the TATA containing core-domain of the FS3 (-151 to +31) promoter resulted in 2-3-folds enhanced promoter activity. The chimeric promoter, FS3-UAS-3X with maximum activity, showed 3.31 times stronger activity in root vascular tissue compared to FS3 promoter and could be used efficiently in translational research.

  2. Minor Antigen Disparities Impede Induction of Long Lasting Chimerism and Tolerance through Bone Marrow Transplantation with Costimulation Blockade

    PubMed Central

    Pree, Ines; Klaus, Christoph; Mahr, Benedikt; Schwaiger, Elisabeth; Nierlich, Patrick; Wrba, Friedrich

    2016-01-01

    Mixed chimerism and tolerance can be successfully induced in rodents through allogeneic bone marrow transplantation (BMT) with costimulation blockade (CB), but varying success rates have been reported with distinct models and protocols. We therefore investigated the impact of minor antigen disparities on the induction of mixed chimerism and tolerance. C57BL/6 (H2b) mice received nonmyeloablative total body irradiation (3 Gy), costimulation blockade (anti-CD40L mAb and CTLA4Ig), and 2 × 107 bone marrow cells (BMC) from either of three donor strains: Balb/c (H2d) (MHC plus multiple minor histocompatibility antigen (mHAg) mismatched), B10.D2 (H2d) or B10.A (H2a) (both MHC mismatched, but mHAg matched). Macrochimerism was followed over time by flow cytometry and tolerance was tested by skin grafting. 20 of 21 recipients of B10.D2 BMC but only 13 of 18 of Balb/c BMC and 13 of 20 of B10.A BMC developed stable long-term multilineage chimerism (p < 0.05 for each donor strain versus B10.D2). Significantly superior donor skin graft survival was observed in successfully established long-term chimeras after mHAg matched BMT compared to mHAg mismatched BMT (p < 0.05). Both minor and major antigen disparities pose a substantial barrier for the induction of chimerism while the maintenance of tolerance after nonmyeloablative BMT and costimulation blockade is negatively influenced by minor antigen disparities.         PMID:27872868

  3. Multiscale analysis of nonlinear systems using computational homology

    SciTech Connect

    Konstantin Mischaikow, Rutgers University /Georgia Institute of Technology, Michael Schatz, Georgia Institute of Technology, William Kalies, Florida Atlantic University, Thomas Wanner,George Mason University

    2010-05-19

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization

  4. Multiscale analysis of nonlinear systems using computational homology

    SciTech Connect

    Konstantin Mischaikow; Michael Schatz; William Kalies; Thomas Wanner

    2010-05-24

    This is a collaborative project between the principal investigators. However, as is to be expected, different PIs have greater focus on different aspects of the project. This report lists these major directions of research which were pursued during the funding period: (1) Computational Homology in Fluids - For the computational homology effort in thermal convection, the focus of the work during the first two years of the funding period included: (1) A clear demonstration that homology can sensitively detect the presence or absence of an important flow symmetry, (2) An investigation of homology as a probe for flow dynamics, and (3) The construction of a new convection apparatus for probing the effects of large-aspect-ratio. (2) Computational Homology in Cardiac Dynamics - We have initiated an effort to test the use of homology in characterizing data from both laboratory experiments and numerical simulations of arrhythmia in the heart. Recently, the use of high speed, high sensitivity digital imaging in conjunction with voltage sensitive fluorescent dyes has enabled researchers to visualize electrical activity on the surface of cardiac tissue, both in vitro and in vivo. (3) Magnetohydrodynamics - A new research direction is to use computational homology to analyze results of large scale simulations of 2D turbulence in the presence of magnetic fields. Such simulations are relevant to the dynamics of black hole accretion disks. The complex flow patterns from simulations exhibit strong qualitative changes as a function of magnetic field strength. Efforts to characterize the pattern changes using Fourier methods and wavelet analysis have been unsuccessful. (4) Granular Flow - two experts in the area of granular media are studying 2D model experiments of earthquake dynamics where the stress fields can be measured; these stress fields from complex patterns of 'force chains' that may be amenable to analysis using computational homology. (5) Microstructure Characterization

  5. Primary homologies of the circumorbital bones of snakes.

    PubMed

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes.

  6. RPA homologs and ssDNA processing during meiotic recombination.

    PubMed

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  7. PDBalert: automatic, recurrent remote homology tracking and protein structure prediction

    PubMed Central

    Agarwal, Vatsal; Remmert, Michael; Biegert, Andreas; Söding, Johannes

    2008-01-01

    Background During the last years, methods for remote homology detection have grown more and more sensitive and reliable. Automatic structure prediction servers relying on these methods can generate useful 3D models even below 20% sequence identity between the protein of interest and the known structure (template). When no homologs can be found in the protein structure database (PDB), the user would need to rerun the same search at regular intervals in order to make timely use of a template once it becomes available. Results PDBalert is a web-based automatic system that sends an email alert as soon as a structure with homology to a protein in the user's watch list is released to the PDB database or appears among the sequences on hold. The mail contains links to the search results and to an automatically generated 3D homology model. The sequence search is performed with the same software as used by the very sensitive and reliable remote homology detection server HHpred, which is based on pairwise comparison of Hidden Markov models. Conclusion PDBalert will accelerate the information flow from the PDB database to all those who can profit from the newly released protein structures for predicting the 3D structure or function of their proteins of interest. PMID:19025670

  8. Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives

    PubMed Central

    Vyas, V. K.; Ukawala, R. D.; Ghate, M.; Chintha, C.

    2012-01-01

    Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery. PMID:23204616

  9. Homology modeling a fast tool for drug discovery: current perspectives.

    PubMed

    Vyas, V K; Ukawala, R D; Ghate, M; Chintha, C

    2012-01-01

    Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.

  10. AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration

    PubMed Central

    Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference between the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behaviour of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2+ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone-formation with this new chimeric silk-BSP protein. PMID:21370930

  11. [The construction of Thermotoga maritima endoglucanase Cel12B fused with CBD and the characterization of chimeric enzyme].

    PubMed

    Li, Xiang-Qian; Shao, Wei-Lan

    2006-10-01

    Thermotoga maritima is strictly anaerobic and extremely thermophilic bacteria. The endoglucanase found in T. maritima showed extremely high thermostability and considerable potential in industrial application. Endoglucanase (Tm) Cel12B is extracellular enzyme. Tm Cel12B did not contain a cellulose-binding domain (CBD)and lacked activity on crystalline cellulose. Tm XynA is composed of catalytic domain (CD) and cellulose-binding domain (CBD). As such, the gene of CBD from Tm XynA was fused at the carboxyl-terminus of Tm Cel12B and recombinant plasmid pET-20b- Cel 12B- CBD was obtained. The recombinant plasmid pET-20b- Cel 12 B- CBD was transformed to E. coli JM109 (DE3), induced by IPTG. The properties of chimeric enzyme were determined. The chimeric enzyme displayed pH activity and stability profiles similar to those of parental enzyme with optimal pH 5.8. The optimal activity of the chimera was observed at 100 degrees C and the enzyme kept 87% of original enzyme activity after incubated at 90 degrees C for 2h. A notable feature on substrate specificity is that the chimeric enzyme has the capacity to hydrolases crystalline cellulose.

  12. Adaptation of Chimeric Retroviruses In Vitro and In Vivo: Isolation of Avian Retroviral Vectors with Extended Host Range

    PubMed Central

    Barsov, Eugene V.; Payne, William S.; Hughes, Stephen H.

    2001-01-01

    We have designed and characterized two new replication-competent avian sarcoma/leukosis virus-based retroviral vectors with amphotropic and ecotropic host ranges. The amphotropic vector RCASBP-M2C(797-8), was obtained by passaging the chimeric retroviral vector RCASBP-M2C(4070A) (6) in chicken embryos. The ecotropic vector, RCASBP(Eco), was created by replacing the env-coding region in the retroviral vector RCASBP(A) with the env region from an ecotropic murine leukemia virus. It replicates efficiently in avian DFJ8 cells that express murine ecotropic receptor. For both vectors, permanent cell lines that produce viral stocks with titers of about 5 × 106 CFU/ml on mammalian cells can be easily established by passaging transfected avian cells. Some chimeric viruses, for example, RCASBP(Eco), replicate efficiently without modifications. For those chimeric viruses that do require modification, adaptation by passage in vitro or in vivo is a general strategy. This strategy has been used to prepare vectors with altered host range and could potentially be used to develop vectors that would be useful for targeted gene delivery. PMID:11333876

  13. DPPC/poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) chimeric nanostructures as potential drug nanocarriers

    NASA Astrophysics Data System (ADS)

    Pippa, Natassa; Kaditi, Eleni; Pispas, Stergios; Demetzos, Costas

    2013-06-01

    In this study, we report on the self assembly behavior and on stability studies of mixed (chimeric) nanosystems consisting of dipalmitoylphosphatidylcholine (DPPC) and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymer in aqueous media and in fetal bovine serum (FBS). A gamut of light scattering techniques and fluorescence spectroscopy were used in order to extract information on the size and morphological characteristics of the nanoassemblies formed, as a function of gradient block copolymer content, as well as temperature. The hydrodynamic radii ( R h) of nanoassemblies decreased in the process of heating up to 50 °C, while the fractal dimension ( d f) values, also increased. Indomethacin was successfully incorporated into these chimeric nanocarriers. Drug release was depended on the components ratio. The present studies show that there are a number of parameters that can be used in order to alter the properties of chimeric nanosystems, and this is advantageous to the development of "smart" nanocarriers for drug delivery.

  14. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    SciTech Connect

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J.

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  15. Adaptation of chimeric retroviruses in vitro and in vivo: isolation of avian retroviral vectors with extended host range.

    PubMed

    Barsov, E V; Payne, W S; Hughes, S H

    2001-06-01

    We have designed and characterized two new replication-competent avian sarcoma/leukosis virus-based retroviral vectors with amphotropic and ecotropic host ranges. The amphotropic vector RCASBP-M2C(797-8), was obtained by passaging the chimeric retroviral vector RCASBP-M2C(4070A) (6) in chicken embryos. The ecotropic vector, RCASBP(Eco), was created by replacing the env-coding region in the retroviral vector RCASBP(A) with the env region from an ecotropic murine leukemia virus. It replicates efficiently in avian DFJ8 cells that express murine ecotropic receptor. For both vectors, permanent cell lines that produce viral stocks with titers of about 5 x 10(6) CFU/ml on mammalian cells can be easily established by passaging transfected avian cells. Some chimeric viruses, for example, RCASBP(Eco), replicate efficiently without modifications. For those chimeric viruses that do require modification, adaptation by passage in vitro or in vivo is a general strategy. This strategy has been used to prepare vectors with altered host range and could potentially be used to develop vectors that would be useful for targeted gene delivery.

  16. Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model

    NASA Astrophysics Data System (ADS)

    Petetin, Hervé; Sciare, Jean; Beekmann, Matthias; Sanchez, Olivier; Rosso, Amandine; Denier van der Gon, Hugo

    2014-05-01

    Ammonium nitrates significantly contribute to the fine particulate matter load, in particular in the Paris agglomeration where two measurement campaigns, PARTICULES and FRANCIPOL, have recently made available a large database on this compound and its gaseous precursors, nitric acid and ammonia. These new observations give the opportunity (for the first time in France) to assess the ammonium nitrate formation regime (in terms of limited species) as well as the ability of the CHIMERE chemistry-transport model to simulate each species and to reproduce in fine the observed regime. Quite satisfactory results are obtained on nitrates, mainly due to a significant contribution of imports from outside the agglomeration. However, significant biases affect both gaseous precursors. Various uncertainty sources are discussed, including those relative to ammonia trafic and agricultural emissions, thermodynamic equilibria or oxidative capacity of the atmosphere. Despite these errors, CHIMERE manages to simulate a HNO3-limited regime, in agreement with observations, at least at the daily scale. This study especially confirms that further work on the OH radical characterization in the CHIMERE model and agricultural ammonia emissions are required to improve the simulation of the ammonium nitrate formation regime.

  17. Identification of breed-specific DNA polymorphisms for a simple and unambiguous screening system in germline chimeric chickens.

    PubMed

    Choi, Jin Won; Lee, Eun Young; Shin, Ji Hye; Zheng, Yinghui; Cho, Byung Wook; Kim, Jin-Kyoo; Kim, Heebal; Han, Jae Yong

    2007-04-01

    In the chicken, Dominant white is one of the major loci affecting feather color. Germline chimeric chickens are identified by testcross analysis using this genetic marker. The testcross, however, is a time-consuming and laborious procedure, resulting in the need for a faster and simpler molecular method. A recent study showed that Dominant white was exclusively associated with a 9-bp insertion in the PMEL17 gene. We searched for breed-specific sequence polymorphisms in the PMEL17 gene among White Leghorn (WL) (white feather), Korean Ogol Chicken (KOC) (black feather), and Barred Plymouth Rock (grayish-white, each feather regularly crossed with parallel blue-black bars). In addition to the 9-bp insertion, WLs and KOCs have unique bases in single nucleotide polymorphisms (SNPs) at the 1,777th and 3,118th bases in the PMEL17 gene. To detect these sequence polymorphisms, allele-specific polymerase chain reaction (AS-PCR) was performed, which successfully distinguished the different breeds. We confirmed the ability of the AS primers to detect germline chimerism. This simple method can be widely used for the screening of germline chimeric chickens.

  18. Chimeric foot-and-mouth disease viruses: evaluation of their efficacy as potential marker vaccines in cattle.

    PubMed

    Fowler, V L; Paton, D J; Rieder, E; Barnett, P V

    2008-04-07

    Previous work in pigs, has demonstrated that full protection against foot-and-mouth disease (FMD) can be achieved following vaccination with chimeric foot-and-mouth disease virus (FMDV) vaccines, in which the VP1 G-H loop had been substituted with that from another serotype. If proven to be effective in other economically important species such as cattle, such vaccine constructs could be trialed as potential marker vaccines. Here, we determine if G-H loop chimera FMDV vaccines can: (i) protect cattle from virus challenge and (ii) induce an antibody response that would enable the identification of infection, regardless of vaccination status. Inactivated, oil adjuvanated, chimeric vaccine constructs, based on the backbone sequence of the A(12)119 serotype virus, fully protected cattle from challenge 21 days post-vaccination. Differentiation assays developed for use in this study were able to identify sub-clinical infection, which in one vaccinated animal, persisted beyond day 32 post-challenge. This paper emphasises the importance of epitopes outside of the VP1 G-H loop for protective immunity in cattle, and demonstrates that chimeric FMDV vaccines could prove to be useful marker vaccines for the future.

  19. Chimeric Protein Template-Induced Shape Control of Bone Mineral Nanoparticles and Its Impact on Mesenchymal Stem Cell Fate

    PubMed Central

    Wang, Yifan; Du, Yinying; Liu, Haoming; Zhu, Ye; Mao, Chuanbin; Zhang, Shengmin

    2016-01-01

    Protein-mediated molecular self-assembly has become a powerful strategy to fabricate biomimetic biomaterials with controlled shapes. Here we designed a novel chimeric molecular template made of two proteins, silk fibroin (SF) and albumin (ALB), which serve as a promoter and an inhibitor for hydroxyapatite (HA) formation, respectively, to synthesize HA nanoparticles with controlled shapes. HA nanospheres were produced by the chimeric ALB-SF template, whereas HA nanorods were generated by the SF template alone. The success in controlling the shape of HA nanoparticles allowed us to further study the effect of the shape of HA nanoparticles on the fate of rat mesenchymal stem cells (MSCs). We found that the nanoparticle shape had a crucial impact on the cellular uptake and HA nanospheres were internalized in MSCs at a faster rate. Both HA nanospheres and nanorods showed no significant influence on cell proliferation and migration. However, HA nanospheres significantly promoted the osteoblastic differentiation of MSCs in comparison to HA nanorods. Our work suggests that a chimeric combination of promoter and inhibitor proteins is a promising approach to tuning the shape of nanoparticles. It also sheds new light into the role of the shape of the HA nanoparticles in directing stem cell fate. PMID:26079683

  20. Detection and quantification of in vitro-culture induced chimerism using simple sequence repeat (SSR) analysis in Theobroma cacao (L.).

    PubMed

    Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J

    2004-12-01

    Mutation rates are often elevated in plants regenerated from in vitro culture, giving rise to so-called 'somaclonal variation'. Detailed characterisation of mutation profiles that arise during culture should improve our understanding of processes influencing mutation and allow the selection of protocols yielding the fewest/least severe changes. Somatic mutations will usually produce genetic chimeras where unchanged alleles are retained by some cells. Such chimeras are difficult to detect but likely to form a significant proportion of any regenerant population. We present a simple protocol that enables the provisional diagnosis of both homogenous and chimeric mutants among large regenerant populations, together with a semi-quantitative means of estimating the proportion of mutant cells. The assay exploits consistent differential amplification of alternate simple sequence repeat alleles at heterozygous loci. Calibration of the relative amplification of alleles from two genotypes-and the synthetic chimeras created from them-revealed a strong linear relationship between 'peak heights' representing alternate alleles following capillary electrophoresis. The assay predicts chimeric composition to a reasonable level of confidence (+/-5%) so long as the infrequent allele exceeds 15% of the template. The system was applied to 233 regenerants of cocoa somatic embryogenesis and identified 72 (31%) putative chimeric mutants for slippage mutation or allele loss across two loci.

  1. An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant.

    PubMed

    Nazarian, Shahram; Mousavi Gargari, Seyed Latif; Rasooli, Iraj; Amani, Jafar; Bagheri, Samane; Alerasool, Masoome

    2012-07-01

    Enteric infections resulting in diarrheal diseases remain as major global health problems. Among bacteria, enterotoxigenic Escherichia coli (ETEC) causes the largest number of diarrheal cases. There is a great interest in developing an effective ETEC vaccine. An ETEC vaccine could focus on virulence factors present in ETEC pathogens and nontoxic Heat-labile B subunit (LTB). Chimeric proteins carrying epitopes, or adjuvant sequences increase the possibility of eliciting a broad cellular or humoral immune response. In-silico tools are highly suited to study, design and evaluate vaccine strategies. Colonization factors are among the virulence factor studied in the present work employing bioinformatic tools. A synthetic chimeric gene, encoding CfaB, CstH, CotA, and LTB was designed. Modeling was done to predict the 3D structure of protein. This model was validated using Ramachandran plot statistics. The predicted B-cell epitopes were mapped on the surface of the model. Validation result showed that 97.2% residues lie in favored or additional allowed region of Ramachandran plot. VaxiJen analysis of the protein showed high antigenicity. Linear and conformational B-cell epitopes were identified. The identified T-cell epitopes are apt to bind MHC molecules. The epitopes in the chimeric protein are likely to induce both the B-cell and T-cell mediated immune responses.

  2. Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus.

    PubMed

    Wu, Rui; Li, Ling; Zhao, Yu; Tu, Jun; Pan, Zishu

    2016-01-04

    Our previous study demonstrated that a chimeric classical swine fever virus (CSFV) vSM/CE2 containing the E2 gene of the vaccine C-strain on the genetic background of the virulent CSFV strain Shimen (vSM) was attenuated in swine but reversed to virulence after serial passages in PK15 cells. To investigate the molecular basis of the pathogenicity, the genome of the 11th passage vSM/CE2 variant (vSM/CE2-p11) was sequenced, and two amino acid mutations, T745I and M979K, within E2 of vSM/CE2-p11 were observed. Based on reverse genetic manipulation of the chimeric cDNA clone pSM/CE2, the mutated viruses vSM/CE2/T745I, vSMCE2/M979K and vSM/CE2/T745I;M979K were rescued. The data from infection of pigs demonstrated that the M979K amino acid substitution was responsible for pathogenicity. Studies in vitro indicated that T745I and M979K increased infectious virus production and replication. Our results indicated that two residues located at sites 745 and 979 within E2 play a key role in determining the replication in vitro and pathogenicity in vivo of chimeric CSFV vSM/CE2.

  3. Effective DNA epitope chimeric vaccines for Alzheimer's disease using a toxin-derived carrier protein as a molecular adjuvant.

    PubMed

    Yu, Yun-Zhou; Wang, Shuang; Bai, Jie-Ying; Zhao, Meng; Chen, Ao; Wang, Wen-Bin; Chang, Qing; Liu, Si; Qiu, Wei-Yi; Pang, Xiao-Bin; Xu, Qing; Sun, Zhi-Wei

    2013-10-01

    Active amyloid-beta (Aβ) immunotherapy is under investigation to prevent or treat Alzheimer disease (AD). We describe here the immunological characterization and protective effect of DNA epitope chimeric vaccines using 6 copies of Aβ1-15 fused with PADRE or toxin-derived carriers. These naked 6Aβ15-T-Hc chimeric DNA vaccines were demonstrated to induce robust anti-Aβ antibodies that could recognize Aβ oligomers and inhibit Aβ oligomer-mediated neurotoxicity, result in the reduction of cerebral Aβ load and Aβ oligomers, and improve cognitive function in AD mice, but d