Sample records for chimeric npm-alk transcript

  1. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming

    PubMed Central

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin; Wang, Hong Y.; Cheng, Mangeng; Baldwin, Donald; Tobias, John W.; Schuster, Stephen J.; Woetmann, Anders; Zhang, Qian; Turner, Suzanne D.; Odum, Niels; Wasik, Mariusz A.

    2013-01-01

    Anaplastic lymphoma kinase (ALK) physiologically expressed only by nervous system cells displays remarkable capacity to transform CD4+ T lymphocytes and other types of non-neural cells. Here we report that activity of nucleophosphmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T-cell lymphomas (ALK+TCL), closely resembles cell activation induced by interleukin 2 (IL-2), the key cytokine supporting growth and survival of normal CD4+ T lymphocytes. Direct comparison of gene expression by ALK+TCL cells treated with an ALK inhibitor and IL-2-dependent ALK-TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene regulation pattern. Depending on the analysis method, up to 67% of the modulated genes could be defined as modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT and IL-2 signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes: CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4 was confirmed at the protein level. In both ALK+TCL and IL-2-stimulated ALK-TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, while transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4+ T lymphocytes, at least in part, by utilizing the pre-existing, IL-2-dependent signaling pathways. PMID:24218456

  2. Detection of normal and chimeric nucleophosmin in human cells.

    PubMed

    Cordell, J L; Pulford, K A; Bigerna, B; Roncador, G; Banham, A; Colombo, E; Pelicci, P G; Mason, D Y; Falini, B

    1999-01-15

    In anaplastic large-cell lymphoma (ALCL), the (2;5) chromosomal translocation creates a fusion gene encoding the 80-kD NPM-ALK hybrid protein. This report describes three new monoclonal antibodies, two of which recognize, by Western blotting, the N-terminal portion of NPM present in the NPM-ALK fusion protein and also in two other NPM fusion proteins (NPM-RARalpha and NPM-MLF1). The third antibody recognizes the C-terminal portion (deleted in NPM-ALK) and reacts only with wild-type NPM. The three antibodies immunostain wild-type NPM (in paraffin-embedded normal tissue samples) in cell nuclei and in the cytoplasm of mitotic cells. Cerebral neurones, exceptionally, show diffuse cytoplasmic labeling. In contrast to normal tissues, the two antibodies against the N-terminal portion of NPM labeled the cytoplasm of neoplastic cells, in four ALK-positive ALCL, reflecting their reactivity with NPM-ALK fusion protein, whereas the antibody to the C-terminal NPM epitope labeled only cell nuclei. Immunocytochemical labeling with these antibodies can therefore confirm that an ALK-positive lymphoma expresses NPM-ALK (rather than a variant ALK-fusion protein) and may also provide evidence for chromosomal anomalies involving the NPM gene other than the classical (2;5) translocation.

  3. Anti-ALK Antibodies in Patients with ALK-Positive Malignancies Not Expressing NPM-ALK

    PubMed Central

    Damm-Welk, Christine; Siddiqi, Faraz; Fischer, Matthias; Hero, Barbara; Narayanan, Vignesh; Camidge, David Ross; Harris, Michael; Burke, Amos; Lehrnbecher, Thomas; Pulford, Karen; Oschlies, Ilske; Siebert, Reiner; Turner, Suzanne; Woessmann, Wilhelm

    2016-01-01

    Patients with Nucleophosmin (NPM)- Anaplastic Lymphoma Kinase (ALK) fusion positive Anaplastic Large Cell Lymphoma produce autoantibodies against ALK indicative of an immune response against epitopes of the chimeric fusion protein. We asked whether ALK-expression in other malignancies induces specific antibodies. Antibodies against ALK were detected in sera of one of 50 analysed ALK-expressing neuroblastoma patients, 13 of 21 ALK positive non-small cell lung carcinoma (NSCLC) patients, 13 of 22 ALK translocation-positive, but NPM-ALK-negative lymphoma patients and one of one ALK-positive rhabdomyosarcoma patient, but not in 20 healthy adults. These data suggest that boosting a pre-existent anti-ALK immune response may be more feasible for patients with ALK-positive NSCLC, lymphomas and rhabdomyosarcomas than for tumours expressing wild-type ALK. PMID:27471553

  4. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas.

    PubMed

    Laimer, Daniela; Dolznig, Helmut; Kollmann, Karoline; Vesely, Paul W; Schlederer, Michaela; Merkel, Olaf; Schiefer, Ana-Iris; Hassler, Melanie R; Heider, Susi; Amenitsch, Lena; Thallinger, Christiane; Staber, Philipp B; Simonitsch-Klupp, Ingrid; Artaker, Matthias; Lagger, Sabine; Turner, Suzanne D; Pileri, Stefano; Piccaluga, Pier Paolo; Valent, Peter; Messana, Katia; Landra, Indira; Weichhart, Thomas; Knapp, Sylvia; Shehata, Medhat; Todaro, Maria; Sexl, Veronika; Höfler, Gerald; Piva, Roberto; Medico, Enzo; Ruggeri, Bruce A; Cheng, Mangeng; Eferl, Robert; Egger, Gerda; Penninger, Josef M; Jaeger, Ulrich; Moriggl, Richard; Inghirami, Giorgio; Kenner, Lukas

    2012-11-01

    Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin's lymphoma found in children and young adults. ALCLs frequently carry a chromosomal translocation that results in expression of the oncoprotein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The key molecular downstream events required for NPM-ALK-triggered lymphoma growth have been only partly unveiled. Here we show that the activator protein 1 family members JUN and JUNB promote lymphoma development and tumor dissemination through transcriptional regulation of platelet-derived growth factor receptor-β (PDGFRB) in a mouse model of NPM-ALK-triggered lymphomagenesis. Therapeutic inhibition of PDGFRB markedly prolonged survival of NPM-ALK transgenic mice and increased the efficacy of an ALK-specific inhibitor in transplanted NPM-ALK tumors. Notably, inhibition of PDGFRA and PDGFRB in a patient with refractory late-stage NPM-ALK(+) ALCL resulted in rapid, complete and sustained remission. Together, our data identify PDGFRB as a previously unknown JUN and JUNB target that could be a highly effective therapy for ALCL.

  5. Alpha-tocopherol attenuates the anti-tumor activity of crizotinib against cells transformed by NPM-ALK

    PubMed Central

    Uchihara, Yuki; Ueda, Fumihito; Tago, Kenji; Nakazawa, Yosuke; Ohe, Tomoyuki; Mashino, Tadahiko; Yokota, Shigenobu; Kasahara, Tadashi; Tamura, Hiroomi

    2017-01-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by harboring the fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The ALK inhibitor, crizotinib specifically induced apoptosis in Ba/F3 cells expressing NPM-ALK by inhibiting the activation of NPM-ALK and its downstream molecule, signal transducer and activator of transcription factor 3 (STAT3). We found that α-tocopherol, a major component of vitamin E, attenuated the effects of crizotinib independently of its anti-oxidant properties. Although α-tocopherol suppressed the inhibitory effects of crizotinib on the signaling axis including NPM-ALK and STAT3, it had no influence on the intake of crizotinib into cells. Crizotinib also directly inhibited the kinase activity of NPM-ALK; however, this inhibitory effect was not altered by the co-treatment with α-tocopherol. Whereas the nuclear localization of NPM-ALK was disappeared by the treatment with crizotinib, the co-treatment with α-tocopherol swept the effect of crizotinib and caused the localization of NPM-ALK in nucleus. The administration of α-tocopherol attenuated the anti-tumor activity of crizotinib against NPM-ALK-provoked tumorigenesis in vivo. Furthermore, the α-tocopherol-induced inhibition of crizotinib-caused apoptosis was also observed in NPM-ALK-positive cells derived from ALCL patients, namely, SUDHL-1 and Ki-JK. Collectively, these results not only revealed the novel mechanism underlying crizotinib-induced apoptosis in NPM-ALK-positive cells, but also suggest that the anti-tumor effects of crizotinib are attenuated when it is taken in combination with vitamin E. PMID:28806414

  6. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma.

    PubMed

    Molavi, Ommoleila; Samadi, Nasser; Wu, Chengsheng; Lavasanifar, Afsaneh; Lai, Raymond

    2016-05-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.

  7. Nucleophosmin regulates the stability and transcriptional activity of p53.

    PubMed

    Colombo, Emanuela; Marine, Jean-Christophe; Danovi, Davide; Falini, Brunangelo; Pelicci, Pier Giuseppe

    2002-07-01

    Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phosphoprotein that continuously shuttles between the nucleus and cytoplasm. It has been proposed to function in ribosomal protein assembly and transport, and also as a molecular chaperone that prevents proteins from aggregating in the crowded environment of the nucleolus. The NPM gene is involved in several tumour-associated chromosome translocations, which have resulted in the formation of fusion proteins that retain the amino terminus of NPM, including NPM ALK, NPM RAR and NPM MLF1 (ref. 6). It is generally thought that the NPM component is not involved in the transforming potential of these fusion proteins, but instead provides a dimerization interface for the oligomerization and the oncogenic conversion of the various NPM partners (ALK, RAR, MLF1). Here we show that NPM interacts directly with the tumour suppressor p53, regulates the increase in stability and transcriptional activation of p53 after different types of stress, and induces p53-dependent premature senescence on overexpression in diploid fibroblasts. These findings indicate that NPM is a crucial regulator of p53 and suggest that alterations of the NPM function by NPM fusion proteins might lead to deregulation of p53 in tumours.

  8. Pyrimidine tract-binding protein 1 mediates pyruvate kinase M2-dependent phosphorylation of signal transducer and activator of transcription 3 and oncogenesis in anaplastic large cell lymphoma.

    PubMed

    Hwang, Steven R; Murga-Zamalloa, Carlos; Brown, Noah; Basappa, Johnvesly; McDonnell, Scott Rp; Mendoza-Reinoso, Veronica; Basrur, Venkatesha; Wilcox, Ryan; Elenitoba-Johnson, Kojo; Lim, Megan S

    2017-08-01

    PKM2 (pyruvate kinase M2), a critical regulator of glycolysis, is phosphorylated by numerous growth factor receptors and oncogenic tyrosine kinases including NPM-ALK which is expressed in a subset of aggressive T-cell non-Hodgkin lymphomas known as anaplastic large cell lymphoma, ALK-positive. Our previous work demonstrated that phosphorylation of Y105-PKM2 by NPM-ALK regulates a major metabolic shift to promote lymphomagenesis. In addition to its role in metabolism, recent studies have shown that PKM2 promotes oncogenesis by phosphorylating nuclear STAT3 (signal transducer and activator of transcription 3) and regulating transcription of genes involved in cell survival and proliferation. We hypothesized that identification of novel PKM2 interactors could provide additional insights into its expanding functional role in cancer. To this end, immunocomplexes of FLAG-tagged PKM2 were isolated from NPM-ALK-positive ALCL (anaplastic large cell lymphoma) cells and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) which led to the identification of polypyrimidine tract-binding protein (PTBP1) as a novel interactor of PKM2. The interaction between PTBP1 and PKM2 was restricted to the nucleus and was dependent on NPM-ALK mediated Y105 phosphorylation of PKM2. Stable shRNA-mediated silencing of PTBP1 resulted in a marked decrease in pY105-PKM2 and pY705-STAT3 which led to decreased ALCL cell proliferation and colony formation. Overall, our data demonstrate that PTBP1 interacts with PKM2 and promotes ALCL oncogenesis by facilitating PKM2-dependent activation of STAT3 within the nucleus.

  9. Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling.

    PubMed

    Hassler, Melanie R; Pulverer, Walter; Lakshminarasimhan, Ranjani; Redl, Elisa; Hacker, Julia; Garland, Gavin D; Merkel, Olaf; Schiefer, Ana-Iris; Simonitsch-Klupp, Ingrid; Kenner, Lukas; Weisenberger, Daniel J; Weinhaeusel, Andreas; Turner, Suzanne D; Egger, Gerda

    2016-10-04

    Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK-) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK- ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Inflammatory myofibroblastic tumors of the lung carrying a chimeric A2M-ALK gene: report of 2 infantile cases and review of the differential diagnosis of infantile pulmonary lesions.

    PubMed

    Tanaka, Mio; Kohashi, Kenichi; Kushitani, Kei; Yoshida, Misa; Kurihara, Sho; Kawashima, Masumi; Ueda, Yuka; Souzaki, Ryota; Kinoshita, Yoshiaki; Oda, Yoshinao; Takeshima, Yukio; Hiyama, Eiso; Taguchi, Tomoaki; Tanaka, Yukichi

    2017-08-01

    We report 2 infantile cases of pulmonary tumor carrying a chimeric A2M-ALK gene. A2M-ALK is a newly identified anaplastic lymphoma kinase (ALK)-related chimeric gene from a tumor diagnosed as fetal lung interstitial tumor (FLIT). FLIT is a recently recognized infantile pulmonary lesion defined as a mass-like lesion that morphologically resembles the fetal lung. Grossly, FLIT characteristically appears as a well-circumscribed spongy mass, whereas the tumors in these patients were solid and firm. Histologically, the tumors showed intrapulmonary lesions composed of densely proliferating polygonal or spindle-shaped mesenchymal cells with diffuse and dense infiltrations of inflammatory cells forming microcystic or micropapillary structures lined by thyroid transcription factor 1-positive pneumocytes, favoring inflammatory myofibroblastic tumor rather than FLIT. The proliferating cells were immunoreactive for ALK, and A2M-ALK was identified in both tumors with reverse-transcription polymerase chain reaction. The dense infiltration of inflammatory cells, immunoreactivity for ALK, and identification of an ALK-related chimeric gene suggested a diagnosis of inflammatory myofibroblastic tumor. Histologically, most reported FLITs show sparse inflammatory infiltrates and a relatively low density of interstitial cells in the septa, although prominent infiltration of inflammatory cells and high cellularity of interstitial cells are seen in some FLITs. The present cases suggest that ALK rearrangements, including the chimeric A2M-ALK gene, may be present in these infantile pulmonary lesions, especially those with inflammatory cell infiltration. We propose that these infantile pulmonary lesions containing a chimeric A2M-ALK gene be categorized as a specific type of inflammatory myofibroblastic tumor that develops exclusively in neonates and infants. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Truncated ALK derived from chromosomal translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K.

    PubMed

    Polgar, Doris; Leisser, Christina; Maier, Susanne; Strasser, Stephan; Rüger, Beate; Dettke, Markus; Khorchide, Maya; Simonitsch, Ingrid; Cerni, Christa; Krupitza, Georg

    2005-02-15

    The chromosomal translocation t(2;5)(p23;q35) is associated with "Anaplastic large cell lymphomas" (ALCL), a Non Hodgkin Lymphoma occurring in childhood. The fusion of the tyrosine kinase gene-ALK (anaplastic lymphoma kinase) on chromosome 2p23 to the NPM (nucleophosmin/B23) gene on chromosome 5q35 results in a 80 kDa chimeric protein, which activates the "survival" kinase PI3K. However, the binding mechanism between truncated ALK and PI3K is poorly understood. Therefore, we attempted to elucidate the molecular interaction between ALK and the regulatory p85 subunit of PI3K. Here we provide evidence that the truncated ALK homodimer binds to the SH3 domain of p85. This finding may be useful for the development of a new target-specific intervention.

  12. Epigenetic Silencing of the Proapoptotic Gene BIM in Anaplastic Large Cell Lymphoma through an MeCP2/SIN3a Deacetylating Complex12

    PubMed Central

    Piazza, Rocco; Magistroni, Vera; Mogavero, Angela; Andreoni, Federica; Ambrogio, Chiara; Chiarle, Roberto; Mologni, Luca; Bachmann, Petra S; Lock, Richard B; Collini, Paola; Pelosi, Giuseppe; Gambacorti-Passerini, Carlo

    2013-01-01

    BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the BIM locus in NPM/ALK+ anaplastic large cell lymphoma (ALCL) cell lines and in lymph node biopsies from NPM/ALK+ ALCL patients. We show that BIM is epigenetically silenced in cell lines and lymph node specimens and that treatment with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression, and induces cell death. BIM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase 1/2 (HDAC1/2) corepressor complex. This event requires BIM CpG methylation/demethylation with 5-azacytidine that leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore BIM locus reacetylation; however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation at the BIM locus. This study demonstrates that BIM is epigenetically silenced in NPM/ALK-positive cells through recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain BIM epigenetic silencing but is able to act as an inducer of BIM methylation. PMID:23633923

  13. The germacranolide sesquiterpene lactone neurolenin B of the medicinal plant Neurolaena lobata (L.) R.Br. ex Cass inhibits NPM/ALK-driven cell expansion and NF-κB-driven tumour intravasation.

    PubMed

    Unger, Christine; Kiss, Izabella; Vasas, Andrea; Lajter, Ildikó; Kramer, Nina; Atanasov, Atanas Georgiev; Nguyen, Chi Huu; Chatuphonprasert, Waranya; Brenner, Stefan; Krieger, Sigurd; McKinnon, Ruxandra; Peschel, Andrea; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-08-15

    The t(2;5)(p23;q35) chromosomal translocation results in the expression of the fusion protein NPM/ALK that when expressed in T-lymphocytes gives rise to anaplastic large cell lymphomas (ALCL). In search of new therapy options the dichloromethane extract of the ethnomedicinal plant Neurolaena lobata (L.) R.Br. ex Cass was shown to inhibit NPM/ALK expression. Therefore, we analysed whether the active principles that were recently isolated and found to inhibit inflammatory responses specifically inhibit growth of NPM/ALK+ ALCL, leukaemia and breast cancer cells, but not of normal cells, and the intravasation through the lymphendothelial barrier. ALCL, leukaemia and breast cancer cells, and normal peripheral blood mononuclear cells (PBMCs) were treated with isolated sesquiterpene lactones and analysed for cell cycle progression, proliferation, mitochondrial activity, apoptosis, protein and mRNA expression, NF-κB and cytochrome P450 activity, 12(S)-HETE production and lymphendothelial intravasation. In vitro treatment of ALCL by neurolenin B suppressed NPM/ALK, JunB and PDGF-Rβ expression, inhibited the growth of ALCL cells late in M phase, and induced apoptosis via caspase 3 without compromising mitochondrial activity (as a measure of general exogenic toxicity). Moreover, neurolenin B attenuated tumour spheroid intravasation probably through inhibition of NF-κB and CYP1A1. Neurolenin B specifically decreased pro-carcinogenic NPM/ALK expression in ALK+ ALCL cells and, via the inhibition of NF-kB signalling, attenuated tumour intra/extravasation into the lymphatics. Hence, neurolenin B may open new options to treat ALCL and to manage early metastatic processes to which no other therapies exist. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias.

    PubMed

    Falini, Brunangelo; Nicoletti, Ildo; Bolli, Niccolò; Martelli, Maria Paola; Liso, Arcangelo; Gorello, Paolo; Mandelli, Franco; Mecucci, Cristina; Martelli, Massimo Fabrizio

    2007-04-01

    Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phoshoprotein which shuttles continuously between the nucleus and cytoplasm. Many findings have revealed a complex scenario of NPM functions and interactions, pointing to proliferative and growth-suppressive roles of this molecule. The gene NPM1 that encodes for nucleophosmin (NPM1) is translocated or mutated in various lymphomas and leukemias, forming fusion proteins (NPM-ALK, NPM-RARalpha, NPM-MLF1) or NPM mutant products. Here, we review the structure and functions of NPM, as well as the biological, clinical and pathological features of human hematologic malignancies with NPM1 gene alterations. NPM-ALK indentifies a new category of T/Null lymphomas with distinctive molecular and clinico-pathological features, that is going to be included as a novel disease entity (ALK+ anaplastic large cell lymphoma) in the new WHO classification of lymphoid neoplasms. NPM1 mutations occur specifically in about 30% of adult de novo AML and cause aberrant cytoplasmic expression of NPM (hence the term NPMc+ AML). NPMc+ AML associates with normal karyotpe, and shows wide morphological spectrum, multilineage involvement, a unique gene expression signature, a high frequency of FLT3-internal tandem duplications, and distinctive clinical and prognostic features. The availability of specific antibodies and molecular techniques for the detection of NPM1 gene alterations has an enormous impact in the biological study diagnosis, prognostic stratification, and monitoring of minimal residual disease of various lymphomas and leukemias. The discovery of NPM1 gene alterations also represents the rationale basis for development of molecular targeted drugs.

  15. MNDA binds NPM/B23 and the NPM-MLF1 chimera generated by the t(3;5) associated with myelodysplastic syndrome and acute myeloid leukemia.

    PubMed

    Xie, J; Briggs, J A; Morris, S W; Olson, M O; Kinney, M C; Briggs, R C

    1997-10-01

    The myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein expressed specifically in developing cells of the human myelomonocytic lineage, including the end-stage monocytes/macrophages and granulocytes. Nuclear localization, lineage- and stage-specific expression, association with chromatin, and regulation by interferon alpha indicate that this protein is involved in regulating gene expression uniquely associated with the differentiation process and/or function of the monocyte/macrophage. MNDA does not bind specific DNA sequences, but rather a set of nuclear proteins that includes nucleolin (C23). Both in vitro binding assays and co-immunoprecipitation were used to demonstrate that MNDA also binds protein B23 (nucleophosmin/NPM). Three reciprocal chromosome translocations found in certain cases of leukemia/lymphoma involve fusions with the NPM/B23 gene, t(5;17) NPM-RARalpha, t(2;5) NPM-ALK, and the t(3;5) NPM-MLF1. In the current study, MNDA was not able to bind the NPM-ALK chimera originating from the t(2;5) and containing residues 1-117 of NPM. However, MNDA did bind the NPM-MLF1 product of the t(3;5) that contains the N-terminal 175 residues of NPM. The additional 58 amino acids (amino acids 117-175) of the NPM sequence that are contained in the product of the NPM-MLF1 fusion gene relative to the product of the NPM-ALK fusion appear responsible for MNDA binding. This additional NPM sequence contains a nuclear localization signal and clusters of acidic residues believed to bind nuclear localization signals of other proteins. Whereas NPM and nucleolin are primarily localized within the nucleolus, MNDA is distributed throughout the nucleus including the nucleolus, suggesting that additional interactions define overall MNDA localization.

  16. Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single ‘hit’ and cooperate in producing a mastocytosis-like disease in mice

    PubMed Central

    Merz, Hartmut; Kaehler, Christian; Hoefig, Kai P.; Branke, Biggi; Uckert, Wolfgang; Nadrowitz, Roger; Sabine-Cerny-Reiterer; Herrmann, Harald; Feller, Alfred C.; Valent, Peter

    2010-01-01

    Mast cell neoplasms are characterized by abnormal growth and focal accumulation of mast cells (MC) in one or more organs. Although several cytokines, including stem cell factor (SCF) and interleukin-9 (IL-9) have been implicated in growth of normal MC, little is known about pro-oncogenic molecules and conditions triggering differentiation and growth of MC far enough to lead to the histopathological picture of overt mastocytosis. The anaplastic lymphoma kinase (ALK) has recently been implicated in growth of neoplastic cells in malignant lymphomas. Here, we describe that transplantation of NPM-ALK-transplanted mouse bone marrow progenitors into lethally irradiated IL-9 transgenic mice not only results in lymphoma-formation, but also in the development of a neoplastic disease exhibiting histopathological features of systemic mastocytosis, including multifocal dense MC-infiltrates, occasionally with devastating growth in visceral organs. Transplantation of NPM-ALK-transduced progenitors into normal mice or maintaintence of IL-9-transgenic mice without NPM-ALK each resulted in MC hyperplasia, but not in mastocytosis. Neoplastic MC in mice not only displayed IL-9, but also the IL-9 receptor, and the same was found to hold true for human neoplastic MC. Together, our data show that neoplastic MC express IL-9 rececptors, that IL-9 and NPM-ALK upregulate MC-production in vivo, and that both ‘hits’ act in concert to induce a mastocytosis-like disease in mice. These data may have pathogenetic and clinical implications and fit well with the observation that neoplastic MC in advanced SM strongly express NPM and multiple “lymphoid” antigens including CD25 and CD30. PMID:21297223

  17. Nucleophosmin: a versatile molecule associated with hematological malignancies.

    PubMed

    Naoe, Tomoki; Suzuki, Tatsuya; Kiyoi, Hitoshi; Urano, Takeshi

    2006-10-01

    Nucleophosmin (NPM) is a nucleolar phosphoprotein that plays multiple roles in ribosome assembly and transport, cytoplasmic-nuclear trafficking, centrosome duplication and regulation of p53. In hematological malignancies, the NPM1 gene is frequently involved in chromosomal translocation, mutation and deletion. The NPM1 gene on 5q35 is translocated with the anaplastic lymphoma kinase (ALK) gene in anaplastic large cell lymphoma with t(2;5). The MLF1 and RARA genes are fused with NPM1 in myelodysplastic syndrome and acute myeloid leukemia (AML) with t(3;5) and acute promyelocytic leukemia with t(5;17), respectively. In each fused protein, the N-terminal NPM portion is associated with oligomerization of a partner protein leading to altered signal transduction or transcription. Recently, mutations of exon 12 have been found in a significant proportion of de novo AML, especially in those with a normal karyotype. Mutant NPM is localized aberrantly in the cytoplasm, but the molecular mechanisms for leukemia remain to be studied. Studies of knock-out mice have revealed new aspects regarding NPM1 as a tumor-suppressor gene. This review focuses on the clinical significance of the NPM1 gene in hematological malignancies and newly discovered roles of NPM associated with oncogenesis.

  18. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1.

    PubMed

    Yoneda-Kato, N; Look, A T; Kirstein, M N; Valentine, M B; Raimondi, S C; Cohen, K J; Carroll, A J; Morris, S W

    1996-01-18

    A t(3;5)(q25.1;q34) chromosomal translocation associated with myelodysplastic syndrome and acute myeloid leukemia (AML) was found to rearrange part of the nucleophosmin (NPM) gene on chromosome 5 with sequences from a novel gene on chromosome 3. Chimeric transcripts expressed by these cells contain 5' NPM coding sequences fused in-frame to those of the new gene, which we named myelodysplasia/myeloid leukemia factor 1 (MLF1). RNA-based polymerase chain reaction analysis revealed identical NPM-MLF1 mRNA fusions in each of the three t(3;5)-positive cases of AML examined. The predicted MLF1 amino acid sequence lacked homology to previously characterized proteins and did not contain known functional motifs. Normal MLF1 transcripts were expressed in a variety of tissues, most abundantly in testis, ovary, skeletal muscle, heart, kidney and colon. Anti-MLF1 antibodies detected the wild-type 31 kDa protein in K562 and HEL erythroleukemia cell lines, but not in HL-60, U937 or KG-1 myeloid leukemia lines. By contrast, t(3;5)-positive leukemia cells expressed a 54 kDa NPM-MLF1 protein, but not normal MLF1. Immunostaining experiments indicated that MLF1 is normally located in the cytoplasm, whereas NPM-MLF1 is targeted to the nucleus, with highest levels in the nucleolus. The nuclear/nucleolar localization of NPM-MLF1 mirrors that of NPM, indicating that NPM trafficking signals direct MLF1 to an inappropriate cellular compartment in myeloid leukemia cells.

  19. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK

    PubMed Central

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases. PMID:25727400

  20. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK.

    PubMed

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-07-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  1. The dichloromethane extract of the ethnomedicinal plant Neurolaena lobata inhibits NPM/ALK expression which is causal for anaplastic large cell lymphomagenesis.

    PubMed

    Unger, Christine; Popescu, Ruxandra; Giessrigl, Benedikt; Laimer, Daniela; Heider, Susanne; Seelinger, Mareike; Diaz, Rene; Wallnöfer, Bruno; Egger, Gerda; Hassler, Melanie; Knöfler, Martin; Saleh, Leila; Sahin, Emine; Grusch, Michael; Fritzer-Szekeres, Monika; Dolznig, Helmut; Frisch, Richard; Kenner, Lukas; Kopp, Brigitte; Krupitza, Georg

    2013-01-01

    The present study investigates extracts of Neuolaena lobata, an anti-protozoan ethnomedicinal plant of the Maya, regarding its anti-neoplastic properties. Firstly, extracts of increasing polarity were tested in HL-60 cells analyzing inhibition of cell proliferation and apoptosis induction. Secondly, the most active extract was further tested in anaplastic large cell lymphoma (ALCL) cell lines of human and mouse origin. The dichloromethane extract inhibited proliferation of HL-60, human and mouse ALCL cells with an IC50 of ~2.5, 3.7 and 2.4 µg/ml, respectively and arrested cells in the G2/M phase. The extract induced the checkpoint kinases Chk1 and Chk2 and perturbed the orchestrated expression of the Cdc25 family of cell cycle phosphatases which was paralleled by the activation of p53, p21 and downregulation of c-Myc. Importantly, the expression of NPM/ALK and its effector JunB were drastically decreased, which correlated with the activation of caspase 3. Subsequently also platelet derived growth factor receptor β was downregulated, which was recently shown to be transcriptionally controlled by JunB synergizing with ALK in ALCL development. We show that a traditional healing plant extract downregulates various oncogenes, induces tumor suppressors, inhibits cell proliferation and triggers apoptosis of malignant cells. The discovery of the 'Active Principle(s)' is warranted.

  2. cDNA cloning, expression pattern, and chromosomal localization of Mlf1, murine homologue of a gene involved in myelodysplasia and acute myeloid leukemia.

    PubMed

    Hitzler, J K; Witte, D P; Jenkins, N A; Copeland, N G; Gilbert, D J; Naeve, C W; Look, A T; Morris, S W

    1999-07-01

    The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARalpha). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues.

  3. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation.

    PubMed

    Kiss, Izabella; Unger, Christine; Huu, Chi Nguyen; Atanasov, Atanas Georgiev; Kramer, Nina; Chatruphonprasert, Waranya; Brenner, Stefan; McKinnon, Ruxandra; Peschel, Andrea; Vasas, Andrea; Lajter, Ildiko; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-01-28

    An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rβ, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this early step of metastatic progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Apoptosis induced by the myelodysplastic syndrome-associated NPM-MLF1 chimeric protein.

    PubMed

    Yoneda-Kato, N; Fukuhara, S; Kato, J

    1999-06-24

    The NPM-MLF1 chimeric protein is produced by the t(3;5)(q25.1;q34) chromosomal translocation, which is associated with myelodysplastic syndrome (MDS) prior to progression into acute myeloid leukemia (AML). Here we report that K562 human leukemia cells ectopically expressing NPM-MLF1, but not those with wild-type MLF1, were gradually eliminated from the culture by undergoing apoptosis. NIH3T3 mouse fibroblasts engineered to overexpress NPM-MLF1 grew normally but serum deprivation triggered apoptotic cell death with slower kinetics than did other well-known apoptotic inducers such as c-Myc or E2F-1. Quantitative analysis of apoptotic induction confirmed that, neither NPM nor MLF1, but the NPM-MLF1 fusion protein was able to induce apoptosis. Analyses using a variety of deletion mutants of NPM-MLF1 revealed that induction of apoptosis required the N-terminal domain of MLF1 and the NPM domain containing nuclear localization signal and that removal of the NPM dimerization domain markedly impaired the ability to induce apoptosis. Co-expression of Bcl-2 rescued NIH3T3 fibroblasts from NPM-MLF1-mediated cell death without affecting the expression level or the subcellular localization of NPM-MLF1 and enabled cells to progress into S phase in low serum. These findings provide an NPM-MLF1-mediated novel mechanism of apoptotic induction and imply that NPM-MLFI in collaboration with anti-apoptotic oncoproteins may play an important role in multi-step progression from MDS to AML.

  5. cDNA Cloning, Expression Pattern, and Chromosomal Localization of Mlf1, Murine Homologue of a Gene Involved in Myelodysplasia and Acute Myeloid Leukemia

    PubMed Central

    Hitzler, Johann K.; Witte, David P.; Jenkins, Nancy A.; Copeland, Neal G.; Gilbert, Debra J.; Naeve, Clayton W.; Look, A. Thomas; Morris, Stephan W.

    1999-01-01

    The NPM-MLF1 fusion protein is expressed in blasts from patients with myelodysplasia/acute myeloid leukemia (MDS/AML) containing the t(3;5) chromosomal rearrangement. Nucleophosmin (NPM), a previously characterized nucleolar phosphoprotein, contributes to two other fusion proteins found in lympho-hematopoietic malignancies, anaplastic large cell lymphoma (NPM-ALK) and acute promyelocytic leukemia (NPM-RARα). By contrast, the function of the carboxy-terminal fusion partner, myelodysplasia/myeloid leukemia factor 1 (MLF1), is unknown. To aid in understanding normal MLF1 function, we isolated the murine cDNA, determined the chromosomal localization of Mlf1, and defined its tissue expression by in situ hybridization. Mlf1 was highly similar to its human homologue (86% and 84% identical nucleotide and amino acid sequence, respectively) and mapped to the central region of chromosome 3, within a segment lacking known mouse mutations. Mlf1 tissue distribution was restricted during both development and postnatal life, with high levels present only in skeletal, cardiac, and selected smooth muscle, gonadal tissues, and rare epithelial tissues including the nasal mucosa and the ependyma/choroid plexus in the brain. Mlf1 transcripts were undetectable in the lympho-hematopoietic organs of both the embryonic and adult mouse, suggesting that NPM-MLF1 contributes to the genesis of MDS/AML in part by enforcing the ectopic overexpression of MLF1 within hematopoietic tissues. PMID:10393836

  6. Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors.

    PubMed

    Liu, Zhiqing; Yue, Xihua; Song, Zilan; Peng, Xia; Guo, Junfeng; Ji, Yinchun; Cheng, Zhen; Ding, Jian; Ai, Jing; Geng, Meiyu; Zhang, Ao

    2014-10-30

    A series of new 2,4-diarylaminopyrimidine analogues (DAAPalogues) was developed by incorporation of a substituted 2-aminothiazole component as the C-2 substituent of the center pyrimidine core. Compound 5i showed highest potency of 12.4 nM against ALK and 24.1 nM against ALK gatekeeper mutation L1196M. Although only having moderate cellular potency in the SUP-M2 cells harboring NPM-ALK, compound 5i showed good kinase selectivity and dose-dependently inhibited phosphorylation of ALK and its down-stream signaling pathways. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. ALK‐rearrangement in non‐small‐cell lung cancer (NSCLC)

    PubMed Central

    Du, Xue; Shao, Yun; Qin, Hai‐Feng

    2018-01-01

    The ALK gene encodes a transmembrane tyrosine kinase receptor. ALK is physiologically expressed in the nervous system during embryogenesis, but its expression decreases postnatally. ALK first emerged in the field of oncology in 1994 when it was identified to fuse to NPM1 in anaplastic large‐cell lymphoma. Since then, ALK has been associated with other types of cancers, including non‐small‐cell lung cancer (NSCLC). More than 19 different ALK fusion partners have been discovered in NSCLC, including EML4, KIF5B, KLC1, and TPR. Most of these ALK fusions in NSCLC patients respond well to the ALK inhibitor, crizotinib. In this paper, we reviewed fusion partner genes with ALK, detection methods for ALK‐rearrangement (ALK‐R), and the ALK‐tyrosine kinase inhibitor, crizotinib, used in NSCLC patients. PMID:29488330

  8. Translocation (3;5)(q21;q34) in erythroleukemia: a molecular and in situ hybridization study.

    PubMed

    Kwong, Y L

    1998-05-01

    Translocation (3;5) is an uncommon karyotypic aberration in acute myeloid leukemia (AML). With the exception of M3, t(3;5) has been reported in every other subtype of AML, being most frequently associated with AML M6. Although a variety of breakpoints have been described, it has been suggested that the breakpoints in t(3;5) of all the reported cases should be assigned to 3q25.1 and 5q34. Recently, the breakpoints in three pediatric cases of AML M2 with t(3;5) were cloned and shown to involve the myelodysplasia/myeloid leukemia factor I (MLF1) gene on 3q25.1 and the nucleophosmin (NPM) gene on 5q34, generating a chimeric NPM/MLF1 transcript. An adult case of indolent erythroleukemia was found on karyotypic analysis to have t(3;5)(q21;q34). In about 60% of cells, the translocation was unbalanced, resulting in loss of the der(3) chromosome, implying that the critical leukemogenic sequence might reside on the der(5) chromosome. Molecular analysis of this case, however, failed to show rearrangement of the NPM gene and an MLF1/NPM transcript. A review of other reported cases of AML M6 with t(3;5) showed that the commonest breakpoint on chromosome 3 was also assigned to 3q21, as in our case. The considerable clinical, pathologic, cytogenetic and molecular differences observed in AML with t(3;5) suggest that these cases might be heterogeneous.

  9. NPM and BRG1 mediate transcriptional resistance to retinoic acid in Acute Promyelocytic Leukemia

    PubMed Central

    Nichol, Jessica N.; Galbraith, Matthew D.; Kleinman, Claudia L.; Espinosa, Joaquín M.; Miller, Wilson H.

    2016-01-01

    Summary Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA) sensitive Acute Promyelocytic Leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction between PML/RARA, Nucleophosmin (NPM) and Topoisomerase II Beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA-differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML) therefore, our model may be applicable to other more common leukemias driven by NPM. PMID:26997274

  10. Mutations in the Nucleolar Phosphoprotein, Nucleophosmin, Promote the Expression of the Oncogenic Transcription Factor MEF/ELF4 in Leukemia Cells and Potentiates Transformation*

    PubMed Central

    Ando, Koji; Tsushima, Hideki; Matsuo, Emi; Horio, Kensuke; Tominaga-Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Iwanaga, Masako; Itonaga, Hidehiro; Yoshida, Shinichiro; Hata, Tomoko; Moriuchi, Ryozo; Kiyoi, Hitoshi; Nimer, Stephen; Mano, Hiroyuki; Naoe, Tomoki; Tomonaga, Masao; Miyazaki, Yasushi

    2013-01-01

    Myeloid ELF1-like factor (MEF/ELF4), a member of the ETS transcription factors, can function as an oncogene in murine cancer models and is overexpressed in various human cancers. Here, we report a mechanism by which MEF/ELF4 may be activated by a common leukemia-associated mutation in the nucleophosmin gene. By using a tandem affinity purification assay, we found that MEF/ELF4 interacts with multifactorial protein nucleophosmin (NPM1). Coimmunoprecipitation and GST pull-down experiments demonstrated that MEF/ELF4 directly forms a complex with NPM1 and also identified the region of NPM1 that is responsible for this interaction. Functional analyses showed that wild-type NPM1 inhibited the DNA binding and transcriptional activity of MEF/ELF4 on the HDM2 promoter, whereas NPM1 mutant protein (Mt-NPM1) enhanced these activities of MEF/ELF4. Induction of Mt-NPM1 into MEF/ELF4-overexpressing NIH3T3 cells facilitated malignant transformation. In addition, clinical leukemia samples with NPM1 mutations had higher human MDM2 (HDM2) mRNA expression. Our data suggest that enhanced HDM2 expression induced by mutant NPM1 may have a role in MEF/ELF4-dependent leukemogenesis. PMID:23393136

  11. Mutations in the nucleolar phosphoprotein, nucleophosmin, promote the expression of the oncogenic transcription factor MEF/ELF4 in leukemia cells and potentiates transformation.

    PubMed

    Ando, Koji; Tsushima, Hideki; Matsuo, Emi; Horio, Kensuke; Tominaga-Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Iwanaga, Masako; Itonaga, Hidehiro; Yoshida, Shinichiro; Hata, Tomoko; Moriuchi, Ryozo; Kiyoi, Hitoshi; Nimer, Stephen; Mano, Hiroyuki; Naoe, Tomoki; Tomonaga, Masao; Miyazaki, Yasushi

    2013-03-29

    Myeloid ELF1-like factor (MEF/ELF4), a member of the ETS transcription factors, can function as an oncogene in murine cancer models and is overexpressed in various human cancers. Here, we report a mechanism by which MEF/ELF4 may be activated by a common leukemia-associated mutation in the nucleophosmin gene. By using a tandem affinity purification assay, we found that MEF/ELF4 interacts with multifactorial protein nucleophosmin (NPM1). Coimmunoprecipitation and GST pull-down experiments demonstrated that MEF/ELF4 directly forms a complex with NPM1 and also identified the region of NPM1 that is responsible for this interaction. Functional analyses showed that wild-type NPM1 inhibited the DNA binding and transcriptional activity of MEF/ELF4 on the HDM2 promoter, whereas NPM1 mutant protein (Mt-NPM1) enhanced these activities of MEF/ELF4. Induction of Mt-NPM1 into MEF/ELF4-overexpressing NIH3T3 cells facilitated malignant transformation. In addition, clinical leukemia samples with NPM1 mutations had higher human MDM2 (HDM2) mRNA expression. Our data suggest that enhanced HDM2 expression induced by mutant NPM1 may have a role in MEF/ELF4-dependent leukemogenesis.

  12. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    PubMed

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. TKI sensitivity patterns of novel kinase-domain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors

    PubMed Central

    Rajan, Soumya S.; Gokhale, Vijay; Groysman, Matthew J.; Pongtornpipat, Praechompoo; Tapia, Edgar O.; Wang, Mengdie; Schatz, Jonathan H.

    2016-01-01

    The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions. PMID:27009859

  14. mTOR transcriptionally and post-transcriptionally regulates Npm1 gene expression to contribute to enhanced proliferation in cells with Pten inactivation

    PubMed Central

    Boudra, Rafik; Lagrafeuille, Rosyne; Lours-Calet, Corinne; de Joussineau, Cyrille; Loubeau-Legros, Gaëlle; Chaveroux, Cédric; Saru, Jean-Paul; Baron, Silvère; Morel, Laurent; Beaudoin, Claude

    2016-01-01

    ABSTRACT The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating data highlight supplementary role(s) for this serine/threonine kinase within the nucleus. Indeed, the nuclear activities of mTOR are currently associated with the control of protein biosynthetic capacity through its ability to regulate the expression of gene products involved in the control of ribosomal biogenesis and proliferation. Using primary murine embryo fibroblasts (MEFs), we observed that cells with overactive mTOR signaling displayed higher abundance for the growth-associated Npm1 protein, in what represents a novel mechanism of Npm1 gene regulation. We show that Npm1 gene expression is dependent on mTOR as demonstrated by treatment of wild-type and Pten inactivated MEFs cultured with rapamycin or by transient transfections of small interfering RNA directed against mTOR. In accordance, the mTOR kinase localizes to the Npm1 promoter gene in vivo and it enhances the activity of a human NPM1-luciferase reporter gene providing an opportunity for direct control. Interestingly, rapamycin did not dislodge mTOR from the Npm1 promoter but rather strongly destabilized the Npm1 transcript by increasing its turnover. Using a prostate-specific Pten-deleted mouse model of cancer, Npm1 mRNA levels were found up-regulated and sensitive to rapamycin. Finally, we also showed that Npm1 is required to promote mTOR-dependent cell proliferation. We therefore proposed a model whereby mTOR is closely involved in the transcriptional and posttranscriptional regulation of Npm1 gene expression with implications in development and diseases including cancer. PMID:27050906

  15. Loss of Nucleolar Histone Chaperone NPM1 Triggers Rearrangement of Heterochromatin and Synergizes with a Deficiency in DNA Methyltransferase DNMT3A to Drive Ribosomal DNA Transcription*

    PubMed Central

    Holmberg Olausson, Karl; Nistér, Monica; Lindström, Mikael S.

    2014-01-01

    Nucleoli are prominent nuclear structures assembled and organized around actively transcribed ribosomal DNA (rDNA). The nucleolus has emerged as a platform for the organization of chromatin enriched for repressive histone modifications associated with repetitive DNA. NPM1 is a nucleolar protein required for the maintenance of genome stability. However, the role of NPM1 in nucleolar chromatin dynamics and ribosome biogenesis remains unclear. We found that normal fibroblasts and cancer cells depleted of NPM1 displayed deformed nucleoli and a striking rearrangement of perinucleolar heterochromatin, as identified by immunofluorescence staining of trimethylated H3K9, trimethylated H3K27, and heterochromatin protein 1γ (HP1γ/CBX3). By co-immunoprecipitation we found NPM1 associated with HP1γ and core and linker histones. Moreover, NPM1 was required for efficient tethering of HP1γ-enriched chromatin to the nucleolus. We next tested whether the alterations in perinucleolar heterochromatin architecture correlated with a difference in the regulation of rDNA. U1242MG glioma cells depleted of NPM1 presented with altered silver staining of nucleolar organizer regions, coupled to a modest decrease in H3K9 di- and trimethylation at the rDNA promoter. rDNA transcription and cell proliferation were sustained in these cells, indicating that altered organization of heterochromatin was not secondary to inhibition of rDNA transcription. Furthermore, knockdown of DNA methyltransferase DNMT3A markedly enhanced rDNA transcription in NPM1-depleted U1242MG cells. In summary, this study highlights a function of NPM1 in the spatial organization of nucleolus-associated heterochromatin. PMID:25349213

  16. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin

    PubMed Central

    Lambert, Juliette; Lambert, Jérôme; Nibourel, Olivier; Pautas, Cécile; Hayette, Sandrine; Cayuela, Jean-Michel; Terré, Christine; Rousselot, Philippe; Dombret, Hervé; Chevret, Sylvie; Preudhomme, Claude; Castaigne, Sylvie; Renneville, Aline

    2014-01-01

    We analysed the prognostic significance of minimal residual disease (MRD) level in adult patients with acute myeloid leukemia (AML) treated in the randomized gemtuzumab ozogamicin (GO) ALFA-0701 trial. Levels of WT1 and NPM1 gene transcripts were assessed using cDNA-based real-time quantitative PCR in 183 patients with WT1 overexpression and in 77 patients with NMP1 mutation (NPM1mut) at diagnosis. Positive WT1 MRD (defined as > 0.5% in the peripheral blood) after induction and at the end of treatment were both significantly associated with a higher risk of relapse and a shorter overall survival (OS). Positive NPM1mut MRD (defined as > 0.1% in the bone marrow) after induction and at the end of treatment also predicted a higher risk of relapse, but did not influence OS. Interestingly, the achievement of a negative NPM1mut MRD was significantly more frequent in patients treated in the GO arm compared to those treated in control arm (39% versus 7% (p=0.006) after induction and 91% versus 61% (p=0.028) at the end of treatment). However, GO did not influence WT1 MRD levels. Our study supports the prognostic significance of MRD assessed by WT1 and NPM1mut transcript levels and show that NPM1 MRD is decreased by GO treatment. PMID:25026287

  17. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin.

    PubMed

    Lambert, Juliette; Lambert, Jérôme; Nibourel, Olivier; Pautas, Cécile; Hayette, Sandrine; Cayuela, Jean-Michel; Terré, Christine; Rousselot, Philippe; Dombret, Hervé; Chevret, Sylvie; Preudhomme, Claude; Castaigne, Sylvie; Renneville, Aline

    2014-08-15

    We analysed the prognostic significance of minimal residual disease (MRD) level in adult patients with acute myeloid leukemia (AML) treated in the randomized gemtuzumab ozogamicin (GO) ALFA-0701 trial. Levels of WT1 and NPM1 gene transcripts were assessed using cDNA-based real-time quantitative PCR in 183 patients with WT1 overexpression and in 77 patients with NMP1 mutation (NPM1mut) at diagnosis. Positive WT1 MRD (defined as > 0.5% in the peripheral blood) after induction and at the end of treatment were both significantly associated with a higher risk of relapse and a shorter overall survival (OS). Positive NPM1mut MRD (defined as > 0.1% in the bone marrow) after induction and at the end of treatment also predicted a higher risk of relapse, but did not influence OS. Interestingly, the achievement of a negative NPM1mut MRD was significantly more frequent in patients treated in the GO arm compared to those treated in control arm (39 % versus 7% (p=0.006) after induction and 91% versus 61% (p=0.028) at the end of treatment). However, GO did not influence WT1 MRD levels. Our study supports the prognostic significance of MRD assessed by WT1 and NPM1mut transcript levels and show that NPM1 MRD is decreased by GO treatment.

  18. Detection of rearrangements and transcriptional up-regulation of ALK in FFPE lung cancer specimens using a novel, sensitive, quantitative reverse transcription polymerase chain reaction assay.

    PubMed

    Gruber, Kim; Horn, Heike; Kalla, Jörg; Fritz, Peter; Rosenwald, Andreas; Kohlhäufl, Martin; Friedel, Godehard; Schwab, Matthias; Ott, German; Kalla, Claudia

    2014-03-01

    The approved dual-color fluorescence in situ hybridization (FISH) test for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements in non-small-cell lung cancer (NSCLC) is complex and represents a low-throughput assay difficult to use in daily diagnostic practice. We devised a sensitive and robust routine diagnostic test for the detection of rearrangements and transcriptional up-regulation of ALK. We developed a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay adapted to RNA isolated from routine formalin-fixed, paraffin-embedded material and applied it to 652 NSCLC specimens. The reliability of this technique to detect ALK dysregulation was shown by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ALK expression indicative of a gene rearrangement in 24 (4.6%) and full-length ALK transcript expression in six (1.1%) of 523 interpretable tumors. Among 182 tumors simultaneously analyzed by FISH and qRT-PCR, the latter accurately typed 97% of 19 rearranged and 158 nonrearranged tumors and identified ALK deregulation in two cases with insufficient FISH. Six tumors expressing full-length ALK transcripts did not show rearrangements of the gene. Immunohistochemistry detected ALK protein overexpression in tumors with gene fusions and transcriptional up-regulation, but did not distinguish between the two. One case with full-length ALK expression carried a heterozygous point mutation (S1220Y) within the kinase domain potentially interfering with kinase activity and/or inhibitor binding. Our qRT-PCR assay reliably identifies and distinguishes ALK rearrangements and full-length transcript expression in formalin-fixed, paraffin-embedded material. It is an easy-to-perform, cost-effective, and high-throughput tool for the diagnosis of ALK activation. The expression of full-length ALK transcripts may be relevant for ALK inhibitor therapy in NSCLC.

  19. Maternally inherited npm2 mRNA is crucial for egg developmental competence in zebrafish.

    PubMed

    Bouleau, Aurélien; Desvignes, Thomas; Traverso, Juan Martin; Nguyen, Thaovi; Chesnel, Franck; Fauvel, Christian; Bobe, Julien

    2014-08-01

    The molecular mechanisms underlying and determining egg developmental competence remain poorly understood in vertebrates. Nucleoplasmin (Npm2) is one of the few known maternal effect genes in mammals, but this maternal effect has never been demonstrated in nonmammalian species. A link between developmental competence and the abundance of npm2 maternal mRNA in the egg was previously established using a teleost fish model for egg quality. The importance of maternal npm2 mRNA for egg developmental competence remains unknown in any vertebrate species. In the present study, we aimed to characterize the contribution of npm2 maternal mRNA to early developmental success in zebrafish using a knockdown strategy. We report here the oocyte-specific expression of npm2 and maternal inheritance of npm2 mRNA in zebrafish eggs. The knockdown of the protein translated from this maternal mRNA results in developmental arrest before the onset of epiboly and subsequent embryonic death, a phenotype also observed in embryos lacking zygotic transcription. Npm2 knockdown also results in impaired transcription of the first-wave zygotic genes. Our results show that npm2 is also a maternal effect gene in a nonmammalian vertebrate species and that maternally inherited npm2 mRNA is crucial for egg developmental competence. We also show that de novo protein synthesis from npm2 maternal mRNA is critical for developmental success beyond the blastula stage and required for zygotic genome activation. Finally, our results suggest that npm2 maternal mRNA is an important molecular factor of egg quality in fish and possibly in all vertebrates. © 2014 by the Society for the Study of Reproduction, Inc.

  20. Nucleophosmin is overexpressed in thyroid tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed inmore » tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.« less

  1. A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK.

    PubMed

    Penzel, Roland; Schirmacher, Peter; Warth, Arne

    2012-07-01

    Cytotoxic chemotherapy remains the mainstay of treatment for most patients with advanced disease. Recently, anaplastic lymphoma kinase (ALK) expression as a major target for successful treatment with ALK inhibitors was detected in a subset of non-small-cell lung carcinomas, usually as a result of echinoderm microtubule-associated protein-like 4 (EML4)-ALK rearrangements. Although the chromosomal breakpoint within the EML4 gene varied, the breakpoint within ALK was most frequently reported within intron 19 or rarely in exon 20. Therefore, the different EML4-ALK variants so far contain the same 3' portion of ALK starting with exon 20. Here, we report a novel EML4-ALK variant detected by reverse transcription polymerase chain reaction analysis. Subsequent sequencing revealed an EML4-ALK fusion variant in which exon 6 of EML4 was fused to exon 19 of ALK. It occurred in a predominant solid pulmonary adenocarcinoma of a 65-year-old woman with a clear split signal of ALK in fluorescence in situ hybridization analysis and a weakly homogeneous ALK expression in immunohistochemical staining. Because of the growing number of fusion variants a primary reverse transcription polymerase chain reaction-based screening for ALK-positive non-small-cell lung carcinoma patients may not be sufficient for predictive diagnostics but transcript-based approaches and sequencing of ALK fusion variants might finally contribute to an optimized selection of patients.

  2. NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling

    PubMed Central

    Lindström, Mikael S.

    2011-01-01

    At a first glance, ribosome biogenesis and chromatin remodeling are quite different processes, but they share a common problem involving interactions between charged nucleic acids and small basic proteins that may result in unwanted intracellular aggregations. The multifunctional nuclear acidic chaperone NPM1 (B23/nucleophosmin) is active in several stages of ribosome biogenesis, chromatin remodeling, and mitosis as well as in DNA repair, replication and transcription. In addition, NPM1 plays an important role in the Myc-ARF-p53 pathway as well as in SUMO regulation. However, the relative importance of NPM1 in these processes remains unclear. Provided herein is an update on the expanding list of the diverse activities and interacting partners of NPM1. Mechanisms of NPM1 nuclear export functions of NPM1 in the nucleolus and at the mitotic spindle are discussed in relation to tumor development. It is argued that the suggested function of NPM1 as a histone chaperone could explain several, but not all, of the effects observed in cells following changes in NPM1 expression. A future challenge is to understand how NPM1 is activated, recruited, and controlled to carry out its functions. PMID:21152184

  3. The receptor protein tyrosine phosphatase (RPTP){beta}/{zeta} is expressed in different subtypes of human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Pinera, Pablo; Garcia-Suarez, Olivia; Instituto Universitario de Oncologia del Principado de Asturias, Oviedo

    2007-10-12

    Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, leading to increased tyrosine phosphorylation of different substrate proteins of RPTP{beta}/{zeta}, including {beta}-catenin, {beta}-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusionmore » protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTP{beta}/{zeta} is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTP{beta}/{zeta} furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTP{beta}/{zeta} changes as the breast cancer become more malignant. The data suggest that the PTN/RPTP{beta}/{zeta} signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer.« less

  4. The use of quantitative real-time reverse transcriptase PCR for 5' and 3' portions of ALK transcripts to detect ALK rearrangements in lung cancers.

    PubMed

    Wang, Rui; Pan, Yunjian; Li, Chenguang; Hu, Haichuan; Zhang, Yang; Li, Hang; Luo, Xiaoyang; Zhang, Jie; Fang, Zhaoyuan; Li, Yuan; Shen, Lei; Ji, Hongbin; Garfield, David; Sun, Yihua; Chen, Haiquan

    2012-09-01

    Approximately 3% to 7% of non-small cell lung cancers (NSCLC) harbor an ALK fusion gene, thus defining a tumor group that may be responsive to targeted therapy. The breakpoint in ALK consistently occurs at exon 20 and EML4 or other fusion partners, thus driving a strong expression of ALK kinase domain and resulting in an unbalanced expression in 5' and 3' portions of ALK transcripts. We have developed a rapid and accurate method by simultaneously detecting the expression in 5' and 3' portions of ALK mRNA. Quantitative real-time reverse transcriptase PCR (qRT-PCR) was used to examine expression levels of the 5' and 3' portions of ALK transcripts in177 NSCLCs, in which EGFR, KRAS, HER2, and BRAF mutations were absent. If unbalanced ALK mRNA expression was seen, ALK rearrangement was assumed to exist. ALK FISH was used to confirm the accuracy of qRT-PCR. RT-PCR and 5' RACE coupling sequencing identified the fusion variants. Real-time RT-PCR showed excellent sensitivity and specificity (100% and 100%, respectively) for detection of ALK rearrangements in resected specimens. In addition, six novel ALK fusion variants were identified, including one KIF5B-ALK (E17;A20) and five EML4-ALK variants (E6a;A19, E6a/b ins 18;A20, E17b ins 39;A20, E10a/b, E13;A20, and E17 ins 65;A20). Real-time RT-PCR is a rapid and accurate method for diagnosing ALK-rearranged lung cancers. Coupling of 5' RACE to this method should further facilitate rapid identification of novel ALK fusion genes. ©2012 AACR.

  5. Mutation of the NPM1 gene contributes to the development of donor cell-derived acute myeloid leukemia after unrelated cord blood transplantation for acute lymphoblastic leukemia.

    PubMed

    Rodríguez-Macías, Gabriela; Martínez-Laperche, Carolina; Gayoso, Jorge; Noriega, Víctor; Serrano, David; Balsalobre, Pascual; Muñoz-Martínez, Cristina; Díez-Martín, José L; Buño, Ismael

    2013-08-01

    Donor cell leukemia (DCL) is a rare but severe complication after allogeneic stem cell transplantation. Its true incidence is unknown because of a lack of correct recognition and reporting, although improvements in molecular analysis of donor-host chimerism are contributing to a better diagnosis of this complication. The mechanisms of leukemogenesis are unclear, and multiple factors can contribute to the development of DCL. In recent years, cord blood has emerged as an alternative source of hematopoietic progenitor cells, and at least 12 cases of DCL have been reported after unrelated cord blood transplantation. We report a new case of DCL after unrelated cord blood transplantation in a 44-year-old woman diagnosed as having acute lymphoblastic leukemia with t(1;19) that developed acute myeloid leukemia with normal karyotype and nucleophosmin (NPM1) mutation in donor cells. To our knowledge, this is the first report of NPM1 mutation contributing to DCL development. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    PubMed

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Overexpression of Activin Receptor-like Kinase 7 in Breast Cancer Cells Is Associated with Decreased Cell Growth and Adhesion.

    PubMed

    Hu, Tingting; Su, Fengxi; Jiang, Wenguo; Dart, D Alwyn

    2017-07-01

    To examine the expression and function of activin receptor-like kinase 7 (ALK7) in breast cancer, its association with disease prognosis, and its impact on breast cancer cell function. A cohort of patients with breast cancer were examined for ALK7 expression in association with pathological and clinical aspects. In vitro cell assays of ALK7 were investigated using an expression plasmid. Overall higher levels of ALK7 transcripts were seen in the breast cancer samples vs. normal tissue. However, within the cancer cohort, lower levels of ALK7 transcript were associated with poor prognosis. Patients with lower expression of ALK7 also had shorter survival. Overexpression of ALK7 reduced proliferation and adhesion of breast cancer cells in vitro. We found that overexpressed ALK7 had complex effects on the MCF-7 cell sensitivity to chemotherapy drugs. Decreased expression of ALK7 in breast cancer is correlated with poor prognosis. ALK7 is a negative regulator of adhesion and proliferation of breast cancer cells. This suggests that ALK7 is a potential tumor suppressor in breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription.

    PubMed

    Saget, B M; Shevell, D E; Walker, G C

    1995-03-01

    The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the communication of conformational information between the amino- and the carboxyl-terminal domains. These results indicate that the hinge region of Ada is important for ada but not alkA transcription and further support the notion that the mechanism(s) by which Ada activates ada transcription differs from that by which it activates transcription at alkA.

  9. A sensitive and high throughput TaqMan-based reverse transcription quantitative polymerase chain reaction assay efficiently discriminates ALK rearrangement from overexpression for lung cancer FFPE specimens.

    PubMed

    Lung, Jrhau; Lin, Yu-Ching; Hung, Ming-Szu; Jiang, Yuan Yuan; Lee, Kuan-Der; Lin, Paul Yann; Tsai, Ying Huang

    2016-04-01

    ALK fusion gene is an oncogenic driver in lung cancer with low prevalence, which can be ameliorated by crizotinib. Currently, ALK fusion gene can be diagnosed by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), but inconstistnt results between the two methods are encountered regularly. To make the ALK fusion gene screening more efficient and to provide a simple solution to clarify the discrepancy between FISH and IHC results, a sensitive TaqMan-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was established. The 3-plex TaqMan-based RT-qPCR assay was established and performed on 102 archived formalin-fixed, paraffin-embedded (FFPE) NSCLC samples to detect ALK rearrangement and overexpression. Break-apart FISH and automatic immunohistochemistry based ALK assays were performed side by side using tissue microarray. The RT-qPCR was performed successfully for 80 samples and 10 of them showed positive signals. Three out of the 10 qPCR positive cases were further confirmed by FISH and IHC test. Two others were IHC positive and FISH negative, and expressed full-length ALK transcript. The rest were neither FISH nor IHC positive and their ALK expression level was significantly lower than those FISH or IHC positive cases. Our RT-qPCR assay demonstrates that the capability and reliability of ALK detection is comparable to FISH and IHC, but it is more effective at discriminating ALK rearrangement from overexpression. The RT-qPCR assay easily clarifies the discrepancy between FISH and IHC, and can be incorporated into routine ALK screening for lung cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Identification of Three Novel Fusion Oncogenes, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, in Thyroid Cancers of Young Patients in Fukushima.

    PubMed

    Iyama, Keita; Matsuse, Michiko; Mitsutake, Norisato; Rogounovitch, Tatiana; Saenko, Vladimir; Suzuki, Keiji; Ashizawa, Mai; Ookouchi, Chiyo; Suzuki, Satoshi; Mizunuma, Hiroshi; Fukushima, Toshihiko; Suzuki, Shinichi; Yamashita, Shunichi

    2017-06-01

    The BRAF V600E mutation is the most frequent genetic abnormality in adult papillary thyroid carcinomas (PTCs). On the other hand, various chromosomal rearrangements are more prevalent in childhood and adolescent PTCs. The aim of the present study was to identify novel rearrangements in PTCs from young patients. Among 63 postoperative specimens of childhood and adolescent PTCs, which had been discovered by the thyroid ultrasound screening program in Fukushima, nine samples without prevalent known oncogenes, BRAF V600E , RAS, RET/PTC1, RET/PTC3, and ETV6/NTRK3, were analyzed in the current study by quantitative real-time reverse transcription polymerase chain reaction to screen for novel fusion genes by comparing transcript expression between extracellular and kinase domains of ALK, NTRK1, NTRK3, and RET. Of the above nine samples, five samples were suspected to harbor a fusion, and using subsequent 5' rapid amplification of cDNA end (RACE), two already reported fusion oncogenes, STRN/ALK and TPR/NTRK1, and three novel fusions, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, were identified. Functional analyses of these three chimeric genes were performed, and their transforming abilities were confirmed through the activation of mitogen-activated protein kinase (MAPK). Three novel fusion oncogenes have been identified in young PTC patients in Fukushima, suggesting that rare fusions may be present among the cases negative for known oncogenes in this age group and that such rearrangements can play a significant role in thyroid carcinogenesis.

  11. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  12. A Murine Xenograft Model for Human CD30+ Anaplastic Large Cell Lymphoma

    PubMed Central

    Pfeifer, Walther; Levi, Edi; Petrogiannis-Haliotis, Tina; Lehmann, Leslie; Wang, Zhenxi; Kadin, Marshall E.

    1999-01-01

    To develop a model for the biology and treatment of CD30+ anaplastic large cell lymphoma (ALCL), we transplanted leukemic tumor cells from a 22-month-old girl with multiple relapsed ALCL. Tumor cells were inoculated intraperitoneally into a 4-week-old SCID/bg mouse and produced a disseminated tumor within 8 weeks; this tumor was serially transplanted by subcutaneous injections to other mice. Morphology, immunohistochemistry, and molecular genetics which demonstrated the NPM-ALK fusion protein, resulting from the t(2;5)(p23;q35), confirmed the identity of the xenograft with the original tumor. The tumor produced transcripts for interleukin-1α, tumor necrosis factor-α, and interferon-γ which could explain the patient’s B-symptoms. Treatment of mice with monoclonal antibody (HeFi-1) which activates CD30 antigen administered on day 1 after tumor transplantation prevented tumor growth. Treatment with HeFi-1 after tumors had reached a 0.2 cm3 volume caused tumor growth arrest and prevention of tumor dissemination. We conclude that transplantation of CD30+ ALCL to SCID/bg mice may provide a valuable model for the study of the biology and design of treatment modalities for CD30+ ALCL. PMID:10514417

  13. Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays.

    PubMed

    Li, Tianhong; Maus, Martin K H; Desai, Sonal J; Beckett, Laurel A; Stephens, Craig; Huang, Eric; Hsiang, Jack; Zeger, Gary; Danenberg, Kathleen D; Astrow, Stephanie H; Gandara, David R

    2014-01-01

    The objective of this study was to identify and characterize echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase fusion (EML4-ALK+) cancers by variant-specific, quantitative reverse transcription polymerase chain reaction (RT-PCR) assays in a large cohort of North American non-small-cell lung cancer (NSCLC) patients. We developed a panel of single and multiplex RT-PCR assays suitable for rapid and accurate detection of the eight most common EML4-ALK+ variants and ALK gene expression in archival formalin-fixed, paraffin-embedded NSCLC specimens. EGFR and KRAS genotyping and thymidylate synthase RNA level by RT-PCR assays were available in a subset of patients. Between December 2009 and September 2012, 7344 NSCLC specimens were tested. An EML4-ALK+ transcript was detected in 200 cases (2.7%), including 109 V1 (54.5%), 20 V2 (10.0%), 68 V3 (34.0%), and three V5a (1.5%) variants. Median age was 54.5 years (range, 23-89), and 104 patients (52.0%) were women. The great majority (n=188, 94.0%) of EML4-ALK+ NSCLC tumors had adenocarcinoma histology. ALK expression level varied significantly among different EML4-ALK+ variants and individual tumors. Only one case each of concurrent EGFR or KRAS mutation was detected. The median thymidylate synthase RNA level from 85 EML4-ALK+ cancers was significantly lower compared with that of EML4-ALK-negative lung adenocarcinomas (2.02 versus 3.29, respectively, p<0.001). This panel of variant-specific, quantitative RT-PCR assays detects common EML4-ALK+ variants as well as ALK gene expression level in archival formalin-fixed paraffin-embedded NSCLC specimens. These RT-PCR assays may be useful as an adjunct to the standard fluorescence in situ hybridization assay to better understand biologic variability and response patterns to anaplastic lymphoma kinase inhibitors.

  14. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer

    PubMed Central

    Ma, Yibao; Yu, Chunrong; Mohamed, Esraa M.; Shao, Huanjie; Wang, Li; Sundaresan, Gobalakrishnan; Zweit, Jamal; Idowu, Michael; Fang, Xianjun

    2016-01-01

    A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared to EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the PI3K-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by FDG-PET imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC. PMID:27132509

  15. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer.

    PubMed

    Ma, Y; Yu, C; Mohamed, E M; Shao, H; Wang, L; Sundaresan, G; Zweit, J; Idowu, M; Fang, X

    2016-11-24

    A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared with EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the phosphatidylinositol 3 kinase-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by fluorodeoxyglucose-positron emission tomography imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC.

  16. Comprehensive Exploration of Novel Chimeric Transcripts in Clear Cell Renal Cell Carcinomas Using Whole Transcriptome Analysis

    PubMed Central

    Gotoh, Masahiro; Ichikawa, Hitoshi; Arai, Eri; Chiku, Suenori; Sakamoto, Hiromi; Fujimoto, Hiroyuki; Hiramoto, Masaki; Nammo, Takao; Yasuda, Kazuki; Yoshida, Teruhiko; Kanai, Yae

    2014-01-01

    The aim of this study was to clarify the participation of expression of chimeric transcripts in renal carcinogenesis. Whole transcriptome analysis (RNA sequencing) and exploration of candidate chimeric transcripts using the deFuse program were performed on 68 specimens of cancerous tissue (T) and 11 specimens of non-cancerous renal cortex tissue (N) obtained from 68 patients with clear cell renal cell carcinomas (RCCs) in an initial cohort. As positive controls, two RCCs associated with Xp11.2 translocation were analyzed. After verification by reverse transcription (RT)-PCR and Sanger sequencing, 26 novel chimeric transcripts were identified in 17 (25%) of the 68 clear cell RCCs. Genomic breakpoints were determined in five of the chimeric transcripts. Quantitative RT-PCR analysis revealed that the mRNA expression levels for the MMACHC, PTER, EPC2, ATXN7, FHIT, KIFAP3, CPEB1, MINPP1, TEX264, FAM107A, UPF3A, CDC16, MCCC1, CPSF3, and ASAP2 genes, being partner genes involved in the chimeric transcripts in the initial cohort, were significantly reduced in 26 T samples relative to the corresponding 26 N samples in the second cohort. Moreover, the mRNA expression levels for the above partner genes in T samples were significantly correlated with tumor aggressiveness and poorer patient outcome, indicating that reduced expression of these genes may participate in malignant progression of RCCs. As is the case when their levels of expression are reduced, these partner genes also may not fully function when involved in chimeric transcripts. These data suggest that generation of chimeric transcripts may participate in renal carcinogenesis by inducing dysfunction of tumor-related genes. PMID:25230976

  17. Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity?

    PubMed Central

    Olsen, Thale Kristin; Panagopoulos, Ioannis; Meling, Torstein R.; Micci, Francesca; Gorunova, Ludmila; Thorsen, Jim; Due-Tønnessen, Bernt; Scheie, David; Lund-Iversen, Marius; Krossnes, Bård; Saxhaug, Cathrine; Heim, Sverre; Brandal, Petter

    2015-01-01

    Background We have previously characterized 19 ependymal tumors using Giemsa banding and high-resolution comparative genomic hybridization. The aim of this study was to analyze these tumors searching for fusion genes. Methods RNA sequencing was performed in 12 samples. Potential fusion transcripts were assessed by seed count and structural chromosomal aberrations. Transcripts of interest were validated using fluorescence in situ hybridization and PCR followed by direct sequencing. Results RNA sequencing identified rearrangements of the anaplastic lymphoma kinase gene (ALK) in 2 samples. Both tumors harbored structural aberrations involving the ALK locus 2p23. Tumor 1 had an unbalanced t(2;14)(p23;q22) translocation which led to the fusion gene KTN1-ALK. Tumor 2 had an interstitial del(2)(p16p23) deletion causing the fusion of CCDC88A and ALK. In both samples, the breakpoint of ALK was located between exons 19 and 20. Both patients were infants and both tumors were supratentorial. The tumors were well demarcated from surrounding tissue and had both ependymal and astrocytic features but were diagnosed and treated as ependymomas. Conclusions By combining karyotyping and RNA sequencing, we identified the 2 first ever reported ALK rearrangements in CNS tumors. Such rearrangements may represent the hallmark of a new entity of pediatric glioma characterized by both ependymal and astrocytic features. Our findings are of particular importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients with lung cancer harboring ALK rearrangements. Thus, ALK emerges as an interesting therapeutic target in patients with ependymal tumors carrying ALK fusions. PMID:25795305

  18. Survival signals and targets for therapy in breast implant-associated ALK--anaplastic large cell lymphoma.

    PubMed

    Lechner, Melissa G; Megiel, Carolina; Church, Connor H; Angell, Trevor E; Russell, Sarah M; Sevell, Rikki B; Jang, Julie K; Brody, Garry S; Epstein, Alan L

    2012-09-01

    Anaplastic lymphoma kinase (ALK)-negative, T-cell, anaplastic, non-Hodgkin lymphoma (T-ALCL) in patients with textured saline and silicone breast implants is a recently recognized clinical entity for which the etiology and optimal treatment remain unknown. Using three newly established model cell lines from patient biopsy specimens, designated T-cell breast lymphoma (TLBR)-1 to -3, we characterized the phenotype and function of these tumors to identify mechanisms of cell survival and potential therapeutic targets. Cytogenetics revealed chromosomal atypia with partial or complete trisomy and absence of the NPM-ALK (2;5) translocation. Phenotypic characterization showed strong positivity for CD30, CD71, T-cell CD2/5/7, and antigen presentation (HLA-DR, CD80, CD86) markers, and interleukin (IL)-2 (CD25, CD122) and IL-6 receptors. Studies of these model cell lines showed strong activation of STAT3 signaling, likely related to autocrine production of IL-6 and decreased SHP-1. STAT3 inhibition, directly or by recovery of SHP-1, and cyclophosphamide-Adriamycin-vincristine-prednisone (CHOP) chemotherapy reagents, effectively kill cells of all three TLBR models in vitro and may be pursued as therapies for patients with breast implant-associated T-ALCLs. The TLBR cell lines closely resemble the primary breast implant-associated lymphomas from which they were derived and as such provide valuable preclinical models to study their unique biology. ©2012 AACR.

  19. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Dai, Shunhong (Inventor); Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  20. Intact or broken-apart RNA: an alternative concept for ALK fusion screening in non-small cell lung cancer (NSCLC).

    PubMed

    Kotoula, Vassiliki; Bobos, Mattheos; Vassilakopoulou, Maria; Tsolaki, Eleftheria; Chrisafi, Sofia; Psyrri, Amanda; Lazaridis, George; Papadopoulou, Kyriaki; Efstratiou, Ioannis; Michail-Strantzia, Catherine; Debelenko, Larisa V; Kosmidis, Paris; Fountzilas, George

    2015-01-01

    Anaplastic lymphoma kinase (ALK) break-apart fluorescent in situ hybridization (FISH) is currently used in diagnostics for the selection of non-small cell lung cancer (NSCLC) patients to receive crizotinib. We evaluated ALK status in NSCLC with a novel ALK mRNA test based on the break-apart FISH concept, which we called break-apart transcript (BAT) test. ALK5' and ALK3' transcript patterns were established with qPCR for ALK-expressing controls including fusion-negative neuroblastomas, as well as fusion-positive anaplastic large cell lymphomas and NSCLC. The BAT test was evaluated on 271 RNA samples from routinely processed paraffin NSCLC tissues. Test results were compared with ALK FISH (n=121), immunohistochemical (IHC) analysis (n=86), and automated quantitative analysis (AQUA, n=83). On the basis of the nonoverlapping ALK BAT patterns in ALK-expressing controls (P<0.0001), 8/174 adenocarcinomas (4.6%) among 259 informative NSCLC were predicted as fusion positive. Overall concordance for paired method results was high (94.1% to 98.8%) but mainly concerned negative prediction because of the limited availability of positive-matched cases. Tumors with 100% cytoplasmic IHC staining of any intensity (n=3) were positive for AQUA, FISH, and BAT test; tumors with lower IHC positivity and different staining patterns were AQUA-negative. Upon multiple reevaluations, ALK gene status was considered as originally misinterpreted by FISH in 3/121 cases (2.5%). Tumors with >4 ALK gene copies were associated with longer overall survival upon first-line chemotherapy. In conclusion, application of the ALK BAT test on routinely processed NSCLC tissues yields the same fusion partner independent information as ALK break-apart FISH but is more robust and cost-effective. The BAT concept may be considered for the development of further drug-predictive translocation tests.

  1. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varshney, Gaurav K.; Palmer, Ruth H.

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function resultsmore » in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.« less

  2. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    PubMed Central

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  3. ALK Expression Is a Novel Marker for the WNT-activated Type of Pediatric Medulloblastoma and an Indicator of Good Prognosis for Patients.

    PubMed

    Łastowska, Maria; Trubicka, Joanna; Niemira, Magdalena; Paczkowska-Abdulsalam, Magdalena; Karkucińska-Więckowska, Agnieszka; Kaleta, Magdalena; Drogosiewicz, Monika; Tarasińska, Magdalena; Perek-Polnik, Marta; Krętowski, Adam; Dembowska-Bagińska, Bożenna; Grajkowska, Wiesława; Pronicki, Maciej; Matyja, Ewa

    2017-06-01

    ALK gene rearrangements were identified in a variety of cancers, including neuroblastoma, where the presence of ALK expression is associated with adverse prognosis. ALK mutations have recently been found in the pediatric brain tumor medulloblastoma, and microarray data indicate that ALK is highly expressed in a subset of these tumors. Therefore, we investigated whether ALK expression correlates with transcriptional profiles and clinical features of medulloblastoma. Tumors from 116 medulloblastoma patients were studied at diagnosis for the detection of ALK expression at the RNA level by an application of NanoString technology and at the protein level by immunohistochemistry using antibody ALK clone D5F3. The results indicate that ALK expression, at both the RNA and the protein levels, is strongly associated with the WNT-activated type of tumors and therefore may serve as a useful marker for the detection of this type of medulloblastoma. Importantly, ALK protein expression alone is also an indicator of good prognosis for medulloblastoma patients.

  4. ALK is a MYCN target gene and regulates cell migration and invasion in neuroblastoma

    PubMed Central

    Hasan, Md. Kamrul; Nafady, Asmaa; Takatori, Atsushi; Kishida, Satoshi; Ohira, Miki; Suenaga, Yusuke; Hossain, Shamim; Akter, Jesmin; Ogura, Atsushi; Nakamura, Yohko; Kadomatsu, Kenji; Nakagawara, Akira

    2013-01-01

    Human anaplastic lymphoma kinase (ALK) has been identified as an oncogene that is mutated or amplified in NBLs. To obtain a better understanding of the molecular events associated with ALK in the pathogenesis of NBL, it is necessary to clarify how ALK gene contributes to NBL progression. In the present study, we found that ALK expression was significantly high in NBL clinical samples with amplified MYCN (n = 126, P < 0.01) and in developing tumors of MYCN-transgenic mice. Indeed, promoter analysis revealed that ALK is a direct transcriptional target of MYCN. Overexpression and knockdown of ALK demonstrated its function in cell proliferation, migration and invasion. Moreover, treatment with an ALK inhibitor, TAE-684, efficiently suppressed such biological effects in MYCN amplified cells and tumor growth of the xenograft in mice. Our present findings explore the fundamental understanding of ALK in order to develop novel therapeutic tools by targeting ALK for aggressive NBL treatment. PMID:24356251

  5. Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer.

    PubMed

    Tanizaki, Junko; Okamoto, Isamu; Okabe, Takafumi; Sakai, Kazuko; Tanaka, Kaoru; Hayashi, Hidetoshi; Kaneda, Hiroyasu; Takezawa, Ken; Kuwata, Kiyoko; Yamaguchi, Haruka; Hatashita, Erina; Nishio, Kazuto; Nakagawa, Kazuhiko

    2012-11-15

    Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI) such as crizotinib show marked efficacy in patients with non-small cell lung cancer positive for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion protein. However, acquired resistance to these agents has already been described in treated patients, and the mechanisms of such resistance remain largely unknown. We established lines of EML4-ALK-positive H3122 lung cancer cells that are resistant to the ALK inhibitor TAE684 (H3122/TR cells) and investigated their resistance mechanism with the use of immunoblot analysis, ELISA, reverse transcription and real-time PCR analysis, and an annexin V binding assay. We isolated EML4-ALK-positive lung cancer cells (K-3) from a patient who developed resistance to crizotinib and investigated their characteristics. The expression of EML4-ALK was reduced at the transcriptional level, whereas phosphorylation of epidermal growth factor receptor (EGFR), HER2, and HER3 was upregulated, in H3122/TR cells compared with those in H3122 cells. This activation of HER family proteins was accompanied by increased secretion of EGF. Treatment with an EGFR-TKI induced apoptosis in H3122/TR cells, but not in H3122 cells. The TAE684-induced inhibition of extracellular signal-regulated kinase (ERK) and STAT3 phosphorylation observed in parental cells was prevented by exposure of these cells to exogenous EGF, resulting in a reduced sensitivity of cell growth to TAE684. K-3 cells also manifested HER family activation accompanied by increased EGF secretion. EGF-mediated activation of HER family signaling is associated with ALK-TKI resistance in lung cancer positive for EML4-ALK. ©2012 AACR.

  6. Isolated central nervous system progression on Crizotinib

    PubMed Central

    Chun, Stephen G.; Choe, Kevin S.; Iyengar, Puneeth; Yordy, John S.; Timmerman, Robert D.

    2012-01-01

    Advanced non-small lung cancer (NSCLC) remains almost uniformly lethal with marginal long-term survival despite efforts to target specific oncogenic addiction pathways that may drive these tumors with small molecularly targeted agents and biologics. The EML4-ALK fusion gene encodes a chimeric tyrosine kinase that activates the Ras signaling pathway, and this fusion protein is found in approximately 5% of NSCLC. Targeting EML4-ALK with Crizotinib in this subset of NSCLC has documented therapeutic efficacy, but the vast majority of patients eventually develop recurrent disease that is often refractory to further treatments. We present the clinicopathologic features of three patients with metastatic NSCLC harboring the EML4-ALK translocation that developed isolated central nervous system (CNS) metastases in the presence of good disease control elsewhere in the body. These cases suggest a differential response of NSCLC to Crizotinib in the brain in comparison to other sites of disease, and are consistent with a previous report of poor CNS penetration of Crizotinib. Results of ongoing clinical trials will clarify whether the CNS is a major sanctuary site for EML4-ALK positive NSCLC being treated with Crizotinib. While understanding molecular mechanisms of resistance is critical to overcome therapeutic resistance, understanding physiologic mechanisms of resistance through analyzing anatomic patterns of failure may be equally crucial to improve long-term survival for patients with EML4-ALK translocation positive NSCLC. PMID:22986231

  7. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer.

    PubMed

    Hout, David R; Schweitzer, Brock L; Lawrence, Kasey; Morris, Stephan W; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly; Saltman, David L

    2017-08-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase ( ALK ) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off Δ C t of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK.

  8. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer

    PubMed Central

    Hout, David R.; Lawrence, Kasey; Morris, Stephan W.; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly

    2017-01-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase (ALK) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off ΔCt of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK. PMID:28763012

  9. HIP1-ALK, a novel fusion protein identified in lung adenocarcinoma.

    PubMed

    Hong, Mineui; Kim, Ryong Nam; Song, Ji-Young; Choi, So-Jung; Oh, Ensel; Lira, Maruja E; Mao, Mao; Takeuchi, Kengo; Han, Joungho; Kim, Jhingook; Choi, Yoon-La

    2014-03-01

    The most common mechanism underlying overexpression and activation of anaplastic lymphoma kinase (ALK) in non-small-cell lung carcinoma could be attributed to the formation of a fusion protein. To date, five fusion partners of ALK have been reported, namely, echinoderm microtubule associated protein like 4, tropomyosin-related kinase-fused gene, kinesin family member 5B, kinesin light chain 1, and protein tyrosine phosphatase, nonreceptor type 3. In this article, we report a novel fusion gene huntingtin interacting protein 1 (HIP1)-ALK, which is conjoined between the huntingtin-interacting protein 1 gene HIP1 and ALK. Reverse-transcriptase polymerase chain reaction and immunohistochemical analysis were used to detect this fusion gene's transcript and protein expression, respectively. We had amplified the full-length cDNA sequence of this novel fusion gene by using 5'-rapid amplification of cDNA ends. The causative genomic translocation t(2;7)(p23;q11.23) for generating this novel fusion gene was verified by using genomic sequencing. The examined adenocarcinoma showed predominant acinar pattern, and ALK immunostaining was localized to the cytoplasm, with intense staining in the submembrane region. In break-apart, fluorescence in situ hybridization analysis for ALK, split of the 5' and 3' probe signals, and isolated 3' signals were observed. Reverse-transcriptase polymerase chain reaction revealed that the tumor harbored a novel fusion transcript in which exon 21 of HIP1 was fused to exon 20 of ALK in-frame. The novel fusion gene and its protein HIP1-ALK harboring epsin N-terminal homology, coiled-coil, juxtamembrane, and kinase domains, which could play a role in carcinogenesis, could become diagnostic and therapeutic target of the lung adenocarcinoma and deserve a further study in the future.

  10. A novel fusion of HNRNPA1-ALK in inflammatory myofibroblastic tumor of urinary bladder.

    PubMed

    Inamura, Kentaro; Kobayashi, Maki; Nagano, Hiroko; Sugiura, Yoshiya; Ogawa, Masahiro; Masuda, Hitoshi; Yonese, Junji; Ishikawa, Yuichi

    2017-11-01

    Here, we report an inflammatory myofibroblastic tumor (IMT) of the urinary bladder with a novel HNRNPA1-ALK fusion. To the best of our knowledge, this is the first case of a tumor with HNRNPA1-ALK fusion. A 42-year-old Japanese man underwent total cystectomy because of an invasive urinary bladder tumor. Grossly, the tumor had invaded the peribladder fat tissue. Histologically, it comprised spindle neoplastic cells with intermingled inflammatory cells. Immunohistochemically, it was positive for ALK, SMA, desmin, cytokeratin, and vimentin, consistent with the immunohistochemical characteristics of IMTs. Fluorescence in situ hybridization demonstrated an ALK split, and the presence of HNRNPA1-ALK was revealed by RNA sequencing. We identified a novel transcript fusion of exon 2 of HNRNPA1 and exon 18 of ALK, resulting in ALK protein overexpression. These findings provide useful information on the biology and tumorigenesis of IMTs, thus facilitating the development of molecular-targeted therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification of atypical ATRNL1 insertion to EML4-ALK fusion gene in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Hausnerova, Jitka; Skrickova, Jana; Tomiskova, Marcela; Dvorakova, Dana

    2015-03-01

    We herein present a rare case of an EML4-ALK positive patient. A 61-year-old man was diagnosed with locoregional non-small cell lung cancer (NSCLC). No EGFR mutations were detected, and therefore the ALK rearrangement was evaluated using immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and the reverse transcription PCR (RT-PCR) method for EML4-ALK. All methods showed a positive result and, therefore, the patient was treated with crizotinib with a good therapeutic response. However, a detailed RT-PCR analysis and sequencing revealed an unexpected 138 bp insertion of attractin-like 1 (ATRNL1) gene into the EML4-ALK fusion gene. In our case, the positive therapeutic response suggests that ATRNL1 insertion does not affect EML4-ALK's sensitivity to crizotinib. This case shows great EML4-ALK heterogeneity and also that basic detection methods (IHC, FISH) cannot fully specify ALK rearrangement but in many cases a full specification seems to be important for an effective TKI indication, and sequencing ALK variants might contribute to optimized patient selection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    PubMed Central

    Borel, Christelle; Mudge, Jonathan M.; Howald, Cédric; Foissac, Sylvain; Ucla, Catherine; Chrast, Jacqueline; Ribeca, Paolo; Martin, David; Murray, Ryan R.; Yang, Xinping; Ghamsari, Lila; Lin, Chenwei; Bell, Ian; Dumais, Erica; Drenkow, Jorg; Tress, Michael L.; Gelpí, Josep Lluís; Orozco, Modesto; Valencia, Alfonso; van Berkum, Nynke L.; Lajoie, Bryan R.; Vidal, Marc; Stamatoyannopoulos, John; Batut, Philippe; Dobin, Alex; Harrow, Jennifer; Hubbard, Tim; Dekker, Job; Frankish, Adam; Salehi-Ashtiani, Kourosh; Reymond, Alexandre; Antonarakis, Stylianos E.; Guigó, Roderic; Gingeras, Thomas R.

    2012-01-01

    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. PMID:22238572

  13. Uterine ALK3 is essential during the window of implantation

    PubMed Central

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M.; Barrish, James P.; Creighton, Chad J.; Lydon, John P.; DeMayo, Francesco J.; Matzuk, Martin M.

    2016-01-01

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3flox/flox-Pgr-cre–positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity. PMID:26721398

  14. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions.

    PubMed

    Gorohovski, Alessandro; Tagore, Somnath; Palande, Vikrant; Malka, Assaf; Raviv-Shay, Dorith; Frenkel-Morgenstern, Milana

    2017-01-04

    Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922: chimeric transcripts along with 11 714: cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the 'Full Collection'. In addition, for every chimera, we have added a predicted Chimeric Protein-Protein Interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922: chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Ethanol activates Midkine and Anaplastic lymphoma kinase signaling in neuroblastoma cells and in the brain

    PubMed Central

    He, Donghong; Chen, Hu; Muramatsu, Hisako; Lasek, Amy W.

    2015-01-01

    Alcohol engages signaling pathways in the brain. Midkine (MDK) is a neurotrophic factor that is overexpressed in the prefrontal cortex of alcoholics. MDK and one of its receptors, anaplastic lymphoma kinase (ALK), also regulate behavioral responses to ethanol in mice. The goal of this study was to determine whether MDK and ALK expression and signaling are activated by ethanol. We found that ethanol treatment of neuroblastoma cells increased MDK and ALK expression. We also assessed activation of ALK by ethanol in cells and found that ALK and ALK-dependent extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) phosphorylation increased rapidly with ethanol exposure. Similarly, treatment of cells with recombinant MDK protein increased ALK, ERK and STAT3 phosphorylation, suggesting that ethanol may utilize MDK to activate ALK signaling. In support of this, transfection of cells with MDK siRNAs attenuated ALK signaling in response to ethanol. Ethanol also activates ERK signaling in the brain. We found that inhibition of ALK or knockout of MDK attenuated ethanol-induced ERK phosphorylation in mouse amygdala. These results demonstrate that ethanol engages MDK and ALK signaling, which has important consequences for alcohol-induced neurotoxicity and the regulation of behaviors related to alcohol abuse. PMID:26206265

  16. Detection of Echinoderm Microtubule Associated Protein Like 4-Anaplastic Lymphoma Kinase Fusion Genes in Non-small Cell Lung Cancer Clinical Samples by a Real-time Quantitative Reverse Transcription Polymerase Chain Reaction Method.

    PubMed

    Zhao, Jing; Zhao, Jin-Yin; Chen, Zhi-Xia; Zhong, Wei; Li, Long-Yun; Liu, Li-Cheng; Hu, Xiao-Xu; Chen, Wei-Jun; Wang, Meng-Zhao

    2016-12-20

    Objective To establish a real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) for the rapid, sensitive, and specific detection of echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion genes in non-small cell lung cancer. Methods The specific primers for the four variants of EML4-ALK fusion genes (V1, V2, V3a, and V3b) and Taqman fluorescence probes for the detection of the target sequences were carefully designed by the Primer Premier 5.0 software. Then, using pseudovirus containing EML4-ALK fusion genes variants (V1, V2, V3a, and V3b) as the study objects, we further analyzed the lower limit, sensitivity, and specificity of this method. Finally, 50 clinical samples, including 3 ALK-fluorescence in situ hybridization (FISH) positive specimens, were collected and used to detect EML4-ALK fusion genes using this method. Results The lower limit of this method for the detection of EML4-ALK fusion genes was 10 copies/μl if no interference of background RNA existed. Regarding the method's sensitivity, the detection resolution was as high as 1% and 0.5% in the background of 500 and 5000 copies/μl wild-type ALK gene, respectively. Regarding the method's specificity, no non-specific amplification was found when it was used to detect EML4-ALK fusion genes in leukocyte and plasma RNA samples from healthy volunteers. Among the 50 clinical samples, 47 ALK-FISH negative samples were also negative. Among 3 ALK-FISH positive samples, 2 cases were detected positive using this method, but another was not detected because of the failure of RNA extraction. Conclusion The proposed qRT-PCR assay for the detection of EML4-ALK fusion genes is rapid, simple, sensitive, and specific, which is deserved to be validated and widely used in clinical settings.

  17. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins

    PubMed Central

    Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty

    2012-01-01

    Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224

  18. Next-generation sequencing identifies deregulation of microRNAs involved in both innate and adaptive immune response in ALK+ ALCL.

    PubMed

    Steinhilber, Julia; Bonin, Michael; Walter, Michael; Fend, Falko; Bonzheim, Irina; Quintanilla-Martinez, Leticia

    2015-01-01

    Anaplastic large cell lymphoma (ALCL) is divided into two systemic diseases according to the expression of the anaplastic lymphoma kinase (ALK). We investigated the differential expression of miRNAs between ALK+ ALCL, ALK- ALCL cells and normal T-cells using next generation sequencing (NGS). In addition, a C/EBPβ-dependent miRNA profile was generated. The data were validated in primary ALCL cases. NGS identified 106 miRNAs significantly differentially expressed between ALK+ and ALK- ALCL and 228 between ALK+ ALCL and normal T-cells. We identified a signature of 56 miRNAs distinguishing ALK+ ALCL, ALK- ALCL and T-cells. The top candidates significant differentially expressed between ALK+ and ALK- ALCL included 5 upregulated miRNAs: miR-340, miR-203, miR-135b, miR-182, miR-183; and 7 downregulated: miR-196b, miR-155, miR-146a, miR-424, miR-503, miR-424*, miR-542-3p. The miR-17-92 cluster was also upregulated in ALK+ cells. Additionally, we identified a signature of 3 miRNAs significantly regulated by the transcription factor C/EBPβ, which is specifically overexpressed in ALK+ ALCL, including the miR-181 family. Of interest, miR-181a, which regulates T-cell differentiation and modulates TCR signalling strength, was significantly downregulated in ALK+ ALCL cases. In summary, our data reveal a miRNA signature linking ALK+ ALCL to a deregulated immune response and may reflect the abnormal TCR antigen expression known in ALK+ ALCL.

  19. Concordance of IHC, FISH and RT-PCR for EML4-ALK rearrangements.

    PubMed

    Teixidó, Cristina; Karachaliou, Niki; Peg, Vicente; Gimenez-Capitan, Ana; Rosell, Rafael

    2014-04-01

    The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) has emerged as the second most important driver oncogene in lung cancer and the first targetable fusion oncokinase to be identified in 4-6% of lung adenocarcinomas. Crizotinib, along with a diagnostic test-the Vysis ALK Break Apart fluorescence in situ hybridization (FISH) Probe Kit-is approved for the treatment of ALK positive advanced non-small cell lung cancer (NSCLC). However, the success of a targeted drug is critically dependent on a sensitive and specific screening assay to detect the molecular drug target. In our experience, reverse transcription polymerase chain reaction (RT-PCR)-based detection of EML4-ALK is a more sensitive and reliable approach compared to FISH and immunohistochemistry (IHC). Although ALK FISH is clinically validated, the assay can be technically challenging and other diagnostic modalities, including IHC and RT-PCR should be further explored.

  20. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fuchun; Liu, Xiaoke, E-mail: liuxk57@163.com; Qing, Qin, E-mail: qinqingscu@126.com

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells.more » Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.« less

  1. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.

    PubMed

    Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana

    2014-07-01

    Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    PubMed

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  4. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples

    PubMed Central

    2013-01-01

    Background Alternative splicing (AS) is a major mechanism for modulating gene expression of an organism, allowing the synthesis of several structurally and functionally distinct mRNAs and protein isoforms from a unique gene. Related to AS is the Transcription Induced Chimerism (TIC) or Tandem Chimerism, by which chimeric RNAs between adjacent genes can be found, increasing combinatorial complexity of the proteome. The Ly6g5b gene presents particular behaviours in its expression, involving an intron retention event and being capable to form RNA chimera transcripts with the upstream gene Csnk2b. We wanted to characterise these events more deeply in four tissues in six different mammals and analyse their protein products. Results While canonical Csnk2b isoform was widely expressed, Ly6g5b canonical isoform was less ubiquitous, although the Ly6g5b first intron retained transcript was present in all the tissues and species analysed. Csnk2b-Ly6g5b chimeras were present in all the samples analysed, but with restricted expression patterns. Some of these chimeric transcripts maintained correct structural domains from Csnk2b and Ly6g5b. Moreover, we found Csnk2b, Ly6g5b, and Csnk2b-Ly6g5b transcripts that present exon skipping, alternative 5' and 3' splice site and intron retention events. These would generate truncated or aberrant proteins whose role remains unknown. Some chimeric transcripts would encode CSNK2B proteins with an altered C-terminus, which could affect its biological function broadening its substrate specificity. Over-expression of human CSNK2B, LY6G5B, and CSNK2B-LY6G5B proteins, show different patterns of post-translational modifications and cell distribution. Conclusions Ly6g5b intron retention and Csnk2b-Ly6g5b transcript chimerism are broadly distributed in tissues of different mammals. PMID:23521802

  5. ALK and ROS1 rearrangements, coexistence and treatment in epidermal growth factor receptor-wild type lung adenocarcinoma: a multicenter study of 732 cases.

    PubMed

    Song, Zhengbo; Zheng, Yuhui; Wang, Xuzhou; Su, Haiyan; Zhang, Yiping; Song, Yong

    2017-10-01

    Anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements represent two most frequent fusion targets in lung adenocarcinoma. Our study was intended to explore the clinicopathological characteristics, coexistence and treatment of ALK/ROS1-rearranged patients of lung adenocarcinoma without epidermal growth factor receptor (EGFR) mutation. Patients with wild-type EGFR mutation were screened for ALK/ROS1 at four domestic hospitals. ALK/ROS1 rearrangements were detected by reverse transcription-polymerase chain reaction (RT-PCR). Progression-free survival (PFS) curve was plotted with the Kaplan-Meier method. Among 732 eligible cases, ALK and ROS1 rearrangements were detected in 89 (12.2%) and 32 (4.4%) patients respectively. One patient harbored coexisting ALK/ROS1 fusion. Both ALK and ROS1-positive phenotypes were predominantly detected in younger non-smokers. More ALK/ROS1-rearranged patients were correlated with the expressions of TTF1, napsin A and solid predominant adenocarcinoma subtype. Thirty-three ALK and six ROS1 rearrangement patients received crizotinib treatment at an advanced stage. The median PFS was 9.5 months for ALK-positive patients and it was not attained in ROS1-rearranged counterparts. The frequency of ALK and ROS1 rearrangements is elevated in EGFR-wild-type patients and the phenomenon of coexisting ALK/ROS1 has remained extremely rare. The rearrangements of ALK/ROS1 are correlated with age, smoking status, expressions of TTF1 & napsin A and solid predominant adenocarcinoma subtype.

  6. Sensitive detection of EML4-ALK fusion oncoprotein of lung cancer by in situ proximity ligation assay.

    PubMed

    Rho, Jin Kyung; Lee, Hyangsin; Park, Chan-Sik; Choi, Chang-Min; Lee, Jae Cheol

    2013-09-01

    EML4-ALK fusion oncogene has emerged as a novel molecular target in non-small cell lung cancer (NSCLC). Although break-apart fluorescent in situ hybridization (FISH) is the standard method for diagnosis, it is expensive, not readily available and sometimes difficult to interpret. In addition, ALK immunohistochemistry (IHC) may miss the diagnosis because of relatively low level of ALK transcription. In situ proximity ligation assay (PLA) originally developed for precise detection and quantification of proteins by dual recognition and amplification process was used for sensitive detection of EML4-ALK fusion oncoprotein in NSCLC cell lines (ALK negative cell: PC-9 and H460, ALK positive cell: H3122 and H2228). EML4-ALK oncogene and protein in lung cancer cells were confirmed by multiplex RT-PCR and Western blots. We detected 117 kDa variant 1 of EML4-ALK in H3122 and 90 kDa variant 3 of EML4-ALK in H2228. These cells were more sensitive to crizotinib, an ALK inhibitor compared with PC-9 and H460 cells without EML4-ALK rearrangement. After fixing on glass slides by cytospin centrifuge, in situ PLA test was performed. Among four cell lines, distinct, tiny spots were visible only in H3122 and H2228 cell lines with ALK rearrangement. The same results were also obtained when paraffin-embedded cell blocks were used. Highly specific and sensitive detection of EML4-ALK fusion oncoprotein is possible by in situ PLA method suggesting its clinical application.

  7. ALK and ROS1 rearrangements, coexistence and treatment in epidermal growth factor receptor-wild type lung adenocarcinoma: a multicenter study of 732 cases

    PubMed Central

    Song, Zhengbo; Zheng, Yuhui; Wang, Xuzhou; Su, Haiyan

    2017-01-01

    Background Anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements represent two most frequent fusion targets in lung adenocarcinoma. Our study was intended to explore the clinicopathological characteristics, coexistence and treatment of ALK/ROS1-rearranged patients of lung adenocarcinoma without epidermal growth factor receptor (EGFR) mutation. Methods Patients with wild-type EGFR mutation were screened for ALK/ROS1 at four domestic hospitals. ALK/ROS1 rearrangements were detected by reverse transcription-polymerase chain reaction (RT-PCR). Progression-free survival (PFS) curve was plotted with the Kaplan-Meier method. Results Among 732 eligible cases, ALK and ROS1 rearrangements were detected in 89 (12.2%) and 32 (4.4%) patients respectively. One patient harbored coexisting ALK/ROS1 fusion. Both ALK and ROS1-positive phenotypes were predominantly detected in younger non-smokers. More ALK/ROS1-rearranged patients were correlated with the expressions of TTF1, napsin A and solid predominant adenocarcinoma subtype. Thirty-three ALK and six ROS1 rearrangement patients received crizotinib treatment at an advanced stage. The median PFS was 9.5 months for ALK-positive patients and it was not attained in ROS1-rearranged counterparts. Conclusions The frequency of ALK and ROS1 rearrangements is elevated in EGFR-wild-type patients and the phenomenon of coexisting ALK/ROS1 has remained extremely rare. The rearrangements of ALK/ROS1 are correlated with age, smoking status, expressions of TTF1 & napsin A and solid predominant adenocarcinoma subtype. PMID:29268402

  8. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib.

    PubMed

    Fang, Douglas D; Zhang, Bin; Gu, Qingyang; Lira, Maruja; Xu, Qiang; Sun, Hongye; Qian, Maoxiang; Sheng, Weiqi; Ozeck, Mark; Wang, Zhenxiong; Zhang, Cathy; Chen, Xinsheng; Chen, Kevin X; Li, Jian; Chen, Shu-Hui; Christensen, James; Mao, Mao; Chan, Chi-Chung

    2014-03-01

    The aim of this study was to identify anaplastic lymphoma kinase (ALK) rearrangements in lung cancer patient-derived xenograft (PDX) models and to explore their responses to crizotinib. Screening of 99 lung cancer PDX models by the NanoString ALK fusion assay identified two ALK-rearranged non-small-cell lung cancer (NSCLC) tumors, including one harboring a previously known echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion and another containing an unknown ALK fusion variant. Expression array, RNA-Seq, reverse transcription polymerase chain reaction, and direct sequencing were then conducted to confirm the rearrangements and to identify the novel fusion partner in the xenograft and/or the primary patient tumor. Finally, pharmacological studies were performed in PDX models to evaluate their responses to ALK inhibitor crizotinib. Two ALK-rearranged NSCLC PDX models were identified: one carried a well-known EML4-ALK variant 3a/b and the other harbored a novel huntingtin interacting protein 1 (HIP1)-ALK fusion gene. Exon 28 of the HIP1 gene located on chromosome 7 was fused to exon 20 of the ALK gene located on chromosome 2. Both cases were clinically diagnosed as squamous cell carcinoma. Compared with the other lung cancer PDX models, both ALK-rearranged models displayed elevated ALK mRNA expression. Furthermore, in vivo efficacy studies demonstrated that, similar to the EML4-ALK-positive model, the HIP1-ALK-containing PDX model was sensitive to treatment with crizotinib. Discovery of HIP1 as a fusion partner of ALK in NSCLC is a novel finding. In addition, the HIP1-ALK-rearranged tumor is sensitive to treatment with crizotinib in vivo, implicating HIP1-ALKas an oncogenic driver of lung tumorigenesis. Collectively, our results indicate that HIP1-ALK-positive NSCLC may benefit from clinical applications of crizotinib.

  9. Connections between Transcription Downstream of Genes and cis-SAGe Chimeric RNA.

    PubMed

    Chwalenia, Katarzyna; Qin, Fujun; Singh, Sandeep; Tangtrongstittikul, Panjapon; Li, Hui

    2017-11-22

    cis-Splicing between adjacent genes (cis-SAGe) is being recognized as one way to produce chimeric fusion RNAs. However, its detail mechanism is not clear. Recent study revealed induction of transcriptions downstream of genes (DoGs) under osmotic stress. Here, we investigated the influence of osmotic stress on cis-SAGe chimeric RNAs and their connection to DoGs. We found,the absence of induction of at least some cis-SAGe fusions and/or their corresponding DoGs at early time point(s). In fact, these DoGs and their cis-SAGe fusions are inversely correlated. This negative correlation was changed to positive at a later time point. These results suggest a direct competition between the two categories of transcripts when total pool of readthrough transcripts is limited at an early time point. At a later time point, DoGs and corresponding cis-SAGe fusions are both induced, indicating that total readthrough transcripts become more abundant. Finally, we observed overall enhancement of cis-SAGe chimeric RNAs in KCl-treated samples by RNA-Seq analysis.

  10. Evaluation of NGS and RT-PCR Methods for ALK Rearrangement in European NSCLC Patients: Results from the European Thoracic Oncology Platform Lungscape Project.

    PubMed

    Letovanec, Igor; Finn, Stephen; Zygoura, Panagiota; Smyth, Paul; Soltermann, Alex; Bubendorf, Lukas; Speel, Ernst-Jan; Marchetti, Antonio; Nonaka, Daisuke; Monkhorst, Kim; Hager, Henrik; Martorell, Miguel; Sejda, Aleksandra; Cheney, Richard; Hernandez-Losa, Javier; Verbeken, Eric; Weder, Walter; Savic, Spasenija; Di Lorito, Alessia; Navarro, Atilio; Felip, Enriqueta; Warth, Arne; Baas, Paul; Meldgaard, Peter; Blackhall, Fiona; Dingemans, Anne-Marie; Dienemann, Hendrik; Dziadziuszko, Rafal; Vansteenkiste, Johan; O'Brien, Cathal; Geiger, Thomas; Sherlock, Jon; Schageman, Jeoffrey; Dafni, Urania; Kammler, Roswitha; Kerr, Keith; Thunnissen, Erik; Stahel, Rolf; Peters, Solange

    2018-03-01

    The reported prevalence of ALK receptor tyrosine kinase gene (ALK) rearrangement in NSCLC ranges from 2% to 7%. The primary standard diagnostic method is fluorescence in situ hybridization (FISH). Recently, immunohistochemistry (IHC) has also proved to be a reproducible and sensitive technique. Reverse-transcriptase polymerase chain reaction (RT-PCR) has also been advocated, and most recently, the advent of targeted next-generation sequencing (NGS) for ALK and other fusions has become possible. This study compares anaplastic lymphoma kinase (ALK) evaluation with all four techniques in resected NSCLC from the large European Thoracic Oncology Platform Lungscape cohort. A total of 96 cases from the European Thoracic Oncology Platform Lungscape iBiobank, with any ALK immunoreactivity were examined by FISH, central RT-PCR, and NGS. An H-score higher than 120 defines IHC positivity. RNA was extracted from the same formalin-fixed, paraffin-embedded tissues. For RT-PCR, primers covered the most frequent ALK translocations. For NGS, the Oncomine Solid Tumour Fusion Transcript Kit (Thermo Fisher Scientific, Waltham, MA) was used. The concordance was assessed using the Cohen κ coefficient (two-sided α ≤ 5%). NGS provided results for 77 of the 95 cases tested (81.1%), whereas RT-PCR provided results for 77 of 96 (80.2%). Concordance occurred in 55 cases of the 60 cases tested with all four methods (43 ALK negative and 12 ALK positive). Using ALK copositivity for IHC and FISH as the criterion standard, we derived a sensitivity for RT-PCR/NGS of 70.0%/85.0%, with a specificity of 87.1%/79.0%. When either RT-PCR or NGS was combined with IHC, the sensitivity remained the same, whereas the specificity increased to 88.7% and 83.9% respectively. NGS evaluation with the Oncomine Solid Tumour Fusion transcript kit and RT-PCR proved to have high sensitivity and specificity, advocating their use in routine practice. For maximal sensitivity and specificity, ALK status should be assessed by using two techniques and a third one in discordant cases. We therefore propose a customizable testing algorithm. These findings significantly influence existing testing paradigms and have clear clinical and economic impact. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Ernst, Thomas; Chase, Andrew; Zoi, Katerina; Waghorn, Katherine; Hidalgo-Curtis, Claire; Score, Joannah; Jones, Amy; Grand, Francis; Reiter, Andreas; Hochhaus, Andreas; Cross, Nicholas C.P.

    2010-01-01

    Background Aberrant activation of tyrosine kinases, caused by either mutation or gene fusion, is of major importance for the development of many hematologic malignancies, particularly myeloproliferative neoplasms. We hypothesized that hitherto unrecognized, cytogenetically cryptic tyrosine kinase fusions may be common in non-classical or atypical myeloproliferative neoplasms and related myelodysplastic/myeloproliferative neoplasms. Design and Methods To detect genomic copy number changes associated with such fusions, we performed a systematic search in 68 patients using custom designed, targeted, high-resolution array comparative genomic hybridization. Arrays contained 44,000 oligonucleotide probes that targeted 500 genes including all 90 tyrosine kinases plus downstream tyrosine kinase signaling components, other translocation targets, transcription factors, and other factors known to be important for myelopoiesis. Results No abnormalities involving tyrosine kinases were detected; however, nine cytogenetically cryptic copy number imbalances were detected in seven patients, including hemizygous deletions of RUNX1 or CEBPA in two cases with atypical chronic myeloid leukemia. Mutation analysis of the remaining alleles revealed non-mutated RUNX1 and a frameshift insertion within CEBPA. A further mutation screen of 187 patients with myelodysplastic/myeloproliferative neoplasms identified RUNX1 mutations in 27 (14%) and CEBPA mutations in seven (4%) patients. Analysis of other transcription factors known to be frequently mutated in acute myeloid leukemia revealed NPM1 mutations in six (3%) and WT1 mutations in two (1%) patients with myelodysplastic/myeloproliferative neoplasms. Univariate analysis indicated that patients with mutations had a shorter overall survival (28 versus 44 months, P=0.019) compared with patients without mutations, with the prognosis for cases with CEBPA, NPM1 or WT1 mutations being particularly poor. Conclusions We conclude that mutations of transcription and other nuclear factors are frequent in myelodysplastic/myeloproliferative neoplasms and are generally mutually exclusive. CEBPA, NPM1 or WT1 mutations may be associated with a poor prognosis, an observation that will need to be confirmed by detailed prospective studies. PMID:20421268

  12. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  13. Sensitive and specific detection of EML4-ALK rearrangements in non-small cell lung cancer (NSCLC) specimens by multiplex amplicon RNA massive parallel sequencing.

    PubMed

    Moskalev, Evgeny A; Frohnauer, Judith; Merkelbach-Bruse, Sabine; Schildhaus, Hans-Ulrich; Dimmler, Arno; Schubert, Thomas; Boltze, Carsten; König, Helmut; Fuchs, Florian; Sirbu, Horia; Rieker, Ralf J; Agaimy, Abbas; Hartmann, Arndt; Haller, Florian

    2014-06-01

    Recurrent gene fusions of anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) have been recently identified in ∼5% of non-small cell lung cancers (NSCLCs) and are targets for selective tyrosine kinase inhibitors. While fluorescent in situ hybridization (FISH) is the current gold standard for detection of EML4-ALK rearrangements, several limitations exist including high costs, time-consuming evaluation and somewhat equivocal interpretation of results. In contrast, targeted massive parallel sequencing has been introduced as a powerful method for simultaneous and sensitive detection of multiple somatic mutations even in limited biopsies, and is currently evolving as the method of choice for molecular diagnostic work-up of NSCLCs. We developed a novel approach for indirect detection of EML4-ALK rearrangements based on 454 massive parallel sequencing after reverse transcription and subsequent multiplex amplification (multiplex ALK RNA-seq) which takes advantage of unbalanced expression of the 5' and 3' ALK mRNA regions. Two lung cancer cell lines and a selected series of 32 NSCLC samples including 11 cases with EML4-ALK rearrangement were analyzed with this novel approach in comparison to ALK FISH, ALK qRT-PCR and EML4-ALK RT-PCR. The H2228 cell line with known EML4-ALK rearrangement showed 171 and 729 reads for 5' and 3' ALK regions, respectively, demonstrating a clearly unbalanced expression pattern. In contrast, the H1299 cell line with ALK wildtype status displayed no reads for both ALK regions. Considering a threshold of 100 reads for 3' ALK region as indirect indicator of EML4-ALK rearrangement, there was 100% concordance between the novel multiplex ALK RNA-seq approach and ALK FISH among all 32 NSCLC samples. Multiplex ALK RNA-seq is a sensitive and specific method for indirect detection of EML4-ALK rearrangements, and can be easily implemented in panel based molecular diagnostic work-up of NSCLCs by massive parallel sequencing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Cancer translocations in human cells induced by zinc finger and TALE nucleases

    PubMed Central

    Piganeau, Marion; Ghezraoui, Hind; De Cian, Anne; Guittat, Lionel; Tomishima, Mark; Perrouault, Loic; René, Oliver; Katibah, George E.; Zhang, Lei; Holmes, Michael C.; Doyon, Yannick; Concordet, Jean-Paul; Giovannangeli, Carine; Jasin, Maria; Brunet, Erika

    2013-01-01

    Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. The wealth of genomic aberrations found in cancer, however, makes it challenging to assign a specific phenotypic change to a specific aberration. In this study, we set out to use genome editing with zinc finger (ZFN) and transcription activator-like effector (TALEN) nucleases to engineer, de novo, translocation-associated oncogenes at cognate endogenous loci in human cells. Using ZFNs and TALENs designed to cut precisely at relevant translocation breakpoints, we induced cancer-relevant t(11;22)(q24;q12) and t(2;5)(p23;q35) translocations found in Ewing sarcoma and anaplastic large cell lymphoma (ALCL), respectively. We recovered both translocations with high efficiency, resulting in the expression of the EWSR1–FLI1 and NPM1–ALK fusions. Breakpoint junctions recovered after ZFN cleavage in human embryonic stem (ES) cell–derived mesenchymal precursor cells fully recapitulated the genomic characteristics found in tumor cells from Ewing sarcoma patients. This approach with tailored nucleases demonstrates that expression of fusion genes found in cancer cells can be induced from the native promoter, allowing interrogation of both the underlying mechanisms and oncogenic consequences of tumor-related translocations in human cells. With an analogous strategy, the ALCL translocation was reverted in a patient cell line to restore the integrity of the two participating chromosomes, further expanding the repertoire of genomic rearrangements that can be engineered by tailored nucleases. PMID:23568838

  15. The chimeric transcript RUNX1-GLRX5: a biomarker for good postoperative prognosis in Stage IA non-small-cell lung cancer.

    PubMed

    Ishikawa, Rie; Amano, Yosuke; Kawakami, Masanori; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Ohishi, Nobuya; Yatomi, Yutaka; Nakajima, Jun; Fukayama, Masashi; Nagase, Takahide; Takai, Daiya

    2016-02-01

    Stage IA non-small-cell lung cancer cases have been recognized as having a low risk of relapse; however, occasionally, relapse may occur. To predict clinical outcome in Stage IA non-small-cell lung cancer patients, we searched for chimeric transcripts that can be used as biomarkers and identified a novel chimeric transcript, RUNX1-GLRX5, comprising RUNX1, a transcription factor, and GLRX5. This chimera was detected in approximately half of the investigated Stage IA non-small-cell lung cancer patients (44/104 cases, 42.3%). Although there was no significant difference in the overall survival rate between RUNX1-GLRX5-positive and -negative cases (P = 0.088), a significantly lower relapse rate was observed in the RUNX1-GLRX5-positive cases (P = 0.039), indicating that this chimera can be used as a biomarker for good prognosis in Stage IA patients. Detection of the RUNX1-GLRX5 chimeric transcript may therefore be useful for the determination of a postoperative treatment plan for Stage IA non-small-cell lung cancer patients. © The Author 2015. Published by Oxford University Press.

  16. The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.

    PubMed

    Koyama-Nasu, R; Haruta, R; Nasu-Nishimura, Y; Taniue, K; Katou, Y; Shirahige, K; Todo, T; Ino, Y; Mukasa, A; Saito, N; Matsui, M; Takahashi, R; Hoshino-Okubo, A; Sugano, H; Manabe, E; Funato, K; Akiyama, T

    2014-04-24

    Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

  17. [Expression of human-mouse chimeric antibody directed against Chikungunya virus with site-specific integration system].

    PubMed

    Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang

    2005-05-01

    To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.

  18. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3.

    PubMed

    Koh, Jaemoon; Jang, Ji-Young; Keam, Bhumsuk; Kim, Sehui; Kim, Moon-Young; Go, Heounjeong; Kim, Tae Min; Kim, Dong-Wan; Kim, Chul-Woo; Jeon, Yoon Kyung; Chung, Doo Hyun

    2016-03-01

    Programmed cell death (PD)-1/PD-1 ligand-1 (PD-L1)-targeted therapy has emerged as a promising therapeutic strategy for lung cancer. However, whether EML4-ALK regulates PD-L1 expression in lung cancer remains unknown. A total of 532 pulmonary adenocarcinomas (pADCs), including 58 ALK -translocated tumors, were immunohistochemically evaluated for PD-L1 and PD-1. H23 ( EGFR Wild-type EML4-ALK - PD-L1 Low ) and H2228 ( EGFR Wild-type EML4-ALK + PD-L1 High ) cells were transfected with EML4-ALK or ALK short interfering RNAs and used to investigate the alterations in PD-L1 expression. PD-L1 expression was detected in 81% of ALK -translocated pADCs; this value was significantly higher than those of pADCs with EGFR mutation, KRAS mutation or lacking ALK, EGFR or KRAS mutation ( p <0.005 for all). Moreover, ALK -translocated pADC with PD-L1 expression showed significantly higher numbers of tumor-infiltrating PD-1 + cells. ALK knockdown or inhibition (crizotinib treatment) in H2228 cells downregulated PD-L1 expression. Transfection of H23 cells with EML4-ALK enhanced PD-L1 expression, which was compromised by crizotinib treatment. This ALK-dependent upregulation of PD-L1 expression was mediated by STAT3 and hypoxia-inducible factor (HIF)-1α under normoxia and hypoxia. Furthermore, EML4-ALK enhanced HIF-1α expression through increasing transcription and decreasing ubiquitination of HIF-1α. In ALK -translocated pADC tissues, significant positive correlations between PD-L1 and nuclear HIF-1α ( p < 0.05) or pSTAT3 expression levels ( p <0.005) were observed. Among patients with ALK -translocated pADC, strong PD-L1 expression was significantly associated with shorter progression-free ( p = 0.001) and overall survival ( p = 0.002) after crizotinib treatment. Collectively, our findings demonstrate that ALK- derived pADCs increase PD-L1 expression via HIF-1α and/or STAT3, thus providing a rationale for PD-1/PD-L1 pathway-targeted therapy in ALK -translocated lung cancer.

  19. A subgroup of pleural mesothelioma expresses ALK protein and may be targetable by combined rapamycin and crizotinib therapy.

    PubMed

    Mönch, Dina; Bode-Erdmann, Sabine; Kalla, Jörg; Sträter, Jörn; Schwänen, Carsten; Falkenstern-Ge, Roger; Klumpp, Siegfried; Friedel, Godehard; Ott, German; Kalla, Claudia

    2018-04-17

    Malignant pleural mesothelioma (MPM) is a neoplasm with inferior prognosis and notorious chemotherapeutic resistance. Targeting aberrantly overexpressed kinases to cure MPM is a promising therapeutic strategy. Here, we examined ALK, MET and mTOR as potential therapeutic targets and determined the combinatorial efficacy of ALK and mTOR targeting on tumor cell growth in vivo . First, ALK overexpression, rearrangement and mutation were studied in primary MPM by qRT-PCR, FISH, immunohistochemistry and sequence analysis; mTOR and MET expression by qRT-PCR and immunohistochemistry. Overexpression of full-length ALK transcripts was observed in 25 (19.5%) of 128 primary MPM, of which ten expressed ALK protein. ALK overexpression was not associated with gene rearrangement, amplification or kinase-domain mutation. mTOR protein was detected in 28.7% MPM, co-expressed with ALK or MET in 5% and 15% MPM, respectively. The ALK/MET inhibitor crizotinib enhanced the anti-tumor effect of the mTOR-inhibitor rapamycin in a patient-derived MPM xenograft with co-activated ALK/mTOR: combined therapy achieved tumor shrinkage in 4/5 tumors and growth stagnation in one tumor. Treatment effects on proliferation, apoptosis, autophagy and pathway signaling were assessed using Ki-67 immunohistochemistry, TUNEL assay, LC3B immunofluorescence, and immunoblotting. Co-treatment significantly suppressed cell proliferation and induced autophagy and caspase-independent, necrotic cell death. Rapamycin/crizotinib simultaneously inhibited mTORC1 (evidenced by S6 kinase and RPS6 dephosphorylation) and ALK signaling (ALK, AKT, STAT3 dephosphorylation), and crizotinib suppressed the adverse AKT activation induced by rapamycin. In conclusion, co-treatment with rapamycin and crizotinib is effective in suppressing MPM tumor growth and should be further explored as a therapeutic alternative in mesothelioma.

  20. A subgroup of pleural mesothelioma expresses ALK protein and may be targetable by combined rapamycin and crizotinib therapy

    PubMed Central

    Mönch, Dina; Bode-Erdmann, Sabine; Kalla, Jörg; Sträter, Jörn; Schwänen, Carsten; Falkenstern-Ge, Roger; Klumpp, Siegfried; Friedel, Godehard; Ott, German; Kalla, Claudia

    2018-01-01

    Malignant pleural mesothelioma (MPM) is a neoplasm with inferior prognosis and notorious chemotherapeutic resistance. Targeting aberrantly overexpressed kinases to cure MPM is a promising therapeutic strategy. Here, we examined ALK, MET and mTOR as potential therapeutic targets and determined the combinatorial efficacy of ALK and mTOR targeting on tumor cell growth in vivo. First, ALK overexpression, rearrangement and mutation were studied in primary MPM by qRT-PCR, FISH, immunohistochemistry and sequence analysis; mTOR and MET expression by qRT-PCR and immunohistochemistry. Overexpression of full-length ALK transcripts was observed in 25 (19.5%) of 128 primary MPM, of which ten expressed ALK protein. ALK overexpression was not associated with gene rearrangement, amplification or kinase-domain mutation. mTOR protein was detected in 28.7% MPM, co-expressed with ALK or MET in 5% and 15% MPM, respectively. The ALK/MET inhibitor crizotinib enhanced the anti-tumor effect of the mTOR-inhibitor rapamycin in a patient-derived MPM xenograft with co-activated ALK/mTOR: combined therapy achieved tumor shrinkage in 4/5 tumors and growth stagnation in one tumor. Treatment effects on proliferation, apoptosis, autophagy and pathway signaling were assessed using Ki-67 immunohistochemistry, TUNEL assay, LC3B immunofluorescence, and immunoblotting. Co-treatment significantly suppressed cell proliferation and induced autophagy and caspase-independent, necrotic cell death. Rapamycin/crizotinib simultaneously inhibited mTORC1 (evidenced by S6 kinase and RPS6 dephosphorylation) and ALK signaling (ALK, AKT, STAT3 dephosphorylation), and crizotinib suppressed the adverse AKT activation induced by rapamycin. In conclusion, co-treatment with rapamycin and crizotinib is effective in suppressing MPM tumor growth and should be further explored as a therapeutic alternative in mesothelioma. PMID:29755689

  1. Clinicopathological features of younger (aged ≤ 50 years) lung adenocarcinoma patients harboring the EML4-ALK fusion gene.

    PubMed

    Kometani, Takuro; Sugio, Kenji; Osoegawa, Atsushi; Seto, Takashi; Ichinose, Yukito

    2018-05-01

    The EML4-ALK fusion gene has recently been identified as a driver mutation in a subset of non-small cell lung cancers. In subsequent studies, EML4-ALK has been detected in a low percentage of patients, and was associated with a lack of EGFR or KRAS mutations, younger age, and adenocarcinoma with acinar histology. Cases with the EML4-ALK fusion gene were examined to clarify the clinicopathological characteristics of young adenocarcinoma patients. Between December 1998 and May 2009, 85 patients aged ≤ 50 with lung adenocarcinoma were treated at our hospital. We examined 49 samples from adenocarcinoma patients who underwent surgical resection, chemotherapy, and/or radiotherapy for the EML4-ALK gene. None of the patients received ALK inhibitors because these drugs had not been approved in Japan before 2012. EML4-ALK fusion genes were screened using multiplex reverse-transcription PCR assay, and were confirmed by direct sequencing. The EML4-ALK fusion gene was detected in five tumors (10.2%). One patient had stage IB disease, one had stage IIIA, and three had stage IV. Histologically, there was one solid adenocarcinoma, two acinar adenocarcinomas, and two papillary adenocarcinomas. EML4-ALK fusion genes were mutually exclusive to EGFR and KRAS mutations. The five-year survival rate was 59.4% in patients without EML4-ALK fusion and was not reached in patients with EML4-ALK fusion. The EML4-ALK fusion gene may be a strong oncogene in younger patients with lung adenocarcinoma. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer.

    PubMed

    Nilsson, R Jonas A; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A M; Thunnissen, Erik; Dingemans, Anne-Marie C; Viteri, Santiago; Tannous, Bakhos A; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F; Wurdinger, Thomas

    2016-01-05

    Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK- platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.

  3. Clinicopathological features of younger (aged ≤ 50 years) lung adenocarcinoma patients harboring the EML4‐ALK fusion gene

    PubMed Central

    Sugio, Kenji; Osoegawa, Atsushi; Seto, Takashi; Ichinose, Yukito

    2018-01-01

    Background The EML4‐ALK fusion gene has recently been identified as a driver mutation in a subset of non‐small cell lung cancers. In subsequent studies, EML4‐ALK has been detected in a low percentage of patients, and was associated with a lack of EGFR or KRAS mutations, younger age, and adenocarcinoma with acinar histology. Cases with the EML4‐ALK fusion gene were examined to clarify the clinicopathological characteristics of young adenocarcinoma patients. Methods Between December 1998 and May 2009, 85 patients aged ≤ 50 with lung adenocarcinoma were treated at our hospital. We examined 49 samples from adenocarcinoma patients who underwent surgical resection, chemotherapy, and/or radiotherapy for the EML4‐ALK gene. None of the patients received ALK inhibitors because these drugs had not been approved in Japan before 2012. EML4‐ALK fusion genes were screened using multiplex reverse‐transcription PCR assay, and were confirmed by direct sequencing. Results The EML4‐ALK fusion gene was detected in five tumors (10.2%). One patient had stage IB disease, one had stage IIIA, and three had stage IV. Histologically, there was one solid adenocarcinoma, two acinar adenocarcinomas, and two papillary adenocarcinomas. EML4‐ALK fusion genes were mutually exclusive to EGFR and KRAS mutations. The five‐year survival rate was 59.4% in patients without EML4‐ALK fusion and was not reached in patients with EML4‐ALK fusion. Conclusion The EML4‐ALK fusion gene may be a strong oncogene in younger patients with lung adenocarcinoma. PMID:29517858

  4. EML4-ALK translocation is associated with early onset of disease and other clinicopathological features in Chinese female never-smokers with non-small-cell lung cancer

    PubMed Central

    REN, WEIHONG; ZHANG, BO; MA, JIE; LI, WENCAI; LAN, JIANYUN; MEN, HUI; ZHANG, QINXIAN

    2015-01-01

    Non-small-cell lung cancer (NSCLC) with echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) translocation is resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, but responds to the ALK-TKI crizotinib. Characterization of EML4-ALK translocation may provide invaluable information to facilitate disease diagnosis and improve the outcome of customized treatment. Although the occurrence of EML4-ALK translocation is likely to be affected by the smoking habits and gender of patients, the translocation has not been characterized extensively in female never-smokers with NSCLC. Therefore, 280 female never-smokers that were diagnosed with NSCLC were enrolled in the present study, and characteristics of EML4-ALK translocation, including the frequency, were determined in these NSCLC patients. EML4-ALK fusion variants were detected using Multiplex one-step reverse transcription-polymerase chain reaction and subsequently confirmed by DNA sequencing and Vysis ALK Break Apart fluorescence in situ hybridization analysis. The EML4-ALK fusion variants were detected in 21 carcinoma tissue specimens, accounting for 7.5% of the enrolled patients. Out of these patients with EML4-ALK fusion variants, EML4-ALK fusion variant 1 was identified in 12 patients, indicating that variant 1 is the most common type of EML4-ALK fusion gene in the present cohort of patients. ALK mRNA was aberrantly expressed in all the tissues with EML4-ALK translocation, but not in the carcinoma tissues without EML4-ALK translocation. In addition, the EML4-ALK translocation was more frequently found in younger patients. The median age of patients with EML4-ALK translocation was 50.95±2.29 years, which was significantly younger (P<0.01) than the median age of the patients without EML4-ALK translocation (57.15±0.56). The EML4-ALK translocation was detected exclusively in undifferentiated tumors that were graded as poorly- or moderately-differentiated carcinomas and suspected to be more malignant compared with well-differentiated tumors. In summary, the present study found that 7.5% of patients with NSCLC that are female never-smokers harbor EML4-ALK translocations, which are associated with the aberrant expression of ALK mRNA, early onset of disease and undifferentiated carcinomas. PMID:26788139

  5. EML4-ALK translocation is associated with early onset of disease and other clinicopathological features in Chinese female never-smokers with non-small-cell lung cancer.

    PubMed

    Ren, Weihong; Zhang, B O; Ma, Jie; Li, Wencai; Lan, Jianyun; Men, Hui; Zhang, Qinxian

    2015-12-01

    Non-small-cell lung cancer (NSCLC) with echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) translocation is resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, but responds to the ALK-TKI crizotinib. Characterization of EML4-ALK translocation may provide invaluable information to facilitate disease diagnosis and improve the outcome of customized treatment. Although the occurrence of EML4-ALK translocation is likely to be affected by the smoking habits and gender of patients, the translocation has not been characterized extensively in female never-smokers with NSCLC. Therefore, 280 female never-smokers that were diagnosed with NSCLC were enrolled in the present study, and characteristics of EML4-ALK translocation, including the frequency, were determined in these NSCLC patients. EML4-ALK fusion variants were detected using Multiplex one-step reverse transcription-polymerase chain reaction and subsequently confirmed by DNA sequencing and Vysis ALK Break Apart fluorescence in situ hybridization analysis. The EML4-ALK fusion variants were detected in 21 carcinoma tissue specimens, accounting for 7.5% of the enrolled patients. Out of these patients with EML4-ALK fusion variants, EML4-ALK fusion variant 1 was identified in 12 patients, indicating that variant 1 is the most common type of EML4-ALK fusion gene in the present cohort of patients. ALK mRNA was aberrantly expressed in all the tissues with EML4-ALK translocation, but not in the carcinoma tissues without EML4-ALK translocation. In addition, the EML4-ALK translocation was more frequently found in younger patients. The median age of patients with EML4-ALK translocation was 50.95±2.29 years, which was significantly younger (P<0.01) than the median age of the patients without EML4-ALK translocation (57.15±0.56). The EML4-ALK translocation was detected exclusively in undifferentiated tumors that were graded as poorly- or moderately-differentiated carcinomas and suspected to be more malignant compared with well-differentiated tumors. In summary, the present study found that 7.5% of patients with NSCLC that are female never-smokers harbor EML4-ALK translocations, which are associated with the aberrant expression of ALK mRNA, early onset of disease and undifferentiated carcinomas.

  6. Epithelioid fibrous histiocytoma: molecular characterization of ALK fusion partners in 23 cases.

    PubMed

    Dickson, Brendan C; Swanson, David; Charames, George S; Fletcher, Christopher Dm; Hornick, Jason L

    2018-05-01

    Epithelioid fibrous histiocytoma is a rare and distinctive cutaneous neoplasm. Most cases harbor ALK rearrangement and show ALK overexpression, which distinguish this neoplasm from conventional cutaneous fibrous histiocytoma and variants. SQSTM1 and VCL have previously been shown to partner with ALK in one case each of epithelioid fibrous histiocytoma. The purpose of this study was to examine a large cohort of epithelioid fibrous histiocytomas by next-generation sequencing to characterize the nature and prevalence of ALK fusion partners. A retrospective archival review was performed to identify cases of epithelioid fibrous histiocytoma (2012-2016). Immunohistochemistry was performed to confirm ALK expression. Targeted next-generation sequencing was applied on RNA extracted from formalin-fixed paraffin-embedded tissue to identify the fusion partners. Twenty-three cases fulfilled inclusion criteria. The mean patient age was 39 years (range, 8-74), there was no sex predilection, and >75% of cases involved the lower extremities. The most common gene fusions were SQSTM1-ALK (N=12; 52%) and VCL-ALK (N=7; 30%); the other four cases harbored novel fusion partners (DCTN1, ETV6, PPFIBP1, and SPECC1L). The pattern of ALK immunoreactivity was usually granular cytoplasmic (N=12; 52%) or granular cytoplasmic and nuclear (N=10; 43%); the case containing an ETV6 fusion partner showed nuclear staining alone. There was no apparent relationship between tumor morphology and the ALK fusion partner. In summary, SQSTM1 and VCL are the most common ALK fusion partners in epithelioid fibrous histiocytoma; DCTN1, ETV6, PPFIBP1, and SPECC1L represent rare fusion partners. The proteins encoded by these genes play diverse roles in scaffolding, cell adhesion, signaling, and transcription (among others) without clear commonalities. These findings expand the oncogenic promiscuity of many of these ALK fusion genes, which drive neoplasia in tumors of diverse lineages with widely varied clinical behavior. This is the first documented account of ETV6-ALK and SPECC1L-ALK translocations in neoplasms.

  7. Vascular Injury Triggers Krüppel-Like Factor 6 (KLF6) Mobilization and Cooperation with Sp1 to Promote Endothelial Activation through Upregulation of the Activin Receptor-Like Kinase 1 (ALK1) Gene

    PubMed Central

    Garrido-Martín, Eva M.; Blanco, Francisco J.; Roquè, Mercé; Novensà, Laura; Tarocchi, Mirko; Lee, Ursula E.; Suzuki, Toru; Friedman, Scott L.; Botella, Luisa M.; Bernabéu, Carmelo

    2012-01-01

    Rationale Activin receptor-Like Kinase-1 (ALK1) is an endothelial TGF-β receptor involved in angiogenesis. ALK1 expression is high in the embryo vasculature, becoming less detectable in the quiescent endothelium of adult stages. However, ALK1 expression becomes rapidly increased after angiogenic stimuli such as vascular injury. Objective To characterize the molecular mechanisms underlying the regulation of ALK1 upon vascular injury. Methods and Results Alk1 becomes strongly upregulated in endothelial (EC) and vascular smooth muscle cells (vSMC) of mouse femoral arteries after wire-induced endothelial denudation. In vitro, denudation of monolayers of Human Umbilical Vein Endothelial Cells (HUVEC) also leads to an increase in ALK1. Interestingly, a key factor in tissue remodeling, Krüppel-like factor 6 (KLF6), translocates to the cell nucleus during wound healing, concomitantly with an increase in the ALK1 gene transcriptional rate. KLF6 knock down in HUVECs promotes ALK1 mRNA downregulation. Moreover, Klf6+/− mice have lower levels of Alk1 in their vasculature compared with their wild type siblings. Chromatin immunoprecipitation assays show that KLF6 interacts with ALK1 promoter in ECs, and this interaction is enhanced during wound healing. We demonstrate that KLF6 is transactivating ALK1 gene, and this transactivation occurs by a synergistic cooperative mechanism with Sp1. Finally, Alk1 levels in vSMCs are not directly upregulated in response to damage, but in response to soluble factors, such as IL-6, released from ECs after injury. Conclusions ALK1 is upregulated in ECs during vascular injury by a synergistic cooperative mechanism between KLF6 and Sp1, and in vSMCs by an EC-vSMC paracrine communication during vascular remodeling. PMID:23048070

  8. ALK-rearranged pulmonary adenocarcinoma in Thai Patients: From diagnosis to treatment efficacy.

    PubMed

    Incharoen, Pimpin; Reungwetwattana, Thanyanan; Saowapa, Sakditad; Kamprerasart, Kaettipong; Pangpunyakulchai, Duangjai; Arsa, Lalida; Jinawath, Artit

    2016-05-03

    Anaplastic lymphoma kinase (ALK) gene rearrangement is detected in 3% to 13% of non-small cell lung carcinoma patients, and these patients benefit from ALK inhibitors. The aim of this study was to determine the prevalence, the clinical and histological characteristics and the treatment outcomes of ALK-rearranged lung adenocarcinoma using immunohistochemistry (IHC) IHC, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) methodologies. A total of 268 pulmonary adenocarcinoma patients were screened for ALK expression by ALK IHC, which was confirmed by FISH and/or RT-PCR for ALK gene rearrangement. The treatment outcomes of ALK-rearranged patients were retrospectively reviewed. ALK gene rearrangement was identified in 26 cases (9.7%) with no EGFR co-mutation, and it showed significant associations with younger age, female sex and non-smoker status (p < 0.05). A cribriform growth pattern was identified as the dominant histologic feature, and a solid signet ring cell component was focally present in a minority of the cases. Among 12 ALK-rearranged patients with conventional treatment, seven cases in the early stage of disease were cured and alive, and five patients in the late stage of the disease progressed and died, with a median overall survival (OS) at 14 months. Of the 14 patients receiving crizotinib, all of them had clinical benefit from crizotinib treatment, with one patient having a complete response (CR), 12 patients having a partial response (PR) and one patient having stable disease (SD). On the cutoff date, six of 14 patients were continuing crizotinib treatment with a median time of response of 7.5 (3-13) months, while eight patients had disease progression, and five of them died with a median OS at 8 months. ALK gene rearrangement tended to occur in younger, non-smoking, female patients. ALK IHC is a reliable screening method to detect ALK gene rearrangement. Crizotinib therapy provided treatment benefit in ALK-rearranged adenocarcinoma patients especially in advanced stages of the disease.

  9. Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum.

    PubMed

    Li, Si I; Buttery, Neil J; Thompson, Christopher R L; Purugganan, Michael D

    2014-07-21

    Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect.

  10. EMMPRIN (CD147) is induced by C/EBPβ and is differentially expressed in ALK+ and ALK- anaplastic large-cell lymphoma.

    PubMed

    Schmidt, Janine; Bonzheim, Irina; Steinhilber, Julia; Montes-Mojarro, Ivonne A; Ortiz-Hidalgo, Carlos; Klapper, Wolfram; Fend, Falko; Quintanilla-Martínez, Leticia

    2017-09-01

    Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is characterized by expression of oncogenic ALK fusion proteins due to the translocation t(2;5)(p23;q35) or variants. Although genotypically a T-cell lymphoma, ALK+ ALCL cells frequently show loss of T-cell-specific surface antigens and expression of monocytic markers. C/EBPβ, a transcription factor constitutively overexpressed in ALK+ ALCL cells, has been shown to play an important role in the activation and differentiation of macrophages and is furthermore capable of transdifferentiating B-cell and T-cell progenitors to macrophages in vitro. To analyze the role of C/EBPβ for the unusual phenotype of ALK+ ALCL cells, C/EBPβ was knocked down by RNA interference in two ALK+ ALCL cell lines, and surface antigen expression profiles of these cell lines were generated using a Human Cell Surface Marker Screening Panel (BD Biosciences). Interesting candidate antigens were further analyzed by immunohistochemistry in primary ALCL ALK+ and ALK- cases. Antigen expression profiling revealed marked changes in the expression of the activation markers CD25, CD30, CD98, CD147, and CD227 after C/EBPβ knockdown. Immunohistochemical analysis confirmed a strong, membranous CD147 (EMMPRIN) expression in ALK+ ALCL cases. In contrast, ALK- ALCL cases showed a weaker CD147 expression. CD274 or PD-L1, an immune inhibitory receptor ligand, was downregulated after C/EBPβ knockdown. PD-L1 also showed stronger expression in ALK+ ALCL compared with ALK- ALCL, suggesting an additional role of C/EBPβ in ALK+ ALCL in generating an immunosuppressive environment. Finally, no expression changes of T-cell or monocytic markers were detected. In conclusion, surface antigen expression profiling demonstrates that C/EBPβ plays a critical role in the activation state of ALK+ ALCL cells and reveals CD147 and PD-L1 as important downstream targets. The multiple roles of CD147 in migration, adhesion, and invasion, as well as T-cell activation and proliferation suggest its involvement in the pathogenesis of ALCL.

  11. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    PubMed Central

    Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas

    2016-01-01

    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515

  12. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer.

    PubMed

    Zhou, Jianya; Yao, Hongtian; Zhao, Jing; Zhang, Shumeng; You, Qihan; Sun, Ke; Zou, Yinying; Zhou, Caicun; Zhou, Jianying

    2015-06-01

    To evaluate the clinical value of cell block samples from malignant pleural effusion (MPE) as alternative samples to tumour tissue for anaplastic lymphoma kinase (ALK) detection in patients with advanced non-small-cell lung cancer (NSCLC). Fifty-two matched samples were eligible for analysis. ALK status was detected by Ventana immunohistochemistry (IHC) (with the D5F3 clone), reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH) in MPE cell block samples, and by FISH in tumour tissue block samples. In total, ALK FISH results were obtained for 52 tumour tissue samples and 41 MPE cell block samples. Eight cases (15.4%) were ALK-positive in tumour tissue samples by FISH, and among matched MPE cell block samples, five were ALK-positive by FISH, seven were ALK-positive by RT-PCR, and eight were ALK-positive by Ventana IHC. The ALK status concordance rates between tumour tissue and MPE cell block samples were 78.9% by FISH, 98.1% by RT-PCR, and 100% by Ventana IHC. In MPE cell block samples, the sensitivity and specificity of Ventana IHC (100% and 100%) and RT-PCR (87.5% and 100%) were higher than those of FISH (62.5% and 100%). Malignant pleural effusion cell block samples had a diagnostic performance for ALK detection in advanced NSCLC that was comparable to that of tumour tissue samples. MPE cell block samples might be valid alternative samples for ALK detection when tissue is not available. Ventana IHC could be the most suitable method for ALK detection in MPE cell block samples. © 2014 John Wiley & Sons Ltd.

  13. ALK-rearranged squamous cell lung carcinoma responding to crizotinib: A missing link in the field of non-small cell lung cancer?

    PubMed

    Vergne, Florence; Quéré, Gilles; Andrieu-Key, Sophie; Descourt, Renaud; Quintin-Roué, Isabelle; Talagas, Matthieu; De Braekeleer, Marc; Marcorelles, Pascale; Uguen, Arnaud

    2016-01-01

    ALK-rearrangements are mainly encountered in lung adenocarcinomas and allow treating patients with anti-ALK targeted therapy. ALK-rearranged squamous cell lung carcinomas are rare tumors that can also respond to anti-ALK-targeted therapy. Nevertheless, ALK screening is not always performed in patients with squamous cell lung carcinomas making the identification and treatment of this molecular tumor subtype challenging. We intend to report a rare case of ALK-rearranged lung squamous cell carcinoma with response to crizotinib therapy. We report clinical, pathological, immunohistochemical and fluorescent in situ hybridization data concerning a patient having an ALK-rearranged squamous cell lung cancer diagnosed in our institution. The patient was a 58-year old woman with a metastatic-stage lung cancer. Histopathological and immunohistochemical analyses were performed on a bronchial biopsy sample and concluded in a non-keratinizing squamous cell lung carcinoma expressing strongly cytokeratin 5/6, p63 and p40, which are classic hallmarks of lung squamous cell carcinomas, but also cytokeratin 7 which is more commonly expressed in lung adenocarcinomas. The tumor did not express thyroid transcription factor-1. ALK rearrangement was searched because of the never-smoker status of the patient and resulted in strong positive fluorescent in situ hybridization test and ALK/p80 immunohistochemistry. The patient responded to crizotinib therapy during 213 days. Our observation points out the interest of considering ALK screening in patients with metastatic lung squamous cell carcinomas, especially in patients lacking a usual heavy-smoker clinical history. The histopathological and immunohistochemical features of this particular tumor highlighting the overlapping criteria between lung adenocarcinomas and rare ALK-rearranged squamous cell lung carcinomas could also be relevant to extend ALK screening to tumors with intermediate phenotypes between squamous cell carcinomas and adenocarcinomas and/or arising in non-smokers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. STAT3-targeted treatment with silibinin overcomes the acquired resistance to crizotinib in ALK-rearranged lung cancer.

    PubMed

    Cuyàs, Elisabet; Pérez-Sánchez, Almudena; Micol, Vicente; Menendez, Javier A; Bosch-Barrera, Joaquim

    2016-12-16

    The signal transducer and activator of transcription 3 (STAT3) has been suggested to play a prominent role in mediating non-small-cell lung cancer (NSCLC) resistance to some tyrosine kinase inhibitor (TKI)-mediated therapies. Using a model of anaplastic lymphoma kinase gene (ALK)-translocated NSCLC with acquired resistance to the ALK TKI crizotinib, but lacking amplifications or mutations in the kinase domain of ALK, we herein present evidence that STAT3 activation is a novel mechanism of crizotinib resistance that involves the upregulation of immune escape and epithelial to mesenchymal transition (EMT) signaling pathways. Taking advantage of the flavonolignan silibinin as a naturally occurring STAT3-targeted pharmacological inhibitor, we confirmed that STAT3 activation protects ALK-translocated NSCLC from crizotinib. Accordingly, silibinin-induced inhibition of STAT3 worked synergistically with crizotinib to reverse acquired resistance and restore sensitivity in crizotinib-resistant cells. Moreover, silibinin treatment significantly inhibited the upregulation of the immune checkpoint regulator PD-L1 and also EMT regulators (e.g., SLUG, VIM, CD44) in crizotinib-refractory cells. These findings provide a valuable strategy to potentially improve the efficacy of ALK inhibition by cotreatment with silibinin-based therapeutics, which merit clinical investigation for ALK TKI-resistant NSCLC patients.

  15. Lick Northern Proper Motion Program: NPM2

    NASA Astrophysics Data System (ADS)

    Jones, B. F.; Hanson, R. B.; Klemola, A. R.

    2000-05-01

    The Lick Northern Proper Motion (NPM) program is nearing completion after a half-century of work. Two-epoch photography began in 1947 and was completed in 1988. Measurements and reductions for proper motions, positions, and two-color photometry in the sky outside the Milky Way (``NPM1'') began in 1975 and were completed in 1992. The Lick NPM1 Catalog, containing 149,000 stars, was distributed in 1993. Work on the Milky Way sky (``NPM2'') comprising some 300,000 stars, began in 1996, and plate measurements were finished in 1999. The NPM program will be completed with the publication of the Lick NPM2 Catalog in 2003. The NPM program will provide absolute proper motions, measured on an inertial system defined by some 50,000 faint galaxies, for over 400,000 stars from 9 < B < 18, covering the northern two-thirds of the sky. Included in the NPM catalogs are many stars of astrophysical interest, anonymous stars for galactic studies, and stars from positional catalogues and proper motion surveys. Current work at Lick encompasses data reductions and star identifications for NPM2. Procedures are based on NPM1, with appropriate modifications. Reference galaxies are not available in the Milky Way sky, so the Hipparcos Catalogue is used to link the NPM2 proper motions to the inertial system defined by NPM1. The large number of stars in NPM2 reflects the higher density of stars near the Galactic plane and toward the Galactic center. The NPM catalogs will have lasting value as a unique database for future studies in galactic structure, stellar kinematics, and astrometry. As we produce NPM2, we are also applying the NPM data to several outstanding problems in these research fields. We would like to thank Dave Monet and the USNO for measuring the NPM2 plates. We thank the National Science Foundation for its continued support of the NPM program. The work reported here was supported by NSF grant AST 9530632.

  16. When the good go bad: Mutant NPM1 in acute myeloid leukemia.

    PubMed

    Kunchala, Preethi; Kuravi, Sudhakiranmayi; Jensen, Roy; McGuirk, Joseph; Balusu, Ramesh

    2018-05-01

    Nucleophosmin 1 (NPM1) is a nucleolar phosphoprotein that performs diverse biological functions including molecular chaperoning, ribosome biogenesis, DNA repair, and genome stability. Acute myeloid leukemia (AML) is a heterogeneous disease, more than half of the AML cases exhibit normal karyotype (NK). Approximately 50-60 percent of patients with NK-AML carry NPM1 mutations which are characterized by cytoplasmic dislocation of the NPM1 protein. In AML, mutant NPM1 (NPM1c+) acts in a dominant negative fashion and also blocks the differentiation of myeloid cells through gain-of-function for the AML phenotype. Currently, there is limited knowledge on the gain-of-function mechanism of mutant NPM1. Here, we review the known mechanisms of mutant NPM1 in the pathogenesis of AML. We describe genetic abnormalities, the clinical significance of exon-12 mutations in the NPM1 gene, and chromosomal translocations including the recently discovered NPM1-TYK2, and NPM1-HAUS1. Also, we outline the possible therapeutic interventions for the treatment of AML by targeting NPM1. Overall, the review will summarize present knowledge on mutant NPM1 origin, pathogenesis, and therapy in AML. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3

    PubMed Central

    Koh, Jaemoon; Jang, Ji-Young; Keam, Bhumsuk; Kim, Sehui; Kim, Moon-Young; Go, Heounjeong; Kim, Tae Min; Kim, Dong-Wan; Kim, Chul-Woo; Jeon, Yoon Kyung; Chung, Doo Hyun

    2016-01-01

    ABSTRACT Programmed cell death (PD)-1/PD-1 ligand-1 (PD-L1)-targeted therapy has emerged as a promising therapeutic strategy for lung cancer. However, whether EML4-ALK regulates PD-L1 expression in lung cancer remains unknown. A total of 532 pulmonary adenocarcinomas (pADCs), including 58 ALK-translocated tumors, were immunohistochemically evaluated for PD-L1 and PD-1. H23 (EGFRWild-typeEML4-ALK−PD-L1Low) and H2228 (EGFRWild-typeEML4-ALK+PD-L1High) cells were transfected with EML4-ALK or ALK short interfering RNAs and used to investigate the alterations in PD-L1 expression. PD-L1 expression was detected in 81% of ALK-translocated pADCs; this value was significantly higher than those of pADCs with EGFR mutation, KRAS mutation or lacking ALK, EGFR or KRAS mutation (p <0.005 for all). Moreover, ALK-translocated pADC with PD-L1 expression showed significantly higher numbers of tumor-infiltrating PD-1+ cells. ALK knockdown or inhibition (crizotinib treatment) in H2228 cells downregulated PD-L1 expression. Transfection of H23 cells with EML4-ALK enhanced PD-L1 expression, which was compromised by crizotinib treatment. This ALK-dependent upregulation of PD-L1 expression was mediated by STAT3 and hypoxia-inducible factor (HIF)-1α under normoxia and hypoxia. Furthermore, EML4-ALK enhanced HIF-1α expression through increasing transcription and decreasing ubiquitination of HIF-1α. In ALK-translocated pADC tissues, significant positive correlations between PD-L1 and nuclear HIF-1α (p < 0.05) or pSTAT3 expression levels (p<0.005) were observed. Among patients with ALK-translocated pADC, strong PD-L1 expression was significantly associated with shorter progression-free (p = 0.001) and overall survival (p = 0.002) after crizotinib treatment. Collectively, our findings demonstrate that ALK-derived pADCs increase PD-L1 expression via HIF-1α and/or STAT3, thus providing a rationale for PD-1/PD-L1 pathway-targeted therapy in ALK-translocated lung cancer. PMID:27141364

  18. Induction of PD-L1 Expression by the EML4-ALK Oncoprotein and Downstream Signaling Pathways in Non-Small Cell Lung Cancer.

    PubMed

    Ota, Keiichi; Azuma, Koichi; Kawahara, Akihiko; Hattori, Satoshi; Iwama, Eiji; Tanizaki, Junko; Harada, Taishi; Matsumoto, Koichiro; Takayama, Koichi; Takamori, Shinzo; Kage, Masayoshi; Hoshino, Tomoaki; Nakanishi, Yoichi; Okamoto, Isamu

    2015-09-01

    Therapies targeted to the immune checkpoint mediated by PD-1 and PD-L1 show antitumor activity in a subset of patients with non-small cell lung cancer (NSCLC). We have now examined PD-L1 expression and its regulation in NSCLC positive for the EML4-ALK fusion gene. The expression of PD-L1 at the protein and mRNA levels in NSCLC cell lines was examined by flow cytometry and by reverse transcription and real-time PCR analysis, respectively. The expression of PD-L1 in 134 surgically resected NSCLC specimens was evaluated by immunohistochemical analysis. The PD-L1 expression level was higher in NSCLC cell lines positive for EML4-ALK than in those negative for the fusion gene. Forced expression of EML4-ALK in Ba/F3 cells markedly increased PD-L1 expression, whereas endogenous PD-L1 expression in EML4-ALK-positive NSCLC cells was attenuated by treatment with the specific ALK inhibitor alectinib or by RNAi with ALK siRNAs. Furthermore, expression of PD-L1 was downregulated by inhibitors of the MEK-ERK and PI3K-AKT signaling pathways in NSCLC cells positive for either EML4-ALK or activating mutations of the EGFR. Finally, the expression level of PD-L1 was positively associated with the presence of EML4-ALK in NSCLC specimens. Our findings that both EML4-ALK and mutant EGFR upregulate PD-L1 by activating PI3K-AKT and MEK-ERK signaling pathways in NSCLC reveal a direct link between oncogenic drivers and PD-L1 expression. ©2015 American Association for Cancer Research.

  19. Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma.

    PubMed

    Ying, J; Guo, L; Qiu, T; Shan, L; Ling, Y; Liu, X; Lu, N

    2013-10-01

    To evaluate the diagnostic value of a novel fully automated immunohistochemistry (IHC) assay for detection of anaplastic lymphoma kinase (ALK) fusion in a large number of ALK-positive lung adenocarcinoma (ADC) patients. We tested 196 lung ADCs for ALK rearrangement by two IHC assays (Ventana pre-diluted ALK D5F3 antibody with the Optiview DAB IHC detection kit and Optiview Amplification kit, D5F3 by Cell Signaling Technology (CST) with Ultraview DAB detection kit by Ventana), fluorescence in situ hybridization (FISH) and real-time reverse transcription-PCR (RT-PCR). CST ALK IHC was scored using the scoring scheme of 0, no staining; 1+, faint; 2+, moderate; and 3+, strong cytoplasmic reactivity in ≥ 10% of tumor cells. As for Ventana IHC, a binary scoring system (positive or negative for ALK status) was adopted for evaluating the staining results. Among 196 cases tested, 63 (32%), 65 (33%), 70 (36%), and 69 (35%) cases were ALK positive by FISH, Ventana IHC, CST IHC, and RT-PCR, respectively. The sensitivity and specificity of Ventana IHC were 100% and 98%, respectively. Two Ventana IHC-positive cases, which were also CST IHC score of 3+, showed FISH negative, but their ALK rearrangement was confirmed by RT-PCR and direct sequencing. The sensitivity and specificity of CST IHC with staining intensity score of 1+ or more were 100% and 95%, respectively. Five (25%, of 20) patients with CST IHC score of 1+ were both FISH and RT-PCR negative. The sensitivity and specificity of RT-PCR for detection of ALK fusion were 98% and 95%, respectively. The total accordance rate between ALK RT-PCR and Ventana IHC was 97%. The novel fully automated IHC assay is a reliable screening tool in routine pathologic laboratories for identification of patients with ALK rearrangement for targeted therapy in lung ADC.

  20. ALK status testing in non-small cell lung carcinoma: correlation between ultrasensitive IHC and FISH.

    PubMed

    Minca, Eugen C; Portier, Bryce P; Wang, Zhen; Lanigan, Christopher; Farver, Carol F; Feng, Yan; Ma, Patrick C; Arrossi, Valeria A; Pennell, Nathan A; Tubbs, Raymond R

    2013-05-01

    ALK gene rearrangements in advanced non-small cell lung carcinomas (NSCLC) are an indication for targeted therapy with crizotinib. Fluorescence in situ hybridization (FISH) using a recently approved companion in vitro diagnostic class FISH system commonly assesses ALK status. More accessible IHC is challenged by low expression of ALK-fusion transcripts in NSCLC. We compared ultrasensitive automated IHC with FISH for detecting ALK status on 318 FFPE and 40 matched ThinPrep specimens from 296 patients with advanced NSCLC. IHC was concordant with FFPE-FISH on 229 of 231 dual-informative samples (31 positive and 198 negative) and with ThinPrep-FISH on 34 of 34 samples (5 positive and 29 negative). Two cases with negative IHC and borderline-positive FFPE-FISH (15% and 18%, respectively) were reclassified as concordant based on negative matched ThinPrep-FISH and clinical data consistent with ALK-negative status. Overall, after including ThinPrep-FISH and amending the false-positive FFPE-FISH results, IHC demonstrated 100% sensitivity and specificity (95% CI, 0.86 to 1.00 and 0.97 to 1.00, respectively) for ALK detection on 249 dual-informative NSCLC samples. IHC was informative on significantly more samples than FFPE-FISH, revealing additional ALK-positive cases. The high concordance with FISH warrants IHC's routine use as the initial component of an algorithmic approach to clinical ALK testing in NSCLC, followed by reflex FISH confirmation of IHC-positive cases. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Targeted resequencing reveals ALK fusions in non-small cell lung carcinomas detected by FISH, immunohistochemistry, and real-time RT-PCR: a comparison of four methods.

    PubMed

    Tuononen, Katja; Sarhadi, Virinder Kaur; Wirtanen, Aino; Rönty, Mikko; Salmenkivi, Kaisa; Knuuttila, Aija; Remes, Satu; Telaranta-Keerie, Aino I; Bloor, Stuart; Ellonen, Pekka; Knuutila, Sakari

    2013-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements occur in a subgroup of non-small cell lung carcinomas (NSCLCs). The identification of these rearrangements is important for guiding treatment decisions. The aim of our study was to screen ALK gene fusions in NSCLCs and to compare the results detected by targeted resequencing with results detected by commonly used methods, including fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and real-time reverse transcription-PCR (RT-PCR). Furthermore, we aimed to ascertain the potential of targeted resequencing in detection of ALK-rearranged lung carcinomas. We assessed ALK fusion status for 95 formalin-fixed paraffin-embedded tumor tissue specimens from 87 patients with NSCLC by FISH and real-time RT-PCR, for 57 specimens from 56 patients by targeted resequencing, and for 14 specimens from 14 patients by IHC. All methods were performed successfully on formalin-fixed paraffin-embedded tumor tissue material. We detected ALK fusion in 5.7% (5 out of 87) of patients examined. The results obtained from resequencing correlated significantly with those from FISH, real-time RT-PCR, and IHC. Targeted resequencing proved to be a promising method for ALK gene fusion detection in NSCLC. Means to reduce the material and turnaround time required for analysis are, however, needed.

  2. Novel pre-mRNA splicing of intronically integrated HBV generates oncogenic chimera in hepatocellular carcinoma.

    PubMed

    Chiu, Yung-Tuen; Wong, John K L; Choi, Shing-Wan; Sze, Karen M F; Ho, Daniel W H; Chan, Lo-Kong; Lee, Joyce M F; Man, Kwan; Cherny, Stacey; Yang, Wan-Ling; Wong, Chun-Ming; Sham, Pak-Chung; Ng, Irene O L

    2016-06-01

    Hepatitis B virus (HBV) integration is common in HBV-associated hepatocellular carcinoma (HCC) and may play an important pathogenic role through the production of chimeric HBV-human transcripts. We aimed to screen the transcriptome for HBV integrations in HCCs. Transcriptome sequencing was performed on paired HBV-associated HCCs and corresponding non-tumorous liver tissues to identify viral-human chimeric sites. Validation was further performed in an expanded cohort of human HCCs. Here we report the discovery of a novel pre-mRNA splicing mechanism in generating HBV-human chimeric protein. This mechanism was exemplified by the formation of a recurrent HBV-cyclin A2 (CCNA2) chimeric transcript (A2S), as detected in 12.5% (6 of 48) of HCC patients, but in none of the 22 non-HCC HBV-associated cirrhotic liver samples examined. Upon the integration of HBV into the intron of the CCNA2 gene, the mammalian splicing machinery utilized the foreign splice sites at 282nt. and 458nt. of the HBV genome to generate a pseudo-exon, forming an in-frame chimeric fusion with CCNA2. The A2S chimeric protein gained a non-degradable property and promoted cell cycle progression, demonstrating its potential oncogenic functions. A pre-mRNA splicing mechanism is involved in the formation of HBV-human chimeric proteins. This represents a novel and possibly common mechanism underlying the formation of HBV-human chimeric transcripts from intronically integrated HBV genome with functional impact. HBV is involved in the mammalian pre-mRNA splicing machinery in the generation of potential tumorigenic HBV-human chimeras. This study also provided insight on the impact of intronic HBV integration with the gain of splice sites in the development of HBV-associated HCC. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.

    PubMed

    Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R

    2007-09-01

    Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.

  4. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods.

    PubMed

    Liu, Leilei; Zhan, Ping; Zhou, Xiaodie; Song, Yong; Zhou, Xiaojun; Yu, Like; Wang, Jiandong

    2015-01-01

    Anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) gene rearrangements occur in approximately 5% of non-small-cell lung cancers (NSCLC), leading to the overexpression of anaplastic lymphoma kinase and predicting a response to the targeted inhibitor, crizotinib. Malignant pleural effusion occurs in most patients with advanced lung cancer, especially adenocarcinoma, and tissue samples are not always available from these patients. We attempted to clarify the feasibility of detecting the EML4-ALK fusion gene in pleural effusion cells using different methods. We obtained 66 samples of pleural effusion from NSCLC patients. The pleural effusion fluid was centrifuged, and the cellular components obtained were formalin fixed and paraffin embedded. The EML4-ALK fusion gene status was determined with fluorescent in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). EML4-ALK was detected in three of 66 patient samples (4.5%) with RT-PCR. When the RT-PCR data were used as the standard, one false positive and one false negative samples were identified with IHC; and one false negative sample was identified with FISH. These results suggest that a block of pleural effusion cells can be used to detect the EML4-ALK fusion gene. IHC had good sensitivity, but low specificity. FISH had low sensitivity, but high specificity. RT-PCR is a good candidate method for detecting EML4-ALK in blocks of pleural effusion cells from lung cancer patients.

  5. Inducible repair of alkylated DNA in microorganisms.

    PubMed

    Mielecki, Damian; Wrzesiński, Michał; Grzesiuk, Elżbieta

    2015-01-01

    Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Investigation of negative permeability metamaterials for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin

    2017-11-01

    In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.

  7. N-(1-Pyrenyl) Maleimide Induces Bak Oligomerization and Mitochondrial Dysfunction in Jurkat Cells

    PubMed Central

    Huang, Pei-Rong; Hung, Shu-Chen; Pao, Chia-Chu; Wang, Tzu-Chien V.

    2015-01-01

    N-(1-pyrenyl) maleimide (NPM) is a fluorescent reagent that is frequently used as a derivatization agent for the detection of thio-containing compounds. NPM has been shown to display a great differential cytotoxicity against hematopoietic cancer cells. In this study, the molecular mechanism by which NPM induces apoptosis was examined. Here, we show that treatment of Jurkat cells with NPM leads to Bak oligomerization, loss of mitochondrial membrane potential (Δψm), and release of cytochrome C from mitochondria to cytosol. Induction of Bak oligomerization appears to play a critical role in NPM-induced apoptosis, as downregulation of Bak by shRNA significantly prevented NPM-induced apoptosis. Inhibition of caspase 8 by Z-IETD-FMK and/or depletion of Bid did not affect NPM-induced oligomerization of Bak. Taken together, these results suggest that NPM-induced apoptosis is mediated through a pathway that is independent of caspase-8 activation. PMID:25632401

  8. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia

    PubMed Central

    Dovey, Oliver M.; Cooper, Jonathan L.; Mupo, Annalisa; Grove, Carolyn S.; Lynn, Claire; Conte, Nathalie; Andrews, Robert M.; Pacharne, Suruchi; Tzelepis, Konstantinos; Vijayabaskar, M. S.; Green, Paul; Rad, Roland; Arends, Mark; Wright, Penny; Yusa, Kosuke; Bradley, Allan; Varela, Ignacio

    2017-01-01

    NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD, but not Npm1cA/+;NrasG12D/+, progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+. During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML. PMID:28835438

  9. Recurrence of lung adenocarcinoma after an interval of 15 years revealed by demonstration of the same type of EML4-ALK fusion gene.

    PubMed

    Tsukamoto, Yoshitane; Kanamori, Kiyonobu; Watanabe, Takahiro; Mikami, Koji; Ieki, Ryuji; Nakano, Takashi; Kajimoto, Kazuyoshi; Hirota, Seiichi

    2014-12-01

    We carried out an experiment on a 58-year-old man with multiple left lung tumors and swelling of multiple lymph nodes. For clinical staging and therapeutic purposes, bronchoalveolar lavage (BAL) cytology and lung biopsy were performed. The biopsy specimen revealed the left lower lung mass to be immunohistochemically ALK (anaplastic lymphoma kinase)-positive adenocarcinoma. Using the BAL specimen from the left lower lung, EML4 (echinoderm microtubule-associated protein-like 4)-ALK variant 1 fusion gene was detected by reverse transcription-polymerase chain reaction (RT-PCR). His past history showed that he had undergone an operation for lung adenocarcinoma of the right lower lobe 15 years before, and the pathological specimen at that time revealed that the lung adenocarcinoma with pleural invasion and single metastasis of mediastinal lymph node showed a mucinous cribriform pattern and/or signet-ring cell pattern. The typical histology led us to examine the ALK rearrangement in the primary lung cancer and mediastinal metastatic tumor. Immunohistochemistry (IHC) for ALK was positive, and ALK break apart fluorescence in situ hybridization (FISH) showed a positive result. Moreover, RT-PCR using formalin-fixed, paraffin-embedded tissue from the right lung cancer also demonstrated EML4-ALK variant 1 fusion gene. Although there is a possibility that the left lung cancer is de novo one with multiple metastases, detection of the same fusion gene of the very rare EML4-ALK variant 1 in both tumors suggests that the left cancer is a recurrence of the right lung cancer after an interval of 15 years. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes

    PubMed Central

    Yoon, Jeong-Hwan; Jung, Su Myung; Park, Seok Hee; Kato, Mitsuyasu; Yamashita, Tadashi; Lee, In-Kyu; Sudo, Katsuko; Nakae, Susumu; Han, Jin Soo; Kim, Ok-Hee; Oh, Byung-Chul; Sumida, Takayuki; Kuroda, Masahiko; Ju, Ji-Hyeon; Jung, Kyeong Cheon; Park, Seong Hoe; Kim, Dae-Kee; Mamura, Mizuko

    2013-01-01

    Varieties of transforming growth factor-β (TGF-β) antagonists have been developed to intervene with excessive TGF-β signalling activity in cancer. Activin receptor-like kinase5 (ALK5) inhibitors antagonize TGF-β signalling by blocking TGF-β receptor-activated Smad (R-Smad) phosphorylation. Here we report the novel mechanisms how ALK5 inhibitors exert a therapeutic effect on a mouse B16 melanoma model. Oral treatment with a novel ALK5 inhibitor, EW-7197 (2.5 mg/kg daily) or a representative ALK5 inhibitor, LY-2157299 (75 mg/kg bid) suppressed the progression of melanoma with enhanced cytotoxic T-lymphocyte (CTL) responses. Notably, ALK5 inhibitors not only blocked R-Smad phosphorylation, but also induced ubiquitin-mediated degradation of the common Smad, Smad4 mainly in CD8+ T cells in melanoma-bearing mice. Accordingly, T-cell-specific deletion of Smad4 was sufficient to suppress the progression of melanoma. We further identified eomesodermin (Eomes), the T-box transcription factor regulating CTL functions, as a specific target repressed by TGF-β via Smad4 and Smad3 in CD8+ T cells. Thus, ALK5 inhibition enhances anti-melanoma CTL responses through ubiquitin-mediated degradation of Smad4 in addition to the direct inhibitory effect on R-Smad phosphorylation. PMID:24127404

  11. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.

    PubMed

    Sokol, Martin; Jessen, Karen Margrethe; Pedersen, Finn Skou

    2016-01-01

    Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights the high suitability of contemporary sequencing methods in future analyses of human biology in relation to evolutionary acquired retroviruses in the human genome. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo

    PubMed Central

    Reed, Martha L.; Peeters, Nemo M.; Hanson, Maureen R.

    2001-01-01

    Transcripts of typical dicot plant plastid genes undergo C→U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence –20 to +6 surrounding the C target of editing. When the –20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C→U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located –20 nt 5′ to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing. PMID:11266552

  13. Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication.

    PubMed

    Ma, Zhiyong; Kanai, Masayuki; Kawamura, Kenji; Kaibuchi, Kozo; Ye, Keqiang; Fukasawa, Kenji

    2006-12-01

    Nucleophosmin (NPM)/B23 has been implicated in the regulation of centrosome duplication. NPM/B23 localizes between two centrioles in the unduplicated centrosome. Upon phosphorylation on Thr(199) by cyclin-dependent kinase 2 (CDK2)/cyclin E, the majority of centrosomal NPM/B23 dissociates from centrosomes, but some NPM/B23 phosphorylated on Thr(199) remains at centrosomes. It has been shown that Thr(199) phosphorylation of NPM/B23 is critical for the physical separation of the paired centrioles, an initial event of the centrosome duplication process. Here, we identified ROCK II kinase, an effector of Rho small GTPase, as a protein that localizes to centrosomes and physically interacts with NPM/B23. Expression of the constitutively active form of ROCK II promotes centrosome duplication, while down-regulation of ROCK II expression results in the suppression of centrosome duplication, especially delaying the initiation of centrosome duplication during the cell cycle. Moreover, ROCK II regulates centrosome duplication in its kinase and centrosome localization activity-dependent manner. We further found that ROCK II kinase activity is significantly enhanced by binding to NPM/B23 and that NPM/B23 acquires a higher binding affinity to ROCK II upon phosphorylation on Thr(199). Moreover, physical interaction between ROCK II and NPM/B23 in vivo occurs in association with CDK2/cyclin E activation and the emergence of Thr(199)-phosphorylated NPM/B23. All these findings point to ROCK II as the effector of the CDK2/cyclin E-NPM/B23 pathway in the regulation of centrosome duplication.

  14. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1.

    PubMed

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L

    2011-04-22

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.

  15. Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and post-ovulatory ageing.

    PubMed

    Aegerter, Sandrine; Jalabert, Bernard; Bobe, Julien

    2005-11-01

    The mRNA levels of 39 target genes were monitored in unfertilized eggs of 14 rainbow trout sampled the day of ovulation and again 5, 14, and 21 days later. For all 56 collected egg batches, an egg sample was fertilized to estimate egg quality by monitoring embryonic development. Remaining eggs were used for RNA extraction and subsequent real-time PCR analysis. A significant drop of egg quality was observed when eggs were held in the body cavity for 14 or 21 days post-ovulation (dpo). During the same period, eight transcripts (nucleoplasmin or Npm2, ferritin H, tubulin beta, JNK1, cyclin A1, cyclin A2, cathepsin Z, and IGF2) exhibited a differential abundance at one or several collection time(s). Interestingly, we observed higher levels of cyclins A1 and A2 mRNAs in eggs taken 5 days post-ovulation than in eggs taken, from the same females, at the time of ovulation. In addition, seven transcripts exhibited a differential abundance between low quality and high quality eggs. Low quality eggs were characterized by lower levels of Npm2, tubulin beta, and IGF1 transcripts. In contrast, keratins 8 and 18, cathepsin Z, and prostaglandin synthase 2 were more abundant in low quality eggs than in high quality eggs. In this study, we have demonstrated differences in mRNA levels in the rainbow trout egg that are reflective of developmental competence differences induced by post-ovulatory ageing. The putative role of these transcripts in post-ovulatory ageing-induced egg quality defects is discussed with special attention for corresponding cellular functions.

  16. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    PubMed

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  17. Increased expression of nucleophosmin/B23 in hepatocellular carcinoma and correlation with clinicopathological parameters

    PubMed Central

    Yun, J-P; Miao, J; Chen, G G; Tian, Q-H; Zhang, C-Q; Xiang, J; Fu, J; Lai, P B S

    2007-01-01

    Nucleophosmin (NPM, B23, numatrin, NO38) is an abundant nucleolar phosphoprotein involved in multiple cellular functions. Previous evidence indicates that high-level expression of NPM causes uncontrolled cell growth and suggests that NPM may have oncogenic potential. In this study, we examined NPM expression in 103 paired cases of hepatocellular carcinoma (HCC), 12 cases of hepatic focal nodular hyperplasia, 17 cases of liver tissue adjacent to a hepatic haemangioma, and series of array tissues from normal human organs and malignancies using a monoclonal antibody against NPM and reverse transcription–PCR techniques, Western blot analysis, immunohistochemistry, and immunocytofluorescence. Our data indicated that NPM expression was significantly higher in HCC than in the non-malignant hepatocytes (P<0.001). Nucleophosmin was weakly expressed in hepatocytes from a 5-month-old embryo and in stationary hepatocytes of healthy adults. Moreover, enhanced expression of NPM in HCC correlated with the level of PCNA (R2=0.5639) and with the clinical prognostic parameters such as serum alpha fetal protein level, tumour pathological grading, and liver cirrhosis (P<0.05). Our results suggest that NPM may play an important role in the progression of tumorigenesis and that NPM may serve as a potential marker for HCC. PMID:17245342

  18. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells

    PubMed Central

    Eiselein, Larissa; Nyunt, Tun; Lamé, Michael W.; Ng, Kit F.; Wilson, Dennis W.; Rutledge, John C.; Aung, Hnin H.

    2015-01-01

    Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses. PMID:26709509

  19. Glutamatergic Neurons in Rodent Models Respond to Nanoscale Particulate Urban Air Pollutants in Vivo and in Vitro

    PubMed Central

    Morgan, Todd E.; Davis, David A.; Iwata, Nahoko; Tanner, Jeremy A.; Snyder, David; Ning, Zhi; Kam, Winnie; Hsu, Yu-Tien; Winkler, Jeremy W.; Chen, Jiu-Chiuan; Petasis, Nicos A.; Baudry, Michel; Sioutas, Constantinos

    2011-01-01

    Background: Inhalation of airborne particulate matter (PM) derived from urban traffic is associated with pathology in the arteries, heart, and lung; effects on brain are also indicated but are less documented. Objective: We evaluated rodent brain responses to urban nanoscale (< 200 nm) PM (nPM). Methods: Ambient nPM collected near an urban freeway was transferred to aqueous suspension and reaerosolized for 10-week inhalation exposure of mice or directly applied to rat brain cell cultures. Results: Free radicals were detected by electron paramagnetic resonance in the nPM 30 days after initial collection. Chronic inhalation of reaerosolized nPM altered selected neuronal and glial activities in mice. The neuronal glutamate receptor subunit (GluA1) was decreased in hippocampus, whereas glia were activated and inflammatory cytokines were induced [interleukin-1α (IL-1α), tumor necrosis factor-α (TNFα)] in cerebral cortex. Two in vitro models showed effects of nPM suspensions within 24–48 hr of exposure that involved glutamatergic functions. In hippocampal slice cultures, nPM increased the neurotoxicity of NMDA (N-methyl-d-aspartic acid), a glutamatergic agonist, which was in turn blocked by the NMDA antagonist AP5 [(2R)-amino-5-phosphonopentanoate]. In embryonic neuron cultures, nPM impaired neurite outgrowth, also blocked by AP5. Induction of IL-1α and TNFα in mixed glia cultures required higher nPM concentrations than did neuronal effects. Because conditioned media from nPM-exposed glia also impaired outgrowth of embryonic neurites, nPM can act indirectly, as well as directly, on neurons in vitro. Conclusions: nPM can affect embryonic and adult neurons through glutamatergic mechanisms. The interactions of nPM with glutamatergic neuronal functions suggest that cerebral ischemia, which involves glutamatergic excitotoxicity, could be exacerbated by nPM. PMID:21724521

  20. Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    PubMed Central

    Shackleford, Gregory M; Ganguly, Amit; MacArthur, Craig A

    2001-01-01

    Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus. PMID:11722795

  1. Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders?

    PubMed

    Rego, Eduardo M; Pandolfi, Pier Paolo

    2002-08-01

    Chromosomal translocations are frequently involved in the pathogenesis of leukemias, lymphomas and sarcomas. They can lead to aberrant expression of oncogenes or the generation of chimeric proteins. Classically, one of the products is thought to be oncogenic. For example, in acute promyelocytic leukaemia (APL), reciprocal chromosomal translocations involving the retinoic acid receptor alpha (RARalpha) gene lead to the formation of two fusion genes: X-RARalpha and RARalpha-X (where X is the alternative RARalpha fusion partner: PML, PLZF, NPM, NuMA and STAT 5b). The X-RARalpha fusion protein is indeed oncogenic. However, recent data indicate that the RARalpha-X product is also critical in determining the biological features of this leukemia. Here, we review the current knowledge on the role of reciprocal products in cancer pathogenesis, and highlight how their expression might impact on the biology of their respective tumour types.

  2. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases.

    PubMed

    Brown, Kevin M; Suvorova, Elena; Farrell, Andrew; McLain, Aaron; Dittmar, Ashley; Wiley, Graham B; Marth, Gabor; Gaffney, Patrick M; Gubbels, Marc Jan; White, Michael; Blader, Ira J

    2014-06-01

    The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1) is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK) host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1.

  3. Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ.

    PubMed

    Di Matteo, A; Franceschini, M; Paiardini, A; Grottesi, A; Chiarella, S; Rocchio, S; Di Natale, C; Marasco, D; Vitagliano, L; Travaglini-Allocatelli, C; Federici, L

    2017-09-18

    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.

  4. Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor

    PubMed Central

    2014-01-01

    Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810

  5. High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML.

    PubMed

    Patel, Sanjay S; Kuo, Frank C; Gibson, Christopher J; Steensma, David P; Soiffer, Robert J; Alyea, Edwin P; Chen, Yi-Bin A; Fathi, Amir T; Graubert, Timothy A; Brunner, Andrew M; Wadleigh, Martha; Stone, Richard M; DeAngelo, Daniel J; Nardi, Valentina; Hasserjian, Robert P; Weinberg, Olga K

    2018-06-21

    Acute myeloid leukemia (AML) with mutated NPM1 is a newly recognized separate entity in the revised 2016 World Health Organization classification and is associated with a favorable prognosis. Although previous studies have evaluated NPM1 in a binary fashion, little is known about the significance of its mutant allele burden at diagnosis, nor has the effect of comutations (other than FLT3 ) been extensively evaluated. We retrospectively used targeted sequencing data from 109 patients with de novo AML with mutated NPM1 to evaluate the potential significance of NPM1 variant allele frequency (VAF), comutations, and clinical parameters with regard to patient outcomes. We observed that high NPM1 VAF (uppermost quartile) correlated with shortened overall survival (median, 12.1 months vs not reached; P < .0001) as well as event-free survival (median, 7.5 vs 65.44 months; P < .0001) compared with the other NPM1 -mutated cases. In both univariate and multivariable analyses, high NPM1 VAF had a particularly adverse prognostic effect in the subset of patients treated with stem-cell transplantation in first remission ( P = .0004) and in patients with mutated DNMT3A ( P < .0001). Our findings indicate that the prognostic effect of NPM1 mutation in de novo AML may be influenced by the relative abundance of the mutated allele. © 2018 by The American Society of Hematology.

  6. NPM1 Silencing Reduces Tumour Growth and MAPK Signalling in Prostate Cancer Cells

    PubMed Central

    Loubeau, Gaëlle; Boudra, Rafik; Maquaire, Sabrina; Lours-Calet, Corinne; Beaudoin, Claude; Verrelle, Pierre; Morel, Laurent

    2014-01-01

    The chaperone nucleophosmin (NPM1) is over-expressed in the epithelial compartment of prostate tumours compared to adjacent healthy epithelium and may represent one of the key actors that support the neoplastic phenotype of prostate adenocarcinoma cells. Yet, the mechanisms that underlie NPM1 mediated phenotype remain elusive in the prostate. To better understand NPM1 functions in prostate cancer cells, we sought to characterize its impact on prostate cancer cells behaviour and decipher the mechanisms by which it may act. Here we show that NPM1 favors prostate tumour cell migration, invasion and colony forming. Furthermore, knockdown of NPM1 leads to a decrease in the growth of LNCaP-derived tumours grafted in Nude mice in vivo. Such oncogenic-like properties are found in conjunction with a positive regulation of NPM1 on the ERK1/2 (Extracellular signal-Regulated Kinases 1/2) kinase phosphorylation in response to EGF (Epidermal Growth Factor) stimulus, which is critical for prostate cancer progression following the setting of an autonomous production of the growth factor. NPM1 could then be a target to switch off specifically ERK1/2 pathway activation in order to decrease or inhibit cancer cell growth and migration. PMID:24796332

  7. Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion.

    PubMed

    Shires, Morgan E; Florez, Sergio L; Lai, Tina S; Curtis, Wayne R

    2017-11-01

    To carry out mass propagation of superior plants to improve agricultural and silvicultural production though advancements in plant cell totipotency, or the ability of differentiated somatic plant cells to regenerate an entire plant. The first demonstration of a titratable control over somatic embryo formation in a commercially relevant plant, Theobroma cacao (Chocolate tree), was achieved using a dexamethasone activatable chimeric transcription factor. This four-fold enhancement in embryo production rate utilized a glucocorticoid receptor fused to an embryogenic transcription factor LEAFY COTYLEDON 2. Where previous T. cacao somatic embryogenesis has been restricted to dissected flower parts, this construct confers an unprecedented embryogenic potential to leaves. Activatable chimeric transcription factors provide a means for elucidating the regulatory cascade associated with plant somatic embryogenesis towards improving its use for somatic regeneration of transgenics and plant propagation.

  8. Generation of Chimeric RNAs by cis-splicing of adjacent genes (cis-SAGe) in mammals.

    PubMed

    Zhuo, Jian-Shu; Jing, Xiao-Yan; Du, Xin; Yang, Xiu-Qin

    2018-02-20

    Chimeric RNA molecules, possessing exons from two or more independent genes, are traditionally believed to be produced by chromosome rearrangement. However, recent studies revealed that cis-splicing of adjacent genes (cis- SAGe) is one of the major mechanisms underlying the formation of chimeric RNAs. cis-SAGe refers to intergenic splicing of directly adjacent genes with the same transcriptional orientation, resulting in read-through transcripts, termed chimeric RNAs, which contain sequences from two or more parental genes. cis-SAGe was first identified in tumor cells, since then its potential in carcinogenesis has attracted extensive attention. More and more scientists are focusing on it. With the development of research, cis-SAGe was found to be ubiquitous in various normal tissues, and might make a crucial contribution to the formation of novel genes in the evolution of genomes. In this review, we summarize the splicing pattern, expression characteristics, possible mechanisms, and significance of cis-SAGe in mammals. This review will be helpful for general understanding of the current status and development tendency of cis-SAGe.

  9. Loss of the NPM1 gene in myeloid disorders with chromosome 5 rearrangements.

    PubMed

    Berger, R; Busson, M; Baranger, L; Hélias, C; Lessard, M; Dastugue, N; Speleman, F

    2006-02-01

    The assignment with chromosome banding techniques of the breakpoints of the recurrent translocation t(3;5) which leads to NPM1/MLF1 gene fusion in myeloid malignancies has not been unequivocal. In order to assess whether this is due to uncertainty in interpretation of the observed banding pattern or whether it reflects true genomic heterogeneity, we decided to analyze the breakpoint positions using fluorescence in situ (FISH) techniques in eight patients with myeloid malignancies and rearrangements of chromosomes 3 and 5. In three patients, colocalization of the NPM1 and MLF1 spanning BACs was demonstrated and NPM1/MLF1 fusion shown by PCR in one while in the remaining cases breakpoints were located outside the NPM1 and MLF1 loci. Interestingly, loss of a copy of the NPM1 gene was found in three of these latter patients. This findings suggest that haploinsufficiency of NPM1 may play a role in subtypes of myelodysplasias and leukemias.

  10. EML4-ALK fusion variant V3 is a high-risk feature conferring accelerated metastatic spread, early treatment failure and worse overall survival in ALK+ non-small cell lung cancer.

    PubMed

    Christopoulos, Petros; Endris, Volker; Bozorgmehr, Farastuk; Elsayed, Mei; Kirchner, Martina; Ristau, Jonas; Buchhalter, Ivo; Penzel, Roland; Herth, Felix J; Heussel, Claus P; Eichhorn, Martin; Muley, Thomas; Meister, Michael; Fischer, Jürgen R; Rieken, Stefan; Warth, Arne; Bischoff, Helge; Schirmacher, Peter; Stenzinger, Albrecht; Thomas, Michael

    2018-06-15

    In order to identify anaplastic lymphoma kinase-driven non-small cell lung cancer (ALK + NSCLC) patients with a worse outcome, who might require alternative therapeutic approaches, we retrospectively analyzed all stage IV cases treated at our institutions with one of the main echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variants V1, V2 and V3 as detected by next-generation sequencing or reverse transcription-polymerase chain reaction (n = 67). Progression under tyrosine kinase inhibitor (TKI) treatment was evaluated both according to Response Evaluation Criteria in Solid Tumors (RECIST) and by the need to change systemic therapy. EML4-ALK fusion variants V1, V2 and V3 were found in 39%, 10% and 51% of cases, respectively. Patients with V3-driven tumors had more metastatic sites at diagnosis than cases with the V1 and V2 variants (mean 3.3 vs. 1.9 and 1.6, p = 0.005), which suggests increased disease aggressiveness. Furthermore, V3-positive status was associated with earlier failure after treatment with first and second-generation ALK TKI (median progression-free survival [PFS] by RECIST in the first line 7.3 vs. 39.3 months, p = 0.01), platinum-based combination chemotherapy (median PFS 5.4 vs. 15.2 months for the first line, p = 0.008) and cerebral radiotherapy (median brain PFS 6.1 months vs. not reached for cerebral radiotherapy during first-line treatment, p = 0.028), and with inferior overall survival (39.8 vs. 59.6 months in median, p = 0.017). Thus, EML4-ALK fusion variant V3 is a high-risk feature for ALK + NSCLC. Determination of V3 status should be considered as part of the initial workup for this entity in order to select patients for more aggressive surveillance and treatment strategies. © 2018 UICC.

  11. Structural investigation of nucleophosmin interaction with the tumor suppressor Fbw7γ

    PubMed Central

    Di Matteo, A; Franceschini, M; Paiardini, A; Grottesi, A; Chiarella, S; Rocchio, S; Di Natale, C; Marasco, D; Vitagliano, L; Travaglini-Allocatelli, C; Federici, L

    2017-01-01

    Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment. PMID:28920929

  12. Breakpoint Features of Genomic Rearrangements in Neuroblastoma with Unbalanced Translocations and Chromothripsis

    PubMed Central

    Daveau, Romain; Combaret, Valérie; Pierre-Eugène, Cécile; Cazes, Alex; Louis-Brennetot, Caroline; Schleiermacher, Gudrun; Ferrand, Sandrine; Pierron, Gaëlle; Lermine, Alban; Frio, Thomas Rio; Raynal, Virginie; Vassal, Gilles; Barillot, Emmanuel; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2013-01-01

    Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis. PMID:23991058

  13. Translocations in epithelial cancers

    PubMed Central

    Chad Brenner, J.; Chinnaiyan, Arul M.

    2009-01-01

    Genomic translocations leading to the expression of chimeric transcripts characterize several hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked to essential molecular events in hematologic malignancies, the identification and characterization of recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions that drive several epithelial cancers and the recent technological advances that increase the speed and reliability of recurrent gene fusion discovery are explored. PMID:19406209

  14. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    PubMed

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

    PubMed

    Kerr, Georgina; Sheldon, Helen; Chaikuad, Apirat; Alfano, Ivan; von Delft, Frank; Bullock, Alex N; Harris, Adrian L

    2015-04-01

    Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

  16. Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel.

    PubMed

    Gunasekera, Thusitha S; Striebich, Richard C; Mueller, Susan S; Strobel, Ellen M; Ruiz, Oscar N

    2013-01-01

    Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel. We have used DNA-microarrays and RT-PCR to characterize the transcriptional response of P. aeruginosa to fuel. Transcriptomics revealed that genes essential for medium- and long-chain n-alkane degradation including alkB1 and alkB2 were transcriptionally induced. Gas chromatography confirmed that P. aeruginosa possesses pathways to degrade different length n-alkanes, favoring the use of n-C11-18. Furthermore, a gamut of synergistic metabolic pathways, including porins, efflux pumps, biofilm formation, and iron transport, were transcriptionally regulated. Bioassays confirmed that efflux pumps and biofilm formation were required for growth in jet fuel. Furthermore, cell homeostasis appeared to be carefully maintained by the regulation of porins and efflux pumps. The Mex RND efflux pumps were required for fuel tolerance; blockage of these pumps precluded growth in fuel. This study provides a global understanding of the multiple metabolic adaptations required by bacteria for survival and proliferation in fuel-containing environments. This information can be applied to improve the fuel bioremediation properties of bacteria.

  17. A Multiprotein Binding Interface in an Intrinsically Disordered Region of the Tumor Suppressor Protein Interferon Regulatory Factor-1*

    PubMed Central

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.

    2011-01-01

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151

  18. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogure, Takahisa; Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Niitsu, Niigata 956-8603; Takagi, Masamichi

    2005-04-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated thatmore » three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.« less

  19. Minimal Residual Disease Monitoring of Acute Myeloid Leukemia by Massively Multiplex Digital PCR in Patients with NPM1 Mutations.

    PubMed

    Mencia-Trinchant, Nuria; Hu, Yang; Alas, Maria Antonina; Ali, Fatima; Wouters, Bas J; Lee, Sangmin; Ritchie, Ellen K; Desai, Pinkal; Guzman, Monica L; Roboz, Gail J; Hassane, Duane C

    2017-07-01

    The presence of minimal residual disease (MRD) is widely recognized as a powerful predictor of therapeutic outcome in acute myeloid leukemia (AML), but methods of measurement and quantification of MRD in AML are not yet standardized in clinical practice. There is an urgent, unmet need for robust and sensitive assays that can be readily adopted as real-time tools for disease monitoring. NPM1 frameshift mutations are an established MRD marker present in half of patients with cytogenetically normal AML. However, detection is complicated by the existence of hundreds of potential frameshift insertions, clonal heterogeneity, and absence of sequence information when the NPM1 mutation is identified using capillary electrophoresis. Thus, some patients are ineligible for NPM1 MRD monitoring. Furthermore, a subset of patients with NPM1-mutated AML will have false-negative MRD results because of clonal evolution. To simplify and improve MRD testing for NPM1, we present a novel digital PCR technique composed of massively multiplex pools of insertion-specific primers that selectively detect mutated but not wild-type NPM1. By measuring reaction end points using digital PCR technology, the resulting single assay enables sensitive and specific quantification of most NPM1 exon 12 mutations in a manner that is robust to clonal heterogeneity, does not require NPM1 sequence information, and obviates the need for maintenance of hundreds of type-specific assays and associated plasmid standards. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Mutations of NPM1 gene in de novo acute myeloid leukaemia: determination of incidence, distribution pattern and identification of two novel mutations in Indian population.

    PubMed

    Ahmad, Firoz; Mandava, Swarna; Das, Bibhu Ranjan

    2009-06-01

    Mutations in the nucleophosmin (NPM1) gene have been recently described to occur in about one-third of acute myeloid leukaemias (AMLs) and represent the most frequent genetic alteration currently known in this subset, specially in those with normal karyotype. This study explored the prevalence and clinical profile of NPM1 mutations in a cohort of 200 Indian adult and children with AML. NPM1 mutations were observed in 19.5% of all population and 34.2% of those with normal karyotype. Adults had a significantly higher incidence of NPM1 mutations than children [38 of 161 (23.6%) vs. 1 of 39 (2.5%), p = 0.002]. NPM1 mutations were significantly associated with normal karyotype (p = 0.001), high WBC count (p = 0.034), AML-M4 subtype (p = 0.039) and a gradient increase of mutation rate with the increase in age groups. Sequence analysis of 39 mutated cases revealed typical mutations (types A, B, D, Nm and H*) as well as two novel variations (types F1 and F2). Majority of the patients had mutation type A (69.2%), followed by B (5.1%), D (15.3%), H* (2.5%) and Nm (2.5%) all involving COOH terminal of the NPM1 protein. In conclusion, this study represents the first report of NPM1 mutation from Indian population and confirms that the incidence of NPM1 mutations varies considerably globally, with slightly lower incidence in Indian population compared to western countries. The current study also served to identify two novel NPM1 mutants that add new insights into the heterogeneity of genomic insertions at exon 12. More ongoing larger studies are warranted to elucidate the molecular pathogenesis of AML that arises in this part of the world. Furthermore, we believe that in light of its high prevalence worldwide, inclusion of NPM1 mutation detection assay in diagnostic evaluations of AML may improve the efficacy of routine genetic characterization and allow assignment of patients to better-defined risk categories.

  1. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I.

    PubMed Central

    Evers, R; Grummt, I

    1995-01-01

    Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036

  2. Enhanced Incretin Effects of Exendin-4 Expressing Chimeric Plasmid Based On Two-Step Transcription Amplification System with Dendritic Bioreducible Polymer for the Treatment of Type 2 Diabetes

    PubMed Central

    Kim, Pyung-Hwan; Lee, Minhyung; Nam, Kihoon; Kim, Sung Wan

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) agonist, exenxdin-4, is currently being advanced as a promising diabetes remedy via a variety of incretin actions similar with GLP-1. In this study, we investigated an effective anti-diabetic therapy via exendin-4 expressing chimeric plasmid based on two-step transcription amplification (TSTA) system with dendrimer-type bioreducible polymer for more improved incretin-based gene therapy. Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amido amine) (PAMAM) dendrimer (PAM-ABP) was used as gene carrier. PAM-ABP/chimeric DNA polyplex was markedly elevated exendin-4 expression in ectopic cells as well as increased insulin production through an enhanced activation of protein kinase K (PKA) induced by up-regulation of exendin-4-stimulated cyclic adenosine monophosphate (cAMP) in pancreatic β-cell. Consistent with these results, intravenous administration of PAM-ABP/chimeric DNA polyplex improved glucoregulotory effects, as well as increased insulin secretion by high expression of exendin-4 in blood in type 2 diabetic mice with no any toxicity. Our exendin-4 system can be attributed to provide a potential diabetes therapeutic agent for improved incretin gene therapy. PMID:24839613

  3. Development of an NPM1/MLF1 D-FISH probe set for the detection of t(3;5)(q25;q35) identified in patients with acute myeloid leukemia.

    PubMed

    Aypar, Umut; Knudson, Ryan A; Pearce, Kathryn E; Wiktor, Anne E; Ketterling, Rhett P

    2014-09-01

    The t(3;5)(q25;q35) NPM1/MLF1 fusion has an incidence of approximately 0.5% in acute myeloid leukemia (AML) and has an intermediate prognosis at diagnosis. We have developed a dual-color, dual-fusion fluorescence in situ hybridization (D-FISH) assay to detect fusion of the MLF1 and NPM1 genes. A blinded investigation was performed using 25 normal bone marrow specimens and 26 bone marrow samples from patients with one or more metaphases with a t(3;5)(q21-q25;q31-q35) or a der(5)t(3;5)(q21-q25;q31-q35) previously identified by chromosome analysis. Once unblinded, the results indicate our D-FISH method identified NPM1/MLF1 fusion in 15 of the 26 fully evaluated patient samples. Excluding three samples with a single abnormal t(3;5) metaphase, 15 of 17 (88%) patient samples with a balanced t(3;5) demonstrated NPM1/MLF1 fusion, and 0 of 6 patient samples with a der(5)t(3;5) demonstrated NPM1/MLF1 fusion, suggesting only the balanced form of this 3;5 translocation as observed by karyotype is associated with NPM1/MLF1 fusion. Overall, the FISH results demonstrated five different outcomes (NPM1/MLF1 fusion, MLF1 disruption, MLF1 duplication, NPM1 deletion, and normal), indicating significant molecular heterogeneity when the 3;5 translocation is identified. The development of this sensitive D-FISH strategy for the detection of NPM1/MLF1 fusion adds to the AML FISH testing repertoire and is effective in the detection of this translocation at diagnosis as well as monitoring residual disease in AML patients. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Biophysical Characterization of Nucleophosmin Interactions with Human Immunodeficiency Virus Rev and Herpes Simplex Virus US11

    PubMed Central

    Nouri, Kazem; Moll, Jens M.; Milroy, Lech-Gustav; Hain, Anika; Dvorsky, Radovan; Amin, Ehsan; Lenders, Michael; Nagel-Steger, Luitgard; Howe, Sebastian; Smits, Sander H. J.; Hengel, Hartmut; Schmitt, Lutz; Münk, Carsten; Brunsveld, Luc; Ahmadian, Mohammad R.

    2015-01-01

    Nucleophosmin (NPM1, also known as B23, numatrin or NO38) is a pentameric RNA-binding protein with RNA and protein chaperon functions. NPM1 has increasingly emerged as a potential cellular factor that directly associates with viral proteins; however, the significance of these interactions in each case is still not clear. In this study, we have investigated the physical interaction of NPM1 with both human immunodeficiency virus type 1 (HIV-1) Rev and Herpes Simplex virus type 1 (HSV-1) US11, two functionally homologous proteins. Both viral proteins show, in mechanistically different modes, high affinity for a binding site on the N-terminal oligomerization domain of NPM1. Rev, additionally, exhibits low-affinity for the central histone-binding domain of NPM1. We also showed that the proapoptotic cyclic peptide CIGB-300 specifically binds to NPM1 oligomerization domain and blocks its association with Rev and US11. Moreover, HIV-1 virus production was significantly reduced in the cells treated with CIGB-300. Results of this study suggest that targeting NPM1 may represent a useful approach for antiviral intervention. PMID:26624888

  5. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  6. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    PubMed

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  7. A novel type of EWS-CHOP fusion gene in myxoid liposarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Yoshito; Ueda, Takafumi; Kubo, Takahiro

    2006-09-22

    The cytogenetic hallmark of myxoid type and round cell type liposarcoma consists of reciprocal translocation of t(12;16)(q13;p11) and t(12;22)(q13;q12), which results in fusion of TLS/FUS and CHOP, and EWS and CHOP, respectively. Nine structural variations of the TLS/FUS-CHOP chimeric transcript have been reported, however, only two types of EWS-CHOP have been described. We describe here a case of myxoid liposarcoma containing a novel EWS-CHOP chimeric transcript and identified the breakpoint occurring in intron 13 of EWS. Reverse transcription-polymerase chain reaction and direct sequence showed that exon 13 of EWS was in-frame fused to exon 2 of CHOP. Genomic analysis revealedmore » that the breaks were located in intron 13 of EWS and intron 1 of CHOP.« less

  8. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors.

    PubMed

    Hamatani, Kiyohiro; Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-11-01

    We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF(V600E)) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5' rapid amplification of cDNA ends (5' RACE). We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC.

  9. Monitoring of nucleophosmin oligomerization in live cells.

    PubMed

    Holoubek, Ales; Heřman, Petr; Sýkora, Jan; Brodská, Barbora; Humpolíčková, Jana; Kráčmarová, Markéta; Gášková, Dana; Hof, Martin; Kuželová, Kateřina

    2018-06-14

    Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells. © 2018 IOP Publishing Ltd.

  10. From Autonomy to Quality Management: NPM Impacts on School Governance in Switzerland

    ERIC Educational Resources Information Center

    Hangartner, Judith; Svaton, Carla Jana

    2013-01-01

    This article reviews the impact of discourses on "New Public Management" (NPM) on compulsory schooling in Switzerland during the last two decades and traces its implementation in the Canton of Bern. The analysis suggests that while NPM reformers initially promoted increased school autonomy, the introduction of market elements and school…

  11. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    PubMed Central

    Calvanese, Vincenzo; Mallya, Meera; Campbell, R Duncan; Aguado, Begoña

    2008-01-01

    Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD). This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC). This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F) undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C) and not on their own. PMID:18817541

  12. Prenatal Exposure to Urban Air Nanoparticles in Mice Causes Altered Neuronal Differentiation and Depression-Like Responses

    PubMed Central

    Godar, Sean C.; Sander, Thomas K.; Iwata, Nahoko; Pakbin, Payam; Shih, Jean C.; Berhane, Kiros; McConnell, Rob; Sioutas, Constantinos

    2013-01-01

    Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m3) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols. PMID:23734187

  13. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation.

    PubMed

    Mitrea, Diana M; Cika, Jaclyn A; Stanley, Christopher B; Nourse, Amanda; Onuchic, Paulo L; Banerjee, Priya R; Phillips, Aaron H; Park, Cheon-Gil; Deniz, Ashok A; Kriwacki, Richard W

    2018-02-26

    Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.

  14. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Academics in a New Work Environment: The Impact of New Public Management on Work Conditions

    ERIC Educational Resources Information Center

    Santiago, Rui; Carvalho, Teresa

    2008-01-01

    New public management (NPM) approaches have informed policy in the public sector in advanced countries in the last decade. Some authors suggest that the main objective of NPM at the organisational level is to change the traditional way professionals are regulated. This study examines the impact of NPM on the working conditions of Portuguese higher…

  16. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia.

    PubMed

    Arber, Daniel A; Chang, Karen L; Lyda, Mark H; Bedell, Victoria; Spielberger, Ricardo; Slovak, Marilyn L

    2003-08-01

    Balanced translocations are rare in myelodysplasia (MDS) and acute myeloid leukemia (AML) with multilineage dysplasia; however, the t(3;5)(q25;q35) and insertion variant occur in a subset of patients. To evaluate the possible genes involved in this translocation, we studied 6 cases with a t(3;5) by fluorescence in situ hybridization with probes directed against the nucleophosmin (NPM), EVI1, and Ribophorin genes, as well as a newly developed myeloid leukemia factor 1 (MLF1) BAC clone. The histologic spectrum of the cases was variable, ranging from refractory cytopenia with multilineage dysplasia to AML with multilineage dysplasia in the World Health Organization classification. An NPM/MLF1 fusion was identified in 5 of 6 cases, whereas the EVI1 and Ribophorin genes were not involved in any of the cases. The NPM/MLF1-positive cases were predominantly young adult males (median age, 33 years) who responded well to hematopoietic stem cell transplantation. These findings suggest that an NPM/MLF1 fusion is the primary molecular abnormality in t(3;5) MDS and AML with multilineage dysplasia, and also that cases with NPM/MLF1 may be clinically distinct from other MDS-associated disease.

  17. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    PubMed Central

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  18. Identification and analysis of pig chimeric mRNAs using RNA sequencing data

    PubMed Central

    2012-01-01

    Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs. PMID:22925561

  19. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  20. INPP4B promotes cell survival via SGK3 activation in NPM1-mutated leukemia.

    PubMed

    Jin, Hongjun; Yang, Liyuan; Wang, Lu; Yang, Zailin; Zhan, Qian; Tao, Yao; Zou, Qin; Tang, Yuting; Xian, Jingrong; Zhang, Shuaishuai; Jing, Yipei; Zhang, Ling

    2018-01-17

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been recognized as a distinct leukemia entity in the 2016 World Health Organization (WHO) classification. The genetic events underlying oncogenesis in NPM1-mutated AML that is characterized by a normal karyotype remain unclear. Inositol polyphosphate 4-phosphatase type II (INPP4B), a new factor in the phosphoinositide-3 kinase (PI3K) pathway-associated cancers, has been recently found a clinically relevant role in AML. However, little is known about the specific mechanistic function of INPP4B in NPM1-mutated AML. The INPP4B expression levels in NPM1-mutated AML primary blasts and AML OCI-AML3 cell lines were determined by qRT-PCR and western blotting. The effect of INPP4B knockdown on OCI-AML3 leukemia cell proliferation was evaluated, using the Cell Counting Kit-8 and colony formation assay. After INPP4B overexpression or knockdown, the activation of serum and glucocorticoid-regulated kinase 3 (SGK3) and AKT was assessed. The effects of PI3K signaling pathway inhibitors on the levels of p-SGK3 in OCI-AML3 cells were tested. The mass of PI (3,4) P 2 and PI (3) P was analyzed by ELISA upon INPP4B overexpression. Knockdown of SGK3 by RNA interference and a rescue assay were performed to confirm the critical role of SGK3 in INPP4B-mediated cell survival. In addition, the molecular mechanism underlying INPP4B expression in NPM1-mutated leukemia cells was explored. Finally, Kaplan-Meier survival analysis was conducted on the NPM1-mutated AML cohort stratified into quartiles for INPP4B expression in The Cancer Genome Atlas (TCGA) dataset. High expression of INPP4B was observed in NPM1-mutated AML. Knockdown of INPP4B repressed cell proliferation in OCI-AML3 cells, whereas recovered INPP4B rescued this inhibitory effect in vitro. Mechanically, INPP4B enhanced phosphorylated SGK3 (p-SGK3) status, but did not affect AKT activation. SGK3 was required for INPP4B-induced cell proliferation in OCI-AML3 cells. High levels of INPP4B were at least partially caused by the NPM1 mutant via ERK/Ets-1 signaling. Finally, high expression of INPP4B showed a trend towards lower overall survival and event-free survival in NPM1-mutated AML patients. Our results indicate that INPP4B promotes leukemia cell survival via SGK3 activation, and INPP4B might be a potential target in the treatment of NPM1-mutated AML.

  1. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2

    PubMed Central

    Jehan, Zeenath; Vallinayagam, Sambandam; Tiwari, Shrish; Pradhan, Suman; Singh, Lalji; Suresh, Amritha; Reddy, Hemakumar M.; Ahuja, Y.R.; Jesudasan, Rachel A.

    2007-01-01

    The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript. PMID:17095710

  2. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation

    DOE PAGES

    Mitrea, Diana M.; Cika, Jaclyn A.; Stanley, Christopher B.; ...

    2018-02-26

    Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid–liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes withinmore » NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.« less

  3. [Nuclear protein matrix from giant nuclei of Chironomus plumosus determinates polythene chromosome organization].

    PubMed

    Makarov, M S; Chentsov, Iu S

    2010-01-01

    Giant nuclei from salivary glands of Chironomus plumosus were treated in situ with detergent, 2 M NaCl and nucleases in order to reveal residual nuclear matrix proteins (NMP). It was shown, that preceding stabilization of non-histone proteins with 2 mM CuCl2 allowed to visualize the structure of polythene chromosomes at every stage of the extraction of histones and DNA. Stabilized NPM of polythene chromosomes maintains their morphology and banding patterns, which is observed by light and electron microscopy, whereas internal fibril net or residual nucleoli are not found. In stabilized NPM of polythene chromosomes, topoisomerase IIalpha and SMC1 retain their localization that is typical of untreated chromosomes. NPM of polythene chromosomes also includes sites of DNA replication, visualized with BrDU incubation, and some RNA-components. So, we can conclude that structure of NPM from giant nuclei is equal to NPM from normal interphase nuclei, and that morphological features of polythene chromosomes depend on the presence of NMP.

  4. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrea, Diana M.; Cika, Jaclyn A.; Stanley, Christopher B.

    Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid–liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes withinmore » NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.« less

  5. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs.

    PubMed

    Pöggeler, S; Kück, U

    2000-03-01

    The mating-type locus controls mating and sexual development in filamentous ascomycetes. In the heterothallic ascomycete Neurospora crassa, the genes that confer mating behavior comprise dissimilar DNA sequences (idiomorphs) in the mat a and mat A mating partners. In the homothallic fungus Sordaria macrospora, sequences corresponding to both idiomorphs are located contiguously in the mating-type locus, which contains one chimeric gene, Smt A-3, that includes sequences which are similar to sequences found at the mat A and mat a mating-type idiomorphs in N. crassa. In this study, we describe the comparative transcriptional analysis of the chimeric mating-type region of S. macrospora and the corresponding region of the N. crassa mat a idiomorph. By means of RT-PCR experiments, we identified novel intervening sequences in the mating-type loci of both ascomycetes and, hence, concluded that an additional ORF, encoding a putative polypeptide of 79 amino acids, is present in the N. crassa mat a idiomorph. Furthermore, our analysis revealed co-transcription of the novel gene with the mat a-1 gene in N. crassa. The same mode of transcription was found in the corresponding mating-type region of S. macrospora, where the chimeric Smt A-3 gene is co-transcribed with the mat a-specific Smt a-1 gene. Analysis of a Smt A-3 cDNA revealed optional splicing of two introns. We believe that this is the first report of co-transcription of protein-encoding nuclear genes in filamentous fungi. Possible functions of the novel ORFs in regulating mating-type gene expression are discussed.

  6. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    DOE PAGES

    Sun, Jing; Jiang, Xi; Siegmund, Aaron; ...

    2016-04-04

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this study, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (Φ Npm) values ranging from 0.13 to 0.44 and dispersity (¯D) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Drymore » samples with Φ Npm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. Finally, we demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers.« less

  7. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers

    PubMed Central

    2016-01-01

    Polymers that conduct protons in the hydrated state are of crucial importance in a wide variety of clean energy applications such as hydrogen fuel cells and artificial photosynthesis. Phosphonated and sulfonated polymers are known to conduct protons at low water content. In this paper, we report on the synthesis phosphonated peptoid diblock copolymers, poly-N-(2-ethyl)hexylglycine-block-poly-N-phosphonomethylglycine (pNeh-b-pNpm), with volume fractions of pNpm (ϕNpm) values ranging from 0.13 to 0.44 and dispersity (Đ) ≤ 1.0003. The morphologies of the dry block copolypeptoids were determined by transmission electron microscopy and in both the dry and hydrated states by synchrotron small-angle X-ray scattering. Dry samples with ϕNpm > 0.13 exhibited a lamellar morphology. Upon hydration, the lowest molecular weight sample transitioned to a hexagonally packed cylinder morphology, while the others maintained their dry morphologies. Water uptake of all of the ordered samples was 8.1 ± 1.1 water molecules per phosphonate group. In spite of this, the proton conductivity of the ordered pNeh-b-pNpm copolymers ranged from 0.002 to 0.008 S/cm. We demonstrate that proton conductivity is maximized in high molecular weight, symmetric pNeh-b-pNpm copolymers. PMID:27134312

  8. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NO• pathway in vitro

    PubMed Central

    Davis, David A.; Akopian, Garnik; Walsh, John P.; Sioutas, Constantinos; Morgan, Todd E.; Finch, Caleb E.

    2013-01-01

    Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered postsynaptic proteins in CA1 neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1 or mGlur5; increased PSD95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, NO• production by slices was increased within 15 min of exposure to nPM with dose dependence, 1–10 µg/ml. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of NO• and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD-1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory postsynaptic currents (EPSCs) of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor-stimulated NO• production and nitrosylation reactions during nPM-mediated neurotoxicity. PMID:23927064

  9. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer.

    PubMed

    Jia, Xiangbo; Qian, Rulin; Zhang, Binbin; Zhao, Song

    2016-10-01

    Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 ( SALL4 ) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor ( EGFR ), kirsten rat sarcoma viral oncogene homolog ( KRAS ), and a fusion gene of the echinoderm microtubule-associated protein-like 4 ( EML4 ) and the anaplastic lymphoma kinase ( ALK ). The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS . In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR , which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis.

  10. Temporal Control of Transforming Growth Factor (TGF) - Betal Expression on Mammary Cell Multistep Transformation

    DTIC Science & Technology

    2001-10-01

    tu- vation of transcription and deregulated cell mors and may eventually regress through growth (18). The importance of APC and [- cat - apoptosis (25...receptors, fibrosarcoma cells transfected to express 10ng/ml TPRII [621, ALK-1 [63], and endoglin [64], and one of its TGF-131 in vitro are unable to

  11. ALK Inhibitor Response in Melanomas Expressing EML4-ALK Fusions and Alternate ALK Isoforms.

    PubMed

    Couts, Kasey L; Bemis, Judson; Turner, Jacqueline A; Bagby, Stacey M; Murphy, Danielle; Christiansen, Jason; Hintzsche, Jennifer D; Le, Anh; Pitts, Todd M; Wells, Keith; Applegate, Allison; Amato, Carol; Multani, Pratik; Chow-Maneval, Edna; Tentler, John J; Shellman, Yiqun G; Rioth, Matthew J; Tan, Aik-Choon; Gonzalez, Rene; Medina, Theresa; Doebele, Robert C; Robinson, William A

    2018-01-01

    Oncogenic ALK fusions occur in several types of cancer and can be effectively treated with ALK inhibitors; however, ALK fusions and treatment response have not been characterized in malignant melanomas. Recently, a novel isoform of ALK ( ALK ATI ) was reported in 11% of melanomas but the response of melanomas expressing ALK ATI to ALK inhibition has not been well characterized. We analyzed 45 melanoma patient-derived xenograft models for ALK mRNA and protein expression. ALK expression was identified in 11 of 45 (24.4%) melanomas. Ten melanomas express wild-type (wt) ALK and/or ALK ATI and one mucosal melanoma expresses multiple novel EML4-ALK fusion variants. Melanoma cells expressing different ALK variants were tested for response to ALK inhibitors. Whereas the melanoma expressing EML4-ALK were sensitive to ALK inhibitors in vitro and in vivo , the melanomas expressing wt ALK or ALK ATI were not sensitive to ALK inhibitors. In addition, a patient with mucosal melanoma expressing ALK ATI was treated with an ALK/ROS1/TRK inhibitor (entrectinib) on a phase I trial but did not respond. Our results demonstrate ALK fusions occur in malignant melanomas and respond to targeted therapy, whereas melanomas expressing ALK ATI do not respond to ALK inhibitors. Targeting ALK fusions is an effective therapeutic option for a subset of melanoma patients, but additional clinical studies are needed to determine the efficacy of targeted therapies in melanomas expressing wt ALK or ALK ATI Mol Cancer Ther; 17(1); 222-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    PubMed

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  13. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    PubMed

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  14. New public management in Iran's health complex: a management framework for primary health care system.

    PubMed

    Tabrizi, Jafar Sadegh; HaghGoshayie, Elaheh; Doshmangir, Leila; Yousefi, Mahmood

    2018-05-01

    New public management (NPM) was developed as a management reform to improve the efficiency and effectiveness in public organizations, especially in health sector. Using the features of private sector management, the managers of health organizations may try to implement the elements of NPM with the hope to improve the performance of their systems.AimsOur aim in the present study was to identify the elements and infrastructures suitable for implementing NPM in the Iranian health complex. In this qualitative study with conventional content analysis approach, we tried to explore the NPM elements and infrastructures in Iranian public health sector. A series of semi-structured interviews (n=48) were conducted in 2016 with a managers in public and private health complex. Three focus group discussions with nine faculty members were also conducted. A data collection form was used to collect the demographic characteristics and perspectives of the participants.FindingsFrom the perspective of managers, managerialism, decentralization, using market mechanism, performance management, customer orientation and performance budgeting were the main elements of NPM in the Iranian context. The most important infrastructures for implementing this reform were as follows: education and training, information technology, the proper use of human resources, decision support systems, top management commitment, organizational culture, flexibility of rules, rehabilitating of the aging infrastructures, and expanding the coverage of services. The NPM was generally identified to be an effective replacement for the traditional administration method. These reforms may be helpful in strengthening the public health complex and the management capacity, as well. NPM also seems to be useful in interacting the public health sector with the private sector in terms of personnel and resources, performance, reward structure, and methods of doing business.

  15. Epithelioid inflammatory myofibroblastic sarcoma: An aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK.

    PubMed

    Mariño-Enríquez, Adrián; Wang, Wei-Lien; Roy, Angshumoy; Lopez-Terrada, Dolores; Lazar, Alexander J F; Fletcher, Christopher D M; Coffin, Cheryl M; Hornick, Jason L

    2011-01-01

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal neoplasm of intermediate biological potential, which may recur and rarely metastasize. Pathologic features do not correlate well with behavior. Approximately 50% of conventional IMTs harbor ALK gene rearrangement and overexpress ALK, most showing diffuse cytoplasmic staining. Rare IMTs with a distinct nuclear membrane or perinuclear pattern of ALK staining and epithelioid or round cell morphology have been reported. These cases pursued an aggressive clinical course, suggesting that such patterns may predict malignant behavior. We describe 11 cases of IMT with epithelioid morphology and a nuclear membrane or perinuclear pattern of immunostaining for ALK. Ten patients were male and 1 was female, ranging from 7 months to 63 years in age (median, 39 y). All tumors were intra-abdominal; most arose in the mesentery or omentum, measuring 8 to 26 cm (median, 15 cm). Six tumors were multifocal at presentation. The tumors were composed predominantly of sheets of round-to-epithelioid cells with vesicular nuclei, large nucleoli, and amphophilic-to-eosinophilic cytoplasm. In all cases, a minor spindle cell component was present. Nine tumors had abundant myxoid stroma. In 7 cases neutrophils were prominent and in 3 cases lymphocytes were prominent. Plasma cells were often absent. Median mitotic rate was 4/10 HPF; 6 tumors had necrosis. By immunohistochemistry, all tumors were positive for ALK, 9 tumors showing a nuclear membrane staining pattern and 2 tumors showing a cytoplasmic pattern with perinuclear accentuation. Other positive markers were desmin (10 of 11), focal smooth muscle actin (4 of 8), and CD30 (8 of 8). All tumors were negative for MYF4, caldesmon, keratins, EMA, and S-100. Fluorescence in situ hybridization was positive for ALK gene rearrangement in 9 cases, and in 3 cases tested, a RANBP2-ALK fusion was detected by reverse transcription polymerase chain reaction. Ten patients underwent surgical resection; 1 patient was inoperable. Follow-up was available for 8 patients and ranged from 3 to 40 months (median, 13 mo). All patients experienced rapid local recurrences; 4 patients had multiple recurrences. Eight patients were treated with postoperative chemotherapy; 2 patients received additional radiotherapy. Two patients also developed metastases (both patients developed metastases to the liver; 1 patient developed metastases to the lung and lymph nodes as well). Thus far, 5 patients died of disease, 2 patients are alive with disease, and 1 patient, treated with an experimental ALK inhibitor, has no evidence of disease. In summary, the epithelioid variant of IMT with nuclear membrane or perinuclear ALK is a distinctive intra-abdominal sarcoma with a predilection for male patients. Unlike conventional IMT, abundant myxoid stroma and prominent neutrophils are common. These tumors pursue an aggressive course with rapid local recurrences and are frequently fatal. We propose the designation "epithelioid inflammatory myofibroblastic sarcoma" to convey both the malignant behavior of these tumors and their close relationship with IMT.

  16. Viewing Chinese art on an interactive tabletop.

    PubMed

    Hsieh, Chun-ko; Hung, Yi-Ping; Ben-Ezra, Moshe; Hsieh, Hsin-Fang

    2013-01-01

    To protect fragile paintings and calligraphy, Taiwan's National Palace Museum (NPM) has policies controlling the frequency and duration of their exposure. So, visitors might not see the works they planned to see. To address this problem, the NPM installed an interactive tabletop for viewing the works. This tabletop, the first to feature multiresolution and gigapixel photography technology, displays extremely high-quality images revealing brushwork-level detail. A user study at the NPM examined the tabletop's performance and collected visitor feedback.

  17. Consequences of nursing procedures measurement on job satisfaction

    PubMed Central

    Khademol-hoseyni, Seyyed Mohammad; Nouri, Jamileh Mokhtari; Khoshnevis, Mohammad Ali; Ebadi, Abbas

    2013-01-01

    Background: Job satisfaction among nurses has consequences on the quality of nursing care and accompanying organizational commitments. Nursing procedure measurement (NPM) is one of the essential parts of the performance-oriented system. This research was performed in order to determining the job satisfaction rate in selected wards of Baqiyatallah (a. s.) Hospital prior and following the NPM. Materials and Methods: An interventional research technique designed with an evaluation study approach in which job satisfaction was measured before and after NPM within 2 months in selected wards with census sampling procedure. The questionnaire contained two major parts; demographic data and questions regarding job satisfaction, salary, and fringe benefits. Data analyzed with SPSS version 13. Results: Statistical evaluation did not reveal significant difference between demographic data and satisfaction and/or dissatisfaction of nurses (before and after nursing procedures measurement). Following NPM, the rate of salary and benefits dissatisfaction decreased up to 5% and the rate of satisfaction increased about 1.5%, however the statistical tests did not reveal a significant difference. Subsequent to NPM, the rate of job value increased (P = 0.019), whereas the rate of job comfort decreased (P = 0.033) significantly. Conclusions: Measuring procedures do not affect the job satisfaction of ward staff or their salary and benefits. Therefore, it is suggested that the satisfaction measurement compute following nurses’ salary and therefore benefits adjusted based on NPM. This is our suggested approach. PMID:23983741

  18. Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation.

    PubMed

    Raveendran, Sureshkumar; Sarojam, Santhi; Vijay, Sangeetha; Geetha, Aswathy Chandran; Sreedharan, Jayadevan; Narayanan, Geetha; Sreedharan, Hariharan

    2015-01-01

    IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces 172nd arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients.

  19. Consequences of nursing procedures measurement on job satisfaction.

    PubMed

    Khademol-Hoseyni, Seyyed Mohammad; Nouri, Jamileh Mokhtari; Khoshnevis, Mohammad Ali; Ebadi, Abbas

    2013-03-01

    Job satisfaction among nurses has consequences on the quality of nursing care and accompanying organizational commitments. Nursing procedure measurement (NPM) is one of the essential parts of the performance-oriented system. This research was performed in order to determining the job satisfaction rate in selected wards of Baqiyatallah (a. s.) Hospital prior and following the NPM. An interventional research technique designed with an evaluation study approach in which job satisfaction was measured before and after NPM within 2 months in selected wards with census sampling procedure. The questionnaire contained two major parts; demographic data and questions regarding job satisfaction, salary, and fringe benefits. Data analyzed with SPSS version 13. Statistical evaluation did not reveal significant difference between demographic data and satisfaction and/or dissatisfaction of nurses (before and after nursing procedures measurement). Following NPM, the rate of salary and benefits dissatisfaction decreased up to 5% and the rate of satisfaction increased about 1.5%, however the statistical tests did not reveal a significant difference. Subsequent to NPM, the rate of job value increased (P = 0.019), whereas the rate of job comfort decreased (P = 0.033) significantly. Measuring procedures do not affect the job satisfaction of ward staff or their salary and benefits. Therefore, it is suggested that the satisfaction measurement compute following nurses' salary and therefore benefits adjusted based on NPM. This is our suggested approach.

  20. Detection of t(3;5) and NPM1/MLF1 rearrangement in an elderly patient with acute myeloid leukemia: clinical and laboratory study with review of the literature.

    PubMed

    Lim, Gayoung; Choi, Jong Rak; Kim, Min Jin; Kim, So Young; Lee, Hee Joo; Suh, Jin-Tae; Yoon, Hwi-Joong; Lee, Juhie; Lee, Sanggyu; Lee, Woo-In; Park, Tae Sung

    2010-06-01

    We present a novel case of acute myeloid leukemia with an NPM1/MLF1 rearrangement in a 78-year-old Korean woman. The bone marrow chromosome study showed a complex karyotype: 46,XX,t(2;13) (q13;q32),der(3)t(3;5)(q25.1;q34),der(5)del(5)(?q31q34)t(3;5),inv(9)(p11q13)c,del(20)(q11.2)[13]/49,idem,+5,+8,+der(13)t(2;13)[7]. Multiplex gene rearrangement testing, cloning, and sequencing analyses revealed an NPM1/MLF1 fusion rearrangement between exon 6 of NPM1 (ENSG00000181163) and exon 2 of MLF1 (ENSG00000178053). Although t(3;5)(q25.1;q34) or the NPM1/MLF1 rearrangement has been reported mostly as a sole karyotypic abnormality in younger patients, it should also be considered in elderly patients with complex chromosomal abnormalities in acute myeloid leukemia or myelodysplastic syndrome. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    PubMed Central

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  2. [Physicians see both pros and cons of health care financial management. Questionnaire study provides more insights--with starting point in controversial DN-article series].

    PubMed

    Björk, Joar; Petersson, Christer

    2015-05-12

    In the spring of 2013, the Swedish journalist Maciej Zaremba wrote a series of articles criticizing the impact of NPM (New Public Management) on Swedish health care. The present study examines the views of experienced Swedish physicians (general practitioners and internal medicine speclialists) on the problems focused in Mr Zaremba's article series. The respondents (51 general practitioners and 61 internal medicine specialists) mention advantages as well as disadvantages with NPM in Swedish health care. The majority agrees that with NPM, physicians loose influence over health care governance to other professional groups. The majority disagree with the charge made by Mr Zaremba that NPM has had the effect of manipulating Swedish physicians away from the standards of good medical care.

  3. Design of chimeric expression elements that confer high-level gene activity in chromoplasts.

    PubMed

    Caroca, Rodrigo; Howell, Katharine A; Hasse, Claudia; Ruf, Stephanie; Bock, Ralph

    2013-02-01

    Non-green plastids, such as chromoplasts, generally have much lower activity of gene expression than chloroplasts in photosynthetically active tissues. Suppression of plastid genes in non-green tissues occurs through a complex interplay of transcriptional and translational control, with the contribution of regulation of transcript abundance versus translational activity being highly variable between genes. Here, we have investigated whether the low expression of the plastid genome in chromoplasts results from inherent limitations in gene expression capacity, or can be overcome by designing appropriate combinations of promoters and translation initiation signals in the 5' untranslated region (5'-UTR). We constructed chimeric expression elements that combine promoters and 5'-UTRs from plastid genes, which are suppressed during chloroplast-to-chromoplast conversion in Solanum lycopersicum (tomato) fruit ripening, either just at the translational level or just at the level of mRNA accumulation. These chimeric expression elements were introduced into the tomato plastid genome by stable chloroplast transformation. We report the identification of promoter-UTR combinations that confer high-level gene expression in chromoplasts of ripe tomato fruits, resulting in the accumulation of reporter protein GFP to up to 1% of total cellular protein. Our work demonstrates that non-green plastids are capable of expressing genes to high levels. Moreover, the chimeric cis-elements for chromoplasts developed here are widely applicable in basic and applied research using transplastomic methods. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  4. Expression Analysis of an R3-Type MYB Transcription Factor CPC-LIKE MYB4 (TRICHOMELESS2) and CPL4-Related Transcripts in Arabidopsis

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka

    2012-01-01

    The CAPRICE (CPC)-like MYB gene family encodes R3-type MYB transcription factors in Arabidopsis. There are six additional CPC-like MYB sequences in the Arabidopsis genome, including TRYPTICHON (TRY), ENHANCER OF TRY AND CPC1 and 2 (ETC1 and ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), and TRICHOMELESS1 and 2 (TCL1 and TCL2). We independently identified CPC-LIKE MYB4 (CPL4), which was found to be identical to TCL2. RT-PCR analysis showed that CPL4 is strongly expressed in shoots, including true leaves, but not in roots. Promoter-GUS analyses indicated that CPL4 is specifically expressed in leaf blades. Although CPC expression was repressed in 35S::ETC1, 35S::ETC2 and 35S::CPL3 backgrounds, CPL4 expression was not affected by ETC1, ETC2 or CPL3 over-expression. Notably, several chimeric transcripts may result from inter-genic alternative splicing of CPL4 and ETC2, two tandemly repeated genes on chromosome II. At least two chimeric transcripts named CPL4-α and CPL4-β are expected to encode complete CPC-like MYB proteins. PMID:22489163

  5. Understanding and Targeting Cell Growth Networks in Breast Cancer

    DTIC Science & Technology

    2010-04-01

    both monitoring and preventing the outbreak of cancer cells. A common target of ARF is the NPM/B23 oncogene, an abundant protein of the nucleolus ...phenotype is dependent on NPM and p68DDX5 expression in the nucleolus , with loss of either capable of completely reversing the phenotype back to...ARF, DDX5, and NPM in the nucleolus of breast epithelial cells and how they impact both ribosome biogenesis and cell growth to prevent and/or promote

  6. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing.

    PubMed

    Jung, Yeonjoo; Kim, Pora; Jung, Yeonhwa; Keum, Juhee; Kim, Soon-Nam; Choi, Yong Soo; Do, In-Gu; Lee, Jinseon; Choi, So-Jung; Kim, Sujin; Lee, Jong-Eun; Kim, Jhingook; Lee, Sanghyuk; Kim, Jaesang

    2012-06-01

    An increasing number of chromosomal aberrations is being identified in solid tumors providing novel biomarkers for various types of cancer and new insights into the mechanisms of carcinogenesis. We applied next generation sequencing technique to analyze the transcriptome of the non-small cell lung carcinoma (NSCLC) cell line H2228 and discovered a fusion transcript composed of multiple exons of ALK (anaplastic lymphoma receptor tyrosine kinase) and PTPN3 (protein tyrosine phosphatase, nonreceptor Type 3). Detailed analysis of the genomic structure revealed that a portion of genomic region encompassing Exons 10 and 11 of ALK has been translocated into the intronic region between Exons 2 and 3 of PTPN3. The key net result appears to be the null mutation of one allele of PTPN3, a gene with tumor suppressor activity. Consistently, ectopic expression of PTPN3 in NSCLC cell lines led to inhibition of colony formation. Our study confirms the utility of next generation sequencing as a tool for the discovery of somatic mutations and has led to the identification of a novel mutation in NSCLC that may be of diagnostic, prognostic, and therapeutic importance. Copyright © 2012 Wiley Periodicals, Inc.

  7. Postinduction Minimal Residual Disease Predicts Outcome and Benefit From Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia With NPM1 Mutation: A Study by the Acute Leukemia French Association Group.

    PubMed

    Balsat, Marie; Renneville, Aline; Thomas, Xavier; de Botton, Stéphane; Caillot, Denis; Marceau, Alice; Lemasle, Emilie; Marolleau, Jean-Pierre; Nibourel, Olivier; Berthon, Céline; Raffoux, Emmanuel; Pigneux, Arnaud; Rodriguez, Céline; Vey, Norbert; Cayuela, Jean-Michel; Hayette, Sandrine; Braun, Thorsten; Coudé, Marie Magdeleine; Terre, Christine; Celli-Lebras, Karine; Dombret, Hervé; Preudhomme, Claude; Boissel, Nicolas

    2017-01-10

    Purpose This study assessed the prognostic impact of postinduction NPM1-mutated ( NPM1m) minimal residual disease (MRD) in young adult patients (age, 18 to 60 years) with acute myeloid leukemia, and addressed the question of whether NPM1m MRD may be used as a predictive factor of allogeneic stem cell transplantation (ASCT) benefit. Patients and Methods Among 229 patients with NPM1m who were treated in the Acute Leukemia French Association 0702 (ALFA-0702) trial, MRD evaluation was available in 152 patients in first remission. Patients with nonfavorable AML according to the European LeukemiaNet (ELN) classification were eligible for ASCT in first remission. Results After induction therapy, patients who did not achieve a 4-log reduction in NPM1m peripheral blood-MRD (PB-MRD) had a higher cumulative incidence of relapse (subhazard ratio [SHR], 5.83; P < .001) and a shorter overall survival (OS; hazard ratio [HR], 10.99; P < .001). In multivariable analysis, an abnormal karyotype, the presence of FLT3-internal tandem duplication (ITD), and a < 4-log reduction in PB-MRD were significantly associated with a higher relapse incidence and shorter OS. In the subset of patients with FLT3-ITD, only age, white blood cell count, and < 4-log reduction in PB-MRD, but not FLT3-ITD allelic ratio, remained of significant prognostic value. In these patients with nonfavorable AML according to European LeukemiaNet, disease-free survival and OS were significantly improved by ASCT in those with a < 4-log reduction in PB-MRD. This benefit was not observed in those with a > 4-log reduction in PB-MRD, with a significant interaction between ASCT effect and PB-MRD response ( P = .024 and .027 for disease-free survival and OS, respectively). Conclusion Our study supports the strong prognostic significance of early NPM1m PB-MRD, independent of the cytogenetic and molecular context. Moreover, NPM1m PB-MRD may be used as a predictive factor for ASCT indication.

  8. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology.

    PubMed

    Van Vaerenbergh, Matthias; De Smet, Lina; Rafei-Shamsabadi, David; Blank, Simon; Spillner, Edzard; Ebo, Didier G; Devreese, Bart; Jakob, Thilo; de Graaf, Dirk C

    2015-02-01

    Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Assessment of Inaugural Two-Year NPM Guidance Process

    EPA Pesticide Factsheets

    Assessment intended to facilitate discussions among EPA Headquarters, Regional and state staff and management -- to identify opportunities to improve the two-year process for the FY 2018-2019 NPM Guidance development.

  10. Identification and characterization of ALK kinase splicing isoforms in non-small-cell lung cancer

    PubMed Central

    de Figueiredo-Pontes, Lorena Lobo; Wong, Daisy Wing-Sze; Tin, Vick Pui-Chi; Chung, Lap-Ping; Yasuda, Hiroyuki; Yamaguchi, Norihiro; Nakayama, Sohei; Jänne, Pasi Antero; Wong, Maria Pik; Kobayashi, Susumu Soeda; Costa, Daniel Botelho

    2014-01-01

    Purpose: Anaplastic lymphoma kinase (ALK) rearrangements are present in an important subset of non-small-cell lung cancer (NSCLC) and predict for response to the tyrosine kinase inhibitor crizotinib. In this study, we evaluated the yet unknown frequency and functional role of ALK splicing isoforms in NSCLC. Experimental Design: We analyzed 270 cases of NSCLC for ALK kinase domain splicing aberrations, and in addition generated constructs with full length EML4-ALK (E13;A20) and a splicing isoform. Results: Splicing isoforms of the kinase domain of ALK - including complete skipping of exon 23 (ALKdel23, ALK p.I1171fs*42) and exon 27 (ALKdel27, ALK p.T1312fs*0) - were identified in 11.1% (30/270 cases) of NSCLC, and these changes co-existed with ALK rearrangements, KRAS mutations and EGFR mutations. ALK splicing isoforms were observed with full length EML4-ALK in crizotinib-naïve and treated NSCLCs. ALK T1312fs*0 was unable to render cells solely dependent on ALK signaling. Unlike EML4-ALK and EML4-ALK p.L1196M, EML4-ALK T1312fs*0 did not autophosphorylate ALK or other phospho-tyrosine sites. Co-expression of equal amounts of EML4-ALK T1312fs*0 and EML4-ALK did not result in resistance to crizotinib, while co-expression of EML4-ALK L1196M with EML4-ALK resulted in resistance to inhibition of ALK by crizotinib. Conclusions: ALK kinase splicing isoforms were present in NSCLC and even if translated seemed to be non-functional variants of ALK. PMID:24419423

  11. Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction☆

    PubMed Central

    Chepelev, Nikolai L.; Zhang, Hongqiao; Liu, Honglei; McBride, Skye; Seal, Andrew J.; Morgan, Todd E.; Finch, Caleb E.; Willmore, William G.; Davies, Kelvin J.A.; Forman, Henry Jay

    2013-01-01

    Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM). Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1) cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals. PMID:24024152

  12. A Phthalimide Derivative That Inhibits Centrosomal Clustering Is Effective on Multiple Myeloma

    PubMed Central

    Shiheido, Hirokazu; Terada, Fukiko; Tabata, Noriko; Hayakawa, Ichigo; Matsumura, Nobutaka; Takashima, Hideaki; Ogawa, Yoko; Du, Wenlin; Yamada, Taketo; Shoji, Mitsuru; Sugai, Takeshi; Doi, Nobuhide; Iijima, Shiro; Hattori, Yutaka; Yanagawa, Hiroshi

    2012-01-01

    Despite the introduction of newly developed drugs such as lenalidomide and bortezomib, patients with multiple myeloma are still difficult to treat and have a poor prognosis. In order to find novel drugs that are effective for multiple myeloma, we tested the antitumor activity of 29 phthalimide derivatives against several multiple myeloma cell lines. Among these derivatives, 2-(2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3- dione (TC11) was found to be a potent inhibitor of tumor cell proliferation and an inducer of apoptosis via activation of caspase-3, 8 and 9. This compound also showed in vivo activity against multiple myeloma cell line KMS34 tumor xenografts in ICR/SCID mice. By means of mRNA display selection on a microfluidic chip, the target protein of TC11 was identified as nucleophosmin 1 (NPM). Binding of TC11 and NPM monomer was confirmed by surface plasmon resonance. Immunofluorescence and NPM knockdown studies in HeLa cells suggested that TC11 inhibits centrosomal clustering by inhibiting the centrosomal-regulatory function of NPM, thereby inducing multipolar mitotic cells, which undergo apoptosis. NPM may become a novel target for development of antitumor drugs active against multiple myeloma. PMID:22761710

  13. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo.

    PubMed

    Woodward, Nicholas C; Levine, Morgan C; Haghani, Amin; Shirmohammadi, Farimah; Saffari, Arian; Sioutas, Constantinos; Morgan, Todd E; Finch, Caleb E

    2017-04-14

    Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003-1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution.

  14. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas

    PubMed Central

    Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T; Stephens, Philip J; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumors with distinctive histopathologic features. They include benign tumors (Spitz nevi), malignant tumors (spitzoid melanomas), and tumors with borderline histopathologic features and uncertain clinical outcome (atypical Spitz tumors). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbor kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%), and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signaling pathways, are tumorigenic, and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz nevi, 56% of atypical Spitz tumors, and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signaling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms, and may serve as therapeutic targets for metastatic spitzoid melanomas. PMID:24445538

  15. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas

    NASA Astrophysics Data System (ADS)

    Wiesner, Thomas; He, Jie; Yelensky, Roman; Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S.; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T.; Stephens, Philip J.; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumours with distinctive histopathological features. They include benign tumours (Spitz naevi), malignant tumours (spitzoid melanomas) and tumours with borderline histopathological features and uncertain clinical outcome (atypical Spitz tumours). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbour kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%) and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signalling pathways, are tumourigenic and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz naevi, 56% of atypical Spitz tumours and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signalling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms and may serve as therapeutic targets for metastatic spitzoid melanomas.

  16. Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer.

    PubMed

    Yoda, Satoshi; Lin, Jessica J; Lawrence, Michael S; Burke, Benjamin J; Friboulet, Luc; Langenbucher, Adam; Dardaei, Leila; Prutisto-Chang, Kylie; Dagogo-Jack, Ibiayi; Timofeevski, Sergei; Hubbeling, Harper; Gainor, Justin F; Ferris, Lorin A; Riley, Amanda K; Kattermann, Krystina E; Timonina, Daria; Heist, Rebecca S; Iafrate, A John; Benes, Cyril H; Lennerz, Jochen K; Mino-Kenudson, Mari; Engelman, Jeffrey A; Johnson, Ted W; Hata, Aaron N; Shaw, Alice T

    2018-06-01

    The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibitors. To define the spectrum of ALK mutations that confer lorlatinib resistance, we performed accelerated mutagenesis screening of Ba/F3 cells expressing EML4-ALK. Under comparable conditions, N -ethyl- N -nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib-resistant clones harboring single ALK mutations. In similar screens with EML4-ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients. Seven of 20 samples (35%) harbored compound ALK mutations, including two identified in the ENU screen. Whole-exome sequencing in three cases confirmed the stepwise accumulation of ALK mutations during sequential treatment. These results suggest that sequential ALK inhibitors can foster the emergence of compound ALK mutations, identification of which is critical to informing drug design and developing effective therapeutic strategies. Significance: Treatment with sequential first-, second-, and third-generation ALK inhibitors can select for compound ALK mutations that confer high-level resistance to ALK-targeted therapies. A more efficacious long-term strategy may be up-front treatment with a third-generation ALK inhibitor to prevent the emergence of on-target resistance. Cancer Discov; 8(6); 714-29. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  17. Elevated MLF1 expression correlates with malignant progression from myelodysplastic syndrome.

    PubMed

    Matsumoto, N; Yoneda-Kato, N; Iguchi, T; Kishimoto, Y; Kyo, T; Sawada, H; Tatsumi, E; Fukuhara, S

    2000-10-01

    MLF1 is a novel protein identified as the NPM-MLF1 chimeric protein produced by a t(3;5)(q25.1;q34) chromosomal translocation, which is associated with myelodysplastic syndrome (MDS), often prior to acute myeloid leukemia (AML), except for M3. The clinical features of t(3;5)-positive myeloid disorders suggest that this chimeric protein is involved in dysregulation of progenitor cells with the capability to differentiate into multiple lineages. So far, involvement of wild-type MLF1 in hematopoiesis or in leukemogenesis has not been fully investigated. In the present study, 65 patients with AML and 44 patients with MDS were tested for the expression of MLF1 using the quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method. A significantly higher level of MLF1 expression (ratio of MLF1/beta-actin mRNA >0.4) was readily detected in seven of 65 patients with de novo AML, three of 12 with post-MDS AML and seven of 44 with MDS, but not in any patients with ALL (n = 18). According to the FAB classification, high levels of MLF1 were found in patients with relatively immature subtypes of AML (M1, M2, M6 and M7) and high risk MDS (RAEB and RAEB-T). These findings indicate that the pattern of MLF1 expression is identical to the clinical morphology appearing in the t(3;5)-positive myeloid disorders and is correlated to the MDS-associated AML and transformation phase of MDS in t(3;5)-negative myeloid disorders. A CD34+ population of normal bone marrow cells preferentially expressed MLF1 with obviously decreasing levels of expression during maturation. Therefore, MLF1 normally functions in multi-potent progenitor cells and its dysregulation may take part in leukemogenesis from MDS.

  18. Functional sites of the Ada regulatory protein of Escherichia coli. Analysis by amino acid substitutions.

    PubMed

    Takano, K; Nakabeppu, Y; Sekiguchi, M

    1988-05-20

    Specific cysteine residues at possible methyl acceptor sites of the Ada protein of Escherichia coli were converted to other amino acids by site-directed mutagenesis of the cloned ada gene of E. coli. Ada protein with the cysteine residue at 321 replaced by alanine was capable of accepting the methyl group from the methylphosphotriester but not from O6-methylguanine or O4-methylthymine of alkylated DNA, whereas the protein with alanine at position 69 accepted the methyl group from the methylated bases but not from the methylphosphotriester. These two mutants were used to elucidate the biological significance of repair of the two types of alkylation lesions. Introduction of the ada gene with the Ala69 mutation into an ada- cell rendered the cell more resistant to alkylating agents with respect to both killing and induction of mutations, but the gene with the Ala321 mutation exhibited no such activity. Replacement of the cysteine residue at position 69, but not at position 321, abolished the ability of Ada protein to promote transcription of both ada and alkA genes in vitro. These results are compatible with the idea that methylation of the cysteine residue at position 69 renders Ada protein active as a transcriptional regulator, whilst the cysteine residue at position 321 is responsible for repair of pre-mutagenic and lethal lesions in DNA. The actions of mutant Ada proteins on the ada and alkA promoters in vivo were investigated using an artificially composed gene expression system. When the ada gene with the Ala69 mutation was introduced into the cell, there was little induction of expression of either the ada or the alkA genes, even after treatment with an alkylating agent, in agreement with the data obtained from studies in vitro. With the Ala321 mutation, however, a considerable degree of ada gene expression occurred without adaptive treatment. The latter finding suggests that the cysteine residue at position 321, which is located near the C terminus of the Ada protein, is involved in regulating activity, as the transcriptional activator.

  19. Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant

    PubMed Central

    Johnson, Amanda N.; Weil, P. Anthony

    2017-01-01

    Repressor activator protein 1 (Rap1) performs multiple vital cellular functions in the budding yeast Saccharomyces cerevisiae. These include regulation of telomere length, transcriptional repression of both telomere-proximal genes and the silent mating type loci, and transcriptional activation of hundreds of mRNA-encoding genes, including the highly transcribed ribosomal protein- and glycolytic enzyme-encoding genes. Studies of the contributions of Rap1 to telomere length regulation and transcriptional repression have yielded significant mechanistic insights. However, the mechanism of Rap1 transcriptional activation remains poorly understood because Rap1 is encoded by a single copy essential gene and is involved in many disparate and essential cellular functions, preventing easy interpretation of attempts to directly dissect Rap1 structure-function relationships. Moreover, conflicting reports on the ability of Rap1-heterologous DNA-binding domain fusion proteins to serve as chimeric transcriptional activators challenge use of this approach to study Rap1. Described here is the development of an altered DNA-binding specificity variant of Rap1 (Rap1AS). We used Rap1AS to map and characterize a 41-amino acid activation domain (AD) within the Rap1 C terminus. We found that this AD is required for transcription of both chimeric reporter genes and authentic chromosomal Rap1 enhancer-containing target genes. Finally, as predicted for a bona fide AD, mutation of this newly identified AD reduced the efficiency of Rap1 binding to a known transcriptional coactivator TFIID-binding target, Taf5. In summary, we show here that Rap1 contains an AD required for Rap1-dependent gene transcription. The Rap1AS variant will likely also be useful for studies of the functions of Rap1 in other biological pathways. PMID:28196871

  20. Long-range nanopositioning and nanomeasuring machine for application to micro- and nanotechnology

    NASA Astrophysics Data System (ADS)

    Jäger, Gerd; Hausotte, Tino; Büchner, Hans-Joachim; Manske, Eberhard; Schmidt, Ingomar; Mastylo, Rostyslav

    2006-03-01

    The paper describes the operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine). The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universität Ilmenau. The machine was successfully tested and continually improved in the last few years. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB). Three plane mirror miniature interferometers are installed into the NPM-machine having a resolution of less than 0,1 nm over the entire positioning and measuring range of 25 mm x 25 mm x 5 mm. An Abbe offset-free design of the three miniature plane mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide extraordinary accuracy with an expanded uncertainty of only 5 - 10 nm. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.

  1. Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?

    PubMed

    Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D

    2012-02-01

    The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.

  2. ALK-positive large B-cell lymphoma: identification of EML4-ALK and a review of the literature focusing on the ALK immunohistochemical staining pattern.

    PubMed

    Sakamoto, Kana; Nakasone, Hideki; Togashi, Yuki; Sakata, Seiji; Tsuyama, Naoko; Baba, Satoko; Dobashi, Akito; Asaka, Reimi; Tsai, Chien-Chen; Chuang, Shih-Sung; Izutsu, Koji; Kanda, Yoshinobu; Takeuchi, Kengo

    2016-04-01

    Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+LBCL) is a rare, aggressive B-cell lymphoma with ALK fusion genes. Histopathologically, the ALK immunohistochemical staining pattern is suggestive of the fusion partner of ALK. Here, we examined an ALK+LBCL case showing a unique diffuse cytoplasmic ALK staining pattern and identified EML4-ALK, which has not previously been reported in ALK+LBCL. Furthermore, to clarify whether the prognosis differs depending on the staining pattern, we reviewed 112 previously reported cases, and analyzed immunohistochemical markers and clinical data stratified by the staining pattern. We found that ALK staining can be classified into a granular cytoplasmic staining (GCS) or a non-GCS patterns. Sixty-four adult cases for which both the ALK staining pattern and survival time were reported were further analyzed for survival trends. The non-GCS pattern was significantly associated with inferior overall survival (P = 0.031). This difference remained significant after adjusting for age and clinical stage (hazard ratio 5.08, 95 % CI 1.88-13.7, P = 0.0013). Given that the ALK immunohistochemical staining pattern is associated with the ALK fusion partner, the present results suggest that the prognosis for ALK+LBCL differs depending on the ALK fusion partner.

  3. Next-generation sequencing reveals a Novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib.

    PubMed

    Ignatius Ou, Sai-Hong; Azada, Michele; Hsiang, David J; Herman, June M; Kain, Tatiana S; Siwak-Tapp, Christina; Casey, Cameron; He, Jie; Ali, Siraj M; Klempner, Samuel J; Miller, Vincent A

    2014-04-01

    Acquired secondary mutations in the anaplastic lymphoma kinase (ALK) gene have been identified in ALK-rearranged (ALK+) non-small-cell lung cancer (NSCLC) patients who developed disease progression while on crizotinib treatment. Here, we identified a novel secondary acquired NSCLC ALK F1174V mutation by comprehensive next-generation sequencing in one ALK+ NSCLC patient who progressed on crizotinib after a prolonged partial response to crizotinib. In a second case, we identified a secondary acquired ALK G1202R, which also confers resistance to alectinib (CH5424802/RO5424802), a second-generation ALK inhibitor that can inhibit ALK gatekeeper L1196M mutation in vitro. ALK G1202R is located at the solvent front of the ALK kinase domain and exhibits a high level of resistance to all other ALK inhibitors currently in clinical development in vitro. Comprehensive genomic profiling of resistant tumor is increasingly important in tailoring treatment decisions after disease progression on crizotinib in ALK+ NSCLC given the promise of second-generation ALK inhibitors and other therapeutic strategies.

  4. Impact of EML4-ALK Variant on Resistance Mechanisms and Clinical Outcomes in ALK-Positive Lung Cancer.

    PubMed

    Lin, Jessica J; Zhu, Viola W; Yoda, Satoshi; Yeap, Beow Y; Schrock, Alexa B; Dagogo-Jack, Ibiayi; Jessop, Nicholas A; Jiang, Ginger Y; Le, Long P; Gowen, Kyle; Stephens, Philip J; Ross, Jeffrey S; Ali, Siraj M; Miller, Vincent A; Johnson, Melissa L; Lovly, Christine M; Hata, Aaron N; Gainor, Justin F; Iafrate, Anthony J; Shaw, Alice T; Ou, Sai-Hong Ignatius

    2018-04-20

    Purpose Advanced anaplastic lymphoma kinase ( ALK) fusion-positive non-small-cell lung cancers (NSCLCs) are effectively treated with ALK tyrosine kinase inhibitors (TKIs). However, clinical outcomes in these patients vary, and the benefit of TKIs is limited as a result of acquired resistance. Emerging data suggest that the ALK fusion variant may affect clinical outcome, but the molecular basis for this association is unknown. Patients and Methods We identified 129 patients with ALK-positive NSCLC with known ALK variants. ALK resistance mutations and clinical outcomes on ALK TKIs were retrospectively evaluated according to ALK variant. A Foundation Medicine data set of 577 patients with ALK-positive NSCLC was also examined. Results The most frequent ALK variants were EML4-ALK variant 1 in 55 patients (43%) and variant 3 in 51 patients (40%). We analyzed 77 tumor biopsy specimens from patients with variants 1 and 3 who had progressed on an ALK TKI. ALK resistance mutations were significantly more common in variant 3 than in variant 1 (57% v 30%; P = .023). In particular, ALK G1202R was more common in variant 3 than in variant 1 (32% v 0%; P < .001). Analysis of the Foundation Medicine database revealed similar associations of variant 3 with ALK resistance mutation and with G1202R ( P = .010 and .015, respectively). Among patients treated with the third-generation ALK TKI lorlatinib, variant 3 was associated with a significantly longer progression-free survival than variant 1 (hazard ratio, 0.31; 95% CI, 0.12 to 0.79; P = .011). Conclusion Specific ALK variants may be associated with the development of ALK resistance mutations, particularly G1202R, and provide a molecular link between variant and clinical outcome. ALK variant thus represents a potentially important factor in the selection of next-generation ALK inhibitors.

  5. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease.

    PubMed

    Garcia-Esparcia, Paula; Hernández-Ortega, Karina; Koneti, Anusha; Gil, Laura; Delgado-Morales, Raul; Castaño, Ester; Carmona, Margarita; Ferrer, Isidre

    2015-12-01

    Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.

  6. Clinical features of squamous cell lung cancer with anaplastic lymphoma kinase (ALK)-rearrangement: a retrospective analysis and review

    PubMed Central

    Watanabe, Junko; Togo, Shinsaku; Sumiyoshi, Issei; Namba, Yukiko; Suina, Kentaro; Mizuno, Takafumi; Kadoya, Kotaro; Motomura, Hiroaki; Iwai, Moe; Nagaoka, Tetsutaro; Sasaki, Shinichi; Hayashi, Takuo; Uekusa, Toshimasa; Abe, Kanae; Urata, Yasuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kato, Shunsuke; Takahashi, Kazuhisa

    2018-01-01

    Anti-anaplastic lymphoma kinase (ALK)-targeted therapy dramatically improves therapeutic responses in patients with ALK-rearranged lung adenocarcinoma (Ad-LC). A few cases of squamous cell lung carcinoma (Sq-LC) with ALK rearrangement have been reported; however, the clinicopathological features and clinical outcomes following treatment with ALK inhibitors are unknown. We addressed this in the present study by retrospectively comparing the clinical characteristics of five patients with ALK-rearranged Sq-LC with those of patients with ALK-rearranged Ad-LC and by evaluating representative cases of ALK inhibitor responders and non-responders. The prevalence of ALK rearrangement in Sq-LCs was 1.36%. Progression-free survival (PFS) after initial treatment with crizotinib was significantly shorter in Sq-LC than in Ad-LC with ALK rearrangement (p = 0.033). Two ALK rearrangements assayed by fluorescence in situ hybridization (FISH)-positive/immunohistochemistry-negative cases did not respond to crizotinb, and PFS decreased following alectinib treatment of ALK-rearranged Sq-LC (p = 0.045). A rebiopsy revealed that responders to ceritinib harbored the L1196M mutation, which causes resistance to other ALK inhibitors. However, non-responders were resistant to all ALK inhibitors, despite the presence of ALK rearrangement in FISH-positive circulating tumor cells and circulating free DNA and absence of the ALK inhibitor resistance mutation. These results indicate that ALK inhibitors remain a reasonable therapeutic option for ALK-rearranged Sq-LC patients who have worse outcomes than ALK-rearranged Ad-LC patients and that resistance mechanisms are heterogeneous. Additionally, oncologists should be aware of the possibility of ALK-rearranged Sq-LC based on clinicopathological features, and plan second-line therapeutic strategies based on rebiopsy results in order to improve patient outcome. PMID:29844868

  7. Clinical features of squamous cell lung cancer with anaplastic lymphoma kinase (ALK)-rearrangement: a retrospective analysis and review.

    PubMed

    Watanabe, Junko; Togo, Shinsaku; Sumiyoshi, Issei; Namba, Yukiko; Suina, Kentaro; Mizuno, Takafumi; Kadoya, Kotaro; Motomura, Hiroaki; Iwai, Moe; Nagaoka, Tetsutaro; Sasaki, Shinichi; Hayashi, Takuo; Uekusa, Toshimasa; Abe, Kanae; Urata, Yasuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kato, Shunsuke; Takahashi, Kazuhisa

    2018-05-08

    Anti-anaplastic lymphoma kinase (ALK)-targeted therapy dramatically improves therapeutic responses in patients with ALK-rearranged lung adenocarcinoma (Ad-LC). A few cases of squamous cell lung carcinoma (Sq-LC) with ALK rearrangement have been reported; however, the clinicopathological features and clinical outcomes following treatment with ALK inhibitors are unknown. We addressed this in the present study by retrospectively comparing the clinical characteristics of five patients with ALK-rearranged Sq-LC with those of patients with ALK-rearranged Ad-LC and by evaluating representative cases of ALK inhibitor responders and non-responders. The prevalence of ALK rearrangement in Sq-LCs was 1.36%. Progression-free survival (PFS) after initial treatment with crizotinib was significantly shorter in Sq-LC than in Ad-LC with ALK rearrangement ( p = 0.033). Two ALK rearrangements assayed by fluorescence in situ hybridization (FISH)-positive/immunohistochemistry-negative cases did not respond to crizotinb, and PFS decreased following alectinib treatment of ALK-rearranged Sq-LC ( p = 0.045). A rebiopsy revealed that responders to ceritinib harbored the L1196M mutation, which causes resistance to other ALK inhibitors. However, non-responders were resistant to all ALK inhibitors, despite the presence of ALK rearrangement in FISH-positive circulating tumor cells and circulating free DNA and absence of the ALK inhibitor resistance mutation. These results indicate that ALK inhibitors remain a reasonable therapeutic option for ALK-rearranged Sq-LC patients who have worse outcomes than ALK-rearranged Ad-LC patients and that resistance mechanisms are heterogeneous. Additionally, oncologists should be aware of the possibility of ALK-rearranged Sq-LC based on clinicopathological features, and plan second-line therapeutic strategies based on rebiopsy results in order to improve patient outcome.

  8. ALK amplification and protein expression predict inferior prognosis in neuroblastomas.

    PubMed

    Wang, Miao; Zhou, Chunju; Sun, Qinnuan; Cai, Rongqin; Li, Yong; Wang, Daye; Gong, Liping

    2013-10-01

    ALK gene has been identified as a major neuroblastoma (NBL) predisposition gene. But ALK gene copy number and protein expression in ganglioneuroblastoma (GNBL) and ganglioneuroma (GN) are poorly described in the literature. Furthermore, there are controversies on the correlation between ALK protein expression and clinical outcome in NBL. We evaluated MYCN/ALK gene copy number by fluorescence in situ hybridization (FISH) and detected ALK protein expression by immunohistochemistry (IHC) in 188 NBL, 52 GNBL and 6 GN samples and analyzed their association with clinical outcome of the patients. Although ALK gene copy number increase is a recurrent genetic aberration of neuroblastic tumors (NTs) (39.1%, 96/246), ALK amplification was only present in three NBLs (1.2%, 3/246). The frequency of ALK positivity in NBL (50.5%, 51/101) was significantly higher than in GNBL (22.6%, 7/31) and in GN (0.0%, 0/4) (P<0.05). In addition, ALK positivity also significantly correlates with MYCN/ALK gene copy number increases (P<0.05). Kaplan-Meier survival analysis indicated that MYCN/ALK amplification is correlated with decreased overall survival in NBL. A better prognosis trend was observed in patients with MYCN/ALK gain tumors compared with those with MYCN/ALK normal tumors. Furthermore, ALK positivity significantly correlated with inferior survival in NBL (P=0.044). ALK positivity in NTs correlated with advanced tumor types and MYCN/ALK gene copy number increases. ALK positivity predicts inferior prognosis in NBL and IHC is a simplified strategy to screen ALK positivity in clinical practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Prevention of Asthma Exacerbation in a Mouse Model by Simultaneous Inhibition of NF-κB and STAT6 Activation Using a Chimeric Decoy Strategy.

    PubMed

    Miyake, Tetsuo; Miyake, Takashi; Sakaguchi, Makoto; Nankai, Hirokazu; Nakazawa, Takahiro; Morishita, Ryuichi

    2018-03-02

    Transactivation of inflammatory and immune mediators in asthma is tightly regulated by nuclear factor κB (NF-κB) and signal transducer and activator of transcription 6 (STAT6). Therefore, we investigated the efficacy of simultaneous inhibition of NF-κB and STAT6 using a chimeric decoy strategy to prevent asthma exacerbation. The effects of decoy oligodeoxynucleotides were evaluated using an ovalbumin-induced mouse asthma model. Ovalbumin-sensitized mice received intratracheal administration of decoy oligodeoxynucleotides 3 days before ovalbumin challenge. Fluorescent-dye-labeled decoy oligodeoxynucleotides could be detected in lymphocytes and macrophages in the lung, and activation of NF-κB and STAT6 was inhibited by chimeric decoy oligodeoxynucleotide transfer. Consequently, treatment with chimeric or NF-κB decoy oligodeoxynucleotides protected against methacholine-induced airway hyperresponsiveness, whereas the effect of chimeric decoy oligodeoxynucleotides was significantly greater than that of NF-κB decoy oligodeoxynucleotides. Treatment with chimeric decoy oligodeoxynucleotides suppressed airway inflammation through inhibition of overexpression of interleukin-4 (IL-4), IL-5, and IL-13 and inflammatory infiltrates. Histamine levels in the lung were reduced via suppression of mast cell accumulation. A significant reduction in mucin secretion was observed due to suppression of MUC5AC gene expression. Interestingly, the inhibitory effects on IL-5, IL-13, and histamine secretion were achieved by transfer of chimeric decoy oligodeoxynucleotides only. This novel therapeutic approach could be useful to treat patients with various types of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons

    PubMed Central

    Woodward, NC; Pakbin, P; Saffari, A; Shirmohammadi, F; Haghani, A; Sioutas, C; Cacciottolo, M; Morgan, TE; Finch, CE

    2017-01-01

    Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5 μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young and middle-aged mice (3 and 18 month female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (−25%), decreased MBP (−50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (−40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer’s disease. We propose that TRAP associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. PMID:28212893

  11. Economic analysis of ALK testing and crizotinib therapy for advanced non-small-cell lung cancer.

    PubMed

    Lu, Shun; Zhang, Jie; Ye, Ming; Wang, Baoai; Wu, Bin

    2016-06-01

    The economic outcome of crizotinib in advanced non-small-cell lung cancer harboring anaplastic lymphoma kinase rearrangement would be investigated. Based on a mathematical model, the economic outcome of three techniques for testing ALK gene rearrangement combing with crizotinib would be evaluated and compared with traditional regimen. The impact of the crizotinib patient assistance program (PAP) was assessed. Ventana immunohistochemistry, quantitative real-time reverse transcription-polymerase chain reaction and IHC testing plus fluorescent in situ hybridization confirmation for anaplastic lymphoma kinase testing following crizotinib treatment leaded to the incremental cost-effectiveness ratios of US$16,820 and US$223,242, US$24,424 and US$223,271, and US$16,850 and US$254,668 per quality-adjusted life-year gained with and without PAP, respectively. Gene-guided crizotinib therapy might be a cost-effective alternative comparing with the traditional regimen in the PAP setting.

  12. Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC): results of a multi-centre ALK-testing.

    PubMed

    V Laffert, Maximilian; Warth, Arne; Penzel, Roland; Schirmacher, Peter; Jonigk, Danny; Kreipe, Hans; Schildhaus, Hans-Ulrich; Merkelbach-Bruse, Sabine; Büttner, Reinhard; Reu, Simone; Kerler, Rosi; Jung, Andreas; Kirchner, Thomas; Wölfel, Cornelius; Petersen, Iver; Rodriguez, Regulo; Jochum, Wolfram; Bartsch, Holger; Fisseler-Eckhoff, Annette; Berg, Erika; Lenze, Dido; Dietel, Manfred; Hummel, Michael

    2013-08-01

    The reliable identification of non-small cell lung cancers (NSCLC) with chromosomal breaks in the gene of the anaplastic lymphoma kinase (ALK) is crucial for the induction of therapy with ALK-inhibitors. In order to ensure a reliable detection of ALK-breaks by means of fluorescence in situ hybridization (FISH) testing, round robin tests are essential. In preparation of a nation (German)-wide round robin test we initiated a pre-testing phase involving 8 experts in FISH-diagnostics to identify NSCLC cases (n = 10) with a pre-tested ALK-status. In addition, ALK immunohistochemistry (IHC) was performed to assess ALK protein expression. Sections derived from a tissue microarray, each consisting of 3 cores from 10 NSCLC cases, were independently tested for ALK protein expression by IHC and genomic ALK-breaks by FISH involving 8 institutes of pathology. Based on a pre-screening, 5 cases were identified to be clearly ALK-break negative, whereas the remaining 5 cases were ALK-break positive including one case with low percentage (20%) of positive cells. The latter had been additionally tested by RT-PCR. The 5 unequivocal ALK-break negative NSCLC were almost consistently scored negative by means of FISH and IHC by all 8 experts. Interestingly, 4 of the 5 cases with pre-defined ALK-breaks revealed homogenous FISH results whereas IHC for the detection of ALK protein expression showed heterogeneous results. The remaining case (low number of ALK-break positive cells) was scored negative by 3 experts and positive by the other 5. RT-PCR revealed the expression of an EML4-ALK fusion gene variant 1. ALK-break negative NSCLC cases revealed concordant homogeneous results by means of FISH and IHC (score 0-1) by all 8 experts. Discordant FISH results were raised in one ALK-break positive case with a low number of affected tumor cells. The remaining 4 ALK-break positive cases revealed concordant FISH data whereas the ALK-IHC revealed very diverse results. The cases with concordant FISH results provide an excellent basis for round robin ALK-FISH testing. As long as standardized ALK-IHC protocols are missing, ALK protein expression cannot by regarded as the method of choice for identification of patients eligible for treatment with ALK inhibitors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Transcriptional elements from the human SP-C gene direct expression in the primordial respiratory epithelium of transgenic mice.

    PubMed

    Wert, S E; Glasser, S W; Korfhagen, T R; Whitsett, J A

    1993-04-01

    Transgenic animals bearing a chimeric gene containing 5'-flanking regions of the human surfactant protein C (SP-C) gene ligated to the bacterial chloramphenicol acetyltransferase (CAT) gene were analyzed by in situ hybridization histochemistry to determine the temporal and spatial distribution of transgene expression during organogenesis of the murine lung. Ontogenic expression of the SP-C-CAT gene was compared to that of the endogenous SP-C gene and to the Clara cell CC10 gene. High levels of SP-C-CAT expression were observed as early as Day 10 of gestation in epithelial cells of the primordial lung buds. Low levels of endogenous SP-C mRNA were detected a day later, but only in the more distal epithelial cells of the newly formed, primitive, lobar bronchi. On Gestational Days 13 through 16, transcripts for both the endogenous and chimeric gene were restricted to distal epithelial elements of the branching bronchial tubules and were no longer detected in the more proximal regions of the bronchial tree. Although high levels of SP-C-CAT expression were maintained throughout organogenesis, endogenous SP-C expression increased dramatically on Gestational Day 15, coincident with acinar tubule differentiation at the lung periphery. Low levels of endogenous CC10 expression were detected by Gestational Day 16 in both lobar and segmental bronchi. By the time of birth, CC10 transcripts were expressed at high levels in the trachea and at all levels of the bronchial tree; endogenous SP-C mRNA was restricted to epithelial cells of the terminal alveolar saccules; and SP-C-CAT expression was now detected in both alveolar and bronchiolar epithelial cells. These results indicate that (1) cis-acting regulatory elements of the human SP-C gene can direct high levels of foreign gene expression to epithelial cells of the embryonic mouse lung; (2) expression of the human SP-C-CAT chimeric gene is developmentally regulated, exhibiting a morphogenic expression pattern similar, but not identical, to that of the endogenous murine SP-C gene; (3) the embryonic expression of endogenous SP-C and chimeric SP-C-CAT transcripts identifies progenitor cells of the distal respiratory epithelium; and (4) differentiation of bronchial epithelium is coincident with loss of SP-C expression and subsequent acquisition of CC10 expression in proximal regions of the developing bronchial tubules.

  14. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer.

    PubMed

    Pailler, Emma; Adam, Julien; Barthélémy, Amélie; Oulhen, Marianne; Auger, Nathalie; Valent, Alexander; Borget, Isabelle; Planchard, David; Taylor, Melissa; André, Fabrice; Soria, Jean Charles; Vielh, Philippe; Besse, Benjamin; Farace, Françoise

    2013-06-20

    The diagnostic test for ALK rearrangement in non-small-cell lung cancer (NSCLC) for crizotinib treatment is currently done on tumor biopsies or fine-needle aspirations. We evaluated whether ALK rearrangement diagnosis could be performed by using circulating tumor cells (CTCs). The presence of an ALK rearrangement was examined in CTCs of 18 ALK-positive and 14 ALK-negative patients by using a filtration enrichment technique and filter-adapted fluorescent in situ hybridization (FA-FISH), a FISH method optimized for filters. ALK-rearrangement patterns were determined in CTCs and compared with those present in tumor biopsies. ALK-rearranged CTCs and tumor specimens were characterized for epithelial (cytokeratins, E-cadherin) and mesenchymal (vimentin, N-cadherin) marker expression. ALK-rearranged CTCs were monitored in five patients treated with crizotinib. All ALK-positive patients had four or more ALK-rearranged CTCs per 1 mL of blood (median, nine CTCs per 1 mL; range, four to 34 CTCs per 1 mL). No or only one ALK-rearranged CTC (median, one per 1 mL; range, zero to one per 1 mL) was detected in ALK-negative patients. ALK-rearranged CTCs harbored a unique (3'5') split pattern, and heterogeneous patterns (3'5', only 3') of splits were present in tumors. ALK-rearranged CTCs expressed a mesenchymal phenotype contrasting with heterogeneous epithelial and mesenchymal marker expressions in tumors. Variations in ALK-rearranged CTC levels were detected in patients being treated with crizotinib. ALK rearrangement can be detected in CTCs of patients with ALK-positive NSCLC by using a filtration technique and FA-FISH, enabling both diagnostic testing and monitoring of crizotinib treatment. Our results suggest that CTCs harboring a unique ALK rearrangement and mesenchymal phenotype may arise from clonal selection of tumor cells that have acquired the potential to drive metastatic progression of ALK-positive NSCLC.

  15. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro

    PubMed Central

    Toren-Haritan, Ginat; Efrat, Shimon

    2015-01-01

    In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD) cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT). Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ) pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA) against TGFβ Receptor 1 (TGFBR1, ALK5) transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion. PMID:26418361

  16. ALK gene copy number gain and immunohistochemical expression status using three antibodies in neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2016-03-17

    Anaplastic lymphoma kinase (ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC positive rate in ALK1 and 5A4 antibodies (p= < 0.001 and 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  17. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  18. The Potent ALK Inhibitor Brigatinib (AP26113) Overcomes Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in Preclinical Models.

    PubMed

    Zhang, Sen; Anjum, Rana; Squillace, Rachel; Nadworny, Sara; Zhou, Tianjun; Keats, Jeff; Ning, Yaoyu; Wardwell, Scott D; Miller, David; Song, Youngchul; Eichinger, Lindsey; Moran, Lauren; Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Wang, Yihan; Mohemmad, Qurish; Jang, Hyun Gyung; Ye, Emily; Narasimhan, Narayana; Wang, Frank; Miret, Juan; Zhu, Xiaotian; Clackson, Tim; Dalgarno, David; Shakespeare, William C; Rivera, Victor M

    2016-11-15

    Non-small cell lung cancers (NSCLCs) harboring ALK gene rearrangements (ALK + ) typically become resistant to the first-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) crizotinib through development of secondary resistance mutations in ALK or disease progression in the brain. Mutations that confer resistance to second-generation ALK TKIs ceritinib and alectinib have also been identified. Here, we report the structure and first comprehensive preclinical evaluation of the next-generation ALK TKI brigatinib. A kinase screen was performed to evaluate the selectivity profile of brigatinib. The cellular and in vivo activities of ALK TKIs were compared using engineered and cancer-derived cell lines. The brigatinib-ALK co-structure was determined. Brigatinib potently inhibits ALK and ROS1, with a high degree of selectivity over more than 250 kinases. Across a panel of ALK + cell lines, brigatinib inhibited native ALK (IC 50 , 10 nmol/L) with 12-fold greater potency than crizotinib. Superior efficacy of brigatinib was also observed in mice with ALK + tumors implanted subcutaneously or intracranially. Brigatinib maintained substantial activity against all 17 secondary ALK mutants tested in cellular assays and exhibited a superior inhibitory profile compared with crizotinib, ceritinib, and alectinib at clinically achievable concentrations. Brigatinib was the only TKI to maintain substantial activity against the most recalcitrant ALK resistance mutation, G1202R. The unique, potent, and pan-ALK mutant activity of brigatinib could be rationalized by structural analyses. Brigatinib is a highly potent and selective ALK inhibitor. These findings provide the molecular basis for the promising activity being observed in ALK + , crizotinib-resistant patients with NSCLC being treated with brigatinib in clinical trials. Clin Cancer Res; 22(22); 5527-38. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Molecular breakdown: a comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer.

    PubMed

    Noh, Ka-Won; Lee, Mi-Sook; Lee, Seung Eun; Song, Ji-Young; Shin, Hyun-Tae; Kim, Yu Jin; Oh, Doo Yi; Jung, Kyungsoo; Sung, Minjung; Kim, Mingi; An, Sungbin; Han, Joungho; Shim, Young Mog; Zo, Jae Ill; Kim, Jhingook; Park, Woong-Yang; Lee, Se-Hoon; Choi, Yoon-La

    2017-11-01

    Most anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancers (NSCLCs) show good clinical response to ALK inhibitors. However, some ALK-rearranged NSCLC patients show various primary responses with unknown reasons. Previous studies focused on the clinical aspects of ALK fusions in small cohorts, or were conducted in vitro and/or in vivo to investigate the function of ALK. One of the suggested theories describes how echinoderm microtubule-associated protein-like 4 (EML4)-ALK variants play a role towards different sensitivities in ALK inhibitors. Until now, there has been no integrated comprehensive study that dissects ALK at the molecular level in a large scale. Here, we report the largest extensive molecular analysis of 158 ALK-rearranged NSCLCs and have investigated these findings in a cell line construct experiment. We discovered that NSCLCs with EML4-ALK short forms (variant 3/others) had more advanced stage and frequent metastases than cases with the long forms (variant 1/others) (p = 0.057, p < 0.05). In vitro experiments revealed that EML4-ALK short forms show lower sensitivity to ALK inhibitors than do long forms. Clinical analysis also showed a trend for the short forms showing worse PFS. Interestingly, we found that breakpoints of ALK are evenly distributed mainly in intron 19 and almost all of them undergo a non-homologous end-joining repair to generate ALK fusions. We also discovered four novel somatic ALK mutations in NSCLC (T1151R, R1192P, A1280V, and L1535Q) that confer primary resistance; all of them showed strong resistance to ALK inhibitors, as G1202R does. Through targeted deep sequencing, we discovered three novel ALK fusion partners (GCC2, LMO7, and PHACTR1), and different ALK fusion partners showed different intracellular localization. With our findings that the EML4-ALK variants, new ALK somatic mutations, and novel ALK-fusion partners may affect sensitivity to ALK inhibitors, we stress the importance of targeted therapy to take the ALK molecular profiling into consideration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma.

    PubMed

    An, Rong; Wang, Yisong; Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-05-17

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients.

  2. Circulating Tumor Cells with Aberrant ALK Copy Number Predict Progression-Free Survival during Crizotinib Treatment in ALK-Rearranged Non-Small Cell Lung Cancer Patients.

    PubMed

    Pailler, Emma; Oulhen, Marianne; Borget, Isabelle; Remon, Jordi; Ross, Kirsty; Auger, Nathalie; Billiot, Fanny; Ngo Camus, Maud; Commo, Frédéric; Lindsay, Colin R; Planchard, David; Soria, Jean-Charles; Besse, Benjamin; Farace, Françoise

    2017-05-01

    The duration and magnitude of clinical response are unpredictable in ALK -rearranged non-small cell lung cancer (NSCLC) patients treated with crizotinib, although all patients invariably develop resistance. Here, we evaluated whether circulating tumor cells (CTC) with aberrant ALK -FISH patterns [ ALK -rearrangement, ALK -copy number gain ( ALK -CNG)] monitored on crizotinib could predict progression-free survival (PFS) in a cohort of ALK -rearranged patients. Thirty-nine ALK -rearranged NSCLC patients treated with crizotinib as first ALK inhibitor were recruited prospectively. Blood samples were collected at baseline and at an early time-point (2 months) on crizotinib. Aberrant ALK -FISH patterns were examined in CTCs using immunofluorescence staining combined with filter-adapted FISH after filtration enrichment. CTCs were classified into distinct subsets according to the presence of ALK -rearrangement and/or ALK -CNG signals. No significant association between baseline numbers of ALK -rearranged or ALK -CNG CTCs and PFS was observed. However, we observed a significant association between the decrease in CTC number with ALK -CNG on crizotinib and a longer PFS (likelihood ratio test, P = 0.025). In multivariate analysis, the dynamic change of CTC with ALK -CNG was the strongest factor associated with PFS (HR, 4.485; 95% confidence interval, 1.543-13.030, P = 0.006). Although not dominant, ALK -CNG has been reported to be one of the mechanisms of acquired resistance to crizotinib in tumor biopsies. Our results suggest that the dynamic change in the numbers of CTCs with ALK -CNG may be a predictive biomarker for crizotinib efficacy in ALK -rearranged NSCLC patients. Serial molecular analysis of CTC shows promise for real-time patient monitoring and clinical outcome prediction in this population. Cancer Res; 77(9); 2222-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization

    PubMed Central

    Hensing, Thomas; Schrock, Alexa B.; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H.; Lipson, Doron; Elvin, Julia A.; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J.; Firozvi, Kashif; Frampton, Garrett M.; Molina, Julian R.; Menon, Smitha; Brahmer, Julie R.; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S.; Stephens, Phil J.; Miller, Vincent A.; Wakelee, Heather

    2016-01-01

    Introduction. For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Materials and Methods. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. Results. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Conclusion. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Implications for Practice: Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. PMID:27245569

  4. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization.

    PubMed

    Ali, Siraj M; Hensing, Thomas; Schrock, Alexa B; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H; Lipson, Doron; Elvin, Julia A; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J; Firozvi, Kashif; Frampton, Garrett M; Molina, Julian R; Menon, Smitha; Brahmer, Julie R; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S; Stephens, Phil J; Miller, Vincent A; Wakelee, Heather; Ganesan, Shridar; Salgia, Ravi

    2016-06-01

    For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. ©AlphaMed Press.

  5. Fluorescence In Situ Hybridization and Immunohistochemistry as Diagnostic Methods for ALK Positive Non-Small Cell Lung Cancer Patients

    PubMed Central

    Martinez, Pablo; Hernández-Losa, Javier; Cedrés, Susana; Castellví, Josep; Martinez-Marti, Alex; Tallada, Natalia; Murtra-Garrell, Nuria; Navarro-Mendivill, Alejandro; Rodriguez-Freixinos, Victor; Canela, Mercedes; Ramon y Cajal, Santiago; Felip, Enriqueta

    2013-01-01

    Background Anaplastic Lymphoma Kinase (ALK) positivity represents a novel molecular target in a subset of Non-Small Cell Lung Cancers (NSCLC). We explore Fluorescence in situ Hybridization (FISH) and Immunohistochemistry (IHC) as diagnostic methods for ALK positive patients and to describe its prevalence and outcomes in a population of NSCLC patients. Methods NSCLC patients previously screened for Epidermal Growth Factor Receptor (EGFR) at our institution were selected. ALK positive patients were identified by FISH and the value of IHC (D5F3) was explored. Results ninety-nine patients were identified. Median age was 61.5 years (range 35–83), all were caucasians, eighty percent were adenocarcinomas, fifty-one percent were male and thirty-eight percent were current smokers. Seven (7.1%) patients were ALK positive by FISH, thirteen (13.1%) were EGFR mutant, and 65 (65.6%) were negative/Wild Type (WT) for both ALK and EGFR. ALK positivity and EGFR mutations were mutually exclusive. ALK positive patients tend to be younger than EGFR mutated or wt patients. ALK positive patients were predominantly never smokers (71.4%) and adenocarcinoma (71.4%). ALK positive and EGFR mutant patients have a better outcome than negative/WT. All patients with ALK FISH negative tumours were negative for ALK IHC. Out of 6 patients positive for ALK FISH with more tissue available, 5 were positive for ALK IHC and 1 negative. Conclusions ALK positive patients represent 7.1% of a population of selected NSCLC. ALK positive patients have different clinical features and a better outcome than EGFR WT and ALK negative patients. IHC is a promising method for detecting ALK positive NSCLC patients. PMID:23359795

  6. Detection of novel and potentially actionable anaplastic lymphoma kinase (ALK) rearrangement in colorectal adenocarcinoma by immunohistochemistry screening

    PubMed Central

    Wang, Kai; Kim, Sun Young; Jang, Jiryeon; Kim, Seung Tae; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Lee, Jiyun; Lee, Woo Yong; Park, Yoon Ah; Huh, Jung Wook; Yun, Seong Hyeon; Do, In-Gu; Kim, Seok Hyung; Balasubramanian, Sohail; Stephens, Philip J.; Ross, Jeffrey S.; Li, Gang Gary; Hornby, Zachary; Ali, Siraj M.; Miller, Vincent A.; Kim, Kyoung-Mee; Ou, Sai-Hong Ignatius

    2015-01-01

    Purpose Anaplastic lymphoma kinase (ALK) rearrangement has been detected in colorectal carcinoma (CRC) using advanced molecular diagnostics tests including exon scanning, fluorescence in situ hybridization (FISH), and next generation sequencing (NGS). We investigated if immunohistochemistry (IHC) can be used to detect ALK rearrangement in gastrointestinal malignancies. Experimental designs Tissue microarrays (TMAs) from consecutive gastric carcinoma (GC) and CRC patients who underwent surgical resection at Samsung Medical Center, Seoul, Korea were screened by IHC using ALK monoclonal antibody 5A4. IHC positive cases were confirmed by FISH, nCounter assays, and NGS-based comprehensive genomic profiling (CGP). ALK IHC was further applied to CRC patients enrolled in a pathway-directed therapeutic trial. Results Four hundred thirty-two GC and 172 CRC cases were screened by IHC. No GC sample was ALK IHC positive. One CRC (0.6%) was ALK IHC positive (3+) that was confirmed by ALK FISH and a novel CAD-ALK (C35; A20) fusion variant that resulted from a paracentric inversion event inv(2)(p22–21p23) was identified by CGP. One out of 50 CRC patients enrolled in a pathway-directed therapeutic trial was ALK IHC positive (3+) confirmed by ALK FISH and found to harbor the EML4-ALK (E21, A20) fusion variant by CGP. Growth of a tumor cell line derived from this EML4-ALK CRC patient was inhibited by ALK inhibitors crizotinib and entrectinib. Conclusions ALK IHC is a viable screening strategy for identifying ALK rearrangement in CRC. ALK rearrangement is a potential actionable driver mutation in CRC based on survival inhibition of patient tumor-derived cell line by potent ALK inhibitors. PMID:26172300

  7. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.

    Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less

  8. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release

    DOE PAGES

    Warren, Christopher; Matsui, Tsutomu; Karp, Jerome M.; ...

    2017-12-20

    Here, nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowedmore » us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.« less

  9. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus.

    PubMed

    Ando, Kiyohiro; Parsons, Melissa J; Shah, Richa B; Charendoff, Chloé I; Paris, Sheré L; Liu, Peter H; Fassio, Sara R; Rohrman, Brittany A; Thompson, Ruth; Oberst, Andrew; Sidi, Samuel; Bouchier-Hayes, Lisa

    2017-06-05

    The PIDDosome (PIDD-RAIDD-caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2-dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function. © 2017 Ando et al.

  10. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus

    PubMed Central

    Ando, Kiyohiro; Shah, Richa B.; Charendoff, Chloé I.; Fassio, Sara R.; Rohrman, Brittany A.; Thompson, Ruth; Oberst, Andrew

    2017-01-01

    The PIDDosome (PIDD–RAIDD–caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2–dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function. PMID:28432080

  11. Focus on Alectinib and Competitor Compounds for Second-Line Therapy in ALK-Rearranged NSCLC

    PubMed Central

    Tran, Phu N.; Klempner, Samuel J.

    2016-01-01

    The management of anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) exemplifies the potential of a precision medicine approach to cancer care. The ALK inhibitor crizotinib has led to improved outcomes in the first- and second-line setting; however, toxicities, intracranial activity, and acquired resistance necessitated the advent of later generation ALK inhibitors. A large portion of acquired resistance to ALK inhibitors is caused by secondary mutations in the ALK kinase domain. Alectinib is a second-generation ALK inhibitor capable of overcoming multiple crizotinib-resistant ALK mutations and has demonstrated improved outcomes after crizotinib failure. Favorable toxicity profile and improved intracranial activity have spurred ongoing front-line trials and comparisons to other ALK inhibitors. However, important questions regarding comparability to competitor compounds, acquired alectinib resistance, and ALK inhibitor sequencing remain. Here, we review the key clinical data supporting alectinib in the second-line therapy of ALK+ NSCLC and provide context in comparison to other ALK inhibitors in development. PMID:27965961

  12. Focus on Alectinib and Competitor Compounds for Second-Line Therapy in ALK-Rearranged NSCLC.

    PubMed

    Tran, Phu N; Klempner, Samuel J

    2016-01-01

    The management of anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) exemplifies the potential of a precision medicine approach to cancer care. The ALK inhibitor crizotinib has led to improved outcomes in the first- and second-line setting; however, toxicities, intracranial activity, and acquired resistance necessitated the advent of later generation ALK inhibitors. A large portion of acquired resistance to ALK inhibitors is caused by secondary mutations in the ALK kinase domain. Alectinib is a second-generation ALK inhibitor capable of overcoming multiple crizotinib-resistant ALK mutations and has demonstrated improved outcomes after crizotinib failure. Favorable toxicity profile and improved intracranial activity have spurred ongoing front-line trials and comparisons to other ALK inhibitors. However, important questions regarding comparability to competitor compounds, acquired alectinib resistance, and ALK inhibitor sequencing remain. Here, we review the key clinical data supporting alectinib in the second-line therapy of ALK+ NSCLC and provide context in comparison to other ALK inhibitors in development.

  13. The Molecular Detection and Clinical Significance of ALK Rearrangement in Selected Advanced Non-Small Cell Lung Cancer: ALK Expression Provides Insights into ALK Targeted Therapy

    PubMed Central

    Zhang, Ning-Ning; Liu, Yu-Tao; Ma, Li; Wang, Lin; Hao, Xue-Zhi; Yuan, Zheng; Lin, Dong-Mei; Li, Dan; Zhou, Yu-Jie; Lin, Hua; Han, Xiao-Hong; Sun, Yan; Shi, Yuankai

    2014-01-01

    Background This study aimed to elucidate clinical significance of anaplastic lymphoma kinase (ALK) rearrangement in selected advanced non-small cell lung cancer (NSCLC), to compare the application of different ALK detection methods, and especially evaluate a possible association between ALK expression and clinical outcomes in crizotinib-treated patients. Methods ALK status was assessed by fluorescent in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative RT-PCR (qRT-PCR) in 173 selected advanced NSCLC patients. Clinicopathologic data, genotype status and survival outcomes were analyzed. Moreover, the association of ALK expression with clinical outcomes was evaluated in ALK FISH-positive crizotinib-treated patients including two patients with concurrent epidermal growth factor receptor (EGFR) mutation. Results The positivity detection rate of ALK rearrangement by FISH, IHC and qRT-PCR was 35.5% (59/166), 35.7% (61/171), and 27.9% (34/122), respectively. ALK rearrangement was observed predominantly in young patients, never or light smokers, and adenocarcinomas, especially with signet ring cell features and poor differentiation. Median progression-free survival (PFS) of crizotinib-treated patients was 7.6 months. The overall survival (OS) of these patients was longer compared with that of crizotinib-naive or wild-type cohorts, but there was no significant difference in OS compared with patients with EGFR mutation. ALK expression did not associate with PFS; but, when ALK expression was analyzed as a dichotomous variable, moderate and strong ALK expression had a decreased risk of death (P = 0.026). The two patients with concomitant EGFR and ALK alterations showed difference in ALK expression, response to EGFR and ALK inhibitors, and overall survival. Conclusions Selective enrichment according to clinicopathologic features in NSCLC patients could highly improve the positivity detection rate of ALK rearrangement for ALK-targeted therapy. IHC could provide more clues for clinical trial design and therapeutic strategies for ALK-positive NSCLC patients including patients with double genetic aberration of ALK and EGFR. PMID:24404167

  14. Allogeneic stem-cell transplantation in patients with NPM1-mutated acute myeloid leukemia: results from a prospective donor versus no-donor analysis of patients after upfront HLA typing within the SAL-AML 2003 trial.

    PubMed

    Röllig, Christoph; Bornhäuser, Martin; Kramer, Michael; Thiede, Christian; Ho, Anthony D; Krämer, Alwin; Schäfer-Eckart, Kerstin; Wandt, Hannes; Hänel, Mathias; Einsele, Hermann; Aulitzky, Walter E; Schmitz, Norbert; Berdel, Wolfgang E; Stelljes, Matthias; Müller-Tidow, Carsten; Krug, Utz; Platzbecker, Uwe; Wermke, Martin; Baldus, Claudia D; Krause, Stefan W; Stölzel, Friedrich; von Bonin, Malte; Schaich, Markus; Serve, Hubert; Schetelig, Johannes; Ehninger, Gerhard

    2015-02-10

    The presence of a mutated nucleophosmin-1 gene (NPM1(mut)) in acute myeloid leukemia (AML) is associated with a favorable prognosis. To assess the predictive value with regard to allogeneic stem-cell transplantation (SCT), we compared the clinical course of patients with NPM1(mut) AML eligible for allogeneic SCT in a donor versus no-donor analysis. Of 1,179 patients with AML (age 18 to 60 years) treated in the Study Alliance Leukemia AML 2003 trial, we identified all NPM1(mut) patients with an intermediate-risk karyotype. According to the trial protocol, patients were intended to receive an allogeneic SCT if an HLA-identical sibling donor was available. Patients with no available donor received consolidation or autologous SCT. We compared relapse-free survival (RFS) and overall survival (OS) depending on the availability of a suitable donor. Of 304 eligible patients, 77 patients had a sibling donor and 227 had no available matched family donor. The 3-year RFS rates in the donor and no-donor groups were 71% and 47%, respectively (P = .005); OS rates were 70% and 60%, respectively (P = .114). In patients with normal karyotype and no FLT3 internal tandem duplication (n = 148), the 3-year RFS rates in the donor and no-donor groups were 83% and 53%, respectively (P = .004); and the 3-year OS rates were 81% and 75%, respectively (P = .300). Allogeneic SCT led to a significantly prolonged RFS in patients with NPM1(mut) AML. The absence of a statistically significant difference in OS is most likely a result of the fact that NPM1(mut) patients who experienced relapse responded well to salvage treatment. Allogeneic SCT in first remission has potent antileukemic efficacy and is a valuable treatment option in patients with NPM1(mut) AML with a sibling donor. © 2014 by American Society of Clinical Oncology.

  15. Diagnosis and Treatment of ALK Positive NSCLC

    PubMed Central

    Arbour, Kathryn C.; Riely, Gregory J.

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements occur in a small portion of patients with non-small cell lung cancer (NSCLC). These gene rearrangements lead to constitutive activation of the ALK kinase and subsequent ALK driven tumor formation. Patients with tumors harboring such rearrangements are highly sensitive to ALK inhibitors such as crizotinib, ceritinib, and alectinib. Resistance to these kinase inhibitors occurs through a number of mechanisms, resulting in ongoing clinical challenges. This review gives an overview of the biology of ALK positive lung cancer, methods for diagnosing ALK positive NSCLC, current FDA approved ALK inhibitors, mechanisms of resistance to ALK inhibition, and potential strategies to combat resistance. PMID:27912826

  16. ALK: a tyrosine kinase target for cancer therapy

    PubMed Central

    Holla, Vijaykumar R.; Elamin, Yasir Y.; Bailey, Ann Marie; Johnson, Amber M.; Litzenburger, Beate C.; Khotskaya, Yekaterina B.; Sanchez, Nora S.; Zeng, Jia; Shufean, Md Abu; Shaw, Kenna R.; Mendelsohn, John; Mills, Gordon B.; Meric-Bernstam, Funda; Simon, George R.

    2017-01-01

    The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations. PMID:28050598

  17. Evaluation of ALK rearrangement in Chinese non-small cell lung cancer using FISH, immunohistochemistry, and real-time quantitative RT- PCR on paraffin-embedded tissues.

    PubMed

    Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia

    2013-01-01

    Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation.

  18. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  19. Implementing New Public Management in Educational Policy

    ERIC Educational Resources Information Center

    van der Sluis, Margriet E.; Reezigt, Gerry J.; Borghans, Lex

    2017-01-01

    This article describes how the Dutch Department of Education incorporates New Public Management (NPM) principles in educational policy, and whether conflicts of interest between the Department and schools cause deviations from NPM. We reviewed policy documents and performed secondary analyses on school data. Educational policy focuses on output…

  20. The "grep" command but not FusionMap, FusionFinder or ChimeraScan captures the CIC-DUX4 fusion gene from whole transcriptome sequencing data on a small round cell tumor with t(4;19)(q35;q13).

    PubMed

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Heim, Sverre

    2014-01-01

    Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the "grep" command-line utility. The "grep" command searches the text for specific expressions and displays, by default, the lines where matches occur. The "specific expression" was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with "grep". In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The "grep" command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene.

  1. Variant translocation partners of the anaplastic lymphoma kinase (ALK) gene in two cases of anaplastic large cell lymphoma, identified by inverse cDNA polymerase chain reaction.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Honjo, Gen; Ohno, Hitoshi

    2014-01-01

    In anaplastic large cell lymphoma (ALCL), the anaplastic lymphoma kinase (ALK) gene is rearranged with diverse partners due to variant translocations/inversions. Case 1 was a 39-year-old man who developed multiple tumors in the mediastinum, psoas muscle, lung, and lymph nodes. A biopsy specimen of the inguinal node was effaced by large tumor cells expressing CD30, epithelial membrane antigen, and cytoplasmic ALK, which led to a diagnosis of ALK(+) ALCL. Case 2 was a 51-year-old man who was initially diagnosed with undifferentiated carcinoma. He developed multiple skin tumors eight years after his initial presentation, and was finally diagnosed with ALK(+) ALCL. He died of therapy-related acute myeloid leukemia. G-banding and fluorescence in situ hybridization using an ALK break-apart probe revealed the rearrangement of ALK and suggested variant translocation in both cases. We applied an inverse cDNA polymerase chain reaction (PCR) strategy to identify the partner of ALK. Nucleotide sequencing of the PCR products and a database search revealed that the sequences of ATIC in case 1 and TRAF1 in case 2 appeared to follow those of ALK. We subsequently confirmed ATIC-ALK and TRAF1-ALK fusions by reverse transcriptase PCR and nucleotide sequencing. We successfully determined the partner gene of ALK in two cases of ALK(+) ALCL. ATIC is the second most common partner of variant ALK rearrangements, while the TRAF1-ALK fusion gene was first reported in 2013, and this is the second reported case of ALK(+) ALCL carrying TRAF1-ALK.

  2. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Fei; Li, Hongling; Sun, Yong, E-mail: sunfanqi2010@163.com

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effectmore » of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.« less

  3. Evaluation of a Dual ALK/ROS1 Fluorescent In Situ Hybridization Test in Non-Small-cell Lung Cancer.

    PubMed

    Ginestet, Florent; Lambros, Laetitia; Le Flahec, Glen; Marcorelles, Pascale; Uguen, Arnaud

    2018-05-05

    Several therapeutics targets have emerged to treat patients with non-small-cell lung carcinoma (NSCLC), with numerous biomarkers available to test for treatment choices. Minimum tumor wastage is necessary to permit the analysis of every potentially relevant target. Searching for targetable ALK and ROS1 rearrangements is now mandatory in NSCLC. In the present study, we evaluated the performance of a dual ALK/ROS1 fluorescent in situ hybridization (FISH) probe that concurrently analyzed the 2 oncogenes on a same FISH slide. We used the FlexISH ALK/ROS1 DistinguISH Probe (Zytovision, Bremerhaven, Germany) to analyze a set of 28 formalin-fixed paraffin-embedded NSCLC tumor samples enriched in tumors with ALK- and ROS1-rearranged status. The dual ALK/ROS1 FISH probe test results were fully concordant with the results of previous single ALK and ROS1 FISH tests (15 ALK and 3 ROS1 rearrangements) without any false-positive results. Dual- and single-probe FISH test results were also concordant regarding the unusual ALK FISH patterns. These included 1 sample that had negative FISH results with diffuse single 5'-ALK signals and positive ALK immunohistochemistry findings in a patient with a response to crizotinib, 2 paired samples with high percentages of ALK FISH-rearranged nuclei despite negative ALK immunohistochemistry findings, and ALK FISH-positive samples from 2 patients lacking a response to crizotinib therapy despite concordant ALK FISH and immunohistochemistry-positive results. The dual ALK/ROS1 FISH probe test is a valuable tool to search concurrently for both ALK and ROS1 rearrangements on a same FISH slide and could help to spare tumor tissue for other biomarkers tests. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Nanomeasuring and nanopositioning engineering

    NASA Astrophysics Data System (ADS)

    Jäger, G.; Hausotte, T.; Manske, E.; Büchner, H.-J.; Mastylo, R.; Dorozhovets, N.; Hofmann, N.

    2006-11-01

    The paper describes traceable nanometrology based on a nanopositioning machine with integrated nanoprobes. The operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine) having a resolution of 0,1 nm over the positioning and measuring range of 25 mm x 25 mm x 5 mm is explained. An Abbe offset-free design of three miniature plan mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide very small uncertainties of measurement. The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau and manufactured by the SIOS Messtechnik GmbH Ilmenau. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB), Germany. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.

  5. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma.

    PubMed

    Chen, Kai; Lv, Fan; Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-11-15

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.

  6. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN.

    PubMed

    Guan, J; Tucker, E R; Wan, H; Chand, D; Danielson, L S; Ruuth, K; El Wakil, A; Witek, B; Jamin, Y; Umapathy, G; Robinson, S P; Johnson, T W; Smeal, T; Martinsson, T; Chesler, L; Palmer, R H; Hallberg, B

    2016-09-01

    The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. © 2016. Published by The Company of Biologists Ltd.

  7. Coupling an EML4-ALK centric interactome with RNA interference identifies sensitizers to ALK inhibitors

    PubMed Central

    Zhang, Guolin; Scarborough, Hannah; Kim, Jihye; Rozhok, Andrii I.; Chen, Y. Ann; Zhang, Xiaohui; Song, Lanxi; Bai, Yun; Fang, Bin; Liu, Richard Z.; Koomen, John; Tan, Aik Choon; Degregori, James; Haura, Eric B.

    2017-01-01

    Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK kinase inhibitors but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between pro-survival and pro-apoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins whose loss sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A, both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions, and identifies potential targets to improve the efficacy of ALK inhibitors in patients. PMID:27811184

  8. The Utility of Thyroid Transcription Factor 1 (TTF-1), Napsin A, Excision Repair Cross-Complementing 1 (ERCC1), Anaplastic Lymphoma Kinase (ALK) and the Epidermal Growth Factor Receptor (EGFR) Expression in Small Biopsy in Prognosis of Patients with Lung Adenocarcinoma – A Retrograde Single-Center Study from Croatia

    PubMed Central

    Burazer, Marina Piljić; Mladinov, Suzana; Ćapkun, Vesna; Kuret, Sendi; Durdov, Merica Glavina

    2017-01-01

    Background The present study was carried out in order to evaluate our institutional experience with small biopsy in diagnosis and molecular testing of lung adenocarcinoma. Few specific and predictive markers have been evaluated and correlated with clinicopathologic characteristics and survival in patients with lung adenocarcinoma who received platinum-based chemotherapy. There have not been such reports from Croatia. Material/Methods A total of 142 cases of lung adenocarcinoma were retrospectively investigated in small biopsies for the immunohistochemical expression of TTF-1, napsin A, ERCC1, ALK, and the EGFR mutation by real-time polymerase chain reaction (rtPCR). Results TTF-1, napsin A, and ERCC1 expression was found in 81%, 78%, and 69% of patients, respectively, and the expressions were not significantly associated with subtype. Expression of ALK was found in 4% and EGFR mutation in 10% of patients. Exon 19 deletions were the most common. Longer survival was significantly associated with TTF-1 positivity (p=0.007) and napsin A positivity (p=0.026). Higher relative risk of death significantly correlated with positive expression of ERCC1 (p=0.041). Conclusions Positive TTF-1 and napsin A expressions in lung adenocarcinoma tissues were useful diagnostic and favorable prognostic parameters. Positive ERCC1 expression was identified as a negative prognostic marker in patients treated with platinum-based chemotherapy. The percentages of EGFR and ALK mutations corresponded to those in previously published reports for Caucasians. PMID:28128193

  9. Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA – In Vivo, In Vitro, and In Silico Studies

    PubMed Central

    Mielecki, Damian; Saumaa, Signe; Wrzesiński, Michał; Maciejewska, Agnieszka M.; Żuchniewicz, Karolina; Sikora, Anna; Piwowarski, Jan; Nieminuszczy, Jadwiga; Kivisaar, Maia; Grzesiuk, Elżbieta

    2013-01-01

    Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin. PMID:24098441

  10. Establishment of a Conditional Transgenic Mouse Model Recapitulating EML4-ALK-Positive Human Non-Small Cell Lung Cancer.

    PubMed

    Pyo, Kyoung Ho; Lim, Sun Min; Kim, Hye Ryun; Sung, Young Hoon; Yun, Mi Ran; Kim, Sung-Moo; Kim, Hwan; Kang, Han Na; Lee, Ji Min; Kim, Sang Gyun; Park, Chae Won; Chang, Hyun; Shim, Hyo Sup; Lee, Han-Woong; Cho, Byoung Chul

    2017-03-01

    Anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion is a distinct molecular subclassification of NSCLC that is targeted by anaplastic lymphoma kinase (ALK) inhibitors. We established a transgenic mouse model that expresses tumors highly resembling human NSCLC harboring echinoderm microtubule associated protein like 4 gene (EML)-ALK fusion. We aimed to test an EML4-ALK transgenic mouse model as a platform for assessing the efficacy of ALK inhibitors and examining mechanisms of acquired resistance to ALK inhibitors. Transgenic mouse lines harboring LoxP-STOP-LoxP-FLAGS-tagged human EML4-ALK (variant 1) transgene was established by using C57BL/6N mice. The transgenic mouse model with highly lung-specific, inducible expression of echinoderm microtubule associated protein like 4-ALK fusion protein was established by crossing the EML4-ALK transgenic mice with mice expressing Cre-estrogen receptor fusion protein under the control of surfactant protein C gene (SPC). Expression of EML4-ALK transgene was induced by intraperitoneally injecting mice with tamoxifen. When the lung tumor of the mice treated with the ALK inhibitor crizotinib for 2 weeks was measured, tumor shrinkage was observed. EML4-ALK tumor developed after 1 week of tamoxifen treatment. Echinoderm microtubule associated protein like 4-ALK was strongly expressed in the lung but not in other organs. ALK and FLAGS expressions were observed by immunohistochemistry. Treatment of EML4-ALK tumor-bearing mice with crizotinib for 2 weeks induced dramatic shrinkage of tumors with no signs of toxicity. Furthermore, prolonged treatment with crizotinib led to acquired resistance in tumors, resulting in regrowth and disease progression. The resistant tumor nodules revealed acquired ALK G1202R mutations. An EML4-ALK transgenic mouse model for study of drug resistance was successfully established with short duration of tumorigenesis. This model should be a strong preclinical model for testing efficacy of ALK TKIs, providing a useful tool for investigating the mechanisms of acquired resistance and pursuing novel treatment strategies in ALK-positive lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. ALK rearrangement testing and treatment patterns for patients with ALK-positive non-small cell lung cancer.

    PubMed

    Guérin, Annie; Sasane, Medha; Zhang, Jie; Macalalad, Alexander R; Galebach, Philip; Jarvis, John; Kageleiry, Andrew; Culver, Kenneth; Wu, Eric Q; Wakelee, Heather

    2015-06-01

    Approximately 2-8% of non-small cell lung cancer (NSCLC) patients have rearrangements in the anaplastic lymphoma kinase gene (ALK). ALK-targeted therapy is available to patients with tumors known to be ALK+. This chart review study described characteristics of patients with ALK+ NSCLC, patterns of ALK testing and subsequent treatments, and oncologists' experience with ALK testing in the US. US oncologists provided information in September and October of 2013 on patients from their practice diagnosed with ALK+ locally advanced or metastatic NSCLC, including the timing of ALK testing and treatment received after testing. Participating oncologists were also surveyed about their experience with ALK testing. 27 oncologists provided data on 273 ALK+ NSCLC patients. Patients' median age was 67 years upon NSCLC diagnosis. Smoking history varied, with 33% nonsmokers, 33% light smokers, and 33% heavy smokers. Patients were racially diverse: 59% White, 18% Black, 13% Asian, and 10% other. Upon diagnosis of advanced/metastatic NSCLC, patients who were either not tested (19%) or initially tested negative/inconclusive (1%) all received first-line chemotherapy; the other 219 patients (80%) tested positive, with 133 (61%) receiving an ALK inhibitor and 78 (29%) receiving chemotherapy as first-line treatment. Many oncologists stated being more likely to test for ALK rearrangements among Asians, nonsmokers, and light smokers. In this sample, ALK+ NSCLC patients were racially diverse with mixed smoking history. One in five patients were not tested before first-line therapy. Oncologists reported being more likely to consider ALK testing for patients with particular smoking and race characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Non-Canonical Thinking for Targeting ALK-Fusion Onco-Proteins in Lung Cancer

    PubMed Central

    Wu, Wei; Haderk, Franziska; Bivona, Trever G.

    2017-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified in lung cancer at 3–7% frequency, thus representing an important subset of genetic lesions that drive oncogenesis in this disease. Despite the availability of multiple FDA-approved small molecule inhibitors targeting ALK fusion proteins, drug resistance to ALK kinase inhibitors is a common problem in clinic. Thus, there is an unmet need to deepen the current understanding of genomic characteristics of ALK rearrangements and to develop novel therapeutic strategies that can overcome ALK inhibitor resistance. In this review, we present the genomic landscape of ALK fusions in the context of co-occurring mutations with other cancer-related genes, pointing to the central role of genetic epistasis (gene-gene interactions) in ALK-driven advanced-stage lung cancer. We discuss the possibility of targeting druggable domains within ALK fusion partners in addition to available strategies inhibiting the ALK kinase domain directly. Finally, we examine the potential of targeting ALK fusion-specific neoantigens in combination with other treatments, a strategy that could open a new avenue for the improved treatment of ALK positive lung cancer patients. PMID:29189709

  13. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma.

    PubMed

    Regairaz, Marie; Munier, Fabienne; Sartelet, Hervé; Castaing, Marine; Marty, Virginie; Renauleaud, Céline; Doux, Camille; Delbé, Jean; Courty, José; Fabre, Monique; Ohta, Shigeru; Vielh, Philippe; Michiels, Stefan; Valteau-Couanet, Dominique; Vassal, Gilles

    2016-02-01

    Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients.

    PubMed

    Hong, Shaodong; Chen, Nan; Fang, Wenfeng; Zhan, Jianhua; Liu, Qing; Kang, Shiyang; He, Xiaobo; Liu, Lin; Zhou, Ting; Huang, Jiaxing; Chen, Ying; Qin, Tao; Zhang, Yaxiong; Ma, Yuxiang; Yang, Yunpeng; Zhao, Yuanyuan; Huang, Yan; Zhang, Li

    2016-03-01

    Driver mutations were reported to upregulate programmed death-ligand 1 (PD-L1) expression. However, how PD-L1 expression and immune function was affected by ALK-TKIs and anti-PD-1/PD-L1 treatment in ALK positive non-small-cell lung cancer (NSCLC) remains poorly understood. In the present study, western-blot, real-time PCR, flow cytometry and immunofluorescence were employed to explore how PD-L1 was regulated by ALK fusion protein. ALK-TKIs and relevant inhibitors were used to identify the downstream signaling pathways involved in PD-L1 regulation. Cell apoptosis, viability and Elisa test were used to study the immune suppression by ALK activation and immune reactivation by ALK-TKIs and/or PD-1 blocking in tumor cells and DC-CIK cells co-culture system. We found that PD-L1 expression was associated with EGFR mutations and ALK fusion genes in NSCLC cell lines. Over-expression of ALK fusion protein increased PD-L1 expression. PD-L1 mediated by ALK fusion protein increased the apoptosis of T cells in tumor cells and DC-CIK cells co-culture system. Inhibiting ALK by sensitive TKIs could enhance the production of IFNγ. Anti-PD-1 antibody was effective in both crizotinib sensitive and resistant NSCLC cells. Synergistic tumor killing effects were not observed with ALK-TKIs and anti-PD-1 antibody combination in co-culture system. ALK-TKIs not only directly inhibited tumor viability but also indirectly enhanced the antitumor immunity via the downregulation of PD-L1. Anti-PD-1/PD-L1 antibodies could be an optional therapy for crizotinib sensitive, especially crizotinib resistant NSCLC patients with ALK fusion gene. Combination of ALK-TKIs and anti-PD-1/PD-L1 antibodies treatment for ALK positive NSCLC warrants more data before moving into clinical practice.

  15. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients

    PubMed Central

    Hong, Shaodong; Chen, Nan; Fang, Wenfeng; Zhan, Jianhua; Liu, Qing; Kang, Shiyang; He, Xiaobo; Liu, Lin; Zhou, Ting; Huang, Jiaxing; Chen, Ying; Qin, Tao; Zhang, Yaxiong; Ma, Yuxiang; Yang, Yunpeng; Zhao, Yuanyuan; Huang, Yan; Zhang, Li

    2016-01-01

    ABSTRACT Driver mutations were reported to upregulate programmed death-ligand 1 (PD-L1) expression. However, how PD-L1 expression and immune function was affected by ALK-TKIs and anti-PD-1/PD-L1 treatment in ALK positive non-small-cell lung cancer (NSCLC) remains poorly understood. In the present study, western-blot, real-time PCR, flow cytometry and immunofluorescence were employed to explore how PD-L1 was regulated by ALK fusion protein. ALK-TKIs and relevant inhibitors were used to identify the downstream signaling pathways involved in PD-L1 regulation. Cell apoptosis, viability and Elisa test were used to study the immune suppression by ALK activation and immune reactivation by ALK-TKIs and/or PD-1 blocking in tumor cells and DC-CIK cells co-culture system. We found that PD-L1 expression was associated with EGFR mutations and ALK fusion genes in NSCLC cell lines. Over-expression of ALK fusion protein increased PD-L1 expression. PD-L1 mediated by ALK fusion protein increased the apoptosis of T cells in tumor cells and DC-CIK cells co-culture system. Inhibiting ALK by sensitive TKIs could enhance the production of IFNγ. Anti-PD-1 antibody was effective in both crizotinib sensitive and resistant NSCLC cells. Synergistic tumor killing effects were not observed with ALK-TKIs and anti-PD-1 antibody combination in co-culture system. ALK-TKIs not only directly inhibited tumor viability but also indirectly enhanced the antitumor immunity via the downregulation of PD-L1. Anti-PD-1/PD-L1 antibodies could be an optional therapy for crizotinib sensitive, especially crizotinib resistant NSCLC patients with ALK fusion gene. Combination of ALK-TKIs and anti-PD-1/PD-L1 antibodies treatment for ALK positive NSCLC warrants more data before moving into clinical practice. PMID:27141355

  16. Efficacy of a cancer vaccine against ALK-rearranged lung tumors

    PubMed Central

    Voena, Claudia; Di Giacomo, Filomena; Longo, Dario Livio; Castella, Barbara; Merlo, Maria Elena Boggio; Ambrogio, Chiara; Wang, Qi; Minero, Valerio Giacomo; Poggio, Teresa; Martinengo, Cinzia; D'Amico, Lucia; Panizza, Elena; Mologni, Luca; Cavallo, Federica; Altruda, Fiorella; Butaney, Mohit; Capelletti, Marzia; Inghirami, Giorgio; Jänne, Pasi A.; Chiarle, Roberto

    2015-01-01

    Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKIs), but is successful for only a limited amount of time; most cases relapse due to the development of drug resistance. Here we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC. PMID:26419961

  17. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK -mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  18. Electrochemical Hydroxylation of C3-C12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1.

    PubMed

    Tsai, Yi-Fang; Luo, Wen-I; Chang, Jen-Lin; Chang, Chun-Wei; Chuang, Huai-Chun; Ramu, Ravirala; Wei, Guor-Tzo; Zen, Jyh-Myng; Yu, Steve S-F

    2017-08-21

    An unprecedented method for the efficient conversion of C 3 -C 12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB-AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C-H bond activation. The proof of concept herein advances the development of artificial C-H bond activation catalysts.

  19. Sequencing of ALK Inhibitors in ALK+ Non-Small Cell Lung Cancer.

    PubMed

    Gadgeel, Shirish M

    2017-06-01

    Major therapeutic advances have occurred over the last several years in the management of advanced ALK+ NSCLC patients. Crizotinib was the first agent approved for the management of ALK+ NSCLC patients after it demonstrated significantly greater clinical benefit compared to chemotherapy. Several next generation ALK inhibitors have demonstrated clinical benefit in patients with crizotinib refractory NSCLC patients including in the CNS. Based on available data, therapy with a next generation ALK inhibitor can be initiated following therapy with crizotinib without any assessment of the molecular mechanisms of resistance. The appropriate therapy for patients with progressive disease following two ALK inhibitors is not well defined. In patients with an ALK-resistant mutation in their tumor, an ALK inhibitor with activity against the mutation would be the most appropriate therapy. In others, chemotherapy and PD-1 directed agents can be considered. Clinical data suggests that ALK+ patients are less likely to benefit from PD-1 directed agents and therefore chemotherapy should be considered prior to these agents for the management of ALK+ NSCLC patients.

  20. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

    PubMed Central

    Carpenter, EL; Haglund, EA; Mace, EM; Deng, D; Martinez, D; Wood, AC; Chow, AK; Weiser, DA; Belcastro, LT; Winter, C; Bresler, SC; Asgharzadeh, S; Seeger, RC; Zhao, H; Guo, R; Christensen, JG; Orange, JS; Pawel, BR; Lemmon, MA; Mossé, YP

    2013-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies–as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK. PMID:22266870

  1. Targeted therapies in non-small cell lung cancer: a focus on ALK/ROS1 tyrosine kinase inhibitors.

    PubMed

    Sgambato, Assunta; Casaluce, Francesca; Maione, Paolo; Gridelli, Cesare

    2018-01-01

    Anaplastic lymphoma kinase (ALK) and ROS1 rearrangements define important molecular subgroups of advanced non-small cell lung cancer (NSCLC). The identification of these genetic driver alterations created new potential for highly active therapeutic interventions. After discovery of ALK rearrangements in NSCLC, it was recognized that these confer sensitivity to ALK inhibition. Areas covered: Crizotinib, the first-in-class ALK/ROS1/MET inhibitor, was initially approved as second-line treatment of ALK-positive advanced NSCLC but after this, it was firmly established as the standard first-line therapy for advanced ALK-positive NSCLC. After initial response to crizotinib, tumors inevitably relapse. Next-generation ALK inhibitors, more potent and brain-penetrable than crizotinib, may be effective in re-inducing remissions when cancers are still addicted to ALK. Ceritinib and alectinib are approved for metastatic ALK positive NSCLC patients, while brigatinib received granted accelerated approval by the United States Food and Drug Administration. Regarding ROS1 rearrangement, to date crizotinib is the only ALK-tyrosine kinase inhibitor receiving indication as treatment of ROS1 positive advanced NSCLC. Expert commentary: Although novel ALK-inhibitors are under clinical investigation compared to crizotinib as front-line treatment for ALK-positive NSCLC, nowadays the current standard first-line therapy for these patients is crizotinib. Further research will clarify the best management of ALK-positive NSCLC, above all who progress on first-line crizotinib.

  2. Ceritinib for treatment of ALK-rearranged advanced non-small-cell lung cancer.

    PubMed

    Vansteenkiste, Johan F

    2014-10-01

    The anaplastic lymphoma kinase (ALK) gene plays a key role in the pathogenesis of selected tumors, including non-small-cell lung cancer (NSCLC). Patients with ALK-rearranged NSCLC are initially sensitive to the ALK inhibitor crizotinib but eventually become resistant, limiting its therapeutic potential. Ceritinib is an oral second-generation ALK inhibitor with greater preclinical antitumor potency than crizotinib in ALK-positive NSCLC. A Phase I trial of ceritinib in ALK-positive tumors demonstrated good activity in patients with advanced NSCLC, including those who had progressed on crizotinib. Adverse events are similar to those seen with other ALK tyrosine kinase inhibitors and are generally manageable. Ongoing trials are evaluating ceritinib in patients with ALK-rearranged NSCLC treated with prior chemotherapy and/or crizotinib.

  3. Evaluation of ALK Rearrangement in Chinese Non-Small Cell Lung Cancer Using FISH, Immunohistochemistry, and Real-Time Quantitative RT- PCR on Paraffin-Embedded Tissues

    PubMed Central

    Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia

    2013-01-01

    Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation. PMID:23741400

  4. Clinical response of the novel activating ALK-I1171T mutation in neuroblastoma to the ALK inhibitor ceritinib.

    PubMed

    Guan, Jikui; Fransson, Susanne; Siaw, Joachim Tetteh T; Treis, Diana; Van den Eynden, Jimmy; Chand, Damini; Umapathy, Ganesh; Svenberg, Petter; Ruuth, Kristina; Wessman, Sandra; Shamikh, Alia; Jacobsson, Hans; Gordon, Lena; Stenman, Jakob; Larsson, Erik; Svensson, Par-Johan; Hansson, Magnus; Martinsson, Tommy; Kogner, Per; Palmer, Ruth H; Hallberg, Bengt

    2018-06-15

    Tumors with Anaplastic Lymphoma Kinase (ALK) fusion rearrangements, including non-small cell lung cancer and anaplastic large cell lymphoma, are highly sensitive to ALK tyrosine kinase inhibitors (TKIs), underscoring the notion that such cancers are addicted to ALK activity. While mutations in ALK are heavily implicated in childhood neuroblastoma, response to the ALK TKI crizotinib has been disappointing. Embryonal tumors in patients with DNA repair defects such as Fanconi anemia (FA) often have a poor prognosis, due to lack of therapeutic options. Here we report a child with underlying FA and ALK mutant high-risk neuroblastoma responding strongly to precision therapy with the ALK TKI ceritinib. Conventional chemotherapy treatment caused severe, life-threatening toxicity. Genomic analysis of the initial biopsy identified germ-line FANCA mutations as well as a novel ALK-I1171T variant. ALK-I1171T generates a potent gain-of-function mutant, as measured in PC12 cell neurite outgrowth and NIH3T3 transformation. Pharmacological inhibition profiling of ALK-I1171T in response to various ALK TKIs identified an 11-fold improved inhibition of ALK-I1171T with ceritinib when compared with crizotinib. Immunoaffinity-coupled LC-MS/MS phosphoproteomics analysis indicated a decrease in ALK signaling in response to ceritinib. Ceritinib was therefore selected for treatment in this child. Mono-therapy with ceritinib was well tolerated and resulted in normalized catecholamine markers and tumor shrinkage. After 7.5 months treatment, residual primary tumor was surgically removed and exhibited hallmarks of differentiation together with reduced Ki67 levels. Clinical follow-up after 21 months treatment revealed complete clinical remission including all metastatic sites. Therefore, ceritinib presents a viable therapeutic option for ALK-positive neuroblastoma. Cold Spring Harbor Laboratory Press.

  5. Overcoming drug-tolerant cancer cell subpopulations showing AXL activation and epithelial–mesenchymal transition is critical in conquering ALK-positive lung cancer

    PubMed Central

    Nakamichi, Shinji; Seike, Masahiro; Miyanaga, Akihiko; Chiba, Mika; Zou, Fenfei; Takahashi, Akiko; Ishikawa, Arimi; Kunugi, Shinobu; Noro, Rintaro; Kubota, Kaoru; Gemma, Akihiko

    2018-01-01

    Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) induce a dramatic response in non–small cell lung cancer (NSCLC) patients with the ALK fusion gene. However, acquired resistance to ALK-TKIs remains an inevitable problem. In this study, we aimed to discover novel therapeutic targets to conquer ALK-positive lung cancer. We established three types of ALK-TKI (crizotinib, alectinib and ceritinib)-resistant H2228 NSCLC cell lines by high exposure and stepwise methods. We found these cells showed a loss of ALK signaling, overexpressed AXL with epithelial-mesenchymal transition (EMT), and had cancer stem cell-like (CSC) properties, suggesting drug-tolerant cancer cell subpopulations. Similarly, we demonstrated that TGF-β1 treated H2228 cells also showed AXL overexpression with EMT features and ALK-TKI resistance. The AXL inhibitor, R428, or HSP90 inhibitor, ganetespib, were effective in reversing ALK-TKI resistance and EMT changes in both ALK-TKI-resistant and TGF-β1-exposed H2228 cells. Tumor volumes of xenograft mice implanted with established H2228-ceritinib-resistant (H2228-CER) cells were significantly reduced after treatment with ganetespib, or ganetespib in combination with ceritinib. Some ALK-positive NSCLC patients with AXL overexpression showed a poorer response to crizotinib therapy than patients with a low expression of AXL. ALK signaling-independent AXL overexpressed in drug-tolerant cancer cell subpopulations with EMT and CSC features may be commonly involved commonly involved in intrinsic and acquired resistance to ALK-TKIs. This suggests AXL and HSP90 inhibitors may be promising therapeutic drugs to overcome drug-tolerant cancer cell subpopulations in ALK-positive NSCLC patients for the reason that ALK-positive NSCLC cells do not live through ALK-TKI therapy. PMID:29930762

  6. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer

    PubMed Central

    Lim, Tony KH; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3–15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0–2 cells/1.88 mL of blood). The latter range was validated as the ‘false positive’ cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing. PMID:26993609

  7. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss ofmore » contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.« less

  8. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    PubMed Central

    González-Núñez, María; Riolobos, Adela S.; Castellano, Orlando; Fuentes-Calvo, Isabel; de los Ángeles Sevilla, María; Oujo, Bárbara; Pericacho, Miguel; Cruz-Gonzalez, Ignacio; Pérez-Barriocanal, Fernando; ten Dijke, Peter; López-Novoa, Jose M.

    2015-01-01

    ABSTRACT The activin receptor-like kinase 1 (ALK-1) is a type I cell-surface receptor for the transforming growth factor-β (TGF-β) family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP) and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−). We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography) were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons. PMID:26398936

  9. Two novel ALK mutations mediate acquired resistance to the next generation ALK inhibitor alectinib

    PubMed Central

    Katayama, Ryohei; Friboulet, Luc; Koike, Sumie; Lockerman, Elizabeth L.; Khan, Tahsin M.; Gainor, Justin F.; Iafrate, A. John; Takeuchi, Kengo; Taiji, Makoto; Okuno, Yasushi; Fujita, Naoya; Engelman, Jeffrey A.; Shaw, Alice T.

    2014-01-01

    Purpose The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with ALK-rearranged NSCLC. Several next-generation ALK-TKIs have entered the clinic and have shown promising activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to the next-generation ALK-TKI alectinib and potential strategies to overcome this resistance. Experimental Design We established a cell line model of alectinib resistance, and analyzed a resistant tumor specimen from a patient who had relapsed on alectinib. We developed Ba/F3 models harboring alectinib-resistant ALK mutations and evaluated the potency of other next-generation ALK-TKIs in these models. We tested the antitumor activity of the next-generation ALK-TKI ceritinib in the patient with acquired resistance to alectinib. To elucidate structure-activity-relationships of ALK mutations, we performed computational thermodynamic simulation with MP-CAFEE. Results We identified a novel V1180L gatekeeper mutation from the cell line model and a second novel I1171T mutation from the patient who developed resistance to alectinib. Both ALK mutations conferred resistance to alectinib as well as to crizotinib, but were sensitive to ceritinib and other next-generation ALK-TKIs. Treatment of the patient with ceritinib led to a marked response. Thermodynamics simulation suggests that both mutations lead to distinct structural alterations that decrease the binding affinity with alectinib. Conclusions We have identified two novel ALK mutations arising after alectinib exposure which are sensitive to other next generation ALK-TKIs. The ability of ceritinib to overcome alectinib-resistance mutations suggests a potential role for sequential therapy with multiple next-generation ALK-TKIs. PMID:25228534

  10. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib.

    PubMed

    Katayama, Ryohei; Friboulet, Luc; Koike, Sumie; Lockerman, Elizabeth L; Khan, Tahsin M; Gainor, Justin F; Iafrate, A John; Takeuchi, Kengo; Taiji, Makoto; Okuno, Yasushi; Fujita, Naoya; Engelman, Jeffrey A; Shaw, Alice T

    2014-11-15

    The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with ALK-rearranged non-small cell lung cancer (NSCLC). Several next-generation ALK-TKIs have entered the clinic and have shown promising activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to the next-generation ALK-TKI alectinib and potential strategies to overcome this resistance. We established a cell line model of alectinib resistance, and analyzed a resistant tumor specimen from a patient who had relapsed on alectinib. We developed Ba/F3 models harboring alectinib-resistant ALK mutations and evaluated the potency of other next-generation ALK-TKIs in these models. We tested the antitumor activity of the next-generation ALK-TKI ceritinib in the patient with acquired resistance to alectinib. To elucidate structure-activity relationships of ALK mutations, we performed computational thermodynamic simulation with MP-CAFEE. We identified a novel V1180L gatekeeper mutation from the cell line model and a second novel I1171T mutation from the patient who developed resistance to alectinib. Both ALK mutations conferred resistance to alectinib as well as to crizotinib, but were sensitive to ceritinib and other next-generation ALK-TKIs. Treatment of the patient with ceritinib led to a marked response. Thermodynamics simulation suggests that both mutations lead to distinct structural alterations that decrease the binding affinity with alectinib. We have identified two novel ALK mutations arising after alectinib exposure that are sensitive to other next-generation ALK-TKIs. The ability of ceritinib to overcome alectinib-resistance mutations suggests a potential role for sequential therapy with multiple next-generation ALK-TKIs. ©2014 American Association for Cancer Research.

  11. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer.

    PubMed

    Tan, Chye Ling; Lim, Tse Hui; Lim, Tony Kh; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck

    2016-04-26

    Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3-15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0-2 cells/1.88 mL of blood). The latter range was validated as the 'false positive' cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing.

  12. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis

    PubMed Central

    Pant, Bikram Datt; Buhtz, Anja; Kehr, Julia; Scheible, Wolf-Rüdiger

    2008-01-01

    The presence of microRNA species in plant phloem sap suggests potential signaling roles by long-distance regulation of gene expression. Proof for such a role for a phloem-mobile microRNA is lacking. Here we show that phosphate (Pi) starvation-induced microRNA399 (miR399) is present in the phloem sap of two diverse plant species, rapeseed and pumpkin, and levels are strongly and specifically increased in phloem sap during Pi deprivation. By performing micro-grafting experiments using Arabidopsis, we further show that chimeric plants constitutively over-expressing miR399 in the shoot accumulate mature miR399 species to very high levels in their wild-type roots, while corresponding primary transcripts are virtually absent in roots, demonstrating shoot-to-root transport. The chimeric plants exhibit (i) down-regulation of the miR399 target transcript (PHO2), which encodes a critical component for maintenance of Pi homeostasis, in the wild-type root, and (ii) Pi accumulation in the shoot, which is the phenotype of pho2 mutants, miR399 over-expressers or chimeric plants with a genetic knock-out of PHO2 in the root. Hence the transported miR399 molecules retain biological activity. This is a demonstration of systemic control of a biological process, i.e. maintenance of plant Pi homeostasis, by a phloem-mobile microRNA. PMID:17988220

  13. Validation of ALK/ROS1 Dual Break Apart FISH Probe probe in non-small-cell lung cancer.

    PubMed

    Lim, Sun Min; Chang, Hyun; Cha, Yoon Jin; Liang, Shile; Tai, Yan Chin; Li, Gu; Pestova, Ekaterina; Policht, Frank; Perez, Thomas; Soo, Ross A; Park, Won Young; Kim, Hye Ryun; Shim, Hyo Sup; Cho, Byoung Chul

    2017-09-01

    ALK and ROS1 gene rearrangements are distinct molecular subsets of non-small-cell lung cancer (NSCLC), and they are strong predictive biomarkers of response to ALK/ROS1 inhibitors, such as crizotinib. Thus, it is clinically important to develop an effective screening strategy to detect patients who will benefit from such treatment. In this study, we aimed to validate analytical performance of Vysis ALK/ROS1 Dual Break Apart Probe Kit (RUO) in NSCLC. Study population composed of three patient cohorts with histologically confirmed lung adenocarcinoma (patients with ALK rearrangement, patients with ROS1 rearrangement and patients with wild-type ALK and ROS1). Specimens consisted of 12 ALK-positive, 8 ROS1-positive and 21 ALK/ROS1-wild type formalin-fixed paraffin-embedded samples obtained from surgical resection or excisional biopsy. ALK rearrangement was previously assessed by Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Abbot Park, IL, USA) and ROS1 rearrangement was previously assessed by ZytoLight ® SPEC ROS1 Break Apart Probe (ZytoVision, GmbH). All specimens were re-evaluated by Vysis ALK/ROS1 Dual Break Apart Probe Kit. FISH images were scanned on BioView AllegroPlus system and interpreted via BioView SoloWeb remotely. For a total of 41 patient samples, the concordance of the results by Vysis ALK/ROS1 Dual Break Apart Probe Kit was evaluated and compared to the known ALK and ROS1 rearrangement status of the specimen. Of the 12 ALK-positive cases, hybridization with Vysis ALK/ROS1 Dual Break Apart Probe Kit was successful in 10 cases (success rate 10/12, 83%) and of these 10 cases, all showed ALK rearrangement (100% concordance with the results of Vysis ALK Break Apart FISH Probe Kit). Two of the ALK+ cases were excluded due to weak ROS1 signals that could not be enumerated. Of the 8 ROS1-positive cases, 6 cases were successfully evaluated using Vysis ALK/ROS1 Dual Break Apart Probe Kit. The success rate was 75% (6/8), and of these 6 cases, all showed ROS1 rearrangement, giving a 100% concordance with ZytoLight ® SPEC ROS1 Break Apart Probe. Two of the cases were excluded due to weak ROS1 gold signal or high background. In the cohort of 21 wild-type cases, the success rate using Vysis ALK/ROS1 Dual Break Apart FISH Probe Kit was 85% (18/21) and the concordance with ALK and ROS1 probe kit was 100% (18/18). Vysis ALK/ROS1 Dual Break Apart Probe Kit (RUO) can detect ALK and ROS1 rearrangement simultaneously in NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Simultaneous VENTANA IHC and RT-PCR testing of ALK status in Chinese non-small cell lung cancer patients and response to crizotinib.

    PubMed

    Xu, Chun-Wei; Wang, Wen-Xian; Chen, Yan-Ping; Chen, Yu; Liu, Wei; Zhong, Li-Hua; Chen, Fang-Fang; Zhuang, Wu; Song, Zheng-Bo; Chen, Xiao-Hui; Huang, Yun-Jian; Guan, Yan-Fang; Yi, Xin; Lv, Tang-Feng; Zhu, Wei-Feng; Lu, Jian-Ping; Wang, Xiao-Jiang; Shi, Yi; Lin, Xian-Dong; Chen, Gang; Song, Yong

    2018-04-11

    ALK rearrangement-advanced NSCLC patients respond to crizotinib. ALK rearrangement is currently determined with RT-PCR. VENTANA IHC is a standard method to identify ALK protein overexpression in NSCLC; however, VENTANA IHC has rarely been used to determine the response to crizotinib in Chinese patients with NSCLC and ALK overexpression. To better clarify the clinical implication of VENTANA IHC to detect ALK rearrangements, we conducted this study to analyze VENTANA IHC and RT-PCR in a large cohort of Chinese patients with NSCLC undergoing screening for ALK rearrangements. A total of 1720 patients with NSCLC who had ALK rearrangements detected by VENTANA IHC and/or RT-PCR were included in this analysis. We compared the efficacy and survival of ALK-positive patients detected by VENTANA IHC and RT-PCR. We used NGS to identify patients in whom the two methods were inconsistent. Among 1720 patients, 187 (10.87%) were shown to be ALK-positive by VENTANA IHC and/or RT-PCR, and 66 received crizotinib treatment. We identified 10.27% (172/1674) of patients as ALK-positive by the VENTANA IHC method, and 12.73% (41/322) of patients had ALK rearrangements by the RT-PCR method. Twenty-nine of 276 (10.51%) ALK-positive patients were simultaneously analyzed using VENTANA IHC and RT-PCR. The overall response rates were 65.90% (29/44) by VENTANA IHC and 55.88% (19/34) by RT-PCR. The disease control rates were 86.36% (38/44) by VENTANA IHC and 76.47% (26/34) by RT-PCR. In contrast, the median progression-free survival for VENTANA IHC and RT-PCR was 8.5 and 9.2 months, respectively. The VENTANA IHC and RT-PCR results obtained for 6 of 17 ALK-positive patients were inconsistent based on NGS; specifically, 4 patients had EML4-ALK fusions, 2 patients had non EML4-ALK fusions, 1 patient had a KCL1-ALK fusion, and one patient had a FBXO36-ALK fusion. VENTANA IHC is a reliable and rapid screening tool used in routine pathologic laboratories for the identification of suitable candidates for ALK-targeted therapy. VENTANA IHC has moderate sensitivity and a slightly higher association with response to therapy with ALK inhibitors, and some VENTANA IHC-positive, but RT-PCR-negative cases may benefit from crizotinib.

  15. High anaplastic lymphoma kinase immunohistochemical staining in neuroblastoma and ganglioneuroblastoma is an independent predictor of poor outcome.

    PubMed

    Duijkers, Floor A M; Gaal, José; Meijerink, Jules P P; Admiraal, Pieter; Pieters, Rob; de Krijger, Ronald R; van Noesel, Max M

    2012-03-01

    Anaplastic lymphoma kinase (ALK) mutations occur in 3% to 11% of neuroblastoma (NBL) cases and are associated with high ALK levels. However, high ALK levels appear to be a mutation-independent hallmark of NBL. Evidence about the prognostic relevance of ALK mutations and ALK tumor positivity in patients with NBL has been inconclusive. In this study, we investigated the prognostic relevance of ALK positivity by IHC and ALK mutation status by PCR sequencing in 71 NBL, 12 ganglioneuroblastoma (GNBL), and 20 ganglioneuroma samples in a multivariate model. ALK mutations were present in 2 of 72 NBL and 2 of 12 GNBL samples, which all contained many ALK-positive cells (>50%). In addition, half of all NBL samples showed ALK positivity in most (>50%) of tumor cells, whereas half of the GNBL showed staining in <20% of the tumor cells. In most ganglioneuroma samples, a low percentage of tumor cells stained positive for ALK, which mainly involved ganglion cells. Higher percentages of ALK-positive cells in NBL and GNBL patient samples correlated with inferior survival in univariate and multivariate analyses with established prognostic factors, such as stage, age, and MYCN status. In conclusion, ALK positivity by IHC is an independent, poor prognostic factor in patients with GNBL and NBL. ALK IHC is an easy test suitable for future risk stratification in patients with NBL and GNBL. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Resistance to Crizotinib in Advanced Non-Small Cell Lung Cancer (NSCLC) with ALK Rearrangement: Mechanisms, Treatment Strategies and New Targeted Therapies.

    PubMed

    Casaluce, Francesca; Sgambato, Assunta; Sacco, Paola Claudia; Palazzolo, Giovanni; Maione, Paolo; Rossi, Antonio; Ciardiello, Fortunato; Gridelli, Cesare

    2016-01-01

    Non-small cell lung cancers (NSCLCs) harboring anaplastic lymphoma kinase (ALK) rearrangement are generally responsive to treatment with ALK tyrosine kinase inhibitors (TKIs). Crizotinib is the first-in-class TKI approved as front-line or salvage therapy in advanced ALK-rearranged NSCLC. Unfortunately, drug resistance develops after initial benefit, through a variety of mechanisms preserving or not the dominance of ALK signaling in the crizotinib-resistant state. The distinction between patients who preserve ALK dominance (secondary mutations alone or in combination with the number of copy ALK gain) compared to those that have decreased ALK dominance (separate or second oncogenic drivers, with or without concurrent persistence of the original ALK signal) is important in order to overcome resistance. Novel second-generation ALK inhibitors are currently in clinical development with promising results in ALK-rearranged NSCLC, as well as in crizotinib-resistant patients. Among these, ceritinib in the United States was granted by Food and Drug Administration accelerated approval for treatment of patients with ALK-rearranged, metastatic NSCLC with progression disease on or intolerance to crizotinib. Fully understanding of the different mechanisms of resistance to crizotinib will help us to continue to exploit personalized medicine approaches overcoming crizotinib resistance in these patients in the future. This review aims to discuss on strategy overcoming crizotinib-resistance starting from molecular mechanisms of resistance until novel ALK kinase inhibitors in ALK-rearranged NSCLC patients.

  17. Efficacy of a Cancer Vaccine against ALK-Rearranged Lung Tumors.

    PubMed

    Voena, Claudia; Menotti, Matteo; Mastini, Cristina; Di Giacomo, Filomena; Longo, Dario Livio; Castella, Barbara; Merlo, Maria Elena Boggio; Ambrogio, Chiara; Wang, Qi; Minero, Valerio Giacomo; Poggio, Teresa; Martinengo, Cinzia; D'Amico, Lucia; Panizza, Elena; Mologni, Luca; Cavallo, Federica; Altruda, Fiorella; Butaney, Mohit; Capelletti, Marzia; Inghirami, Giorgio; Jänne, Pasi A; Chiarle, Roberto

    2015-12-01

    Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKI), but the treatment is successful for only a limited amount of time; most patients experience a relapse due to the development of drug resistance. Here, we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC. ©2015 American Association for Cancer Research.

  18. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models

    PubMed Central

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-01-01

    The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations. DOI: http://dx.doi.org/10.7554/eLife.17137.001 PMID:28425916

  19. Treating patients with ALK-positive non-small cell lung cancer: latest evidence and management strategy

    PubMed Central

    Liao, Bin-Chi; Shih, Jin-Yuan; Yang, James Chih-Hsin

    2015-01-01

    Rearrangements in anaplastic lymphoma kinase (ALK) gene and echinoderm microtubule-associated protein-like 4 (EML4) gene were first described in a small portion of patients with non-small cell lung cancer (NSCLC) in 2007. Fluorescence in situ hybridization is used as the diagnostic test for detecting an EML4–ALK rearrangement. Crizotinib, an ALK inhibitor, is effective in treating advanced ALK-positive NSCLC, and the US Food and Drug Administration approved it for treating ALK-positive NSCLC in 2011. Several mechanisms of acquired resistance to crizotinib have recently been reported. Second-generation ALK inhibitors were designed to overcome these resistance mechanisms. Two of them, ceritinib and alectinib, were approved in 2014 for advanced ALK-positive NSCLC in the US and Japan, respectively. Heat shock protein 90 (Hsp90) inhibitors also showed activity against ALK-positive NSCLC. Here we review the recent development of crizotinib, ceritinib, alectinib and other second-generation ALK inhibitors as well as Hsp90 inhibitors. We also discuss management strategies for advanced ALK-positive NSCLC. PMID:26327925

  20. Simultaneous diagnostic platform of genotyping EGFR, KRAS, and ALK in 510 Korean patients with non-small-cell lung cancer highlights significantly higher ALK rearrangement rate in advanced stage.

    PubMed

    Kim, Tae-Jung; Park, Chan Kwon; Yeo, Chang Dong; Park, Kihoon; Rhee, Chin Kook; Kim, Jusang; Kim, Seung Joon; Lee, Sang Haak; Lee, Kyo-Young; Yoon, Hyoung-Kyu

    2014-09-01

    Simultaneous genotyping has advantages in turnaround time and detecting the real mutational prevalence in unresectable non-small-cell lung cancer (NSCLC), a group not previously genetically characterized. We developed simultaneous panel of screening EGFR and KRAS mutations by direct sequencing or PNA clamping, and ALK rearrangement by fluorescent in situ hybridization (FISH) in multicenter manner. Of 510 NSCLC Korean patients, simultaneous genotyping identified mutations of EGFR (29.0%) and KRAS (8.6%) and rearrangement of ALK (9.2%). Seven patients had overlaps in mutations. Although several well-known associations between genotypes and clinical characteristics were identified, we found no relationship between ALK rearrangement and sex or smoking history. Unlike the other genotype mutations, ALK rearrangement was associated with advanced disease. Among the ALK-negative group, patients with 10-15% of ALK FISH split shared characteristics, such as younger age and advanced stage disease, more with the ALK-positive group (>15% ALK FISH split) than <10% ALK FISH split group. Simultaneous panel genotyping revealed more prevalent ALK rearrangements than reported in previous studies and their strong association with advanced stage irrespective of sex or smoking history. ALK rearrangement seems to be a marker for aggressive tumor biology and should be assessed in advanced disease. © 2014 Wiley Periodicals, Inc.

  1. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC).

    PubMed

    Golding, Brandon; Luu, Anita; Jones, Robert; Viloria-Petit, Alicia M

    2018-02-19

    Lung cancer is the leading cause of death by cancer in North America. A decade ago, genomic rearrangements in the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase were identified in a subset of non-small cell lung carcinoma (NSCLC) patients. Soon after, crizotinib, a small molecule ATP-competitive ALK inhibitor was proven to be more effective than chemotherapy in ALK-positive NSCLC patients. Crizotinib and two other ATP-competitive ALK inhibitors, ceritinib and alectinib, are approved for use as a first-line therapy in these patients, where ALK rearrangement is currently diagnosed by immunohistochemistry and in situ hybridization. The clinical success of these three ALK inhibitors has led to the development of next-generation ALK inhibitors with even greater potency and selectivity. However, patients inevitably develop resistance to ALK inhibitors leading to tumor relapse that commonly manifests in the form of brain metastasis. Several new approaches aim to overcome the various mechanisms of resistance that develop in ALK-positive NSCLC including the knowledge-based alternate and successive use of different ALK inhibitors, as well as combined therapies targeting ALK plus alternative signaling pathways. Key issues to resolve for the optimal implementation of established and emerging treatment modalities for ALK-rearranged NSCLC therapy include the high cost of the targeted inhibitors and the potential of exacerbated toxicities with combination therapies.

  2. Detection of EML4-ALK fusion gene in Chinese non-small cell lung cancer by using a sensitive quantitative real-time reverse transcriptase PCR technique.

    PubMed

    Fu, Sha; Wang, Fang; Shao, Qiong; Zhang, Xu; Duan, Li-Ping; Zhang, Xiao; Zhang, Li; Shao, Jian-Yong

    2015-04-01

    Anaplastic lymphoma kinase (ALK) rearrangement is present in approximately 5% of lung adenocarcinoma. Clinical trials on ALK inhibitor phase I to III have shown an interesting disease control rate and acceptable tolerability in ALK rearrangement patients. In clinical application, the precise diagnostic strategy for identifying ALK rearrangements remains to be determined. In this study, ALK rearrangement was screened by using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), direct sequencing, 2 fluorescence in situ hybridization (FISH) assays, and immunohistochemistry in 173 lung adenocarcinomas. We identified 18 cases (10.4%) with EML4-ALK fusion-positive by qRT-PCR, and all were positive for EML4-ALK fusion gene validated by direct sequencing. The result was consistent with that of other methods. Furthermore, of the 18 EML4-ALK fusion-positive cases, 16 (9.2%) were positive by using EML4-ALK fusion probe FISH, and 15 (8.7%) were positive by using ALK break-apart probe FISH and immunohistochemistry staining. Of the 18 ALK fusion-positive lung adenocarcinomas, 8 cases (44.4%) were histologically diagnosed as subtypes of cribriform adenocarcinoma, 7 cases (38.9%) as cribriform adenocarcinoma mixed with papillary and/or mucinous pattern, 2 cases (11.1%) as papillary adenocarcinoma, and 1 case (5.6%) as mucinous adenocarcinoma. In the present study, the ALK rearrangement frequency detected by qRT-PCR in Chinese NSCLC patients was higher than that in the western populations. QRT-PCR is a rapid, sensitive technology that could be used as a screening tool for identifying EML4-ALK fusion-positive NSCLC patients who would be sensitive for receiving ALK inhibitor therapy.

  3. I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib.

    PubMed

    Ou, Sai-Hong Ignatius; Greenbowe, Joel; Khan, Ziad U; Azada, Michele C; Ross, Jeffrey S; Stevens, Phil J; Ali, Siraj M; Miller, Vincent A; Gitlitz, Barbara

    2015-05-01

    Acquired resistance mutations to anaplastic lymphoma kinase (ALK) inhibitors such as crizotinib and alectinib have been documented in non-small cell lung cancer (NSCLC) patients harboring ALK rearrangement (ALK+). Of note I1171T/N/S mutations in the ALK kinase domain have recently been described by several groups to confer resistance to alectinib, a second-generation ALK inhibitor. Additionally one of these reports demonstrated one ALK+ NSCLC patient harboring an I1171T acquired mutation has responded to ceritinib, another second-generation ALK inhibitor. We reported the presence of an ALK I1171N resistance mutation from comprehensive genomic profiling from a liver biopsy of a progressing metastatic lesion in an ALK+ patient on alectinib after an initial partial response. The patient then responded to ceritinib 750 mg orally once daily but required dose reduction to 600 mg once daily. She initially had grade 3 elevation of liver enzymes from crizotinib necessitating the original switch to alectinib but experienced no transaminase elevations with alectinib or ceritinib. This is the fifth patient case to date demonstrating that ALK I1171 mutation confers resistance to alectinib and the second reported case of ALK I1171 mutation being sensitivity to ceritinib. Substitutions of isoleucine at amino acid 1171 in the ALK kinase domain may distinguish which second generation ALK inhibitor will be effective after crizotinib failure. This case also provides evidence that transaminase elevations is likely a unique adverse event associated with crizotinib and unlikely a "class" effect involving all ALK inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Immunohistochemical Analysis of Activin Receptor-Like Kinase 1 (ACVRL1/ALK1) Expression in the Rat and Human Hippocampus: Decline in CA3 During Progression of Alzheimer's Disease.

    PubMed

    Adams, Stephanie L; Benayoun, Laurent; Tilton, Kathy; Mellott, Tiffany J; Seshadri, Sudha; Blusztajn, Jan Krzysztof; Delalle, Ivana

    2018-01-01

    The pathophysiology of Alzheimer's disease (AD) includes signaling defects mediated by the transforming growth factor β-bone morphogenetic protein-growth and differentiation factor (TGFβ-BMP-GDF) family of proteins. In animal models of AD, administration of BMP9/GDF2 improves memory and reduces amyloidosis. The best characterized type I receptor of BMP9 is ALK1. We characterized ALK1 expression in the hippocampus using immunohistochemistry. In the rat, ALK1 immunoreactivity was found in CA pyramidal neurons, most frequently and robustly in the CA2 and CA3 fields. In addition, there were sporadic ALK1-immunoreactive cells in the stratum oriens, mainly in CA1. The ALK1 expression pattern in human hippocampus was similar to that of rat. Pyramidal neurons within the CA2, CA3, and CA4 were strongly ALK1-immunoreactive in hippocampi of cognitively intact subjects with no neurofibrillary tangles. ALK1 signal was found in the axons of alveus and fimbria, and in the neuropil across CA fields. Relatively strongest ALK1 neuropil signal was observed in CA1 where pyramidal neurons were occasionally ALK1-immunoractive. As in the rat, horizontally oriented neurons in the stratum oriens of CA1 were both ALK1- and GAD67-immunoreactive. Analysis of ALK1 immunoreactivity across stages of AD pathology revealed that disease progression was characterized by overall reduction of the ALK1 signal in CA3 in advanced, but not early, stages of AD. These data suggest that the CA3 pyramidal neurons may remain responsive to the ALK1 ligands, e.g., BMP9, during initial stages of AD and that ALK1 may constitute a therapeutic target in early and moderate AD.

  5. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel

    PubMed Central

    Gunasekera, Thusitha S.; Bowen, Loryn L.; Zhou, Carol E.; Howard-Byerly, Susan C.; Foley, William S.; Striebich, Richard C.; Dugan, Larry C.

    2017-01-01

    ABSTRACT Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10. The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. PMID:28314727

  6. Nonylphenol biodegradation characterizations and bacterial composition analysis of an effective consortium NP-M2.

    PubMed

    Bai, Naling; Abuduaini, Rexiding; Wang, Sheng; Zhang, Meinan; Zhu, Xufen; Zhao, Yuhua

    2017-01-01

    Nonylphenol (NP), ubiquitously detected as the degradation product of nonionic surfactants nonylphenol polyethoxylates, has been reported as an endocrine disrupter. However, most pure microorganisms can degrade only limited species of NP with low degradation efficiencies. To establish a microbial consortium that can effectively degrade different forms of NP, in this study, we isolated a facultative microbial consortium NP-M2 and characterized the biodegradation of NP by it. NP-M2 could degrade 75.61% and 89.75% of 1000 mg/L NP within 48 h and 8 days, respectively; an efficiency higher than that of any other consortium or pure microorganism reported so far. The addition of yeast extract promoted the biodegradation more significantly than that of glucose. Moreover, surface-active compounds secreted into the extracellular environment were hypothesized to promote high-efficiency metabolism of NP. The detoxification of NP by this consortium was determined. The degradation pathway was hypothesized to be initiated by oxidization of the benzene ring, followed by step-wise side-chain biodegradation. The bacterial composition of NP-M2 was determined using 16S rDNA library, and the consortium was found to mainly comprise members of the Sphingomonas, Pseudomonas, Alicycliphilus, and Acidovorax genera, with the former two accounting for 86.86% of the consortium. The high degradation efficiency of NP-M2 indicated that it could be a promising candidate for NP bioremediation in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study.

    PubMed

    Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang

    2011-08-01

    Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.

  8. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib.

    PubMed

    Basit, Sulman; Ashraf, Zaman; Lee, Kwangho; Latif, Muhammad

    2017-07-07

    Non-small cell lung cancers (NSCLC) harboring anaplastic lymphoma kinase (ALK) gene rearrangements invariably develop resistance to 2 nd -generation ALK inhibitors. Lorlatinib (PF-06463922) (6) is a 3 rd -generation macrocyclic ALK-TKI that demonstrates many advantages over 2 nd -generation ALK inhibitors. Lorlatinib has demonstrated decent kinase selectivity, promising pharmacokinetic profile, selective brain-penetration and strong antiproliferative activity in several ALK/ROS1-driven tumor models. The current review describes the activity spectrum, key events from discovery to clinical applications and the evidences that lorlatinib acts as an ALK/ROS1 inhibitor in clinical settings. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. [Molecular diagnostics of ALK-positive lung cancer].

    PubMed

    Tímár, József; Lotz, Gábor; Rásó, Erzsébet; Moldvay, Judit

    2017-09-20

    ALK translocation is the 3rd most frequent genetic aberration in lung adenocarcinoma, and several inhibitors are now clinically available in first and second line settings. Accordingly, molecular diagnostics of ALK-positive lung cancer is very important and can be done with the rational combination of several methods. All international recommendations suggest that, except for cytological samples, screening technology for ALK-positive tumors is immunohistochemistry using a validated test. It is highly recommended that in case of ALK protein positive samples gene translocation must be confirmed by fluorescent in situ hybridization (FISH). In case of cytological samples FISH technique must be used as ALK diagnostics. In equivocal cases the genetic alteration of ALK can be confirmed by alternative molecular techniques such as next generation sequencing or RNAbased PCR methods. Upon administration of ALK inhibitors, acquired resistance is frequent which is mostly due to ALK amplification and/or mutation. It is evident that the diagnostics of these secondary ALK gene alterations must be done from recurrent tumors or circulating nucleic acids.

  10. Ventana immunohistochemistry ALK (D5F3) detection of ALK expression in pleural effusion samples of lung adenocarcinoma.

    PubMed

    Wang, Zheng; Wu, Xiaonan; Shi, Yuankai; Han, Xiaohong; Cheng, Gang; Cui, Di; Li, Lin; Zhang, Yuhui; Mu, Xinlin; Zhang, Li; Yang, Li; Di, Jing; Yu, Qi; Liu, Dongge

    2015-08-01

    To evaluate the Ventana IHC ALK (D5F3) assay for detecting anaplastic lymphoma kinase (ALK) protein expression in pleural effusion samples. Historical, selected (wild-type EGFR, K-RAS) pleural effusion cytologic blocks of lung adenocarcinoma samples (Study 1) and unselected lung adenocarcinoma pleural effusion cytologic blocks (Study 2) were tested by Ventana IHC ALK (D5F3) assay. Quantitative real-time-PCR was used to verify immunohistochemistry results. A total of 17 out of 100 (Study 1) and ten out of 104 (Study 2) pleural effusion samples were ALK expression positive by the Ventana IHC ALK (D5F3) assay. The ALK fusion results with immunohistochemistry and quantitative real-time-PCR had a concordance rate of 87.5% (κ = 0.886; p < 0.001). The Ventana IHC ALK (D5F3) assay is a reliable tool for detecting ALK protein expression in pleural effusion samples.

  11. [Therapeutic effects of crizotinib in EML4-ALK-positive patients with non-small-cell lung cancer].

    PubMed

    Wu, Xuan; Li, Jianxiong

    2015-05-01

    To evaluate the therapeutic effects of different therapeutic regimens for non-small-cell lung cancer (NSCLC) with or without EML4-ALK rearrangement. Twenty-one ALK-positive and 50 ALK-negative NSCLC patients who received voluntarily EML4-ALK testing and 75 NSCLC patients without AL testing were enrolled in this study. The 3 groups of patients received different treatments, and the therapeutic effects, progression-free survival (PFS), and treatment-related adverse events were analyzed. Crizotinib treatment obviously prolonged the PFS in EML4-ALK-positive patients with an objective response rate (OOR) of 61.9% and a median response duration of 16 months, which were significantly better than those in with ALK-negative patients and patients without ALK testing who received different second-line therapies. Crizotinib is superior to platinum-based chemotherapy in NSCLC patients with ALK rearrangement. ALK rearrangement id not a modifier of the effect of chemotherapy regimens in NSCLC patients.

  12. Anaplastic lymphoma kinase inhibitors in brain metastases from ALK+ non-small cell lung cancer: hitting the target even in the CNS.

    PubMed

    Klempner, Samuel J; Ou, Sai-Hong Ignatius

    2015-06-01

    The paradigm shift occurring in non-small cell lung cancer (NSCLC) is encapsulated by the management of patients harboring oncogenic anaplastic lymphoma kinase (ALK) rearrangements. The unprecedented improvements in patient outcomes resulting from ALK-directed therapy have led to the appreciation of patterns of disease progression. Early studies have suggested that some tyrosine kinase inhibitors (TKIs), including ALK TKIs, inefficiently penetrated the blood brain barrier. With the increasing appreciation of the CNS as a sanctuary site in ALK TKI-treated patients, there is increasing focus and importance on the prevention and control of CNS metastases in ALK-rearranged NSCLC. The spectrum of CNS activity is variable among the currently available ALK TKI therapies and further studies are ongoing. In the following review we discuss the ability of current and future ALK inhibitors (ALK-i) to control and prevent CNS progression in patients with ALK-rearranged NSCLC. The potential implications for TKI sequencing and important future research directions are discussed.

  13. Elucidation of Motifs in Ribosomal Protein S9 That Mediate Its Nucleolar Localization and Binding to NPM1/Nucleophosmin

    PubMed Central

    Lindström, Mikael S.

    2012-01-01

    Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site. PMID:23285058

  14. Education of pediatric subspecialty fellows in transport medicine: a national survey.

    PubMed

    Mickells, Geoffrey E; Goodman, Denise M; Rozenfeld, Ranna A

    2017-01-13

    The transport of critically ill patients to children's hospitals is essential to current practice. The AAP Section on Transport Medicine has raised concerns about future leadership in the field as trainees receive less exposure to transport medicine. This study identifies the priorities of pediatric subspecialty fellows, fellowship directors and nursing directors in transport medicine education. Internet based surveys were distributed to fellows, fellowship directors and nursing directors of transport teams affiliated with ACGME-approved fellowships in Neonatal-Perinatal Medicine (NPM), Pediatric Critical Care Medicine (PCCM), and Pediatric Emergency Medicine (PEM). Data collection occurred November 2013 to March 2014. Four hundred and sixty-six responses were collected (357 fellows, 82 directors, 27 nursing directors): Six curricular elements were ranked by respondents: Transport Physiology (TP), Medical Control (MC), Vehicle Safety (VS), Medicolegal Issues (ML), Medical Protocols (MP) and State and Federal Regulations (SFR). Fellows and fellowship directors were not significantly different: TP (p = 0.63), VS (p = 0.45), SFR (p = 0.58), ML (p = 0.07), MP (p = 0.98), and MC (p = 0.36). Comparison of subspecialties found significant differences: PEM considered TP less important than NPM and PCCM (p < 0.001, p < 0.001), VS less important than NPM (p = 0.001). PEM viewed SFR and MC more important than PCCM (p = 0.006, p = 0.002); ML more important than PCCM and NPM (p = 0.001, p < 0.001). PCCM ranked MC more important than NPM (p = 0.004). Nursing directors considered TP less important than NPM and PCCM (p < 0.001, p = 0.002). When ranking curricular elements in transport medicine, fellows and fellowship directors do not differ, but comparison of subspecialties notes significant differences. A fellow curriculum in transport medicine will utilize these results.

  15. The mosaic mutants of cucumber: A method to produce knock-downs of mitochondrial transcripts

    USDA-ARS?s Scientific Manuscript database

    Cytoplasmic effects on plant performance are well documented and result from the intimate interaction between organellar and nuclear gene products. In plants, deletions, mutations, or chimerism of mitochondrial genes are often associated with deleterious phenotypes, as well as economically important...

  16. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution

    PubMed Central

    Xie, Bingkun; Yang, Wei; Ouyang, Yongchang; Chen, Lichan; Jiang, Hesheng; Liao, Yuying; Liao, D. Joshua

    2016-01-01

    Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization. PMID:27148738

  17. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand-receptor interactions.

    PubMed

    Reshetnyak, Andrey V; Murray, Phillip B; Shi, Xiarong; Mo, Elizabeth S; Mohanty, Jyotidarsini; Tome, Francisco; Bai, Hanwen; Gunel, Murat; Lax, Irit; Schlessinger, Joseph

    2015-12-29

    Receptor tyrosine kinases (RTKs) are a class of cell surface receptors that, upon ligand binding, stimulate a variety of critical cellular functions. The orphan receptor anaplastic lymphoma kinase (ALK) is one of very few RTKs that remain without a firmly established protein ligand. Here we present a novel cytokine, FAM150B, which we propose naming augmentor-α (AUG-α), as a ligand for ALK. AUG-α binds ALK with high affinity and activates ALK in cells with subnanomolar potency. Detailed binding experiments using cells expressing ALK or the related receptor leukocyte tyrosine kinase (LTK) demonstrate that AUG-α binds and robustly activates both ALK and LTK. We show that the previously established LTK ligand FAM150A (AUG-β) is specific for LTK and only weakly binds to ALK. Furthermore, expression of AUG-α stimulates transformation of NIH/3T3 cells expressing ALK, induces IL-3 independent growth of Ba/F3 cells expressing ALK, and is expressed in neuroblastoma, a cancer partly driven by ALK. These experiments reveal the hierarchy and specificity of two cytokines as ligands for ALK and LTK and set the stage for elucidating their roles in development and disease states.

  18. EMT is associated with, but does not drive resistance to ALK inhibitors among EML4-ALK non-small cell lung cancer.

    PubMed

    Gower, Arjan; Hsu, Wei-Hsun; Hsu, Shuo-Tse; Wang, Yisong; Giaccone, Giuseppe

    2016-04-01

    ALK gene fusion occurs in approximately 3-7% of non-small cell lung cancer (NSCLC). For patients with ALK positive NCSLC, crizotinib and ceritinib are FDA approved ALK inhibitors, however, patients inevitably acquire resistance to such therapies typically within one to two years. Interrogation of in vitro ALK-positive NSCLC cell line models of acquired resistance to first and second-generation ALK inhibitors revealed acquired epithelial-to-mesenchymal transition (EMT) mechanisms. Here we demonstrated that knockdown of upregulated mesenchymal markers in acquired resistant lines decreased the invasive and migratory capabilities of the cells, however, it did not restore sensitivity to ALK inhibitors. Removing drug for 5 weeks from H3122 cell line that acquired resistance to ceritinib restored its sensitivity to ceritinib. In addition, HSP90 inhibitors ganetespib and 17-AAG were potent in inducing cell death in cell lines resistant to crizotinib and ceritinib. Taken together, EMT does not drive resistance to ALK inhibitors and HSP90 inhibition demonstrates more efficacy when further ALK inhibition may not. This study warrants more exploration of HSP90 inhibitors for ALK-positive patients who progress on 1st and 2nd line ALK inhibitor therapy. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Using Serological Proteome Analysis to Identify Serum Anti-Nucleophosmin 1 Autoantibody as a Potential Biomarker in European-American and African-American Patients With Prostate Cancer.

    PubMed

    Dai, Liping; Li, Jitian; Xing, Mengtao; Sanchez, Tino W; Casiano, Carlos A; Zhang, Jian-Ying

    2016-11-01

    The prostate-specific antigen (PSA) testing has been widely implemented for the early detection and management of prostate cancer (PCa). However, the lack of specificity has led to overdiagnosis, resulting in many possibly unnecessary biopsies and overtreatment. Therefore, novel serological biomarkers with high sensitivity and specificity are of vital importance needed to complement PSA testing in the early diagnosis and effective management of PCa. This is particularly critical in the context of PCa health disparities, where early detection and management could help reduce the disproportionately high PCa mortality observed in African-American men. Previous studies have demonstrated that sera from patients with PCa contain autoantibodies that react with tumor-associated antigens (TAAs). The serological proteome analysis (SERPA) approach was used to identify tumor-associated antigens (TAAs) of PCa. In evaluation study, the level of anti-NPM1 antibody was examined in sera from test cohort, validation cohort, as well as European-American (EA) and African-American (AA) men with PCa by using immunoassay. Nucleophosmin 1 (NPM1) as a 33 kDa TAA in PCa was identified and characterized by SERPA approach. Anti-NPM1 antibody level in PCa was higher than in benign prostatic hyperplasia (BPH) patients and healthy individuals. Receiver operating characteristic (ROC) curve analysis showed similar high diagnostic value for PCa in the test cohort (area under the curve (AUC):0.860) and validation cohort (AUC: 0.822) to differentiate from normal individuals and BPH. Interestingly, AUC values were significantly higher for AA PCa patients. When considering concurrent serum measurements of anti-NPM1 antibody and PSA, 97.1% PCa patients at early stage were identified correctly, while 69.2% BPH patients who had elevated PSA levels were found to be anti-NPM1 negative. Additionally, anti-NPM1 antibody levels in PCa patients at early stage significantly increased after surgery treatment. This intriguing data suggested that NPM1 can elicit autoantibody response in PCa and might be a potential biomarker for the immunodiagnosis and prognosis of PCa, and for supplementing PSA testing in distinguishing PCa from BPH. Prostate 76:1375-1386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. ALK immunohistochemistry for ALK gene rearrangement screening in non-small cell lung cancer: a systematic review and meta-analysis.

    PubMed

    Pyo, Jung-Soo; Kang, Guhyun; Sohn, Jin Hee

    2016-12-23

    The aim of this study was to investigate the diagnostic accuracy of anaplastic lymphoma kinase (ALK) immunohistochemistry (IHC) for ALK gene rearrangement in non-small cell lung cancer (NSCLC) through systematic review, meta-analysis and diagnostic test accuracy review. The current study included 11,806 NSCLC cases in 42 eligible studies. We performed concordance analyses between ALK IHC and fluorescence in situ hybridization (FISH). The diagnostic accuracy of ALK IHC was analyzed based on ALK IHC criteria and antibodies. The overall ALK IHC results were positive in 13.2%. The overall concordance rate between ALK IHC and FISH was 0.950 (95% confidence interval [CI], 0.927-0.966). In the ALK IHC-positive and negative groups, the concordance rates were 0.805 (95% CI 0.733-0.861) and 0.985 (95% CI 0.978-0.990), respectively. The ALK FISH-positive rates were 0.009 (95% CI 0.004-0.023), 0.378 (95% CI 0.217-0.572), 0.628 (95% CI 0.420-0.796) and 0.900 (95% CI 0.840-0.939) in the ALK IHC 0, 1+, 2+ and 3+ groups, respectively. In diagnostic test accuracy review for ALK IHC, the pooled sensitivity and specificity were 0.92 (95% CI 0.89-0.94) and 0.91 (95% CI 0.90-0.91), respectively. The diagnostic odds ratio and the area under the curve on the summary receiver operating characteristic curve were 266.56 (95% CI 110.83-641.14) and 0.983, respectively. Our results suggested that ALK IHC equivocal (score 1+ and 2+) cases should not be considered as IHC-negative in screening for ALK gene rearrangement. Additional detailed criteria for ALK IHC equivocal cases are necessary to determine how to best apply this approach in daily practice.

  1. The ALK receptor in sympathetic neuron development and neuroblastoma.

    PubMed

    Janoueix-Lerosey, Isabelle; Lopez-Delisle, Lucille; Delattre, Olivier; Rohrer, Hermann

    2018-05-01

    The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.

  2. Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance.

    PubMed

    Kodama, Tatsushi; Tsukaguchi, Toshiyuki; Yoshida, Miyuki; Kondoh, Osamu; Sakamoto, Hiroshi

    2014-09-01

    The clinical efficacy of the ALK inhibitor crizotinib has been demonstrated in ALK fusion-positive NSCLC; however, resistance to crizotinib certainly occurs through ALK secondary mutations in clinical use. Here we examined the efficacy of a selective ALK inhibitor alectinib/CH5424802 in models of crizotinib resistance. Alectinib led to tumor size reduction in EML4-ALK-positive xenograft tumors that failed to regress fully during the treatment with crizotinib. In addition, alectinib inhibited the growth of some EML4-ALK mutant-driven tumors, including the G1269A model. These results demonstrated that alectinib might provide therapeutic opportunities for crizotinib-treated patients with ALK secondary mutations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs.

    PubMed

    Bayliss, Richard; Choi, Jene; Fennell, Dean A; Fry, Andrew M; Richards, Mark W

    2016-03-01

    A fusion between the EML4 (echinoderm microtubule-associated protein-like) and ALK (anaplastic lymphoma kinase) genes was identified in non-small cell lung cancer (NSCLC) in 2007 and there has been rapid progress in applying this knowledge to the benefit of patients. However, we have a poor understanding of EML4 and ALK biology and there are many challenges to devising the optimal strategy for treating EML4-ALK NSCLC patients. In this review, we describe the biology of EML4 and ALK, explain the main features of EML4-ALK fusion proteins and outline the therapies that target EML4-ALK. In particular, we highlight the recent advances in our understanding of the structures of EML proteins, describe the molecular mechanisms of resistance to ALK inhibitors and assess current thinking about combinations of ALK drugs with inhibitors that target other kinases or Hsp90.

  4. Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes

    PubMed Central

    Mota, Ines; Patrucco, Enrico; Gambacorti-Passerini, Carlo; Chiarle, Roberto

    2018-01-01

    Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance. PMID:29495603

  5. Prevalence and clinicopathological characteristics of ALK fusion subtypes in lung adenocarcinomas from Chinese populations.

    PubMed

    Zheng, Difan; Wang, Rui; Zhang, Yang; Pan, Yunjian; Cheng, Xinghua; Cheng, Chao; Zheng, Shanbo; Li, Hang; Gong, Ranxia; Li, Yuan; Shen, Xuxia; Sun, Yihua; Chen, Haiquan

    2016-04-01

    We performed this retrospective study to have a comprehensive investigation of the clinicopathological characteristics of ALK fusion-positive lung adenocarcinoma in Chinese populations. We screened 1407 patients with primary lung adenocarcinoma from October 2007 to May 2013. Quantitative real-time PCR (qRT-PCR), reverse transcriptase PCR (RT-PCR), and fluorescence in situ hybridization were performed to detect ALK fusion genes, with validation of positive results using immunohistochemistry. Clinicopathological characteristics were collected to assess prognosis in ALK fusion-positive patients. Of 1407 patients with lung adenocarcinoma, there were 74 (5.3 %) ALK fusion-positive patients. Patients harboring ALK fusion were significantly younger (56.0 years vs. 59.8 years p = 0.002) and were more likely to have advanced stages (stage III or stage IV) (OR 1.761; 95 % CI 1.10-2.82, p = 0.017). Lepidic predominant adenocarcinoma was rarely found in ALK fusion patients (2.7 vs. 13.5 % p = 0.025), while IMA (invasive mucinous adenocarcinoma) predominant adenocarcinoma was more frequently found (21.6 vs. 5.0 % p < 0.001). ALK fusion was neither a risk factor nor protective factor in relapse-free survival and overall survival. Male, current smoker, and EML4-ALK variant 3 indicated poor prognosis among ALK fusion-positive lung adenocarcinomas. ALK fusion was detected in 5.3 % (74/1407) of the Chinese patients with lung adenocarcinoma. ALK fusion defines a molecular subset of lung adenocarcinoma with unique clinicopathological characteristics. Different ALK fusion variants determine distinct prognoses.

  6. Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa.

    PubMed

    Niepa, Tagbo H R; Vaccari, Liana; Leheny, Robert L; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J

    2017-12-19

    Bacteria at fluid interfaces endure physical and chemical stresses unique to these highly asymmetric environments. The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-water interface are compared. PAO1 cells form elastic films of bacteria, excreted polysaccharides and proteins, whereas PA14 cells move actively without forming an elastic film. Studies of PAO1 mutants show that, unlike solid-supported biofilms, elastic interfacial film formation occurs in the absence of flagella, pili, or certain polysaccharides. Highly induced genes identified in transcriptional profiling include those for putative enzymes and a carbohydrate metabolism enzyme, alkB2; this latter gene is not upregulated in PA14 cells. Notably, PAO1 mutants lacking the alkB2 gene fail to form an elastic layer. Rather, they form an active film like that formed by PA14. These findings demonstrate that genetic expression is altered by interfacial confinement, and suggest that the ability to metabolize alkanes may play a role in elastic film formation at oil-water interfaces.

  7. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome.

    PubMed

    Mitani, Yoshitsugu; Rao, Pulivarthi H; Futreal, P Andrew; Roberts, Dianna B; Stephens, Philip J; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S; Lippman, Scott M; Caulin, Carlos; El-Naggar, Adel K

    2011-11-15

    To investigate the molecular genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Multimolecular and genetic techniques complemented with massive pair-ended sequencing and single-nucleotide polymorphism array analyses were used on tumor specimens from 30 new and 52 previously analyzed fusion transcript-negative ACCs by reverse transcriptase PCR (RT-PCR). MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients' survival. The FISH analysis showed 34 of 82 (41.5%) fusion-positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% whereas fusion transcript forming incidence was 38.2%. Significant statistical association between the 5' MYB transcript expression and patient survival was found. We conclude that: (i) t(6;9) results in complex genetic and molecular alterations in ACC, (ii) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, (iii) noncanonical MYB-NFIB gene fusions occur in a subset of tumors, (iv) high MYB expression correlates with worse patient survival.

  8. Novel Chromosomal Rearrangements and breakpoints at the t(6;9) in Salivary Adenoid Cystic Carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome

    PubMed Central

    Mitani, Yoshitsugu; Rao, Pulivarthi H.; Futreal, P. Andrew; Roberts, Dianna B.; Stephens, Philip J.; Zhao, Yi-Jue; Zhang, Li; Mitani, Mutsumi; Weber, Randal S.; Lippman, Scott M.; Caulin, Carlos; El-Naggar, Adel K.

    2011-01-01

    Objective To investigate the molecular-genetic heterogeneity associated with the t(6:9) in adenoid cystic carcinoma (ACC) and correlate the findings with patient clinical outcome. Experimental Design Multi-molecular and genetic techniques complemented with massive pair-ended sequencing and SNP array analyses were used on tumor specimens from 30 new and 52 previously RT-PCR analyzed fusion transcript negative ACCs. MYB mRNA expression level was determined by quantitative RT-PCR. The results of 102 tumors (30 new and 72 previously reported cases) were correlated with the clinicopathologic factors and patients’ survival. Results The FISH analysis showed 34/82 (41.5%) fusion positive tumors and molecular techniques identified fusion transcripts in 21 of the 82 (25.6%) tumors. Detailed FISH analysis of 11 out the 15 tumors with gene fusion without transcript formation showed translocation of NFIB sequences to proximal or distal sites of the MYB gene. Massive pair-end sequencing of a subset of tumors confirmed the proximal translocation to an NFIB sequence and led to the identification of a new fusion gene (NFIB-AIG1) in one of the tumors. Overall, MYB-NFIB gene fusion rate by FISH was in 52.9% while fusion transcript forming incidence was 38.2%. Significant statistical association between the 5′ MYB transcript expression and patient survival was found. Conclusions We conclude that: 1) t(6;9) results in a complex genetic and molecular alterations in ACC, 2) MYB-NFIB gene fusion may not always be associated with chimeric transcript formation, 3) non-canonical MYB, NFIB gene fusions occur in a subset of tumors, 4) high MYB expression correlates with worse patient survival. PMID:21976542

  9. Educational Reform and Modernisation in Europe: The Role of National Contexts in Mediating the New Public Management

    ERIC Educational Resources Information Center

    Hall, David; Grimaldi, Emiliano; Gunter, Helen M; Møller, Jorunn; Serpieri, Roberto; Skedsmo, Guri

    2015-01-01

    This article examines the spread of new public management (NPM) across European education systems as it has traversed national boundaries. While recognising the transnational dimensions of the spread of NPM, the authors offer new insights into the importance of national contexts in mediating this development in educational settings by focusing…

  10. Modernising Education: New Public Management Reform in the Norwegian Education System

    ERIC Educational Resources Information Center

    Møller, Jorunn; Skedsmo, Guri

    2013-01-01

    Since the end of the 1980s, the Norwegian education system has gone through major reform, influenced largely by new managerialist ideas. Strategies to renew the public sector were promoted as the new public management (NPM). This paper investigates the way ideas connected to NPM reforms have been introduced and interpreted in the Norwegian…

  11. Educational Reforms and Marketization in Norway--A Challenge to the Tradition of the Social Democratic, Inclusive School?

    ERIC Educational Resources Information Center

    Helgøy, Ingrid; Homme, Anne

    2016-01-01

    A social democratic, egalitarian public sector and a corporatist political economy have been strong, distinctive and enduring characteristics of Norwegian education. However, this article demonstrates that the education sector has experienced a period of rapid and extensive implementation of New Public Management (NPM) reforms and post-NPM reforms…

  12. Non-small cell lung cancer with EML4-ALK translocation in Chinese male never-smokers is characterized with early-onset.

    PubMed

    Guo, Yongjun; Ma, Jie; Lyu, Xiaodong; Liu, Hai; Wei, Bing; Zhao, Jiuzhou; Fu, Shuang; Ding, Lu; Zhang, Jihong

    2014-11-18

    The translocations of the anaplastic lymphoma kinase (ALK) gene with the echinoderm microtubule-associated protein-like 4 (EML4) gene on chromosome 2p have been identified in non-small-cell lung cancers (NSCLCs) as oncogenic driver mutations. It has been suggested that EML4-ALK fusion is associated with the resistance in NSCLCs to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), such as gefitinib and erlotinib. In contrast, ALK tyrosine kinase inhibitor (ALK TKI) crizotinib has shown superior effects in combating NSCLCs with EML4-ALK. Thus, characterization of EML4-ALK fusion genes and clinical features of resulting carcinomas would be a great benefit to disease diagnosis and designing customized treatment plans. Studies have suggested that EML4-ALK translocation occurs more frequently in never-smokers with NSCLC, especially in female patients. However, it is not clear whether this is the case in male patients, too. In this study, we have determined the frequency of EML4-ALK translocation in male never-smokers with NSCLC in a cohort of Chinese patients. The clinical features associated with EML4-ALK translocation were also investigated. A cohort of 95 Chinese male never-smokers with NSCLC was enrolled in this study. EML4-ALK fusion genes were detected using one-step real time RT-PCR and DNA sequencing. We further determined the expression levels of ALK mRNA by RT-PCR and ALK protein by immunohistochemistry in these specimens. The clinical features of EML4-ALK-positive carcinomas were also determined. We have identified EML4-ALK fusion genes in 8 out of 95 carcinoma cases, accounting for 8.42% in Chinese male never-smokers with NSCLC. It is significantly higher than that in all Chinese male patients (3.44%) regardless smoking habit. It is also significantly higher than that in all Chinese smokers (8/356 or 2.25%) or in smokers worldwide (2.9%) by comparing to published data. Interestingly, EML4-ALK fusion genes are more frequently found in younger patients and associated with less-differentiated carcinomas. The frequency of EML4-ALK translocation is strongly associated with smoking habits in Chinese male patients with higher frequency in male never-smokers. EML4-ALK translocation is associated with early-onset and less-differentiated carcinomas.

  13. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development.

    PubMed

    Reissmann, E; Jörnvall, H; Blokzijl, A; Andersson, O; Chang, C; Minchiotti, G; Persico, M G; Ibáñez, C F; Brivanlou, A H

    2001-08-01

    Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.

  14. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    PubMed Central

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  15. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization.

    PubMed

    Wang, Weiya; Tang, Yuan; Li, Jinnan; Jiang, Lili; Jiang, Yong; Su, Xueying

    2015-02-01

    Surgical resections or tumor biopsies are often not available for patients with late-stage non-small cell lung cancer (NSCLC). Cytological specimens, such as malignant pleural effusion (MPE) cell blocks, are critical for molecular testing. Currently, diagnostic methods to identify anaplastic lymphoma kinase (ALK) rearrangements include fluorescence in situ hybridization (FISH), real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). In the current study, the authors compared Ventana ALK IHC assays and ALK FISH to detect ALK rearrangements in MPE cell blocks from patients with advanced NSCLC. The ALK IHC assay and ALK FISH were performed on 63 MPE cell blocks. RT-PCR analysis was performed as additional validation in cases in which a discrepancy was observed between the IHC assay and FISH results. The Ventana ALK IHC assay was found to be informative for all 63 samples, and 8 cases were positive. Fifty-eight cases were interpretable for FISH detection, and 6 were positive. The concordance between IHC and FISH was 100% among the 58 cases. Of the 5 uninterpretable ALK FISH cases, 2 cases and 3 cases, respectively, were ALK IHC positive and negative. One of the 2 ALK IHC-positive cases also demonstrated a positive result in the RT-PCR assay and the patient benefited from crizotinib treatment. MPE cell blocks can be used successfully for the detection of ALK rearrangement when tumor tissue is not available. The Ventana ALK IHC assay is an effective screening method for ALK rearrangement in MPE cell blocks from patients with advanced NSCLC, demonstrating high agreement with FISH results. © 2014 American Cancer Society.

  16. The analysis of ALK gene rearrangement by fluorescence in situ hybridization in non-small cell lung cancer patients

    PubMed Central

    Krawczyk, Paweł Adam; Ramlau, Rodryg Adam; Szumiło, Justyna; Kozielski, Jerzy; Kalinka-Warzocha, Ewa; Bryl, Maciej; Knopik-Dąbrowicz, Alina; Spychalski, Łukasz; Szczęsna, Aleksandra; Rydzik, Ewelina; Milanowski, Janusz

    2013-01-01

    Introduction ALK gene rearrangement is observed in a small subset (3–7%) of non-small cell lung cancer (NSCLC) patients. The efficacy of crizotinib was shown in lung cancer patients harbouring ALK rearrangement. Nowadays, the analysis of ALK gene rearrangement is added to molecular examination of predictive factors. Aim of the study The frequency of ALK gene rearrangement as well as the type of its irregularity was analysed by fluorescence in situ hybridisation (FISH) in tissue samples from NSCLC patients. Material and methods The ALK gene rearrangement was analysed in 71 samples including 53 histological and 18 cytological samples. The analysis could be performed in 56 cases (78.87%), significantly more frequently in histological than in cytological materials. The encountered problem with ALK rearrangement diagnosis resulted from the scarcity of tumour cells in cytological samples, high background fluorescence noises and fragmentation of cell nuclei. Results The normal ALK copy number without gene rearrangement was observed in 26 (36.62%) patients ALK gene polysomy without gene rearrangement was observed in 25 (35.21%) samples while in 3 (4.23%) samples ALK gene amplification was found. ALK gene rearrangement was observed in 2 (2.82%) samples from males, while in the first case the rearrangement coexisted with ALK amplification. In the second case, signet-ring tumour cells were found during histopathological examination and this patient was successfully treated with crizotinib with partial remission lasting 16 months. Conclusions FISH is a useful technique for ALK gene rearrangement analysis which allows us to specify the type of gene irregularities. ALK gene examination could be performed in histological as well as cytological (cellblocks) samples, but obtaining a reliable result in cytological samples depends on the cellularity of examined materials. PMID:24592134

  17. Antitumor activity of alectinib, a selective ALK inhibitor, in an ALK-positive NSCLC cell line harboring G1269A mutation: Efficacy of alectinib against ALK G1269A mutated cells.

    PubMed

    Yoshimura, Yasushi; Kurasawa, Mitsue; Yorozu, Keigo; Puig, Oscar; Bordogna, Walter; Harada, Naoki

    2016-03-01

    Alectinib is a highly selective next-generation anaplastic lymphoma kinase (ALK) inhibitor. Although alectinib shows inhibitory activity against various crizotinib-resistant ALK mutations in studies using cell-free kinase assays and Ba/F3 cell-based assays, it has not been tested for efficacy against non-small cell lung cancer (NSCLC) with the ALK mutations. We conducted in vitro and in vivo investigations into the antitumor activity of alectinib against an ALK-positive NSCLC cell line, SNU-2535, which harbors an ALK G1269A mutation. The clinical efficacy of alectinib against a NSCLC patient harboring ALK G1269A mutation was evaluated in the phase I part of the North American study. Alectinib exhibited antiproliferative activity against SNU-2535 cells in vitro with IC50 of 33.1 nM. Alectinib strongly inhibited phosphorylation of ALK and its downstream signaling molecules ERK1/2, AKT, and STAT3. In a mouse xenograft model, once-daily oral administration of alectinib for 21 days resulted in strong tumor regression. In addition, administration of alectinib for 100 days achieved continuous tumor regression without tumor regrowth in all mice. Notably, eradication of tumor cells was observed in half of the mice. In the clinical study, a patient with ALK G1269A mutation showed partial response to alectinib with a duration of response of 84 days. These results indicated that alectinib has potent antitumor activity against NSCLC cells harboring the crizotinib-resistant mutation ALK G1269A. It is expected that alectinib would provide a valuable therapeutic option for patients with NSCLC having not only native ALK but also crizotinib-resistant ALK mutations.

  18. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice

    PubMed Central

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P.; Nadav, Tali; Roberto, Marisa; Lasek, Amy W.; Roberts, Amanda J.

    2016-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk −/−) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk −/− mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk −/− mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk −/− mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk −/− mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  19. Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.

    PubMed

    Davis, R J; Bennicelli, J L; Macina, R A; Nycum, L M; Biegel, J A; Barr, F G

    1995-12-01

    The FKHR gene, which contains a forkhead DNA-binding motif, is fused to either PAX3 or PAX7 by the t(2;13) or t(1;13) translocation in alveolar rhabdomyosarcoma,respectively. These tumors express chimeric transcripts encoding the N-terminal portion of either PAX protein fused to the C-terminal portion of FKHR. To understand the structural basis and functional consequences of these translocations, we characterized the wild-type FKHR gene and its rearrangement in alveolar rhabdomyosarcomas. By isolating and analyzing phage, cosmid and YAC clones, we determined that FKHR consists of three exons spanning 140 kb and that several highly similar loci are present in other genomic regions. Exon 1 encodes the N-terminus of the forkhead domain and is embedded within demethylated CpG island. RNA analyses reveal FKHR transcripts initiate from a TATA-less promoter within this island. Exon 2 encodes the C-terminus of the forkhead domain and a transcription activation domain, whereas exon 3 encodes a large 3' untranslated region. The intron 1-exon 2 boundary precisely matches the FHKR fusion point in the chimeric transcripts found in alveolar rhabdomyosarcomas. Using pulsed-field and fluorescence in situ hybridization analyses, we demonstrate that the 130kb FKHR intron 1 is rearranged in t(2;13)-containing alveolar rhabdomyosarcomas. Our findings indicate that FKHR intron 1 provides a large target for DNA rearrangemnt. Rearrangement of this intron with PAX3 produces two important functional consequences: in-frame fusion of N-terminal PAX3 sequences to the FKHR transcriptional activation domain and disruption of the FKHR DNA binding domain.

  20. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

    PubMed Central

    Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W

    2009-01-01

    Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511

  1. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer.

    PubMed

    Woo, C G; Seo, S; Kim, S W; Jang, S J; Park, K S; Song, J Y; Lee, B; Richards, M W; Bayliss, R; Lee, D H; Choi, J

    2017-04-01

    Anaplastic lymphoma kinase (ALK) inhibition using crizotinib has become the standard of care in advanced ALK-rearranged non-small cell lung cancer (NSCLC), but the treatment outcomes and duration of response vary widely. Echinoderm microtubule-associated protein-like 4 (EML4)-ALK is the most common translocation, and the fusion variants show different sensitivity to crizotinib in vitro. However, there are only limited data on the specific EML4-ALK variants and clinical responses of patients to various ALK inhibitors. By multiplex reverse-transcriptase PCR, which detects 12 variants of known EML4-ALK rearrangements, we retrospectively determined ALK fusion variants in 54 advanced ALK rearrangement-positive NSCLCs. We subdivided the patients into two groups (variants 1/2/others and variants 3a/b) by protein stability and evaluated correlations of the variant status with clinical responses to crizotinib, alectinib, or ceritinib. Moreover, we established the EML4-ALK variant-expressing system and analyzed patterns of sensitivity of the variants to ALK inhibitors. Of the 54 tumors analyzed, EML4-ALK variants 3a/b (44.4%) was the most common type, followed by variants 1 (33.3%) and 2 (11.1%). The 2-year progression-free survival (PFS) rate was 76.0% [95% confidence interval (CI) 56.8-100] in group EML4-ALK variants 1/2/others versus 26.4% (95% CI 10.5-66.6) in group variants 3a/b (P = 0.034) among crizotinib-treated patients. Meanwhile, the 2-year PFS rate was 69.0% (95% CI 49.9-95.4) in group variants 1/2/others versus 32.7% (95% CI 15.6-68.4) in group variants 3a/b (P = 0.108) among all crizotinib-, alectinib-, and ceritinib-treated patients. Variant 3a- or 5a-harboring cells were resistant to ALK inhibitors with >10-fold higher half maximal inhibitory concentration in vitro. Our findings show that group EML4-ALK variants 3a/b may be a major source of ALK inhibitor resistance in the clinic. The variant-specific genotype of the EML4-ALK fusion allows for more precise stratification of patients with advanced NSCLC. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. ALK-rearrangements and testing methods in non-small cell lung cancer: a review

    PubMed Central

    Shackelford, Rodney E.; Vora, Moiz; Mayhall, Kim; Cotelingam, James

    2014-01-01

    The anaplastic lymphoma tyrosine kinase (ALK) gene was first described as a driver mutation in anaplastic non-Hodgkin's lymphoma. Dysregulated ALK expression is now an identified driver mutation in nearly twenty different human malignancies, including 4-9% of non-small cell lung cancers (NSCLC). The tyrosine kinase inhibitor crizotinib is more effective than standard chemotherapeutic agents in treating ALK positive NSCLC, making molecular diagnostic testing for dysregulated ALK expression a necessary step in identifying optimal treatment modalities. Here we review ALKmediated signal transduction pathways and compare the molecular protocols used to identify dysregulated ALK expression in NSCLC. We also discuss the use of crizotinib and second generation ALK tyrosine kinase inhibitors in the treatment of ALK positive NSCLC, and the known mechanisms of crizotinib resistance in NSCLC. PMID:24955213

  3. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line.

    PubMed

    Kodama, Tatsushi; Motoi, Noriko; Ninomiya, Hironori; Sakamoto, Hiroshi; Kitada, Kunio; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Nomura, Kimie; Nagano, Hiroko; Ishii, Nobuya; Terui, Yasuhito; Hatake, Kiyohiko; Ishikawa, Yuichi

    2014-11-01

    EML4-ALK is a driver oncogene in non-small-cell lung cancer (NSCLC) and has been developed into a promising molecular target for antitumor agents. Although EML4-ALK is reported to be formed by inversion of chromosome 2, other mechanisms of this gene fusion remain unknown. This study aimed to examine the mechanism of EML4-ALK rearrangement using a novel cell line with the EML4-ALK fusion gene. An EML4-ALK-positive cell line, termed JFCR-LC649, was established from pleomorphic carcinoma, a rare subtype of NSCLC. We investigated the chromosomal aberrations using fluorescence in situ hybridization and comparative genomic hybridization (CGH). Alectinib/CH5424802, a selective ALK inhibitor, was evaluated in the antitumor activity against JFCR-LC649 in vitro and in vivo xenograft model. We established an EML4-ALK-positive cell line, termed JFCR-LC649, derived from a patient with NSCLC and revealed that the JFCR-LC649 cells harbor variant 3 of the EML4-ALK fusion with twofold copy number gain. Interestingly, comparative genomic hybridization and metaphase-fluorescence in situ hybridization analysis showed that in addition to two normal chromosome 2, JFCR-LC649 cells contained two aberrant chromosome 2 that were fragmented and scattered. These observations provided the first evidence that EML4-ALK fusion in JFCR-LC649 cells was formed in chromosome 2 by a distinct mechanism of genomic rearrangement, termed chromothripsis. Furthermore, a selective ALK inhibitor alectinib/CH5424802 suppressed tumor growth of the JFCR-LC649 cells through inhibition of phospho-ALK in vitro and in vivo in a xenograft model. Our results suggested that chromothripsis may be a mechanism of oncogenic rearrangement of EML4-ALK. In addition, alectinib was effective against EML4-ALK-positive tumors with ALK copy number gain mediated by chromothripsis.

  4. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations.

    PubMed

    Lou, Na-Na; Zhang, Xu-Chao; Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-10-04

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK.

  5. Clinical Outcome of ALK-Positive Non-Small Cell Lung Cancer (NSCLC) Patients with De Novo EGFR or KRAS Co-Mutations Receiving Tyrosine Kinase Inhibitors (TKIs).

    PubMed

    Schmid, Sabine; Gautschi, Oliver; Rothschild, Sacha; Mark, Michael; Froesch, Patrizia; Klingbiel, Dirk; Reichegger, Hermann; Jochum, Wolfram; Diebold, Joachim; Früh, Martin

    2017-04-01

    NSCLC with de novo anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements and EGFR or KRAS mutations co-occur very rarely. Outcomes with tyrosine kinase inhibitors (TKIs) in these patients are poorly understood. Outcomes of patients with metastatic NSCLC de novo co-alterations of ALK/EGFR or ALK/KRAS detected by fluorescence in situ hybridization (ALK) and sequencing (EGFR/KRAS) from six Swiss centers were analyzed. A total of 14 patients with adenocarcinoma were identified. Five patients had ALK/EGFR co-alterations and nine had ALK/KRAS co-alterations. Six of seven patients with ALK/KRAS co-alterations (86%) were primary refractory to crizotinib. One patient has had ongoing disease stabilization for 26 months. Of the patients with ALK/EGFR co-alterations, one immediately progressed after receiving crizotinib for 1.3 months and two had a partial response for 5.7 and 7.3 months, respectively. Three of four patients with ALK/EGFR co-alterations treated with an EGFR TKI achieved one or more responses in different lines of therapy: four patients had a partial response, three with afatinib and one with osimertinib. One patient achieved a complete remission with osimertinib, and one patient was primary refractory to erlotinib. Median PFS during treatment with a first EGFR TKI was 5.8 months (range 3.0-6.9 months). De novo concurrent ALK/KRAS co-alterations were associated with resistance to ALK TKI treatment in seven out of eight patients. In patients with ALK/EGFR co-alterations, outcomes with ALK and EGFR TKIs seem inferior to what would be expected in patients with either alteration alone, but further studies are needed to clarify which patients with ALK/EGFR co-alterations may still benefit from the respective TKI. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  6. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1.

    PubMed

    Voena, Claudia; Varesio, Lydia M; Zhang, Liye; Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-05-31

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.

  7. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1

    PubMed Central

    Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G.; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-01-01

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy. PMID:27119231

  8. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?

    PubMed

    Toyokawa, Gouji; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2015-12-01

    Anaplastic lymphoma kinase (ALK) has been identified to exert a potent transforming activity through its rearrangement in non-small cell lung cancer (NSCLC), and patients (pts) with ALK rearrangement can be treated more successfully with ALK inhibitors, such as crizotinib, alectinib, and ceritinib, than with chemotherapy. Despite the excellent efficacy of ALK inhibitors, resistance to these drugs is inevitably encountered in most ALK-rearranged pts. Cases of resistance are subtyped into three groups, i.e., systemic, oligo, and central nervous system (CNS) types, with the CNS being used to be considered a sanctuary. With regard to the management of CNS lesions in pts with ALK+ NSCLC, a growing body of evidence has gradually demonstrated the intracranial (IC) efficacy of ALK inhibitor (ALKi) in ALK+ NSCLC pts with brain metastases (BMs). Although the efficacy of crizotinib for the CNS lesions remains controversial, a recent retrospective investigation of ALK+ pts with BM enrolled in PROFILE 1005 and PROFILE 1007 demonstrated that crizotinib is associated with a high disease control rate for BM. However, BM comprises the most common site of progressive disease in pts with or without baseline BMs, which is a serious problem for crizotinib. Furthermore, alectinib can be used to achieve strong and long-lasting inhibitory effects on BM. In addition to alectinib, the IC efficacy of other next-generation ALK inhibitors, such as ceritinib, AP26113 and PF-06463922, has been demonstrated. In this article, we review the latest evidence regarding the BM and IC efficacy of ALK inhibitors in pts with ALK+ NSCLC.

  9. Identification of a novel T1151K ALK mutation in a patient with ALK-rearranged NSCLC with prior exposure to crizotinib and ceritinib.

    PubMed

    Zhu, Viola W; Cui, J Jean; Fernandez-Rocha, Maria; Schrock, Alexa B; Ali, Siraj M; Ou, Sai-Hong Ignatius

    2017-08-01

    Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) derive significant clinic benefit from treatment with ALK inhibitors. Crizotinib was the first approved tyrosine kinase inhibitor (TKI) for this distinct molecular subset of NSCLC. Disease progression on TKI inevitably arises secondary to diverse resistance mechanisms among which emergence of secondary ALK mutations is one of many ways in which tumor cells have adapted to survive. Therefore there is a clinical imperative to identify acquired ALK mutations via repeat tissue biopsy if clinically feasible. If such is present, switching to a different TKI with known clinical activities against the emergent resistance mutation (s) may pose a viable treatment option. Here we report for the first time a novel ALK T1151K mutation in a patient with metastatic ALK-rearranged NSCLC who progressed on crizotinib and then ceritinib. The co-crystal structure of ceritinib/ALK demonstrates a strong interaction between ceritinib and the P-loop which is facilitated by T1151 on the β3 sheet, a feature not present in the alectinib/ALK or lorlatinib/ALK co-crystal structure. It is predicated that the T1151K mutation weakens these interactions leading to drug resistance, or causes conformational changes of the ALK catalytic domain resulting in higher affinity for ATP and therefore diminished inhibitor binding. We conclude that the T1151K ALK mutation confers resistance to ceritinib, which may be rescued by alectinib or lorlatinib as evidenced by this clinical narrative. Published by Elsevier B.V.

  10. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    PubMed

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Targeting ALK: Precision Medicine Takes On Drug Resistance

    PubMed Central

    Lin, Jessica J.; Riely, Gregory J.; Shaw, Alice T.

    2017-01-01

    Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, including non-small-cell lung cancer (NSCLC). However, the clinical benefit of targeting ALK using tyrosine kinase inhibitors (TKIs) is almost universally limited by the emergence of drug resistance. Diverse mechanisms of resistance to ALK TKIs have now been discovered, and these basic mechanisms are informing the development of novel therapeutic strategies to overcome resistance in the clinic. In this Review, we summarize the current successes and challenges of targeting ALK. PMID:28122866

  12. The efficacy of ceritinib in patients with ALK-positive non-small cell lung cancer.

    PubMed

    Kaczmar, John; Mehra, Ranee

    2015-10-01

    Research over the last decade has determined that the gene rearrangement involving the anaplastic lymphoma kinase (ALK) gene is an oncogenic driver in approximately 5% of patients with non-small cell lung carcinoma (NSCLC). This review describes the discovery of the ALK translocation, development of ALK directed therapy, and acquired resistance to ALK directed therapy with a focus on the clinical data and efficacy of the most recently approved ALK inhibitor, ceritinib. © The Author(s), 2015.

  13. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

    PubMed

    Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi

    2016-04-07

    Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer.

    PubMed

    Hrustanovic, Gorjan; Olivas, Victor; Pazarentzos, Evangelos; Tulpule, Asmin; Asthana, Saurabh; Blakely, Collin M; Okimoto, Ross A; Lin, Luping; Neel, Dana S; Sabnis, Amit; Flanagan, Jennifer; Chan, Elton; Varella-Garcia, Marileila; Aisner, Dara L; Vaishnavi, Aria; Ou, Sai-Hong I; Collisson, Eric A; Ichihara, Eiki; Mack, Philip C; Lovly, Christine M; Karachaliou, Niki; Rosell, Rafael; Riess, Jonathan W; Doebele, Robert C; Bivona, Trever G

    2015-09-01

    One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS-mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRAS(WT)) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK-positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes.

  15. Identification of a novel HIP1-ALK fusion variant in Non-Small-Cell Lung Cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to Alectinib.

    PubMed

    Ou, Sai-Hong Ignatius; Klempner, Samuel J; Greenbowe, Joel R; Azada, Michele; Schrock, Alexa B; Ali, Siraj M; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A

    2014-12-01

    Huntingtin-interacting protein 1 (HIP1) has recently been identified as a new fusion partner fused to anaplastic lymphoma kinase (ALK) in non-small-cell lung cancer (NSCLC). To date, two variants of HIP1-ALK (H21; A20) and (H28; A20) have been identified in NSCLC. However, the response of patients with NSCLC harboring HIP1-ALK to ALK inhibitors and potential resistance mechanisms to such remain unknown. Here, we report a patient with NSCLC harboring a novel HIP1-ALK fusion variant (H30; A20). This patient and another patient with EML4-ALK variant 3a/b initially responded sequentially to crizotinib and then alectinib, a next-generation ALK inhibitor, but developed acquired resistance to alectinib with the presence of a mutation in amino acid residue 1171 (I1171N and I1171S respectively) located in the hydrophobic regulatory spine (R-spine) of the ALK kinase in both the cases as identified by a comprehensive next-generation sequencing-based assay performed on biopsies of new liver metastases that developed during alectinib treatment.

  16. Rapid and dramatic response to alectinib in an anaplastic lymphoma kinase rearranged non-small-cell lung cancer patient who is critically ill.

    PubMed

    Yoshida, Tatsuya; Hida, Toyoaki; Yatabe, Yasushi

    2016-07-01

    Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) have shown promising clinical activity in the treatment of non-small-cell lung cancer (NSCLC) that harbors ALK rearrangement. The next-generation ALK-TKI, alectinib, has been reported to have potent efficacy in ALK-positive NSCLC patients including on mutations that confer resistance to crizotinib, which was the first ALK-TKI approved for ALK-positive NSCLC. The efficacy and safety of ALK-TKIs, including crizotinib and alectinib, as the first-line treatment in critically ill patients is unclear. We report one ALK-positive NSCLC patient with poor performance status (PS) and disseminated intravascular coagulation because of respiratory failure and multiple metastases, and experienced the rapid and dramatic response to alectinib without adverse events that can lead to discontinuation and dose reduction of the drug. After a couple of months of treatment with alectinib, radiological review indicated a complete response. The present case is the first reported case of rapid and marked response to alectinib in ALK-positive NSCLC patients who had poor PS and severe organ dysfunction, such as disseminated intravascular coagulation. Further investigation of the safety and efficacy of ALK-TKI for ALK-positive NSCLC patients who are critically ill is warranted.

  17. The role of immunohistochemical analysis in the evaluation of EML4-ALK gene rearrangement in lung cancer.

    PubMed

    Sullivan, Harold C; Fisher, Kevin E; Hoffa, Anne L; Wang, Jason; Saxe, Debra; Siddiqui, Momin T; Cohen, Cynthia

    2015-04-01

    Among the mutations described in non-small cell lung carcinoma is a rearrangement resulting from an inversion within chromosome 2p leading to the formation of a fusion gene, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK). Fluorescence in situ hybridization (FISH) is the gold standard for the detection of ALK gene rearrangements. However, molecular methods are not readily available in all pathology laboratories. Immunohistochemistry (IHC) using an antibody directed against the EML4-ALK fusion protein provides a widely available alternative method of detection. We assessed whether IHC is a comparable and cost-effective alternative to FISH analysis for the detection of ALK gene rearrangements. A total of 110 non-small cell lung carcinoma cases (63 surgical/biopsy and 47 cytology specimens), previously tested for ALK gene rearrangements by FISH [7 (6.4%) positive for the rearrangement], were probed for the EML4-ALK fusion protein using a monoclonal EML4-ALK antibody, clone 5A4. Cells were considered to stain positive for ALK if >5% of cells showed cytoplasmic staining of at least grade 1 intensity (scale: 0 to 3). A cost analysis was performed using ALK IHC as a screening test. The sensitivity and specificity of the EML4-ALK IHC stain compared with ALK FISH analysis were 100% and 96%, respectively. All 7 FISH-positive cases stained positive by IHC, whereas 4 FISH-negative cases demonstrated positive staining. One of the 4 FISH-negative, IHC-positive cases harbored an EML4-ALK rearrangement by RT-PCR yielding 3 false-positive results overall. The κ agreement between IHC and FISH methods is 0.76 (substantial/excellent). The potential savings of implementing the ALK IHC as a screening method would be $10,418.21. Sensitivity of the EML4-ALK IHC stain is excellent (100%) but due to its suboptimal specificity, IHC cannot reliably supplant FISH analysis for the detection of ALK gene rearrangements. IHC shows promise as a screening tool to prevent unnecessary costly FISH analysis.

  18. An Apparent Diffusion Coefficient Histogram Method Versus a Traditional 2-Dimensional Measurement Method for Identifying Non-Puerperal Mastitis From Breast Cancer at 3.0 T.

    PubMed

    Tang, Qi; Li, Qiang; Xie, Dong; Chu, Ketao; Liu, Lidong; Liao, Chengcheng; Qin, Yunying; Wang, Zheng; Su, Danke

    2018-05-21

    This study aimed to investigate the utility of a volumetric apparent diffusion coefficient (ADC) histogram method for distinguishing non-puerperal mastitis (NPM) from breast cancer (BC) and to compare this method with a traditional 2-dimensional measurement method. Pretreatment diffusion-weighted imaging data at 3.0 T were obtained for 80 patients (NPM, n = 27; BC, n = 53) and were retrospectively assessed. Two readers measured ADC values according to 2 distinct region-of-interest (ROI) protocols. The first protocol included the generation of ADC histograms for each lesion, and various parameters were examined. In the second protocol, 3 freehand (TF) ROIs for local lesions were generated to obtain a mean ADC value (defined as ADC-ROITF). All of the ADC values were compared by an independent-samples t test or the Mann-Whitney U test. Receiver operating characteristic curves and a leave-one-out cross-validation method were also used to determine diagnostic deficiencies of the significant parameters. The ADC values for NPM were characterized by significantly higher mean, 5th to 95th percentiles, and maximum and mode ADCs compared with the corresponding ADCs for BC (all P < 0.05). However, the minimum, skewness, and kurtosis ADC values, as well as ADC-ROITF, did not significantly differ between the NPM and BC cases. Thus, the generation of volumetric ADC histograms seems to be a superior method to the traditional 2-dimensional method that was examined, and it also seems to represent a promising image analysis method for distinguishing NPM from BC.

  19. Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur

    2015-03-01

    Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.

  20. ALK1 Signaling Inhibits Angiogenesis by Cooperating with the Notch Pathway

    PubMed Central

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2014-01-01

    SUMMARY Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morpho-genesis that may be relevant to the pathogenesis of HHT vascular lesions. PMID:22421041

  1. Alectinib: a selective, next-generation ALK inhibitor for treatment of ALK-rearranged non-small-cell lung cancer.

    PubMed

    Santarpia, Mariacarmela; Altavilla, Giuseppe; Rosell, Rafael

    2015-06-01

    Crizotinib was the first clinically available anaplastic lymphoma kinase (ALK) inhibitor, showing remarkable activity against ALK-rearranged non-small-cell lung cancer (NSCLC). Despite initial responses, acquired resistance to crizotinib inevitably develops, with the brain being a common site of relapse. Alectinib is a highly selective, next-generation ALK inhibitor with potent inhibitory activity also against ALK mutations conferring resistance to crizotinib, including the gatekeeper L1196M substitution. In a Phase I/II study from Japan, alectinib was found to be highly active and safe in crizotinib-naïve, ALK-rearranged NSCLC patients. Alectinib also demonstrated promising antitumor activity in crizotinib-resistant patients, including those with CNS metastases. Based on these data, the drug received Breakthrough Therapy Designation by the US FDA and has been recently approved in Japan for the treatment of ALK-positive, advanced NSCLC patients. However, patients may eventually develop resistance to alectinib, highlighting the need for novel therapeutic strategies to further improve the management of ALK-rearranged NSCLC.

  2. Alectinib for ALK-positive non-small-cell lung cancer.

    PubMed

    Rossi, Antonio

    2016-08-01

    Anaplastic lymphoma kinase (ALK) rearrangements are present in about 5% of advanced non-small-cell lung cancer (NSCLC) patients. Despite the initial response, after a median of 1-2 years, ALK-positive patients developed an acquired resistance to the ALK-inhibitor crizotinib. Among the most promising second-generation ALK-inhibitors, alectinib is being investigated in crizotinib-naïve and -resistant ALK-positive NSCLC patients. The current state-of-the-art of ALK-inhibitors treatment, and in particular the role of alectinib in this setting, is reviewed and discussed. A structured search of bibliographic databases for peer-reviewed research literature and of main meetings using a focused review question was undertaken. Expert commentary: Alectinib reports promising results with a good safety profile, becoming a potentially very important option for ALK-translocated NSCLC patients. The preliminary results from the J-ALEX phase III randomized trial performed in ALK-rearranged NSCLC Japanese patients showed a better activity and tolerability of alectinib versus crizotinib.

  3. New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib

    PubMed Central

    Rothschild, Sacha I

    2016-01-01

    Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%–8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective. PMID:27217763

  4. New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib.

    PubMed

    Rothschild, Sacha I

    2016-01-01

    Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%-8% of non-small-cell lung cancer (NSCLC) patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective.

  5. Parainfluenza virus chimeric mini-replicons indicate a novel regulatory element in the leader promoter.

    PubMed

    Matsumoto, Yusuke; Ohta, Keisuke; Goto, Hideo; Nishio, Machiko

    2016-07-01

    Gene expression of paramyxoviruses is regulated by genome-encoded cis-acting elements; however, whether all the required elements for viral growth have been identified is not clear. Using a mini-replicon system, it has been shown that human parainfluenza virus type 2 (hPIV2) polymerase can recognize the promoter elements of parainfluenza virus type 5 (PIV5), but reporter activity is lower in this case. We constructed a series of luciferase-encoding chimeric PIV2/5 mini-genomes that are basically hPIV2, but whose leader (le), mRNA start signal and trailer sequence are partially replaced with those of PIV5. Studies of the chimeric PIV2/5 mini-replicons demonstrated that replacement of hPIV2 le with PIV5 le results in remarkably weak luciferase expression. Further mutagenesis identified the responsible region as positions 25-30 of the PIV5 le. Using recombinant hPIV2, the impact of this region on viral life cycles was assessed. Insertion of the mutation at this region facilitated viral growth, genomic replication and mRNA transcription at the early stage of infection, which elicited severe cell damage. In contrast, at the late infection stage it caused a reduction in viral transcription. Here, we identify a novel cis-acting element in the internal region of an le sequence that is involved in the regulation of polymerase, and which contributes to maintaining a balance between viral growth and cytotoxicity.

  6. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  7. Personalized treatment in advanced ALK-positive non-small cell lung cancer: from bench to clinical practice

    PubMed Central

    Passaro, Antonio; Lazzari, Chiara; Karachaliou, Niki; Spitaleri, Gianluca; Pochesci, Alessia; Catania, Chiara; Rosell, Rafael; de Marinis, Filippo

    2016-01-01

    The discovery of anaplastic lymphoma kinase (ALK) gene rearrangements and the development of tyrosine kinase inhibitors (TKI) that target them have achieved unprecedented success in the management of patients with ALK-positive non-small cell lung cancer (NSCLC). Despite the high efficacy of crizotinib, the first oral ALK TKI approved for the treatment of ALK-positive NSCLC, almost all patients inevitably develop acquired resistance, showing disease progression in the brain or in other parenchymal sites. Second- or third-generation ALK TKIs have shown to be active in crizotinib-pretreated or crizotinib-naïve ALK-positive patients, even in those with brain metastases. In this review, the current knowledge regarding ALK-positive NSCLC, focusing on the biology of the disease and the available therapeutic options are discussed. PMID:27799783

  8. Inflammatory myofibroblastic tumour of the urinary bladder: the role of immunoglobulin G4 and the comparison of two immunohistochemical antibodies and fluorescence in-situ hybridization for the detection of anaplastic lymphoma kinase alterations.

    PubMed

    Choi, Euna; Williamson, Sean R; Montironi, Rodolfo; Zhang, Shaobo; Wang, Mingsheng; Eble, John N; Grignon, David J; Lopez-Beltran, Antonio; Idrees, Muhammad T; Baldridge, Lee Ann; Scarpelli, Marina; Jones, Carol L; Wang, Lisha; MacLennan, Gregory T; Osunkoya, Adeboye O; Cheng, Liang

    2015-07-01

    We examined gene rearrangement and the expression of anaplastic lymphoma kinase (ALK) in urinary bladder inflammatory myofibroblastic tumour (IMT) using fluorescence in-situ hybridization (FISH) and two immunohistochemical antibodies to ALK. We also investigated whether IMT represents an immunoglobulin (Ig)G4-related disease. The performance of the Dako FLEX ALK monoclonal antibody (CD246) and the Cell Signaling Technology ALK (D5F3) XP monoclonal antibody were compared. Overall, 11 of 16 tumours showed ALK expression by immunohistochemistry (69%). Ten demonstrated ALK expression with both stains and one was positive with D5F3 but not CD246 (91% correlation). The D5F3 antibody yielded a stronger staining intensity and a higher sensitivity. Nine tumours demonstrated ALK rearrangements (56%) by FISH. Three were ALK(+) by immunohistochemistry but negative for rearrangement by FISH, whereas one showed rearrangement by FISH but was negative by immunohistochemistry. In total, 12 tumours were positive for ALK abnormalities (75%). Using current criteria, no cases were classified as an IgG4-related disease. The ALK D5F3 immunohistochemical stain showed superior staining characteristics compared with ALK CD246. Discrepancies in the results between FISH and immunohistochemistry for ALK abnormalities may have causes that are multifactorial. By current criteria, IMT does not represent an IgG4-related disease. © 2014 John Wiley & Sons Ltd.

  9. Aurora-B Regulates RNA Methyltransferase NSUN2

    PubMed Central

    Sakita-Suto, Shiho; Kanda, Akifumi; Suzuki, Fumio; Sato, Sunao; Takata, Takashi

    2007-01-01

    Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G1 phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis. PMID:17215513

  10. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  11. Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic Hypogonadism

    PubMed Central

    Nord, Christoffer; Ahlgren, Ulf; Eriksson, Maria; Vernersson-Lindahl, Emma; Helland, Åslaug; Alexeyev, Oleg A.; Hallberg, Bengt; Palmer, Ruth H.

    2015-01-01

    Mice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells. These observations highlight a role for ALK in testis function and are further supported by experiments in which chemical inhibition of ALK activity with the ALK TKI crizotinib was employed. Oral administration of crizotinib resulted in a decrease of serum testosterone levels in adult wild type male mice, which reverted to normal levels after cessation of treatment. Analysis of GnRH expression in neurons of the hypothalamus revealed a significant decrease in the number of GnRH positive neurons in ALK knock-out mice at P40 when compared with control littermates. Thus, ALK appears to be involved in hypogonadotropic hypogonadism by regulating the timing of pubertal onset and testis function at the upper levels of the hypothalamic-pituitary gonadal axis. PMID:25955180

  12. Response to crizotinib in advanced ALK-rearranged non-small cell lung cancers with different ALK-fusion variants.

    PubMed

    Li, Yan; Zhang, Tongtong; Zhang, Jing; Li, Wenbin; Yuan, Pei; Xing, Puyuan; Zhang, Zhou; Chuai, Shannon; Li, Junling; Ying, Jianming

    2018-04-01

    Anaplastic lymphoma kinase (ALK) rearrangements are present in approximately 5% of non-small-cell lung cancers (NSCLCs). NSCLCs with ALK-rearrangement can be effectively treated with crizotinib. However, magnitude and duration of responses are found to be heterogeneous. This study explored the clinical efficacy of crizotinib in different ALK variants. Among 96 ALK-rearrangement patients treated with crizotinib, 60 patients were identified with tumor specimens that could be evaluated by next-generation sequencing (NGS). We retrospectively evaluated the efficacy of crizotinib in different ALK variants. The median Progression-free survival (PFS) of the 96 ALK-rearrangement patients was 14.17 months. Among the 60 patients with NGS results, the most frequent variants were variant 3a/b (33.33%), variant 1 (23.33%) and variant 2 (15.00%). The percentage of rare EML4-ALK variants and non EML4-ALK variants were 10.00% and 18.33%. Survival analysis showed that patients with variant 2 appeared to have longer PFS than others (P = .021); also, patients with TP53 mutation seemed to have an unfavorable PFS than those with TP53 wild-type with a borderline p value (P = .068). After adjusting for other baseline characteristics, EML4-ALK variant 2 was identified as an important factor for a better PFS of crizotinib. We also found that patients with variant 3a/b had shorter duration of response to crizotinib; however, no significant difference of PFS was observed between the PFS of variant3a/b and non-v3 EML4-ALK variants. Our results indicate prolonged PFS in patients with EML4-ALK variant 2. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment.

    PubMed

    Alì, Greta; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Lupi, Cristiana; Sensi, Elisa; Giannini, Riccardo; Borrelli, Nicla; Menghi, Maura; Chella, Antonio; Ribechini, Alessandro; Cappuzzo, Federico; Melfi, Franca; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2014-11-01

    Echinoderm microtubule associated proteinlike 4-anaplastic lymphoma receptor tyrosine kinase (EML4-ALK) translocation has been described in a subset of patients with non-small cell lung cancer (NSCLC) and has been shown to have oncogenic activity. Fluorescence in situ hybridization (FISH) is used to detect ALK-positive NSCLC, but it is expensive, time-consuming, and difficult for routine application. To evaluate the potential role of immunohistochemistry (IHC) as a screening tool to identify candidate cases for FISH analysis and for ALK inhibitor therapy in NSCLC. We performed FISH and IHC for ALK and mutational analysis for epidermal growth factor receptor (EGFR) and KRAS in 523 NSCLC specimens. We conducted IHC analysis with the monoclonal antibody D5F3 (Ventana Medical Systems, Tucson, Arizona) and a highly sensitive detection system. We also performed a MassARRAY-based analysis (Sequenom, San Diego, California) in a small subset of 11 samples to detect EML4-ALK rearrangement. Of the 523 NSCLC specimens, 20 (3.8%) were positive for ALK rearrangement by FISH analysis. EGFR and KRAS mutations were identified in 70 (13.4%) and 124 (23.7%) of the 523 tumor samples, respectively. ALK rearrangement and EGFR and KRAS mutations were mutually exclusive. Of 523 tumor samples analyzed, 18 (3.4%) were ALK(+) by IHC, 18 samples (3.4%) had concordant IHC and FISH results, and 2 ALK(+) cases (0.3%) by FISH failed to show ALK protein expression. In the 2 discrepant cases, we did not detect any mass peaks for the EML4-ALK variants by MassARRAY. Our results show that IHC may be a useful technique for selecting NSCLC cases to undergo ALK FISH analysis.

  14. Induction of anaplastic lymphoma kinase (ALK) as a novel mechanism of EGFR inhibitor resistance in head and neck squamous cell carcinoma patient-derived models.

    PubMed

    Ouyang, Xiaoming; Barling, Ashley; Lesch, Aletha; Tyner, Jeffrey W; Choonoo, Gabrielle; Zheng, Christina; Jeng, Sophia; West, Toni M; Clayburgh, Daniel; Courtneidge, Sara A; McWeeney, Shannon K; Kulesz-Martin, Molly

    2018-06-01

    Head and neck squamous cell carcinoma (HNSCC) currently only has one FDA-approved cancer intrinsic targeted therapy, the epidermal growth factor receptor (EGFR) inhibitor cetuximab, to which only approximately 10% of tumors are sensitive. In order to extend therapy options, we subjected patient-derived HNSCC cells to small-molecule inhibitor and siRNA screens, first, to find effective combination therapies with an EGFR inhibitor, and second, to determine a potential mechanistic basis for repurposing the FDA approved agents for HNSCC. The combinations of EGFR inhibitor with anaplastic lymphoma kinase (ALK) inhibitors demonstrated synergy at the highest ratio in our cohort, 4/8 HNSCC patients' derived tumor cells, and this corresponded with an effectiveness of siRNA targeting ALK combined with the EGFR inhibitor gefitinib. Co-targeting EGFR and ALK decreased HNSCC cell number and colony formation ability and increased annexin V staining. Because ALK expression is low and ALK fusions are infrequent in HNSCC, we hypothesized that gefitinib treatment could induce ALK expression. We show that ALK expression was induced in HNSCC patient-derived cells both in 2D and 3D patient-derived cell culture models, and in patient-derived xenografts in mice. Four different ALK inhibitors, including two (ceritinib and brigatinib) FDA approved for lung cancer, were effective in combination with gefitinib. Together, we identified induction of ALK by EGFR inhibitor as a novel mechanism potentially relevant to resistance to EGFR inhibitor, a high ratio of response of HNSCC patient-derived tumor cells to a combination of ALK and EGFR inhibitors, and applicability of repurposing ALK inhibitors to HNSCC that lack ALK aberrations.

  15. Insight into resistance mechanism of anaplastic lymphoma kinase to alectinib and JH-VIII-157-02 caused by G1202R solvent front mutation.

    PubMed

    Wang, Han; Wang, Yao; Guo, Wentao; Du, Bin; Huang, Xiaobing; Wu, Riping; Yang, Baoyu; Lin, Xiaoyan; Wu, Yilan

    2018-01-01

    Mutated anaplastic lymphoma kinase (ALK) drives the development of advanced non-small cell lung cancer (NSCLC). Most reported small-molecule inhibitors targeting the ALK domain do not display good inhibition of the G1202R solvent front mutation. The solvent front mutation was assumed to hinder drug binding. However, a different fact could be uncovered by the simulations reported in this study through a structural analog of alectinib (JH-VIII-157-02), which demonstrated potent effects against the G1202R mutation. Molecular docking, conventional molecular dynamics (MD) simulations, free energy calculations, and umbrella sampling (US) simulations were carried out to make clear the principles of the binding preferences of alectinib and JH-VIII-157-02 toward ALK WT and the ALK G1202R (ALK G1202R ) mutation. JH-VIII-157-02 has similar binding affinities to both ALK WT and ALK G1202R whereas it has has a much lower binding affinity for alectinib to ALK G1202R . Analysis of individual energy terms indicate the major variation involves the van der Waals and entropy terms. Structural analysis reveals that the conformational change of the ATP-binding glycine-rich loop was primarily responsible for the alectinib resistance, not JH-VIII-157-02. In addition, US simulations prove JH-VIII-157-02 has similar dissociative processes from both ALK WT and ALK G1202R , while alectinib is more easily dissociated from ALK G1202R than from ALK WT , thus indicating lesser residence time. Both the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the G1202R solvent front mutation in ALK resistance.

  16. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study)

    PubMed Central

    Takeuchi, K.; Togashi, Y.; Kamihara, Y.; Fukuyama, T.; Yoshioka, H.; Inoue, A.; Katsuki, H.; Kiura, K.; Nakagawa, K.; Seto, T.; Maemondo, M.; Hida, T.; Harada, M.; Ohe, Y.; Nogami, N.; Yamamoto, N.; Nishio, M.; Tamura, T.

    2016-01-01

    Background Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. Patients and methods In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. Result ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Conclusions Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. Registration number JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). PMID:26487585

  17. The impact of New Public Management on efficiency: an analysis of Madrid's hospitals.

    PubMed

    Alonso, José M; Clifton, Judith; Díaz-Fuentes, Daniel

    2015-03-01

    Madrid has recently become the site of one of the most controversial cases of public healthcare reform in the European Union. Despite the fact that the introduction of New Public Management (NPM) into Madrid hospitals has been vigorous, little scholarship has been done to test whether NPM actually led to technical efficiency. This paper is one of the first attempts to do so. We deploy a bootstrapped data envelopment analysis to compare efficiency scores in traditionally managed hospitals and those operating with new management formulas. We do not find evidence that NPM hospitals are more efficient than traditionally managed ones. Moreover, our results suggest that what actually matters may be the management itself, rather than the management model. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Modeling Joint Effects of Mixtures of Chemicals on Microorganisms Using Quantitative Structure Activity Relationships

    DTIC Science & Technology

    1993-08-22

    Cyclohexane Alk 74 133 26 Pentane Alk 70 150 27 Hexane Alk 38 47 28 Heptane Alk 18 58 29 Octane Alk 8 60 30 Bis (2-chloroethyl) ether Alc 1,600 3,025 31...Triethanolarnine Amni 900 741 SAro- aromatic; Hal- balogemmaed aliphatic; Alk - alkanes; Alc- alcohols, este’s, ketones and et Aji- amineL -5- Correlation...chemicals using laboratory grown activated sludge by synthetic feed. They adapted the OECD Method 209, using inhibition of oxygen uptake rate as the measure

  19. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.

    PubMed

    Pauli, Andrea; Montague, Tessa G; Lennox, Kim A; Behlke, Mark A; Schier, Alexander F

    2015-01-01

    Antisense oligonucleotides (ASOs) are synthetic, single-strand RNA-DNA hybrids that induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse model systems. To test their effectiveness in zebrafish, we targeted 20 developmental genes and compared the morphological changes with mutant and morpholino (MO)-induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as well as the long noncoding RNA (lncRNA) MALAT1. ASOs were only effective within a narrow concentration range and were toxic at higher concentrations. Despite this drawback, quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a useful knockdown reagent in zebrafish.

  20. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Chung Hyo; College of Pharmacy, Chungnam National University, Daejeon; Yun, Jeong In

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling,more » such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.« less

  1. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma.

    PubMed

    Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong

    2014-01-07

    To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ(2) test or Fisher's exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor.

  2. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma

    PubMed Central

    Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong

    2014-01-01

    AIM: To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. METHODS: A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ2 test or Fisher’s exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. RESULTS: ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). CONCLUSION: ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor. PMID:24415871

  3. Effects of SMYD2-mediated EML4-ALK methylation on the signaling pathway and growth in non-small-cell lung cancer cells.

    PubMed

    Wang, Rui; Deng, Xiaolan; Yoshioka, Yuichiro; Vougiouklakis, Theodore; Park, Jae-Hyun; Suzuki, Takehiro; Dohmae, Naoshi; Ueda, Koji; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-06-01

    A specific subtype of non-small-cell lung cancer (NSCLC) characterized with an EML4-ALK fusion gene, which drives constitutive oncogenic activation of anaplastic lymphoma kinase (ALK), shows a good clinical response to ALK inhibitors. We have reported multiple examples implying the biological significance of methylation on non-histone proteins including oncogenic kinases in human carcinogenesis. Through the process to search substrates for various methyltransferases using an in vitro methyltransferase assay, we found that a lysine methyltransferase, SET and MYND domain-containing 2 (SMYD2), could methylate lysine residues 1451, 1455, and 1610 in ALK protein. Knockdown of SMYD2 as well as treatment with a SMYD2 inhibitor in two NSCLC cell lines with an EML4-ALK gene significantly attenuated the phosphorylation levels of the EML4-ALK protein. Substitutions of each of these three lysine residues to an alanine partially or almost completely diminished in vitro methylation of ALK. In addition, we found that exogenous introduction of EML4-ALK protein with the substitution of lysine 1610 to an alanine in these two cell lines reduced the phosphorylation levels of AKT, one of the downstream oncogenic molecules in the EML4-ALK pathway, and suppressed the growth of the two cell lines. We further showed that the combination of a SMYD2 inhibitor and an ALK inhibitor additively suppressed the growth of these two NSCLC cells, compared with single-agent treatment. Our results shed light on a novel mechanism that modulates the kinase activity of the ALK fused gene product and imply that SMYD2-mediated ALK methylation might be a promising target for development of a novel class of treatment for tumors with the ALK fused gene. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. ALK-Positive Renal Cell Carcinoma in a Large Series of Consecutively Resected Korean Renal Cell Carcinoma Patients.

    PubMed

    Lee, Cheol; Park, Jeong Whan; Suh, Ja Hee; Nam, Kyung Han; Moon, Kyung Chul

    2013-10-01

    Recently, there have been a few reports of renal cell carcinoma (RCC) cases with anaplastic lymphoma kinase (ALK) gene fusion. In this study, we screened consecutively resected RCCs from a single institution for ALK protein expression by immunohistochemistry, and then we performed fluorescence in situ hybridization to confirm the ALK gene alteration in ALK immunohistochemistry-positive cases. We screened 829 RCCs by ALK immunohistochemistry, and performed fluorescence in situ hybridization analysis using ALK dual-color break-apart rearrangement probe. Histological review and additional immunohistochemistry analyses were done in positive cases. One ALK-positive case was found. Initial diagnosis of this case was papillary RCC type 2. This comprises 0.12% of all RCCs (1/829) and 1.9% of papillary RCCs (1/53). This patient was a 44-year-old male with RCC found during routine health check-up. He was alive without evidence of disease 12 years after surgery. The tumor showed a papillary and tubular pattern, and showed positivity for CD10 (focal), epithelial membrane antigen, cytokeratin 7, pan-cytokeratin, PAX-2, and vimentin. We found the first RCC case with ALK gene rearrangement in Korean patients by ALK immunohistochemistry among 829 RCCs. This case showed similar histological and immunohistochemical features to those of previous adult cases with ALK rearrangement, and showed relatively good prognosis.

  5. The Bone Morphogenetic Protein Type Ib Receptor Is a Major Mediator of Glial Differentiation and Cell Survival in Adult Hippocampal Progenitor Cell Culture

    PubMed Central

    Brederlau, A.; Faigle, R.; Elmi, M.; Zarebski, A.; Sjöberg, S.; Fujii, M.; Miyazono, K.; Funa, K.

    2004-01-01

    Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture. PMID:15194807

  6. Crizotinib for the Treatment of ALK-Rearranged Non-Small Cell Lung Cancer: A Success Story to Usher in the Second Decade of Molecular Targeted Therapy in Oncology

    PubMed Central

    Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John

    2012-01-01

    Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574

  7. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma. PMID:24811913

  8. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line

    PubMed Central

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-01-01

    EML4-ALK lung cancer accounts for approximately 3–7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments. PMID:25581823

  9. A case of ALK-rearranged non-small cell lung cancer that responded to ceritinib after development of resistance to alectinib.

    PubMed

    Makuuchi, Yosuke; Hayashi, Hidetoshi; Haratani, Koji; Tanizaki, Junko; Tanaka, Kaoru; Takeda, Masayuki; Sakai, Kazuko; Shimizu, Shigeki; Ito, Akihiko; Nishio, Kazuto; Nakagawa, Kazuhiko

    2018-05-01

    The second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) alectinib and ceritinib are standard treatment options for patients with non-small cell lung cancer (NSCLC) positive for ALK fusion genes. However, almost all patients eventually develop resistance to these drugs. We here report a case of ALK -rearranged NSCLC that developed resistance to alectinib but remained sensitive to ceritinib. The L1196M mutation within the ALK fusion gene was detected after failure of consecutive treatment with crizotinib and alectinib, but no other mechanism underlying acquired resistance to ALK-TKIs was found to be operative. Given the increasing application of ALK-TKIs to the treatment of patients with ALK -rearranged NSCLC, further clinical evaluation is warranted to provide a better understanding of the mechanisms of acquired resistance to these agents and to inform treatment strategies for such tumors harboring secondary mutations.

  10. Latency-associated transcript (LAT) exon 1 controls herpes simplex virus species-specific phenotypes: reactivation in the guinea pig genital model and neuron subtype-specific latent expression of LAT.

    PubMed

    Bertke, Andrea S; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P; Krause, Philip R

    2009-10-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5' ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA.

  11. Latency-Associated Transcript (LAT) Exon 1 Controls Herpes Simplex Virus Species-Specific Phenotypes: Reactivation in the Guinea Pig Genital Model and Neuron Subtype-Specific Latent Expression of LAT▿

    PubMed Central

    Bertke, Andrea S.; Patel, Amita; Imai, Yumi; Apakupakul, Kathleen; Margolis, Todd P.; Krause, Philip R.

    2009-01-01

    Herpes simplex virus 1 (HSV-1) and HSV-2 cause similar acute infections but differ in their abilities to reactivate from trigeminal and lumbosacral dorsal root ganglia. During latency, HSV-1 and HSV-2 also preferentially express their latency-associated transcripts (LATs) in different sensory neuronal subtypes that are positive for A5 and KH10 markers, respectively. Chimeric virus studies showed that LAT region sequences influence both of these viral species-specific phenotypes. To further map the LAT region sequences responsible for these phenotypes, we constructed the chimeric virus HSV2-LAT-E1, in which exon 1 (from the LAT TATA to the intron splice site) was replaced by the corresponding sequence from HSV-1 LAT. In intravaginally infected guinea pigs, HSV2-LAT-E1 reactivated inefficiently relative to the efficiency of its rescuant and wild-type HSV-2, but it yielded similar levels of viral DNA, LAT, and ICP0 during acute and latent infection. HSV2-LAT-E1 preferentially expressed the LAT in A5+ neurons (as does HSV-1), while the chimeric viruses HSV2-LAT-P1 (LAT promoter swap) and HSV2-LAT-S1 (LAT sequence swap downstream of the promoter) exhibited neuron subtype-specific latent LAT expression phenotypes more similar to that of HSV-2 than that of HSV-1. Rescuant viruses displayed the wild-type HSV-2 phenotypes of efficient reactivation in the guinea pig genital model and a tendency to express LAT in KH10+ neurons. The region that is critical for HSV species-specific differences in latency and reactivation thus lies between the LAT TATA and the intron splice site, and minor differences in the 5′ ends of chimeric sequences in HSV2-LAT-E1 and HSV2-LAT-S1 point to sequences immediately downstream of the LAT TATA. PMID:19641003

  12. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  13. Anaplastic Lymphoma Kinase Gene Copy Number Gain in Inflammatory Breast Cancer (IBC): Prevalence, Clinicopathologic Features and Prognostic Implication

    PubMed Central

    Kim, Min Hwan; Lee, Soohyeon; Koo, Ja Seung; Jung, Kyung Hae; Park, In Hae; Jeong, Joon; Kim, Seung Il; Park, Seho; Park, Hyung Seok; Park, Byeong-Woo; Kim, Joo-Hang; Sohn, Joohyuk

    2015-01-01

    Background Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients. Methods We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining. Results Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11–28.44, p = 0.037). Conclusion This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS. PMID:25803816

  14. Anaplastic lymphoma kinase gene copy number gain in inflammatory breast cancer (IBC): prevalence, clinicopathologic features and prognostic implication.

    PubMed

    Kim, Min Hwan; Lee, Soohyeon; Koo, Ja Seung; Jung, Kyung Hae; Park, In Hae; Jeong, Joon; Kim, Seung Il; Park, Seho; Park, Hyung Seok; Park, Byeong-Woo; Kim, Joo-Hang; Sohn, Joohyuk

    2015-01-01

    Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients. We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining. Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11-28.44, p = 0.037). This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS.

  15. Crizotinib Synergizes with Chemotherapy in Preclinical Models of Neuroblastoma

    PubMed Central

    Krytska, Kateryna; Ryles, Hannah T.; Sano, Renata; Raman, Pichai; Infarinato, Nicole R.; Hansel, Theodore D.; Makena, Monish R.; Song, Michael M.; Reynolds, C. Patrick; Mossé, Yael P.

    2015-01-01

    Purpose The presence of an ALK aberration correlates with inferior survival for patients with high-risk neuroblastoma. The emergence of ALK inhibitors such as crizotinib has provided novel treatment opportunities. However, certain ALK mutations result in de novo crizotinib resistance, and a phase I trial of crizotinib showed a lack of response in patients harboring those ALK mutations. Thus, understanding mechanisms of resistance and defining circumvention strategies for the clinic is critical. Experimental Design The sensitivity of human neuroblastoma-derived cell lines, cell line-derived and patient-derived xenograft (PDX) models with varying ALK statuses to crizotinib combined with topotecan and cyclophosphamide (topo/cyclo) was examined. Cultured cells and xenografts were evaluated for effects of these drugs on proliferation, signaling, and cell death, and assessment of synergy. Results In neuroblastoma murine xenografts harboring the most common ALK mutations, including those mutations associated with resistance to crizotinib (but not in those with wild-type ALK), crizotinib combined with topo/cyclo enhanced tumor responses and mouse event-free-survival. Crizotinib + topo/cyclo showed synergistic cytotoxicity and higher caspase-dependent apoptosis than crizotinib or topo/cyclo alone in neuroblastoma cell lines with ALK aberrations (mutation or amplification). Conclusions Combining crizotinib with chemotherapeutic agents commonly used in treating newly diagnosed patients with high-risk neuroblastoma restores sensitivity in preclinical models harboring both sensitive ALK aberrations and de novo resistant ALK mutations. These data support clinical testing of crizotinib and conventional chemotherapy with the goal of integrating ALK inhibition into multi-agent therapy for ALK-aberrant neuroblastoma patients. PMID:26438783

  16. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  17. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.

    PubMed

    Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja

    2010-10-01

    Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.

  18. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors

    PubMed Central

    Chia, Puey Ling; Mitchell, Paul; Dobrovic, Alexander; John, Thomas

    2014-01-01

    Improved understanding of molecular drivers of carcinogenesis has led to significant progress in the management of lung cancer. Patients with non-small-cell lung cancer (NSCLC) with anaplastic lymphoma kinase (ALK) gene rearrangements constitute about 4%–5% of all NSCLC patients. ALK+ NSCLC cells respond well to small molecule ALK inhibitors such as crizotinib; however, resistance invariably develops after several months of treatment. There are now several newer ALK inhibitors, with the next generation of agents targeting resistance mutations. In this review, we will discuss the prevalence and clinical characteristics of ALK+ lung cancer, current treatment options, and future directions in the management of this subset of NSCLC patients. PMID:25429239

  19. Treatment modalities for advanced ALK-rearranged non-small-cell lung cancer.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-04-01

    The ALK gene plays a key role in the pathogenesis of non-small-cell lung cancer (NSCLC). Patients with NSCLC harboring an ALK-rearrangement represent the second oncogene addiction to be identified in this disease. Crizotinib was the first ALK inhibitor showing pronounced clinical activity, and is now a reference treatment for ALK-positive NSCLC disease. However, despite initial impressive responses to crizotinib, acquired resistance almost invariably develops within 12 months. The pressing need for effective second-line agents has prompted the rapid development of next-generation ALK inhibitors. These agents, notably ceritinib and alectinib as the most developed, have a higher potency against ALK than crizotinib, along with activity against tumors harboring crizotinib-resistant mutations and potentially improved CNS penetration.

  20. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.

    PubMed

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2012-03-13

    Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The Receptor Tyrosine Kinase Alk Controls Neurofibromin Functions in Drosophila Growth and Learning

    PubMed Central

    Walker, James A.; Apostolopoulou, Anthi A.; Palmer, Ruth H.; Bernards, André; Skoulakis, Efthimios M. C.

    2011-01-01

    Anaplastic Lymphoma Kinase (Alk) is a Receptor Tyrosine Kinase (RTK) activated in several cancers, but with largely unknown physiological functions. We report two unexpected roles for the Drosophila ortholog dAlk, in body size determination and associative learning. Remarkably, reducing neuronal dAlk activity increased body size and enhanced associative learning, suggesting that its activation is inhibitory in both processes. Consistently, dAlk activation reduced body size and caused learning deficits resembling phenotypes of null mutations in dNf1, the Ras GTPase Activating Protein-encoding conserved ortholog of the Neurofibromatosis type 1 (NF1) disease gene. We show that dAlk and dNf1 co-localize extensively and interact functionally in the nervous system. Importantly, genetic or pharmacological inhibition of dAlk rescued the reduced body size, adult learning deficits, and Extracellular-Regulated-Kinase (ERK) overactivation dNf1 mutant phenotypes. These results identify dAlk as an upstream activator of dNf1-regulated Ras signaling responsible for several dNf1 defects, and they implicate human Alk as a potential therapeutic target in NF1. PMID:21949657

  2. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer.

    PubMed

    Kogita, Akihiro; Togashi, Yosuke; Hayashi, Hidetoshi; Banno, Eri; Terashima, Masato; De Velasco, Marco A; Sakai, Kazuko; Fujita, Yoshihiko; Tomida, Shuta; Takeyama, Yoshifumi; Okuno, Kiyotaka; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-03-01

    Non-small cell lung cancer (NSCLC) carrying echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangements is hypersensitive to ALK inhibitors, including crizotinib and alectinib. Crizotinib was initially designed as a MET inhibitor, whereas alectinib is a selective ALK inhibitor. The MET signal, which is inhibited by crizotinib but not by alectinib, is dysregulated in many human cancers. However, the role of the MET signal in ALK-positive NSCLC remains unclear. In this study, we found that hepatocyte growth factor (HGF), ligand of MET, mediated the resistance to alectinib, but not to crizotinib, via the MET signal in ALK-positive NSCLC cell lines (H3122 and H2228 cell lines). In addition, alectinib activated the MET signal even in the absence of HGF and the inhibition of the MET signal enhanced the efficacy of alectinib. These findings suggest that activated MET acts as a salvage signal in ALK-positive NSCLC. This novel role of the MET signal in ALK-positive NSCLC may pave the way for further clinical trials examining MET inhibitors.

  3. Clinical Efficacy of Alectinib in Patients with ALK-Rearranged Non-small Cell Lung Cancer After Ceritinib Failure.

    PubMed

    Oya, Yuko; Yoshida, Tatsuya; Kuroda, Hiroaki; Shimizu, Junichi; Horio, Yoshitsugu; Sakao, Yukinori; Hida, Toyoaki; Yatabe, Yasushi

    2017-11-01

    Several second-generation inhibitors of anaplastic lymphoma kinase (ALK) have demonstrated potent activity in ALK rearrangement-positive non-small cell lung cancer (NSCLC). Two of these agents, ceritinib, and alectinib, recently received approval for the treatment of ALK-rearranged NSCLC in Japan. The efficacy of treatment with a second-generation ALK inhibitor after failure with a different second-generation ALK inhibitor remains unclear. We present a series of eight patients with ALK-rearranged NSCLC treated with alectinib who experienced disease progression after ceritinib. Both crizotinib and ceritinib were administered to six patients, with four (29%) patients receiving crizotinib followed by ceritinib. Among the eight study patients, two (25%) had partial response, one (12%) stable disease, and five (63%) had progressive disease. The median progression-free survival was 3.6 months (95% confidence interval=0-7.1 months). The results of this study suggest that the second-generation ALK inhibitor alectinib has limited efficacy after initial treatment with the second-generation ALK inhibitor ceritinib. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication.

    PubMed

    Paschka, Peter; Schlenk, Richard F; Gaidzik, Verena I; Habdank, Marianne; Krönke, Jan; Bullinger, Lars; Späth, Daniela; Kayser, Sabine; Zucknick, Manuela; Götze, Katharina; Horst, Heinz-A; Germing, Ulrich; Döhner, Hartmut; Döhner, Konstanze

    2010-08-01

    To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.

  5. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression

    PubMed Central

    Wu, Xing-gang; Wang, Yang; Wu, Qian; Cheng, Wai-Hang; Liu, Wenjing; Zhao, Yueshui; Mayeur, Claire; Schmidt, Paul J.; Yu, Paul B.; Wang, Fudi

    2014-01-01

    Mutations in HFE are the most common cause of hereditary hemochromatosis (HH). HFE mutations result in reduced expression of hepcidin, a hepatic hormone, which negatively regulates iron absorption from the duodenum and iron release from macrophages. However, the mechanism by which HFE regulates hepcidin expression in hepatocytes is not well understood. It is known that the bone morphogenetic protein (BMP) pathway plays a central role in controlling hepcidin expression in the liver. Here we show that HFE overexpression increased Smad1/5/8 phosphorylation and hepcidin expression, whereas inhibition of BMP signaling abolished HFE-induced hepcidin expression in Hep3B cells. HFE was found to associate with ALK3, inhibiting ALK3 ubiquitination and proteasomal degradation and increasing ALK3 protein expression and accumulation on the cell surface. The 2 HFE mutants associated with HH, HFE C282Y and HFE H63D, regulated ALK3 protein ubiquitination and trafficking differently, but both failed to increase ALK3 cell-surface expression. Deletion of Hfe in mice resulted in a decrease in hepatic ALK3 protein expression. Our results provide evidence that HFE induces hepcidin expression via the BMP pathway: HFE interacts with ALK3 to stabilize ALK3 protein and increase ALK3 expression at the cell surface. PMID:24904118

  6. Insight into drug resistance mechanisms and discovery of potential inhibitors against wild-type and L1196M mutant ALK from FDA-approved drugs.

    PubMed

    Li, Jianzong; Liu, Wei; Luo, Hao; Bao, Jinku

    2016-09-01

    Anaplastic lymphoma kinase (ALK) plays a crucial role in multiple malignant cancers. It is known as a well-established target for the treatment of ALK-dependent cancers. Even though substantial efforts have been made to develop ALK inhibitors, only crizotinib, ceritinib, and alectinib had been approved by the U.S. Food and Drug Administration for patients with ALK-positive non-small cell lung cancer (NSCLC). The secondary mutations with drug-resistance bring up difficulties to develop effective drugs for ALK-positive cancers. To give a comprehensive understanding of molecular mechanism underlying inhibitor response to ALK tyrosine kinase mutations, we established an accurate assessment for the extensive profile of drug against ALK mutations by means of computational approaches. The molecular mechanics-generalized Born surface area (MM-GBSA) method based on molecular dynamics (MD) simulation was carried out to calculate relative binding free energies for receptor-drug systems. In addition, the structure-based virtual screening was utilized to screen effective inhibitors targeting wild-type ALK and the gatekeeper mutation L1196M from 3180 approved drugs. Finally, the mechanism of drug resistance was discussed, several novel potential wild-type and L1196M mutant ALK inhibitors were successfully identified.

  7. Recent Development in the Discovery of Anaplastic Lymphoma Kinase (ALK) Inhibitors for Non-small Cell Lung Cancer.

    PubMed

    Liu, Jingru; Ma, Shutao

    2017-01-01

    Non-Small Cell Lung Cancer (NSCLC) is an especially aggressive cancer, the optimal drugs for which are still being developed. The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor superfamily. EML4-ALK fusion gene initially identified in patients with NSCLC in 2007 is defined as a new molecular subset, which is highly sensitive to ALK inhibition. Since the first ALK inhibitor, crizotinib, was approved by the US Food and Drug Administration (FDA) for the treatment of NSCLC patients in 2011, ALK has been identified as a promising target for NSCLC therapy. However, crizotinib is not effective for various point mutations in ALK and central nervous system (CNS) metastasis. To date, there are only eight of second-and third-generation ALK inhibitors in clinical investigation and others are in preclinical research. This review summarizes recent advances of ALK inhibitors, with a focus on their biological activity, selectivity and structure-activity relationship (SAR) information. We hope this review could help medicinal chemists to discover newer ALK-inhibitors to overcome exist issues in the process of drug discovery, such as potency, selectivity and secondary mutations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Detection of EML4-ALK fusion gene and features associated with EGFR mutations in Chinese patients with non-small-cell lung cancer.

    PubMed

    Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei

    2016-01-01

    Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ (2) test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent.

  9. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line.

    PubMed

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-03-01

    EML4-ALK lung cancer accounts for approximately 3-7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  10. Detection of EML4-ALK fusion gene and features associated with EGFR mutations in Chinese patients with non-small-cell lung cancer

    PubMed Central

    Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei

    2016-01-01

    Purpose Echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). Methods We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Results Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ2 test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. Conclusion EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent. PMID:27103824

  11. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells

    PubMed Central

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-01-01

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC. PMID:26517679

  12. Treating ALK-positive non-small cell lung cancer

    PubMed Central

    Tsiara, Anna; Tsironis, Georgios; Lykka, Maria; Liontos, Michalis; Bamias, Aristotelis; Dimopoulos, Meletios-Athanasios

    2018-01-01

    Targeting genomic alterations, such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements, have radically changed the treatment of patients with non-small cell lung cancer (NSCLC). In the case of ALK-rearranged gene, subsequent rapid development of effective genotype-directed therapies with ALK tyrosine kinase inhibitors (TKIs) triggered major advances in the personalized molecularly based approach of NSCLC. Crizotinib was the first-in-class ALK TKI with proven superiority over standard platinum-based chemotherapy for the 1st-line therapy of ALK-rearranged NSCLC patients. However, the acquired resistance to crizotinib and its diminished efficacy to the central nervous system (CNS) relapse led to the development of several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib. To date, four ALK TKIs, crizotinib, ceritinib, alectinib and brigatinib have received approval from the Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) and even more agents are currently under investigation for the treatment of ALK-rearranged NSCLC. However, the optimal frontline approach and the exact sequence of ALK inhibitors are still under consideration. Recently announced results of phase III trials recognized higher efficacy of alectinib compared to crizotinib in first-line setting, even in patients with CNS involvement. In this review, we will discuss the current knowledge regarding the biology of the ALK-positive NSCLC, the available therapeutic inhibitors and we will focus on the raised issues from their use in clinical practise. PMID:29862230

  13. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  14. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    PubMed

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  15. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer.

    PubMed

    Cui, Shaohua; Zhang, Wei; Xiong, Liwen; Pan, Feng; Niu, Yanjie; Chu, Tianqing; Wang, Huimin; Zhao, Yizhuo; Jiang, Liyan

    2017-01-10

    Capture-based next-generation sequencing (NGS) is a potentially useful diagnostic method to measure tumor tissue DNA in blood as it can identify concordant mutations between cell-free DNA (cfDNA) and primary tumor DNA in lung cancer patients. In this study, the sensitivity, specificity and accuracy of capture-based NGS for detecting ALK fusion in plasma cfDNA was assessed. 24 patients with tissue ALK-positivity and 15 who did not harbor ALK fusion were enrolled. 13 ALK-positive samples were identified by capture-based NGS among the 24 samples with tissue ALK-positivity. In addition to EML4-ALK, 2 rare fusion types (FAM179A-ALK and COL25A1-ALK) were also identified. The overall sensitivity, specificity and accuracy for all cases were 54.2%, 100% and 71.8%, respectively. For patients without distant metastasis (M0-M1a) and patients with distant metastasis (M1b), the sensitivities were 28.6% and 64.7%, respectively. In the 15 patients who received crizotinib, the estimated median PFS was 9.93 months. Thus, captured-based NGS has acceptable sensitivity and excellent specificity for the detection of ALK fusion in plasma cfDNA, especially for patients with distant metastasis. This non-invasive method is clinically feasible for detecting ALK fusion in patients with advanced-stage NSCLC who cannot undergo traumatic examinations or have insufficient tissue samples for molecular tests.

  16. On the cellular metabolism of the click chemistry probe 19-alkyne arachidonic acid[S

    PubMed Central

    Robichaud, Philippe Pierre; Poirier, Samuel J.; Boudreau, Luc H.; Doiron, Jérémie A.; Barnett, David A.; Boilard, Eric; Surette, Marc E.

    2016-01-01

    Alkyne and azide analogs of natural compounds that can be coupled to sensitive tags by click chemistry are powerful tools to study biological processes. Arachidonic acid (AA) is a FA precursor to biologically active compounds. 19-Alkyne-AA (AA-alk) is a sensitive clickable AA analog; however, its use as a surrogate to study AA metabolism requires further evaluation. In this study, AA-alk metabolism was compared with that of AA in human cells. Jurkat cell uptake of AA was 2-fold greater than that of AA-alk, but significantly more AA-Alk was elongated to 22:4. AA and AA-alk incorporation into and remodeling between phospholipid (PL) classes was identical indicating equivalent CoA-independent AA-PL remodeling. Platelets stimulated in the pre­sence of AA-alk synthesized significantly less 12-lipoxygenase (12-LOX) and cyclooxygenase products than in the presence of AA. Ionophore-stimulated neutrophils produced significantly more 5-LOX products in the presence of AA-alk than AA. Neutrophils stimulated with only exogenous AA-alk produced significantly less 5-LOX products compared with AA, and leukotriene B4 (LTB4)-alk was 12-fold less potent at stimulating neutrophil migration than LTB4, collectively indicative of weaker leukotriene B4 receptor 1 agonist activity of LTB4-alk. Overall, these results suggest that the use of AA-alk as a surrogate for the study of AA metabolism should be carried out with caution. PMID:27538823

  17. Proteomic Analysis and Functional Studies of Baicalin on Proteins Associated with Skin Cancer.

    PubMed

    Li, Dan; Lin, Bingjiang; Yusuf, Nabiha; Burns, Erin M; Yu, Xiuqin; Luo, Dan; Min, Wei

    2017-01-01

    Abundant evidence supports the key role of ultraviolet radiation (UVR) in skin cancer development. The human skin, especially the epidermal layer, is the main defense against UV radiation. Baicalin is a major bioactive component of Scutellaria baicalensis Georgi, a plant which has been found to exhibit antitumor activity. The anticarcinogenic mechanism of baicalin is not completely understood. We have reported that baicalin inhibited UVB-induced photo-damage and apoptosis in HaCaT cells (human skin keratinocytes). The aim of the present study is to investigate the cellular gene targets responsible for baicalin's antitumor activity by performing two-dimensional electrophoresis liquid chromatography-mass spectrometry/mass spectrometry (2-DE LC-MS/MS) with HaCaT cells following UVB and baicalin exposure. Two-DE for protein separation was performed, followed by matrix-assisted laser desorption/ionization mass spectrometry and database searches. Nucleophosmin (NPM)-specific siRNA was designed and synthesized, and the small interfering RNA was transfected into skin squamous cancer A431 cells to knockdown the NPM expression. Proliferation and cell cycle status were assessed by CCK8 and flow cytometric analyses, respectively. We have identified 38 protein spots that are differentially expressed in HaCaT cells exposed to baicalin and/or UVB irradiation These proteins are involved in detoxification, proliferation, metabolism, cytoskeleton and motility. In particular, we found several proteins that have been linked to tumor progression and resistance, such as NPM. Baicalin treatment reduced the cellular proliferation rate and induced arrest during the S-phase of the cell cycle in A431 cells. NPM1 silencing significantly enhanced the effect of baicalin. Our data indicated that baicalin results in the significant inhibition of tumor growth in the A431 cell line, which may be associated with the regulation of the NPM gene expression.

  18. Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.

    PubMed

    Perera, Yasser; Costales, Heydi C; Diaz, Yakelin; Reyes, Osvaldo; Farina, Hernan G; Mendez, Lissandra; Gómez, Roberto E; Acevedo, Boris E; Gomez, Daniel E; Alonso, Daniel F; Perea, Silvio E

    2012-04-01

    CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  19. Shuttling imbalance of MLF1 results in p53 instability and increases susceptibility to oncogenic transformation.

    PubMed

    Yoneda-Kato, Noriko; Kato, Jun-Ya

    2008-01-01

    Myeloid leukemia factor 1 (MLF1) stabilizes the activity of the tumor suppressor p53 by suppressing its E3 ubiquitin ligase, COP1, through a third component of the COP9 signalosome (CSN3). However, little is known about how MLF1 functions upstream of the CSN3-COP1-p53 pathway and how its deregulation by the formation of the fusion protein nucleophosmin (NPM)-MLF1, generated by t(3;5)(q25.1;q34) chromosomal translocation, leads to leukemogenesis. Here we show that MLF1 is a cytoplasmic-nuclear-shuttling protein and that its nucleolar localization on fusing with NPM prevents the full induction of p53 by both genotoxic and oncogenic cellular stress. The majority of MLF1 was located in the cytoplasm, but the treatment of cells with leptomycin B rapidly induced a nuclear accumulation of MLF1. A mutation of the nuclear export signal (NES) motif identified in the MLF1 sequence enhanced the antiproliferative activity of MLF1. The fusion of MLF1 with NPM translocated MLF1 to the nucleolus and abolished the growth-suppressing activity. The introduction of NPM-MLF1 into early-passage murine embryonic fibroblasts allowed the cells to escape from cellular senescence at a markedly earlier stage and induced neoplastic transformation in collaboration with the oncogenic form of Ras. Interestingly, disruption of the MLF1-derived NES sequence completely abolished the growth-promoting activity of NPM-MLF1 in murine fibroblasts and hematopoietic cells. Thus, our results provide important evidence that the shuttling of MLF1 is critical for the regulation of cell proliferation and a disturbance in the shuttling balance increases the cell's susceptibility to oncogenic transformation.

  20. Shuttling Imbalance of MLF1 Results in p53 Instability and Increases Susceptibility to Oncogenic Transformation▿ †

    PubMed Central

    Yoneda-Kato, Noriko; Kato, Jun-ya

    2008-01-01

    Myeloid leukemia factor 1 (MLF1) stabilizes the activity of the tumor suppressor p53 by suppressing its E3 ubiquitin ligase, COP1, through a third component of the COP9 signalosome (CSN3). However, little is known about how MLF1 functions upstream of the CSN3-COP1-p53 pathway and how its deregulation by the formation of the fusion protein nucleophosmin (NPM)-MLF1, generated by t(3;5)(q25.1;q34) chromosomal translocation, leads to leukemogenesis. Here we show that MLF1 is a cytoplasmic-nuclear-shuttling protein and that its nucleolar localization on fusing with NPM prevents the full induction of p53 by both genotoxic and oncogenic cellular stress. The majority of MLF1 was located in the cytoplasm, but the treatment of cells with leptomycin B rapidly induced a nuclear accumulation of MLF1. A mutation of the nuclear export signal (NES) motif identified in the MLF1 sequence enhanced the antiproliferative activity of MLF1. The fusion of MLF1 with NPM translocated MLF1 to the nucleolus and abolished the growth-suppressing activity. The introduction of NPM-MLF1 into early-passage murine embryonic fibroblasts allowed the cells to escape from cellular senescence at a markedly earlier stage and induced neoplastic transformation in collaboration with the oncogenic form of Ras. Interestingly, disruption of the MLF1-derived NES sequence completely abolished the growth-promoting activity of NPM-MLF1 in murine fibroblasts and hematopoietic cells. Thus, our results provide important evidence that the shuttling of MLF1 is critical for the regulation of cell proliferation and a disturbance in the shuttling balance increases the cell's susceptibility to oncogenic transformation. PMID:17967869

  1. What work has to be done to implement collaborative care for depression? Process evaluation of a trial utilizing the Normalization Process Model

    PubMed Central

    2010-01-01

    Background There is a considerable evidence base for 'collaborative care' as a method to improve quality of care for depression, but an acknowledged gap between efficacy and implementation. This study utilises the Normalisation Process Model (NPM) to inform the process of implementation of collaborative care in both a future full-scale trial, and the wider health economy. Methods Application of the NPM to qualitative data collected in both focus groups and one-to-one interviews before and after an exploratory randomised controlled trial of a collaborative model of care for depression. Results Findings are presented as they relate to the four factors of the NPM (interactional workability, relational integration, skill-set workability, and contextual integration) and a number of necessary tasks are identified. Using the model, it was possible to observe that predictions about necessary work to implement collaborative care that could be made from analysis of the pre-trial data relating to the four different factors of the NPM were indeed borne out in the post-trial data. However, additional insights were gained from the post-trial interview participants who, unlike those interviewed before the trial, had direct experience of a novel intervention. The professional freedom enjoyed by more senior mental health workers may work both for and against normalisation of collaborative care as those who wish to adopt new ways of working have the freedom to change their practice but are not obliged to do so. Conclusions The NPM provides a useful structure for both guiding and analysing the process by which an intervention is optimized for testing in a larger scale trial or for subsequent full-scale implementation. PMID:20181163

  2. Multilineage dysplasia is associated with a poorer prognosis in patients with de novo acute myeloid leukemia with intermediate-risk cytogenetics and wild-type NPM1.

    PubMed

    Rozman, María; Navarro, José-Tomás; Arenillas, Leonor; Aventín, Anna; Giménez, Teresa; Alonso, Esther; Perea, Granada; Camós, Mireia; Navarrete, Mayda; Tuset, Esperanza; Florensa, Lourdes; Millá, Fuensanta; Nomdedéu, Josep; de la Banda, Esmeralda; Díaz-Beyá, Marina; Pratcorona, Marta; Garrido, Ana; Navarro, Blanca; Brunet, Salut; Sierra, Jorge; Esteve, Jordi

    2014-10-01

    Acute myeloid leukemia (AML) with myelodysplasia-related changes is characterized by the presence of multilineage dysplasia (MLD), frequently related to high-risk cytogenetics and poor outcome. However, the presence of MLD does not modify the favorable prognostic impact of NPM1 mutation. The prognosis of patients with AML presenting marked dysplasia lacking high-risk cytogenetics and NPM1 mutation is uncertain. We evaluated the prognostic impact of MLD in 177 patients with intermediate-risk cytogenetics AML (IR-AML) and wild-type NPM1. Patients were categorized as MLD-WHO (WHO myelodysplasia criteria; n = 43, 24 %), MLD-NRW (significant MLD non-reaching WHO criteria; n = 16, 9 %), absent MLD (n = 80, 45 %), or non-evaluable MLD (n = 38, 22 %). No differences concerning the main characteristics were observed between patients with or without MLD. Outcome of patients with MLD-WHO and MLD-NRW was similar, and significantly worse than patients lacking MLD. The presence of MLD (66 vs. 80 %, p = 0.03; HR, 95 % CI = 2.3, 1.08-4.08) and higher leukocyte count at diagnosis was the only variable associated with lower probability of complete remission after frontline therapy. Concerning survival, age and leukocytes showed an independent prognostic value, whereas MLD showed a trend to a negative impact (p = 0.087, HR, 95 % CI = 1.426, 0.95-2.142). Moreover, after excluding patients receiving an allogeneic stem cell transplantation in first CR, MLD was associated with a shorter survival (HR, 95 % CI = 1.599, 1.026-2.492; p = 0.038). In conclusion, MLD identifies a subgroup of patients with poorer outcome among patients with IR-AML and wild-type NPM1.

  3. Vibrational, DFT, thermal and dielectric studies on 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1).

    PubMed

    Sangeetha, V; Govindarajan, M; Kanagathara, N; Marchewka, M K; Gunasekaran, S; Anbalagan, G

    2014-01-24

    A new organic-organic salt, 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1) (3-NPM) has been synthesized by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that 3-NPM crystallizes in orthorhombic system with centrosymmetric space group Pbca and the lattice parameters are a=15.5150(6) Å, b=12.9137(6) Å, c=17.8323(6) Å, α=β=γ=90° and V=3572.8(2)(Å)(3). The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimization and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311G(d,p) method. IR and Raman spectra of 3-NPM have been recorded and analyzed. The complete vibrational assignments are made on the basis of potential energy distribution (PED). The electric dipole moment, polarizability and the first order hyperpolarizability values of the 3-NPM have been calculated. (1)H and (13)C NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP method with 6-311G (d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties are performed. Mulliken and Natural charges of the title molecule are also calculated and interpreted. Thermal decomposition behavior of 3-NPM has been studied by means of thermogravimetric analysis. The dielectric measurements on the powdered sample have been carried out and the variation of dielectric constant and dielectric loss at different frequencies of the applied field has been studied and the results are discussed in detail. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Vibrational, DFT, thermal and dielectric studies on 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1)

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    2014-01-01

    A new organic-organic salt, 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1) (3-NPM) has been synthesized by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that 3-NPM crystallizes in orthorhombic system with centrosymmetric space group Pbca and the lattice parameters are a = 15.5150(6) Å, b = 12.9137(6) Å, c = 17.8323(6) Å, α = β = γ = 90° and V = 3572.8(2) (Å)3. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimization and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311G(d,p) method. IR and Raman spectra of 3-NPM have been recorded and analyzed. The complete vibrational assignments are made on the basis of potential energy distribution (PED). The electric dipole moment, polarizability and the first order hyperpolarizability values of the 3-NPM have been calculated. 1H and 13C NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP method with 6-311G (d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties are performed. Mulliken and Natural charges of the title molecule are also calculated and interpreted. Thermal decomposition behavior of 3-NPM has been studied by means of thermogravimetric analysis. The dielectric measurements on the powdered sample have been carried out and the variation of dielectric constant and dielectric loss at different frequencies of the applied field has been studied and the results are discussed in detail.

  5. Detection of PAX3-FKHR and PAX7-FKHR fusion transcripts in rhabdomyosarcoma by reverse transcriptase-polymerase chain reaction using paraffin-embedded tissue.

    PubMed

    Chen, B F; Chen, M L; Liang, D C; Huang, Y W; Liu, H C; Chen, S H

    1999-02-01

    Alveolar rhabdomyosarcoma (RMS) is associated with a characteristic chromosomal translocation t(2;13)(q35;q14). The genes involved in this translocation are paired box (PAX)3 on chromosome 2 and forkhead in RMS (FKHR) on chromosome 13. An occasional variant translocation t(1;13)(p36;q14) affecting PAX7 and FKHR on chromosomes 1 and 13, respectively, has also been described. Chromosomal translocations in RMS are detected using conventional cytogenetic analysis, fluorescence in situ hybridization (FISH) or reverse transcriptase-polymerase chain reaction (RT-PCR) on fresh or frozen tissue samples. We describe the results of RT-PCR analysis of PAX3-FKHR and PAX7-FKHR chimeric messages in formalin-fixed, paraffin-embedded tissue samples from 17 RMS cases. RNA was extracted from formalin-fixed, paraffin-embedded RMS tissue. Oligonucleotide primers corresponding to the regions of PAX3, PAX7 and FKHR were used for the detection of PAX3-FKHR and PAX7-FKHR chimeric messages. A seminested PCR of the PCR products was used to increase the sensitivity of detection. The amplified fragments were purified and directly sequenced to confirm the specificity of the methods. The PAX3-FKHR chimeric message was detected in all three cases of alveolar RMS but not in any of the 12 embryonal and two pleomorphic RMS cases. The PAX7-FKHR fusion transcript was detected in one case of embryonal RMS. The results indicate that the RT-PCR assay is a reliable method for the detection of the PAX3-FKHR fusion transcript of alveolar RMS in formalin-fixed, paraffin-embedded tissue. This simple method enables pathologists to identify chromosomal rearrangements in RMS as a diagnostic aid in cases where fresh or frozen tissue is not available.

  6. Alectinib for treatment of ALK-positive non-small-cell lung cancer.

    PubMed

    Avrillon, Virginie; Pérol, Maurice

    2017-02-01

    Alectinib is a highly selective second-generation ALK inhibitor that is active against most crizotinib ALK resistance mutations, with a good penetration in CNS and a good safety profile. Thanks to the positive results of Phase II trials, alectinib was approved in Japan and by the US FDA for ALK-positive non-small-cell lung cancer (NSCLC) patients pretreated with crizotinib. Recently, the Phase III J-ALEX study demonstrated superiority of alectinib over crizotinib in crizotinib naive ALK-positive NSCLC, with an impressive improvement of progression-free survival. From the results and those expected of Phase III ALEX study, alectinib might become the frontline treatment of ALK-positive NSCLC. This article summarizes the therapeutic options in ALK-positive advanced NSCLC, and the chemical, pharmacodynamics, pharmacokinetics, metabolism and clinical efficacy of alectinib.

  7. Crizotinib resistance in acute myeloid leukemia with inv(2)(p23q13)/RAN binding protein 2 (RANBP2) anaplastic lymphoma kinase (ALK) fusion and monosomy 7.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Maesako, Yoshitomo; Akasaka, Takashi; Ohno, Hitoshi

    2015-03-01

    This is the first report on the development of a p.G1269A mutation within the kinase domain (KD) of ALK after crizotinib treatment in RANBP2-ALK acute myeloid leukemia (AML). An elderly woman with AML with an inv(2)(p23q13)/RANBP2-ALK and monosomy 7 was treated with crizotinib. After a short-term hematological response and the restoration of normal hematopoiesis, she experienced a relapse of AML. Fluorescence in situ hybridization using the ALK break-apart probe confirmed the inv(2)(p23q13), while G-banded karyotyping revealed the deletion of a segment of the short arm of chromosome 1 [del(1)(p13p22)] after crizotinib therapy. The ALK gene carried a heterozygous mutation at the nucleotide position g.716751G>C within exon 25, causing the p.G1269A amino acid substitution within the ALK-KD. Reverse transcriptase PCR revealed that the mutated ALK allele was selectively transcribed and the mutation occurred in the ALK allele rearranged with RANBP2. As both the del(1)(p13p22) at the cytogenetic level and p.G1269A at the nucleotide level newly appeared after crizotinib treatment, it is likely that they were secondarily acquired alterations involved in crizotinib resistance. Although secondary genetic abnormalities in ALK are most frequently described in non-small cell lung cancers harboring an ALK alteration, this report suggests that an ALK-KD mutation can occur independently of the tumor cell type or fusion partner after crizotinib treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Identification of a novel inherited ALK variant M1199L in the WNT type of medulloblastoma.

    PubMed

    Trubicka, J; Szperl, M; Grajkowska, W; Karkucińska-Więckowska, A; Tarasińska, M; Falana, K; Dembowska-Bagińska, B; Łastowska, M

    2016-01-01

    Rearrangements involving the ALK gene were identified in a variety of cancers, including paediatric tumour neuroblastoma where presence of ALK expression is also associated with adverse prognosis. Microarrays data indicate that ALK is expressed in another paediatric tumour - medulloblastoma. Therefore, we investigated if the ALK gene is mutated in medulloblastoma and performed simultaneously the molecular profiling of tumours. Tumours from sixty-four medulloblastoma patients were studied for detection of ALK alterations in exons 23 and 25 using Sanger method. The molecular subtypes of tumours were identified by detection of mutations in the CTNNB1 gene, monosomy 6 and by immunohistochemistry using a panel of representative antibodies. Among three ALK variants detected two resulted in intron variants (rs3738867, rs113866835) and the third one was a novel heterozygous variant c.3595A>T in exon 23 identified in the WNT type of tumour. It resulted in methionine to leucine substitution at codon position 1199 (M1199L) of the kinase domain of ALK protein. Results of analysis using three in silico algorithms confirmed the pathogenicity of this single nucleotide variation. The same gene alteration was detected in both patient and maternal peripheral blood leukocytes indicating an inherited type of the detected variant. Presence of ALK expression in tumour tissue was confirmed by immunohistochemistry. The tumour was diagnosed as classic medulloblastoma, however with visible areas of focal anaplastic features. The patient has been disease free for 6 years since diagnosis. This is the first evidence of an inherited ALK variant in the WNT type of medulloblastoma, what altogether with presence of ALK expression may point towards involvement of the ALK gene in this type of tumours.

  9. Inflammatory myofibroblastic tumors of the urinary bladder: a systematic review.

    PubMed

    Teoh, Jeremy Yuen Chun; Chan, Ning-Hong; Cheung, Ho-Yuen; Hou, Simon See Ming; Ng, Chi-Fai

    2014-09-01

    We systemically reviewed the literature on inflammatory myofibroblastic tumors (IMTs) of the urinary bladder and compared between anaplastic lymphoma kinase (ALK)-positive and ALK-negative IMTs. An extensive search of the literature was performed in Medline and Web of Science using the following terms: "inflammatory myofibrolastic tumor," "inflammatory pseudotumor," and "bladder." A manual search was also performed using the web-based search engine Google Scholar. Reference lists of the retrieved articles were reviewed for other relevant studies. Patients' and disease characteristics of each individual case were reviewed. Further analyses were performed to compare between ALK-positive and ALK-negative IMTs. Forty-one studies were identified, and 182 patients were included for review and subsequent analyses. Of the IMTs, 65% were ALK-positive. Local tumor recurrence rate was 4%, and no cases of distant metastases have been reported. Compared with ALK-negative IMTs, ALK-positive IMTs had a female predilection with a sex ratio (male:female) of 1:1.67 (P = .048). ALK-positive IMTs also appeared to occur in younger patients (P = .072). No significant differences were noted in terms of their clinical presentations and histologic features. On immunohistochemical staining, ALK-positive IMTs had more positive results for desmin (P = .042) and p53 (P = .05), and more negative results for clusterin (P = .003). In summary, ALK-positive IMTs of the urinary bladder had a female predilection, appeared to occur more frequently in younger patients, and had different immunohistochemical staining patterns when compared with ALK-negative IMTs. Regardless of its ALK status, IMT of the urinary bladder has a good prognosis after surgical resection. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  11. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    PubMed Central

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  12. Cytomorphological features of ALK-positive lung adenocarcinomas: psammoma bodies and signet ring cells.

    PubMed

    Pareja, Fresia; Crapanzano, John P; Mansukhani, Mahesh M; Bulman, William A; Saqi, Anjali

    2015-03-01

    Correlation between histology and genotype has been described in lung adenocarcinomas. For example, studies have demonstrated that adenocarcinomas with an anaplastic lymphoma kinase (ALK) gene rearrangement may have mucinous features. The objective of the current study was to determine whether a similar association can be identified in cytological specimens. A retrospective search for ALK-rearranged cytopathology (CP) and surgical pathology (SP) lung carcinomas was conducted. Additional ALK-negative (-) lung adenocarcinomas served as controls. For CP and SP cases, the clinical data (i.e., age, sex, and smoking history), architecture, nuclear features, presence of mucin-containing cells (including signet ring cells), and any additional salient characteristics were evaluated. The search yielded 20 ALK-positive (+) adenocarcinomas. Compared with patients with ALK(-) lung adenocarcinomas (33 patients; 12 with epidermal growth factor receptor [EGFR]-mutation, 11 with Kristen rat sarcoma [KRAS]-mutation, and 10 wild-type adenocarcinomas), patients with ALK(+) adenocarcinoma presented at a younger age; and there was no correlation noted with sex or smoking status. The most common histological pattern in SP was papillary/micropapillary. Mucinous features were associated with ALK rearrangement in SP specimens. Signet ring cells and psammoma bodies were evident in and significantly associated with ALK(+) SP and CP specimens. However, psammoma bodies were observed in rare adenocarcinomas with an EGFR mutation. Both the ALK(+) and ALK(-) groups had mostly high nuclear grade. Salient features, including signet ring cells and psammoma bodies, were found to be significantly associated with ALK(+) lung adenocarcinomas and are identifiable on CP specimens. Recognizing these may be especially helpful in the molecular triage of scant CP samples. © 2014 American Cancer Society.

  13. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non-Small Cell Lung Cancer Cells.

    PubMed

    Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng

    2016-03-01

    Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non-small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non–Small Cell Lung Cancer Cells

    PubMed Central

    Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng

    2016-01-01

    Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non–small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC. PMID:26992917

  15. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors

    PubMed Central

    Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia

    2016-01-01

    Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712

  16. Characteristics and outcomes of ALK+ non-small cell lung cancer patients in Korea.

    PubMed

    Lim, Sung Hee; Yoh, Kyung Ah; Lee, Jong Seok; Ahn, Myung-Ju; Kim, Yu Jung; Kim, Se Hyun; Zhang, Jie; Patel, Dony; Swallow, Elyse; Kageleiry, Andrew; Galebach, Philip; Lee, Dongyeol; Stein, Karen; Degun, Ravi; Park, Keunchil

    2017-10-01

    This study aimed to describe characteristics, treatment patterns and survival among Korean patients diagnosed with locally advanced or metastatic anaplastic lymphoma kinase (ALK)+ non-small cell lung cancer (NSCLC). A retrospective patient chart review was conducted in major cancer centers in Korea in 2014-2015. Participating physicians reviewed patient charts and reported characteristics, treatment patterns, clinician-defined progression-free survival (PFS) and overall survival (OS) of ALK+ locally advanced or metastatic NSCLC patients. PFS and OS were estimated using Kaplan-Meier analysis. Physicians reported on 55 ALK+ NSCLC patients. Median age at locally advanced or metastatic NSCLC diagnosis was 60 years. Most patients (82%) received initial chemotherapy; 13% received an ALK inhibitor in the first line; 62% received an ALK inhibitor by the end of follow-up. Of the 30 patients who received crizotinib, 83% discontinued and 13% died during crizotinib therapy. Median PFS on crizotinib was 6.7 months. Of those who discontinued, 32% switched to chemotherapy, 16% switched to a different ALK inhibitor and 52% received no further therapy. After discontinuing crizotinib, median OS was 6.0 months overall, and 3.4 months among patients who did not receive a second-generation ALK inhibitor. In this study of locally advanced or metastatic ALK+ NSCLC patients in Korea, roughly one-third did not receive an ALK inhibitor. Among patients who discontinued crizotinib, over half received no further antineoplastic therapy and OS was poor, particularly among patients without second-generation ALK inhibitor use. These findings suggest a need for greater access to effective treatments following crizotinib discontinuation for ALK+ NSCLC patients in Korea. © 2017 John Wiley & Sons Australia, Ltd.

  17. ALK status testing in non-small-cell lung carcinoma by FISH on ThinPrep slides with cytology material.

    PubMed

    Minca, Eugen C; Lanigan, Christopher P; Reynolds, Jordan P; Wang, Zhen; Ma, Patrick C; Cicenia, Joseph; Almeida, Francisco A; Pennell, Nathan A; Tubbs, Raymond R

    2014-04-01

    Oncogenic anaplastic lymphoma kinase (ALK) gene rearrangements in non-small-cell lung carcinomas (NSCLC) provide the basis for targeted therapy with crizotinib and other specific ALK inhibitors. Treatment eligibility is conventionally determined by the Food and Drug Administration-approved companion diagnostic fluorescence in situ hybridization (FISH) assay on paraffin-embedded tissue (PET). On limited samples such as fine needle aspiration-derived cytoblocks, FISH for ALK is often uninformative. FISH performed on liquid-based ThinPrep slides (ThinPrep-FISH) may represent a robust alternative. Two hundred thirty cytology samples from 217 patients with advanced NSCLC, including a consecutive series of 179 specimens, were used to generate matched ThinPrep slides and paraffin cytoblocks. The same ThinPrep slides used for cytologic diagnosis were assessed by standard ALK break-apart two-color probe FISH, after etching of tumor areas. Ultrasensitive ALK immunohistochemistry (IHC) on corresponding cytoblocks [D5F3 antibody, OptiView signal amplification] served as the reference data set. ThinPrep-FISH ALK signals were robust in 228 of 230 cases and not compromised by nuclear truncation inherent in paraffin-embedded tissue-FISH; only two samples displayed no signals. Nine of 178 informative cases (5%) in the consecutive series and 18 of 228 informative cases (7.8%) overall were ALK rearranged by ThinPrep-FISH. In 154 informative matched ThinPrep-FISH and cytoblock-IHC samples, 152 were concordant (10, 6.5% ALK status positive; 142, 92.2% ALK status negative), and two (1.3%) were ThinPrep-FISH positive but IHC negative (sensitivity 100%, specificity 98.6%, overall agreement 98.7%). Detection of ALK gene rearrangements in liquid cytology ThinPrep slides derived from patients with NSCLC can be confidently used for clinical ALK molecular testing.

  18. Sequential Use of Anaplastic Lymphoma Kinase Inhibitors in Japanese Patients With ALK-Rearranged Non-Small-Cell Lung Cancer: A Retrospective Analysis.

    PubMed

    Asao, Tetsuhiko; Fujiwara, Yutaka; Itahashi, Kota; Kitahara, Shinsuke; Goto, Yasushi; Horinouchi, Hidehito; Kanda, Shintaro; Nokihara, Hiroshi; Yamamoto, Noboru; Takahashi, Kazuhisa; Ohe, Yuichiro

    2017-07-01

    Second-generation anaplastic lymphoma kinase (ALK) inhibitors, such as alectinib and ceritinib, have recently been approved for treatment of ALK-rearranged non-small-cell lung cancer (NSCLC). An optimal strategy for using 2 or more ALK inhibitors has not been established. We sought to investigate the clinical impact of sequential use of ALK inhibitors on these tumors in clinical practice. Patients with ALK-rearranged NSCLC treated from May 2010 to January 2016 at the National Cancer Center Hospital were identified, and their outcomes were evaluated retrospectively. Fifty-nine patients with ALK-rearranged NSCLC had been treated and 37 cases were assessable. Twenty-six received crizotinib, 21 received alectinib, and 13 (35.1%) received crizotinib followed by alectinib. Response rates and median progression-free survival (PFS) on crizotinib and alectinib (after crizotinib failure) were 53.8% (95% confidence interval [CI], 26.7%-80.9%) and 38.4% (95% CI, 12.0%-64.9%), and 10.7 (95% CI, 5.3-14.7) months and 16.6 (95% CI, 2.9-not calculable), respectively. The median PFS of patients on sequential therapy was 35.2 months (95% CI, 12.7 months-not calculable). The 5-year survival rate of ALK-rearranged patients who received 2 sequential ALK inhibitors from diagnosis was 77.8% (95% CI, 36.5%-94.0%). The combined PFS and 5-year survival rates in patients who received sequential ALK inhibitors were encouraging. Making full use of multiple ALK inhibitors might be important to prolonging survival in patients with ALK-rearranged NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Elements in the murine c-mos messenger RNA 5'-untranslated region repress translation of downstream coding sequences.

    PubMed

    Steel, L F; Telly, D L; Leonard, J; Rice, B A; Monks, B; Sawicki, J A

    1996-10-01

    Murine c-mos transcripts isolated from testes have 5'-untranslated regions (5'UTRs) of approximately 300 nucleotides with a series of four overlapping open reading frames (ORFs) upstream of the AUG codon that initiates the Mos ORF. Ovarian c-mos transcripts have shorter 5'UTRs (70-80 nucleotides) and contain only 1-2 of the upstream ORFs (uORFs). To test whether these 5'UTRs affect translational efficiency, we have constructed plasmids for the expression of chimeric transcripts with a mos-derived 5'UTR fused to the Escherichia coli beta-galactosidase coding region. Translational efficiency has been evaluated by measuring beta-galactosidase activity NIH3T3 cells transiently transfected with these plasmids and with plasmids where various mutations have been introduced into the 5'UTR. We show that the 5'UTR characteristic of testis-specific c-mos mRNA strongly represses translation relative to the translation of transcripts that contain a 5'UTR derived from beta-globin mRNA, and this is mainly due to the four uORFs. Each of the four upstream AUG triplets can be recognized as a start site for translation, and no single uAUG dominates the repressive effect. The uORFs repress translation by a mechanism that is not affected by the amino acid sequence in the COOH-terminal region of the uORF-encoded peptides. The very short uORF (AUGUGA) present in ovary-specific transcripts does not repress translation. Staining of testis sections from transgenic mice carrying chimeric beta-galactosidase transgene constructs, which contain a mos 5'UTR with or without the uATGs, suggests that the uORFs can dramatically change the pattern of expression in spermatogenic cells.

  20. Dual occurrence of ALK G1202R solvent front mutation and small cell lung cancer transformation as resistance mechanisms to second generation ALK inhibitors without prior exposure to crizotinib. Pitfall of solely relying on liquid re-biopsy?

    PubMed

    Ou, Sai-Hong Ignatius; Lee, Thomas K; Young, Lauren; Fernandez-Rocha, Maria Y; Pavlick, Dean; Schrock, Alexa B; Zhu, Viola W; Milliken, Jeffrey; Ali, Siraj M; Gitlitz, Barbara J

    2017-04-01

    Development of the acquired ALK G1202R solvent front mutation and small cell lung cancer (SCLC) transformation have both been independently reported as resistance mechanisms to ALK inhibitors in ALK-rearranged (ALK+) non-small cell lung cancer (NSCLC) patients but have not been reported in the same patient. Here we report an ALK+ NSCLC patient who had disease progression after ceritinib and then alectinib where an ALK G1202R mutation was detected on circulating tumor (ct) DNA prior to enrollment onto a trial of another next generation ALK inhibitor, lorlatinib. The patient's central nervous system (CNS) metastases responded to lorlatinib together with clearance of ALK G1202R mutation by repeat ctDNA assay. However, the patient developed a new large pericardial effusion. Resected pericardium from the pericardial window revealed SCLC transformation with positive immunostaining for synaptophysin, chromogranin, and ALK (D5F3 antibody). Comprehensive genomic profiling (CGP) of the tumor infiltrating pericardium revealed the retainment of an ALK rearrangement with emergence of an inactivating Rb1 mutation (C706Y) and loss of exons 1-11 in p53 that was not detected in the original tumor tissue at diagnosis. The patient was subsequently treated with carboplatin/etoposide and alectinib, but had rapid clinical deterioration and died. The patient never received crizotinib. This case illustrates that multiple/compound resistance mechanisms to ALK inhibitors can occur and provide supporting information that loss of p53 and Rb1 are important in SCLC transformation. If clinically feasible, tissue-based re-biopsy allowing histological examination and CGP remains the gold standard to assess resistance mechanism(s) and to direct subsequent rational clinical care. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Spotlight on ceritinib in the treatment of ALK+ NSCLC: design, development and place in therapy

    PubMed Central

    Santarpia, Mariacarmela; Daffinà, Maria Grazia; D’Aveni, Alessandro; Marabello, Grazia; Liguori, Alessia; Giovannetti, Elisa; Karachaliou, Niki; Gonzalez Cao, Maria; Rosell, Rafael; Altavilla, Giuseppe

    2017-01-01

    The identification of echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) fusion gene in non-small cell lung cancer (NSCLC) has radically changed the treatment of a subset of patients harboring this oncogenic driver. Crizotinib was the first ALK tyrosine kinase inhibitor to receive fast approval and is currently indicated as the first-line therapy for advanced, ALK-positive NSCLC patients. However, despite crizotinib’s efficacy, patients almost invariably progress, with the central nervous system being one of the most common sites of relapse. Different mechanisms of acquired resistance have been identified, including secondary ALK mutations, ALK copy number alterations and activation of bypass tracks. Different highly potent and brain-penetrant next-generation ALK inhibitors have been developed and tested in NSCLC patients with ALK rearrangements. Ceritinib, a structurally distinct and selective ALK inhibitor, showed 20 times higher potency than crizotinib in inhibiting ALK and had activity against the most common crizotinib-resistant mutations, including L1196M and G1269A, in preclinical models. In Phase I and II studies, ceritinib demonstrated pronounced activity in both crizotinib-naïve and crizotinib-refractory patients, with responses observed regardless of the presence of ALK resistance mutations. Ceritinib was the first ALK inhibitor to be approved for the treatment of crizotinib-refractory, ALK-rearranged NSCLC, and recent results from a Phase III study have demonstrated superior efficacy compared to standard chemotherapy in the first- and second-line setting. We provide an extensive overview of ceritinib from the design of the compound through preclinical data until efficacy and toxicity results from Phase I–III clinical studies. We review the molecular alterations associated with resistance to ceritinib and highlight the importance of obtaining tumor biopsy at progression to tailor therapy based upon the underlying resistance mechanism. We finally provide an outlook on novel rational therapeutic combinations. PMID:28740365

  2. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study).

    PubMed

    Takeuchi, K; Togashi, Y; Kamihara, Y; Fukuyama, T; Yoshioka, H; Inoue, A; Katsuki, H; Kiura, K; Nakagawa, K; Seto, T; Maemondo, M; Hida, T; Harada, M; Ohe, Y; Nogami, N; Yamamoto, N; Nishio, M; Tamura, T

    2016-01-01

    Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  3. [ALK gene fusion associated non-small cell lung cancer: automated immunostainer detection and clinicopathologic perspectives].

    PubMed

    Shen, Qin; Pan, Yi; Yu, Bo; Shi, Shanshan; Liu, Biao; Xu, Yan; Wang, Yanfen; Xia, Qiuyuan; Rao, Qiu; Lu, Zhenfeng; Shi, Qunli; Zhou, Xiaojun

    2015-03-01

    To explore the automated immunostainer screening anaplastic lymphoma kinase (ALK) gene fusion non-small cell lung cancer (NSCLC) and clinicopathological characteristics of the molecular subtype lung cancers. Methods Five hundred and sixty-six cases of NSCLC were collected over a 16 month period. The test for ALK was performed by Ventana automated immunostainer with anti-ALK D5F3. The histological features, treatment and outcome of patients were assessed. Results Thirty-eight cases (6.7%, 38/566) of NSCLC showed ALK gene fusion. The frequency of ALK gene fusion was higher in male (7.1%, 25/350) than that in female (6.0%, 13/216) patients, but not achieving statistical significance (chi2 = 0.270, P = 0.604). ALK + NSCLC was more significantly more frequent in patients < or = 60 years (9.9%, 28/282) than >60 years (3.5% , 10/284) of age. Histologically, the ALK + NSCLCs were mostly adenocarcinoma (81.6%, 31/38) , among which eighteen cases were solid predominant subtype with mucin production; nine cases were acinar predominant subtype; one case was papillary predominant subtype and three cases were invasive mucinous adenocarcinoma. The ALK + non-adenocarcinoma included three cases of squamous cell carcinoma, three cases of adenosquamous carcinoma and one case of pleomorphic carcinoma. Among the ALK + NSCLC patients, the number of non/light cigarette smokers (86. 8% , 33/38) was more than that of heavy smokers. Twenty-nine cases were stages III and IV; twenty-nine cases showed lymph node metastasis; twenty cases showed metastases mostly to brain and bone; and one case showed EGFR gene mutation coexisting with ALK gene fusion. Twelve of fifteen patients received crizotinib therapy and remained stable. Conclusions NSCLC with ALK gene rearrangement shows distinctive clinical and histological features. Ventana-IHC may he a feasible and valid technique for detection of ALK rearrangement in NSCLC.

  4. Precision medicine in ALK rearranged NSCLC: A rapidly evolving scenario.

    PubMed

    Addeo, Alfredo; Tabbò, Fabrizio; Robinson, Tim; Buffoni, Lucio; Novello, Silvia

    2018-02-01

    The identification of anaplastic lymphoma kinase (ALK) rearrangements in 2-5% of non-small cell lung cancer (NSCLC) patients led to the rapid clinical development of its oral tyrosine kinase inhibitor (TKI). Crizotinib was the first ALK inhibitor approved and utilised in the treatment of ALK+ NSCLC patients in the second line setting first and subsequently in the first line one. Since then many other ALK inhibitors have been developed (ceritinib, alectinib, brigatinib, lorlatinib,etc) and the treatment paradigm of these patients has considerably drifted. The questions regarding their treatment at progression remains unanswered at the moment. Our review clarifies what it is the state of the art in the treatment of ALK rearranged NSCLC patients, highlights the mechanisms of primary and secondary resistance mutations and suggests a treatment algorithm based on specific primary resistance or acquired mutations. Studies that enrolled ALK+ NSCLC patients with locally advance or metastatic disease receiving treatment with ALK inhibitor, first or second line, were identified using electronic databases (MEDLINE, EMBASE, and Cochrane library). Trials were excluded if they were phase 1, enrolled less than 10 patients. Overall 1942 patients were included in our review. It confirms the role and the efficacy in first line of Alectinib but it highlights also that all the ALK inhibitors could play a crucial role during the patients' journey. Identifying the different mutations and utilising the most active ALK inhibitor depending on the "up-to-date" driven mutation is the way forward in the management of those patients. the review shows the rapid drifting in the management of ALK+ NSCLC patients and the importance of fully understanding and acknowledging the role of the resistance mutation, primary or acquired. We strongly advocate a comprehensive genomic approach in the management of ALK+ NSCLC patients who develop resistance mutations that are still targetable by a different ALK inhibitor. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. ALK in Non-Small Cell Lung Cancer (NSCLC) Pathobiology, Epidemiology, Detection from Tumor Tissue and Algorithm Diagnosis in a Daily Practice

    PubMed Central

    Hofman, Paul

    2017-01-01

    Patients with advanced-stage non-small cell lung carcinoma (NSCLC) harboring an ALK rearrangement, detected from a tissue sample, can benefit from targeted ALK inhibitor treatment. Several increasingly effective ALK inhibitors are now available for treatment of patients. However, despite an initial favorable response to treatment, in most cases relapse or progression occurs due to resistance mechanisms mainly caused by mutations in the tyrosine kinase domain of ALK. The detection of an ALK rearrangement is pivotal and can be done using different methods, which have variable sensitivity and specificity depending, in particular, on the quality and quantity of the patient’s sample. This review will first highlight briefly some information regarding the pathobiology of an ALK rearrangement and the epidemiology of patients harboring this genomic alteration. The different methods used to detect an ALK rearrangement as well as their advantages and disadvantages will then be examined and algorithms proposed for detection in daily routine practice. PMID:28805682

  6. The potential for crizotinib in non-small cell lung cancer: a perspective review

    PubMed Central

    Bang, Yung-Jue

    2011-01-01

    Tyrosine kinases have a crucial role as key regulators of signaling pathways that influence cell differentiation and growth. Dysregulation of tyrosine kinase-mediated signaling is understood to be an important oncogenic driver. Genetic rearrangements involving the tyrosine kinase anaplastic lymphoma kinase (ALK) gene occur in non-small cell lung cancer (NSCLC), anaplastic large cell lymphomoas, inflammatory myofibroblastic tumors, and other cancers. Cells with abnormal ALK signaling are sensitive to ALK inhibitors such as crizotinib. This review will highlight the discovery of the fusion between echinoderm microtubule-associated protein-like 4 (EML4) and ALK as an oncogenic driver, recognition of other ALK gene rearrangements in NSCLC, and the confirmation that crizotinib is an effective treatment for patients with ALK-positive NSCLC. Work is underway to further define the role for crizotinib in the treatment of ALK-positive lung cancer and other cancers and to investigate the molecular mechanisms for resistance to ALK inhibition with crizotinib. PMID:22084642

  7. The second-generation ALK inhibitor alectinib effectively induces apoptosis in human neuroblastoma cells and inhibits tumor growth in a TH-MYCN transgenic neuroblastoma mouse model.

    PubMed

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Woodfield, Sarah E; Zhang, Huiyuan; Yang, Kristine L; Bieerkehazhi, Shayahati; Qi, Lin; Li, Xiaonan; Gu, Jerry; Xu, Xin; Jin, Jingling; Muscal, Jodi A; Yang, Tianshu; Xu, Guo-Tong; Yang, Jianhua

    2017-08-01

    Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse model, alectinib resulted in decreased tumor growth and prolonged survival time. These results indicate that alectinib may be a promising therapeutic agent for the treatment of NB. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The effects of alkanolamide addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR) / chloroprene rubber (CR) blends

    NASA Astrophysics Data System (ADS)

    Surya, Indra; Fauzi Siregar, Syahrul; Ismail, Hanafi

    2018-03-01

    Effects of alkanolamide (ALK) addition on cure characteristics, swelling behaviour and tensile properties of silica-filled natural rubber (NR)/chloroprene rubber (CR) blends were investigated. The ALK was synthesized from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine, and incorporated into the silica-filled NR/CR blends as a non-toxic rubber additive. The ALK loadings were 0.0, 1.0, 3.0, 5.0 and 7.0 phr. It was found that the ALK exhibited shorter scorch and cure times and higher elongation at break of the silica-filled NR/CR blends. The ALK also exhibited higher torque differences, tensile modulus and tensile strength at a 1.0 phr of ALK loading and then decreased with further increases in the ALK loading. The swelling measurement proved that the 1.0 phr loading of ALK caused the highest degree in crosslink density of the silica-filled NR/CR blends.

  9. Identification of I1171N resistance mutation in ALK-positive non-small-cell lung cancer tumor sample and circulating tumor DNA.

    PubMed

    Johnson, Alison C; Dô, Pascal; Richard, Nicolas; Dubos, Catherine; Michels, Jean Jacques; Bonneau, Jessica; Gervais, Radj

    2016-09-01

    Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is sensitive to ALK inhibitor therapy, but resistance invariably develops and can be mediated by certain secondary mutations. The detection of these mutations is useful to guide treatment decisions, but tumors are not always easily accessible to re-biopsy. We report the case of a patient with ALK-rearranged NSCLC who presented acquired resistance to crizotinib and then alectinib. Sequencing analyses of DNA from a liver metastasis biopsy sample and circulating tumor DNA both found the same I1171N ALK kinase domain mutation, known to confer resistance to certain ALK inhibitors. However, the patient then received ceritinib, a 2nd generation ALK inhibitor, and achieved another partial response. This case underlines how ALK resistance mutation detection in peripheral blood could be a reliable, safer, and less invasive alternative to tissue-based samples in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. ALK in Non-Small Cell Lung Cancer (NSCLC) Pathobiology, Epidemiology, Detection from Tumor Tissue and Algorithm Diagnosis in a Daily Practice.

    PubMed

    Hofman, Paul

    2017-08-12

    Patients with advanced-stage non-small cell lung carcinoma (NSCLC) harboring an ALK rearrangement, detected from a tissue sample, can benefit from targeted ALK inhibitor treatment. Several increasingly effective ALK inhibitors are now available for treatment of patients. However, despite an initial favorable response to treatment, in most cases relapse or progression occurs due to resistance mechanisms mainly caused by mutations in the tyrosine kinase domain of ALK. The detection of an ALK rearrangement is pivotal and can be done using different methods, which have variable sensitivity and specificity depending, in particular, on the quality and quantity of the patient's sample. This review will first highlight briefly some information regarding the pathobiology of an ALK rearrangement and the epidemiology of patients harboring this genomic alteration. The different methods used to detect an ALK rearrangement as well as their advantages and disadvantages will then be examined and algorithms proposed for detection in daily routine practice.

  11. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan.

    PubMed

    Wu, Yi-Cheng; Chang, Il-Chi; Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng

    2013-01-01

    Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended.

  12. Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy.

    PubMed

    Li, Liang-Liang; Qu, Li-Li; Fu, Han-Jiang; Zheng, Xiao-Fei; Tang, Chuan-Hao; Li, Xiao-Yan; Chen, Jian; Wang, Wei-Xia; Yang, Shao-Xing; Wang, Lin; Zhao, Guan-Hua; Lv, Pan-Pan; Zhang, Min; Lei, Yang-Yang; Qin, Hai-Feng; Wang, Hong; Gao, Hong-Jun; Liu, Xiao-Qing

    2017-07-11

    Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment.

  13. Concomitant ALK translocation and EGFR mutation in lung cancer: a comparison of direct sequencing and sensitive assays and the impact on responsiveness to tyrosine kinase inhibitor.

    PubMed

    Won, J K; Keam, B; Koh, J; Cho, H J; Jeon, Y K; Kim, T M; Lee, S H; Lee, D S; Kim, D W; Chung, D H

    2015-02-01

    Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) translocation are considered mutually exclusive in nonsmall-cell lung cancer (NSCLC). However, sporadic cases having concomitant EGFR and ALK alterations have been reported. The present study aimed to assess the prevalence of NSCLCs with concomitant EGFR and ALK alterations using mutation detection methods with different sensitivity and to propose an effective diagnostic and therapeutic strategy. A total of 1458 cases of lung cancer were screened for EGFR and ALK alterations by direct sequencing and flourescence in situ hybridization (FISH), respectively. For the 91 patients identified as having an ALK translocation, peptide nucleic acid (PNA)-clamping real-time PCR, targeted next-generation sequencing (NGS), and mutant-enriched NGS assays were carried out to detect EGFR mutation. EGFR mutations and ALK translocations were observed in 42.4% (612/1445) and 6.3% (91/1445) of NSCLCs by direct sequencing and FISH, respectively. Concomitant EGFR and ALK alterations were detected in four cases, which accounted for 4.4% (4/91) of ALK-translocated NSCLCs. Additional analyses for EGFR using PNA real-time PCR and ultra-deep sequencing by NGS, mutant-enriched NGS increased the detection rate of concomitant EGFR and ALK alterations to 8.8% (8/91), 12.1% (11/91), and 15.4% (14/91) of ALK-translocated NSCLCs, respectively. Of the 14 patients, 3 who were treated with gefitinib showed poor response to gefitinib with stable disease in one and progressive disease in two patients. However, eight patients who received ALK inhibitor (crizotinib or ceritinib) showed good response, with response rate of 87.5% (7/8 with partial response) and durable progression-free survival. A portion of NSCLC patients have concomitant EGFR and ALK alterations and the frequency of co-alteration detection increases when sensitive detection methods for EGFR mutation are applied. ALK inhibitors appear to be effective for patients with co-alterations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Circulating microRNAs as novel biomarkers of ALK-positive non-small cell lung cancer and predictors of response to crizotinib therapy

    PubMed Central

    Fu, Han-Jiang; Zheng, Xiao-Fei; Tang, Chuan-Hao; Li, Xiao-Yan; Chen, Jian; Wang, Wei-Xia; Yang, Shao-Xing; Wang, Lin; Zhao, Guan-Hua; Lv, Pan-Pan; Zhang, Min; Lei, Yang-Yang; Qin, Hai-Feng; Wang, Hong; Gao, Hong-Jun; Liu, Xiao-Qing

    2017-01-01

    Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment. PMID:28514730

  15. Clinical and epidemiological study of EGFR mutations and EML4-ALK fusion genes among Indian patients with adenocarcinoma of the lung.

    PubMed

    Doval, Dc; Prabhash, K; Patil, S; Chaturvedi, H; Goswami, C; Vaid, Ak; Desai, S; Dutt, S; Veldore, Vh; Jambhekar, N; Mehta, A; Hazarika, D; Azam, S; Gawande, S; Gupta, S

    2015-01-01

    Mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a common feature observed in lung adenocarcinoma. A fusion gene between echinoderm microtubule-associated protein-like 4 (EML4) and the intracellular domain of anaplastic lymphoma kinase (ALK), named EML4-ALK, has been identified in a subset of non-small-cell lung cancer (NSCLC) tumors. The objective of this study was to determine the prevalence of EGFR mutations and EML4-ALK fusions in Indian patients with NSCLC (adenocarcinoma) as well as evaluate their clinical characteristics. Patients with NSCLC, adenocarcinoma histology, whose tumors had been tested for EGFR mutational status, were considered for this study. ALK gene rearrangement was detected by fluorescence in situ hybridization using the Vysis ALK Break Apart Rearrangement Probe Kit. ALK mutation was tested in samples that were negative for EGFR mutation. A total of 500 NSCLC adenocarcinoma patients were enrolled across six centers. There were 337 (67.4%) men and 163 (32.6%) women with a median age of 58 years. One hundred and sixty-four (32.8%) blocks were positive for EGFR mutations, whereas 336 (67.2%) were EGFR wild-type. Of the 336 EGFR-negative blocks, EML4-ALK fusion gene was present in 15 (4.5%) patients, whereas 321 (95.5%) tumors were EML4-ALK negative. The overall incidence of EML4-ALK fusion gene was 3% (15/500). The incidence of EGFR mutations (33%) in this Indian population is close to the reported incidence in Asian patients. EML4-ALK gene fusions are present in lung adenocarcinomas from Indian patients, and the 3% incidence of EML4-ALK gene fusion in EGFR mutation-negative cases is similar to what has been observed in other Western and Asian populations. The mutual exclusivity of EML4-ALK and EGFR mutations suggests implementation of biomarker testing for tumors harboring ALK rearrangements in order to identify patients that can benefit from newer targeted therapies.

  16. Comparison of IHC, FISH and RT-PCR Methods for Detection of ALK Rearrangements in 312 Non-Small Cell Lung Cancer Patients in Taiwan

    PubMed Central

    Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng

    2013-01-01

    Background Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Methods Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Results Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Conclusions Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended. PMID:23951022

  17. Comparing four different ALK antibodies with manual immunohistochemistry (IHC) to screen for ALK-rearranged non-small cell lung cancer (NSCLC).

    PubMed

    Shen, Qin; Wang, Xuan; Yu, Bo; Shi, Shanshan; Liu, Biao; Wang, Yanfen; Xia, Qiuyuan; Rao, Qiu; Zhou, Xiaojun

    2015-12-01

    Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) screening is essential to its treatment such as crizotinib. Different assays have been developed to detect ALK rearrangements, such as fluorescence in situ hybridization (FISH), reverse transcriptase-PCR (RT-PCR), and immunohistochemistry (IHC). However, ALK detection has not been applied widely in all hospitals. Moreover, IHC has been proposed to be a pre-screening tool because of its wide application in clinics. Since the low expression of ALK protein, the sensitivity and specificity of ALK antibody are the keys to the success of IHC screening. Therefore, we compared different antibodies to find the best one for IHC detection. We evaluated ALK expression by four different ALK antibodies: clone D5F3 (Ventana), clone D5F3 (CST), clone 1A4/1H7 (OriGene Tech.), and clone 5A4 (Abcam) based on manual IHC in a cohort of 60 NSCLCs. The results were compared with those from automated IHC (clone D5F3, Ventana). All cases were evaluated independently by ALK FISH. 32 ALK-positive and 28 ALK-negative NSCLCs were identified by automated IHC (D5F3, Ventana) and FISH analysis. Based on conventional manual IHC, the sensitivity of four antibodies-D5F3 (Ventana), D5F3 (CST), 1A4/1H7 (OriGene Tech.), and 5A4 (Abcam)-was 93.8%, 84.4%, 93.8%, and 56.3%, respectively. Their specificities and positive predictive values were 100%. The percentage of strong-moderate staining was 65.6%, 62.5%, 68.8%, and 21.9%, respectively. Compared with automated IHC (D5F3, Ventana), each staining concordance was 96.7%, 91.7%, 96.7%, and 76.7%, respectively, and each presented staining heterogeneity (weak-moderate-strong intensity). These data indicated that manual IHC with a more reliable ALK antibody might provide an effective strategy for screening ALK gene rearrangements in all NSCLC patients, followed by confirmatory FISH analysis in IHC-positive cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Clinical Significance of EML4-ALK Fusion Gene and Association with EGFR and KRAS Gene Mutations in 208 Chinese Patients with Non-Small Cell Lung Cancer

    PubMed Central

    Wei, Sen; Wang, Jing; Wang, Min; Wang, Yuli; Zhou, Qinghua; Liu, Hongyu; Chen, Jun

    2013-01-01

    The EML4-ALK fusion gene has been recently identified in a small subset of non-small cell lung cancer (NSCLC) patients who respond positively to ALK inhibitors. The characteristics of the EML4-ALK fusion gene in Chinese patients with NSCLC are poorly understood. Here, we report on the prevalence of EML4-ALK, EGFR status and KRAS mutations in 208 Chinese patients with NSCLC. EGFR mutations were found in 24.5% (51/208) of patients. In concordance with previous reports, these mutations were identified at high frequencies in females (47.5% vs 15.0% in males; P<0.05); never-smokers (42.3% vs 13.9% in smokers; P<0.05), and adenocarcinoma patients (44.2% vs 8.0% in non-adenocarcinoma patients; P<0.05). There were only 2.88% (6/208) patients with KRAS mutations in our study group. We identified 7 patients who harbored the EML4-ALK fusion gene (3.37%, 7/208), including 4 cases with variant 3 (57.1%), 2 with variant 1, and 1 with variant 2. All positive cases corresponded to female patients (11.5%, 7/61). Six of the positive cases were non-smokers (7.69%, 6/78). The incidence of EML4-ALK translocation in female, non-smoking adenocarcinoma patients was as high as 15.2% (5/33). No EGFR/KRAS mutations were detected among the EML4-ALK positive patients. Pathological analysis showed no difference between solid signet-ring cell pattern (4/7) and mucinous cribriform pattern (3/7) in ALK-positive patients. Immunostaining showed intratumor heterogeneity of ALK rearrangement in primary carcinomas and 50% (3/6) of metastatic tumors with ALK-negative staining. Meta-analysis demonstrated that EML4-ALK translocation occurred in 4.84% (125/2580) of unselected patients with NSCLC, and was also predominant in non-smoking patients with adenocarcinoma. Taken together, EML4-ALK translocations were infrequent in the entire NSCLC patient population, but were frequent in the NSCLC subgroup of female, non-smoker, adenocarcinoma patients. There was intratumor heterogeneity of ALK rearrangement in primary carcinomas and at metastatic sites. PMID:23341890

  19. ALK-FISH borderline cases in non-small cell lung cancer: Implications for diagnostics and clinical decision making.

    PubMed

    von Laffert, Maximilian; Stenzinger, Albrecht; Hummel, Michael; Weichert, Wilko; Lenze, Dido; Warth, Arne; Penzel, Roland; Herbst, Hermann; Kellner, Udo; Jurmeister, Philipp; Schirmacher, Peter; Dietel, Manfred; Klauschen, Frederick

    2015-12-01

    Fluorescence in-situ hybridization (FISH) for the detection of ALK-rearrangements in non-small cell lung cancer (NSCLC) is based on at first sight clear cut-off criteria (≥15% of tumor cells) for split signals (SS) and single red signals (SRS). However, NSCLC with SS-counts around the cut-off may cause interpretation problems. Tissue microarrays containing 753 surgically resected NSCLCs were independently tested for ALK-alterations by FISH and immunohistochemistry (IHC). Our analysis focused on samples with SS/SRS in the range between 10% and 20% (ALK-FISH borderline group). To better understand the role of these samples in routine diagnostics, we performed statistical analyses to systematically estimate the probability of ALK-FISH-misclassification (false negative or positive) for different numbers of evaluated tumor cell nuclei (30, 50, 100, and 200). 94.3% (710/753) of the cases were classified as unequivocally (<10% or ≥20%) ALK-FISH-negative (93%; 700/753) or positive (1.3%; 10/753) and showed concordant IHC results. 5.7% (43/753) of the samples showed SS/SRS between 10% and 20% of the tumor cells. Out of these, 7% (3/43; ALK-FISH: 14%, 18% and 20%) were positive by ALK-IHC, while 93% (40/43) had no detectable expression of the ALK-protein. Statistical analysis showed that ALK-FISH misclassifications occur frequently for samples with rearrangements between 10% and 20% if ALK-characterization is based on a sharp cut-off point (15%). If results in this interval are defined as equivocal (borderline), statistical sampling-related ALK-FISH misclassifications will occur in less than 1% of the cases if 100 tumor cells are evaluated. While ALK status can be determined robustly for the majority of NSCLC by FISH our analysis showed that ∼6% of the cases belong to a borderline group for which ALK-FISH evaluation has only limited reliability due to statistical sampling effects. These cases should be considered equivocal and therapy decisions should include additional tests and clinical considerations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. EML4-ALK rearrangement in squamous cell carcinoma shows significant response to anti-ALK inhibitor drugs crizotinib and alectinib.

    PubMed

    Huang, Thomas; Engelmann, Brigitte J; Morgan, Rachael M; Absher, Kimberly J; Kolesar, Jill M; Villano, John L

    2018-05-01

    EML4-ALK alterations are more common in adenocarcinomas and are rarely found in squamous cell histology. In documented cases, the majority of EML4-ALK translocations are identified in squamous cell histology and occur in patients with no or light smoking history. We report an EML4-ALK4 translocation in a 50-year-old patient with squamous cell carcinoma and an 18 pack-year smoking history. The patient had a near complete response in the CNS to alectinib treatment. Our observation suggests that EML4-ALK genomic testing may be clinically useful in patients with heavy smoking history.

  1. Sensitive and affordable diagnostic assay for the quantitative detection of anaplastic lymphoma kinase (ALK) alterations in patients with non-small cell lung cancer.

    PubMed

    Dama, Elisa; Tillhon, Micol; Bertalot, Giovanni; de Santis, Francesca; Troglio, Flavia; Pessina, Simona; Passaro, Antonio; Pece, Salvatore; de Marinis, Filippo; Dell'Orto, Patrizia; Viale, Giuseppe; Spaggiari, Lorenzo; Di Fiore, Pier Paolo; Bianchi, Fabrizio; Barberis, Massimo; Vecchi, Manuela

    2016-06-14

    Accurate detection of altered anaplastic lymphoma kinase (ALK) expression is critical for the selection of lung cancer patients eligible for ALK-targeted therapies. To overcome intrinsic limitations and discrepancies of currently available companion diagnostics for ALK, we developed a simple, affordable and objective PCR-based predictive model for the quantitative measurement of any ALK fusion as well as wild-type ALK upregulation. This method, optimized for low-quantity/-quality RNA from FFPE samples, combines cDNA pre-amplification with ad hoc generated calibration curves. All the models we derived yielded concordant predictions when applied to a cohort of 51 lung tumors, and correctly identified all 17 ALK FISH-positive and 33 of the 34 ALK FISH-negative samples. The one discrepant case was confirmed as positive by IHC, thus raising the accuracy of our test to 100%. Importantly, our method was accurate when using low amounts of input RNA (10 ng), also in FFPE samples with limited tumor cellularity (5-10%) and in FFPE cytology specimens. Thus, our test is an easily implementable diagnostic tool for the rapid, efficacious and cost-effective screening of ALK status in patients with lung cancer.

  2. Detection of an ALK Fusion in Colorectal Carcinoma by Hybrid Capture-Based Assay of Circulating Tumor DNA.

    PubMed

    Lai, Andrea Z; Schrock, Alexa B; Erlich, Rachel L; Ross, Jeffrey S; Miller, Vincent A; Yakirevich, Evgeny; Ali, Siraj M; Braiteh, Fadi

    2017-07-01

    ALK rearrangements have been observed in 0.05%-2.5% of patients with colorectal cancers (CRCs) and are predicted to be oncogenic drivers largely mutually exclusive of KRAS, NRAS, or BRAF alterations. Here we present the case of a patient with metastatic CRC who was treatment naïve at the time of molecular testing. Initial ALK immunohistochemistry (IHC) staining was negative, but parallel genomic profiling of both circulating tumor DNA (ctDNA) and tissue using similar hybrid capture-based assays each identified an identical STRN-ALK fusion. Subsequent ALK IHC staining of the same specimens was positive, suggesting that the initial result was a false negative. This report is the first instance of an ALK fusion in CRC detected using a ctDNA assay. Current guidelines for colorectal cancer (CRC) only recommend genomic assessment of KRAS, NRAS, BRAF, and microsatellite instability (MSI) status. ALK rearrangements are rare in CRC, but patients with activating ALK fusions have responded to targeted therapies ALK rearrangements can be detected by genomic profiling of ctDNA from blood or tissue, and this methodology may be informative in cases where immunohistochemistry (IHC) or other standard testing is negative. © AlphaMed Press 2017.

  3. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  4. Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib.

    PubMed

    Gainor, Justin F; Sherman, Carol A; Willoughby, Kathryn; Logan, Jennifer; Kennedy, Elizabeth; Brastianos, Priscilla K; Chi, Andrew S; Shaw, Alice T

    2015-02-01

    Leptomeningeal metastases (LM) are an increasingly frequent and devastating complication of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). Currently, the optimal management of LM in ALK-positive patients remains poorly understood as these patients have been routinely excluded from clinical trials. We describe four ALK-positive patients with LM who were treated with the next-generation ALK inhibitor alectinib through single-patient, compassionate use protocols at two institutions. All patients had previously been treated with both FDA-approved ALK inhibitors--crizotinib and ceritinib. Patients received alectinib at a starting dose of 600 mg twice daily. Four ALK-positive NSCLC patients with symptomatic leptomeningeal disease were identified. Three of four patients experienced significant clinical and radiographic improvements in LM upon treatment with alectinib. A fourth patient had stable intracranial disease for 4 months before eventual systemic disease progression. Overall, alectinib was well tolerated. One patient required dose reduction due to grade 2 hyperbilirubinemia. Alectinib is active in ALK-rearranged NSCLC patients with LM, including in patients previously treated with crizotinib and ceritinib. Additional prospective studies of alectinib in ALK-positive patients with LM are warranted.

  5. Alectinib Salvages CNS Relapses in ALK-Positive Lung Cancer Patients Previously Treated with Crizotinib and Ceritinib

    PubMed Central

    Gainor, Justin F.; Sherman, Carol A.; Willoughby, Kathryn; Logan, Jennifer; Kennedy, Elizabeth; Brastianos, Priscilla K.; Chi, Andrew S.; Shaw, Alice T.

    2014-01-01

    Background Leptomeningeal metastases (LM) are an increasingly frequent and devastating complication of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Currently, the optimal management of LM in ALK-positive patients remains poorly understood as these patients have been routinely excluded from clinical trials. Methods We describe four ALK-positive patients with LM who were treated with the next-generation ALK inhibitor alectinib through single-patient, compassionate use protocols at two institutions. All patients had previously been treated with both FDA-approved ALK inhibitors—crizotinib and ceritinib. Patients received alectinib at a starting dose of 600 mg twice daily. Results Four ALK-positive NSCLC patients with symptomatic leptomeningeal disease were identified. Three of four patients experienced significant clinical and radiographic improvements in LM upon treatment with alectinib. A fourth patient had stable intracranial disease for four months before eventual systemic disease progression. Overall, alectinib was well tolerated. One patient required dose reduction due to grade 2 hyperbilirubinemia. Conclusions Alectinib is active in ALK-rearranged NSCLC patients with LM, including in patients previously treated with crizotinib and ceritinib. Additional prospective studies of alectinib in ALK-positive patients with LM are warranted. PMID:25526238

  6. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel.

    PubMed

    Gunasekera, Thusitha S; Bowen, Loryn L; Zhou, Carol E; Howard-Byerly, Susan C; Foley, William S; Striebich, Richard C; Dugan, Larry C; Ruiz, Oscar N

    2017-05-15

    Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n -C 8 and n -C 10 The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. Copyright © 2017 American Society for Microbiology.

  7. The Winds of Change in Russian Higher Education: Is the East Moving West?

    ERIC Educational Resources Information Center

    Timoshenko, Konstantin

    2011-01-01

    In the last 30 years, major changes have taken place in the public sector worldwide under the rubric of New Public Management [NPM]. The education sector is perhaps one of the key areas drawing an intense interest and discussion in the wake of NPM. The Russian State seems to be no longer an exception to this global trend. In line with this, the…

  8. Characterization of a prototype neutron portal monitor detector

    NASA Astrophysics Data System (ADS)

    Nakhoul, Nabil

    The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.

  9. Public Sector Reform and Governance for Adaptation: Implications of New Public Management for Adaptive Capacity in Mexico and Norway

    NASA Astrophysics Data System (ADS)

    Eakin, Hallie; Eriksen, Siri; Eikeland, Per-Ove; Øyen, Cecilie

    2011-03-01

    Although many governments are assuming the responsibility of initiating adaptation policy in relation to climate change, the compatibility of "governance-for-adaptation" with the current paradigms of public administration has generally been overlooked. Over the last several decades, countries around the globe have embraced variants of the philosophy of administration broadly called "New Public Management" (NPM) in an effort to improve administrative efficiencies and the provision of public services. Using evidence from a case study of reforms in the building sector in Norway, and a case study of water and flood risk management in central Mexico, we analyze the implications of the adoption of the tenets of NPM for adaptive capacity. Our cases illustrate that some of the key attributes associated with governance for adaptation—namely, technical and financial capacities; institutional memory, learning and knowledge; and participation and accountability—have been eroded by NPM reforms. Despite improvements in specific operational tasks of the public sector in each case, we show that the success of NPM reforms presumes the existence of core elements of governance that have often been found lacking, including solid institutional frameworks and accountability. Our analysis illustrates the importance of considering both longer-term adaptive capacities and short-term efficiency goals in public sector administration reform.

  10. Public sector reform and governance for adaptation: implications of new public management for adaptive capacity in Mexico and Norway.

    PubMed

    Eakin, Hallie; Eriksen, Siri; Eikeland, Per-Ove; Øyen, Cecilie

    2011-03-01

    Although many governments are assuming the responsibility of initiating adaptation policy in relation to climate change, the compatibility of "governance-for-adaptation" with the current paradigms of public administration has generally been overlooked. Over the last several decades, countries around the globe have embraced variants of the philosophy of administration broadly called "New Public Management" (NPM) in an effort to improve administrative efficiencies and the provision of public services. Using evidence from a case study of reforms in the building sector in Norway, and a case study of water and flood risk management in central Mexico, we analyze the implications of the adoption of the tenets of NPM for adaptive capacity. Our cases illustrate that some of the key attributes associated with governance for adaptation--namely, technical and financial capacities; institutional memory, learning and knowledge; and participation and accountability--have been eroded by NPM reforms. Despite improvements in specific operational tasks of the public sector in each case, we show that the success of NPM reforms presumes the existence of core elements of governance that have often been found lacking, including solid institutional frameworks and accountability. Our analysis illustrates the importance of considering both longer-term adaptive capacities and short-term efficiency goals in public sector administration reform.

  11. Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio

    PubMed Central

    Rurangwa, Eugene; Sipkema, Detmer; Kals, Jeroen; ter Veld, Menno; Forlenza, Maria; Bacanu, Gianina M.; Smidt, Hauke; Palstra, Arjan P.

    2015-01-01

    Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM) of animal origin (ragworm Nereis virens) on the gastrointestinal tract (GIT). Microbial development was assessed over the first 21 days post egg fertilization (dpf) through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq). Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM. PMID:25983694

  12. Detection of ALK translocation in non-small cell lung carcinoma (NSCLC) and its clinicopathological significance using the Ventana immunohistochemical staining method: a single-center large-scale investigation of 1, 504 Chinese Han patients

    PubMed Central

    Yang, Lin; Ling, Yun; Guo, Lei; Ma, Di; Xue, Xuemin; Wang, Bingning; Li, Junling; Ying, Jianming

    2016-01-01

    Objective The novel fully automated immunohistochemistry (IHC) assay-Ventana anaplastic lymphoma kinase (ALK)-D5F3 for screening ALK rearrangements has been approved by China’s Food and Drug Administration in 2013, our previous study disclosed a highly specificity and sensitivity nearly 100%, and its efficacy needs to be evaluated in a large cohort of primary lung adenocarcinoma patients, and to compare clinicopathological features with ALK (+) and ALK (-) lung adenocarcinoma. Methods A total of 1,504 consecutive surgical lung adenocarcinoma cases of Chinese Han population were collected and re-diagnosed according to the 2011 multidisciplinary classification of lung adenocarcinoma. Fully automated Ventana ALK-D5F3 IHC staining with a binary scoring was adopted to evaluate staining and correlated with clinicopathological characters, including age, sex, differentiation degree, histological subtype, lymph node metastasis, and clinical staging. ALK (+) patients were followed-up, and targeted therapy of ALK-inhibitors was adopted and observed in patients with stage IV according to the NCCN guideline. Results ALK positive adenocarcinomas were identified in 6.6% of the surgically resected 1,504 NSCLCs, and significantly younger than the negative group (P<0.05).Mucinous adenocarcinoma (28.2%) was determined to be predominant in ALK (+) cases, followed by the solid type (11.7%), specific type (6.8%), papillary type (5.6%), acinar type (5.5%), and lepidic type (3.1%), and the differences were statistically significant (χ2=42.011, P<0.05). ALK (+) adenocarcinoma with lymph node metastasis (10.8%) were significantly higher than that without lymph node metastasis (4.5%) (χ2=19.809, P<0.05); and ALK (+) in phase IV (20%) was significantly higher than phase III (12.9%), phase II (4.2%), phase I (4.5%), and phase 0 (0) (χ2=36.068, P<0.05). Multivariate logistic regression disclosed that patient age, AJCC staging, and histological mucinous subtype were correlated with ALK positive staining (OR=0.959, 1.578, 5.036, respectively). Sixty eight patients had followed-up results, five patients out of which primarily diagnosed or progressed into Stage IV benefited well from targeted therapy with Crizotinib. Conclusions The ALK fusion protein was seen in 6.6% Chinese NSCLC patients, and mostly seen in younger, clinically higher staging, mucinous and solid predominant adenocarcinoma. Clinical trials in patients of Stage IV confirmed that ALK-D5F3 Ventana IHC is serviceable in screening ALK-positive candidates for molecular targeted therapy. PMID:27877008

  13. Detection of ALK translocation in non-small cell lung carcinoma (NSCLC) and its clinicopathological significance using the Ventana immunohistochemical staining method: a single-center large-scale investigation of 1, 504 Chinese Han patients.

    PubMed

    Yang, Lin; Ling, Yun; Guo, Lei; Ma, Di; Xue, Xuemin; Wang, Bingning; Li, Junling; Ying, Jianming

    2016-10-01

    The novel fully automated immunohistochemistry (IHC) assay-Ventana anaplastic lymphoma kinase (ALK)-D5F3 for screening ALK rearrangements has been approved by China's Food and Drug Administration in 2013, our previous study disclosed a highly specificity and sensitivity nearly 100%, and its efficacy needs to be evaluated in a large cohort of primary lung adenocarcinoma patients, and to compare clinicopathological features with ALK (+) and ALK (-) lung adenocarcinoma. A total of 1,504 consecutive surgical lung adenocarcinoma cases of Chinese Han population were collected and re-diagnosed according to the 2011 multidisciplinary classification of lung adenocarcinoma. Fully automated Ventana ALK-D5F3 IHC staining with a binary scoring was adopted to evaluate staining and correlated with clinicopathological characters, including age, sex, differentiation degree, histological subtype, lymph node metastasis, and clinical staging. ALK (+) patients were followed-up, and targeted therapy of ALK-inhibitors was adopted and observed in patients with stage IV according to the NCCN guideline. ALK positive adenocarcinomas were identified in 6.6% of the surgically resected 1,504 NSCLCs, and significantly younger than the negative group (P<0.05).Mucinous adenocarcinoma (28.2%) was determined to be predominant in ALK (+) cases, followed by the solid type (11.7%), specific type (6.8%), papillary type (5.6%), acinar type (5.5%), and lepidic type (3.1%), and the differences were statistically significant (χ 2 =42.011, P<0.05). ALK (+) adenocarcinoma with lymph node metastasis (10.8%) were significantly higher than that without lymph node metastasis (4.5%) (χ 2 =19.809, P<0.05); and ALK (+) in phase IV (20%) was significantly higher than phase III (12.9%), phase II (4.2%), phase I (4.5%), and phase 0 (0) (χ 2 =36.068, P<0.05). Multivariate logistic regression disclosed that patient age, AJCC staging, and histological mucinous subtype were correlated with ALK positive staining (OR=0.959, 1.578, 5.036, respectively). Sixty eight patients had followed-up results, five patients out of which primarily diagnosed or progressed into Stage IV benefited well from targeted therapy with Crizotinib. The ALK fusion protein was seen in 6.6% Chinese NSCLC patients, and mostly seen in younger, clinically higher staging, mucinous and solid predominant adenocarcinoma. Clinical trials in patients of Stage IV confirmed that ALK-D5F3 Ventana IHC is serviceable in screening ALK-positive candidates for molecular targeted therapy.

  14. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins.

    PubMed

    Kang, Chung Hyo; Yun, Jeong In; Lee, Kwangho; Lee, Chong Ock; Lee, Heung Kyoung; Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho; Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un; Jeong, Hye Gwang; Kim, Hyoung Rae; Park, Chi Hoon

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151_L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15-20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Conformational Transition of Key Structural Features Involved in Activation of ALK Induced by Two Neuroblastoma Mutations and ATP Binding: Insight from Accelerated Molecular Dynamics Simulations.

    PubMed

    He, Mu-Yang; Li, Wei-Kang; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2018-04-17

    Deregulated kinase activity of anaplastic lymphoma kinase (ALK) has been observed to be implicated in the development of tumor progression. The activation mechanism of ALK is proposed to be similar to other receptor tyrosine kinases (RTKs), but the distinct static X-ray crystal conformation of ALK suggests its unique conformational transition. Herein, we have illustrated the dynamic conformational property of wild-type ALK as well as the kinase activation equilibrium variation induced by two neuroblastoma mutations (R1275Q and Y1278S) and ATP binding by performing enhanced sampling accelerated Molecular Dynamics (aMD) simulations. The results suggest that the wild-type ALK is mostly favored in the inactive state, whereas the mutations and ATP binding promote a clear shift toward the active-like conformation. The R1275Q mutant stabilizes the active conformation by rigidifying the αC-in conformation. The Y1278S mutant promotes activation at the expense of a π-stacking hydrophobic cluster, which plays a critical role in the stabilization of the inactive conformation of native ALK. ATP produces a more compact active site and thereby facilitates the activation of ALK. Taken together, these findings not only elucidate the diverse conformations in different ALKs but can also shed light on new strategies for protein engineering and structural-based drug design for ALK.

  16. First-line treatment of advanced ALK-positive non-small-cell lung cancer

    PubMed Central

    Gandhi, Shipra; Chen, Hongbin; Zhao, Yujie; Dy, Grace K

    2015-01-01

    Non-small-cell lung cancer (NSCLC) is one of the leading causes of cancer deaths, both within the US and worldwide. There have been major treatment advances in NSCLC over the past decade with the discovery of molecular drivers of NSCLC, which has ushered in an era of personalized medicine. There are several actionable genetic aberrations in NSCLC, such as epidermal growth factor receptor and anaplastic lymphoma kinase (ALK). In 3%–7% of NSCLC, a chromosomal inversion event in chromosome 2 leads to fusion of a portion of the ALK gene with the echinoderm microtubule–associated protein-like 4 (EML4) gene. The constitutive activation of the ALK fusion oncogene renders it vulnerable to therapeutic intervention. This review focuses on the first-line treatment of advanced ALK-positive NSCLC using ALK inhibitors. Crizotinib was the first agent proven to be efficacious as first-line treatment for ALK-positive NSCLC. However, acquired resistance inevitably develops. The central nervous system is a sanctuary site that represents a common site for disease progression as well. Hence, more potent, selective next-generation ALK inhibitors that are able to cross the blood–brain barrier have been developed for treatment against crizotinib-resistant ALK-positive NSCLC and are also currently being evaluated for first-line therapy as well. In this review, we provide summary of the clinical experience with these drugs in the treatment of ALK-positive NSCLC. PMID:28210152

  17. Journey of the ALK-inhibitor CH5424802 to phase II clinical trial.

    PubMed

    Latif, Muhammad; Saeed, Aamer; Kim, Seong Hwan

    2013-09-01

    The anaplastic lymphoma kinase (ALK) receptor tyrosine kinase represents a potential therapeutic target. Specially, a variety of alterations in the ALK gene including mutations, overexpression, amplification, translocations and structural rearrangements, are involved in human cancer tumorigenesis. The second-generation ALK inhibitor CH5424802 (development code: AF802; Chugai Pharmaceutical, a subsidiary of Roche) achieves tumor regression with excellent tolerance and shows promising efficacy in patients with ALK-positive non-small cell lung cancer. CH5424802 shows good kinase selectivity, has a promising pharmacokinetics profile, and has strong antiproliferative activity in several ALK-driven tumor models. CH5424802 has also shown anti-tumor activity in mouse xenograft studies. Here, we summarize recent advances and the evidence that CH5424802 acts as an ALK inhibitor. We also discuss its potential for further development as an anticancer drug in clinical trials.

  18. Lung Adenocarcinoma with Anaplastic Lymphoma Kinase (ALK) Rearrangement Presenting as Carcinoma of Unknown Primary Site: Recognition and Treatment Implications.

    PubMed

    Hainsworth, John D; Anthony Greco, F

    Molecular cancer classifier assays are being used with increasing frequency to predict tissue of origin and direct site-specific therapy for patients with carcinoma of unknown primary site (CUP). We postulated some CUP patients predicted to have non-small-cell lung cancer (NSCLC) by molecular cancer classifier assay may have anaplastic lymphoma kinase (ALK) rearranged tumors, and benefit from treatment with ALK inhibitors. We retrospectively reviewed CUP patients who had the 92-gene molecular cancer classifier assay (CancerTYPE ID; bioTheranostics, Inc.) performed on tumor biopsies to identify patients predicted to have NSCLC. Beginning in 2011, we have tested these patients for ALK rearrangements and epidermal growth factor receptor (EGFR) activating mutations, based on the proven therapeutic value of these targets in NSCLC. We identified CUP patients with predicted NSCLC who were subsequently found to have ALK rearrangements. NSCLC was predicted by the molecular cancer classifier assay in 37 of 310 CUP patients. Twenty-one of these patients were tested for ALK rearrangements, and four had an EML4-ALK fusion gene detected. The diagnosis of lung cancer was strongly suggested in only one patient prior to molecular testing. One patient received ALK inhibitor treatment and has had prolonged benefit. We report on patients with lung adenocarcinoma and ALK rearrangements originally diagnosed as CUP who were identified using a molecular cancer classifier assay. Although ALK inhibitors treatment experience is limited, this newly identifiable group of lung cancer patients should be considered for therapy according to guidelines for stage IV ALK-positive NSCLC.

  19. Lung Adenocarcinoma with Anaplastic Lymphoma Kinase (ALK) Rearrangement Presenting as Carcinoma of Unknown Primary Site: Recognition and Treatment Implications.

    PubMed

    Hainsworth, John D; Anthony Greco, F

    2016-03-01

    Molecular cancer classifier assays are being used with increasing frequency to predict tissue of origin and direct site-specific therapy for patients with carcinoma of unknown primary site (CUP). We postulated some CUP patients predicted to have non-small-cell lung cancer (NSCLC) by molecular cancer classifier assay may have anaplastic lymphoma kinase (ALK) rearranged tumors, and benefit from treatment with ALK inhibitors. We retrospectively reviewed CUP patients who had the 92-gene molecular cancer classifier assay (CancerTYPE ID; bioTheranostics, Inc.) performed on tumor biopsies to identify patients predicted to have NSCLC. Beginning in 2011, we have tested these patients for ALK rearrangements and epidermal growth factor receptor (EGFR) activating mutations, based on the proven therapeutic value of these targets in NSCLC. We identified CUP patients with predicted NSCLC who were subsequently found to have ALK rearrangements. NSCLC was predicted by the molecular cancer classifier assay in 37 of 310 CUP patients. Twenty-one of these patients were tested for ALK rearrangements, and four had an EML4-ALK fusion gene detected. The diagnosis of lung cancer was strongly suggested in only one patient prior to molecular testing. One patient received ALK inhibitor treatment and has had prolonged benefit. We report on patients with lung adenocarcinoma and ALK rearrangements originally diagnosed as CUP who were identified using a molecular cancer classifier assay. Although ALK inhibitors treatment experience is limited, this newly identifiable group of lung cancer patients should be considered for therapy according to guidelines for stage IV ALK-positive NSCLC.

  20. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Hao; Lin, Wan; Kannan, Kalpana; Luo, Liming; Li, Jing; Chao, Pei-Wen; Wang, Yan; Chen, Yu-Ping; Gu, Jiang; Yen, Laising

    2013-01-01

    It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response. PMID:24243830

  1. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy.

    PubMed Central

    Huber, B E; Richards, C A; Krenitsky, T A

    1991-01-01

    An approach involving retroviral-mediated gene therapy for the treatment of neoplastic disease is described. This therapeutic approach is called "virus-directed enzyme/prodrug therapy" (VDEPT). The VDEPT approach exploits the transcriptional differences between normal and neoplastic cells to achieve selective killing of neoplastic cells. We now describe development of the VDEPT approach for the treatment of hepatocellular carcinoma. Replication-defective, amphotrophic retroviruses were constructed containing a chimeric varicella-zoster virus thymidine kinase (VZV TK) gene that is transcriptionally regulated by either the hepatoma-associated alpha-fetoprotein or liver-associated albumin transcriptional regulatory sequences. Subsequent to retroviral infection, expression of VZV TK was limited to either alpha-fetoprotein- or albumin-positive cells, respectively. VZV TK metabolically activated the nontoxic prodrug 6-methoxypurine arabinonucleoside (araM), ultimately leading to the formation of the cytotoxic anabolite adenine arabinonucleoside triphosphate (araATP). Cells that selectively expressed VZV TK became selectively sensitive to araM due to the VZV TK-dependent anabolism of araM to araATP. Hence, these retroviral-delivered chimeric genes generated tissue-specific expression of VZV TK, tissue-specific anabolism of araM to araATP, and tissue-specific cytotoxicity due to araM exposure. By utilizing such retroviral vectors, araM was anabolized to araATP in hepatoma cells, producing a selective cytotoxic effect. Images PMID:1654555

  2. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors

    DOE PAGES

    Carbonell, Alberto; Fahlgren, Noah; Mitchell, Skyler; ...

    2015-05-20

    Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distalmore » stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific. Finally, significance Statement A series of amiRNA vectors based on Oryza sativa MIR390 (OsMIR390) precursor were developed for simple, cost-effective and large-scale synthesis of amiRNA constructs to silence genes in monocots. Unexpectedly, amiRNAs produced from chimeric OsMIR390-based precursors including Arabidopsis thaliana MIR390a distal stem-loop sequences accumulated elevated levels of highly effective and specific amiRNAs in transgenic Brachypodium distachyon plants.« less

  3. Scaffold hopping identifies 6,8-disubstituted purines as novel anaplastic lymphoma kinase inhibitors.

    PubMed

    Schlütke, Laura; Immer, Markus; Preu, Lutz; Totzke, Frank; Schächtele, Christoph; Kubbutat, Michael H G; Kunick, Conrad

    2018-05-01

    Rearrangements of anaplastic lymphoma kinase (ALK) are associated with several cancer diseases. Due to resistance development against existing ALK-inhibitors, new, structurally unrelated inhibitors are required. By a scaffold hopping strategy, 6,8-disubstituted purines were designed as analogues of similar ALK-inhibiting thieno[3,2-d]pyrimidines. While the new title compounds indeed inhibited ALK and several ALK mutants in submicromolar concentrations, they retained poor water solubility. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Factors Affecting EWS-FLI1 Activity in Ewing's Sarcoma

    PubMed Central

    Herrero-Martin, David; Fourtouna, Argyro; Niedan, Stephan; Riedmann, Lucia T.; Schwentner, Raphaela; Aryee, Dave N. T.

    2011-01-01

    Ewing's sarcoma family tumors (ESFT) are characterized by specific chromosomal translocations, which give rise to EWS-ETS chimeric proteins. These aberrant transcription factors are the main pathogenic drivers of ESFT. Elucidation of the factors influencing EWS-ETS expression and/or activity will guide the development of novel therapeutic agents against this fatal disease. PMID:22135504

  5. Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Cabello-Verrugio, Claudio; Armisén, Ricardo; Varela, Diego; Simon, Felipe

    2015-05-01

    To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism. Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel. Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4. TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

  6. Generation of the novel monoclonal antibody against TLS/EWS-CHOP chimeric oncoproteins that is applicable to one of the most sensitive assays for myxoid and round cell liposarcomas.

    PubMed

    Oikawa, Kosuke; Ishida, Tsuyoshi; Imamura, Tetsuo; Yoshida, Keiichi; Takanashi, Masakatsu; Hattori, Hiroyuki; Ishikawa, Akio; Fujita, Koji; Yamamoto, Kengo; Matsubayashi, Jun; Kuroda, Masahiko; Mukai, Kiyoshi

    2006-03-01

    The fusion oncoproteins, TLS-CHOP and EWS-CHOP, are characteristic markers for myxoid and round cell liposarcomas (MLS/RCLS). Especially, the peptide sequence of 26 amino acids corresponding to the normally untranslated CHOP exon 2 and parts of exon 3 (5'-UTR) is a unique structure for these chimeric proteins. In this report, we have generated monoclonal antibodies against the unique peptide sequence of TLS/EWS-CHOP oncoproteins. These antibodies reacted with TLS-CHOP fusion protein, but not reacted with normal TLS and CHOP proteins by Western blot analysis. In addition, one of the antibodies also recognized the chimeric oncoprotein in archival paraffin-embedded tissue samples of MLS/RCLS. The oncoprotein was detectable by the antibody even in the paraffin-embedded tissue samples whose mRNAs were too degraded to be detected by a nested reverse transcription-polymerase chain reaction-based assay. Thus, the molecular assay using the novel antibody is expected to be one of the most sensitive diagnostic assays for MLS/RCLS.

  7. Non-small cell lung cancer patients with EML4-ALK fusion gene are insensitive to cytotoxic chemotherapy.

    PubMed

    Morodomi, Yosuke; Takenoyama, Mitsuhiro; Inamasu, Eiko; Toyozawa, Ryo; Kojo, Miyako; Toyokawa, Gouji; Shiraishi, Yoshimasa; Takenaka, Tomoyoshi; Hirai, Fumihiko; Yamaguchi, Masafumi; Taguchi, Kenichi; Seto, Takashi; Sugio, Kenji; Ichinose, Yukito

    2014-07-01

    Although patients with the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase gene (EML4-ALK) re-arrangement and epidermal growth factor gene EGFR mutations have proven sensitive to specific inhibitors, there is currently no consensus regarding the sensitivity of non-small cell lung cancer (NSCLC) patients with such mutations to cytotoxic chemotherapy. The responses to first-line cytotoxic chemotherapy were retrospectively compared between advanced or postoperative recurrent patients with non-squamous NSCLC who harbor the EML4-ALK fusion gene (ALK+), EGFR mutation (EGFR+), or neither abnormality (wild-type). Data for 22 ALK+, 30 EGFR+, and 60 wild-type patients were analyzed. The ALK+ group had a significantly lower response rate than the other two groups. Progression-free survival was significantly shorter in the ALK+ cohort compared to the EGFR+ (p<0.001) and wild-type cohorts (p=0.0121). NSCLC patients with the EML4-ALK fusion gene might be relatively insensitivite to cytotoxic chemotherapy. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Anaplastic lymphoma kinase inhibition in metastatic non-small cell lung cancer: clinical impact of alectinib

    PubMed Central

    Muller, Ittai B; de Langen, Adrianus J; Giovannetti, Elisa; Peters, Godefridus J

    2017-01-01

    A subset of non-small cell lung cancer (NSCLC) tumors (5%) harbors an anaplastic lymphoma kinase (ALK) translocation that drives tumorigenesis. The clinically approved first-line treatment crizotinib specifically inhibits ALK and improves progression-free survival (PFS) in treated and untreated patients by 4 months compared to standard chemotherapy. While some patients relapse after crizotinib treatment due to resistance mutations in ALK, second-generation ALK inhibitors effectively induce tumor response and prolong PFS. Alectinib, a second-generation ALK inhibitor, has recently been approved for ALK-rearranged NSCLC after patients progressed on crizotinib. Alectinib is able to inhibit several crizotinib- and ceritinib-resistant ALK mutations in vitro. Furthermore, alectinib is a more potent tyrosine kinase inhibitor (TKI), with favorable safety profile, and has increased penetration into the central nervous system, inhibiting crizotinib-resistant brain metastases. The discovery of effective personalized therapies to combat ALK-rearranged NSCLC such as alectinib is an example of the importance of genomic profiling of NSCLC and provides an excellent template for future discoveries in managing these tumors. PMID:28979145

  9. Anaplastic lymphoma kinase inhibition in metastatic non-small cell lung cancer: clinical impact of alectinib.

    PubMed

    Muller, Ittai B; de Langen, Adrianus J; Giovannetti, Elisa; Peters, Godefridus J

    2017-01-01

    A subset of non-small cell lung cancer (NSCLC) tumors (5%) harbors an anaplastic lymphoma kinase (ALK) translocation that drives tumorigenesis. The clinically approved first-line treatment crizotinib specifically inhibits ALK and improves progression-free survival (PFS) in treated and untreated patients by 4 months compared to standard chemotherapy. While some patients relapse after crizotinib treatment due to resistance mutations in ALK, second-generation ALK inhibitors effectively induce tumor response and prolong PFS. Alectinib, a second-generation ALK inhibitor, has recently been approved for ALK-rearranged NSCLC after patients progressed on crizotinib. Alectinib is able to inhibit several crizotinib- and ceritinib-resistant ALK mutations in vitro. Furthermore, alectinib is a more potent tyrosine kinase inhibitor (TKI), with favorable safety profile, and has increased penetration into the central nervous system, inhibiting crizotinib-resistant brain metastases. The discovery of effective personalized therapies to combat ALK-rearranged NSCLC such as alectinib is an example of the importance of genomic profiling of NSCLC and provides an excellent template for future discoveries in managing these tumors.

  10. Sensitive and affordable diagnostic assay for the quantitative detection of anaplastic lymphoma kinase (ALK) alterations in patients with non-small cell lung cancer

    PubMed Central

    Dama, Elisa; Tillhon, Micol; Bertalot, Giovanni; de Santis, Francesca; Troglio, Flavia; Pessina, Simona; Passaro, Antonio; Pece, Salvatore; de Marinis, Filippo; Dell'Orto, Patrizia; Viale, Giuseppe; Spaggiari, Lorenzo; Di Fiore, Pier Paolo; Bianchi, Fabrizio; Barberis, Massimo; Vecchi, Manuela

    2016-01-01

    Accurate detection of altered anaplastic lymphoma kinase (ALK) expression is critical for the selection of lung cancer patients eligible for ALK-targeted therapies. To overcome intrinsic limitations and discrepancies of currently available companion diagnostics for ALK, we developed a simple, affordable and objective PCR-based predictive model for the quantitative measurement of any ALK fusion as well as wild-type ALK upregulation. This method, optimized for low-quantity/−quality RNA from FFPE samples, combines cDNA pre-amplification with ad hoc generated calibration curves. All the models we derived yielded concordant predictions when applied to a cohort of 51 lung tumors, and correctly identified all 17 ALK FISH-positive and 33 of the 34 ALK FISH-negative samples. The one discrepant case was confirmed as positive by IHC, thus raising the accuracy of our test to 100%. Importantly, our method was accurate when using low amounts of input RNA (10 ng), also in FFPE samples with limited tumor cellularity (5–10%) and in FFPE cytology specimens. Thus, our test is an easily implementable diagnostic tool for the rapid, efficacious and cost-effective screening of ALK status in patients with lung cancer. PMID:27206799

  11. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK–positive lung cancer

    PubMed Central

    Hrustanovic, Gorjan; Olivas, Victor; Pazarentzos, Evangelos; Tulpule, Asmin; Asthana, Saurabh; Blakely, Collin M; Okimoto, Ross A; Lin, Luping; Neel, Dana S; Sabnis, Amit; Flanagan, Jennifer; Chan, Elton; Varella-Garcia, Marileila; Aisner, Dara L; Vaishnavi, Aria; Ou, Sai-Hong I; Collisson, Eric A; Ichihara, Eiki; Mack, Philip C; Lovly, Christine M; Karachaliou, Niki; Rosell, Rafael; Riess, Jonathan W; Doebele, Robert C; Bivona, Trever G

    2016-01-01

    One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS–mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRASWT) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK–positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes. PMID:26301689

  12. Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer.

    PubMed

    Yang, Lin; Li, Guangchao; Zhao, Likun; Pan, Fei; Qiang, Jiankun; Han, Siqi

    2014-10-01

    Targeted therapy based on ALK tyrosine kinase inhibitors (ALK-TKIs) has made significant achievements in individuals with EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion positive nonsmall-cell lung cancer (NSCLC). However, a high fraction of patients receive inferior clinical response to such treatment in the initial therapy, and the exact mechanisms underlying this process need to be further investigated. In this study, we revealed a persistently activated PI3K/AKT signaling that mediates the drug ineffectiveness. We found that genetic or pharmacological inhibition of ALK markedly abrogated phosphorylated STAT3 and ERK, but it failed to suppress AKT activity or induce apoptosis, in EML4-ALK-positive H2228 cells. Furthermore, targeted RNA interference of PI3K pathway components restored sensitivity to TAE684 treatment at least partially due to increased apoptosis. Combined TAE684 with PI3K inhibitor synergistically inhibited the proliferation of EML4-ALK-positive cells in vitro and significantly suppressed the growth of H2228 xenografts in vivo, suggesting the potential clinical application of such combinatorial therapy regimens in patients with EML4-ALK positive lung cancer.

  13. EML4-ALK translocation in both metachronous second primary lung sarcomatoid carcinoma and lung adenocarcinoma: a case report.

    PubMed

    Alì, Greta; Proietti, Agnese; Niccoli, Cristina; Pelliccioni, Serena; Borrelli, Nicla; Giannini, Riccardo; Lupi, Cristiana; Valetto, Angelo; Bertini, Veronica; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-08-01

    The EML4-ALK gene translocation was described in a non small cell lung cancer (NSCLC) subset, with a potent oncogenic activity. It represents one of the newest molecular targets in NSCLC. We report on the case of a metachronous second primary lung sarcomatoid carcinoma after resection of lung adenocarcinoma both with ALK translocation, in a non-smoking patient. EML4-ALK rearrangement was detected with immunohistochemistry and confirmed with fluorescent in situ hybridization (FISH). To assess the clonal relationship between the two tumors, both adenocarcinoma and sarcomatoid carcinoma were analyzed by array comparative genomic hybridization (aCGH). We observed different genomic profiles suggesting that the tumors arose independently and were thus multiple primaries. To the best of our knowledge, this is the first report concerning the presence of the EML4-ALK fusion gene in a sarcomatoid carcinoma of the lung. Crizotinib, the ALK tyrosine kinase inhibitor, is highly effective in ALK-rearranged NSCLC; therefore, it may be imperative to identify all NSCLC that harbor ALK translocations in the near future. Starting from our evidence, tumors with sarcomatoid histology may need to be screened for the presence of EML4-ALK rearrangement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing‐Xing

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct frommore » that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.« less

  15. Cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber compounds in the presence of alkanolamide

    NASA Astrophysics Data System (ADS)

    Surya, I.; Hayeemasae, N.; Ginting, M.

    2018-03-01

    The effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and degree of filler dispersion of kaolin-filled natural rubber (NR) compounds were investigated. The kaolin filler was incorporated into NR compounds with a fixed loading, 30.0 phr. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS), a waste product of cooking oil production, and diethanolamine. The ALK is an oily material and added into the filled NR compounds as a rubber additive at different loadings, 0.0, 3.0, 5.0 and 7.0. The kaolin-filled NR compounds with and without ALK were vulcanized using a semi-efficient vulcanization system. It was found that ALK decreased the scorch and cure times and improved filler dispersion of the kaolin-filled NR compounds. The higher the ALK loading, the shorter were the scorch and cure times. It was also found that ALK increased the crosslink density of kaolin-filled NR compound up to 5.0 phr of loading. Due to its oily properties, The ALK acted as an internal plasticizer which decreased the minimum torque and improved the degree of kaolin dispersion in NR phases. The higher the ALK loading; the lower the minimum torque and better the filler dispersion.

  16. New roles for Dicer in the nucleolus and its relevance to cancer.

    PubMed

    Roche, Benjamin; Arcangioli, Benoît; Martienssen, Rob

    2017-09-17

    The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.

  17. Accurate Identification of ALK Positive Lung Carcinoma Patients: Novel FDA-Cleared Automated Fluorescence In Situ Hybridization Scanning System and Ultrasensitive Immunohistochemistry

    PubMed Central

    Conde, Esther; Suárez-Gauthier, Ana; Benito, Amparo; Garrido, Pilar; García-Campelo, Rosario; Biscuola, Michele; Paz-Ares, Luis; Hardisson, David; de Castro, Javier; Camacho, M. Carmen; Rodriguez-Abreu, Delvys; Abdulkader, Ihab; Ramirez, Josep; Reguart, Noemí; Salido, Marta; Pijuán, Lara; Arriola, Edurne; Sanz, Julián; Folgueras, Victoria; Villanueva, Noemí; Gómez-Román, Javier; Hidalgo, Manuel; López-Ríos, Fernando

    2014-01-01

    Background Based on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit) and an automated ALK FISH scanning system (FDA-cleared) in a series of non-small cell lung cancer tumor samples. Methods Forty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana) and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit), which was automatically captured and scored by using Bioview's automated scanning system. Results All positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively. Conclusions The specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations. PMID:25248157

  18. Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap.

    PubMed

    Rohrbough, Jeffrey; Broadie, Kendal

    2010-10-01

    Bidirectional trans-synaptic signals induce synaptogenesis and regulate subsequent synaptic maturation. Presynaptically secreted Mind the gap (Mtg) molds the synaptic cleft extracellular matrix, leading us to hypothesize that Mtg functions to generate the intercellular environment required for efficient signaling. We show in Drosophila that secreted Jelly belly (Jeb) and its receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) are localized to developing synapses. Jeb localizes to punctate aggregates in central synaptic neuropil and neuromuscular junction (NMJ) presynaptic terminals. Secreted Jeb and Mtg accumulate and colocalize extracellularly in surrounding synaptic boutons. Alk concentrates in postsynaptic domains, consistent with an anterograde, trans-synaptic Jeb-Alk signaling pathway at developing synapses. Jeb synaptic expression is increased in Alk mutants, consistent with a requirement for Alk receptor function in Jeb uptake. In mtg null mutants, Alk NMJ synaptic levels are reduced and Jeb expression is dramatically increased. NMJ synapse morphology and molecular assembly appear largely normal in jeb and Alk mutants, but larvae exhibit greatly reduced movement, suggesting impaired functional synaptic development. jeb mutant movement is significantly rescued by neuronal Jeb expression. jeb and Alk mutants display normal NMJ postsynaptic responses, but a near loss of patterned, activity-dependent NMJ transmission driven by central excitatory output. We conclude that Jeb-Alk expression and anterograde trans-synaptic signaling are modulated by Mtg and play a key role in establishing functional synaptic connectivity in the developing motor circuit.

  19. The second wave of digital-era governance: a quasi-paradigm for government on the Web.

    PubMed

    Margetts, Helen; Dunleavy, Patrick

    2013-03-28

    Widespread use of the Internet and the Web has transformed the public management 'quasi-paradigm' in advanced industrial countries. The toolkit for public management reform has shifted away from a 'new public management' (NPM) approach stressing fragmentation, competition and incentivization and towards a 'digital-era governance' (DEG) one, focusing on reintegrating services, providing holistic services for citizens and implementing thoroughgoing digital changes in administration. We review the current status of NPM and DEG approaches, showing how the development of the social Web has already helped trigger a 'second wave' of DEG(2) changes. Web science and organizational studies are converging swiftly in public management and public services, opening up an extensive agenda for future redesign of state organization and interventions. So far, DEG changes have survived austerity pressures well, whereas key NPM elements have been rolled back.

  20. Nanopillar arrays on semiconductor membranes as electron emission amplifiers.

    PubMed

    Qin, Hua; Kim, Hyun-Seok; Blick, Robert H

    2008-03-05

    A new transmission-type electron multiplier was fabricated from silicon-on-insulator (SOI) material by integrating an array of one-dimensional (1D) silicon nanopillars onto a two-dimensional (2D) silicon membrane. Primary electrons are injected into the nanopillar-membrane (NPM) system from the flat surface of the membrane, while electron emission from the nanopillars is probed by an anode. The secondary electron yield (SEY) from the nanopillars in the current device is found to be about 1.8 times that of the plain silicon membrane. This gain in electron number is slightly enhanced by the electric field applied from the anode. Further optimization of the dimensions of the NPM and an application of field emission promise an even higher gain for detector applications and allow for probing of electronic/mechanical excitations in an NPM system stimulated by incident particles or radiation.

Top